WO2014109266A1 - 液晶シール剤及びそれを用いた液晶表示セル - Google Patents

液晶シール剤及びそれを用いた液晶表示セル Download PDF

Info

Publication number
WO2014109266A1
WO2014109266A1 PCT/JP2013/085217 JP2013085217W WO2014109266A1 WO 2014109266 A1 WO2014109266 A1 WO 2014109266A1 JP 2013085217 W JP2013085217 W JP 2013085217W WO 2014109266 A1 WO2014109266 A1 WO 2014109266A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
component
liquid
crystal sealing
Prior art date
Application number
PCT/JP2013/085217
Other languages
English (en)
French (fr)
Inventor
橋本 昌典
正弘 内藤
大輔 今岡
堅太 菅原
栄一 西原
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2014556394A priority Critical patent/JP6212055B2/ja
Priority to CN201380070029.0A priority patent/CN104919365B/zh
Priority to KR1020157021236A priority patent/KR20150105406A/ko
Publication of WO2014109266A1 publication Critical patent/WO2014109266A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • C08F2/40Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation using retarding agents

Definitions

  • the present invention relates to a liquid crystal sealing agent for liquid crystal dropping method that can be cured only by heat. More specifically, a liquid crystal sealing agent for liquid crystal dropping method having good curability by heat and excellent cured product properties such as handling property, storage stability and adhesive strength, a method for producing the same, and cured product thereof
  • the present invention relates to a liquid crystal display cell sealed with
  • liquid crystal sealing agent for liquid crystal dropping method a combination of light and heat type is used and put to practical use (patent documents 3 and 4).
  • the liquid crystal dropping method using this liquid crystal sealant is characterized in that the liquid crystal sealant sandwiched between the substrates is irradiated with light for primary curing, and then heated for secondary curing.
  • the uncured liquid crystal sealing agent can be rapidly cured by light, and the dissolution (elution) of the liquid crystal sealing agent component in the liquid crystal can be suppressed.
  • photocuring alone causes the problem of insufficient adhesive strength due to curing shrinkage at the time of photocuring and the like, it has the advantage that such problems can be resolved by secondary curing by heating if it is of the photothermal type.
  • the liquid crystal dropping method using only heat is an ideal method in that it achieves uniform curing of the liquid crystal sealing agent without being affected by the light shielding portion, but, for example, the more difficult problem of the liquid crystal insertion phenomenon.
  • the liquid crystal insertion phenomenon is a phenomenon where the viscosity of the uncured liquid crystal sealing agent occurs at the thermosetting stage, and the thermally expanded liquid crystal exerts a pressure on the liquid crystal sealing agent to cause insertion of the liquid crystal in the liquid crystal sealing agent. is there. When this phenomenon occurs, the contact area between the liquid crystal sealing agent and the upper and lower substrates decreases, which causes a significant decrease in adhesion. Also, in some cases, the liquid crystal may penetrate the liquid crystal sealant and leak out.
  • the handling property means the ease of use of the liquid crystal sealant.
  • the liquid crystal sealing agent hardens or gels in a process of being placed under a vacuum or applying heat, such as a degassing step of a liquid crystal sealing agent or a spacer agent mixing step.
  • the ease of occurrence of the phenomenon is defined as the handling property. Therefore, those which are less likely to cause gelation are used as a liquid crystal sealant having good handling properties, and those which are more likely to cause gelation are considered as liquid crystal sealants which have poor handling properties.
  • liquid crystal sealing agent for the liquid crystal dropping method
  • the liquid crystal sealing agent which makes stability etc. compatible and also is excellent also in hardened
  • liquid crystal is dropped on the inner side of a weir made of a liquid crystal sealant formed on one substrate, then the other substrate is bonded, and the liquid crystal sealant portion is cured only by heating.
  • the present invention relates to a liquid crystal sealing agent used in the liquid crystal dropping method to be manufactured, and since the reaction by heat is fast, the contamination of the liquid crystal is extremely low throughout the process, and further excellent in the insertion resistance of the liquid crystal into the liquid crystal sealing agent.
  • it is excellent in handling properties such as degassing, and excellent in coating properties to substrates, bonding properties, adhesive strength, etc., we propose a liquid crystal sealing agent that can be applied to liquid crystal panels of any design. It is a thing.
  • the present inventors have found that a liquid crystal sealing agent in which a thermal radical polymerization initiator, a specific radical polymerization inhibitor, and an organic filler are used in combination achieve the above-mentioned thermal reactivity and handling properties. It has been found that contamination can also be suppressed, insertion phenomenon is unlikely to occur, and further, cured product characteristics such as adhesive strength are excellent, and the present invention has been completed. That is, the present invention relates to the following 1) to 15).
  • “(meth) acryloyl” means one or both of “acryloyl” and “methacryloyl”.
  • “(meth) acrylic” means one or both of "acrylic” and "methacrylic”.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and R 3 represents a hydroxy group or a C1-C4 alkyl group, provided that -OR 1 , -OR 2 , and- Any one of R 3 is a hydroxy group
  • R 4 and R 5 each independently represent a hydrogen atom or a methyl group
  • R 6 represents a hydroxy group or a C1-C4 alkyl group, provided that -OR 4 , -OR 5 , and- Any one of R 6 is a hydroxy group
  • R 7 represents a hydrogen atom, a hydroxy group, or a C1-C4 alkyl group.
  • Liquid crystal sealing agent for liquid crystal dropping methods as described in said 1) whose radical polymerization inhibitor which has the said piperidine frame
  • the group A is a hydrogen atom, a hydroxy group, a carboxy group, a cyano group, an amino group, a C1-C4 alkoxy group, a phenoxy group, an acetamide group (-NHCOCH 3 ), a benzoyloxy group (-OCOC 6 H 5)
  • Group is a group represented by any one of the following formulas (5) to (7):
  • group B is a hydrogen atom, an oxygen atom, C1-C4; alkyl group, or an C1-C20 alkoxy group.
  • .R 8 to R 15 refers to a nitroso group in the N-O each independently represent an C1-C4 alkyl group.
  • * means a bonding position.
  • group C means the same as group B
  • R 16 to R 19 each independently represent a C1-C4 alkyl group.
  • group D means the same as group B above
  • R 20 represents a C1-C20 alkylene group
  • R 21 to R 24 each independently represent C 1- C4 alkyl group is shown
  • the component (d) is one or more rubber fine particles selected from the group consisting of acrylic rubber, styrene rubber, styrene olefin rubber, and silicone rubber Liquid crystal sealing agent for construction method.
  • the component (c) has a (meth) acryloyl group and is a curable resin having a resorcinol skeleton.
  • liquid crystal sealing agent for liquid crystal dropping method according to any one of the above 1) to 12) or the liquid crystal sealing agent for liquid crystal dropping method obtained by the manufacturing method according to the above 13) or 14). Liquid crystal display cell sealed with cured product.
  • the liquid crystal sealing agent for a liquid crystal dropping method of the present invention can be applied to a liquid crystal dropping method in which the liquid crystal sealing agent is cured only by heat because the curing rate at the time of heat curing is fast. For this reason, the freedom in the wiring design of the panel can be secured, and the manufacture of a highly reliable liquid crystal display panel can be facilitated. In addition, since the process of irradiating light such as ultraviolet light can be omitted in the manufacturing process of the liquid crystal display cell, it contributes to the improvement of the production efficiency.
  • the thermal radical polymerization initiator (a) used in the present invention is not particularly limited as long as it is a compound that generates radicals by heating to initiate chain polymerization reaction, but organic peroxides, azo compounds, benzoin compounds, benzoin ether compounds And acetophenone compounds, benzopinacol and the like, and benzopinacol is preferably used.
  • organic peroxides include Kayamec RTM A, M, R, L, LH, SP-30C, Percadox CH-50L, BC-FF, Cadox B-40 ES, Percadox 14, Trigonox RTM 22-70E, 23-C70, 121, 121-50E, 121-LS50E, 21-LS50E, 42, 42LS, Kayaester RTM P-70, TMPO-70, CND-C70, OO-50E, AN, Kayabutyl RTM B, Percadox 16 , Kayacaron RTM BIC-75, AIC-75 (all, made by Kayaku Akzo Co., Ltd.), Permec RTM N, H, S, F, D, G, Perhexa RTM H, HC, TMH, C, V, 22, MC , Pakyua RTM AH, AL, HB, Perbutyl RTM H, C, ND, L, Pakumi RTM H, D, PEROYL RTM
  • azo compound VA-044, V-070, VPE-0201, VSP-1001 (all manufactured by Wako Pure Chemical Industries, Ltd.) and the like are available as commercial products.
  • superscript RTM means a registered trademark.
  • benzopinacol-based thermal radical polymerization initiators are particularly preferable.
  • benzopinacol 1,2-dimethoxy-1,1,2,2-tetraphenylethane, 1,2-diethoxy-1,1,2,2-tetraphenylethane, 1,2-diphenoxy- 1,1,2,2-tetraphenylethane, 1,2-dimethoxy-1,1,2,2-tetra (4-methylphenyl) ethane, 1,2-diphenoxy-1,1,2,2-tetra (4-Methoxyphenyl) ethane, 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane, 1,2-bis (triethylsiloxy) -1,1,2,2-tetraphenyl Ethane, 1,2-bis (t-butyldimethylsiloxy) -1,1,2,2-tetraphenylethane, 1-hydroxy-2-trimethylsiloxy-1,1,1,2,2-tetraphenylethane, 1-hydroxy-2-trimethylsil
  • the benzopinacol is commercially available from Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd., and the like.
  • etherified hydroxy groups of benzopinacol can be easily synthesized by known methods.
  • silyletherified hydroxy group of benzopinacol can be obtained by synthesis by heating the corresponding benzopinacol and various silylating agents under a basic catalyst such as pyridine.
  • trimethylsilylating agents such as trimethylchlorosilane (TMCS), hexamethyldisilazane (HMDS), N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA), and triethylsilylating agent And triethylchlorosilane (TECS), and t-butylmethylsilane (TBMS) which is a t-butyldimethylsilylating agent.
  • TMCS trimethylchlorosilane
  • HMDS hexamethyldisilazane
  • BSTFA O-bis (trimethylsilyl) trifluoroacetamide
  • TECS triethylchlorosilane
  • TBMS t-butylmethylsilane
  • the reaction efficiency will be poor, and the reaction time will be long, thereby promoting thermal decomposition. If the amount is more than 5.0 times by mole, separation may be deteriorated during the recovery or purification may be difficult.
  • the (a) thermal radical polymerization initiator have a fine particle size and be uniformly dispersed.
  • the average particle size is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, because if it is too large, it may cause defects such as gap formation when bonding the upper and lower glass substrates together during production of narrow gap liquid crystal display cells. .
  • the lower limit is usually about 0.1 ⁇ m.
  • the particle size can be measured by a laser diffraction / scattering type particle size distribution measuring apparatus (dry type) (manufactured by Seishin Enterprise Co., Ltd .; LMS-30).
  • the content of the (a) thermal radical polymerization initiator is preferably 0.0001 to 10 parts by mass, more preferably 100 parts by mass, based on 100 parts by mass of the entire curable resin of the liquid crystal sealing agent of the present invention. It is 0.0005 to 5 parts by mass, and particularly preferably 0.001 to 3 parts by mass.
  • curable resin represents a component (c) and the component (e) in the case of containing as needed. The same applies in the present application.
  • the radical polymerization inhibitor (b) used in the present invention is a radical polymerization inhibitor represented by any of the above formulas (1) to (3), or a radical polymerization inhibitor having a piperidine skeleton. These radical polymerization inhibitors may be used alone or in combination of two or more.
  • the compound represented by the above formula (1) has relatively high polarity because it has a hydroxy group, and has low compatibility with liquid crystals. Therefore, even if there is a step of direct contact with the liquid crystal to be heated as in the liquid crystal dropping method using only heat, it is difficult for the liquid crystal to elute and contaminate the liquid crystal. Moreover, since the compound represented by the said Formula (2) or (3) is comparatively high in polarity, and also molecular weight is large, compatibility with a liquid crystal is low. Therefore, even if there is a step of direct contact with the liquid crystal to be heated as in the liquid crystal dropping method using only heat, it is difficult for the liquid crystal to elute and contaminate the liquid crystal. Also, the ability to prevent polymerization is high when compared to other high molecular weight radical polymerization inhibitors. That is, it can be said that the radical polymerization inhibitor is particularly excellent in the liquid crystal dropping method using only heat.
  • R ⁇ 1 > and R ⁇ 2 > show a hydrogen atom or a methyl group each independently.
  • R 3 represents a hydroxy group or a C1-C4 alkyl group.
  • the C1-C4 alkyl group may be linear or branched and, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group Etc. Of these, preferred is a methyl group.
  • any one of -OR 1 , -OR 2 and -R 3 is a hydroxy group. That is, for example, when R 1 is a methyl group and R 3 is a methyl group, R 2 is a hydrogen atom.
  • R 4 and R 5 represents a hydrogen atom or a methyl group independently.
  • R 6 represents a hydroxy group or a C1-C4 alkyl group.
  • the C1-C4 alkyl group means the same as R 3 in the above formula (1), including the preferable one.
  • any one of -OR 4 , -OR 5 and -R 6 is a hydroxy group. That is, for example, when R 4 is a methyl group and R 6 is a methyl group, R 4 is a hydrogen atom.
  • R 7 represents a hydrogen atom, a hydroxy group, or a C1-C4 alkyl group.
  • the C1-C4 alkyl group means the same as R 3 in the above formula (1), including the preferred ones.
  • R 7 is preferably a hydrogen atom or a hydroxy group, and particularly preferably a hydroxy group.
  • the radical polymerization inhibitor having a piperidine skeleton has a property of low solubility in liquid crystal, even if there is a step of direct contact with liquid crystal to be heated like liquid crystal dropping method using only heat, liquid crystal Difficult to elute and contaminate the liquid crystal. Also, the ability to prevent polymerization is high when compared to other high molecular weight radical polymerization inhibitors. That is, it can be said that the radical polymerization inhibitor is particularly excellent in the liquid crystal dropping method using only heat.
  • the group A is a hydrogen atom, a hydroxy group, a carboxy group, a cyano group, an amino group, a C1-C4 alkoxy group, a phenoxy group, an acetamide group (-NHCOCH 3 ), a benzoyloxy group (-OCOC 6 H) 5 ) an isothiocyanate group (—NCS), an oxo group ((O), or a group represented by any one of the above formulas (5) to (7).
  • the group B represents a hydrogen atom, an oxygen atom, a C1-C4 alkyl group, or a C1-C20 alkoxy group.
  • N-O becomes a nitroso group.
  • the C1-C4 alkyl group may be linear or branched and, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group Etc. Of these, preferred is a methyl group.
  • the C1-C20 alkoxy group may be linear or branched, but is preferably linear, a C5-C15 alkoxy group is preferable, and a C7-C12 alkoxy group is more preferable.
  • R 8 to R 15 each independently represent a C1-C4 alkyl group.
  • the C1-C4 alkyl group is the same as the C1-C4 alkyl group in the above-mentioned group B, including the preferable ones.
  • the group C means the same as the above group B, and R 16 to R 19 each independently represent a C1-C4 alkyl group.
  • the C1-C4 alkyl group is the same as the C1-C4 alkyl group in the above-mentioned group B, including the preferable ones.
  • the group D means the same as the above group B
  • R 20 is a C1-C20 alkyl group
  • R 21 to R 24 are each independently a C1-C4 alkyl group.
  • the C1-C20 alkylene group for R 20 may be linear or branched, but is preferably a linear one, a C5-C15 alkylene group is preferable, and a C7-C12 alkylene group is more preferable.
  • C1-C4 alkyl group in R 21 to R 24 are the same meaning, including preferred and C1-C4 alkyl group in the group B.
  • radical polymerization inhibitor represented by the above formula (4) examples include Polystop RTM 7300 (manufactured by Shoto Co., Ltd.), Adekastab RTM LA-81, LA-82 (all manufactured by ADEKA Inc.), TINUVIN RTM 123, 765 (manufactured by BASF, etc.) can be easily obtained from the market.
  • the radical polymerization inhibitor (b) may be added when synthesizing the component (c) or may be added to the component (c) and / or the component (e) to be dissolved, but it is more effective. In order to obtain such effects, it is preferable to add and dissolve the component (c) and / or the component (e).
  • the content of the radical polymerization inhibitor (b) is preferably 0.0001 to 1 part by mass, more preferably 0. 1 part by mass, based on 100 parts by mass of the entire curable resin in the liquid crystal sealing agent of the present invention.
  • the amount is 001 to 0.5 parts by mass, and preferably 0.01 to 0.2 parts by mass. If the amount of the radical polymerization inhibitor is too small, sufficient handleability can not be obtained, and if it is too large, the liquid crystal contamination due to the delayed thermal reaction may be a problem.
  • the liquid crystal sealing agent of the present invention contains (c) a curable resin having a (meth) acryloyl group.
  • a curable resin examples include (meth) acrylic esters and epoxy (meth) acrylates.
  • acrylic esters benzyl methacrylate, cyclohexyl methacrylate, glycerol dimethacrylate, glycerol triacrylate, EO modified glycerol triacrylate, pentaerythritol acrylate, trimethylolpropane triacrylate, tris (acryloxyethyl) isocyanurate, dipentaerythritol Hexaacrylate, phlorogricinol triacrylate and the like can be mentioned.
  • Epoxy (meth) acrylates are obtained in a known manner by the reaction of epoxy resins with (meth) acrylic acid.
  • the epoxy resin as the raw material is not particularly limited, but a bifunctional or higher epoxy resin is preferable.
  • an epoxy resin having a resorcinol skeleton such as resorcin diglycidyl ether is preferable from the viewpoint of liquid crystal contamination.
  • the ratio of the epoxy group to the (meth) acryloyl group is not limited, and is appropriately selected from the viewpoint of process compatibility and liquid crystal contamination. Therefore, a curable resin having a (meth) acryloyl group is a curable resin having a (meth) acryloyl group and having a resorcinol skeleton, and, for example, an acrylic ester of resorcin diglycidyl ether or resorcin diglycidyl It is a methacrylic acid ester of ether.
  • the liquid-crystal sealing compound of this invention contains the compound which has 3 or more of (meth) acryloyl groups in one molecule in component (c).
  • a compound having three or more (meth) acryloyl groups in one molecule has a high crosslinking rate (reaction rate), so that excellent insertion resistance can be realized.
  • reaction rate crosslinking rate
  • those having a molar average molecular weight of 800 or more are preferable, and, for example, KAYARAD RTM DPCA-20, DPCA-30, and DPEA-12 are preferable.
  • a curable resin containing C1-C4 alkylene oxide (-O-R-O-) in the molecule is preferable, and KAYARAD RTM DPEA-12 is particularly preferable.
  • the content of the curable resin having (c) a (meth) acryloyl group is preferably 30 to 90 parts by mass, more preferably 50 to 90 parts by mass, based on 100 parts by mass of the total amount of the liquid crystal sealing agent. is there.
  • the liquid crystal sealing agent of the present invention further comprises (d) an organic filler.
  • an organic filler polyamide particles such as nylon 6, nylon 12, nylon 66, fluorine particles such as tetrafluoroethylene or vinylidene fluoride, olefin particles such as polyethylene or polypropylene, polyester such as polyethylene terephthalate or polyethylene naphthalate Fine particles, rubber fine particles such as natural rubber, isoprene rubber, acrylic rubber, etc. may be mentioned.
  • rubber fine particles are preferable as the organic filler.
  • the fine rubber particles include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), butyl rubber (IIR), nitrile rubber (NBR), ethylene and propylene rubber (EPM) , EP), chloroprene rubber (CR), acrylic rubber (ACM, ANM), chlorosulfonated polyethylene rubber (CSM), urethane rubber (PUR), silicone rubber (Si, SR), fluororubber (FKM, FPM), many Sulfurized rubber (thiocol) and the like may be mentioned, and a single rubber fine particle may be used, or a core-shell structure may be made using two or more kinds.
  • acrylic rubber styrene rubber, styrene olefin rubber, or silicone rubber
  • acrylic rubber or silicone rubber it is preferable that the acrylic rubber has a core-shell structure composed of two types of acrylic rubber, and it is preferable that the core layer is n-butyl acrylate and the shell layer is methyl methacrylate. This is marketed by Aika Industry Co., Ltd. as Zefiac RTM F-351.
  • silicone rubber organopolysiloxane crosslinked material powder, linear dimethylpolysiloxane crosslinked material powder, etc. are mentioned.
  • silicone rubber what coated silicone resin (for example, polyorgano silsesquioxane resin) on the surface of the said silicone rubber is mentioned.
  • silicone resin for example, polyorgano silsesquioxane resin
  • these rubber fine particles particularly preferred are silicone rubber of linear dimethylpolysiloxane crosslinked powder or composite silicone rubber microparticles of silicone resin-coated linear dimethylpolysiloxane crosslinked powder. These may be used alone or in combination of two or more. Further, the shape of the rubber powder is preferably spherical with less thickening of viscosity after addition.
  • the content of the (d) organic filler is preferably 5 to 50 parts by mass, and more preferably 5 to 40 parts by mass, based on 100 parts by mass of the total amount of the liquid crystal sealing agent.
  • adhesive strength improvement can be aimed at by using (e) curable resin which has an epoxy group.
  • the curable resin having an epoxy group is not particularly limited, but is preferably a bifunctional or higher epoxy resin, such as bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, phenol novolac resin Epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, hydantoin type Epoxy resin, isocyanurate type epoxy resin, phenol novolac type epoxy resin having triphenolmethane skeleton, other, diglycidyl ether of difunctional phenols, difunctional alcohol Diglycidyl ethers of classes, and their halides, hydrogenated product and the like.
  • the content of the curable resin (e) having an epoxy group is preferably 1 to 30 parts by mass when the total amount of the liquid crystal sealing agent is 100 parts by mass.
  • thermosetting agent (f) used together with the component (e) is not particularly limited, and examples thereof include polyhydric amines, polyhydric phenols, hydrazide compounds and the like. And solid organic acid hydrazides are particularly preferably used.
  • aliphatic hydrazide compounds such as form hydrazide, acetohydrazide, propionic acid hydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, sebacic acid dihydrazide, 1,4-cyclohexanedihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, iminodiacetic acid dihydrazide, N, N'-hexamethylene bissemicarbazide, citric acid trihydrazide, nitriloacetic acid trihydrazide, cyclohexane tricarboxylic acid trihydrazide; Hydantoin skeletons such as hydrazino carbonoethyl) -5-iso
  • thermosetting agents may be used alone or in combination of two or more. From the balance between curing reactivity and latency, preferably, isophthalic acid dihydrazide, malonic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, tris (1-hydrazinocarbonylmethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) 2.) Isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate, tris (3-hydrazinocarbonylpropyl) isocyanurate, particularly preferably malonic acid dihydrazide, sebacic acid dihydrazide.
  • the epoxy group of component (e) is one equivalent
  • the amount of use of the above-mentioned (f) thermosetting agent is 0.5 to 2.0 equivalents, and preferably 0.8 to 1. 2 equivalents.
  • silane coupling agent 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl tritrile Methoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropy
  • silane coupling agents are sold by Shin-Etsu Chemical Co., Ltd. as KBM series, KBE series etc., they are easily available from the market.
  • the content of the above (g) silane coupling agent is preferably 0.05 to 3 parts by mass when the total amount of the liquid crystal sealing agent is 100 parts by mass.
  • the adhesive strength and the humidity resistance reliability can be improved by using (h) an inorganic filler.
  • an inorganic filler fused silica, crystalline silica, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide
  • Magnesium hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc. preferably fused silica, crystalline silica, silicon nitride, nitrided Boron, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate, aluminum silicate, more preferably fused
  • the average particle size is 3 ⁇ m or less, preferably 2 ⁇ m or less, because if it is too large, it may cause defects such as gap formation when bonding upper and lower glass substrates during narrow gap liquid crystal cell production. .
  • the particle size can be measured by a laser diffraction / scattering type particle size distribution measuring apparatus (dry type) (manufactured by Seishin Enterprise Co., Ltd .; LMS-30).
  • the content of the (h) inorganic filler is preferably 1 to 60 parts by mass, and more preferably 1 to 40 parts by mass, based on 100 parts by mass of the total amount of the liquid crystal sealing agent. If the content of the inorganic filler is too small, the adhesive strength to the glass substrate may be reduced, and the moisture resistance may be deteriorated, so that the reduction in adhesive strength after moisture absorption may be increased. On the other hand, when the content of the inorganic filler is too large, the liquid crystal cell may be difficult to be crushed and the gap may not be formed.
  • additives such as a curing accelerator, a pigment, a leveling agent, an antifoaming agent, and a solvent can be further added, as necessary.
  • Examples of the curing accelerator include organic acids and imidazoles.
  • Examples of the organic acid include organic carboxylic acids and organic phosphoric acids, and organic carboxylic acids are preferable.
  • aromatic carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, benzophenonetetracarboxylic acid, furandicarboxylic acid; succinic acid, adipic acid, dodecanedioic acid, sebacic acid, thiodipropionic acid And cyclohexanedicarboxylic acid, tris (2-carboxymethyl) isocyanurate, tris (2-carboxyethyl) isocyanurate, tris (2-carboxypropyl) isocyanurate, bis (2-carboxyethyl) isocyanurate and the like.
  • component (e) is dissolved and mixed with component (c) as required.
  • component (b) is dissolved in the mixture, and the component (g) is dissolved, if necessary.
  • component (a), component (d), component (f), component (h) and, if necessary, an antifoaming agent, a leveling agent, a solvent and the like are added, and known mixing devices such as three rolls, sand mill
  • the liquid crystal sealing agent of the present invention can be produced by uniformly mixing with a ball mill or the like and filtering through a metal mesh.
  • a pair of substrates having predetermined electrodes formed on the substrates is disposed opposite to each other at a predetermined distance, the periphery is sealed with the liquid crystal sealing agent of the present invention, and liquid crystal is sealed in the gap. is there.
  • the type of liquid crystal to be enclosed is not particularly limited.
  • the substrate is composed of a combination of light transmitting property to at least one of glass, quartz, plastic, silicon and the like.
  • the manufacturing method after adding a spacer (space control material) such as glass fiber to the liquid crystal sealing agent of the present invention, the liquid crystal sealing agent was applied to one of the pair of substrates using a dispenser, a screen printing apparatus, etc.
  • the liquid crystal display cell of the present invention can be obtained by curing at 90 to 130 ° C. for 1 to 2 hours.
  • the liquid crystal display cell of the present invention thus obtained is free from display defects due to liquid crystal contamination, and is excellent in adhesion and moisture resistance.
  • the spacer include glass fibers, silica beads, polymer beads and the like.
  • the diameter varies depending on the purpose, but is usually 2 to 8 ⁇ m, preferably 4 to 7 ⁇ m.
  • the amount thereof used is usually 0.1 to 4 parts by mass, preferably 0.5 to 2 parts by mass, more preferably 0.9 to 1.5 parts by mass with respect to 100 parts by mass of the liquid crystal sealing agent of the present invention.
  • the liquid crystal sealing agent of the present invention is very good in the resistance to insertion of liquid crystal, and causes a phenomenon that liquid crystal is inserted or the seal is broken also in the bonding step of substrates in the liquid crystal dropping method and the heating step. Absent. Therefore, it is possible to manufacture a stable liquid crystal display cell. In addition, since the speed at which the curable resin is crosslinked is high, the elution of the component into the liquid crystal is extremely small, and the display defect of the liquid crystal display cell can be reduced. Moreover, since it is excellent also in handling property and storage stability, it is suitable for manufacture of a liquid crystal display cell.
  • the cured product is also excellent in various cured product characteristics such as adhesive strength, heat resistance, moisture resistance, etc., it is possible to create a liquid crystal display cell excellent in reliability by using the liquid crystal sealing agent of the present invention is there.
  • the liquid crystal display cell manufactured using the liquid crystal sealing agent of the present invention satisfies the characteristics necessary for a liquid crystal display cell that the voltage holding ratio is high and the ion density is low.
  • Synthesis Example 1 Synthesis of 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane 100 parts of commercially available benzopinacol (manufactured by Tokyo Kasei Co., Ltd.) was dissolved in 350 parts of dimethyl formaldehyde. Thereto, 32 parts of pyridine as a base catalyst and 150 parts of BSTFA (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silylating agent were added, the temperature was raised to 70 ° C., and the mixture was stirred for 2 hours. The resulting reaction solution was cooled, and 200 parts of water was added with stirring to precipitate the product and deactivate the unreacted silylating agent.
  • benzopinacol manufactured by Tokyo Kasei Co., Ltd.
  • organic filler (component (d)), silane coupling agent (component (g)), inorganic filler (component (h)), thermal radical polymerization initiator (component (a)), heat curing agent ( The component (f) and the like are appropriately added and stirred, and then dispersed using a three-roll mill, and then filtered with a metal mesh (635 mesh) to prepare a liquid crystal sealing agent for liquid crystal dropping method of Examples 1 to 12. did.
  • a liquid crystal sealing compound for liquid crystal dropping method of Comparative Examples 1 and 2 was prepared.
  • the prepared liquid crystal sealing agent for liquid crystal dropping method was molded into 3 cm ⁇ 3 cm ⁇ 1 mm and cured at 120 ° C. for 1 hour. The curability was evaluated by measuring the Shore A hardness of the cured product. The results are shown in Tables 1 to 3.
  • Decline index -Log (y / x) x: specific resistance value of blank liquid crystal y: specific resistance value of sample liquid crystal ⁇ : decrease index is less than 1.5 ⁇ : decrease index is 1.5 or more and less than 2.0 ⁇ : decrease index is 2.0 or more
  • the liquid crystal sealing compound for liquid crystal dropping method of the present invention containing a specific radical polymerization inhibitor (component (b)) and components (a), (c) and (d) It was confirmed that the curability, the handling property, and the liquid crystal contamination property are very excellent.
  • the liquid crystal sealing agent for a liquid crystal dropping method of the present invention has good curability by heat, is excellent in insertion resistance, and is also excellent in cured product characteristics such as handling property, storage stability and adhesive strength. Therefore, the design freedom of the liquid crystal display cell is secured, and it contributes to productivity and its long-term reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Sealing Material Composition (AREA)
  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Epoxy Resins (AREA)
  • Polymerisation Methods In General (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

 熱による反応が速いため、工程を通して液晶に対して極めて汚染性が低く、かつ、ハンドリング性や保存安定性に優れる液晶滴下工法用液晶シール剤を提供する。 本発明の液晶滴下工法用液晶シール剤は、(a)熱ラジカル重合開始剤、(b)ラジカル重合防止剤、(c)(メタ)アクリロイル基を有する硬化性樹脂、及び(d)有機フィラーを含有し、成分(b)が下記式(1)乃至(3)のいずれかで表されるラジカル重合防止剤、又はピペリジン骨格を有するラジカル重合防止剤である。式中、R、R、R、Rは水素原子又はメチル基を示し、R、Rはヒドロキシ基又はC1-C4アルキル基を示す。ただし、-OR、-OR、-Rのいずれか1つ、及び-OR、-OR、-Rのいずれか1つはヒドロキシ基である。Rは水素原子、ヒドロキシ基、又はC1-C4アルキル基を示す。

Description

液晶シール剤及びそれを用いた液晶表示セル
 本発明は、熱のみによって硬化可能である液晶滴下工法用液晶シール剤に関する。より詳細には、熱による良好な硬化性を有し、かつ、ハンドリング性や保存安定性、接着強度等の硬化物特性にも優れる液晶滴下工法用液晶シール剤、その製造方法、及びその硬化物でシールされた液晶表示セルに関する。
 近年の液晶表示セルの大型化に伴い、液晶表示セルの製造方法として、より量産性の高い、いわゆる液晶滴下工法が提案されている(特許文献1、2参照)。具体的には、一方の基板に形成された液晶シール剤からなる堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせることにより液晶が封止される液晶表示セルの製造方法である。
 現在は液晶滴下工法用の液晶シール剤として光熱併用型のものが用いられ、実用化されている(特許文献3、4)。この液晶シール剤を使用した液晶滴下工法では、基板に挟まれた液晶シール剤に光を照射して一次硬化させた後、加熱して二次硬化させることを特徴とする。この方法によれば、未硬化の液晶シール剤を光によって速やかに硬化でき、液晶シール剤成分の液晶への溶解(溶出)を抑えることが可能である。さらに、光硬化のみでは光硬化時の硬化収縮等による接着強度不足という問題も発生するが、光熱併用型であれば加熱による二次硬化によって、そういった問題も解消できるという利点を有する。
 しかし、近年では、液晶表示素子の小型化に伴い、液晶表示素子のアレイ基板のメタル配線部分やカラーフィルター基板のブラックマトリックス部分により液晶シール剤に光が当たらない遮光部が生じ、シール近傍の表示不良の問題が以前よりも深刻なものとなっている。すなわち、遮光部の存在によって上記光による一次硬化が不十分となり、液晶シール剤中に未硬化成分が多量に残存する。この状態で熱による二次硬化工程に進んだ場合、当該未硬化成分の液晶への溶解は、熱によって促進されてしまうという結果をもたらし、シール近傍の表示不良を引き起こす。
 この課題を解決するため、熱ラジカル発生剤を使用することにより、熱による硬化速度を上げ、成分溶出を低減させるといった提案がなされている。また、この技術を応用し、熱のみによって液晶滴下工法を実現させるといった提案もなされている(特許文献5、6)。
 熱のみによる液晶滴下工法は、上記遮光部の影響を受けることなく、液晶シール剤の均一な硬化を実現する点においては理想的な工法であるものの、例えば液晶の差込現象というさらなる困難な課題に直面する。液晶の差込現象とは、熱硬化の段階で未硬化の液晶シール剤の低粘度化が起こり、ここに熱膨張した液晶が圧力を加えることにより、液晶シール剤に液晶の差し込みが生じる現象である。この現象が生じると、液晶シール剤と上下基板との接触面積が小さくなるため、著しい接着性の低下を引き起こす。また、場合によっては液晶が液晶シール剤を貫通し、外へ漏れ出すこともある。
 この課題を解決するためには、上記熱ラジカル発生剤の硬化開始温度を下げたり、また添加量を増やしたりして、硬化速度を速める方法が考えられる。しかしこの手法は、その反応の速さからハンドリング性の低さが問題とされる。ハンドリング性とは、液晶シール剤の使用のし易さを意味する。例えば液晶シール剤の脱泡工程やスペーサー剤混合工程等、真空下に置かれたり、熱がかかったりする工程において、液晶シール剤が硬化、又はゲル化してしまうという現象があり、本願では、この現象の生じ易さをハンドリング性と定義する。したがって、ゲル化を起こし難いものをハンドリング性の良い液晶シール剤とし、ゲル化を起こし易いものをハンドリング性の悪い液晶シール剤とする。
 さらに、上記ハンドリング性とは別に、保存安定性も液晶シール剤の重要な特性である。これは、室温下での粘度増加によって、シール塗布が困難となる性質であり、熱ラジカル発生剤を使用した液晶シール剤は、この保存安定性にも劣る。この課題を解決する方法が特許文献7において提案されているが、上記全ての課題を解決するものとして、十分ではない。
 以上述べたように、液晶滴下工法用の液晶シール剤の開発は非常に精力的に行われているにもかかわらず、優れた熱反応性や遮光部硬化性を有しながら、ハンドリング性、保存安定性等を両立し、さらには硬化物特性にも優れるといった液晶シール剤は未だ実現していない。
特開昭63-179323号公報 特開平10-239694号公報 特許第3583326号公報 特開2004-61925号公報 特開2004-126211号公報 特開2009-8754号公報 特開2009-42409号公報
 本発明は、一方の基板に形成された液晶シール剤からなる堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせ、液晶シール剤部を加熱のみによって硬化することにより液晶表示セルを製造する液晶滴下工法に用いられる液晶シール剤に関するものであり、熱による反応が速いため、工程を通して液晶に対して極めて汚染性が低く、さらには液晶の液晶シール剤への差込耐性に優れ、かつ、脱泡等のハンドリング性にも優れ、その他、基板への塗布性、貼り合わせ性、接着強度等に優れているため、いかなる設計の液晶パネルにも適応可能である液晶シール剤を提案するものである。
 本発明者らは、鋭意検討の結果、熱ラジカル重合開始剤と特定のラジカル重合防止剤、さらには有機フィラーを併用する液晶シール剤が上記熱反応性とハンドリング性を両立し、その結果、液晶汚染性も抑えることが可能であり、また差込現象も起こし難く、さらには接着強度等の硬化物特性にも優れることを見出し、本発明を完成するに至った。
 すなわち本発明は、次の1)~15)に関するものである。なお、本明細書中、「(メタ)アクリロイル」とは、「アクリロイル」及び「メタクリロイル」の一方又は両方を意味する。同様に、本明細書中、「(メタ)アクリル」とは、「アクリル」及び「メタクリル」の一方又は両方を意味する。
1)
 (a)熱ラジカル重合開始剤、(b)ラジカル重合防止剤、(c)(メタ)アクリロイル基を有する硬化性樹脂、及び(d)有機フィラーを含有する液晶滴下工法用液晶シール剤であって、
 上記成分(b)が下記式(1)乃至(3)のいずれかで表されるラジカル重合防止剤、又はピペリジン骨格を有するラジカル重合防止剤である液晶滴下工法用液晶シール剤。
Figure JPOXMLDOC01-appb-C000008
(式(1)中、R及びRはそれぞれ独立に水素原子又はメチル基を示し、Rはヒドロキシ基又はC1-C4アルキル基を示す。ただし、-OR、-OR、及び-Rのいずれか1つはヒドロキシ基である。)
Figure JPOXMLDOC01-appb-C000009
(式(2)中、R及びRはそれぞれ独立に水素原子又はメチル基を示し、Rはヒドロキシ基又はC1-C4アルキル基を示す。ただし、-OR、-OR、及び-Rのいずれか1つはヒドロキシ基である。)
Figure JPOXMLDOC01-appb-C000010
(式(3)中、Rは水素原子、ヒドロキシ基、又はC1-C4アルキル基を示す。)
2)
 上記ピペリジン骨格を有するラジカル重合防止剤が下記式(4)で表されるラジカル重合防止剤である上記1)に記載の液晶滴下工法用液晶シール剤。
Figure JPOXMLDOC01-appb-C000011
(式(4)中、基Aは水素原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、C1-C4アルコキシ基、フェノキシ基、アセトアミド基(-NHCOCH)、ベンゾイロキシ基(-OCOC)、イソチオシアネート基(-NCS)、オキソ基(=O)、又は下記式(5)乃至(7)のいずれかで表される基を示す。基Bは水素原子、酸素原子、C1-C4アルキル基、又はC1-C20アルコキシ基を示す。ただし、酸素原子の場合には、N-Oでニトロソ基を意味する。R乃至R15はそれぞれ独立にC1-C4アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000012
(式(5)中、*は結合位置を意味する。)
Figure JPOXMLDOC01-appb-C000013
(式(6)中、*は結合位置を意味し、基Cは上記基Bと同じものを意味し、R16乃至R19はそれぞれ独立にC1-C4アルキル基を表す。)
Figure JPOXMLDOC01-appb-C000014
(式(7)中、*は結合位置を意味し、基Dは上記基Bと同じものを意味し、R20はC1-C20アルキレン基を示し、R21乃至R24はそれぞれ独立にC1-C4アルキル基を示す。)
3)
 上記成分(d)がゴム微粒子である上記1)又は2)に記載の液晶滴下工法用液晶シール剤。
4)
 上記成分(d)が、アクリルゴム、スチレンゴム、スチレンオレフィンゴム、及びシリコーンゴムよりなる群から選ばれる1種以上のゴム微粒子である上記1)乃至3)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
5)
 上記成分(c)が、(メタ)アクリロイル基を有し、かつ、レゾルシン骨格を有する硬化性樹脂である上記1)乃至4)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
6)
 上記成分(c)が、一分子中に(メタ)アクリロイル基を3個以上有する化合物を含有する硬化性樹脂である上記1)乃至5)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
7)
 上記成分(a)が、分子内に酸素-酸素結合(-O-O-)又は窒素-窒素結合(-N=N-)を有さない熱ラジカル重合開始剤である上記1)乃至6)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
8)
 さらに、(e)エポキシ基を有する硬化性樹脂及び(f)熱硬化剤を含有する上記1)乃至7)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
9)
 上記成分(f)が有機酸ヒドラジドである上記8)に記載の液晶滴下工法用液晶シール剤。
10)
 さらに、(g)シランカップリング剤を含有する上記1)乃至9)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
11)
 さらに、(h)無機フィラーを含有する上記1)乃至10)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
12)
 上記成分(c)及び上記成分(e)の総量を100質量部とした場合に、上記成分(b)の含有量が0.0001~1質量部である上記8)に記載の液晶滴下工法用液晶シール剤。
13)
 上記1)乃至12)のいずれか一項に記載の液晶滴下工法用液晶シール剤の製造方法であって、
 上記成分(c)に対して上記成分(b)を溶解する工程を含む液晶滴下工法用液晶シール剤の製造方法。
14)
 上記8)又は9)に記載の液晶滴下工法用液晶シール剤の製造方法であって、
 上記成分(e)に対して上記成分(b)を溶解する工程を含む液晶滴下工法用液晶シール剤の製造方法。
15)
 上記1)乃至12)のいずれか一項に記載の液晶滴下工法用液晶シール剤、又は上記13)若しくは14)に記載の製造方法によって得られる液晶滴下工法用液晶シール剤を硬化して得られる硬化物でシールされた液晶表示セル。
 本発明の液晶滴下工法用液晶シール剤は、熱硬化時の硬化速度が速いため、熱のみで液晶シール剤を硬化させる液晶滴下工法への応用が可能である。このため、パネルの配線設計の自由度を確保でき、信頼性の高い液晶表示パネルの製造を容易にすることができる。また、液晶表示セルの製造工程において、紫外線等の光を照射する工程を省けるため、生産効率の向上にも寄与するものである。
 本発明において用いられる(a)熱ラジカル重合開始剤は、加熱によりラジカルを生じ、連鎖重合反応を開始させる化合物であれば特に限定されないが、有機過酸化物、アゾ化合物、ベンゾイン化合物、ベンゾインエーテル化合物、アセトフェノン化合物、ベンゾピナコール等が挙げられ、ベンゾピナコールが好適に用いられる。
 例えば、有機過酸化物としては、カヤメックRTMA、M、R、L、LH、SP-30C、パーカドックスCH-50L、BC-FF、カドックスB-40ES、パーカドックス14、トリゴノックスRTM22-70E、23-C70、121、121-50E、121-LS50E、21-LS50E、42、42LS、カヤエステルRTMP-70、TMPO-70、CND-C70、OO-50E、AN、カヤブチルRTMB、パーカドックス16、カヤカルボンRTMBIC-75、AIC-75(以上、化薬アクゾ株式会社製)、パーメックRTMN、H、S、F、D、G、パーヘキサRTMH、HC、TMH、C、V、22、MC、パーキュアーRTMAH、AL、HB、パーブチルRTMH、C、ND、L、パークミルRTMH、D、パーロイルRTMIB、IPP、パーオクタRTMND、(以上、日油株式会社製)等が市販品として入手可能である。また、アゾ化合物としては、VA-044、V-070、VPE-0201、VSP-1001(以上、和光純薬工業株式会社製)等が市販品として入手可能である。なお、本明細書中、上付きのRTMは登録商標を意味する。
 上記(a)熱ラジカル重合開始剤として好ましいのは、分子内に酸素-酸素結合(-O-O-)又は窒素-窒素結合(-N=N-)を有さない熱ラジカル重合開始剤である。分子内に酸素-酸素結合(-O-O-)や窒素-窒素結合(-N=N-)を有する熱ラジカル重合開始剤は、ラジカル発生時に多量の酸素や窒素を発するため、液晶シール剤中に気泡を残した状態で硬化し、接着強度等の特性を低下させる虞がある。その中でも、ベンゾピナコール系の熱ラジカル重合開始剤(ベンゾピナコールを化学的に修飾したものを含む)が特に好適である。具体的には、ベンゾピナコール、1,2-ジメトキシ-1,1,2,2-テトラフェニルエタン、1,2-ジエトキシ-1,1,2,2-テトラフェニルエタン、1,2-ジフェノキシ-1,1,2,2-テトラフェニルエタン、1,2-ジメトキシ-1,1,2,2-テトラ(4-メチルフェニル)エタン、1,2-ジフェノキシ-1,1,2,2-テトラ(4-メトキシフェニル)エタン、1,2-ビス(トリメチルシロキシ)-1,1,2,2-テトラフェニルエタン、1,2-ビス(トリエチルシロキシ)-1,1,2,2-テトラフェニルエタン、1,2-ビス(t-ブチルジメチルシロキシ)-1,1,2,2-テトラフェニルエタン、1-ヒドロキシ-2-トリメチルシロキシ-1,1,2,2-テトラフェニルエタン、1-ヒドロキシ-2-トリエチルシロキシ-1,1,2,2-テトラフェニルエタン、1-ヒドロキシ-2-t-ブチルジメチルシロキシ-1,1,2,2-テトラフェニルエタン等が挙げられ、好ましくは1-ヒドロキシ-2-トリメチルシロキシ-1,1,2,2-テトラフェニルエタン、1-ヒドロキシ-2-トリエチルシロキシ-1,1,2,2-テトラフェニルエタン、1-ヒドロキシ-2-t-ブチルジメチルシロキシ-1,1,2,2-テトラフェニルエタン、1,2-ビス(トリメチルシロキシ)-1,1,2,2-テトラフェニルエタンであり、より好ましくは1-ヒドロキシ-2-トリメチルシロキシ-1,1,2,2-テトラフェニルエタン、1,2-ビス(トリメチルシロキシ)-1,1,2,2-テトラフェニルエタンであり、特に好ましくは1,2-ビス(トリメチルシロキシ)-1,1,2,2-テトラフェニルエタンである。
 上記ベンゾピナコールは、東京化成工業株式会社、和光純薬工業株式会社等から市販されている。また、ベンゾピナコールのヒドロキシ基をエーテル化したものは、周知の方法によって容易に合成可能である。また、ベンゾピナコールのヒドロキシ基をシリルエーテル化したものは、対応するベンゾピナコールと各種シリル化剤とをピリジン等の塩基性触媒下で加熱させる方法により合成して得ることができる。
 シリル化剤としては、一般に知られているトリメチルシリル化剤であるトリメチルクロロシラン(TMCS)、ヘキサメチルジシラザン(HMDS)、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)や、トリエチルシリル化剤であるトリエチルクロロシラン(TECS)や、t-ブチルジメチルシリル化剤であるt-ブチルメチルシラン(TBMS)等が挙げられる。これらの試薬はシリコン誘導体メーカー等の市場から容易に入手することができる。シリル化剤の反応量としては、対象化合物のヒドロキシ基1モルに対して1.0~5.0倍モルが好ましい。より好ましくは1.5~3.0倍モルである。1.0倍モルより少ないと反応効率が悪く、反応時間が長くなるため熱分解を促進してしまう。5.0倍モルより多いと回収の際に分離が悪くなったり、精製が困難になったりしてしまう。
 上記(a)熱ラジカル重合開始剤は、粒径を細かくし、均一に分散させることが好ましい。その平均粒径は、大きすぎると狭ギャップの液晶表示セル製造時に上下ガラス基板を貼り合わせる際のギャップ形成が上手くできない等の不良要因となるため、5μm以下が好ましく、より好ましくは3μm以下である。また、際限なく細かくしても差し支えないが、通常下限は0.1μm程度である。粒径はレーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製;LMS-30)により測定できる。
 上記(a)熱ラジカル重合開始剤の含有量は、本発明の液晶シール剤の硬化性樹脂全体を100質量部とした場合に、0.0001~10質量部であることが好ましく、より好ましくは0.0005~5質量部であり、0.001~3質量部が特に好ましい。なお、硬化性樹脂とは、成分(c)及び必要によって含有する場合の成分(e)を表す。本願においては以下同様とする。
 また、本発明において用いられる(b)ラジカル重合防止剤は、上記式(1)乃至(3)のいずれかで表されるラジカル重合防止剤、又はピペリジン骨格を有するラジカル重合防止剤である。これらのラジカル重合防止剤は単独で用いてもよく、2種以上を併用してもよい。
 上記式(1)で表される化合物は、ヒドロキシ基を有するため比較的極性が高く、液晶への相溶性が低い。したがって、熱のみによる液晶滴下工法のように、液晶と直接接触し、加熱される工程があっても、液晶に溶出し難く、液晶を汚染し難い。また、上記式(2)又は(3)で表される化合物は、比較的極性が高い上、分子量が大きいため、液晶への相溶性が低い。したがって、熱のみによる液晶滴下工法のように、液晶と直接接触し、加熱される工程があっても、液晶に溶出し難く、液晶を汚染し難い。また、他の高分子量のラジカル重合防止剤と比較した場合には、重合防止能も高い。すなわち、熱のみによる液晶滴下工法において特に優れるラジカル重合防止剤であるといえる。
 上記式(1)中、R及びRは、それぞれ独立に水素原子又はメチル基を示す。
 また、上記式(1)中、Rは、ヒドロキシ基又はC1-C4アルキル基を示す。ここで、C1-C4アルキル基は、直鎖であっても分岐鎖であってもよく、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基等が挙げられる。このうち好ましくはメチル基である。
 ただし、-OR、-OR、及び-Rのいずれか1つはヒドロキシ基である。すなわち、例えばRがメチル基、Rがメチル基の場合には、Rは水素原子となる。
 上記式(2)中、R及びRは、それぞれ独立に水素原子又はメチル基を示す。
 また、上記式(2)中、Rは、ヒドロキシ基又はC1-C4アルキル基を表す。ここで、C1-C4アルキル基は、上記式(1)におけるRと好ましいものも含めて同じものを意味する。
 ただし、-OR、-OR、及び-Rのいずれか1つはヒドロキシ基である。すなわち、例えばRがメチル基、Rがメチル基の場合には、Rは水素原子となる。
 上記式(3)中、Rは、水素原子、ヒドロキシ基、又はC1-C4アルキル基を表す。ここで、C1-C4アルキル基は、上記式(1)におけるRと、好ましいものも含めて同じものを意味する。
 これらのうち、Rとして好ましくは水素原子、ヒドロキシ基であり、特に好ましくはヒドロキシ基である。
 一方、ピペリジン骨格を有するラジカル重合防止剤は、液晶への溶解性が低い特性を有するため、熱のみによる液晶滴下工法のように、液晶と直接接触し、加熱される工程があっても、液晶に溶出し難く、液晶を汚染し難い。また、他の高分子量のラジカル重合防止剤と比較した場合には、重合防止能も高い。すなわち、熱のみによる液晶滴下工法において特に優れるラジカル重合防止剤であるといえる。
 ピペリジン骨格を有するラジカル重合防止剤の中でも、上記式(4)で表されるものが本発明の効果に優れている。
 上記式(4)中、基Aは、水素原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、C1-C4アルコキシ基、フェノキシ基、アセトアミド基(-NHCOCH)、ベンゾイロキシ基(-OCOC)、イソチオシアネート基(-NCS)、オキソ基(=O)、又は上記式(5)乃至(7)のいずれかで表される基を示す。
 上記式(4)中、基Bは、水素原子、酸素原子、C1-C4アルキル基、C1-C20アルコキシ基を示す。ただし、酸素原子の場合には、N-Oでニトロソ基となる。
 ここで、C1-C4アルキル基は、直鎖であっても分岐鎖であってもよく、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基等が挙げられる。このうち好ましくはメチル基である。
 C1-C20アルコキシ基は、直鎖であっても分岐鎖であってもよいが、好ましくは直鎖のものであり、C5-C15アルコキシ基が好ましく、C7-C12アルコキシ基がより好ましい。
 上記式(4)中、R乃至R15は、それぞれ独立にC1-C4アルキル基を示す。このC1-C4アルキル基は、上記基BにおけるC1-C4アルキル基と好ましいものを含めて同じものを意味する。
 上記式(6)中、基Cは、上記基Bと同じものを意味し、R16乃至R19は、それぞれ独立にC1-C4アルキル基を表す。このC1-C4アルキル基は、上記基BにおけるC1-C4アルキル基と好ましいものを含めて同じものを意味する。
 上記式(7)中、基Dは、上記基Bと同じものを意味し、R20は、C1-C20アルキル基を示し、R21乃至R24は、それぞれ独立にC1-C4アルキル基を示す。
 R20におけるC1-C20アルキレン基は、直鎖であっても分岐鎖であってもよいが、好ましくは直鎖のものであり、C5-C15アルキレン基が好ましく、C7-C12アルキレン基がより好ましい。
 R21乃至R24におけるC1-C4アルキル基は、上記基BにおけるC1-C4アルキル基と好ましいものを含めて同じものを意味する。
 上記式(4)で表されるラジカル重合防止剤は、例えば、ポリストップRTM7300(伯東株式会社製)、アデカスタブRTMLA-81、LA-82(以上、株式会社ADEKA製)、TINUVINRTM123、765(以上、BASF製)等を市場から容易に入手することができる。
 上記(b)ラジカル重合防止剤は、成分(c)を合成する際に添加する方法や、成分(c)及び/又は成分(e)に対して添加して溶解させる方法があるが、より有効な効果を得るためには成分(c)及び/又は成分(e)に対して添加して溶解させるほうが好ましい。
 上記(b)ラジカル重合防止剤の含有量は、本発明の液晶シール剤中の硬化性樹脂の全体を100質量部とした場合に、0.0001~1質量部が好ましく、より好ましくは0.001~0.5質量部であり、0.01~0.2質量部が特に好ましい。ラジカル重合防止剤が少なすぎると十分なハンドリング性を得ることができず、多すぎると熱反応の遅延による液晶汚染が問題となることがある。
 本発明の液晶シール剤は、(c)(メタ)アクリロイル基を有する硬化性樹脂を含有する。このような硬化性樹脂としては、例えば(メタ)アクリルエステル、エポキシ(メタ)アクリレート等が挙げられる。
 (メタ)アクリルエステルとしては、ベンジルメタクリレート、シクロヘキシルメタクリレート、グリセロールジメタクリレート、グリセロールトリアクリレート、EO変性グリセロールトリアクリレート、ペンタエリスリトールアクリレート、トリメチロールプロパントリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート、フロログリシノールトリアクリレート等が挙げられる。
 エポキシ(メタ)アクリレートは、エポキシ樹脂と(メタ)アクリル酸との反応により公知の方法で得られる。原料となるエポキシ樹脂としては、特に限定されるものではないが、2官能以上のエポキシ樹脂が好ましく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ樹脂、その他、カテコール、レゾルシノール等の二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、及びそれらのハロゲン化物、水素添加物等が挙げられる。これらのうち液晶汚染性の観点から、レゾルシンジグリシジルエーテル等のレゾルシン骨格を有するエポキシ樹脂が好ましい。また、エポキシ基と(メタ)アクリロイル基との比率は限定されるものではなく、工程適合性及び液晶汚染性の観点から適切に選択される。
 したがって、好ましい(メタ)アクリロイル基を有する硬化性樹脂は、(メタ)アクリロイル基を有し、かつ、レゾルシン骨格を有する硬化性樹脂であり、例えば、レゾルシンジグリシジルエーテルのアクリル酸エステルやレゾルシンジグリシジルエーテルのメタクリル酸エステルである。
 本発明の液晶シール剤は、成分(c)中に、一分子中に(メタ)アクリロイル基を3個以上有する化合物を含有することが好ましい。一分子中に(メタ)アクリロイル基を3個以上有する化合物は、架橋速度(反応速度)が速いため、優れた差込耐性を実現できる。なお、この方法を用いた場合、熱ラジカル重合開始剤等の量を増やして反応性を向上させる方法とは異なり、ハンドリング性にも優れる。
 一分子中に(メタ)アクリロイル基を3個以上有する化合物としては、KAYARADRTMPET-30、DPHA、DPCA-20、DPCA-30、DPCA-60、DPCA-120、DPEA-12、GPO-303、TMPTA、THE-330、TPA-320、TPA-330、D-310,D-330、RP-1040、UX-5000、DPHA-40H(以上、日本化薬株式会社製)、NKエステルRTMA-9300、A-9300-1CL、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMM-3LM-N、A-TMPT、AD-TMP、ATM-35E、A-TMMT、A-9550、A-DPH(以上、新中村化学工業株式会社製)、SR295、SR350、SR355、SR399、SR494、CD501、SR502、CD9021、SR9035、SR9041(以上、サートマー社製)等を挙げることができる。これらのうち、モル平均分子量が800以上であるものが好ましく、例えばKAYARADRTMDPCA-20、DPCA-30、DPEA-12が好ましい。また、分子内にC1-C4アルキレンオキサイド(-O-R-O-)を含有する硬化性樹脂であるものが好ましく、KAYARADRTMDPEA-12が特に好ましい。
 上記(c)(メタ)アクリロイル基を有する硬化性樹脂の含有量は、液晶シール剤の総量を100質量部とした場合に、30~90質量部が好ましく、より好ましくは50~90質量部である。
 本発明の液晶シール剤は、さらに(d)有機フィラーを含有する。有機フィラーとしては、ナイロン6、ナイロン12、ナイロン66等のポリアミド微粒子、テトラフルオロエチレン、フッ化ビニリデン等のフッ素系微粒子、ポリエチレン、ポリプロピレン等のオレフィン系微粒子、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系微粒子、天然ゴム、イソプレンゴム、アクリルゴム等のゴム微粒子等が挙げられる。
 その中でも、有機フィラーとしてはゴム微粒子が好ましい。ゴム微粒子としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン・ブタジエンゴム(SBR)、ブチルゴム(IIR)、二トリルゴム(NBR)、エチレン・プロピレンゴム(EPM、EP)、クロロプレンゴム(CR)、アクリルゴム(ACM、ANM)、クロロスルホン化ポリエチレンゴム(CSM)、ウレタンゴム(PUR)、シリコーンゴム(Si、SR)、フッ素ゴム(FKM、FPM)、多硫化ゴム(チオコール)等が挙げられ、単独のゴム微粒子でもよいし、2種以上を用いてコアシェル構造としてもよい。また、2種以上を併用してもよい。これらのうち、好ましくは、アクリルゴム、スチレンゴム、スチレンオレフィンゴム、又はシリコーンゴムであり、特に好ましくはアクリルゴム又はシリコーンゴムである。
 アクリルゴムを使用する場合、2種類のアクリルゴムからなるコアシェル構造のアクリルゴムである場合が好ましく、コア層がn-ブチルアクリレートであり、シェル層がメチルメタクリレートであるものが好ましい。これはゼフィアックRTMF-351としてアイカ工業株式会社から販売されている。
 また、上記シリコーンゴムとしては、オルガノポリシロキサン架橋物粉体、直鎖のジメチルポリシロキサン架橋物粉体等が挙げられる。また、複合シリコーンゴムとしては、上記シリコーンゴムの表面にシリコーン樹脂(例えば、ポリオルガノシルセスキオキサン樹脂)を被覆したものが挙げられる。これらのゴム微粒子のうち、特に好ましいのは、直鎖のジメチルポリシロキサン架橋粉末のシリコーンゴム又はシリコーン樹脂被覆直鎖ジメチルポリシロキサン架橋粉末の複合シリコーンゴム微粒子である。これらのものは、単独で用いてもよいし、2種以上を併用してもよい。また、ゴム粉末の形状は、添加後の粘度の増粘が少ない球状が好ましい。
 上記(d)有機フィラーの含有量は、液晶シール剤の総量を100質量部とした場合に、5~50質量部が好ましく、より好ましくは5~40質量部である。
 本発明の液晶シール剤では、さらに(e)エポキシ基を有する硬化性樹脂を用いることにより、接着強度向上を図ることができる。エポキシ基を有する硬化性樹としては、特に限定されるものではないが、2官能以上のエポキシ樹脂が好ましく、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ樹脂、その他、二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、及びそれらのハロゲン化物、水素添加物等が挙げられる。これらのうち液晶汚染性の観点より好ましいのは、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂である。
 上記(e)エポキシ基を有する硬化性樹脂の含有量は、液晶シール剤の総量を100質量部とした場合に、1~30質量部が好ましい。
 本発明の液晶シール剤で、成分(e)とともに用いられる(f)熱硬化剤は、特に限定されるものではなく、多価アミン類、多価フェノール類、ヒドラジド化合物等を挙げることができるが、固形の有機酸ヒドラジドが特に好適に用いられる。例えば、芳香族ヒドラジドであるサリチル酸ヒドラジド、安息香酸ヒドラジド、1-ナフトエ酸ヒドラジド、テレフタル酸ジヒドラジド、イソフタル酸ジヒドラジド、2,6-ナフトエ酸ジヒドラジド、2,6-ピリジンジヒドラジド、1,2,4-ベンゼントリヒドラジド、1,4,5,8-ナフトエ酸テトラヒドラジド、ピロメリット酸テトラヒドラジド等を挙げることが出来る。また、脂肪族ヒドラジド化合物であれば、例えば、ホルムヒドラジド、アセトヒドラジド、プロピオン酸ヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、セバシン酸ジヒドラジド、1,4-シクロヘキサンジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、イミノジ酢酸ジヒドラジド、N,N’-ヘキサメチレンビスセミカルバジド、クエン酸トリヒドラジド、ニトリロ酢酸トリヒドラジド、シクロヘキサントリカルボン酸トリヒドラジド;1,3-ビス(ヒドラジノカルボノエチル)-5-イソプロピルヒダントイン等のヒダントイン骨格、好ましくはバリンヒダントイン骨格(ヒダントイン環の炭素原子がイソプロピル基で置換された骨格)を有するジヒドラジド化合物;トリス(1-ヒドラジノカルボニルメチル)イソシアヌレート、トリス(2-ヒドラジノカルボニルエチル)イソシアヌレート、トリス(2-ヒドラジノカルボニルエチル)イソシアヌレート、トリス(3-ヒドラジノカルボニルプロピル)イソシアヌレート、ビス(2-ヒドラジノカルボニルエチル)イソシアヌレート;等を挙げることができる。この熱硬化剤は、単独で用いても2種以上混合してもよい。硬化反応性と潜在性とのバランスから、好ましくは、イソフタル酸ジヒドラジド、マロン酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、トリス(1-ヒドラジノカルボニルメチル)イソシアヌレート、トリス(2-ヒドラジノカルボニルエチル)イソシアヌレート、トリス(2-ヒドラジノカルボニルエチル)イソシアヌレート、トリス(3-ヒドラジノカルボニルプロピル)イソシアヌレートであり、特に好ましくはマロン酸ジヒドラジド、セバシン酸ジヒドラジドである。
 上記(f)熱硬化剤を使用する場合の使用量としては、成分(e)のエポキシ基を1当量とした場合、0.5~2.0当量であり、好ましくは0.8~1.2当量である。
 本発明の液晶シール剤では、(g)シランカップリング剤を用いて、接着強度向上や耐湿信頼性向上を図ることができる。シランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)-3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤はKBMシリーズ、KBEシリーズ等として信越化学工業株式会社等によって販売されているため、市場から容易に入手可能である。
 上記(g)シランカップリング剤の含有量は、液晶シール剤の総量を100質量部とした場合に、0.05~3質量部が好ましい。
 本発明の液晶シール剤では、(h)無機フィラーを用いて、接着強度向上や耐湿信頼性向上を図ることができる。この無機フィラーとしては、溶融シリカ、結晶シリカ、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられ、好ましくは溶融シリカ、結晶シリカ、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムであり、より好ましくは溶融シリカ、結晶シリカ、アルミナ、タルクである。これら無機フィラーは2種以上を混合して用いてもよい。その平均粒径は、大きすぎると狭ギャップの液晶セル製造時に上下ガラス基板を貼り合わせる際のギャップ形成がうまくできない等の不良要因となるため、3μm以下が適当であり、好ましくは2μm以下である。粒径はレーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製;LMS-30)により測定することができる。
 上記(h)無機フィラーの含有量は、液晶シール剤の総量を100質量部とした場合に、1~60質量部が好ましく、より好ましくは1~40質量部である。無機フィラーの含有量が少なすぎる場合、ガラス基板に対する接着強度が低下し、また耐湿信頼性も劣るために、吸湿後の接着強度の低下も大きくなる場合がある。一方、無機フィラーの含有量が多すぎる場合、つぶれにくく液晶セルのギャップ形成ができなくなってしまう場合がある。
 本発明の液晶シール剤には、さらに必要に応じて、硬化促進剤や、顔料、レベリング剤、消泡剤、溶剤等の添加剤を配合することができる。
 上記硬化促進剤としては、有機酸やイミダゾール等を挙げることができる。
 有機酸としては、有機カルボン酸や有機リン酸等が挙げられるが、有機カルボン酸であることが好ましい。具体的には、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ベンゾフェノンテトラカルボン酸、フランジカルボン酸等の芳香族カルボン酸;コハク酸、アジピン酸、ドデカン二酸、セバシン酸、チオジプロピオン酸、シクロヘキサンジカルボン酸、トリス(2-カルボキシメチル)イソシアヌレート、トリス(2-カルボキシエチル)イソシアヌレート、トリス(2-カルボキシプロピル)イソシアヌレート、ビス(2-カルボキシエチル)イソシアヌレート等を挙げることができる。
 また、イミダゾール化合物としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル-4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾール等が挙げられる。
 本発明の液晶シール剤において、硬化促進剤を使用する場合には、液晶シール剤の総量を100質量部とした場合に、0.1~10質量部が好ましく、より好ましくは1~5質量部である。
 本発明の液晶シール剤を得る方法の一例としては、次に示す方法がある。まず、成分(c)に必要に応じ、成分(e)を溶解混合する。次いでこの混合物に成分(b)を溶解し、さらに必要に応じて成分(g)を溶解する。次いで成分(a)、成分(d)、成分(f)、成分(h)、並びに必要に応じて消泡剤、レベリング剤、溶剤等を添加し、公知の混合装置、例えば3本ロール、サンドミル、ボールミル等により均一に混合し、金属メッシュにて濾過することにより、本発明の液晶シール剤を製造することができる。
 本発明の液晶表示セルは、基板に所定の電極を形成した一対の基板を所定の間隔に対向配置し、周囲を本発明の液晶シール剤でシールし、その間隙に液晶が封入されたものである。封入される液晶の種類は特に限定されない。ここで、基板とはガラス、石英、プラスチック、シリコン等からなる少なくとも一方に光透過性がある組み合わせの基板から構成される。その製法としては、本発明の液晶シール剤に、グラスファイバー等のスペーサー(間隙制御材)を添加後、該一対の基板の一方にディスペンサー、スクリーン印刷装置等を用いて該液晶シール剤を塗布した後、必要に応じて、80~120℃で仮硬化を行う。その後、該液晶シール剤からなる堰の内側に液晶を滴下し、真空中にてもう一方のガラス基板を重ね合わせ、ギャップ出しを行う。ギャップ形成後、90~130℃で1~2時間硬化することにより、本発明の液晶表示セルを得ることができる。このようにして得られた本発明の液晶表示セルは、液晶汚染による表示不良が無く、接着性、耐湿信頼性に優れたものである。スペーサーとしては、例えばグラスファイバー、シリカビーズ、ポリマービーズ等が挙げられる。その直径は、目的に応じ異なるが、通常2~8μm、好ましくは4~7μmである。その使用量は、本発明の液晶シール剤100質量部に対し通常0.1~4質量部、好ましくは0.5~2質量部、より好ましくは0.9~1.5質量部である。
 本発明の液晶シール剤は、液晶の差込への耐性が非常に良好であり、液晶滴下工法における基板の貼り合わせ工程、加熱工程においても液晶が差し込んだり、シールが決壊したりする現象を起こさない。したがって、安定した液晶表示セルの作製が可能である。また、硬化性樹脂が架橋される速度が速いため、構成成分の液晶への溶出も極めて少なく、液晶表示セルの表示不良を低減することが可能である。また、ハンドリング性及び保存安定性にも優れるため、液晶表示セルの製造に適している。さらに、その硬化物は接着強度、耐熱性、耐湿性等の各種硬化物特性にも優れるため、本発明の液晶シール剤を用いることにより、信頼性に優れる液晶表示セルを作成することが可能である。また、本発明の液晶シール剤を用いて作製した液晶表示セルは、電圧保持率が高く、イオン密度が低いという液晶表示セルとして必要な特性も充足される。
 以下、合成例、実施例により本発明をさらに詳細に説明するが、本発明は実施例に限定されるものではない。なお、特別の記載のない限り、本文中「部」及び「%」とあるのは質量基準である。
[合成例1]
(1,2-ビス(トリメチルシロキシ)-1,1,2,2-テトラフェニルエタンの合成)
 市販ベンゾピナコール(東京化成製)100部をジメチルホルムアルデヒド350部に溶解させた。これに塩基触媒としてピリジン32部、シリル化剤としてBSTFA(信越化学工業製)150部を加えて70℃まで昇温し、2時間撹拌した。得られた反応液を冷却し、撹拌しながら水200部を入れ、生成物を沈殿させるとともに未反応シリル化剤を失活させた。沈殿した生成物を濾別分離した後、十分に水洗した。次いで、得られた生成物をアセトンに溶解し、水を加えて再結晶させ、精製した。目的の1,2-ビス(トリメチルシロキシ)-1,1,2,2-テトラフェニルエタンを105.6部(収率88.3%)得た。
 HPLC(高速液体クロマトグラフィー)で分析した結果、純度は99.0%(面積百分率)であった。
[参考合成例1]
(レゾルシン型エポキシ樹脂のエポキシアクリレートの合成)
 レゾルシンジグリシジルエーテル樹脂をトルエンに溶解し、これに重合禁止剤としてジブチルヒドロキシトルエンを加え、60℃まで昇温した。その後、エポキシ基の100%当量のアクリル酸を加え、さらに80℃まで昇温し、これに反応触媒であるトリメチルアンモニウムクロライドを添加して、98℃で約50時間撹拌した。得られた反応液を水洗し、トルエンを留去することにより、レゾルシンのエポキシアクリレートを得た(KAYARADRTMRGE-AC100)。
[実施例1~12、比較例1~2]
(液晶滴下工法用液晶シール剤の調製)
 下記表1~3に示す割合で各樹脂成分(成分(c)、成分(e))を混合撹拌した後、ラジカル重合防止剤(成分(b))を加熱溶解させた。室温まで冷却後、有機フィラー(成分(d))、シランカップリング剤(成分(g))、無機フィラー(成分(h))、熱ラジカル重合開始剤(成分(a))、熱硬化剤(成分(f))等を適宜添加し、攪拌した後、3本ロールミルにて分散させた後、金属メッシュ(635メッシュ)で濾過し、実施例1~12の液晶滴下工法用液晶シール剤を調製した。同様にして、表1に示す各成分を用いて、比較例1~2の液晶滴下工法用液晶シール剤を調製した。
 以下に調製した各液晶滴下工法用液晶シール剤の評価項目内容とその結果を示す。
(熱硬化性試験)
 調製した各液晶滴下工法用液晶シール剤を3cm×3cm×1mmに成型し、120℃×1時間で硬化させた。硬化物のショアA硬度を測定することにより、硬化性を評価した。結果を表1~3に示す。
(ハンドリング性試験)
 調製した各液晶滴下工法用液晶シール剤15gに5μmのスペーサー(PF-50S:日本電気硝子株式会社製)0.15gを混ぜた後、自転500rpm、公転1500rpmで5分間真空撹拌脱泡した。真空撹拌脱泡装置としては、真空撹拌脱泡ミキサーVMXC-360K:株式会社EME製を用いた。それを23℃雰囲気下に置きゲル化する時間を測定し、以下の基準によって評価した。結果を表1~3に示す。
○:72時間以上ゲル化しない
△:24時間以上72時間未満でゲル化した
×:脱泡後すぐから24時間未満でゲル化した
(液晶汚染性試験)
 10mlバイアル瓶の底に各液晶滴下工法用液晶シール剤を100mg程度塗布した後、液晶(MLC-6866-100:メルク株式会社製)をその10倍量加えた。120℃で1時間加熱した後、30分間冷却した。それぞれの上澄みをデカンテーションにて分け取り、測定サンプル液晶を調製した。測定サンプル液晶は、デジタル超高抵抗計(R8340:株式会社アドバンテスト製)にて比抵抗値を測定し、液晶シール剤なしのもの(ブランク液晶)の比抵抗値と比較した。比較にあたり、以下の式から低下指数を割出し、以下の基準によって評価した。結果を表1~3に示す。
  低下指数=-Log(y/x)
  x:ブランク液晶の比抵抗値
  y:サンプル液晶の比抵抗値
○:低下指数が1.5未満
△:低下指数が1.5以上2.0未満
×:低下指数が2.0以上
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表1~3の結果より、特定のラジカル重合防止剤(成分(b))及び成分(a)、(c)、及び(d)を含有する本発明の液晶滴下工法用液晶シール剤は、熱硬化性、ハンドリング性、液晶汚染性に非常に優れることが確認された。
 本発明の液晶滴下工法用液晶シール剤は、熱による良好な硬化性を有し、かつ、差込耐性に優れ、ハンドリング性や保存安定性、接着強度等の硬化物特性にも優れる。したがって、液晶表示セルの設計の自由度を確保し、また、生産性及びその長期信頼性に貢献するものである。

Claims (15)

  1.  (a)熱ラジカル重合開始剤、(b)ラジカル重合防止剤、(c)(メタ)アクリロイル基を有する硬化性樹脂、及び(d)有機フィラーを含有する液晶滴下工法用液晶シール剤であって、
     前記成分(b)が下記式(1)乃至(3)のいずれかで表されるラジカル重合防止剤、又はピペリジン骨格を有するラジカル重合防止剤である液晶滴下工法用液晶シール剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びRはそれぞれ独立に水素原子又はメチル基を示し、Rはヒドロキシ基又はC1-C4アルキル基を示す。ただし、-OR、-OR、及び-Rのいずれか1つはヒドロキシ基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R及びRはそれぞれ独立に水素原子又はメチル基を示し、Rはヒドロキシ基又はC1-C4アルキル基を示す。ただし、-OR、-OR、及び-Rのいずれか1つはヒドロキシ基である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、Rは水素原子、ヒドロキシ基、又はC1-C4アルキル基を示す。)
  2.  前記ピペリジン骨格を有するラジカル重合防止剤が下記式(4)で表されるラジカル重合防止剤である請求項1に記載の液晶滴下工法用液晶シール剤。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、基Aは水素原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、C1-C4アルコキシ基、フェノキシ基、アセトアミド基(-NHCOCH)、ベンゾイロキシ基(-OCOC)、イソチオシアネート基(-NCS)、オキソ基(=O)、又は下記式(5)乃至(7)のいずれかで表される基を示す。基Bは水素原子、酸素原子、C1-C4アルキル基、又はC1-C20アルコキシ基を示す。ただし、酸素原子の場合には、N-Oでニトロソ基を意味する。R乃至R15はそれぞれ独立にC1-C4アルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、*は結合位置を意味する。)
    Figure JPOXMLDOC01-appb-C000006
    (式(6)中、*は結合位置を意味し、基Cは前記基Bと同じものを意味し、R16乃至R19はそれぞれ独立にC1-C4アルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000007
    (式(7)中、*は結合位置を意味し、基Dは前記基Bと同じものを意味し、R20はC1-C20アルキレン基を示し、R21乃至R24はそれぞれ独立にC1-C4アルキル基を示す。)
  3.  前記成分(d)がゴム微粒子である請求項1又は2に記載の液晶滴下工法用液晶シール剤。
  4.  前記成分(d)が、アクリルゴム、スチレンゴム、スチレンオレフィンゴム、及びシリコーンゴムよりなる群から選ばれる1種以上のゴム微粒子である請求項1乃至3のいずれか一項に記載の液晶滴下工法用液晶シール剤。
  5.  前記成分(c)が、(メタ)アクリロイル基を有し、かつ、レゾルシン骨格を有する硬化性樹脂である請求項1乃至4のいずれか一項に記載の液晶滴下工法用液晶シール剤。
  6.  前記成分(c)が、一分子中に(メタ)アクリロイル基を3個以上有する化合物を含有する硬化性樹脂である請求項1乃至5のいずれか一項に記載の液晶滴下工法用液晶シール剤。
  7.  前記成分(a)が、分子内に酸素-酸素結合(-O-O-)又は窒素-窒素結合(-N=N-)を有さない熱ラジカル重合開始剤である請求項1乃至6のいずれか一項に記載の液晶滴下工法用液晶シール剤。
  8.  さらに、(e)エポキシ基を有する硬化性樹脂及び(f)熱硬化剤を含有する請求項1乃至7のいずれか一項に記載の液晶滴下工法用液晶シール剤。
  9.  前記成分(f)が有機酸ヒドラジドである請求項8に記載の液晶滴下工法用液晶シール剤。
  10.  さらに、(g)シランカップリング剤を含有する請求項1乃至9のいずれか一項に記載の液晶滴下工法用液晶シール剤。
  11.  さらに、(h)無機フィラーを含有する請求項1乃至10のいずれか一項に記載の液晶滴下工法用液晶シール剤。
  12.  前記成分(c)及び前記成分(e)の総量を100質量部とした場合に、前記成分(b)の含有量が0.0001~1質量部である請求項8に記載の液晶滴下工法用液晶シール剤。
  13.  請求項1乃至11のいずれか一項に記載の液晶滴下工法用液晶シール剤の製造方法であって、
     前記成分(c)に対して前記成分(b)を溶解する工程を含む液晶滴下工法用液晶シール剤の製造方法。
  14.  請求項8又は9に記載の液晶滴下工法用液晶シール剤の製造方法であって、
     前記成分(e)に対して前記成分(b)を溶解する工程を含む液晶滴下工法用液晶シール剤の製造方法。
  15.  請求項1乃至12のいずれか一項に記載の液晶滴下工法用液晶シール剤、又は請求項13若しくは14に記載の製造方法によって得られる液晶滴下工法用液晶シール剤を硬化して得られる硬化物でシールされた液晶表示セル。
PCT/JP2013/085217 2013-01-11 2013-12-27 液晶シール剤及びそれを用いた液晶表示セル WO2014109266A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014556394A JP6212055B2 (ja) 2013-01-11 2013-12-27 液晶シール剤及びそれを用いた液晶表示セル
CN201380070029.0A CN104919365B (zh) 2013-01-11 2013-12-27 液晶密封剂及使用其的液晶显示单元
KR1020157021236A KR20150105406A (ko) 2013-01-11 2013-12-27 액정 시일제 및 그것을 사용한 액정 표시 셀

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-004106 2013-01-11
JP2013-004107 2013-01-11
JP2013004105 2013-01-11
JP2013004106 2013-01-11
JP2013-004105 2013-01-11
JP2013004107 2013-01-11

Publications (1)

Publication Number Publication Date
WO2014109266A1 true WO2014109266A1 (ja) 2014-07-17

Family

ID=51166922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085217 WO2014109266A1 (ja) 2013-01-11 2013-12-27 液晶シール剤及びそれを用いた液晶表示セル

Country Status (5)

Country Link
JP (1) JP6212055B2 (ja)
KR (1) KR20150105406A (ja)
CN (1) CN104919365B (ja)
TW (1) TW201428009A (ja)
WO (1) WO2014109266A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013064A1 (ja) * 2014-07-23 2016-01-28 Dic株式会社 液晶表示装置
WO2016017026A1 (ja) * 2014-08-01 2016-02-04 Dic株式会社 液晶表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235766B1 (ja) * 2016-05-13 2017-11-22 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326975A (ja) * 2005-05-25 2006-12-07 Ricoh Co Ltd 感熱記録材料
JP2009042409A (ja) * 2007-08-08 2009-02-26 Mitsui Chemicals Inc 液晶シール剤、それを用いた液晶表示パネルの製造方法及び液晶表示パネル
JP2011236369A (ja) * 2010-05-12 2011-11-24 Bando Chemical Industries Ltd ポリオレフィン樹脂フィルム
JP2012219203A (ja) * 2011-04-11 2012-11-12 Konica Minolta Ij Technologies Inc インクジェット用白色インク組成物及びインクジェット記録方法
WO2013008884A1 (ja) * 2011-07-13 2013-01-17 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926107B (zh) * 2004-03-02 2012-01-04 株式会社艾迪科 具有碳酸酯骨架的弱碱性受阻胺类化合物、合成树脂组合物和涂料组合物
JP5274025B2 (ja) * 2006-11-24 2013-08-28 三菱レイヨン株式会社 ポリオレフィン系樹脂用安定化剤及び安定化されたポリオレフィン系樹脂組成物
JP5388091B2 (ja) * 2007-11-16 2014-01-15 日本化薬株式会社 液晶シール剤およびそれを用いた液晶表示セル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326975A (ja) * 2005-05-25 2006-12-07 Ricoh Co Ltd 感熱記録材料
JP2009042409A (ja) * 2007-08-08 2009-02-26 Mitsui Chemicals Inc 液晶シール剤、それを用いた液晶表示パネルの製造方法及び液晶表示パネル
JP2011236369A (ja) * 2010-05-12 2011-11-24 Bando Chemical Industries Ltd ポリオレフィン樹脂フィルム
JP2012219203A (ja) * 2011-04-11 2012-11-12 Konica Minolta Ij Technologies Inc インクジェット用白色インク組成物及びインクジェット記録方法
WO2013008884A1 (ja) * 2011-07-13 2013-01-17 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013064A1 (ja) * 2014-07-23 2016-01-28 Dic株式会社 液晶表示装置
JP5858322B1 (ja) * 2014-07-23 2016-02-10 Dic株式会社 液晶表示装置
CN105814479A (zh) * 2014-07-23 2016-07-27 Dic株式会社 液晶显示装置
CN105814479B (zh) * 2014-07-23 2017-03-29 Dic株式会社 液晶显示装置
WO2016017026A1 (ja) * 2014-08-01 2016-02-04 Dic株式会社 液晶表示装置
JP5858321B1 (ja) * 2014-08-01 2016-02-10 Dic株式会社 液晶表示装置
CN105814480A (zh) * 2014-08-01 2016-07-27 Dic株式会社 液晶显示装置
KR101811645B1 (ko) 2014-08-01 2017-12-26 디아이씨 가부시끼가이샤 액정 표시 장치
US10078247B2 (en) 2014-08-01 2018-09-18 Dic Corporation Liquid crystal display
CN105814480B (zh) * 2014-08-01 2020-01-07 Dic株式会社 液晶显示装置

Also Published As

Publication number Publication date
KR20150105406A (ko) 2015-09-16
TW201428009A (zh) 2014-07-16
CN104919365B (zh) 2017-11-21
JPWO2014109266A1 (ja) 2017-01-19
JP6212055B2 (ja) 2017-10-11
CN104919365A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
KR20150037524A (ko) 액정 시일제 및 그것을 이용한 액정 표시셀, 그리고 액정 표시셀의 제조 방법
JP6289372B2 (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP6304803B2 (ja) 樹脂組成物の製造方法
WO2014148270A1 (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP6235297B2 (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP6212055B2 (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP6482371B2 (ja) 樹脂組成物の製造方法
JP6860299B2 (ja) 液晶シール剤及びそれを用いた液晶表示セル
KR101495486B1 (ko) 액정 표시 셀의 제조 방법 및 그 방법으로 얻어지는 액정 표시 셀
JP2017027042A (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP6288756B2 (ja) 液晶表示セルの製造方法及びその方法で得られる液晶表示セル
JP6238761B2 (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP2017198726A (ja) 液晶光学素子用シール剤及びそれを用いた液晶光学素子
JP2017027043A (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP6366069B2 (ja) 樹脂組成物の製造方法
JP6465741B2 (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP6426050B2 (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP5531166B1 (ja) 液晶表示セルの製造方法及びその方法で得られる液晶表示セル
JP2017219604A (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP2017198725A (ja) 液晶光学素子用シール剤及びそれを用いた液晶光学素子
JP6584132B2 (ja) 樹脂組成物の製造方法
JP6465740B2 (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP2015166814A (ja) 液晶表示セルの製造方法及びその方法で得られる液晶表示セル
JP2017219606A (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP2017219605A (ja) 液晶シール剤及びそれを用いた液晶表示セル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556394

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157021236

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13870637

Country of ref document: EP

Kind code of ref document: A1