WO2016013064A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2016013064A1
WO2016013064A1 PCT/JP2014/069411 JP2014069411W WO2016013064A1 WO 2016013064 A1 WO2016013064 A1 WO 2016013064A1 JP 2014069411 W JP2014069411 W JP 2014069411W WO 2016013064 A1 WO2016013064 A1 WO 2016013064A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal display
carbon atoms
display device
Prior art date
Application number
PCT/JP2014/069411
Other languages
English (en)
French (fr)
Inventor
小野 善之
河村 丞治
芳典 岩下
武田 博之
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020167014562A priority Critical patent/KR101702530B1/ko
Priority to JP2015547583A priority patent/JP5858322B1/ja
Priority to CN201480068042.7A priority patent/CN105814479B/zh
Priority to US15/307,637 priority patent/US20170058160A1/en
Priority to PCT/JP2014/069411 priority patent/WO2016013064A1/ja
Priority to EP14898120.2A priority patent/EP3173860B1/en
Priority to TW103136985A priority patent/TWI558795B/zh
Publication of WO2016013064A1 publication Critical patent/WO2016013064A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1477Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/068Copolymers with monomers not covered by C09J133/06 containing glycidyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J135/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • C09J163/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K19/322Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133365Cells in which the active layer comprises a liquid crystalline polymer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1067Esters of polycondensation macromers of alcohol terminated epoxy functional polymers, e.g. epoxy(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3013Cy-Ph-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3025Cy-Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K2019/521Inorganic solid particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0045Liquid crystals characterised by their physical properties

Definitions

  • the present invention relates to a liquid crystal display device.
  • Liquid crystal display devices are used in various electric appliances for home use, measuring instruments, automotive panels, word processors, electronic notebooks, printers, computers, televisions, etc., including clocks and calculators.
  • Typical liquid crystal display methods include TN (twisted nematic), STN (super twisted nematic), DS (dynamic light scattering), GH (guest / host), and IPS (in-plane switching).
  • Type OCB (optical compensation birefringence) type, ECB (voltage controlled birefringence) type, VA (vertical alignment) type, CSH (color super homeotropic) type, FLC (ferroelectric liquid crystal), etc.
  • As a driving method multiplex driving is generally used instead of conventional static driving, and the active matrix (AM) method driven by a TFT (thin film transistor), TFD (thin film diode) or the like has become mainstream recently. ing.
  • TFT thin film transistor
  • TFD thin film diode
  • a dripping method using a photocuring / thermosetting sealant is widely used.
  • a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispenser or screen printing.
  • fine droplets of liquid crystal are dropped and applied to the entire surface of the transparent substrate frame in an uncured state of the sealant, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with ultraviolet rays for temporary curing.
  • heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency.
  • thermosetting sealant for a dripping method that does not require temporary curing by light irradiation has been proposed.
  • the viscosity of the resin used as a raw material is lowered by heating, the seal pattern is partially deformed, or components in the sealant are eluted into the liquid crystal display element. The problem of deteriorating the electrical characteristics of the material remained.
  • Patent Document 1 In general, an epoxy resin has a characteristic of high adhesion, but has a high tendency to contaminate liquid crystal materials. Therefore, it is conceivable that the contamination of the liquid crystal material can be reduced by the acrylic modification, and this is expected to improve the adhesive force and simultaneously reduce the contamination of the liquid crystal material.
  • thermosetting property is lowered by the acrylic modification, and the liquid crystal material is sometimes contaminated by the elution of the sealing agent component.
  • a proposal has been made to add a tertiary amine such as imidazole to cure the acrylic component and to thermally cure the acrylic resin by interaction with a small amount of epoxy resin blended at the same time (Patent Document 2).
  • thermosetting curable sealant has a problem that the viscosity of the resin used as a raw material is reduced by heating, so that the seal pattern partially deforms or the liquid crystal leaks through the seal pattern. It was left.
  • substrate is proposed (patent document 3).
  • the present invention proposes a combination of a liquid crystal composition and a sealant composition that improves the characteristics of a liquid crystal display element such as image sticking, focusing on the interaction between the composition of a liquid crystal material and a sealant that has not been sufficient in the past.
  • the present invention uses a specific liquid crystal composition and a cured product of a specific curable resin composition as a sealant, so that a practical liquid crystal layer temperature range and an absolute value of a large dielectric anisotropy ( ⁇ ) are obtained.
  • ⁇ n refractive index anisotropy
  • VHR voltage holding ratio
  • a liquid crystal display device using a sealant using a cured product of a curable resin composition prevents a decrease in the voltage holding ratio (VHR) of the liquid crystal layer, and causes problems such as white defects, alignment unevenness, and image sticking.
  • VHR voltage holding ratio
  • the present invention A first substrate, a second substrate, a liquid crystal layer including a liquid crystal composition sandwiched between the first substrate and the second substrate, and the first substrate and the second substrate by heat
  • a liquid crystal display device having a sealant bonded via a cured product of a curable resin composition to be cured,
  • the liquid crystal composition has the general formula (I)
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 2 carbon atoms
  • 8 represents an alkenyloxy group
  • A represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • R 3 and R 4 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 carbon atoms.
  • Z 3 and Z 4 are each independently a single bond, —CH ⁇ CH—, —C ⁇ C—, —CH 2 CH 2 —, — (CH 2 ) 4 —, —COO—.
  • the liquid crystal display device of the present invention uses a sealant using a specific liquid crystal composition and a cured product of a specific curable resin composition, so that a practical liquid crystal layer temperature range, a large dielectric anisotropy ( ⁇ ) ) Absolute value, low viscosity, and appropriate refractive index anisotropy ( ⁇ n), while preventing a decrease in the voltage holding ratio (VHR) of the liquid crystal layer, Occurrence of display defects can be prevented.
  • VHR voltage holding ratio
  • FIG. 1 is a plan view of the liquid crystal display device of the present invention. Details of the pixel electrode, TFT, wiring, etc. are omitted.
  • the upper part of FIG. 2 is a partial view enlarging a part of the plan view. It shows that the wiring extending from each pixel electrode is located under the sealant and reaches the drive driver.
  • the lower diagram of FIG. 2 is a cross-sectional view of the upper diagram of FIG.
  • the sealing agent is in contact with the liquid crystal and the alignment film. Although not all cases are shown in the figure, the sealing agent or the liquid crystal may contact the wiring or overcoat layer depending on the position of the sealing agent.
  • liquid crystal layer in the liquid crystal display device of the present invention has the general formula (I)
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 2 carbon atoms
  • 8 represents an alkenyloxy group
  • A represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • R 3 and R 4 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 carbon atoms.
  • Z 3 and Z 4 are each independently a single bond, —CH ⁇ CH—, —C ⁇ C—, —CH 2 CH 2 —, — (CH 2 ) 4 —, —COO—.
  • the liquid crystal layer in the liquid crystal display device of the present invention contains 10 to 50% by weight of the compound represented by the general formula (I), preferably 15 to 48% by weight, and preferably 20 to 46% by weight. Is more preferable.
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a carbon atom.
  • R 1 represents an alkyl group having 3 carbon atoms
  • R 2 is preferably an alkyl group having 2, 4 or 5 carbon atoms, or an alkenyl group having 2 to 3 carbon atoms
  • R 2 is More preferred is an alkyl group having 2 carbon atoms.
  • A represents a 1,4-phenylene group
  • It preferably represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms or an alkenyloxy group having 3 to 5 carbon atoms
  • R 1 preferably represents an alkyl group, and in this case, an alkyl group having 1, 3 or 5 carbon atoms is particularly preferred.
  • R 2 preferably represents an alkoxy group having 1 to 2 carbon atoms.
  • the content of the compound represented by the general formula (I) in which at least one substituent of R 1 and R 2 is an alkyl group having 3 to 5 carbon atoms is in the compound represented by the general formula (I) It is preferably 50% by weight or more, more preferably 70% by weight or more, and further preferably 80% by weight or more.
  • the content of the compound represented by the general formula (I) in which at least one substituent of R 1 and R 2 is an alkyl group having 3 carbon atoms is in the compound represented by the general formula (I) It is preferably 50% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, and most preferably 100% by weight.
  • the compound represented by the general formula (I) may be contained alone or in combination of two or more, but A represents a trans-1,4-cyclohexylene group, and A represents a 1,4-phenylene group. It is preferable to contain at least one compound. Further, the content of the compound represented by the general formula (I) in which A represents a trans-1,4-cyclohexylene group may be 50% by weight or more in the compound represented by the general formula (I). Preferably, 70% by weight or more is more preferable, and 80% by weight or more is further preferable.
  • the compound represented by the general formula (I) is preferably a compound represented by the following general formula (Ia) to general formula (Ik).
  • each of R 1 and R 2 independently represents an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, and is the same as R 1 and R 2 in the general formula (I) This embodiment is preferred.
  • general formula (Ia) to general formula (Ik), general formula (Ia), general formula (Ib), general formula (Ic), and general formula (Ig) are preferable, and general formula (Ia), general formula (Ib) ) And general formula (Ic) are more preferable, and general formula (Ia) and general formula (Ib) are more preferable. Yes.
  • the general formula (Ib) and the general formula (Ic) are preferable, and the general formula (Ib) and the general formula (Ic) are more preferably used in combination.
  • the general formula (Ia) is preferable.
  • the content of the compound represented by the general formula (Ia), the general formula (Ib) and the general formula (Ic) is 80% by weight or more in the compound represented by the general formula (I). It is preferably 90% by weight or more, more preferably 95% by weight or more, and most preferably 100% by weight.
  • the content of the compound represented by the general formula (Ia) is 65% by weight to 100% by weight in the compound represented by the general formula (I), and the general formula (Ib) and the general formula (Ic)
  • the content of the compound represented by general formula (I) is 0% to 35% by weight in the compound represented by general formula (I), or the content of the compound represented by general formula (Ia) is
  • the content of the compound represented by the general formula (Ib) and the general formula (Ic) is 0% by weight to 10% by weight in the compound represented by the formula (I). It is preferably 90 to 100% by weight in the compound.
  • the liquid crystal layer in the liquid crystal display device of the present invention contains 35 to 80% by weight of the compound represented by the general formula (II), preferably 40 to 75% by weight, and preferably 45 to 70% by weight. Is more preferable.
  • R 3 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms.
  • it represents an alkyl group having 3 to 5 carbon atoms or an alkenyl group having 2 or 3 carbon atoms, and more preferably represents an alkyl group having 2 or 3 carbon atoms or an alkenyl group having 2 carbon atoms. It is particularly preferred to represent an alkyl group having 2 or 3 carbon atoms.
  • R 4 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms, It preferably represents an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. More preferably, it represents an alkoxy group of 2-4.
  • Z 3 and Z 4 are each independently a single bond, —CH ⁇ CH—, —C ⁇ C—, —CH 2 CH 2 —, — (CH 2 ) 4 —, —COO—, —OCO—, —OCH 2 —, —CH 2 O—, —OCF 2 — or —CF 2 O—, represents a single bond, —CH 2 CH 2 —, —COO—, —OCH 2 —, —CH 2 O—, —OCF It preferably represents 2 — or —CF 2 O—, and more preferably represents a single bond or —CH 2 O—.
  • m and n each independently preferably represents an integer of 0 to 3, preferably an integer of 0 to 2, and m + n is preferably 1 to 3, and preferably 1 to 2.
  • the liquid crystal layer in the liquid crystal display device of the present invention can contain 3 to 10 compounds represented by the general formula (II), preferably 4 to 9 compounds, and preferably 5 to 8 compounds. It is preferable to contain.
  • the compound represented by the general formula (II) is preferably a compound represented by the following general formula (II-1) or (II-2).
  • R 3 and R 4 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkyl group having 2 to 8 carbon atoms.
  • An alkenyloxy group, wherein Z 5 and Z 6 are each independently a single bond, —CH ⁇ CH—, —C ⁇ C—, —CH 2 CH 2 —, — (CH 2 ) 4 —, —COO—, —OCO—, —OCH 2 —, —CH 2 O—, —OCF 2 — or —CF 2 O— is represented, and m1, m2 and n2 each independently represents 0 or 1.
  • R 3 preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and an alkyl group having 2 to 5 carbon atoms or the number of carbon atoms It is more preferably an alkenyl group having 2 to 4 carbon atoms, more preferably an alkyl group having 3 to 5 carbon atoms or an alkenyl group having 2 carbon atoms, and particularly preferably an alkyl group having 3 carbon atoms.
  • R 4 preferably represents an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, and represents an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms. More preferably, it represents an alkyl group having 3 carbon atoms or an alkoxy group having 2 carbon atoms, more preferably represents an alkoxy group having 2 carbon atoms, Z 5 represents a single bond,- It preferably represents CH 2 CH 2 —, —COO—, —OCH 2 —, —CH 2 O—, —OCF 2 — or —CF 2 O—, and more preferably represents a single bond or —CH 2 O—. preferable.
  • the liquid crystal layer in the liquid crystal display device of the present invention preferably contains 15% to 60% by weight, and preferably contains 17% to 50% by weight of the compound represented by the general formula (II-1).
  • the content is preferably from 40% by weight to 40% by weight, more preferably from 19% by weight to 30% by weight.
  • the liquid crystal layer in the liquid crystal display device of the present invention can contain one or more compounds represented by the general formula (II-1), but preferably contains 1 to 6 types. It is preferable to contain 5 types, and it is preferable to contain 3 types or 4 types.
  • R 3 preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and the alkyl group having 2 to 5 carbon atoms or the number of carbon atoms More preferably, it represents an alkenyl group having 2 to 4 carbon atoms, more preferably represents an alkyl group having 3 to 5 carbon atoms or an alkenyl group having 2 carbon atoms, and represents an alkyl group having 2 or 3 carbon atoms.
  • R 4 represents an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, and an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms. And more preferably an alkyl group having 3 carbon atoms or an alkoxy group having 2 carbon atoms, and Z 6 represents a single bond, —CH 2 CH 2 —, —COO—, —OCH 2 —. , -CH 2 O -, - OCF 2 - or preferably representing a -CF 2 O-, and more preferably represents a single bond or -CH 2 O-.
  • the liquid crystal layer in the liquid crystal display device of the present invention preferably contains 10% by weight to 50% by weight of the compound represented by the general formula (II-2), preferably 15% by weight to 45% by weight, The content is preferably 20 to 40% by weight, more preferably 25 to 35% by weight.
  • the liquid crystal layer in the liquid crystal display device of the present invention may contain one or more compounds represented by the general formula (II-2), but preferably contains 1 to 6 types. It is preferable to contain 5 types, and it is preferable to contain 3 types or 4 types.
  • R 3 represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R 4a represents an alkyl group having 1 to 5 carbon atoms.
  • R 3 is preferably the same embodiment as in general formula (II-1).
  • R 4a is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms, and particularly preferably an alkyl group having 2 carbon atoms.
  • R 3 is preferably the same embodiment as in general formula (II-1).
  • R 4a is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 3 carbon atoms, and particularly preferably an alkyl group having 3 carbon atoms.
  • general formula (II-1a) to (II-1d) are preferable for increasing the absolute value of dielectric anisotropy. And general formula (II-1a) is preferred.
  • the liquid crystal layer in the liquid crystal display device of the present invention preferably contains one or more compounds represented by the general formulas (II-1a) to (II-1d). It is preferable to contain 1 type or 2 types of compounds represented by general formula (II-1a).
  • R 3 represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R 4b represents an alkyl group having 1 to 5 carbon atoms.
  • R 3 is preferably the same embodiment as in general formula (II-1).
  • R 4b is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms, and particularly preferably an alkyl group having 2 carbon atoms.
  • R 3 is preferably the same embodiment as in general formula (II-1).
  • R 4b is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 3 carbon atoms, and particularly preferably an alkyl group having 3 carbon atoms.
  • general formula (II-1e) to (II-1h) general formula (II-1e) and general formula (II-1g) are preferable in order to increase the absolute value of dielectric anisotropy. .
  • R 3 represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R 4c represents an alkyl group having 1 to 5 carbon atoms. Preferred is the same embodiment as R 3 and R 4 in the formula (1).
  • R 3 is preferably the same embodiment as in general formula (II-2).
  • R 4c is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms, and particularly preferably an alkyl group having 2 carbon atoms.
  • R 3 is preferably the same embodiment as in general formula (II-2).
  • R 4c is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 3 carbon atoms, and particularly preferably an alkyl group having 3 carbon atoms.
  • general formula (II-2a) to (II-2d) are preferable for increasing the absolute value of dielectric anisotropy.
  • general formula (II-2a) is preferable.
  • R 3 represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R 4d represents an alkyl group having 1 to 5 carbon atoms. Preferred is the same embodiment as R 3 and R 4 in the formula (1).
  • R 3 is preferably the same embodiment as in general formula (II-2).
  • R 4d is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms, and particularly preferably an alkyl group having 2 carbon atoms.
  • R 4d is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 3 carbon atoms, and particularly preferably an alkyl group having 2 carbon atoms.
  • general formulas (II-2e) to (II-2i) general formula (II-2e) and general formula (II-2h) are preferable.
  • the total content of the compounds represented by the general formulas (I) and (II) is preferably 75% by weight to 100% by weight, and 80% by weight to 100% % By weight is preferable, 85% by weight to 100% by weight is preferable, 90% by weight to 100% by weight is preferable, and 95% by weight to 100% by weight is preferable.
  • the liquid crystal layer in the liquid crystal display device of the present invention further has the general formula (III)
  • R 7 and R 8 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 represents an alkenyloxy group
  • D, E and F each independently represent a fluorine-substituted 1,4-phenylene group or trans-1,4-cyclohexylene
  • Z 2 represents a single bond.
  • the general formula (I), the general formula (II-1 And the compound represented by the general formula (II-2) are excluded.
  • the compound represented by the general formula (III) is preferably contained in an amount of 1 to 20%, more preferably 2 to 15%, and more preferably 4 to 10%.
  • R 7 is an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms.
  • D represents trans-1,4-cyclohexylene
  • it preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and an alkyl group or carbon having 2 to 5 carbon atoms More preferably, it represents an alkenyl group having 2 to 4 atoms, more preferably represents an alkyl group having 3 to 5 carbon atoms or an alkenyl group having 2 or 3 carbon atoms, and represents an alkyl group having 3 carbon atoms.
  • D represents a 1,4-phenylene group optionally substituted with fluorine
  • D preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 4 or 5 carbon atoms, More preferably, it represents a 5 alkyl group or an alkenyl group having 4 carbon atoms, and more preferably represents an alkyl group having 2 to 4 carbon atoms.
  • R 8 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms
  • F represents trans-1,4-cyclohexylene
  • it preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and an alkyl group or carbon having 2 to 5 carbon atoms
  • it represents an alkenyl group having 2 to 4 atoms More preferably represents an alkyl group having 3 to 5 carbon atoms or an alkenyl group having 2 or 3 carbon atoms, and represents an alkyl group having 3 carbon atoms.
  • F represents a 1,4-phenylene group optionally substituted with fluorine
  • it preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 4 or 5 carbon atoms, More preferably, it represents a 5 alkyl group or an alkenyl group having 4 carbon atoms, and more preferably represents an alkyl group having 2 to 4 carbon atoms.
  • R 7 and R 8 represent an alkenyl group and the bonded D or F represents a 1,4-phenylene group optionally substituted with fluorine
  • the alkenyl group having 4 or 5 carbon atoms includes A structure is preferred.
  • D, E, and F each independently represents a fluorine-substituted 1,4-phenylene group or trans-1,4-cyclohexylene, and represents a 2-fluoro-1,4-phenylene group, 2 , 3-difluoro-1,4-phenylene group, 1,4-phenylene group or trans-1,4-cyclohexylene, preferably 2-fluoro-1,4-phenylene group or 2,3-difluoro- 1,4-phenylene group and 1,4-phenylene group are more preferable, and 2,3-difluoro-1,4-phenylene group and 1,4-phenylene group are preferable.
  • Z 2 is a single bond, -OCH 2 -, - OCO - , - CH 2 O- or represents a -COO-, single bond, it is preferable to represent a -CH 2 O-or -COO-, a single bond is more preferable.
  • n represents 0, 1 or 2, but preferably represents 0 or 1. Also, if Z 2 represents a substituent other than a single bond, preferably it represents 1.
  • the compound represented by the general formula (III) is represented by the general formula (III-1c) to the general formula (III-1e) from the viewpoint of increasing the negative dielectric anisotropy when n represents 1.
  • the compounds represented by formulas (III-1f) to (III-1j) are preferred from the viewpoint of increasing the response speed.
  • each of R 7 and R 8 independently represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. Embodiments similar to R 7 and R 8 in III) are preferred.
  • the compound represented by the general formula (III) is represented by the general formula (III-2a) to the general formula (III-2h) from the viewpoint of increasing the negative dielectric anisotropy when n is 2. From the viewpoint of increasing the response speed, compounds represented by general formula (III-2j) to general formula (III-2l) are preferable.
  • each of R 7 and R 8 independently represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. Embodiments similar to R 7 and R 8 in III) are preferred.
  • the compound represented by the general formula (III) is preferably a compound represented by the general formula (III-3b) from the viewpoint of increasing the response speed when n is 0.
  • each of R 7 and R 8 independently represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. Embodiments similar to R 7 and R 8 in III) are preferred.
  • R 7 is preferably an alkyl group having 2 to 5 carbon atoms, more preferably an alkyl group having 3 carbon atoms.
  • R 8 is preferably an alkoxy group having 1 to 3 carbon atoms, more preferably an alkoxy group having 2 carbon atoms.
  • the liquid crystal layer in the liquid crystal display device of the present invention can use a nematic phase-isotropic liquid phase transition temperature (T ni ) in a wide range, but is preferably 60 to 120 ° C., 70 To 100 ° C is more preferable, and 70 to 85 ° C is particularly preferable.
  • the dielectric anisotropy is preferably ⁇ 2.0 to ⁇ 6.0 at 25 ° C., more preferably ⁇ 2.5 to ⁇ 5.0, and ⁇ 2.5 to ⁇ 4. Particularly preferred is 0.
  • the refractive index anisotropy is preferably 0.08 to 0.13 at 25 ° C., more preferably 0.09 to 0.12.
  • the rotational viscosity ( ⁇ 1) is preferably 150 or less, more preferably 130 or less, and particularly preferably 120 or less.
  • Z as a function of rotational viscosity and refractive index anisotropy shows a specific value.
  • Z is preferably 13000 or less, more preferably 12000 or less, and particularly preferably 11000 or less.
  • the liquid crystal layer in the liquid crystal display device of the present invention is required to have a specific resistance of 10 12 ( ⁇ ⁇ m) or more, preferably 10 13 ( ⁇ ⁇ m), when used for an active matrix display element. 10 14 ( ⁇ ⁇ m) or more is more preferable.
  • the liquid crystal layer in the liquid crystal display device of the present invention may contain a normal nematic liquid crystal, a smectic liquid crystal, a cholesteric liquid crystal, an antioxidant, an ultraviolet absorber, a polymerizable monomer, etc., in addition to the above-described compound, depending on the application. good.
  • a polymerizable monomer general formula (V)
  • X 1 and X 2 each independently represent a hydrogen atom or a methyl group
  • Sp 1 and Sp 2 are each independently a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) s — (wherein s represents an integer of 2 to 7, Represents an aromatic ring).
  • Z 1 is —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 —, —OCO—CH 2 —, —CH 2 —COO—, —CH 2 —OCO—, —CY 1 ⁇ CY 2 — (Wherein Y 1 and Y 2 each independently represents a fluorine atom or a hydrogen atom), —C ⁇ C— or a single bond; C represents a 1,4-phenylene group,
  • X 1 and X 2 are each preferably a diacrylate derivative that represents a hydrogen atom, or a dimethacrylate derivative that has a methyl group, and a compound in which one represents a hydrogen atom and the other represents a methyl group.
  • the polymerization rate of these compounds is the fastest for diacrylate derivatives, slow for dimethacrylate derivatives, and intermediate for asymmetric compounds, and a preferred embodiment can be used depending on the application.
  • a dimethacrylate derivative is particularly preferable.
  • Sp 1 and Sp 2 each independently represent a single bond, an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s —, but at least one of them is a single bond in a PSA display element.
  • a compound in which both represent a single bond or one in which one represents a single bond and the other represents an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s — is preferable.
  • 1 to 4 alkyl groups are preferable, and s is preferably 1 to 4.
  • Z 1 is —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond
  • C represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond in which any hydrogen atom may be substituted with a fluorine atom, and a 1,4-phenylene group or a single bond is preferred.
  • Z 1 is preferably a linking group other than a single bond.
  • Z 1 is preferably a single bond.
  • the ring structure between Sp 1 and Sp 2 is specifically preferably the structure described below.
  • C represents a single bond and the ring structure is formed of two rings
  • both ends shall be bonded to Sp 1 or Sp 2.
  • the polymerizable compounds containing these skeletons are optimal for PSA-type liquid crystal display elements because of their alignment restriction power after polymerization, and a good alignment state is obtained, so that display unevenness is suppressed or does not occur at all.
  • general formula (V-1) to general formula (V-4) are particularly preferable, and general formula (V-2) is most preferable.
  • Sp 2 represents an alkylene group having 2 to 5 carbon atoms.
  • the polymerization proceeds even in the absence of a polymerization initiator, but a polymerization initiator may be contained in order to accelerate the polymerization.
  • the polymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, acylphosphine oxides, and the like.
  • a stabilizer may be added in order to improve storage stability.
  • Examples of the stabilizer that can be used include hydroquinones, hydroquinone monoalkyl ethers, tert-butylcatechols, pyrogallols, thiophenols, nitro compounds, ⁇ -naphthylamines, ⁇ -naphthols, nitroso compounds, and the like. It is done.
  • the liquid crystal layer in the present invention is useful for a liquid crystal display element, and includes AM-LCD (active matrix liquid crystal display element), TN (nematic liquid crystal display element), STN-LCD (super twisted nematic liquid crystal display element), OCB-LCD and Although it is useful for IPS-LCD (in-plane switching liquid crystal display element), it is particularly useful for AM-LCD and can be used for liquid crystal display elements for PSA mode, PSVA mode, VA mode, IPS mode or ECB mode.
  • AM-LCD active matrix liquid crystal display element
  • TN nematic liquid crystal display element
  • STN-LCD super twisted nematic liquid crystal display element
  • OCB-LCD OCB-LCD
  • IPS-LCD in-plane switching liquid crystal display element
  • the sealing agent in the liquid crystal display device of the present invention is composed of a cured product of a curable resin composition containing a compound having at least one epoxy group in one molecule and having a weight average molecular weight of 300 to 10,000. .
  • a novolac type epoxy resin for example, a bisphenol type epoxy resin or the like is used.
  • Phenyl) alkyl type epoxy resins, tetrakis (hydroxyphenyl) alkyl type epoxy resins and the like are suitable.
  • bisphenol A type epoxy resin bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, 2,2'-diallyl bisphenol A type epoxy resin, hydrogenated bisphenol type epoxy resin, poly Oxypropylene bisphenol A type epoxy resin, propylene oxide addition bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, cresol novolac epoxy resin, trisphenol novolac epoxy resin, dicyclopentadiene novolac epoxy Fat, biphenyl novolak type epoxy resin, naphthalene phenol novolac-type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compounds, bisphenol A type episulfide resins.
  • bisphenol A type epoxy resin
  • epoxy compounds commercially available ones include, for example, bisphenol A type epoxy resins such as jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), Epicron 850-S (manufactured by DIC), jER806, jER4004 (any Bisphenol F epoxy resin such as Mitsubishi Chemical), bisphenol E epoxy resin such as R-710, bisphenol S epoxy resin such as Epicron EXA1514 (DIC), RE-810NM (manufactured by Nippon Kayaku) 2,2'-diallylbisphenol A type epoxy resin, hydrogenated bisphenol type epoxy resin such as Epicron EXA7015 (manufactured by DIC), propylene oxide-added bisphenol A type epoxy resin such as EP-4000S (manufactured by ADEKA), EX -201 Resorcinol type epoxy resin such as Nagase ChemteX), biphenyl type epoxy resin such as jERYX-4000H (Mitsubishi Chemical), sulfide type epoxy resin such
  • Cresol novolac epoxy resin Epicron HP7200, etc. (DIC Corporation) Dicyclopentadiene novolak type epoxy resin, biphenyl novolac type epoxy resin such as NC-3000P (manufactured by Nippon Kayaku Co., Ltd.), naphthalene phenol novolak type epoxy resin such as ESN-165S (manufactured by Nippon Steel Chemical Co., Ltd.), jER630 (Mitsubishi Chemical) Glycidylamine type epoxy resins such as Epicron 430 (manufactured by DIC), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company), ZX-1542 (manufactured by Nippon Steel Chemical Co., Ltd.), Alkyl polyol type epoxy resins such as Piclone 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611 (manufactured by Nagase Che
  • the weight average molecular weight of the compound having at least one epoxy group in one molecule is 300 to 10,000.
  • the lower limit of the weight average molecular weight is preferably 500 or more, more preferably 1000 or more, and the upper limit is preferably 7000 or less, preferably 5000 or less, and particularly preferably 3000 or less.
  • the curable resin composition containing a compound having at least one epoxy group in one molecule preferably has a hydrogen bondable functional group value of 1 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 2 mol / g. ⁇ 4 to 1 ⁇ 10 ⁇ 2 mol / g is preferable, and 1 ⁇ 10 ⁇ 3 to 5 ⁇ 10 ⁇ 3 mol / g is preferable. Since such a curable resin composition forms hydrogen bonds in the molecule, when used as a sealant, it is difficult to elute into the liquid crystal both before and after curing, and is less likely to cause liquid crystal contamination. This is preferable because problems of display defects such as unevenness and burn-in can be suppressed.
  • the hydrogen bond has a functional group having a hydrogen bond or a residue, such as an —OH group, —SH group, —NH 2 group, —NHR group (R is an aromatic, aliphatic hydrocarbon or These represent derivatives), those having a functional group such as —COOH group, —CONH 2 group, —NHOH group, or —NHCO— bond, —NH— bond, —CONHCO— bond, —NH— in the molecule It is formed by containing a compound having a residue such as an NH-bond.
  • the hydrogen bondable functional group value is the content per unit weight of the compound having each hydrogen bondable functional group ( (Weight fraction) can be distributed and calculated.
  • Weight fraction the content per unit weight of the compound having each hydrogen bondable functional group
  • the hydrogen bondable functional group value when the compound having a hydrogen bondable functional group is composed of Compound A, Compound B, and Compound C is represented by the following (Formula 2).
  • Hydrogen-bonding functional group value H ABC P A + H B P B + H C P C ( Equation 2) (Note that P ⁇ represents the weight fraction of compound ⁇ .)
  • the hydrogen bondable functional group value is less than 1 ⁇ 10 ⁇ 4 mol / g
  • the curable resin composition component elutes into the liquid crystal and tends to disturb the alignment of the liquid crystal, and exceeds 5 ⁇ 10 ⁇ 2 mol / g.
  • the moisture permeability of the cured product increases and moisture easily enters the liquid crystal display element.
  • the hydrogen bonding functional group value may be adjusted to the above range by mixing two or more kinds even if the hydrogen bonding functional group value is in the above range alone. Also good. That is, the average value of the hydrogen bonding functional group value of the compound having a hydrogen bonding functional group to be used may be in the above range.
  • the curable resin composition containing a compound having at least one epoxy group in one molecule preferably has a volume resistivity after curing of 1 ⁇ 10 13 ⁇ ⁇ cm or more. If it is less than 1 ⁇ 10 13 ⁇ ⁇ cm, it means that the sealant contains ionic impurities, and when used as a sealant, the ionic impurities are eluted into the liquid crystal when energized, and the liquid crystal layer Cause a decrease in voltage holding ratio (VHR), an increase in ion density, and display defects such as white spots, uneven orientation, and baking.
  • VHR voltage holding ratio
  • the curable resin composition containing a compound having at least one epoxy group in one molecule preferably has a specific resistance before curing of 1.0 ⁇ 10 6 to 1.0 ⁇ 10 10 ⁇ ⁇ cm. .
  • 1.0 ⁇ 10 6 ⁇ ⁇ cm when it is used as a sealant, it elutes into the liquid crystal. Cause display defects such as burn-in. If it exceeds 1.0 ⁇ 10 10 ⁇ ⁇ cm, the adhesion to the substrate may be inferior.
  • the compound having at least one epoxy group in one molecule is preferably a compound having at least one ethylenically unsaturated bond in one molecule.
  • a compound having at least one epoxy group and (meth) acryl group in one molecule is preferable.
  • the compound having at least one epoxy group and at least one (meth) acryl group in one molecule is not particularly limited, and examples thereof include (meth) acrylic acid-modified epoxy resins and urethane-modified (meth) acryl epoxy resins. It is done.
  • the (meth) acrylic acid-modified epoxy resin is not particularly limited.
  • (meth) acrylic acid and an epoxy resin are reacted in the presence of a basic catalyst according to a conventional method. Can be obtained.
  • (meth) acrylic acid-modified epoxy resins include partially (meth) acrylated novolac type epoxy resins, bisphenol type epoxy resins, etc., and biphenyl type epoxy resins, naphthalene type epoxy resins, tris ( Hydroxyphenyl) alkyl type epoxy resins, tetrakis (hydroxyphenyl) alkyl type epoxy resins, and the like are suitable.
  • a resorcinol type epoxy resin manufactured by Nagase ChemteX Corporation, “EX-201”
  • EX-201 a resorcinol type epoxy resin
  • 2 parts by weight of p-methoxyphenol as a polymerization inhibitor 2 parts by weight of triethylamine as a reaction catalyst
  • acrylic 210 parts by weight of acid can be obtained by stirring at 90 ° C. while feeding air and reacting for 5 hours.
  • Examples of commercially available products of the (meth) acrylic acid-modified epoxy resin include Evecryl 860, Evekril 1561, Evekril 3700, Evekril 3600, Evekril 3701, Evekrill 3703, Evekril 3200, Evekrill 3201, Evekril 3702, Evekril 3412, Evekril 860, Evekril RDX63182, Evekril 6040, Evekril 3800 (all manufactured by Daicel Cytec), EA-1020, EA-1010, EA-5520, EA-5323, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.) Epoxy ester M-600A, Epoxy ester 40EM, Epoxy ester 70PA, Epoxy ester 200PA, Epoxy ester 80MFA, Epoxy ester 3 02M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400
  • Urethane-modified (meth) acrylic epoxy resin is obtained, for example, by the following method. That is, a method in which a polyol and a bifunctional or higher functional isocyanate are reacted and a hydroxyl group-containing (meth) acrylic monomer and glycidol are reacted, or a bifunctional or higher functional isocyanate has a hydroxyl group (meth) without using a polyol. It can be produced by a method of reacting an acrylic monomer or glycidol or a method of reacting a glycidol with a (meth) acrylate having an isocyanate group.
  • polyol For example, ethylene glycol, glycerol, sorbitol, a trimethylol propane, (poly) propylene glycol etc. are mentioned.
  • the isocyanate is not particularly limited as long as it is bifunctional or higher.
  • MDI diphenylmethane-4, 4'-diisocyanate
  • XDI xylylene diiso
  • the (meth) acrylic monomer having a hydroxyl group is not particularly limited, and examples of the monomer having one hydroxyl group in the molecule include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate. Examples of the monomer having two or more hydroxyl groups in the molecule include epoxy (meth) acrylates such as bisphenol A-modified epoxy (meth) acrylate. These may be used alone or in combination of two or more.
  • the compound having at least one epoxy group and (meth) acryl group in one molecule reduces compatibility with liquid crystal and eliminates contamination, and suppresses display defects such as white spots, uneven alignment, and baking. Therefore, it preferably has a hydrogen bonding group, for example, preferably has a hydroxyl group and / or a urethane bond.
  • the compound having at least one epoxy group and (meth) acryl group in one molecule is at least one selected from a biphenyl skeleton, a naphthalene skeleton, a bisphenol skeleton, and a partial (meth) acrylate of a novolac epoxy resin. It preferably has a molecular skeleton. Thereby, the heat resistance of the curable resin composition of this invention improves.
  • the curable resin composition containing a compound having at least one epoxy group in one molecule may contain a compound having an ethylenically unsaturated bond.
  • a compound having a (meth) acryloyloxy group is preferable.
  • a compound having a (meth) acryloyloxy group for example, an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, or by reacting a (meth) acrylic acid derivative having a hydroxyl group with isocyanate. Examples include urethane (meth) acrylates obtained.
  • An ester compound obtained by reacting (meth) acrylic acid with a compound having a hydroxyl group is not particularly limited.
  • Examples of functional ones include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate , Methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate , Methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (
  • the bifunctional one is not particularly limited.
  • ester compounds obtained by reacting the above (meth) acrylic acid with a compound having a hydroxyl group those having three or more functional groups are not particularly limited.
  • Urethane (meth) acrylate obtained by reacting an isocyanate with a hydroxyl group-containing acrylic acid derivative As the urethane (meth) acrylate obtained by reacting the isocyanate with a hydroxyl group-containing (meth) acrylic acid derivative, in particular It is not limited, For example, it can obtain by making 2 equivalent of (meth) acrylic acid derivatives which have a hydroxyl group with respect to 1 equivalent of compounds which have two isocyanate groups make it react in the presence of a tin-type compound.
  • the isocyanate used as a raw material for the urethane (meth) acrylate obtained by reacting a hydroxyl group-containing (meth) acrylic acid derivative with the above isocyanate is not particularly limited.
  • MDI diphenylmethane-4,4′-
  • Examples of the isocyanate used as a raw material for the urethane (meth) acrylate obtained by reacting the isocyanate with a (meth) acrylic acid derivative having a hydroxyl group include, for example, ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) Chain-extended isocyanate compounds obtained by reaction of polyols such as propylene glycol, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and excess isocyanate can also be used.
  • the (meth) acrylic acid derivative having a hydroxyl group is not particularly limited, and examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxybutyl.
  • (meth) acrylate and mono (meth) acrylates of dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol , Epoxy (meth) acrylates such as mono (meth) acrylates or di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane and glycerin, and bisphenol A-modified epoxy (meth) acrylates.
  • dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol
  • Epoxy (meth) acrylates such as mono (meth) acrylates or di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolprop
  • the urethane (meth) acrylate is, for example, 134 parts by weight of trimethylolpropane, 0.2 part by weight of BHT as a polymerization inhibitor, 0.01 part by weight of dibutyltin dilaurate as a reaction catalyst, and isophorone diisocyanate 666. It is obtained by adding 2 parts by weight, reacting at 60 ° C. with stirring under reflux for 2 hours, and then adding 51 parts by weight of 2-hydroxyethyl acrylate, stirring at 90 ° C. while feeding air and reacting for 2 hours. Can do.
  • urethane (meth) acrylates include, for example, M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), Evecryl 230, Evekril 270, Evekril 4858, Evekril.
  • thermosetting sealants In thermosetting sealants, the viscosity of the resin used as a raw material is reduced by heating, so ionic impurities contained in the sealant are eluted into the liquid crystal in contact with the sealant, and the seal pattern is deformed. There is a problem that the liquid crystal leaks. In order to prevent a decrease in resin viscosity due to heating, it is effective to improve the curing rate that can be quickly cured before the viscosity decreases.
  • the curable resin composition of the present invention preferably contains a compound having an ethylenically unsaturated bond as described above, and a (meth) acryl group-containing resin capable of reacting with a radical and (2) initiation of thermal radical polymerization.
  • the amount of carbon-carbon double bonds in the curable resin composition is in the range of 0.002 to 0.006 mol / g.
  • the amount of carbon-carbon double bonds in the curable resin composition exceeds 0.006 mol / g, the curing rate increases, but the crosslink density in the cured product increases, so that the substrate constituting the liquid crystal display panel and The adhesive strength with the cured product may be lowered.
  • the amount of the carbon-carbon double bond is less than 0.002 mol / g, the curing rate decreases. Therefore, a resin composition in which the amount of carbon-carbon double bonds satisfies the above range is excellent in the balance between curability and adhesion to the substrate.
  • the amount of carbon-carbon double bonds is preferably 0.002 mol / g or more and 0.003 mol / g or less.
  • the amount of the carbon-carbon double bond is the unit weight of the compound having each carbon-carbon double bond amount when the compound having the carbon-carbon double bond amount is composed of a mixture of a plurality of resins. It can be calculated by distributing the per content (weight fraction). For example, when the compound having a carbon-carbon double bond amount is composed of Compound A, Compound B, and Compound C, the carbon-carbon double bond amount is represented by the following (formula 3).
  • N ⁇ and P ⁇ represent the carbon-carbon double bond amount (mol / g) of compound ⁇ and the weight fraction of compound (A + B + C), respectively.
  • the amount of carbon-carbon double bonds in the curable resin is determined by dividing the number of carbon-carbon double bonds in the molecule by the molecular weight of the resin, and the unit is mol / g.
  • the molecular weight of each curable resin is preferably measured by GPC using polystyrene as a standard.
  • the number average molecular weight and the weight average molecular weight are calculated, but the carbon-carbon double bond amount is preferably calculated by the number average molecular weight.
  • the amount of carbon-carbon double bonds may be such that one type of resin alone is in the above range, or may be adjusted to the above range by mixing two or more types of resins. That is, the average value of the carbon-carbon double bond amount of the compound to be used may be in the above range.
  • the curable resin composition of the present invention contains a compound having at least one epoxy group and (meth) acryl group in one molecule or a compound having a (meth) acryloyloxy group.
  • the compounding ratio of the epoxy group and the (meth) acryl group in the curable resin composition in this case is preferably 15:85 to 95: 5 for epoxy: (meth) acryl, It is preferably 25:75 to 90:10, and preferably 25:75 to 70:30.
  • the equivalent ratio of (meth) acrylic groups is less than 30, the reactivity is lowered, and not only does the curing rapidly proceed even after heating after applying the sealant, but the elution into the liquid crystal increases. If it exceeds 85, the adhesiveness and moisture permeability may be insufficient. More preferably, it is 50:50 to 30:70.
  • the curable resin composition containing a compound having at least one epoxy group in one molecule preferably contains a thermosetting agent.
  • the thermosetting agent is for reacting and crosslinking the epoxy groups and / or ethylenically unsaturated bonds in the curable resin composition by heating, and the adhesiveness and moisture resistance of the curable resin composition after curing. Has a role to improve.
  • the thermosetting agent used for the reaction of the epoxy group is not particularly limited, but a latent thermosetting agent having a melting point of 100 ° C. or higher is preferably used. When a thermosetting agent having a melting point of 100 ° C. or lower is used, the storage stability may be remarkably deteriorated.
  • the curable resin composition containing a compound having at least one ethylenically unsaturated bond such as a (meth) acryl group in one molecule preferably contains a thermal radical initiator.
  • the thermal radical initiator reacts and crosslinks the ethylenically unsaturated bond in the curable resin composition by heating, and contributes particularly to increasing the curing speed and also prevents the penetration of ionic impurities.
  • the thermal radical initiator is not particularly limited, but the 10-hour half-life temperature is preferably 40 to 80 ° C. When a thermosetting agent having a 10-hour half-life temperature of 40 ° C. or lower is used, the storage stability may be remarkably deteriorated.
  • thermosetting agent examples include 1,3-bis [hydrazinocarbonoethyl-5-isopropylhydantoin] (melting point 120 ° C.), adipic acid dihydrazide (melting point 181 ° C.), 7,11-octadecadien-1 , 18-dicarbohydrazide (melting point 160 ° C.), dodecanedioic acid dihydrazide (melting point 190 ° C.), hydrazide compounds such as sebacic acid dihydrazide (melting point 189 ° C.), dicyandiamide compounds such as dicyandiamide (melting point 209 ° C.), guanidine Derivatives, 1-cyanoethyl-2-phenylimidazole, N- [2- (2-methyl-1-imidazolyl) ethyl] urea, 2,4-diamino-6- [2′-methylimidazolyl- (1
  • composition (decomposition) ), 2-methylimidazole (molecular weight 82, solid, melting point: 137 to 145 ° C.), etc., modified aliphatic polyamine, tetrahydrophthalic anhydride, acid anhydrides such as ethylene glycol bis (anhydro trimellitate), various Addition product of amine and epoxy resin, phenol novolac resin Cresol novolac resins, and phenolic compounds such as xylok novolak resins. These can be used alone or in combination of two or more.
  • an acrylic acid-modified epoxy resin When an acrylic acid-modified epoxy resin is used as the compound having at least one (meth) acrylic group and epoxy group in one molecule, the reactivity of the acrylic epoxy resin changes more than its structure, and the urethane-modified In the case of an epoxy resin, it is excellent in storage stability even when a highly reactive thermosetting agent is used, but in the case of a (meth) acrylic acid-modified epoxy resin, the reactivity is high and the melting point is 100 ° C. or higher.
  • the thermosetting agent having low reactivity is preferable from the viewpoint of storage stability.
  • the blending ratio of the thermosetting agent is preferably 5 to 60 parts by weight, more preferably 10 to 50 parts by weight with respect to 100 parts by weight of the curable compound. Outside the above range, the adhesiveness and chemical resistance of the cured product may be lowered, and the liquid crystal characteristics may be deteriorated in a high temperature and high humidity operation test.
  • the following coating thermosetting agent is suitable. If the coated thermosetting agent of the present invention is used, very high storage stability can be obtained even as a one-component type. That is, by using a coating thermosetting agent in which the surface of the solid thermosetting agent is coated with fine particles having poor volatility and poor solubility in organic matter, a seal having high storage stability even if a curing agent is blended in advance. An agent is obtained.
  • the solid thermosetting agent refers to a curing agent that is solid at room temperature and starts to react with the curable resin by melting or softening by heating.
  • a solid thermosetting agent is not particularly limited as long as it has a melting point or a softening point of room temperature or higher, and examples thereof include solid amine compounds, phenolic compounds, and acid anhydrides. Of these, solid amine compounds are preferred because of their excellent reactivity at low temperatures.
  • the solid amine compound means a solid compound having one or more primary to tertiary amino groups in the molecule. For example, aromatic amines such as metaphenylenediamine and diaminodiphenylmethane, 2-methylimidazole, and the like.
  • Imidazole compounds such as 1,2-dimethylimidazole and 1-cyanoethyl-2-methylimidazole, imidazoline compounds such as 2-methylimidazoline, and dihydrazide compounds such as sebacic acid dihydrazide and isophthalic acid dihydrazide.
  • solid amine compounds those commercially available include amine adducts such as Amicure PN-23, Amicure MY-24 (manufactured by Ajinomoto Fine Techno Co., Ltd.), dicyandiamide, and the like.
  • polyhydric phenol type compound a polyphenol compound and a novolak-type phenol resin are mentioned, for example.
  • these polyhydric phenol compounds that are commercially available include jER cure 170, jER cure YL6065, jER cure MP402FPI (manufactured by Mitsubishi Chemical Corporation), and the like.
  • the acid anhydride include glycerin bis (anhydrotrimellitate), ethylene glycol-bis (anhydrotrimellitate), tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, Examples thereof include 3-methyltetrahydrophthalic anhydride.
  • commercially available acid anhydrides include jER Cure YH-306, YH-307 (manufactured by Mitsubishi Chemical Corporation).
  • the average particle diameter of the solid thermosetting agent particles is not particularly limited, but is preferably 0.1 to 50 ⁇ m. If it is less than 0.1 ⁇ m, the surface may not be efficiently coated with fine particles. If it exceeds 50 ⁇ m, when blended with a sealant, the curing agent may precipitate during storage or curing may become uneven. May be frustrated. More preferably, it is 0.5 to 10 ⁇ m.
  • the fine particles that coat the surface of the solid thermosetting agent particles include oxides such as Si, Al, Ti, Fe, Mn, and Mg, hydroxides, halides, styrene beads, and fine rubber. These fine particles may be used alone or in combination of two or more.
  • the average particle diameter of the fine particles is preferably 0.05 ⁇ m or less.
  • the surface of the solid thermosetting agent particles may not be efficiently coated. More preferably, it is 0.03 ⁇ m or less.
  • the particle diameter of the fine particles is preferably 10% or less of the particle diameter of the solid thermosetting agent particles. If it is 10% or more, the reactivity control ability may not be sufficiently exhibited.
  • the weight ratio of solid thermosetting agent particles to fine particles in the coating thermosetting agent is preferably 50: 1 to 3: 1. When the weight ratio of the solid thermosetting agent particles exceeds 50, the ability to control the reactivity may not be sufficiently exhibited. When the weight ratio is less than 3, fine particles may exist excessively and the curing function may be deteriorated. More preferably, it is 20: 1 to 5: 1.
  • the method of coating the surface of the solid thermosetting agent particles with fine particles is not particularly limited, and examples thereof include a method of mixing solid thermosetting agent particles and fine particles in a container using a commercially available blender and the like to make them uniform. It is done.
  • the mixing ratio of the curable resin composition and the coating thermosetting agent is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the curable resin composition. If it is less than 1 part by weight, it may not be sufficiently cured, and if it exceeds 100 parts by weight, various physical properties such as toughness of the cured product that is obtained because an excessive thermosetting agent may remain.
  • the coating thermosetting agent When the coating thermosetting agent is blended in the curable resin composition, it exhibits high storage stability because the contact between the solid thermosetting agent and the polymerizable resin is suppressed as much as possible by the fine particles on the surface during normal temperature storage, and is cured.
  • the solid thermosetting agent becomes liquid and comes into contact with the curable resin without being suppressed by the fine particles, and the curing reaction starts quickly. Therefore, the storage stability of the curable resin composition is improved.
  • the coated thermosetting agent can be produced very easily at room temperature and in a short time without using a special reaction.
  • the curable resin composition of the present invention preferably contains a thermal radical polymerization initiator.
  • a thermal radical polymerization initiator refers to a compound that generates radicals when heated, that is, a compound that absorbs thermal energy and decomposes to generate radical species.
  • the thermal radical polymerization initiator is preferably 0.01 to 3.0 parts by mass with respect to 100 parts by mass of the resin unit.
  • the content of the thermal radical polymerization initiator is too large, the viscosity stability is deteriorated, and when it is too small, the curability is deteriorated.
  • the curable resin composition of the present invention is used as a liquid crystal sealant, as described above, if the viscosity of the liquid crystal sealant is excessively lowered by heating, impurities are eluted and liquid crystal leaks. In addition, it is preferable that viscosity reduction during heating is suppressed as much as possible.
  • the amount of carbon-carbon double bonds in the curable resin composition is determined in advance from the viewpoint of increasing the curing rate of the resin composition and promoting gelation. Although it is useful to adjust within the range, it is possible to further suppress a decrease in the viscosity of the resin by appropriately using a thermal radical polymerization initiator.
  • the 10-hour half-life temperature is the temperature at which the concentration of the thermal radical polymerization initiator becomes half the original when the thermal radical polymerization initiator is subjected to a thermal decomposition reaction at a constant temperature for 10 hours in the presence of an inert gas. It is.
  • the 10-hour half-life temperature is low, radicals are likely to be generated even at a relatively low temperature, so that the curable resin composition is easily cured even at a low temperature.
  • the temperature is high, radicals are less likely to be generated, and the curability of the curable resin composition is reduced.
  • the 10-hour half-life temperature of the thermal radical polymerization initiator is preferably 40 to 80 ° C., more preferably 50 to 70 ° C.
  • the 10-hour half-life temperature is 80 ° C. or lower, further 70 ° C. or lower, when the composition is cured (normally the curing temperature is 80 to 150 ° C.), radicals are easily generated and the curing reaction is promoted. Reduced viscosity reduction during heat curing.
  • the 10-hour half-life temperature of the thermal radical polymerization initiator is too low, the curing reaction tends to proceed even at room temperature, and the stability of the liquid crystal sealant is impaired.
  • the 10-hour half-life temperature of the thermal radical polymerization initiator is 40 ° C., preferably 50 ° C. or more, curing with good stability during storage and application to a substrate (usually performed at room temperature) A functional resin composition is obtained.
  • the 10-hour half-life temperature of the thermal radical polymerization initiator is specifically determined as follows. First, when the thermal decomposition reaction is handled as a primary reaction equation, the following equation holds.
  • C 0 Initial concentration of thermal radical polymerization initiator
  • C t Concentration after thermal radical polymerization initiator t time
  • kd Thermal decomposition rate constant
  • t Reaction time
  • A Frequency factor ⁇ E: Activation energy
  • R Gas constant (8.314 J / mol ⁇ K)
  • T Absolute temperature (K)
  • an organic peroxide or an azo compound is preferable.
  • the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate. Specific examples of these are shown below.
  • the numbers in parentheses next to each compound are the 10-hour half-life temperatures (see Wako Pure Chemicals Catalog, API Corporation Catalog and the aforementioned Polymer Handbook).
  • ketone peroxides include methyl ethyl ketone peroxide (109 ° C.) and cyclohexano peroxide (100 ° C.).
  • peroxyketals include 1,1-bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane (87 ° C.), 1,1-bis (t-hexylperoxy) cyclohexane (87 ° C.
  • hydroperoxides examples include P-methane hydroperoxide (128 ° C), diisopropylbenzene peroxide (145 ° C), 1,1,3,3-tetramethylbutyl hydroperoxide (153 ° C), cumene hydro Peroxide (156 ° C.) and t-butyl hydroperoxide (167 ° C.) are included.
  • dialkyl peroxides examples include ⁇ , ⁇ -bis (t-butylperoxy) diisopropylbenzene (119 ° C.), dicumyl peroxide (116 ° C.), 2,5-dimethyl-2,5-bis (t- Butylperoxy) hexane (118 ° C.), t-butylcumyl peroxide (120 ° C.), t-amyl peroxide (123 ° C.), di-t-butyl peroxide (124 ° C.), 2,5-dimethyl-2 , 5-bis (t-butylperoxy) hexane-3 (129 ° C.).
  • peroxyesters examples include cumyl peroxyneodecanoate (37 ° C.), 1,1,3,3-tetramethylbutyl peroxyneodecanoate (41 ° C.), t-hexyl peroxyneodecane Noate (45 ° C), t-butylperoxyneodecanoate (46 ° C), t-amylperoxyneodecanoate (46 ° C), t-hexylperoxypivalate (53 ° C), t-butyl Peroxypivalate (55 ° C), t-amyl peroxypivalate (55 ° C), 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (65 ° C), 2,5- Dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane (66 ° C.), t-hexylperoxy-2-ethylhe
  • diacyl peroxides examples include diisobutyryl peroxide (33 ° C.), di-3,5,5-trimethylhexanoyl peroxide (60 ° C.), dilauroyl peroxide (62 ° C.), disuccinic acid peroxide (66 ° C.) and dibenzoyl peroxide (73 ° C.).
  • peroxydicarbonates include di-n-propyl peroxydicarbonate (40 ° C.), diisopropyl peroxydicarbonate (41 ° C.), bis (4-tert-butylcyclohexyl) peroxydicarbonate (41 ° C.
  • the curable resin composition containing a compound having at least one epoxy group in one molecule may contain a radical polymerization inhibitor.
  • the radical polymerization inhibitor include 2,6-di-t-butylcresol, butylated hydroxyanisole, 2,6-di-t-butyl-4-ethylphenol, stearyl ⁇ - (3,5-di-).
  • the lower limit of the blending amount of the radical polymerization inhibitor is 0.1 parts by weight and the upper limit is 0.4 parts by weight with respect to 100 parts by weight of the curable resin composition.
  • the amount of the radical polymerization inhibitor is less than 0.1 parts by weight, the curing reaction proceeds accidentally due to unintentional heating during storage of the sealing agent or during production of the liquid crystal display element, and changes in properties such as thickening. Induces.
  • the blending amount of the radical polymerization inhibitor exceeds 0.4 parts by weight, the thermosetting property of the obtained sealing agent is remarkably lowered, and it may not be cured even when heated for the purpose of curing the sealing agent.
  • the curable resin composition containing a compound having at least one epoxy group in one molecule preferably further contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the liquid crystal display element substrate.
  • the silane coupling agent is preferably a silane compound having at least one functional group represented by the following group (2-A) and at least one functional group represented by the following group (2-B).
  • the silane compound examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -isocyanatopropyltrimethoxysilane. These silane compounds may be used alone or in combination of two or more.
  • the silane compound having such a structure as a silane coupling agent, the adhesion to the substrate can be improved, and the silane compound is chemically bonded to the curable resin via the functional group represented by Group 2-B. As a result, the outflow into the liquid crystal can be prevented.
  • heat treatment is performed after blending the silane compound and the curable resin component.
  • the silane compound is chemically bonded to the curable resin component via the functional group represented by the group 2-B.
  • the heat treatment is preferably performed by stirring the resin mixture in order to increase the reaction efficiency.
  • the stirring method is not particularly limited, and examples thereof include a general method such as rotating a stirrer or stirring blade with a motor or the like.
  • the temperature of the heat treatment is preferably 30 to 70 ° C. When the temperature is lower than 30 ° C., the reaction between the silane compound and the curable resin may not occur sufficiently, and when the temperature exceeds 70 ° C., curing by heat may start.
  • the heat treatment time is preferably 1 to 2 hours. If it is less than 1 hour, all functional groups in the silane compound may not react and unreacted substances may remain.
  • the residual ratio of at least one functional group represented by the group 2-B after the heat treatment is 10% or less. If it exceeds 10%, it reacts with the resin component during storage to increase the viscosity, or it flows out into the liquid crystal and becomes contaminated.
  • the residual ratio of at least one functional group represented by group 2-B can be determined from the relative ratio of the peak intensity of various functional groups in the silane compound and the peak intensity after heat treatment by 1H-NMR measurement. it can.
  • a filler may be added for viscosity adjustment and improvement of adhesiveness due to a stress dispersion effect.
  • the filler is not particularly limited.
  • the shape of the filler is not particularly limited, and examples thereof include fixed shapes such as spherical shapes, needle shapes, and plate
  • the curable resin composition containing a compound having at least one epoxy group in one molecule may contain resin fine particles.
  • the resin fine particles include a core particle made of a resin having rubber elasticity and a glass transition temperature of ⁇ 10 ° C. or less, and a shell made of a resin formed on the surface of the core particle and having a glass transition temperature of 50 to 150 ° C. And having a layer.
  • the glass transition temperature means a value measured by a normal DSC method under a temperature rising rate of 10 ° C./min unless otherwise specified.
  • the resin having rubber elasticity and a glass transition temperature of ⁇ 10 ° C. or lower is not particularly limited, but a polymer of (meth) acrylic monomer is preferable.
  • Examples of the (meth) acrylic monomer include ethyl acrylate, propyl acrylate, n-butyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, ethyl methacrylate, butyl methacrylate and the like. These (meth) acrylic monomers may be polymerized alone or in combination of two or more.
  • the resin having a glass transition temperature of 50 to 150 ° C. is not particularly limited.
  • isopropyl methacrylate, t-butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, methyl methacrylate, styrene, 4-chlorostyrene, 2-ethylstyrene examples thereof include polymers obtained by polymerizing acrylonitrile, vinyl chloride and the like. These monomers may be used independently and may use 2 or more types together.
  • the particle diameter of the resin fine particles is appropriately selected depending on the purpose of use, but a preferable lower limit is 0.01 ⁇ m and a preferable upper limit is 5 ⁇ m.
  • the surface area of the resin fine particles with respect to the photocurable resin is sufficiently large, and an effective swelling effect of the core layer appears. Further, when used as a sealant for liquid crystal display elements, the gap between the substrates is increased. Workability can also be secured.
  • the method for producing the resin fine particles is not particularly limited. For example, after forming the core particles by an emulsion polymerization method using only the monomer constituting the core, the core is further polymerized by adding the monomer constituting the shell. Examples thereof include a method of forming a shell layer on the surface of the particles.
  • the minimum with the preferable compounding quantity of the said resin fine particle in the said curable resin composition is 15 weight part with respect to 100 weight part of said photocurable resins, and a preferable upper limit is 50 weight part. If the amount is less than 15 parts by weight, a sufficient adhesive improvement effect may not be obtained. If the amount exceeds 50 parts by weight, the viscosity may increase more than necessary. A more preferred upper limit is 20 parts by weight.
  • the curable resin composition containing a compound having at least one epoxy group in one molecule is curable by heat, but is preferably curable only by heat.
  • an alignment film may be used for aligning the liquid crystal composition on the first substrate and the surface in contact with the liquid crystal composition on the second substrate.
  • the alignment film material transparent organic materials such as polyimide, polyamide, BCB (Penzocyclobutene Polymer), polyvinyl alcohol and the like can be used.
  • fats such as p-phenylenediamine and 4,4′-diaminodiphenylmethane are used.
  • Aliphatic or alicyclic tetracarboxylic anhydride such as diamine such as aliphatic or alicyclic diamine, butanetetracarboxylic anhydride, 2,3,5-tricarboxycyclopentylacetic anhydride, etc.
  • a polyimide alignment film obtained by imidizing a polyamic acid synthesized from an aromatic tetracarboxylic acid anhydride is preferred. In this case, rubbing is generally used as an alignment method, but photodecomposition type photo-alignment technology may be used, and when used for a vertical alignment film or the like, it may be used without providing alignment. it can.
  • the alignment film material a material containing chalcone, cinnamate, cinnamoyl or azo group in the compound can be used, and it may be used in combination with materials such as polyimide and polyamide. In this case, the alignment film is rubbed. It may be used or a photo-alignment technique may be used.
  • the alignment film is generally formed by applying the alignment film material on a substrate by a method such as spin coating to form a resin film, but a uniaxial stretching method, Langmuir-Blodgett method, or the like can also be used. .
  • a conductive metal oxide can be used as a material for the transparent electrode.
  • the metal oxide include indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), and zinc oxide.
  • ZnO indium tin oxide
  • In 2 O 3 —SnO 2 indium zinc oxide
  • niobium-doped titanium dioxide Ti 1-x Nb x O 2
  • fluorine-doped tin oxide graphene
  • ZnO zinc oxide
  • In 2 O 3 —SnO 2 indium tin oxide
  • In 2 O 3 —ZnO indium zinc oxide
  • a photo-etching method or a method using a mask can be used.
  • the liquid crystal display device of the present invention is particularly useful for a liquid crystal display device for driving an active matrix, and can be applied to a liquid crystal display device for VA mode, PSVA mode, PSA mode, IPS mode, FFS mode or ECB mode.
  • the liquid crystal display device is combined with a backlight and used in various applications such as liquid crystal televisions, personal computer monitors, mobile phones, smartphone displays, notebook personal computers, personal digital assistants, and digital signage.
  • the backlight include a cold cathode tube type backlight, a two-wavelength peak pseudo-white backlight and a three-wavelength peak backlight using a light emitting diode or an organic EL element using an inorganic material.
  • T ni Nematic phase-isotropic liquid phase transition temperature (° C.) ⁇ n: refractive index anisotropy at 25 ° C. ⁇ : dielectric anisotropy at 25 ° C. ⁇ : viscosity at 20 ° C. (mPa ⁇ s) ⁇ 1: rotational viscosity at 25 ° C. (mPa ⁇ s) VHR: Voltage holding ratio at 70 ° C.
  • Unevenness of alignment The level of unevenness of alignment occurring at the portion where the sealant and the liquid crystal contact each other was visually evaluated in the following four stages in an energized state and a non-energized state. ⁇ No alignment unevenness ⁇ Allowable uneven alignment level but acceptable level ⁇ Uneven alignment level unacceptable level ⁇ Alignment unevenness level
  • Image burn-in The image burn-in evaluation of the liquid crystal display element has the following four stages by visually checking the level of the afterimage of the fixed pattern when the predetermined fixed pattern is displayed in the display area for 1000 hours and then the entire screen is uniformly displayed. It was done by evaluation. ⁇ No afterimage ⁇ Very little afterimage but acceptable level ⁇ With afterimage unacceptable level ⁇ Afterimage fairly bad
  • Volume resistivity of sealant after curing Apply a thin and uniform sealant onto the chromium vapor deposition surface of the chromium vapor deposition glass substrate and then cure with ultraviolet rays to form a UV cured product with a size of 85 mm x 85 mm and a thickness of 3 m.
  • a chromium-deposited glass substrate was placed on the object side, a load was applied, and thermocompression bonding was performed on a hot plate at 120 ° C. for 1 hour to prepare a test sample.
  • the area of the sealant (S (cm 2 )) in this test sample is constant using a constant voltage generator (PA36-2A regulated DC power supply manufactured by Kenwood) between the chromium vapor deposition surfaces of the opposite chromium vapor deposition glass substrate.
  • Voltage (V (V)) was applied, and the current (A (A)) flowing through the film was measured with an ammeter (manufactured by Advantest Corporation, R644C digital multimeter).
  • the applied voltage was DC 500 V and the conduction time was 1 minute.
  • the reaction product is a column packed with 30 parts by weight of a natural combination of quartz and kaolin (manufactured by Hoffman Mineral Co., Siritin V85).
  • the modified epoxy resin (A) containing a glycidyl group and a hydroxyl group was obtained by filtering and removing the solvent.
  • the weight average molecular weight Mw (measured by GPC) of the modified epoxy resin (A) is 4020, the epoxy equivalent is 640 g / eq, and the hydrogen bondable functional group value is 3.4 ⁇ 10 ⁇ 4 mol / g. It was.
  • the acrylic-modified epoxy resin (B) had a weight average molecular weight Mw (measured by GPC) of 392 and a hydrogen bondable functional group value of 2.6 ⁇ 10 ⁇ 3 mol / g.
  • the amount of carbon-carbon double bonds was 2.6 ⁇ 10 ⁇ 3 mol / g.
  • the monoacrylate-modified epoxy resin (C) has a weight average molecular weight Mw (measured by GPC) of 398, a hydrogen bondable functional group value of 2.5 ⁇ 10 ⁇ 3 mol / g, and a carbon-carbon double bond amount.
  • Mw weight average molecular weight
  • the diacrylate-modified epoxy resin (D) has a weight average molecular weight Mw (measured by GPC) of 484, a hydrogen bondable functional group value of 4.3 ⁇ 10 ⁇ 3 mol / g, and a carbon-carbon double bond amount.
  • Mw weight average molecular weight
  • Mw measured by GPC
  • the weight average molecular weight Mw (measured by GPC) of the diacrylate-modified epoxy resin (E) is 366, the hydrogen bondable functional group amount is 5.3 ⁇ 10 ⁇ 3 mol / g, and the carbon-carbon double bond amount.
  • Mw weight average molecular weight
  • the reaction solution was washed with ultrapure water, the solvent was removed, and 100 parts by weight of the obtained resin was combined with a natural combination of quartz and kaolin (Hoffman Mineral Co., Ltd.) to adsorb ionic impurities in the reaction product.
  • the diacrylate-modified epoxy resin (F) was obtained by filtering through a column packed with 30 parts by weight of Siritin V85, and removing the solvent.
  • the weight average molecular weight Mw (measured by GPC) of the diacrylate-modified epoxy resin (F) is 459, the hydrogen bondable functional group value is 3.7 ⁇ 10 ⁇ 3 mol / g, and the carbon-carbon double bond amount.
  • the carbon-carbon double bond amount was 3.7 ⁇ 10 ⁇ 3 mol / g.
  • Diacrylate-modified epoxy resin (G) was obtained by filtering through a column packed with 30 parts by weight of a product (manufactured by Hoffman Mineral Co., Ltd., Siritin V85) and removing the solvent.
  • the weight average molecular weight Mw (measured by GPC) of the diacrylate-modified epoxy resin (G) is 1005, the hydrogen bondable functional group value is 1.9 ⁇ 10 ⁇ 3 mol / g, and the carbon-carbon double bond amount. was 1.9 ⁇ 10 ⁇ 3 mol / g.
  • reaction mixture is purified by column, washed with ultrapure water, the solvent is removed, and 100 parts by weight of the resulting resin is mixed with quartz and kaolin to adsorb ionic impurities in the reaction.
  • a partially acryl-modified epoxy resin (H) in which 50% of the epoxy group is acrylated is obtained by filtering through a column packed with 30 parts by weight of a natural binding material (manufactured by Hoffman Mineral Co., Siritin V85) and removing the solvent. Obtained.
  • the partially acrylic modified epoxy resin (H) has a weight average molecular weight Mw (measured by GPC) of 386, a hydrogen bondable functional group value of 2.2 ⁇ 10 ⁇ 3 mol / g, and a carbon-carbon double bond amount.
  • Mw weight average molecular weight
  • Mw measured by GPC
  • reaction mixture is purified by column, washed with ultrapure water, the solvent is removed, and 100 parts by weight of the resulting resin is mixed with quartz and kaolin to adsorb ionic impurities in the reaction.
  • the partially methacryl-modified epoxy resin (I) has a weight average molecular weight Mw (measured by GPC) of 436, a hydrogen bondable functional group value of 4.6 ⁇ 10 ⁇ 3 mol / g, and a carbon-carbon double bond amount.
  • Mw weight average molecular weight
  • Mw measured by GPC
  • reaction mixture is purified by column, washed with ultrapure water, the solvent is removed, and 100 parts by weight of the resulting resin is mixed with quartz and kaolin to adsorb ionic impurities in the reaction.
  • a urethane-modified methacryl epoxy resin (J) was obtained by filtering through a column packed with 30 parts by weight of a natural binder (manufactured by Hoffman Mineral Co., Ltd., Siritin V85) and removing the solvent.
  • the urethane-modified methacryl epoxy resin (J) has a weight average molecular weight Mw (measured by GPC) of 4188, a hydrogen bondable functional group value of 2.9 ⁇ 10 ⁇ 3 mol / g, and a carbon-carbon double bond amount.
  • Mw weight average molecular weight
  • Mw measured by GPC
  • Sealing agent 100 parts by weight of O-cresol novolac epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EOCN-1020-20) is heated and dissolved in 160 parts by weight of the modified epoxy resin (A) to form a homogeneous solution, and after cooling, a latent thermosetting agent As a hydrazide-based curing agent (Ajinomoto Fine Techno Co., Amicure VDH-J) 60 parts by weight, and an imidazole-based curing agent (Shikoku Kasei Co., Ltd., Curazole 2E4MZ-A) 4 parts by weight, filler as spherical silica (Admatechs Co., Ltd.) Manufactured by Admafine AO-802) and 72 parts by weight of a silane coupling agent ( ⁇ -glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403)
  • sealant (1) After mixing and stirring at, mix with 3 ceramic rolls, defoam with a planetary stirrer, mix and stir This was designated as sealant (1).
  • the characteristics of the obtained sealing agent (1) are shown below. Hydrogen bondable functional group value (mol / g): 2.1 ⁇ 10 ⁇ 4 Specific resistance ( ⁇ ⁇ cm) of sealant before curing: 4.8 ⁇ 10 6 Volume resistivity ( ⁇ ⁇ cm) of sealant after curing: 1.2 ⁇ 10 13
  • Sealing agent (2) 100 parts by weight of O-cresol novolac type solid epoxy resin (Nippon Kayaku Co., Ltd., EOCN-1020-75, epoxy equivalent 215 g / eq), PO-modified trisphenol triacrylate (molecular weight 802, carbon-carbon double bond amount is A mixture of 433 parts by weight of 0.0037 mol / g) and 217 parts by weight of the acrylic-modified epoxy resin (B) was dissolved in a hydrazide-based curing agent (Ajinomoto Co., Amicure VDH as a latent thermosetting agent).
  • O-cresol novolac type solid epoxy resin Nippon Kayaku Co., Ltd., EOCN-1020-75, epoxy equivalent 215 g / eq
  • PO-modified trisphenol triacrylate molecular weight 802, carbon-carbon double bond amount is A mixture of 433 parts by weight of 0.0037 mol / g
  • Sealing agent (3) 100 parts by weight of O-cresol novolac epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EOCN-1020-55) was dissolved in 700 parts by weight of monoacrylate-modified epoxy resin (C) at 100 ° C. for 1 hour to obtain a uniform solution.
  • Sealing agent (4) 70 parts by weight of a bisphenol A type epoxy resin (manufactured by JER, Epicoat 828EL, epoxy equivalent 190 g / eq), 10 parts by weight of a thermal latent epoxy curing agent (Ajinomoto Co., Amicure VDH), an imidazole curing agent (2-hydroxymethylimidazole) 3 parts by weight, 30 parts by weight of acrylic-modified epoxy resin (B), 15 parts by weight of silicon dioxide (S-100 manufactured by Nippon Shokubai Chemical Co., Ltd.), 20 parts by weight of a fine particle polymer (Zeon Kasei Co., Ltd., F325 primary particle size 0.5 ⁇ m) And 0.5 parts by weight of a silane coupling agent ( ⁇ -glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403), and after mixing and stirring with a planetary stirrer, 3 ceramics The mixture was mixed with a roll, and def
  • Sealing agent 25 parts by weight of bisphenol A type epoxy resin-modified diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., epoxy ester 3002A molecular weight 600), 70 parts by weight of acrylic modified epoxy resin (B), O-cresol novolac type solid epoxy resin (EOCN-1020-75, Nippon Kayaku Co., Ltd., epoxy equivalent 215 g / eq) 5 parts by weight, latent epoxy curing agent (Ajinomoto Co., Amicure VDH, melting point 120 ° C.) 5 parts by weight, spherical silica (Nippon Shokubai Co., Ltd., Sea Foster S-30) 20 parts by weight was added, mixed and stirred with a planetary stirrer, then mixed with a ceramic three roll, defoamed with a planetary stirrer, mixed and stirred, and then a thermal radical polymerization initiator (Arkema Yoshitomi) (Lupelox 575, 10 hour half-
  • Sealant (6) O-cresol novolak type solid epoxy resin (Nippon Kayaku Co., Ltd., EOCN-1020-75, epoxy equivalent 215 g / eq) 15 parts by weight, bisphenol A type epoxy resin modified diacrylate (Kyoeisha Chemical Co., Ltd., epoxy ester 3002A): 45 parts by weight of molecular weight 600) were dissolved by heating at 100 ° C. for 1 hour to obtain a uniform solution.
  • a thermal radical polymerization initiator manufactured by Wako Pure Chemical Industries, V-601, dimethyl 2,2′-azobis (isobutyrate), 10 hour half-life temperature 66 ° C.
  • a thermal radical polymerization initiator manufactured by Wako Pure Chemical Industries, V-601, dimethyl 2,2′-azobis (isobutyrate), 10 hour half-life temperature 66 ° C.
  • Sealant (7) 20 parts by weight of diacrylate-modified epoxy resin (E), 25 parts by weight of diacrylate-modified epoxy resin (F), 25 parts by weight of diacrylate-modified epoxy resin (G), 25 parts by weight of partially acrylic-modified epoxy resin (H), o- Cresol novolac-type solid epoxy resin (Nippon Kayaku Co., Ltd., EOCN-1020-75, epoxy equivalent 215 g / eq) 5 parts by weight, spherical silica (Nippon Shokubai Co., Ltd., Sea Foster S-30) 25 parts by weight, latent epoxy curing 8 parts by weight of an agent (Ajinomoto Fine Techno Co., Amicure VDH) and 2 parts by weight of methacrylic acid-alkyl copolymer fine particles (manufactured by ZEON Co., Ltd., F-325) were mixed and stirred with a planetary stirrer.
  • an agent Aljinomoto Fine Techno Co., Amicure VDH
  • the mixture was mixed with three rolls, defoamed with a planetary stirrer, and mixed and stirred. Thereafter, 1 part by weight of a thermal radical polymerization initiator (V-65, 2,2′-azobis (2,4-dimethylvaleronitrile) 10 hours half-life temperature 51 ° C., manufactured by Wako Pure Chemical Industries, Ltd.) was added, and then the planetary type Vacuum defoaming with a stirrer, mixing and stirring were performed to prepare a sealing agent (7).
  • a thermal radical polymerization initiator V-65, 2,2′-azobis (2,4-dimethylvaleronitrile) 10 hours half-life temperature 51 ° C., manufactured by Wako Pure Chemical Industries, Ltd.
  • Sealant 50 parts by weight of methacrylic acid-modified bisphenol E type epoxy resin (I), 50 parts by weight of urethane-modified methacrylic epoxy resin (J), 35 parts by weight of spherical silica (manufactured by Admatechs, SO-C1), latent epoxy curing agent (Ajinomoto) Fine Techno Co., Amicure VDH (8 parts by weight), Silane coupling agent (Shin-Etsu Chemical Co., Ltd., ⁇ -acryloxypropyltrimethoxysilane, KBM5103) 1.5 parts by weight, Methacrylic acid-alkyl copolymer fine particles (Nippon Zeon) F-325) manufactured by the company was mixed and stirred with a planetary stirrer, then mixed with a ceramic three roll, and then defoamed and mixed and stirred with a planetary stirrer.
  • Comparative sealant (C1) 35 parts by weight of urethane acrylate (manufactured by Kyoeisha Chemical Co., Ltd., AH-600), 15 parts by weight of 2-hydroxybutyl acrylate, 50 parts by weight of isobornyl acrylate, thermal radical polymerization initiator (manufactured by Wako Pure Chemical Industries, V-65, half an hour) (Curing temperature 51 ° C.)
  • a curable resin composition comprising 0.5 parts by weight was blended and stirred with a planetary stirrer, and then uniformly mixed with a three-roll ceramic roll. (C1) was obtained.
  • the characteristics of the obtained comparative sealant (C1) are shown below. Hydrogen bondable functional group value: 2.2 ⁇ 10 ⁇ 5 Specific resistance ( ⁇ ⁇ cm) of sealant before curing: 5.0 ⁇ 10 6 Volume resistivity ( ⁇ ⁇ cm) of the sealant after curing: 2.3 ⁇ 10 13
  • Comparative sealant (C2) A curable resin composition composed of 50 parts by weight of a bisphenol A epoxy resin (Mitsubishi Chemical Co., Ltd., jER828US) and 25 parts by weight of a hydrazide-based curing agent (NDH) was mixed with a planetary stirrer. Then, it was mixed uniformly with a ceramic three roll to obtain a comparative sealant (C2). The characteristics of the obtained comparative sealant (C2) are shown below. Hydrogen bondable functional group value: 2.7 ⁇ 10 ⁇ 7 Specific resistance of sealant before curing ( ⁇ ⁇ cm): 5.0 ⁇ 10 10 Volume resistivity ( ⁇ ⁇ cm) of the sealant after curing: 3.0 ⁇ 10 13
  • Examples 1 to 8 After forming transparent electrodes on the first and second substrates, forming a black matrix (BM) on the second substrate, and forming a vertical alignment film (SE-5300) on the opposite side of each substrate An alignment treatment was performed. Fill the syringe for dispensing with the sealing agents (1) to (8), perform defoaming treatment, and then use the dispenser to draw a rectangular frame for each sealing agent on the alignment film side of the first substrate. It was applied to. In a state where the sealant is uncured, fine droplets of the liquid crystal composition 1 shown in the following table are dropped onto the entire surface of the frame of the first substrate, and the second substrate is immediately placed under a vacuum of 5 Pa using a vacuum bonding apparatus. And pasted together.
  • BM black matrix
  • SE-5300 vertical alignment film
  • the drawing conditions and the gap between the substrates were adjusted so that the line width of the crushed sealant was about 1.2 mm, and 0.3 mm of the sealant overlapped with BM.
  • VHR of the obtained liquid crystal display device was measured.
  • the alignment unevenness and image sticking evaluation of the obtained liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal composition 1 has a liquid crystal layer temperature range of 81.0 ° C. that is practical as a liquid crystal composition for TV, has a large absolute value of dielectric anisotropy, has a low viscosity, and an appropriate ⁇ n. You can see that The liquid crystal display devices of Examples 1 to 8 were able to realize a high VHR. Also, in the evaluation of alignment unevenness, there was no alignment unevenness, or even if there was very little, it was an acceptable level. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 9 to 24 In the same manner as in Example 1, the liquid crystal compositions 2 to 3 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 9 to 24 are prepared using the sealing agents (1) to (8). It was measured. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal compositions 2 and 3 have a practical liquid crystal layer temperature range as a liquid crystal composition for TV, have a large absolute value of dielectric anisotropy, have a low viscosity and an appropriate ⁇ n. I understand.
  • the liquid crystal display devices of Examples 9 to 24 were able to realize a high VHR. Further, no alignment unevenness was observed in the alignment unevenness evaluation. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 25 to 48 As in Example 1, the liquid crystal compositions 4 to 6 shown in the following table were sandwiched, and the liquid crystal display devices of Examples 25 to 48 were prepared using the sealing agents (1) to (8). It was measured. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal compositions 4 to 6 have a practical liquid crystal layer temperature range as a liquid crystal composition for TV, have a large absolute value of dielectric anisotropy, have a low viscosity and an appropriate ⁇ n. I understand.
  • the liquid crystal display devices of Examples 25 to 48 were able to realize a high VHR. Also, in the evaluation of alignment unevenness, there was no alignment unevenness, or even if there was very little, it was an acceptable level. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Examples 49 to 72 In the same manner as in Example 1, the liquid crystal compositions 7 to 9 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 49 to 72 are prepared using the sealing agents (1) to (8). It was measured. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal compositions 7 to 9 have a practical liquid crystal layer temperature range as a liquid crystal composition for TV, have a large absolute value of dielectric anisotropy, have a low viscosity and an appropriate ⁇ n. I understand.
  • the liquid crystal display devices of Examples 49 to 72 were able to realize a high VHR. Also, in the evaluation of alignment unevenness, there was no alignment unevenness, or even if there was very little, it was an acceptable level. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Examples 73 to 96 In the same manner as in Example 1, the liquid crystal compositions 10 to 12 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 73 to 96 are prepared using the sealing agents (1) to (8). It was measured. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal compositions 10 to 12 have a practical liquid crystal layer temperature range as a liquid crystal composition for TV, have a large absolute value of dielectric anisotropy, have a low viscosity and an appropriate ⁇ n. I understand.
  • the liquid crystal display devices of Examples 73 to 96 were able to realize a high VHR. Also, in the evaluation of alignment unevenness, there was no alignment unevenness, or even if there was very little, it was an acceptable level. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Examples 97 to 120 In the same manner as in Example 1, the liquid crystal compositions 13 to 15 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 97 to 120 are produced using the sealing agents (1) to (8). It was measured. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal compositions 13 to 15 have a practical liquid crystal layer temperature range as a liquid crystal composition for TV, have a large absolute value of dielectric anisotropy, have a low viscosity and an appropriate ⁇ n. I understand.
  • the liquid crystal display devices of Examples 97 to 120 were able to realize high VHR. Also, in the evaluation of alignment unevenness, there was no alignment unevenness, or even if there was very little, it was an acceptable level. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 121 to 144 As in Example 1, the liquid crystal compositions 16 to 18 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 121 to 144 are produced using the sealing agents (1) to (8). It was measured. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal compositions 16 to 18 have a practical liquid crystal layer temperature range as a liquid crystal composition for TV, have a large absolute value of dielectric anisotropy, have a low viscosity and an appropriate ⁇ n. I understand.
  • the liquid crystal display devices of Examples 121 to 144 were able to realize a high VHR. Also, in the evaluation of alignment unevenness, there was no alignment unevenness, or even if there was very little, it was an acceptable level. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 145 to 168 As in Example 1, the liquid crystal compositions 19 to 21 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 145 to 168 are prepared using the sealing agents (1) to (8). It was measured. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal compositions 19 to 21 have a practical liquid crystal layer temperature range as a liquid crystal composition for TV, a large absolute value of dielectric anisotropy, a low viscosity, and an appropriate ⁇ n. I understand.
  • the liquid crystal display devices of Examples 145 to 168 were able to realize high VHR. Also, in the evaluation of alignment unevenness, there was no alignment unevenness, or even if there was very little, it was an acceptable level. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Examples 169 to 192 As in Example 1, liquid crystal compositions 22 to 24 shown in the following table were sandwiched, and liquid crystal display devices of Examples 169 to 192 were prepared using sealants (1) to (8). It was measured. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal compositions 22 to 24 have a practical liquid crystal layer temperature range as a liquid crystal composition for TV, have a large absolute value of dielectric anisotropy, have a low viscosity and an appropriate ⁇ n. I understand.
  • the liquid crystal display devices of Examples 169 to 192 were able to realize a high VHR. Also, in the evaluation of alignment unevenness, there was no alignment unevenness, or even if there was very little, it was an acceptable level. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 193 to 216 As in Example 1, the liquid crystal compositions 25 to 27 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 193 to 216 are prepared using the sealing agents (1) to (8). It was measured. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal compositions 25 to 27 have a practical liquid crystal layer temperature range as a liquid crystal composition for TV, have a large absolute value of dielectric anisotropy, have a low viscosity and an appropriate ⁇ n. I understand.
  • the liquid crystal display devices of Examples 193 to 216 were able to realize high VHR. Also, in the evaluation of alignment unevenness, there was no alignment unevenness, or even if there was very little, it was an acceptable level. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Liquid crystal composition 1 was mixed with 0.3% by mass of 2-methyl-acrylic acid 4- ⁇ 2- [4- (2-acryloyloxy-ethyl) -phenoxycarbonyl] -ethyl ⁇ -biphenyl-4′-yl ester.
  • a liquid crystal composition 28 was formed, and the liquid crystal composition 28 was sandwiched in the same manner as in Example 1 and sealed using sealing agents (1) to (8). While applying a driving voltage between the electrodes, UV irradiation was performed for 600 seconds (3.0 J / cm 2 ), polymerization treatment was performed, PSVA liquid crystal display devices of Examples 217 to 224 were produced, and VHR was measured. did. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal display devices of Examples 217 to 224 were able to realize a high VHR. Also, in the alignment unevenness evaluation, alignment unevenness was not recognized. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 225 to 232 Bismethacrylic acid biphenyl-4,4′-diyl was mixed in an amount of 0.3% by mass to the liquid crystal composition 13 to form a liquid crystal composition 29, and the liquid crystal composition 29 was sandwiched in the same manner as in Example 1 to obtain a sealing agent (1) Encapsulated using (8). While applying a driving voltage between the electrodes, UV irradiation was performed for 600 seconds (3.0 J / cm 2 ), polymerization treatment was performed, PSVA liquid crystal display devices of Examples 225 to 232 were produced, and the VHR was measured. did. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal display devices of Examples 225 to 232 were able to realize a high VHR. Also, in the alignment unevenness evaluation, alignment unevenness was not recognized. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 233 to 240 A liquid crystal composition 30 was prepared by mixing 0.3% by mass of bismethacrylic acid 3-fluorobiphenyl-4,4′-diyl with the liquid crystal composition 19, and the liquid crystal composition 30 was sandwiched in the same manner as in Example 1 to obtain a sealing agent. Encapsulated using (1) to (8). While applying a driving voltage between the electrodes, UV irradiation was performed for 600 seconds (3.0 J / cm 2 ), polymerization was performed, PSVA liquid crystal display devices of Examples 233 to 240 were produced, and the VHR was measured. did. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal display devices of Examples 233 to 240 were able to realize high VHR. Also, in the evaluation of alignment unevenness, there was no alignment unevenness, or even if there was very little, it was an acceptable level. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Examples 241 to 264 As in Example 1, the liquid crystal compositions 31 to 33 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 241 to 264 are prepared using the sealing agents (1) to (8). It was measured. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal display devices of Examples 241 to 264 were able to realize a high VHR. Also, in the evaluation of alignment unevenness, there was no alignment unevenness, or even if there was very little, it was an acceptable level. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 265 to 280 Liquid crystal display devices of Examples 265 to 280 were produced in the same manner as in Example 1 except that the liquid crystal composition and the polymerizable liquid crystal composition shown in the following table were used, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the following table.
  • the liquid crystal display devices of Examples 265 to 280 were able to realize high VHR. Also, in the evaluation of alignment unevenness, there was no alignment unevenness, or even if there was very little, it was an acceptable level. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 1 In Example 1, except that the liquid crystal composition 1 was replaced with the comparative liquid crystal compositions 1 to 3 shown in the following table, VA type liquid crystal display devices of Comparative Examples 1 to 15 were produced in the same manner, and the VHR was measured. did. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal display devices of Comparative Examples 1 to 24 had a lower VHR than the liquid crystal display device of the present invention. Also, in the evaluation of alignment unevenness, the occurrence of alignment unevenness was recognized and the level was not acceptable. Further, in the evaluation of burn-in, afterimage was observed and the level was not acceptable.
  • Comparative Examples 25 to 48 VA type liquid crystal display devices of Comparative Examples 25 to 48 were prepared in the same manner as Comparative Example 1 except that the comparative liquid crystal composition 1 was replaced with the comparative liquid crystal compositions 4 to 6 shown in the following table, and the VHR was measured. did. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal display devices of Comparative Examples 25 to 48 had a lower VHR than the liquid crystal display device of the present invention. Also, in the evaluation of alignment unevenness, the occurrence of alignment unevenness was recognized and the level was not acceptable. Further, in the evaluation of burn-in, afterimage was observed and the level was not acceptable.
  • Comparative Examples 49-72 VA type liquid crystal display devices of Comparative Examples 49 to 72 were prepared in the same manner as Comparative Example 1 except that the comparative liquid crystal composition 1 was replaced with the comparative liquid crystal compositions 7 to 9 shown in the following table, and the VHR was measured. did. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal display devices of Comparative Examples 49 to 72 had a lower VHR than the liquid crystal display device of the present invention. Also, in the evaluation of alignment unevenness, the occurrence of alignment unevenness was recognized and the level was not acceptable. Further, in the evaluation of burn-in, afterimage was observed and the level was not acceptable.
  • Comparative Examples 73-88 VA type liquid crystal display devices of Comparative Examples 73 to 88 were prepared in the same manner as Comparative Example 1 except that the comparative liquid crystal composition 1 was replaced with the comparative liquid crystal compositions 10 to 11 shown in the following table, and the VHR was measured. did. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • the liquid crystal display devices of Comparative Examples 73 to 88 had a lower VHR than the liquid crystal display device of the present invention. Also, in the evaluation of alignment unevenness, the occurrence of alignment unevenness was recognized and the level was not acceptable. Further, in the evaluation of burn-in, afterimage was observed and the level was not acceptable.
  • Comparative Examples 89-112 VA type liquid crystal display devices of Comparative Examples 89 to 112 were produced in the same manner as Comparative Example 1 except that the comparative liquid crystal composition 1 was replaced with the comparative liquid crystal compositions 12 to 14 shown in the following table, and the VHR was measured. did. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • VHR was lower than that of the liquid crystal display device of the present invention. Also, in the evaluation of alignment unevenness, the occurrence of alignment unevenness was recognized and the level was not acceptable. Further, in the evaluation of burn-in, afterimage was observed and the level was not acceptable.
  • Comparative Examples 113 to 120 Except that the comparative liquid crystal composition 1 was replaced with the comparative liquid crystal composition 15 shown in the following table, VA liquid crystal display devices of Comparative Examples 113 to 120 were produced in the same manner as in Comparative Example 1, and the VHR was measured. Further, the alignment unevenness evaluation and the burn-in evaluation of the liquid crystal display device were performed. The results are shown in the following table.
  • VHR was lower than that of the liquid crystal display device of the present invention. Also, in the evaluation of alignment unevenness, the occurrence of alignment unevenness was recognized and the level was not acceptable. Further, in the evaluation of burn-in, afterimage was observed and the level was not acceptable.
  • the liquid crystal display devices of Comparative Examples 121 to 136 had a lower VHR than the liquid crystal display device of the present invention. Also, in the evaluation of alignment unevenness, the occurrence of alignment unevenness was recognized and the level was not acceptable. Further, in the evaluation of burn-in, afterimage was observed and the level was not acceptable.

Abstract

 本発明は、特定の液晶組成物と特定の硬化性樹脂組成物の硬化物を使用したシール剤を用いた液晶表示装置に関する。 本発明は、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加を防止し、白抜け、配向むら、焼き付けなどの表示不良の問題を解決する液晶表示装置を提供するものである。 本発明の液晶表示装置は液晶層の電圧保持率(VHR)の低下を防止し、配向ムラ、焼き付き等の表示不良の発生を抑制する特徴を有することから、特に、アクティブマトリックス駆動用のVAモード、PSVAモード、IPSモード及びFFSモード液晶表示装置に有用であり、液晶TV、モニター、携帯電話、スマートフォン等の液晶表示装置に適用できる。

Description

液晶表示装置
 本発明は、液晶表示装置に関する。
 液晶表示装置は、時計、電卓をはじめとして、家庭用各種電気機器、測定機器、自動車用パネル、ワープロ、電子手帳、プリンター、コンピューター、テレビ等に用いられるようになっている。液晶表示方式としては、その代表的なものにTN(捩れネマチック)型、STN(超捩れネマチック)型、DS(動的光散乱)型、GH(ゲスト・ホスト)型、IPS(インプレーンスイッチング)型、OCB(光学補償複屈折)型、ECB(電圧制御複屈折)型、VA(垂直配向)型、CSH(カラースーパーホメオトロピック)型、あるいはFLC(強誘電性液晶)等を挙げることができる。また駆動方式としても従来のスタティック駆動からマルチプレックス駆動が一般的になり、単純マトリックス方式、最近ではTFT(薄膜トランジスタ)やTFD(薄膜ダイオード)等により駆動されるアクティブマトリックス(AM)方式が主流となっている。
 液晶表示装置の製造方法としては光硬化熱硬化併用型シール剤を用いた滴下工法が広く使われている。この方法では、まず、2枚の電極付き透明基板の一方に、ディスペンサーまたはスクリーン印刷により長方形状のシールパターンを形成する。次いで、シール剤未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、すぐに他方の透明基板を重ねあわせ、シール部に紫外線を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができる。
 しかしながら、光硬化熱硬化併用型のシール剤では、小型の液晶表示パネルに応用する場合、複雑な金属配線やブラックマトリックスとシール剤で作られたシールパターンとが重なり合い、仮硬化のための光が照射されない遮光部分が生じてしまう。そのような部分では、光照射から加熱硬化までの間に未硬化状態のシール剤が液晶中に溶け出して、液晶が汚染される場合がある。近年の液晶パネルはモバイル用途等の低消費電力化により、液晶の駆動電圧の低いもの(低電圧型液晶)を使用する傾向にある。この低電圧型液晶は、特に誘電率異方性が大きいため、シール剤に含まれる未反応の重合開始剤、硬化後開始剤等の残存物、塩素等のイオン性不純物、シランカップリング剤などの不純物を取り込みやすく、配向の乱れや電圧保持率の経時低下を引き起こすことが問題となっていた。
 そこで、光照射による仮硬化を不要とする滴下工法用の熱硬化型のシール剤が提案されている。しかしながら、従来の熱硬化型シール剤は、原料とする樹脂の粘度が加熱によって低下するため、シールパターンが部分的に変形したり、シール剤中の成分が液晶に溶出したりして液晶表示素子の電気特性を悪化させる等の問題が残されていた。
 こうしたなか、シール剤成分が液晶材料に溶出するのを抑制するため、シール剤に含まれるエポキシ樹脂の軟化点を高くし、液晶材料と未硬化のシール剤との接触による液晶材料の汚染を避け、色むらの低減を図る提案がなされている(特許文献1)。
 一般にエポキシ樹脂は接着力が高い特徴を有すが、液晶材料を汚染する傾向が高い。そこで、アクリル変性によって液晶材料の汚染を低減できることが考えられ、これにより接着力の向上と同時に液晶材料の汚染低減が期待される。しかし一方で、アクリル変性によって熱硬化性が低下し、シール剤成分の溶出による液晶材料の汚染が見られる場合があった。そこで、アクリル成分の硬化のために、イミダゾール等の第3級アミンを添加し、同時に配合した少量のエポキシ樹脂との相互作用によってアクリル樹脂を熱硬化させる提案もなされている(特許文献2)。
 また、従来の熱硬化型硬化型シール剤は、原料とする樹脂の粘度が加熱によって低下するため、シールパターンが部分的に変形したり、液晶がシールパターンを突き破って漏洩したりするという問題も残されていた。そこで、硬化性を向上させ、かつ基板との接着性を低下させない組成が提案されている(特許文献3)。
 しかしながら、いずれの提案においても一般的な液晶材料を想定し、シール剤の組成にのみ着目し、シール剤の組成に工夫を凝らして問題を回避しようとしているため、個々の液晶表示素子に応用した場合に必ずしも十分な表示特性を示さないことが多く、特に液晶表示素子の焼き付き現象については十分な改善効果が見られなかった。
特開2006-23582号公報 特開2008-116825号公報 特開2009-175180号公報
 本発明は、従来、十分なされてきていなかった液晶材料の組成とシール剤との相互作用に着目し、焼き付き等の液晶表示素子の特性を改善する液晶組成およびシール剤組成との組合せを提案するものである。
 即ち、本発明は、特定の液晶組成物と特定の硬化性樹脂組成物の硬化物をシール剤として用いることで、実用的な液晶層温度範囲、大きい誘電率異方性(Δε)の絶対値、低い粘性及び適切な屈折率異方性(Δn)を有しつつ、液晶層の電圧保持率(VHR)の低下、を防止し、白抜け、配向ムラ、焼き付けなどの表示不良の問題を解決する液晶表示装置を提供するものである。
 本願発明者らは、上記課題を解決するためにシール剤を構成する硬化性樹脂組成物及び液晶層を構成する液晶材料の構造の組み合わせについて鋭意検討した結果、特定の液晶材料の構造及び特定の硬化性樹脂組成物の硬化物を使用したシール剤を用いた液晶表示装置が、液晶層の電圧保持率(VHR)の低下を防止し、白抜け、配向ムラ、焼き付きなどの表示不良の問題を解決することを見出し本願発明の完成に至った。
 即ち、本発明は、
第一の基板と、第二の基板と、前記第一の基板と第二の基板の間に挟持された液晶組成物を含む液晶層と、前記第一の基板と第二の基板を熱によって硬化する硬化性樹脂組成物の硬化物を介して接合するシール剤とを有する液晶表示装置であって、
前記液晶組成物が一般式(I)
Figure JPOXMLDOC01-appb-C000007
(式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表す。)で表される化合物を10~50重量%含有し、一般式(II)
Figure JPOXMLDOC01-appb-C000008
(式中、R及びRはそれぞれ独立して炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Z及びZはそれぞれ独立して単結合、-CH=CH-、-C≡C-、-CHCH-、-(CH-、-COO-、-OCO-、-OCH-、-CHO-、-OCF-又は-CFO-を表し、B及びCはそれぞれ独立してフッ素置換されていてもよい、1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、m及びnはそれぞれ独立して0~4の整数を表し、m+n=1~4である。)で表される化合物を35~80重量%含有する液晶組成物であり、
前記硬化性樹脂組成物が、1分子内に少なくとも一つのエポキシ基を有し、かつ重量平均分子量が300~10000である化合物を含有する硬化性樹脂組成物である液晶表示装置を提供する。
 本発明の液晶表示装置は、特定の液晶組成物と特定の硬化性樹脂組成物の硬化物を使用したシール剤を用いることで、実用的な液晶層温度範囲、大きい誘電率異方性(Δε)の絶対値、低い粘性及び適切な屈折率異方性(Δn)を有しつつ、液晶層の電圧保持率(VHR)の低下を防止することができ、白抜け、配向ムラ、焼き付けなどの表示不良の発生を防止することができる。
本発明の液晶表示装置の平面図である。 本発明の液晶表示装置の拡大図である。
1・・・基板
2・・・シール剤
3・・・液晶
4・・・駆動用ドライバー
5・・・各画素電極からの配線
6・・・オーバーコート層
7・・・画素電極または配線
8・・・配向膜
 図1は本発明の液晶表示装置の平面図である。画素電極、TFTおよび配線などの詳細は省略している。図2の上図は前記平面図の一部を拡大した部分図である。各画素電極から伸びる配線がシール剤の下に位置し、駆動ドライバーに至ることを示している。図2の下図は図2上図の断面図である。シール剤は液晶及び配向膜に接している。図では全ての場合を示していないが、シール剤の位置によってはシール剤または液晶が配線またはオーバーコート層に接する場合がある。
(液晶層)
 本発明の液晶表示装置における液晶層は、一般式(I)
Figure JPOXMLDOC01-appb-C000009
(式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表す。)で表される化合物を10~50重量%含有し、一般式(II)
Figure JPOXMLDOC01-appb-C000010
(式中、R及びRはそれぞれ独立して炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Z及びZはそれぞれ独立して単結合、-CH=CH-、-C≡C-、-CHCH-、-(CH-、-COO-、-OCO-、-OCH-、-CHO-、-OCF-又は-CFO-を表し、B及びCはそれぞれ独立してフッ素置換されていてもよい、1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、m及びnはそれぞれ独立して0~4の整数を表し、m+n=1~4である。)で表される化合物を35~80重量%含有する液晶組成物から構成される。
 本発明の液晶表示装置における液晶層は、一般式(I)で表される化合物を10~50重量%含有するが、15~48重量%含有することが好ましく、20~46重量%含有することがより好ましい。
 一般式(I)において、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すが、Aがトランス-1,4-シクロヘキシレン基を表す場合には、
炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基、炭素原子数1~5のアルコキシ基又は炭素原子数2~5のアルケニルオキシ基を表すことが好ましく、
炭素原子数2~5のアルキル基、炭素原子数2~4のアルケニル基、炭素原子数1~4のアルコキシ基又は炭素原子数2~4のアルケニルオキシ基を表すことがより好ましく、
がアルキル基を表すことが好ましいが、この場合炭素原子数2、3又は4のアルキル基が特に好ましい。Rが炭素原子数3のアルキル基を表す場合には、Rは炭素原子数2、4又は5のアルキル基、または炭素原子数2~3のアルケニル基である場合が好ましく、Rは炭素原子数2のアルキル基である場合がより好ましい。
Aが1,4-フェニレン基を表す場合には、
炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基、炭素原子数1~5のアルコキシ基又は炭素原子数3~5のアルケニルオキシ基を表すことが好ましく、
炭素原子数2~5のアルキル基、炭素原子数4~5のアルケニル基、炭素原子数1~4のアルコキシ基又は炭素原子数2~4のアルケニルオキシ基を表すことがより好ましく、
がアルキル基を表すことが好ましいが、この場合炭素原子数1、3又は5のアルキル基が特に好ましい。さらに、Rが炭素原子数1~2のアルコキシ基を表すことが好ましい。
 R及びRの少なくとも一方の置換基が炭素原子数3~5のアルキル基である一般式(I)で表される化合物の含有量が、一般式(I)で表される化合物中の50重量%以上であることが好ましく、70重量%以上がより好ましく、80重量%以上であることがさらに好ましい。又、R及びRの少なくとも一方の置換基が炭素原子数3のアルキル基である一般式(I)で表される化合物の含有量が、一般式(I)で表される化合物中の50重量%以上であることが好ましく、70重量%以上がより好ましく、80重量%以上であることがさらに好ましく、100重量%であることが最も好ましい。
 一般式(I)で表される化合物は1種又は2種以上含有することができるが、Aがトランス-1,4-シクロヘキシレン基を表す化合物、及びAが1,4-フェニレン基を表す化合物をそれぞれ少なくとも1種以上含有するのが好ましい。
又、Aがトランス-1,4-シクロヘキシレン基を表す一般式(I)で表される化合物の含有量が、一般式(I)で表される化合物中の50重量%以上で有ることが好ましく、70重量%以上がより好ましく、80重量%以上であることがさらに好ましい。
 一般式(I)で表される化合物は具体的には次に記載する一般式(Ia)~一般式(Ik)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
 式中、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基又は炭素原子数1~5のアルコキシ基を表すが、一般式(I)におけるR及びRと同様の実施態様が好ましい。
 一般式(Ia)~一般式(Ik)において、一般式(Ia)、一般式(Ib)、一般式(Ic)、及び一般式(Ig)が好ましく、一般式(Ia)、一般式(Ib)、及び一般式(Ic)がより好ましく、一般式(Ia)及び一般式(Ib)がより好ましい。い。応答速度を重視する場合には一般式(Ib)及び一般式(Ic)が好ましく、一般式(Ib)及び一般式(Ic)を組み合わせて用いるのがより好ましい。信頼性を重視する場合には、一般式(Ia)が好ましい。
 これらの点から、一般式(Ia)、一般式(Ib)及び一般式(Ic)で表される化合物の含有量が、一般式(I)で表される化合物中の80重量%以上であることが好ましく、90重量%以上がより好ましく、95重量%以上であることがさらに好ましく、100重量%であることが最も好ましい。又、一般式(Ia)で表される化合物の含有量が、一般式(I)で表される化合物中の65重量%~100重量%であり、一般式(Ib)及び一般式(Ic)で表される化合物の含有量が、一般式(I)で表される化合物中の0重量%~35重量%であるか、又は一般式(Ia)で表される化合物の含有量が、一般式(I)で表される化合物中の0重量%~10重量%であり、一般式(Ib)及び一般式(Ic)で表される化合物の含有量が、一般式(I)で表される化合物中の90重量%~100重量%であることが好ましい。
 本発明の液晶表示装置における液晶層は、一般式(II)で表される化合物を35~80重量%含有するが、40~75重量%含有することが好ましく、45~70重量%含有することがより好ましい。
 一般式(II)において、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すが、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~4のアルケニル基を表すことがより好ましく、炭素原子数3~5のアルキル基又は炭素原子数2または3のアルケニル基を表すことがさらに好ましく、炭素原子数2又は3のアルキル基または炭素原子数2のアルケニル基を表すことが特に好ましく、炭素原子数2又は3のアルキル基を表すことが最も好ましい。
 Rは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表すが、炭素原子数1~5のアルキル基又は炭素原子数1~5のアルコキシ基を表すことが好ましく、炭素原子数1~3のアルキル基又は炭素原子数1~4のアルコキシ基を表すことがより好ましく、炭素原子数2~4のアルコキシ基を表すことがさらに好ましい。 Z及びZはそれぞれ独立して単結合、-CH=CH-、-C≡C-、-CHCH-、-(CH-、-COO-、-OCO-、-OCH-、-CHO-、-OCF-又は-CFO-を表すが、単結合、-CHCH-、-COO-、-OCH-、-CHO-、-OCF-又は-CFO-を表すことが好ましく、単結合又は-CHO-を表すことがより好ましい。
 m及びnはそれぞれ独立して0~3の整数を表すのが好ましく、0~2の整数を表すのが好ましく、m+nは1~3であるのが好ましく、1~2であるのが好ましい。
 本発明の液晶表示装置における液晶層は、一般式(II)で表される化合物を3種~10種含有することができるが、4種~9種含有することが好ましく、5種~8種含有することが好ましい。
 一般式(II)で表される化合物は、以下の一般式(II-1)又は(II-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000012
 式中、R及びRはそれぞれ独立して炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Z及びZはそれぞれ独立して単結合、-CH=CH-、-C≡C-、-CHCH-、-(CH-、-COO-、-OCO-、-OCH-、-CHO-、-OCF-又は-CFO-を表し、m1、m2及びn2はそれぞれ独立して0又は1を表す。
 一般式(II-1)において、Rは炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~4のアルケニル基を表すことがより好ましく、炭素原子数3~5のアルキル基又は炭素原子数2のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましく、Rは炭素原子数1~5のアルキル基又は炭素原子数1~5のアルコキシ基を表すことが好ましく、炭素原子数1~3のアルキル基又は炭素原子数1~3のアルコキシ基を表すことがより好ましく、炭素原子数3のアルキル基又は炭素原子数2のアルコキシ基を表すことがさらに好ましく、炭素原子数2のアルコキシ基を表すことが特に好ましく、Zは単結合、-CHCH-、-COO-、-OCH-、-CHO-、-OCF-又は-CFO-を表すことが好ましく、単結合又は-CHO-を表すことがより好ましい。
 本発明の液晶表示装置における液晶層は、一般式(II-1)で表される化合物を15重量%~60重量%含有することが好ましく、17重量%~50重量%含有することが好ましく18重量%~40重量%含有することが好ましく、19重量%~30重量%含有することが好ましい。
 本発明の液晶表示装置における液晶層は、一般式(II-1)で表される化合物を1種又は2種以上含有することができるが、1種~6種含有することが好ましく、2種~5種含有することが好ましく、3種又は4種含有することが好ましい。
 一般式(II-2)において、Rは炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~4のアルケニル基を表すことがより好ましく、炭素原子数3~5のアルキル基又は炭素原子数2のアルケニル基を表すことがさらに好ましく、炭素原子数2又は3のアルキル基を表すことが特に好ましく、Rは炭素原子数1~5のアルキル基又は炭素原子数1~5のアルコキシ基を表すことが好ましく、炭素原子数1~3のアルキル基又は炭素原子数1~3のアルコキシ基を表すことがより好ましく、炭素原子数3のアルキル基又は炭素原子数2のアルコキシ基を表すことがさらに好ましく、Zは単結合、-CHCH-、-COO-、-OCH-、-CHO-、-OCF-又は-CFO-を表すことが好ましく、単結合又は-CHO-を表すことがより好ましい。
 本発明の液晶表示装置における液晶層は、一般式(II-2)で表される化合物を10重量%~50重量%含有することが好ましく、15重量%~45重量%含有することが好ましく、20重量%~40重量%含有することが好ましく、25重量%~35重量%含有することが好ましい。
 本発明の液晶表示装置における液晶層は、一般式(II-2)で表される化合物を1種又は2種以上含有することができるが、1種~6種含有することが好ましく、2種~5種含有することが好ましく、3種又は4種含有することが好ましい。
 一般式(II-1)で表される化合物としては、具体的には次に記載する一般式(II-1a)~一般式(II-1d)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000013
 式中、Rは炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表し、R4aは炭素原子数1~5のアルキル基を表す。
 一般式(II-1a)及び一般式(II-1c)においてRは、一般式(II-1)における同様の実施態様が好ましい。R4aは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は2のアルキル基がより好ましく、炭素原子数2のアルキル基が特に好ましい。
 一般式(II-1b)及び一般式(II-1d)においてRは、一般式(II-1)における同様の実施態様が好ましい。R4aは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は3のアルキル基がより好ましく、炭素原子数3のアルキル基が特に好ましい。
 一般式(II-1a)~一般式(II-1d)の中でも、誘電率異方性の絶対値を増大するためには、一般式(II-1a)及び一般式(II-1c)が好ましく、一般式(II-1a)が好ましい。
 本発明の液晶表示装置における液晶層は、一般式(II-1a)~一般式(II-1d)で表される化合物を1種又は2種以上含有することが好ましく、1種又は2種含有することが好ましく、一般式(II-1a)で表される化合物を1種又は2種含有することが好ましい。
 また、一般式(II-1)で表される化合物としては、具体的には次に記載する一般式(II-1e)~一般式(II-1h)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000014
 式中、Rは炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表し、R4bは炭素原子数1~5のアルキル基を表す。
 一般式(II-1e)及び一般式(II-1g)においてRは、一般式(II-1)における同様の実施態様が好ましい。R4bは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は2のアルキル基がより好ましく、炭素原子数2のアルキル基が特に好ましい。
 一般式(II-1f)及び一般式(II-1h)においてRは、一般式(II-1)における同様の実施態様が好ましい。R4bは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は3のアルキル基がより好ましく、炭素原子数3のアルキル基が特に好ましい。
 一般式(II-1e)~一般式(II-1h)の中でも、誘電率異方性の絶対値を増大するためには、一般式(II-1e)及び一般式(II-1g)が好ましい。
 一般式(II-2)で表される化合物としては、具体的には次に記載する一般式(II-2a)~一般式(II-2d)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000015
 式中、Rは炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表し、R4cは炭素原子数1~5のアルキル基を表すが、一般式(II-2)におけるR及びRと同様の実施態様が好ましい。
 一般式(II-2a)及び一般式(II-2c)においてRは、一般式(II-2)における同様の実施態様が好ましい。R4cは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は2のアルキル基がより好ましく、炭素原子数2のアルキル基が特に好ましい。
 一般式(II-2b)及び一般式(II-2d)においてRは、一般式(II-2)における同様の実施態様が好ましい。R4cは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は3のアルキル基がより好ましく、炭素原子数3のアルキル基が特に好ましい。
 一般式(II-2a)~一般式(II-2d)の中でも、誘電率異方性の絶対値を増大するためには、一般式(II-2a)及び一般式(II-2c)が好ましく、特に一般式(II-2a)が好ましい。
 また、一般式(II-2)で表される化合物としては、具体的には次に記載する一般式(II-2e)~一般式(II-2j)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000016
 式中、Rは炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表し、R4dは炭素原子数1~5のアルキル基を表すが、一般式(II-2)におけるR及びRと同様の実施態様が好ましい。
 一般式(II-2e)、一般式(II-2g)及び一般式(II-2i)においてRは、一般式(II-2)における同様の実施態様が好ましい。R4dは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は2のアルキル基がより好ましく、炭素原子数2のアルキル基が特に好ましい。
 一般式(II-2f)、一般式(II-2h)及び一般式(II-2j)においてRは、一般式(II-2)における同様の実施態様が好ましい。R4dは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は3のアルキル基がより好ましく、炭素原子数2のアルキル基が特に好ましい。
 一般式(II-2e)~一般式(II-2i)の中でも、一般式(II-2e)及び一般式(II-2h)が好ましい。
 本発明の液晶表示装置における液晶層は、一般式(I)及び一般式(II)で表される化合物の合計含有量が75重量%~100重量%であるのが好ましく、80重量%~100重量%であるのが好ましく、85重量%~100重量%であるのが好ましく、90重量%~100重量%であるのが好ましく、95重量%~100重量%であるのが好ましい。
 本発明の液晶表示装置における液晶層は、更に、一般式(III)
Figure JPOXMLDOC01-appb-C000017
(式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、D、E及びFはそれぞれ独立して、フッ素置換されていてもよい、1,4-フェニレン基又はトランス-1,4-シクロヘキシレンを表し、Zは単結合、-OCH-、-OCO-、-CHO-又は-COO-、-OCO-を表し、nは0、1又は2を表す。ただし、一般式(I)、一般式(II-1)及び一般式(II-2)で表される化合物は除く。)で表される化合物を含有することもできる。
 一般式(III)で表される化合物は1~20%含有することが好ましく、2~15%含有することが好ましく、4~10%含有することが好ましい。
 一般式(III)において、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すが、
Dがトランス-1,4-シクロヘキシレンを表す場合、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~4のアルケニル基を表すことがより好ましく、炭素原子数3~5のアルキル基又は炭素原子数2又は3のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましく、
Dがフッ素置換されていてもよい、1,4-フェニレン基を表す場合、炭素原子数1~5のアルキル基又は炭素原子数4又は5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数4のアルケニル基を表すことがより好ましく、炭素原子数2~4のアルキル基を表すことがさらに好ましい。
 Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表すが、
Fがトランス-1,4-シクロヘキシレンを表す場合、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~4のアルケニル基を表すことがより好ましく、炭素原子数3~5のアルキル基又は炭素原子数2又は3のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましく、
Fがフッ素置換されていてもよい、1,4-フェニレン基を表す場合、炭素原子数1~5のアルキル基又は炭素原子数4又は5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数4のアルケニル基を表すことがより好ましく、炭素原子数2~4のアルキル基を表すことがさらに好ましい。
 R及びRがアルケニル基を表し、結合するD又はFがフッ素置換されていてもよい、1,4-フェニレン基を表す場合す場合、炭素原子数4又は5のアルケニル基としては以下の構造が好ましい。
Figure JPOXMLDOC01-appb-C000018
(式中、環構造へは右端で結合するものとする。)この場合においても、炭素原子数4のアルケニル基がさらに好ましい。
 D、E及びFはそれぞれ独立して、フッ素置換されていてもよい、1,4-フェニレン基又はトランス-1,4-シクロヘキシレンを表すが、2-フルオロ-1,4-フェニレン基、2,3-ジフルオロ-1,4-フェニレン基、1,4-フェニレン基又はトランス-1,4-シクロヘキシレンを表すことが好ましく、2-フルオロ-1,4-フェニレン基又は2,3-ジフルオロ-1,4-フェニレン基、1,4-フェニレン基がより好ましく、2,3-ジフルオロ-1,4-フェニレン基又は1,4-フェニレン基が好ましい。Zは単結合、-OCH-、-OCO-、-CHO-又は-COO-を表すが、単結合、-CHO-又は-COO-を表すことが好ましく、単結合がより好ましい。
 nは0、1又は2を表すが、0又は1を表すことが好ましい。また、Zが単結合以外の置換基を表す場合、1を表すことが好ましい。
 一般式(III)で表される化合物は、nが1を表す場合において、負の誘電率異方性を大きくする観点からは、一般式(III-1c)~一般式(III-1e)で表される化合物が好ましく、応答速度を速くする観点からは、一般式(III-1f)~一般式(III-1j)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 式中、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~5のアルコキシ基を表すが、一般式(III)におけるR及びRと同様の実施態様が好ましい。
 一般式(III)で表される化合物は、nが2を表す場合、負の誘電率異方性を大きくする観点からは、一般式(III-2a)~一般式(III-2h)で表される化合物が好ましく、応答速度を速くする観点からは、一般式(III-2j)~一般式(III-2l)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 式中、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~5のアルコキシ基を表すが、一般式(III)におけるR及びRと同様の実施態様が好ましい。
 一般式(III)で表される化合物は、nが0を表す場合、応答速度を速くする観点からは、一般式(III-3b)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000023
 式中、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~5のアルコキシ基を表すが、一般式(III)におけるR及びRと同様の実施態様が好ましい。
 Rは炭素原子数2~5のアルキル基が好ましく、炭素原子数3のアルキル基がより好ましい。Rは炭素原子数1~3のアルコキシ基が好ましく、炭素原子数2のアルコキシ基がより好ましい。
 本発明の液晶表示装置における液晶層は、ネマチック相-等方性液体相転移温度(Tni)を幅広い範囲で使用することができるものであるが、60から120℃であることが好ましく、70から100℃がより好ましく、70から85℃が特に好ましい。
 誘電率異方性は、25℃において、-2.0から-6.0であることが好ましく、-2.5から-5.0であることがより好ましく、-2.5から-4.0であることが特に好ましい。
 屈折率異方性は、25℃において、0.08から0.13であることが好ましいが、0.09から0.12であることがより好ましい。更に詳述すると、薄いセルギャップに対応する場合は0.10から0.12であることが好ましく、厚いセルギャップに対応する場合は0.08から0.10であることが好ましい。
 回転粘度(γ1)は150以下が好ましく、130以下がより好ましく、120以下が特に好ましい。
 本発明の液晶表示装置における液晶層においては、回転粘度と屈折率異方性の関数であるZが特定の値を示すことが好ましい。
Figure JPOXMLDOC01-appb-M000024
(式中、γ1は回転粘度を表し、Δnは屈折率異方性を表す。)Zは、13000以下が好ましく、12000以下がより好ましく、11000以下が特に好ましい。
 本発明の液晶表示装置における液晶層は、アクティブマトリクス表示素子に使用する場合においては、1012(Ω・m)以上の比抵抗を有することが必要であり、1013(Ω・m)が好ましく、1014(Ω・m)以上がより好ましい。
 本発明の液晶表示装置における液晶層は、上述の化合物以外に、用途に応じて、通常のネマチック液晶、スメクチック液晶、コレステリック液晶、酸化防止剤、紫外線吸収剤、重合性モノマーなどを含有しても良い。
 重合性モノマーとしては、一般式(V)
Figure JPOXMLDOC01-appb-C000025
(式中、X及びXはそれぞれ独立して、水素原子又はメチル基を表し、
Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2から7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、
は-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CY=CY-(式中、Y及びYはそれぞれ独立して、フッ素原子又は水素原子を表す。)、-C≡C-又は単結合を表し、
Cは1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表し、式中の全ての1,4-フェニレン基は、任意の水素原子がフッ素原子により置換されていても良い。)で表されるニ官能モノマーが好ましい。
 X及びXは、何れも水素原子を表すジアクリレート誘導体、何れもメチル基を有するジメタクリレート誘導体の何れも好ましく、一方が水素原子を表しもう一方がメチル基を表す化合物も好ましい。これらの化合物の重合速度は、ジアクリレート誘導体が最も早く、ジメタクリレート誘導体が遅く、非対称化合物がその中間であり、その用途により好ましい態様を用いることができる。PSA表示素子においては、ジメタクリレート誘導体が特に好ましい。
 Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-を表すが、PSA表示素子においては少なくとも一方が単結合であることが好ましく、共に単結合を表す化合物又は一方が単結合でもう一方が炭素原子数1~8のアルキレン基又は-O-(CH-を表す態様が好ましい。この場合1~4のアルキル基が好ましく、sは1~4が好ましい。
 Zは、-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-又は単結合が好ましく、-COO-、-OCO-又は単結合がより好ましく、単結合が特に好ましい。
 Cは任意の水素原子がフッ素原子により置換されていても良い1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表すが、1,4-フェニレン基又は単結合が好ましい。Cが単結合以外の環構造を表す場合、Zは単結合以外の連結基も好ましく、Cが単結合の場合、Zは単結合が好ましい。
 これらの点から、一般式(V)において、Sp及びSpの間の環構造は、具体的には次に記載する構造が好ましい。
 一般式(V)において、Cが単結合を表し、環構造が二つの環で形成される場合において、次の式(Va-1)から式(Va-5)を表すことが好ましく、式(Va-1)から式(Va-3)を表すことがより好ましく、式(Va-1)を表すことが特に好ましい。
Figure JPOXMLDOC01-appb-C000026
(式中、両端はSp又はSpに結合するものとする。)
 これらの骨格を含む重合性化合物は重合後の配向規制力がPSA型液晶表示素子に最適であり、良好な配向状態が得られることから、表示ムラが抑制されるか、又は、全く発生しない。
 以上のことから、重合性モノマーとしては、一般式(V-1)~一般式(V-4)が特に好ましく、中でも一般式(V-2)が最も好ましい。
Figure JPOXMLDOC01-appb-C000027
(式中、Spは炭素原子数2から5のアルキレン基を表す。)
 重合性モノマーを添加する場合において、重合開始剤が存在しない場合でも重合は進行するが、重合を促進するために重合開始剤を含有していてもよい。重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド類等が挙げられる。また、保存安定性を向上させるために、安定剤を添加しても良い。使用できる安定剤としては、例えば、ヒドロキノン類、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β-ナフチルアミン類、β-ナフトール類、ニトロソ化合物等が挙げられる。
 本発明における液晶層は、液晶表示素子に有用であり、AM-LCD(アクティブマトリックス液晶表示素子)、TN(ネマチック液晶表示素子)、STN-LCD(超ねじれネマチック液晶表示素子)、OCB-LCD及びIPS-LCD(インプレーンスイッチング液晶表示素子)に有用であるが、AM-LCDに特に有用であり、PSAモード、PSVAモード、VAモード、IPSモード又はECBモード用液晶表示素子に用いることができる。
(シール剤)
 本発明の液晶表示装置におけるシール剤は、1分子内に少なくとも一つのエポキシ基を有し、かつ重量平均分子量が300~10000である化合物を含有する硬化性樹脂組成物の硬化物から構成される。
 上記1分子内に少なくとも一つのエポキシ基を有する化合物としては、例えば、ノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂等が用いられ、具体的には、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリス(ヒドロキシフェニル)アルキル型エポキシ樹脂、テトラキス(ヒドロキシフェニル)アルキル型エポキシ樹脂等が好適である。より具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、ポリオキシプロピレンビスフェノールA型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェノールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。この中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂が好ましい。
 上記エポキシ化合物のうち、市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱化学社製)、エピクロン850-S(DIC社製)等のビスフェノールA型エポキシ樹脂、jER806、jER4004(いずれも三菱化学社製)等のビスフェノールF型エポキシ樹脂、R-710等のビスフェノールE型エポキシ樹脂、エピクロンEXA1514(DIC社製)等のビスフェノールS型エポキシ樹脂、RE-810NM(日本化薬社製)等の2,2’-ジアリルビスフェノールA型エポキシ樹脂、エピクロンEXA7015(DIC社製)等の水添ビスフェノール型エポキシ樹脂、EP-4000S(ADEKA社製)等のプロピレンオキシド付加ビスフェノールA型エポキシ樹脂、EX-201(ナガセケムテックス社製)等のレゾルシノール型エポキシ樹脂、jERYX-4000H(三菱化学社製)等のビフェニル型エポキシ樹脂、YSLV-50TE(新日鐵化学社製)等のスルフィド型エポキシ樹脂、YSLV-80DE(新日鐵化学社製)等のビフェニルエーテル型エポキシ樹脂、EP-4088S(ADEKA社製)等のジシクロペンタジエン型エポキシ樹脂、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等のナフタレン型エポキシ樹脂、エピクロンN-740、エピクロンN-770、エピクロンN-775(DIC社製)、jER152、jER154(三菱化学社製)等のフェノールノボラック型エポキシ樹脂、エピクロンN-670-EXP-S(DIC社製)等のオルトクレゾールノボラック型エポキシ樹脂、エピクロンN660、エピクロンN665、エピクロンN670、エピクロンN673、エピクロンN680、エピクロンN695、エピクロンN665EXP、エピクロンN672EXP(DIC社製)等のクレゾールノボラック型エポキシ樹脂、エピクロンHP7200(DIC社製)等のジシクロペンタジエンノボラック型エポキシ樹脂、NC-3000P(日本化薬社製)等のビフェニルノボラック型エポキシ樹脂、ESN-165S(新日鐵化学社製)等のナフタレンフェノールノボラック型エポキシ樹脂、jER630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等のグリシジルアミン型エポキシ樹脂、ZX-1542(新日鐵化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611、(ナガセケムテックス社製)等のアルキルポリオール型エポキシ樹脂、YR-450、YR-207(いずれも新日鐵化学社製)、エポリードPB(ダイセル社製)等のゴム変性型エポキシ樹脂、デナコールEX-147(ナガセケムテックス社製)等のグリシジルエステル化合物、jERYL-7000(三菱化学社製)等のビスフェノールA型エピスルフィド樹脂、その他YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鐵化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
 上記1分子内に少なくとも一つのエポキシ基を有する化合物の重量平均分子量は、300~10000である。重量平均分子量が300以上であると、液晶への汚染性が少なくなるので好ましく、10000以下であるとシール剤粘度を制御しやすいので好ましい。重量平均分子量の下限値としては、500以上が好ましく、1000以上が好ましく、上限値としては、7000以下が好ましく、5000以下が好ましく、3000以下が特に好ましい。
 上記1分子内に少なくとも一つのエポキシ基を有する化合物を含有する硬化性樹脂組成物は、水素結合性官能基価が1×10-4~5×10-2mol/gが好ましく、5×10-4~1×10-2mol/gが好ましく、1×10-3~5×10-3mol/gであることが好ましい。このような硬化性樹脂組成物は、分子内で水素結合を形成することから、シール剤として用いた場合に硬化前・硬化後共に液晶に溶出しにくくなり液晶汚染を起こしにくく、白抜け、配向むら、焼き付けなどの表示不良の問題を抑制することができるため好ましい。
 上記水素結合は、水素結合性を有する官能基又は残基等を有するもの、例えば、-OH基、-SH基、-NH基、-NHR基(Rは、芳香族、脂肪族炭化水素又はこれらの誘導体を表す)、-COOH基、-CONH基、-NHOH基等の官能基を有するもの、又は、分子内に-NHCO-結合、-NH-結合、-CONHCO-結合、-NH-NH-結合等の残基を有する化合物を含有することにより形成される。また、上記水素結合性官能基価とは、上記水素結合性官能基を有する化合物が1種類からなる場合には、下記(式1)により算出される値である。
水素結合性官能基価(HX)(mol/g)
=(化合物Xの1分子中の水素結合性官能基数)/(化合物Xの分子量)   (式1)
 また、上記水素結合性官能基価は、上記水素結合性官能基を有する化合物が複数の樹脂の混合物からなる場合には、各々の水素結合性官能基を有する化合物の単位重量あたりの含有量(重量分率)により分配して算出することができる。例えば、水素結合性官能基を有する化合物が、化合物A、化合物B、化合物Cから構成されている場合の水素結合性官能基価は、下記(式2)で表される。
 水素結合性官能基価(HABC)=H+H+H     (式2)
(なお、Pαは化合物αの重量分率を表す。)
 水素結合性官能基価が1×10-4mol/g未満であると、硬化性樹脂組成物成分が液晶へ溶出し液晶の配向を乱しやすくなり、5×10-2mol/gを超えると、硬化物の透湿性が大きくなり液晶表示素子内部へ水分が侵入しやすくなる。
 上記水素結合性官能基を有する化合物としては、水素結合性官能基価が、単独で上記の範囲にあるものでも、また、2種類以上を混合することにより上記範囲に調整されるものであっても良い。すなわち、使用する水素結合性官能基を有する化合物の水素結合性官能基価の平均値が上記範囲にあればよい。
 上記1分子内に少なくとも一つのエポキシ基を有する化合物を含有する硬化性樹脂組成物は、硬化後における体積抵抗率が1×1013Ω・cm以上であることが好ましい。1×1013Ω・cm未満であると、シール剤がイオン性の不純物を含有していることを意味し、シール剤として用いた場合に通電時にイオン性不純物が液晶中に溶出し、液晶層の電圧保持率(VHR)の低下、イオン密度の増加、また白抜け、配向むら、焼き付けなどの表示不良の原因となる。
 上記1分子内に少なくとも一つのエポキシ基を有する化合物を含有する硬化性樹脂組成物は、硬化前における比抵抗が1.0×10~1.0×1010Ω・cmであることが好ましい。1.0×10Ω・cm未満であると、シール剤としたときこれらが液晶に溶出した場合、液晶層の電圧保持率(VHR)の低下、イオン密度の増加、また白抜け、配向むら、焼き付けなどの表示不良の原因となる。1.0×1010Ω・cmを超えると、基板との密着性に劣ることがある。
 上記1分子内に少なくとも一つのエポキシ基を有する化合物は、1分子内に少なくとも一つのエチレン性不飽和結合を有する化合物であるのが好ましい。このような化合物の中でも、1分子内にエポキシ基と(メタ)アクリル基をそれぞれ少なくとも一つ以上有する化合物が好ましい。
 上記1分子内にエポキシ基と(メタ)アクリル基をそれぞれ少なくとも一つ以上有する化合物としては特に限定されず、例えば、(メタ)アクリル酸変性エポキシ樹脂、ウレタン変性(メタ)アクリルエポキシ樹脂等が挙げられる。
1)(メタ)アクリル酸変性エポキシ樹脂
 (メタ)アクリル酸変性エポキシ樹脂としては特に限定されず、例えば、(メタ)アクリル酸とエポキシ樹脂とを常法に従って塩基性触媒の存在下で反応することにより得ることができる。
 (メタ)アクリル酸変性エポキシ樹脂としては、例えば、ノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂等を部分(メタ)アクリル化したものであり、エポキシ樹脂としてビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリス(ヒドロキシフェニル)アルキル型エポキシ樹脂、テトラキス(ヒドロキシフェニル)アルキル型エポキシ樹脂等が好適である。
 具体的には例えば、レゾルシノール型エポキシ樹脂(ナガセケムテックス社製、「EX-201」)360重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸210重量部を、空気を送り込みながら90℃で還流攪拌し、5時間反応させることによって得ることができる。
 上記(メタ)アクリル酸変性エポキシ樹脂の市販品としては、例えば、エベクリル860、エベクリル1561、エベクリル3700、エベクリル3600、エベクリル3701、エベクリル3703、エベクリル3200、エベクリル3201、エベクリル3702、エベクリル3412、エベクリル860、エベクリルRDX63182、エベクリル6040、エベクリル3800(いずれもダイセルサイテック社製)、EA-1020、EA-1010、EA-5520、EA-5323、EA-CHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。
2)ウレタン変性(メタ)アクリルエポキシ樹脂
 上記ウレタン変性(メタ)アクリルエポキシ樹脂は、例えば、以下の方法によって得られるものである。すなわち、ポリオールと2官能以上のイソシアネートとを反応させ、更にこれに水酸基を有する(メタ)アクリルモノマー及びグリシドールを反応させる方法、またはポリオールを用いずに2官能以上のイソシアネートに水酸基を有する(メタ)アクリルモノマーやグリシドールを反応させる方法、またはイソシアネート基を有する(メタ)アクリレートにグリシドールを反応させる方法等により作製することができる。具体的には、例えば、まずトリメチロールプロパン1モルとイソホロンジイソシアネート3モルとをスズ系触媒下で反応させ、得られた化合物中に残るイソシアネート基と、水酸基を有するアクリルモノマーであるヒドロキシエチルアクリレート及び水酸基を有するエポキシであるグリシドールとを反応させることにより作製することができる。
 上記ポリオールとしては特に限定されず、例えば、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、(ポリ)プロピレングリコール等が挙げられる。
 上記イソシアネートとしては、2官能以上であれば特に限定されず、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,10-ウンデカントリイソシアネート等が挙げられる。
 上記水酸基を有する(メタ)アクリルモノマーとしては特に限定されず、例えば、分子内に水酸基を1つ有するモノマーとしては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等が挙げられ、分子内に水酸基を2つ以上有するモノマーとしては、ビスフェノールA変性エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレートが挙げられる。これらは、単独で用いても、2種以上を併用してもよい。
 上記1分子内にエポキシ基と(メタ)アクリル基をそれぞれ少なくとも1つ以上有する化合物は、液晶との相溶性を低め汚染を無くし、白抜け、配向むら、焼き付けなどの表示不良の問題を抑制するために水素結合性基を有することが好ましく、例えば水酸基及び/又はウレタン結合を有することが好ましい。
 上記1分子内にエポキシ基と(メタ)アクリル基をそれぞれ少なくとも1つ以上有する化合物は、ビフェニル骨格、ナフタレン骨格、ビスフェノール骨格、ノボラック型エポキシ樹脂の部分(メタ)アクリル化物より選択される少なくとも1つの分子骨格を有することが好ましい。これにより、本発明の硬化性樹脂組成物の耐熱性が向上する。
 上記1分子内に少なくともエポキシ基を一つ有する化合物を含有する硬化性樹脂組成物は、エチレン性不飽和結合を有する化合物を含有してもよい。中でも、(メタ)アクリロイルオキシ基を有する化合物が好ましい。(メタ)アクリロイルオキシ基を有する化合物としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。
 (1) (メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物
 上記(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物としては特に限定されず、1官能のものとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルホスフェート等が挙げられる。
 また、上記(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物のうち、2官能のものとしては特に限定されず、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3―プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエンジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルジ(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。
 また、上記(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物のうち、3官能以上のものとしては特に限定されず、例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート等が挙げられる。
 (2)イソシアネートに水酸基を有するアクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート
 上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートとしては特に限定されず、例えば、2つのイソシアネート基を有する化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を触媒としてスズ系化合物存在下で反応させることによって得ることができる。
 上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートの原料となるイソシアネートとしては特に限定されず、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,10-ウンデカントリイソシアネート等が挙げられる。
 また、上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートの原料となるイソシアネートとしては、例えば、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、(ポリ)プロピレングリコール、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネートとの反応により得られる鎖延長されたイソシアネート化合物も用いることができる。
 上記水酸基を有する(メタ)アクリル酸誘導体としては特に限定されず、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等の市販品やエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレート、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、ビスフェノールA変性エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート等が挙げられる。
 上記ウレタン(メタ)アクリレートは、具体的には、例えば、トリメチロールプロパン134重量部に、重合禁止剤としてBHT0.2重量部、反応触媒としてジブチル錫ジラウリレート0.01重量部、及び、イソホロンジイソシアネート666重量部を加え、60℃で還流攪拌しながら2時間反応させ、次に、2-ヒドロキシエチルアクリレート51重量部を加え、空気を送り込みながら90℃で還流攪拌し、2時間反応させることにより得ることができる。
 また、上記ウレタン(メタ)アクリレートの市販品としては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、エベクリル230、エベクリル270、エベクリル4858、エベクリル8402、エベクリル8804、エベクリル8803、エベクリル8807、エベクリル9260、エベクリル1290、エベクリル5129、エベクリル4842、エベクリル210、エベクリル4827、エベクリル6700、エベクリル220、エベクリル2220(いずれもダイセルサイテック社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-122P、U-108A、U-340P、U-4HA、U-6HA、U-324A、U-15HA、UA-5201P、UA-W2A、U-1084A、U-6LPA、U-2HA、U-2PHA、UA-4100、UA-7100、UA-4200、UA-4400、UA-340P、U-3HA、UA-7200、U-2061BA、U-10H、U-122A、U-340A、U-108、U-6H、UA-4000(いずれも新中村化学工業社製)、AH-600、AT-600、UA-306H、AI-600、UA-101T、UA-101I、UA-306T、UA-306I等が挙げられる。
 熱硬化型シール剤は、原料となる樹脂の粘度が加熱によって低下するため、シール剤中に含まれるイオン性不純物が、シール剤に接触している液晶に溶出したり、シールパターンの変形に伴い液晶がリークしたりする問題がある。加熱による樹脂粘度の低下を防ぐためには、その粘度が低下する前に素早く硬化し得る硬化速度の向上が有効である。本発明の硬化性樹脂組成物は、上記のようにエチレン性不飽和結合を有する化合物を含有することが好ましく、ラジカルにより反応し得る(メタ)アクリル基含有の樹脂と(2)熱ラジカル重合開始剤とを併用し、硬化性樹脂組成物の炭素-炭素二重結合量が0.002~0.006mol/gの範囲であることが好ましい。これにより、当該樹脂組成物は、近接する炭素-炭素二重結合同士が速やかに反応するので、樹脂組成物の硬化速度はより速くなるから、結果として、耐リーク性に優れる。
 ただし、硬化性樹脂組成物の炭素-炭素二重結合量が0.006mol/gを超えると、硬化速度は速まるが、硬化物中の架橋密度が高くなるので、液晶表示パネルを構成する基板と硬化物との接着強度が低くなることがある。一方で、当該炭素-炭素二重結合量が0.002mol/g未満であると、硬化速度が低下する。よって、炭素-炭素二重結合量が上記範囲を満たす樹脂組成物は、硬化性および基板との接着性のバランスに優れる。中でも、樹脂組成物の硬化性および基板との接着性とのバランスを優れたものとする観点から、上記炭素-炭素二重結合量は、0.002mol/g以上0.003mol/g以下が好ましい。
 また、上記炭素-炭素二重結合量は、上記炭素-炭素二重結合量を有する化合物が複数の樹脂の混合物からなる場合には、各々の炭素-炭素二重結合量を有する化合物の単位重量あたりの含有量(重量分率)により分配して算出することができる。例えば、炭素-炭素二重結合量を有する化合物が、化合物A、化合物B、化合物Cから構成されている場合の炭素-炭素二重結合量は、下記(式3)で表される。
 炭素-炭素二重結合量(NABC)=N+N+N    (式3)
(なお、Nα、Pαは各々化合物αの炭素-炭素二重結合量(mol/g)、および化合物(A+B+C)に対する重量分率を表す。)
 硬化性樹脂の炭素-炭素二重結合量は、分子内の炭素-炭素二重結合の数を樹脂の分子量で除すことによって求められ、その単位はmol/gである。各硬化性樹脂の分子量は、GPCによってポリスチレンを標準として測定することが好ましい。この場合、数平均分子量と重量平均分子量とが算出されるが、炭素-炭素二重結合量は数平均分子量により算出されることが好ましい。
 炭素-炭素二重結合量は、一種類の樹脂が単独で上記の範囲にあるものでも、また、2種類以上の樹脂を混合することにより上記範囲に調整されるものであっても良い。すなわち、使用する化合物の炭素-炭素二重結合量の平均値が上記範囲にあればよい。
 また、本発明の硬化性樹脂組成物は、上記1分子内にエポキシ基と(メタ)アクリル基をそれぞれ少なくとも一つ以上有する化合物を含有するか、又は(メタ)アクリロイルオキシ基を有する化合物を含有してもよいが、この場合の硬化性樹脂組成物中におけるエポキシ基と(メタ)アクリル基との配合比は、エポキシ:(メタ)アクリルが15:85~95:5であることが好ましく、25:75~90:10であることが好ましく、25:75~70:30であることが好ましい。(メタ)アクリル基の当量比が30未満になると、反応性が低下してしまい、シール剤を塗布した後に加熱しても硬化が速やかに進まなくなってしまうばかりか、液晶への溶出が大きくなることがあり、85を超えると、接着性や透湿性の面で不充分となることがある。より好ましくは50:50~30:70である。
 1分子内にエポキシ基を少なくとも1つ有する化合物を含有する硬化性樹脂組成物は、熱硬化剤を含有することが好ましい。熱硬化剤は、加熱により硬化性樹脂組成物中のエポキシ基及び/又はエチレン性不飽和結合を反応させ、架橋させるためのものであり、硬化後の硬化性樹脂組成物の接着性、耐湿性を向上させる役割を有する。
 上記エポキシ基の反応に用いられる熱硬化剤として特に限定は無いが、融点が100℃以上の潜在性熱硬化剤が好適に用いられる。融点が100℃以下の熱硬化剤を使用すると保存安定性が著しく悪くなることがある。
 また1分子内に(メタ)アクリル基などのエチレン性不飽和結合を少なくとも1つ有する化合物を含有する硬化性樹脂組成物は、熱ラジカル開始剤を含有することも好ましい。熱ラジカル開始剤は、加熱により硬化性樹脂組成物中のエチレン性不飽和結合を反応させ、架橋させるものであり、特に硬化速度の高速化に寄与し、またイオン性不純物の浸透を防止する役割を有する。上記熱ラジカル開始剤として特に限定は無いが、10時間半減期温度は、40~80℃であることが好ましい。10時間半減期温度が、40℃以下の熱硬化剤を使用すると保存安定性が著しく悪くなることがある。
 このような熱硬化剤としては、1,3-ビス[ヒドラジノカルボノエチル-5-イソプロピルヒダントイン](融点120℃)、アジピン酸ジヒドラジド(融点181℃)、7,11-オクタデカジエン-1,18-ジカルボヒドラジド(融点160℃)、ドデカン二酸ジヒドラジド(融点190℃)、およびセバシン酸ジヒドラジド等(融点189℃)等のヒドラジド化合物、ジシアンジアミド(融点209℃)等のジシアンジアミド系化合物、グアニジン誘導体、1-シアノエチル-2-フェニルイミダゾール、N-[2-(2-メチル-1-イミダゾリル)エチル]尿素、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、N,N’-ビス(2-メチル-1-イミダゾリルエチル)尿素、N,N’-(2-メチル-1-イミダゾリルエチル)-アジポアミド、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール等のイミダゾール誘導体、水酸基を含有するため液晶への溶出が抑制される2-ヒドロキシメチルイミダゾール(分子量98.1、融点115℃)、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(分子量204、固体、融点230℃超(分解))、2-メチルイミダゾール(分子量82、固体、融点137~145℃)等が好ましく、変性脂肪族ポリアミン、テトラヒドロ無水フタル酸、エチレングリコールービス(アンヒドロトリメリテート)等の酸無水物、各種アミンとエポキシ樹脂との付加生成物、フェノールノボラック樹脂、クレゾールノボラック樹脂、およびザイロック型ノボラック樹脂等のフェノール系化合物が挙げられる。これらは、単独又は2種類以上の併用が可能である。
 上記1分子内に(メタ)アクリル基とエポキシ基とをそれぞれ少なくとも1つ以上有する化合物としてアクリル酸変性エポキシ樹脂を用いる場合には、アクリルエポキシ樹脂の反応性はその構造より大きく変化し、ウレタン変性エポキシ樹脂の場合にはその安定性から反応性の高い熱硬化剤を用いても保存安定性に優れるが、(メタ)アクリル酸変性エポキシ樹脂の場合には反応性が高く、融点が100℃以上の反応性の低い熱硬化剤が保存安定性の面より好ましい。
 上記熱硬化剤の配合割合としては、硬化性化合物100重量部に対して、好ましくは5~60重量部、さらに好ましくは10~50重量部である。上記範囲外では硬化物の接着性、耐薬品性が低下し、高温高湿動作試験での液晶の特性劣化が早まることがある。
 また、上記熱硬化剤としては、下述の被覆熱硬化剤が好適である。本発明の被覆熱硬化剤を用いれば、一液タイプとしても非常に高い保存安定性が得られる。
 即ち固体熱硬化剤の表面を、揮発性に乏しくかつ有機物への溶解性に乏しい微粒子によって被覆した被覆熱硬化剤を用いることによって、予め硬化剤を配合していても高い保存安定性を有するシール剤が得られる。
 本明細書において上記固体熱硬化剤とは、室温では固体であり、加熱により溶融又は軟化して硬化性樹脂と反応を開始する硬化剤をいう。かかる固体熱硬化剤としては、融点又は軟化点が室温以上である熱硬化剤であれば特に限定されず、例えば、固体アミン化合物、フェノール系化合物、酸無水物等が挙げられる。なかでも、低温での反応性に優れていることから、固体アミン化合物が好ましい。
 上記固形アミン化合物とは、分子中に1個以上の1~3級のアミノ基を有する固体状の化合物のことをいい、例えば、メタフェニレンジアミン、ジアミノジフェニルメタン等の芳香族アミン、2-メチルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール等のイミダゾール化合物、2-メチルイミダゾリン等のイミダゾリン化合物、セバチン酸ジヒドラジド、イソフタル酸ジヒドラジド等のジヒドラジド化合物が挙げられる。これらの固形アミン化合物のうち市販されているものとしては、例えば、アミキュアPN-23、アミキュアMY-24、(以上、味の素ファインテクノ社製)等のアミンアダクト類、ジシアンジアミド等が挙げられる。
 前記多価フェノール系化合物としては、例えば、ポリフェノール化合物、ノボラック型フェノール樹脂が挙げられる。これらの多価フェノール系化合物のうち市販されているものとしては、例えば、jERキュア170、jERキュアYL6065、jERキュアMP402FPI(以上、三菱化学社製)等が挙げられる。
 前記酸無水物としては、例えば、グリセリンビス(アンヒドロトリメリテート)、エチレングリコール-ビス(アンヒドロトリメリテート)、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸等が挙げられる。これらの酸無水物のうち市販されているものとしては、例えば、jERキュアYH-306、YH-307(以上、三菱化学社製)等が挙げられる。
 前記固体熱硬化剤粒子の平均粒子径としては特に限定されないが、0.1~50μmであることが好ましい。0.1μm未満であると、微粒子によって効率よく表面を被覆できなくなることがあり、50μmを超えると、シール剤に配合した際、保存時に硬化剤の沈殿が起こったり、硬化にムラが起こってしまったりすることがある。より好ましくは0.5~10μmである。
 前記固体熱硬化剤粒子の表面を被覆する微粒子としてはSi、Al、Ti、Fe、Mn、Mg等の酸化物、水酸化物、ハロゲン化物やスチレンビーズ、微粒ゴム等からなるものが挙げられる。これらの微粒子は単独で用いてもよく、2種以上を併用してもよい。
 前記微粒子の平均粒子径は0.05μm以下であることが好ましい。0.05μmを超えると、効率よく固体熱硬化剤粒子の表面を被覆させられないことがある。より好ましくは0.03μm以下である。また、上記微粒子の粒子径は、固体熱硬化剤粒子の粒子径の10%以下であることが好ましい。10%以上であると、反応性の制御能力が充分に発揮されないことがある。
 被覆熱硬化剤における固体熱硬化剤粒子と微粒子との重量比率は50:1~3:1であることが好ましい。固体熱硬化剤粒子の重量比率が50を超えると、反応性の制御能力が充分に発揮されないことがあり、3未満であると、微粒子が過剰に存在し、硬化機能が低下することがある。より好ましくは、20:1~5:1である。
 固体熱硬化剤粒子の表面を微粒子によって被覆させる方法としては特に限定されず、例えば、固体熱硬化剤粒子と微粒子とを市販のブレンダー等を用いて容器中で混ぜ、均一にする方法等が挙げられる。
 硬化性樹脂組成物と被覆熱硬化剤の配合比としては、硬化性樹脂組成物100重量部に対して1~100重量部であることが好ましい。1重量部未満であると、充分に硬化しないことがあり、100重量部を超えると、過剰の熱硬化剤が残存するために得られる硬化物の靭性等の諸物性が低下することがある。
 前記被覆熱硬化剤は、硬化性樹脂組成物に配合した際に、常温保存時は表面の微粒子によって固形熱硬化剤と重合性樹脂との接触が極力抑えられるため高い保存安定性を示し、硬化時には温度をかけることにより固形熱硬化剤が液状となって微粒子に抑制されることなく硬化性樹脂と接触し、硬化反応が速やかに開始する。したがって、硬化性樹脂組成物の保存安定性が向上する。前記被覆熱硬化剤は、特殊な反応を用いずに常温かつ短時間で極めて簡単に製造することが可能である。
 本発明の硬化性樹脂組成物は、熱ラジカル重合開始剤を含有するのが好ましい。熱ラジカル重合開始剤とは、加熱されてラジカルを発生する化合物すなわち、熱エネルギーを吸収し、分解してラジカル種を発生する化合物をいう。熱ラジカル重合開始剤は、樹脂ユニット100質量部に対して0.01~3.0質量部とすることが好ましい。ただし、熱ラジカル重合開始剤の含有量が多すぎると粘度安定性が悪くなり、少なすぎると硬化性が悪くなる。
 本発明の硬化性樹脂組成物を液晶シール剤として使用する場合、前述の通り、加熱によって液晶シール剤の粘度が低下しすぎると不純物の溶出や液晶のリークが生じるため、硬化性樹脂組成物は、加熱時の粘度低下ができる限り抑制されていることが好ましい。加熱時の樹脂粘度の低下を抑制するには、前述の通り、樹脂組成物の硬化速度を速め、ゲル化を促進させる観点から、硬化性樹脂組成物中の炭素-炭素二重結合量を所定の範囲内で調整することが有用であるが、熱ラジカル重合開始剤を適正に使用することで、さらに当該樹脂粘度の低下を抑制することができる。
 硬化性樹脂組成物のゲル化は、10時間半減期温度の低い熱ラジカル重合開始剤を用いることで促進される。10時間半減期温度とは、熱ラジカル重合開始剤を不活性ガスの存在下、一定の温度で10時間熱分解反応を行った際に熱ラジカル重合開始剤濃度が元の半分になるときの温度である。当該10時間半減期温度が低いと、比較的低温でもラジカルが発生しやすくなるので、硬化性樹脂組成物は低温でも硬化しやすくなる。逆に当該温度が高いと、ラジカルが発生しにくくなるので、硬化性樹脂組成物の硬化性は低下する。
 よって、硬化性樹脂組成物のゲル化を促進させる観点から、熱ラジカル重合開始剤の10時間半減期温度は、40~80℃であることが好ましく、50~70℃であることがより好ましい。当該10時間半減期温度が80℃以下、さらには70℃以下とすると、上記組成物が硬化される際に(通常硬化温度は80~150℃)、ラジカルが発生しやすく硬化反応が促進され、加熱硬化時の粘度低下が軽減される。
 一方で、熱ラジカル重合開始剤の10時間半減期温度が低すぎると、室温でも硬化反応が進行しやすくなり液晶シール剤の安定性が損なわれる。ただし、熱ラジカル重合開始剤の10時間半減期温度は、40℃、好ましくは50℃以上とすると、保存時や、基板への塗布工程(通常は室温で行われる)における安定性が良好な硬化性樹脂組成物が得られる。
 上記熱ラジカル重合開始剤の10時間半減期温度は、以下のようにして具体的に求められる。
 先ず、熱分解反応を1次反応式として取り扱うと、以下の式の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000028
:熱ラジカル重合開始剤の初期濃度
:熱ラジカル重合開始剤のt時間後の濃度
kd:熱分解速度定数
t:反応時間
 半減期は熱ラジカル重合開始剤の濃度が半分になる時間、すなわち、C=C/2となる場合である。よってt時間に熱ラジカル重合開始剤が半減期になる場合は以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000029
 一方、速度定数の温度依存性はアレニウスの式で表されから、以下の式が成立する。
Figure JPOXMLDOC01-appb-M000030
A:頻度因子
ΔE:活性化エネルギー
R:気体定数(8.314J/mol・K)
T:絶対温度(K)
AおよびΔEの値は、J.Brandrupほか著、「Polymer Hand Book fourth edition volum1、pageII-2~II-69、John&Wiley、(1999)」に記載されている。以上から、t=10時間とすれば、10時間半減期温度Tが求められる。
 熱ラジカル重合開始剤としては、有機過酸化物、アゾ化合物が好ましい。有機過酸化物の例には、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネートが含まれる。
 これらの具体例を以下に示す。各化合物の横に記載したかっこ内の数字は、10時間半減期温度である(和光純薬カタログ、エーピーアイコーポレーションカタログおよび前述のポリマーハンドブック参照)。
 ケトンパーオキサイド類の例には、メチルエチルケトンパーオキサイド(109℃)、シクロヘキサノパーオキサイド(100℃)が含まれる。
 パーオキシケタール類の例には、1,1-ビス(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン(87℃)、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン(87℃)、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン(91℃)、2,2-ビス(t-ブチルパーオキシ)ブタン(103℃)、1,1-(t-アミルパーオキシ)シクロヘキサン(93℃)、n-ブチル4,4-ビス(t-ブチルパーオキシ)バレレート(105℃)、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン(95℃)が含まれる。
 ハイドロパーオキサイド類の例には、P-メタンハイドロパーオキサイド(128℃)、ジイソプロピルベンゼンパーオキサイド(145℃)、1,1,3,3-テトラメチルブチルハイドロパーオキサイド(153℃)、クメンハイドロパーオキサイド(156℃)、t-ブチルハイドロパーオキサイド(167℃)が含まれる。
 ジアルキルパーオキサイドの例には、α,α-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン(119℃)、ジクミルパーオキサイド(116℃)、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン(118℃)、t-ブチルクミルパーオキサイド(120℃)、t-アミルパーオキサイド(123℃)、ジ-t-ブチルパーオキサイド(124℃)、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン-3(129℃)が含まれる。
 パーオキシエステル類の例には、クミルパーオキシネオデカノエート(37℃)、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート(41℃)、t-ヘキシルパーオキシネオデカノエート(45℃)、t-ブチルパーオキシネオデカノエート(46℃)、t-アミルパーオキシネオデカノエート(46℃)、t-ヘキシルパーオキシピバレート(53℃)、t-ブチルパーオキシピバレート(55℃)、t-アミルパーオキシピバレート(55℃)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(65℃)、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン(66℃)、t-ヘキシルパーオキシ-2-エチルヘキサノエート(70℃)、t-ブチルパーオキシ-2-エチルヘキサノエート(72℃)、t-アミルパーオキシ-2-エチルヘキサノエート(75℃)、t-ブチルパーオキシイソブチレート(82℃)、t-ヘキシルパーオキシイソプロピルモノカーボネート(95℃)、t-ブチルパーオキシマレイックアシッド(96℃)、t-アミルパーオキシノルマルオクトエート(96℃)、t-アミルパーオキシイソノナノエート(96℃)、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート(97℃)、t-ブチルパーオキシラウレート(98℃)、t-ブチルパーオキシイソプロピルモノカーボネート(99℃)、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(99℃)、t-ヘキシルパーオキシベンゾエート(99℃)、2,5-ジメチル-2,5ビス(ベンゾイルパーオキシ)ヘキサン(100℃)、t-アミルパーオキシアセテート(100℃)、t-アミルパーオキシベンゾエート(100℃)、t-ブチルパーオキシアセテート(102℃)、t-ブチルパーオキシベンゾエート(104℃)が含まれる。
 ジアシルパーオキサイド類の例には、ジイソブチリルパーオキサイド(33℃)、ジ-3,5,5-トリメチルヘキサノイルパーオキサイド(60℃)、ジラウロイルパーオキサイド(62℃)、ジスクシニックアシッドパーオキサイド(66℃)、ジベンゾイルパーオキサイド(73℃)が含まれる。
 パーオキシジカーボネート類の例には、ジ-n-プロピルパーオキシジカーボネート(40℃)、ジイソプロピルパーオキシジカーボネート(41℃)、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(41℃)、ジ-2-エチルヘキシルパーオキシジカーボネート(44℃)、t-アミルパーオキシプロピルカーボネート(96℃)、t-アミルパーオキシ2エチルヘキシルカーボネート(99℃)が含まれる。
 上記1分子内にエポキシ基を少なくとも1つ有する化合物を含有する硬化性樹脂組成物は、ラジカル重合禁止剤を含有してもよい。
 上記ラジカル重合禁止剤は、例えば、2,6-ジ-t-ブチルクレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-4 -エチルフェノール、ステアリルβ-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス-3-メチル-6-t-ブチルフェノール)、4,4-ブチリデンンビス(3-メチル-6-t-ブチルフェノール)、3,9 -ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]、2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-sec-トリアジン-2,4,6-(1H,3H,5H)トリオン、ハイドロキン、パラメトキシフェノール、パラベンゾキノン、トルキノン、ターシャリーブチルパラベンゾキノン、2,5-ジターシャリーブチルパラベンゾキノン、2,5-ジフェニルパラベンゾキノン等が挙げられ、中でも好ましくはパラベンゾキノン、トルキノン、ターシャリーブチルパラベンゾキノン等が挙げられる。これらのラジカル重合禁止剤は単独で用いてもよく、2種以上を併用してもよい。
 上記ラジカル重合禁止剤の配合量は、上記硬化性樹脂組成物100重量部に対して、下限が0.1重量部、上限が0.4重量部である。上記ラジカル重合禁止剤の配合量が0.1重量部未満であると、シール剤の保管時または液晶表示素子の生産時における意図しない加熱により誤って硬化反応が進行し、増粘など性状の変化を誘起する。上記ラジカル重合禁止剤の配合量が0.4重量部を超えると、得られるシール剤の熱硬化性が著しく低くなり、シール剤を硬化させる目的で加熱した場合でも硬化しないことがある。
 上記1分子内にエポキシ基を少なくとも1つ有する化合物を含有する硬化性樹脂組成物は、更に、シランカップリング剤を含有することが好ましい。シランカップリング剤は、主にシール剤と液晶表示素子基板とを良好に接着するための接着助剤としての役割を有する。また、応力分散効果による接着性の改善、線膨張率の改善等のために配合される無機、有機のフィラーとシール剤を構成する樹脂との相互作用を向上させるために、フィラーの表面をシランカップリング剤で処理する方法に用いられることもある。
 上記シランカップリング剤は、下記(2-A)群で示される少なくとも1つの官能基と下記(2-B)群で示される少なくとも1つの官能基とを有するシラン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 上記シラン化合物としては、具体的には例えば、γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-イソシアネートプロピルトリメトキシシラン等が挙げられる。これらのシラン化合物は単独で用いてもよく、2種以上を併用してもよい。
 かかる構造のシラン化合物をシランカップリング剤として用いることにより、基板との接着性を向上することができるとともに、2-B群で示される官能基を介してシラン化合物が硬化性樹脂と化学結合することにより、液晶中への流出を防止することができる。
 フィラーの表面をシランカップリング剤で処理する場合には、上記シラン化合物と硬化性樹脂成分とを配合後、加熱処理を行う。加熱処理により、上記シラン化合物が硬化性樹脂成分と2-B群で示される官能基を介して化学結合する。上記加熱処理については、反応の効率を上げるため樹脂混合物を攪拌することによって行うことが好ましい。攪拌の方法は特に限定されず、例えば、スターラーや攪拌用の羽をモーター等で回転させたりする等の一般的な方法が挙げられる。加熱処理の温度は30~70℃が好ましい。30℃未満であると、シラン化合物と硬化性樹脂との反応が充分に起こらないことがあり、70℃を超えると、熱による硬化が始まってしまう恐れがある。より好ましくは40~60℃である。加熱処理の時間は1~2時間が好ましい。1時間未満であると、シラン化合物中の官能基がすべて反応せずに未反応物が残留してしまう恐れがある。
 加熱処理後における上記2-B群で示される少なくとも1つの官能基の残存率は、10%以下である。10%を超えると、保存中に樹脂成分と反応して増粘したり、液晶中に流出して汚染したりする。なお、2-B群で示される少なくとも1つの官能基の残存率は、1H-NMR測定によって、シラン化合物中の各種官能基のピークの強度と加熱処理後のピーク強度の相対比から求めることができる。
 上記1分子内にエポキシ基を少なくとも1つ有する化合物を含有する硬化性樹脂組成物は、粘度調整および応力分散効果による接着性の改善のため、フィラーを添加してもよい。
 フィラーは特に限定されず、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、珪藻土、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、セリサイト活性白土、窒化アルミニウム等の無機フィラーや、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子、ゴム微粒子等の有機フィラー等を用いてもよい。
 上記フィラーの形状としては、特に限定されず、球状、針状、板状等の定型物または非定型物が挙げられる。
 上記1分子内にエポキシ基を少なくとも1つ有する化合物を含有する硬化性樹脂組成物は、樹脂微粒子を含有してもよい。
 前記樹脂微粒子は、ゴム弾性を有しガラス転移温度が-10℃以下である樹脂からなるコア粒子と、上記コア粒子の表面に形成されたガラス転移温度が50~150℃である樹脂からなるシェル層とを有する。
 なお、本明細書においてガラス転移温度は、特に限定しない限りは通常のDSC法により昇温速度10℃/分の条件で測定したものを意味する。
 上記ゴム弾性を有しガラス転移温度が-10℃以下である樹脂としては特に限定されないが、(メタ)アクリルモノマーの重合体が好適である。 
 上記(メタ)アクリルモノマーとしては、例えば、エチルアクリレート、プロピルアクリレート、n-ブチルアクリレート、シクロヘキシルアクリレート、2-エチルヘキシルアクリレート、エチルメタクリレート、ブチルメタクリレート等が挙げられる。これらの(メタ)アクリルモノマーは単独で重合してもよく、二種以上を共重合してもよい。
 上記ガラス転移温度が50~150℃である樹脂としては特に限定されず、例えば、イソプロピルメタクリレート、t-ブチルメタクリレート、シクロヘキシルメタクリレート、フェニルメタクリレート、メチルメタクリレート、スチレン、4-クロロスチレン、2-エチルスチレン、アクリロニトリル、塩化ビニル等を重合した重合体が挙げられる。これらのモノマーは単独で用いてもよく、2種以上を併用してもよい。
 上記樹脂微粒子の粒子径は使用される目的により適宜選択されるが、好ましい下限は0.01μm、好ましい上限は5μmである。この範囲内であると、上記光硬化性樹脂に対する樹脂微粒子の表面積が充分に大きく、効果的なコア層の膨潤効果が現れ、更に液晶表示素子用シール剤として用いたときの基板間のギャップ出し作業性も確保することができる。
 上記樹脂微粒子を製造する方法としては特に限定されず、例えば、コアを構成するモノマーのみを用いて乳化重合法によりコア粒子を形成させた後、更にシェルを構成するモノマーを加えて重合してコア粒子の表面にシェル層を形成させる方法等が挙げられる。
 前記硬化性樹脂組成物における上記樹脂微粒子の配合量の好ましい下限は、上記光硬化性樹脂100重量部に対して15重量部、好ましい上限は50重量部である。15重量部未満であると、充分な接着性向上効果が得られないことがあり、50重量部を超えると、必要以上に増粘してしまうことがある。より好ましい上限は20重量部である。
 上記1分子内にエポキシ基を少なくとも1つ有する化合物を含有する硬化性樹脂組成物は、熱によって硬化するものであるが、熱のみによって硬化するものが好ましい。
(配向膜)
 本発明の液晶表示装置において、第一の基板と、第二の基板上の液晶組成物と接する面には液晶組成物を配向させるため、配向膜を使用してもよい。
 配向膜材料としては、ポリイミド、ポリアミド、BCB(ペンゾシクロブテンポリマー)、ポリビニルアルコールなどの透明性有機材料を用いることができ、特に、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタンなどの脂肪族または脂環族ジアミン等のジアミン及びブタンテトラカルボン酸無水物や2,3,5-トリカルボキシシクロペンチル酢酸無水物等の脂肪族又は脂環式テトラカルボン酸無水物、ピロメリット酸二無水物等の芳香族テトラカルボン酸無水物から合成されるポリアミック酸をイミド化した、ポリイミド配向膜が好ましい。この場合の配向付与方法は、ラビングを用いることが一般的であるが、光分解型の光配向技術を用いてもよく、垂直配向膜等に使用する場合は配向を付与しないで使用することもできる。
 配向膜材料としては、カルコン、シンナメート、シンナモイル又はアゾ基等を化合物中に含む材料を使用することができ、ポリイミド、ポリアミド等の材料と組み合わせて使用してもよく、この場合配向膜はラビングを用いてもよく光配向技術を用いてもよい。
 配向膜は、基板上に前記配向膜材料をスピンコート法などの方法により塗布して樹脂膜を形成することが一般的であるが、一軸延伸法、ラングミュア・ブロジェット法等を用いることもできる。
(透明電極)
 本発明の液晶表示装置において、透明電極の材料としては、導電性の金属酸化物を用いることができ、金属酸化物としては酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化インジウムスズ(In―SnO)、酸化インジウム亜鉛(In―ZnO)、ニオブ添加二酸化チタン(Ti1-xNbx)、フッ素ドープ酸化スズ、グラフェンナノリボン又は金属ナノワイヤー等が使用できるが、酸化亜鉛(ZnO)、酸化インジウムスズ(In―SnO)又は酸化インジウム亜鉛(In―ZnO)が好ましい。これらの透明導電膜のパターニングには、フォト・エッチング法やマスクを用いる方法などを使用することができる。
 本発明の液晶表示装置は、特にアクティブマトリックス駆動用液晶表示装置に有用であり、VAモード、PSVAモード、PSAモード、IPSモード、FFSモード又はECBモード用液晶表示装置に適用できる。
 本液晶表示装置と、バックライトを組み合わせて、液晶テレビ、パソコンのモニター、携帯電話、スマートフォンのディスプレイや、ノート型パーソナルコンピューター、携帯情報端末、デジタルサイネージ等の様々な用途で使用される。バックライトとしては、冷陰極管タイプバックライト、無機材料を用いた発光ダイオードや有機EL素子を用いた、2波長ピークの擬似白色バックライトと3波長ピークのバックライト等がある。
 以下に実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。
 実施例中、測定した特性は以下の通りである。
 Tni:ネマチック相-等方性液体相転移温度(℃)
 Δn :25℃における屈折率異方性
 Δε :25℃における誘電率異方性
 η  :20℃における粘度(mPa・s)
 γ1 :25℃における回転粘性(mPa・s)
 VHR:70℃における電圧保持率(%)
(セル厚3.5μmのセルに液晶組成物を注入し、5V印加、フレームタイム200ms、パルス幅64μsの条件で測定した時の測定電圧と初期印加電圧との比を%で表した値)
 配向ムラ:シール剤と液晶とが接触する部分に生じる配向ムラのレベルを通電状態及び非通電状態で目視にて以下の4段階で評価した。
  ◎配向ムラ無し
  ○配向ムラごく僅かに有るも許容できるレベル
  △配向ムラ有り許容できないレベル
  ×配向ムラ有りかなり劣悪
 焼き付き:液晶表示素子の焼き付き評価は、表示エリア内に所定の固定パターンを1000時間表示させた後に、全画面均一な表示を行ったときの固定パターンの残像のレベルを目視にて以下の4段階評価で行った。
  ◎残像無し
  ○残像ごく僅かに有るも許容できるレベル
  △残像有り許容できないレベル
  ×残像有りかなり劣悪
 硬化後のシール剤の体積抵抗率:
 クロム蒸着ガラス基板のクロム蒸着面上にシール剤を薄く均一に塗布した後紫外線硬化して、大きさ85mm×85mm、厚さ3mの紫外線硬化物を形成し、この上にクロム蒸着面を紫外線硬化物側にしてクロム蒸着ガラス基板を載せて荷重をかけて、120℃のホットプレート上で1時間加熱圧着し、試験サンプルを作製した。この試験サンプルにおけるシール剤の面積(S(cm))、対向するクロム蒸着ガラス基板のクロム蒸着面間に定電圧発生装置(ケンウッド社製、PA36-2AレギュレーテッドDCパワーサプライ)を用いて一定の電圧(V(V))を印加し、膜に流れる電流(A(A))を電流計(アドバンテスト社製、R644Cデジタルマルチメーター)にて測定した。シール剤の膜厚(T(cm))としたとき、下記式により体積抵抗率(Ω・cm)を求めた。体積抵抗率(Ω・cm)=(V・S)/(A・T)ただし、印加電圧は直流500V、導電時間は1分間とした。
 硬化前のシール剤の比抵抗:
 硬化前のシール剤について、標準温度湿度状態(20℃、65%RH)で、比抵抗測定器(東洋テクニカ社製、SR-6517型)と液体用電極(安藤電気社製、LE-21型)を用いて比抵抗の測定を行った。
 尚、実施例において化合物の記載について以下の略号を用いる。
(側鎖及び連結基)
 -n    -CnH2n+1 炭素数nの直鎖状のアルキル基
 n-    CnH2n+1- 炭素数nの直鎖状のアルキル基
 -On   -OCnH2n+1 炭素数nの直鎖状のアルコキシル基
 nO-   CnH2n+1O- 炭素数nの直鎖状のアルコキシル基
 -V    -CH=CH2
 V-    CH2=CH-
 -V1   -CH=CH-CH3
 1V-   CH3-CH=CH-
 -2V   -CH2-CH2-CH=CH3
 V2-   CH3=CH-CH2-CH2-
 -2V1   -CH2-CH2-CH=CH-CH3
 1V2-   CH3-CH=CH-CH2-CH2
 -1O-   -CH2O-
 -O1-   -OCH2-
(環構造)
Figure JPOXMLDOC01-appb-C000033
[硬化性樹脂組成物の作成]
(合成例A)変性エポキシ樹脂(A)の合成
 溶媒に窒素をパージしながら還流温度まで加熱昇温した。これに、グリシジルメタアクリレート100重量部、メチルメタアクリレート40重量部、ヒドロキシルエチルメタアクリレート20重量部と、スチレン40重量部、ノルマルブチルメタアクリレート200重量部、重合開始剤(日油社製、パーブチルO、10時間半減期温度72.1℃、t-ブチルパーオキシ-2-エチルヘキサノエート)40重量部とが溶解した混合液を、5時間かけて滴下し、さらにその後100℃で5時間保持した。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為に、反応物をクオルツとカオリンの天然結合物(ホフマンミネラル社製、シリチンV85)30重量部が充填されたカラムで濾過し、溶媒を除去することによって、グリシジル基及びヒドロキシル基を含有した、変性エポキシ樹脂(A)を得た。
 変性エポキシ樹脂(A)の重量平均分子量Mw(GPCにて測定)は、4020であり、エポキシ当量は、640g/eq、水素結合性官能基価は3.4×10-4 mol/gであった。
(合成例B)アクリル変性エポキシ樹脂(B)の合成
 ビスフェノールF型エポキシ樹脂(新日鐵化学社製、YDF-8170C)100重量部、アクリル酸22.5重量部、トリエタノールアミン0.125重量部を溶媒に均一に溶解し、この溶液を、110℃で、5時間還流攪拌した。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、シリチンV85)30重量部が充填されたカラムで濾過し、溶媒を除去することによって、アクリル変性エポキシ樹脂(B)を得た。
 アクリル変性エポキシ樹脂(B)の重量平均分子量Mw(GPCにて測定)は、392であり、水素結合性官能基価は2.6×10-3 mol/gであった。また、炭素-炭素二重結合量は、2.6×10-3 mol/gであった。
(合成例C)モノアクリレート変性エポキシ樹脂(C)の合成
 ビスフェノールF型エポキシ樹脂(新日鐵化学社製、YDF-8170C)100重量部、アクリル酸22.5重量部、トリエタノールアミン0.125重量部を溶媒に均一に溶解し、110℃、5時間還流攪拌した。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、シリチンV85)30重量部が充填されたカラムで濾過し、溶媒を除去することによって、モノアクリレート変性エポキシ樹脂(C)を得た。
 モノアクリレート変性エポキシ樹脂(C)の重量平均分子量Mw(GPCにて測定)は、398であり、水素結合性官能基価は2.5×10-3 mol/g、炭素-炭素二重結合量は、2.5×10-3 mol/gであった。
(合成例D)ジアクリレート変性エポキシ樹脂(D)の合成
 ビスフェノールF型エポキシ樹脂(新日鐵化学社製、YDF-8170C)100重量部、アクリル酸45重量部、トリエタノールアミン0.20重量部を溶媒に均一に溶解し、110℃、5時間還流攪拌した。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、シリチンV85)30重量部が充填されたカラムで濾過し、溶媒を除去することによって、ジアクリレート変性エポキシ樹脂(D)を得た。
 ジアクリレート変性エポキシ樹脂(D)の重量平均分子量Mw(GPCにて測定)は、484であり、水素結合性官能基価は4.3×10-3 mol/g、炭素-炭素二重結合量は、4.3×10-3 mol/gであった。
(合成例E)ジアクリレート変性エポキシ樹脂(E)の合成
 レゾルシノールジグリシジルエーテル(ナガセケムテックス社製、デナコールEX-201、エポキシ当量117eq/g)117重量部、アクリル酸79重量部、ターシャリーブチルアンモニウムブロマイド1重量部を溶媒に均一に溶解し、当該溶液を90℃で2時間攪拌した後、さらに還流させながら6時間攪拌して反応させた。その後、超純水で反応溶液を水洗した後、溶媒を除去し、得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、シリチンV85)30重量部が充填されたカラムで濾過し、溶媒を除去することによって、ジアクリレート変性エポキシ樹脂(E)を得た。
 ジアクリレート変性エポキシ樹脂(E)の重量平均分子量Mw(GPCにて測定)は、366であり、水素結合性官能基量は5.3×10-3 mol/g、炭素-炭素二重結合量は、5.3×10-3 mol/gであった。
(合成例F)ジアクリレート変性エポキシ樹脂(F)の合成
 ジフェニルエーテル型エポキシ樹脂(新日鐵化学社製:YSLV-80DE、融点84℃)100重量部、重合禁止剤(p-メトキシフェノール)0.2重量部、反応触媒(トリエチルアミン)0.2重量部、アクリル酸40重量部、を溶媒に均一に溶解し、空気を送り込みながら、当該溶液を80℃で2時間、さらに還流させながら36時間攪拌して反応させた。その後、超純水で反応溶液を水洗した後、溶媒を除去し、得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、シリチンV85)30重量部が充填されたカラムで濾過し、溶媒を除去することによって、ジアクリレート変性エポキシ樹脂(F)を得た。
 ジアクリレート変性エポキシ樹脂(F)の重量平均分子量Mw(GPCにて測定)は、459であり、水素結合性官能基価は3.7×10-3 mol/g、炭素-炭素二重結合量は、3.7×10-3 mol/gであった。
(合成例G)ジアクリレート変性エポキシ樹脂(G)の合成
 無水フタル酸296.2g(2モル)、2-ヒドロキシエチルアクリレートの6-ヘキサノリド付加物(ダイセル化学社製、プラクセルFA3、分子量:459g/mol)917.0g(2モル)、トリエチルアミン4g、ヒドロキノン0.9gを溶媒に均一に溶解し、110℃で攪拌して反応させた。反応混合物の酸価が96mgKOH/gとなったところで、反応温度を90℃にした。続いて、当該反応混合物にビスフェノールAジグリシジルエーテル680.82g(2モル)、テトラブチルアンモニウムブロマイド1.6gを添加し、反応混合物の酸価が2mgKOH/gとなるまで90℃で反応を行った。
 その後、反応混合物にアクリル酸144.1g(2モル)、ヒドロキノン1.8gをさらに加え、フラスコ内に空気を送り込みながら、80℃で2時間反応させ、さらに温度を90℃に上げて反応を継続した。反応混合物の酸価が2mgKOH/gとなるまで反応を行った。反応終了後の混合物を、超純水で反応溶液を水洗した後、溶媒を除去し、得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、シリチンV85)30重量部が充填されたカラムで濾過し、溶媒を除去することによって、ジアクリレート変性エポキシ樹脂(G)を得た。
 ジアクリレート変性エポキシ樹脂(G)の重量平均分子量Mw(GPCにて測定)は、1005であり、水素結合性官能基価は1.9×10-3 mol/g、炭素-炭素二重結合量は、1.9×10-3 mol/gであった。
(合成例H)部分アクリル変性エポキシ樹脂(H)の合成
 ジフェニルエーテル型エポキシ樹脂(新日鐵化学社製、YSLV-80DE、融点84℃)100重量部、重合禁止剤(p-メトキシフェノール)0.2重量部、アクリル酸20重量部、反応触媒(トリエチルアミン)0.2重量部を溶媒に均一に溶解し、空気を送り込みながら、80℃で2時間攪拌、さらに還流させながら24時間攪拌して反応させた。反応終了後、反応混合物をカラム精製した後、超純水を使って水洗し、溶媒を除去し、得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、シリチンV85)30重量部が充填されたカラムで濾過し、溶媒を除去することによって、エポキシ基が50%アクリル化された部分アクリル変性エポキシ樹脂(H)を得た。
 部分アクリル変性エポキシ樹脂(H)の重量平均分子量Mw(GPCにて測定)は、386であり、水素結合性官能基価は2.2×10-3 mol/g、炭素-炭素二重結合量は、2.2×10-3 mol/gであった。
(合成例I)部分メタクリル変性エポキシ樹脂(I)の合成
 ビスフェノールE型エポキシ樹脂R-1710(プリンテック社製)163重量部を溶媒に溶解させ、この溶液に重合禁止剤としてp-メトキシフェノール0.5重量部、反応触媒としてトリエチルアミン0.5重量部、及び、メタクリル酸40重量部を、空気を送り込みながら90℃で5時間還流攪拌して反応させた。
 反応終了後、反応混合物をカラム精製した後、超純水を使って水洗し、溶媒を除去し、得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、シリチンV85)30重量部が充填されたカラムで濾過し、溶媒を除去することによって、エポキシ基が50%メタアクリル化された部分メタクリル変性エポキシ樹脂(I)を得た。
 部分メタクリル変性エポキシ樹脂(I)の重量平均分子量Mw(GPCにて測定)は、436であり、水素結合性官能基価は4.6×10-3 mol/g、炭素-炭素二重結合量は、2.3×10-3 mol/gであった。
(合成例J)ウレタン変性メタクリルエポキシ樹脂(J)の合成
 トリメチロールプロパン1100重量部、重合禁止剤として3,5-ジブチル-4-ヒドロキシトルエン1.6重量部、反応触媒としてジブチル錫ジラウリレート0.08重量部、ジフェニルメタンジイソシアネート6080重量部を加え、60℃で還流攪拌しながら2時間反応させた。次に、2-ヒドロキシエチルメタクリレート235重量部及びグリシドール910重量部を加え、空気を送り込みながら90℃で還流攪拌しながら2時間反応させた。
 反応終了後、反応混合物をカラム精製した後、超純水を使って水洗し、溶媒を除去し、得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、シリチンV85)30重量部が充填されたカラムで濾過し、溶媒を除去することによって、ウレタン変性メタクリルエポキシ樹脂(J)を得た。
 ウレタン変性メタクリルエポキシ樹脂(J)の重量平均分子量Mw(GPCにて測定)は、4188であり、水素結合性官能基価は2.9×10-3 mol/g、炭素-炭素二重結合量は、2.2×10-4 mol/gであった。
[シール剤の作成]
 シール剤(1)
 O-クレゾールノボラックエポキシ樹脂(日本化薬社製、EOCN-1020-20)100重量部を、変性エポキシ樹脂(A)160重量部に加熱溶解させて均一溶液とし、冷却後、潜在性熱硬化剤としてヒドラジド系硬化剤(味の素ファインテクノ社製、アミキュアVDH-J)60重量部、及び、イミダゾール系硬化剤(四国化成社製、キュアゾール2E4MZ-A)4重量部、フィラーとして球状シリカ(アドマテックス社製、アドマファインAO-802)72重量部、添加剤としてシランカップリング剤(γ-グリシドキシプロピルトリメトキシシラン、信越化学工業社製、KBM-403)4重量部を加え、遊星式攪拌装置にて混合攪拌した後、セラミックス3本ロールにて混合し、更に遊星式攪拌装置にて脱泡、混合攪拌し、これをシール剤(1)とした。得られたシール剤(1)の特性を以下に示す。
水素結合性官能基価(mol/g):2.1×10-4
硬化前のシール剤の比抵抗(Ω・cm):4.8×10
硬化後のシール剤の体積抵抗率(Ω・cm):1.2×1013
 シール剤(2)
 O-クレゾールノボラック型固形エポキシ樹脂(日本化薬社製、EOCN-1020-75、エポキシ当量215g/eq)を100重量部、PO変性トリスフェノールトリアクリレート(分子量802、炭素-炭素二重結合量は0.0037mol/g)を433重量部、アクリル変性エポキシ樹脂(B)を217重量部、を加熱溶解させて得た混合物に、潜在性熱硬化剤としてヒドラジド系硬化剤(味の素社製、アミキュアVDH)を42重量部、フィラーとして球状シリカ(シーフォスターS-30:日本触媒製)167重量部、メタクリル酸-アルキル共重合体微粒子(日本ゼオン社製、F-325)42重量部を加え、遊星式攪拌装置にて混合攪拌した後、セラミックス3本ロールにて混合し、更に遊星式攪拌装置にて脱泡、混合攪拌した後、熱ラジカル重合開始剤(アルケマ吉富社製、ルペロックス575、10時間半減期温度75℃)8.3重量部を加え遊星式攪拌装置にて脱泡、混合攪拌し、これをシール剤(2)とした。得られたシール剤(2)の特性を以下に示す。
エポキシ基と(メタ)アクリル基の当量比:31:69
水素結合性官能基価(mol/g):7.4×10-4
炭素-炭素二重結合量(mol/g):2.9×10-3
硬化前のシール剤の比抵抗(Ω・cm):7.7×10
硬化後のシール剤の体積抵抗率(Ω・cm):1.5×1013
 シール剤(3)
 O-クレゾールノボラックエポキシ樹脂(日本化薬社製、EOCN-1020-55)100重量部を、モノアクリレート変性エポキシ樹脂(C)700重量部に100℃で1時間加熱溶解させて均一溶液とした。冷却後さらに、ジアクリレート変性エポキシ樹脂(D)800重量部、パラベンゾキノン0.2部(精工化学社製)、無機フィラーとして球状シリカ(アドマファインA-802、アドマテックス社製)を300重量部、熱潜在性エポキシ硬化剤(味の素社製、アミキュアVDH-J)60重量部、及び、添加剤としてシランカップリング剤(γ-グリシドキシプロピルトリメトキシシラン、信越化学工業社製、KBM-403)20重量部を加え、遊星式攪拌装置にて混合攪拌した後、セラミックス3本ロールにて混合し、更に遊星式攪拌装置にて脱泡、混合攪拌した後、熱ラジカル重合開始剤(和光純薬製、 V-601、ジメチル2,2’-アゾビス(イソブチレート)、10時間半減期温度66℃)20重量部を加え遊星式攪拌装置にて脱泡、混合攪拌し、10重量部シール剤(3)を得た。得られたシール剤(3)の特性を以下に示す。
エポキシ基と(メタ)アクリル基の当量比:31:69
水素結合性官能基価(mol/g):3.2×10-3
炭素-炭素二重結合量(mol/g):3.2×10-3
硬化前のシール剤の比抵抗(Ω・cm):4.9×10
硬化後のシール剤の体積抵抗率(Ω・cm):2.3×1013
 シール剤(4)
 ビスフェノールA型エポキシ樹脂(JER製、エピコート828EL、エポキシ当量190g/eq)70重量部、熱潜在性エポキシ硬化剤(味の素社製、アミキュアVDH)10重量部、イミダゾール系硬化剤(2-ヒドロキシメチルイミダゾール)3重量部、アクリル変性エポキシ樹脂(B)30重量部、二酸化ケイ素(日本触媒化学社製S-100)15重量部、微粒子ポリマー(ゼオン化成社製、F325 一次粒子径0.5μm)20重量部、およびシランカップリング剤(γ-グリシドキシプロピルトリメトキシシラン、信越化学工業社製、KBM-403)0.5重量部を加え、遊星式攪拌装置にて混合攪拌した後、セラミックス3本ロールにて混合し、更に遊星式攪拌装置にて脱泡、混合攪拌し、シール剤(4)を得た。得られたシール剤(4)の特性を以下に示す。
エポキシ基と(メタ)アクリル基の当量比:88:12
水素結合性官能基価(mol/g):7.7×10-4
炭素-炭素二重結合量(mol/g):7.7×10-4
硬化前のシール剤の比抵抗(Ω・cm):8.6×10
硬化後のシール剤の体積抵抗率(Ω・cm):1.3×1013
 シール剤(5)
 ビスフェノールA型エポキシ樹脂変性ジアクリレート(共栄社化学社製、エポキシエステル3002A 分子量600)25重量部、アクリル変性エポキシ樹脂(B)70重量部、O-クレゾールノボラック型固形エポキシ樹脂(EOCN-1020-75、日本化薬社製、エポキシ当量215g/eq)5重量部、潜在性エポキシ硬化剤(味の素社製、アミキュアVDH、融点120℃)5重量部、球状シリカ(日本触媒製、シーフォスターS-30)20重量部を加え、遊星式攪拌装置にて混合攪拌した後、セラミックス3本ロールにて混合し、更に遊星式攪拌装置にて脱泡、混合攪拌した後、熱ラジカル重合開始剤(アルケマ吉富社製、ルペロックス575、10時間半減期温度75℃)1重量部を加え遊星式攪拌装置にて脱泡、混合攪拌し、これをシール剤(5)とした。得られたシール剤(5)の特性を以下に示す。
エポキシ基と(メタ)アクリル基の当量比:43:57
水素結合性官能基価(mol/g):2.6×10-3
炭素-炭素二重結合量(mol/g):2.6×10-3
硬化前のシール剤の比抵抗(Ω・cm):3.1×10
硬化後のシール剤の体積抵抗率(Ω・cm):2.1×1013
 シール剤(6)
 O-クレゾールノボラック型固形エポキシ樹脂(日本化薬社製、EOCN-1020-75、エポキシ当量215g/eq)15重量部と、ビスフェノールA型エポキシ樹脂変性ジアクリレート(共栄社化学社製、エポキシエステル3002A:分子量600)45重量部を100℃で1時間加熱溶解し、均一な溶液とした。次に、この溶液を冷却した後に、アクリル変性エポキシ樹脂(B)20重量部、ラジカル連鎖移動剤(昭和電工社製、カレンズMT NR-1,1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン)0.5重量部、球状シリカ(日本触媒社製、シーフォスターS-30)15重量部、潜在性エポキシ硬化剤(味の素社製、アミキュアVDH、融点120℃)3重量部、および添加剤としてシランカップリング剤(γ-グリシドキシプロピルトリメトキシシラン、信越化学工業社製、KBM-403)1重量部を加え、遊星式攪拌装置にて混合攪拌した後、セラミックス3本ロールにて混合し、更に遊星式攪拌装置にて脱泡、混合攪拌した。その後、熱ラジカル重合開始剤(和光純薬製、 V-601、ジメチル2,2’-アゾビス(イソブチレート)、10時間半減期温度66℃)0.5重量部加えてから、遊星式攪拌機によって真空脱泡、混合攪拌し、シール剤(6)を調製した。得られたシール剤(6)の特性を以下に示す。
エポキシ基と(メタ)アクリル基の当量比:37:63
水素結合性官能基価(mol/g):2.51×10-3
炭素-炭素二重結合量(mol/g):2.51×10-3
硬化前のシール剤の比抵抗(Ω・cm):1.3×10
硬化後のシール剤の体積抵抗率(Ω・cm):1.9×1013
 シール剤(7)
 ジアクリレート変性エポキシ樹脂(E)20重量部、ジアクリレート変性エポキシ樹脂(F)25重量部、ジアクリレート変性エポキシ樹脂(G)25重量部、部分アクリル変性エポキシ樹脂(H)25重量部、o-クレゾールノボラック型固形エポキシ樹脂(日本化薬社製、EOCN-1020-75、エポキシ当量215g/eq)5重量部、球状シリカ(日本触媒製、シーフォスターS-30)25重量部、潜在性エポキシ硬化剤(味の素ファインテクノ社製、アミキュアVDH)8重量部、メタクリル酸-アルキル共重合体微粒子(日本ゼオン社製、F-325)2重量部を、遊星式攪拌装置にて混合攪拌した後、セラミックス3本ロールにて混合し、更に遊星式攪拌装置にて脱泡、混合攪拌した。その後、熱ラジカル重合開始剤(和光純薬製、V-65、2,2’-アゾビス(2,4-ジメチルバレロニトリル)10時間半減期温度51℃)1重量部を加えてから、遊星式攪拌機によって真空脱泡、混合攪拌し、シール剤(7)を調製した。得られたシール剤(7)の特性を以下に示す。
エポキシ基と(メタ)アクリル基の当量比:19:81
炭素-炭素二重結合量(mol/g):3.01×10-3
水素結合性官能基価(mol/g):3.01×10-3
硬化前のシール剤の比抵抗(Ω・cm):3.5×10
硬化後のシール剤の体積抵抗率(Ω・cm):2.2×1013
 シール剤(8)
 メタクリル酸変性ビスフェノールE型エポキシ樹脂(I)50重量部、ウレタン変性メタクリルエポキシ樹脂(J)50重量部、球状シリカ(アドマテックス社製、SO-C1)35重量部、潜在性エポキシ硬化剤(味の素ファインテクノ社製、アミキュアVDH)8重量部、シランカップリング剤((信越化学社製 γ-アクリロキシプロピルトリメトキシシラン、KBM5103)1.5重量部、メタクリル酸-アルキル共重合体微粒子(日本ゼオン社製、F-325)を、遊星式攪拌装置にて混合攪拌した後、セラミックス3本ロールにて混合し、更に遊星式攪拌装置にて脱泡、混合攪拌した。その後、熱ラジカル重合開始剤(和光純薬製、V-65、10時間半減期温度51℃)0.5重量部を加えてから、遊星式攪拌機によって真空脱泡、混合攪拌し、シール剤(8)を調製した。得られたシール剤(8)の特性を以下に示す。
エポキシ基と(メタ)アクリル基の当量比:60:40
炭素-炭素二重結合量(mol/g):1.26×10-3
水素結合性官能基価(mol/g):3.75×10-3
硬化前のシール剤の比抵抗(Ω・cm):1.2×10
硬化後のシール剤の体積抵抗率(Ω・cm):1.8×1013
 比較シール剤(C1)
 ウレタンアクリレート(共栄社化学社製、AH-600)35重量部、2-ヒドロキシブチルアクリレート15重量部、イソボニルアクリレート50重量部、熱ラジカル重合開始剤(和光純薬製、V-65、10時間半減期温度51℃)0.5重量部からなる硬化性樹脂組成物を配合し、遊星式攪拌装置にて攪拌した後、セラミック3本ロールにて均一に混合させて、光硬化型の比較シール剤(C1)を得た。得られた比較シール剤(C1)の特性を以下に示す。
水素結合性官能基価:2.2×10-5
硬化前のシール剤の比抵抗(Ω・cm):5.0×10
硬化後のシール剤の体積抵抗率(Ω・cm):2.3×1013
 比較シール剤(C2)
 ビスフェノールAエポキシ樹脂(三菱化学社製、jER828US)50重量部、ヒドラジド系硬化剤(日本ヒドラジン工業社製、NDH)25重量部からなる硬化性樹脂組成物を配合し、遊星式攪拌装置にて攪拌した後、セラミック3本ロールにて均一に混合させて、比較シール剤(C2)を得た。得られた比較シール剤(C2)の特性を以下に示す。
水素結合性官能基価:2.7×10-7
硬化前のシール剤の比抵抗(Ω・cm):5.0×1010
硬化後のシール剤の体積抵抗率(Ω・cm):3.0×1013
(実施例1~8)
 第一及び第二の基板に透明電極を形成し、第二の基板にブラックマトリックス(BM)を形成し、各々の基板の対向側に垂直配向性の配向膜(SE-5300)を形成したのち配向処理を行った。シール剤(1)~(8)をディスペンス用のシリンジに充填し、脱泡処理を行ってから、ディスペンサーにて、それぞれシール剤を長方形の枠を描く様に、第一の基板の配向膜側に塗布した。シール剤が未硬化の状態で以下の表の液晶組成物1の微小滴を第一の基板の枠内全面に滴下塗布し、直ちに真空張り合わせ装置を用い、第二の基板を5Paの真空下にて貼り合わせた。真空解除後、押しつぶされたシール剤の線幅が約1.2mmであり、そのうちの0.3mmがBMと重なるように描画条件および基板間のギャップを調整した。直ちに、貼り合わせた液晶表示装置を150℃の恒温装置により90分熱処理を行い熱硬化させ、実施例1~5のVA方式の液晶表示装置を作製した(dgap=3.5μm)。得られた液晶表示装置のVHRを測定した。また、得られた液晶表示装置の配向ムラ及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 液晶組成物1は、TV用液晶組成物として実用的な81.0℃の液晶層温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び適切なΔnを有していることがわかる。
 実施例1~8の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラがないか、又はあってもごく僅かであり許容できるレベルであった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例9~24)
 実施例1と同様に以下の表に示す液晶組成物2~3を狭持し、シール剤(1)~(8)を用いて実施例9~24の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
 液晶組成物2、3は、TV用液晶組成物として実用的な液晶層温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び適切なΔnを有していることがわかる。
 実施例9~24の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラは認められなかった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例25~48)
 実施例1と同様に以下の表に示す液晶組成物4~6を狭持し、シール剤(1)~(8)を用いて実施例25~48の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
 液晶組成物4~6は、TV用液晶組成物として実用的な液晶層温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び適切なΔnを有していることがわかる。
 実施例25~48の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラがないか、又はあってもごく僅かであり許容できるレベルであった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例49~72)
 実施例1と同様に以下の表に示す液晶組成物7~9を狭持し、シール剤(1)~(8)を用いて実施例49~72の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
 液晶組成物7~9は、TV用液晶組成物として実用的な液晶層温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び適切なΔnを有していることがわかる。
 実施例49~72の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラがないか、又はあってもごく僅かであり許容できるレベルであった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例73~96)
 実施例1と同様に以下の表に示す液晶組成物10~12を狭持し、シール剤(1)~(8)を用いて実施例73~96の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
 液晶組成物10~12は、TV用液晶組成物として実用的な液晶層温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び適切なΔnを有していることがわかる。
 実施例73~96の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラがないか、又はあってもごく僅かであり許容できるレベルであった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例97~120)
 実施例1と同様に以下の表に示す液晶組成物13~15を狭持し、シール剤(1)~(8)を用いて実施例97~120の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
 液晶組成物13~15は、TV用液晶組成物として実用的な液晶層温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び適切なΔnを有していることがわかる。
 実施例97~120の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラがないか、又はあってもごく僅かであり許容できるレベルであった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例121~144)
 実施例1と同様に以下の表に示す液晶組成物16~18を狭持し、シール剤(1)~(8)を用いて実施例121~144の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
 液晶組成物16~18は、TV用液晶組成物として実用的な液晶層温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び適切なΔnを有していることがわかる。
 実施例121~144の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラがないか、又はあってもごく僅かであり許容できるレベルであった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例145~168)
 実施例1と同様に以下の表に示す液晶組成物19~21を狭持し、シール剤(1)~(8)を用いて実施例145~168の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
 液晶組成物19~21は、TV用液晶組成物として実用的な液晶層温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び適切なΔnを有していることがわかる。
 実施例145~168の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラがないか、又はあってもごく僅かであり許容できるレベルであった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例169~192)
 実施例1と同様に以下の表に示す液晶組成物22~24を狭持し、シール剤(1)~(8)を用いて実施例169~192の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
 液晶組成物22~24は、TV用液晶組成物として実用的な液晶層温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び適切なΔnを有していることがわかる。
 実施例169~192の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラがないか、又はあってもごく僅かであり許容できるレベルであった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例193~216)
 実施例1と同様に以下の表に示す液晶組成物25~27を狭持し、シール剤(1)~(8)を用いて実施例193~216の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000097
 液晶組成物25~27は、TV用液晶組成物として実用的な液晶層温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び適切なΔnを有していることがわかる。
 実施例193~216の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラがないか、又はあってもごく僅かであり許容できるレベルであった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例217~224)
 液晶組成物1に2-メチル-アクリル酸4-{2-[4-(2-アクリロイルオキシ-エチル)-フェノキシカルボニル]-エチル}-ビフェニル-4’-イルエステル0.3質量%を混合し液晶組成物28とし、実施例1と同様にこの液晶組成物28を挟持し、シール剤(1)~(8)を用いて封入した。電極間に駆動電圧を印加したまま、紫外線を600秒間照射(3.0J/cm)し、重合処理を行い、実施例217~224のPSVA方式の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
 実施例217~224の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラが認められなかった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例225~232)
 液晶組成物13にビスメタクリル酸ビフェニル‐4,4’‐ジイルを0.3質量%混合し液晶組成物29とし、実施例1と同様にこの液晶組成物29を挟持し、シール剤(1)~(8)を用いて封入した。電極間に駆動電圧を印加したまま、紫外線を600秒間照射(3.0J/cm)し、重合処理を行い、実施例225~232のPSVA方式の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000101
 実施例225~232の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラが認められなかった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例233~240)
 液晶組成物19にビスメタクリル酸 3‐フルオロビフェニル‐4,4’‐ジイルを0.3質量%混合し液晶組成物30とし、実施例1と同様にこの液晶組成物30を挟持し、シール剤(1)~(8)を用いて封入した。電極間に駆動電圧を印加したまま、紫外線を600秒間照射(3.0J/cm)し、重合処理を行い、実施例233~240のPSVA方式の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000103
 実施例233~240の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラがないか、又はあってもごく僅かであり許容できるレベルであった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例241~264)
 実施例1と同様に以下の表に示す液晶組成物31~33を狭持し、シール剤(1)~(8)を用いて実施例241~264の液晶表示装置を作成し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000106
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000108
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000110
 実施例241~264の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラがないか、又はあってもごく僅かであり許容できるレベルであった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例265~280)
 以下の表に示す液晶組成物及び重合性液晶組成物を用いた以外は実施例1と同様にして実施例265~280の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
 実施例265~280の液晶表示装置は、高いVHRを実現できた。また、配向ムラ評価においても、配向ムラがないか、又はあってもごく僅かであり許容できるレベルであった。更に焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(比較例1~15)
 実施例1において、液晶組成物1を以下の表に示す比較液晶組成物1~3に代えた以外は同様にして比較例1~15のVA方式の液晶表示装置を作製し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
 比較例1~24の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRが低くなってしまった。また、配向ムラ評価においても、配向ムラの発生が認められ許容できるレベルではなかった。更に焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(比較例25~48)
 比較液晶組成物1を以下の表に示す比較液晶組成物4~6に代えた以外は比較例1と同様にして比較例25~48のVA方式の液晶表示装置を作製し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000129
 比較例25~48の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRが低くなってしまった。また、配向ムラ評価においても、配向ムラの発生が認められ許容できるレベルではなかった。更に焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(比較例49~72)
 比較液晶組成物1を以下の表に示す比較液晶組成物7~9に代えた以外は比較例1と同様にして比較例49~72のVA方式の液晶表示装置を作製し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000136
 比較例49~72の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRが低くなってしまった。また、配向ムラ評価においても、配向ムラの発生が認められ許容できるレベルではなかった。更に焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(比較例73~88)
 比較液晶組成物1を以下の表に示す比較液晶組成物10~11に代えた以外は比較例1と同様にして比較例73~88のVA方式の液晶表示装置を作製し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000139
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000141
 比較例73~88の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRが低くなってしまった。また、配向ムラ評価においても、配向ムラの発生が認められ許容できるレベルではなかった。更に焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(比較例89~112)
 比較液晶組成物1を以下の表に示す比較液晶組成物12~14に代えた以外は比較例1と同様にして比較例89~112のVA方式の液晶表示装置を作製し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000142
Figure JPOXMLDOC01-appb-T000143
Figure JPOXMLDOC01-appb-T000144
Figure JPOXMLDOC01-appb-T000145
Figure JPOXMLDOC01-appb-T000146
Figure JPOXMLDOC01-appb-T000147
Figure JPOXMLDOC01-appb-T000148
 比較例89~112の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRが低くなってしまった。また、配向ムラ評価においても、配向ムラの発生が認められ許容できるレベルではなかった。更に焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(比較例113~120)
 比較液晶組成物1を以下の表に示す比較液晶組成物15に代えた以外は比較例1と同様にして比較例113~120のVA方式の液晶表示装置を作製し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000149
Figure JPOXMLDOC01-appb-T000150
Figure JPOXMLDOC01-appb-T000151
 比較例113~120の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRが低くなってしまった。また、配向ムラ評価においても、配向ムラの発生が認められ許容できるレベルではなかった。更に焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(比較例121~136)
 実施例1、6、36、61、66、91、96及び126において、シール剤を比較シール剤(C1)及び(C2)に代えた以外は同様にして比較例121~136の液晶表示装置を作製し、そのVHRを測定した。また、その液晶表示装置の配向ムラ評価及び焼き付き評価を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000152
Figure JPOXMLDOC01-appb-T000153
Figure JPOXMLDOC01-appb-T000154
Figure JPOXMLDOC01-appb-T000155
 比較例121~136の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRが低くなってしまった。また、配向ムラ評価においても、配向ムラの発生が認められ許容できるレベルではなかった。更に焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。

Claims (21)

  1. 第一の基板と、第二の基板と、前記第一の基板と第二の基板の間に液晶組成物を含む液晶層を狭持し、前記第一の基板と第二の基板が熱によって硬化する硬化性樹脂組成物の硬化物を介して接合されている液晶表示装置であって、
    前記液晶組成物が一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表す。)で表される化合物を10~50%含有し、一般式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRはそれぞれ独立して炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Z及びZはそれぞれ独立して単結合、-CH=CH-、-C≡C-、-CHCH-、-(CH-、-COO-、-OCO-、-OCH-、-CHO-、-OCF-又は-CFO-を表し、B及びCはそれぞれ独立してフッ素置換されていてもよい、1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、m及びnはそれぞれ独立して0~4の整数を表し、m+n=1~4である。)で表される化合物を35~80重量%含有する液晶組成物であり、
    前記硬化性樹脂組成物が、1分子内に少なくとも一つのエポキシ基を有し、かつ重量平均分子量が300~10000である化合物を含有する硬化性樹脂組成物である液晶表示装置。
  2. 前記硬化性樹脂組成物が熱硬化剤を含有する硬化性樹脂組成物である請求項1記載の液晶表示装置。
  3. 前記硬化性樹脂組成物がシランカップリング剤を含有する硬化性樹脂組成物である請求項1又は2に記載の液晶表示装置。
  4. 前記硬化性樹脂組成物がフィラーを含有する硬化性樹脂組成物である請求項1~3の何れか一項に記載の液晶表示装置。
  5. 前記硬化性樹脂組成物が樹脂微粒子を含有する硬化性樹脂組成物である請求項1~4の何れか一項に記載の液晶表示装置。
  6. 前記硬化性樹脂組成物における水素結合性官能基価が1×10-4~5×10-2mol/gである請求項1~5の何れか一項に記載の液晶表示装置。
  7. 前記1分子内に少なくとも一つのエポキシ基を有し、かつ重量平均分子量が300~10000である化合物が、更に1分子内に少なくとも一つのエチレン性不飽和結合を有する化合物である請求項1~6の何れか一項に記載の液晶表示装置。
  8. 前記1分子内に少なくとも一つのエポキシ基を有し、かつ重量平均分子量が300~10000である化合物が、1分子内に少なくとも一つの(メタ)アクリル基を有する化合物である請求項7記載の液晶表示装置。
  9. 前記1分子内に(メタ)アクリル基とエポキシ基とをそれぞれ少なくとも1つ有する化合物が(メタ)アクリル酸変性エポキシ樹脂及び/又はウレタン変性(メタ)アクリルエポキシ樹脂である請求項8記載の液晶表示装置。
  10. 前記硬化性樹脂組成物がエチレン性不飽和結合を有する化合物を含有する硬化性樹脂組成物である請求項1~9の何れか一項に記載の液晶表示装置。
  11. 前記硬化性樹脂組成物が(メタ)アクリロイルオキシ基を有する化合物を含有する硬化性樹脂組成物である請求項10記載の液晶表示装置。
  12. 前記硬化性樹脂組成物中の炭素-炭素二重結合量が、1×10-3mol/g~5×10-3mol/g以下である請求項7~11のいずれか一項に記載の液晶表示装置。
  13. 前記硬化性樹脂組成物が、エポキシ基と(メタ)アクリル基の当量比が15:85~95:5である請求項8、9又は11に記載の液晶表示装置。
  14. 前記液晶組成物が、更に一般式(III)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、D、E及びFはそれぞれ独立して、フッ素置換されていてもよい1,4-フェニレン基又はトランス-1,4-シクロヘキシレンを表し、Zは単結合、-OCH-、-OCO-、-CHO-又は-COO-を表し、nは0、1又は2を表す。ただし、一般式(I)、一般式(II-1)及び一般式(II-2)で表される化合物を除く。)で表される化合物を含有する請求項1~13のいずれか一項に記載の液晶表示装置。
  15. 一般式(I)において、Aがトランス-1,4-シクロヘキシレン基を表す化合物、及びAが1,4-フェニレン基を表す化合物をそれぞれ少なくとも1種以上含有する請求項1~14のいずれか一項に記載の液晶表示装置。
  16. 前記液晶組成物が、一般式(II-1)及び/又は一般式(II-2)で表される化合物を含有する請求項1~15のいずれか一項に記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R及びRはそれぞれ独立して炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Z及びZはそれぞれ独立して単結合、-CH=CH-、-C≡C-、-CHCH-、-(CH-、-COO-、-OCO-、-OCH-、-CHO-、-OCF-又は-CFO-を表し、m1、m2及びn2はそれぞれ独立して0又は1を表す。)
  17. 前記液晶組成物の、以下の式で表されるZ
    Figure JPOXMLDOC01-appb-M000005
    (式中、γ1は回転粘度を表し、Δnは屈折率異方性を表す。)が13000以下であり、γ1が150以下であり、Δnが0.08~0.13である請求項1~16の何れか一項に記載の液晶表示装置。
  18. 前記液晶組成物の、ネマチック液晶相上限温度が60~120℃であり、ネマチック液晶相下限温度が‐20℃以下であり、ネマチック液晶相上限温度と下限温度の差が100~150である請求項1~17の何れか一項に記載の液晶表示装置。
  19. 前記液晶組成物の比抵抗が1012(Ω・m)以上である請求項1~18の何れか一項に記載の液晶表示装置。
  20. 前記液晶層が一般式(V)
    Figure JPOXMLDOC01-appb-C000006
    (式中、X及びXはそれぞれ独立して、水素原子又はメチル基を表し、Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2から7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Zは-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CY=CY-(式中、Y及びYはそれぞれ独立して、フッ素原子又は水素原子を表す。)、-C≡C-又は単結合を表し、Cは1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表し、式中の全ての1,4-フェニレン基は、任意の水素原子がフッ素原子により置換されていても良い。)で表される重合性化合物を含有する液晶組成物を重合してなる重合体により構成される請求項1~19のいずれか一項に記載の液晶表示装置。
  21. 一般式(V)において、Cが単結合を表しZが単結合を表す請求項20記載の液晶表示装置。
PCT/JP2014/069411 2014-07-23 2014-07-23 液晶表示装置 WO2016013064A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167014562A KR101702530B1 (ko) 2014-07-23 2014-07-23 액정 표시 장치
JP2015547583A JP5858322B1 (ja) 2014-07-23 2014-07-23 液晶表示装置
CN201480068042.7A CN105814479B (zh) 2014-07-23 2014-07-23 液晶显示装置
US15/307,637 US20170058160A1 (en) 2014-07-23 2014-07-23 Liquid crystal display device
PCT/JP2014/069411 WO2016013064A1 (ja) 2014-07-23 2014-07-23 液晶表示装置
EP14898120.2A EP3173860B1 (en) 2014-07-23 2014-07-23 Liquid crystal display device
TW103136985A TWI558795B (zh) 2014-07-23 2014-10-27 液晶顯示裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069411 WO2016013064A1 (ja) 2014-07-23 2014-07-23 液晶表示装置

Publications (1)

Publication Number Publication Date
WO2016013064A1 true WO2016013064A1 (ja) 2016-01-28

Family

ID=55162620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069411 WO2016013064A1 (ja) 2014-07-23 2014-07-23 液晶表示装置

Country Status (7)

Country Link
US (1) US20170058160A1 (ja)
EP (1) EP3173860B1 (ja)
JP (1) JP5858322B1 (ja)
KR (1) KR101702530B1 (ja)
CN (1) CN105814479B (ja)
TW (1) TWI558795B (ja)
WO (1) WO2016013064A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054276A1 (ja) * 2007-10-25 2009-04-30 Sekisui Chemical Co., Ltd. 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
WO2011074384A1 (ja) * 2009-12-14 2011-06-23 Dic株式会社 重合性化合物含有液晶組成物及びそれを使用した液晶表示素子
JP2013124324A (ja) * 2011-12-15 2013-06-24 Mitsubishi Chemicals Corp 硬化性ポリオルガノシロキサン組成物および該組成物を硬化させてなるポリオルガノシロキサン硬化物
WO2014109266A1 (ja) * 2013-01-11 2014-07-17 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070009605A1 (en) * 1998-07-23 2007-01-11 Ignatious Francis X Encapsulation of water soluble peptides
TW200508314A (en) * 2003-06-04 2005-03-01 Sekisui Chemical Co Ltd A liquid crystal display device and curing resin composition, sealing material for the same
WO2005069067A1 (ja) * 2004-01-20 2005-07-28 Sekisui Chemical Co., Ltd. 液晶表示素子用硬化性樹脂組成物、液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
JP3826144B2 (ja) 2004-07-08 2006-09-27 積水化学工業株式会社 液晶表示素子用硬化性樹脂組成物、液晶滴下工法用シール剤、上下導通用材料及び液晶表示素子
KR100789590B1 (ko) * 2005-01-25 2007-12-28 주식회사 엘지화학 보존 안정성이 우수한 열경화성 수지 조성물
JP4981414B2 (ja) 2006-11-07 2012-07-18 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP5221963B2 (ja) 2008-01-21 2013-06-26 三井化学株式会社 液晶シール用硬化性樹脂組成物、およびこれを使用する液晶表示パネルの製造方法
US9261733B2 (en) * 2012-03-30 2016-02-16 Dic Corporation Liquid crystal display device and method for producing the same
EP2684935B1 (en) * 2012-05-23 2016-10-05 DIC Corporation Nematic liquid crystal composition and liquid crystal display element using same
US8980384B2 (en) * 2012-07-03 2015-03-17 Dic Corporation Nematic liquid crystal composition and liquid crystal display device using the same
TWI466989B (zh) * 2012-10-18 2015-01-01 Dainippon Ink & Chemicals 液晶組成物及使用其之液晶顯示元件
KR101530595B1 (ko) * 2012-11-28 2015-06-22 디아이씨 가부시끼가이샤 네마틱 액정 조성물 및 이를 사용한 액정 표시 소자
US10440907B2 (en) * 2013-07-17 2019-10-15 Monsanto Technology Llc Maize plants with improved disease resistance
KR101569129B1 (ko) * 2014-01-21 2015-11-13 디아이씨 가부시끼가이샤 액정 표시 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054276A1 (ja) * 2007-10-25 2009-04-30 Sekisui Chemical Co., Ltd. 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
WO2011074384A1 (ja) * 2009-12-14 2011-06-23 Dic株式会社 重合性化合物含有液晶組成物及びそれを使用した液晶表示素子
JP2013124324A (ja) * 2011-12-15 2013-06-24 Mitsubishi Chemicals Corp 硬化性ポリオルガノシロキサン組成物および該組成物を硬化させてなるポリオルガノシロキサン硬化物
WO2014109266A1 (ja) * 2013-01-11 2014-07-17 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル

Also Published As

Publication number Publication date
US20170058160A1 (en) 2017-03-02
EP3173860A1 (en) 2017-05-31
CN105814479B (zh) 2017-03-29
EP3173860B1 (en) 2019-06-26
CN105814479A (zh) 2016-07-27
KR101702530B1 (ko) 2017-02-03
JPWO2016013064A1 (ja) 2017-04-27
TWI558795B (zh) 2016-11-21
KR20160074007A (ko) 2016-06-27
EP3173860A4 (en) 2018-03-28
JP5858322B1 (ja) 2016-02-10
TW201604267A (zh) 2016-02-01

Similar Documents

Publication Publication Date Title
JP5598642B1 (ja) 液晶表示装置
JP5858321B1 (ja) 液晶表示装置
JP5594554B1 (ja) 液晶表示装置
JP5858322B1 (ja) 液晶表示装置
TWI512088B (zh) Liquid crystal display device
KR101569745B1 (ko) 액정 표시 장치
JP5564028B2 (ja) 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015547583

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167014562

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15307637

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014898120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898120

Country of ref document: EP