WO2014103614A1 - Dc-dcコンバータ装置 - Google Patents

Dc-dcコンバータ装置 Download PDF

Info

Publication number
WO2014103614A1
WO2014103614A1 PCT/JP2013/082124 JP2013082124W WO2014103614A1 WO 2014103614 A1 WO2014103614 A1 WO 2014103614A1 JP 2013082124 W JP2013082124 W JP 2013082124W WO 2014103614 A1 WO2014103614 A1 WO 2014103614A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
circuit board
converter device
metal frame
case
Prior art date
Application number
PCT/JP2013/082124
Other languages
English (en)
French (fr)
Inventor
達也 中澤
芳春 山下
秀則 篠原
後藤 昭弘
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US14/655,211 priority Critical patent/US9608528B2/en
Priority to DE112013006259.3T priority patent/DE112013006259T5/de
Publication of WO2014103614A1 publication Critical patent/WO2014103614A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14322Housings specially adapted for power drive units or power converters wherein the control and power circuits of a power converter are arranged within the same casing

Definitions

  • the present invention relates to a DC-DC converter device, and more particularly to a DC-DC converter device including a transformer that converts an alternating high voltage into an alternating low voltage.
  • An electric vehicle and a plug-in hybrid vehicle include an inverter device for driving a motor with a high-voltage storage battery for driving power and a low-voltage storage battery for operating auxiliary equipment such as a vehicle light and a radio.
  • a vehicle is equipped with a DC-DC converter device that performs power conversion from a high voltage storage battery to a low voltage storage battery or power conversion from a low voltage storage battery to a high voltage storage battery.
  • the DC-DC converter device includes a high voltage side switching circuit that converts a high DC voltage into an AC voltage, a transformer that converts an AC high voltage into an AC low voltage, and a low voltage that converts the low voltage AC voltage into a DC voltage.
  • the semiconductor elements and the transformer that constitute the high voltage side switching circuit and the low voltage side rectifier circuit generate heat. Since the loss increases when the temperature rises due to heat generation, the container for storing the transformer and the electronic components constituting the circuit has a heat dissipation structure.
  • a circuit board is attached to a metal base plate.
  • An opening is provided in a part of the circuit board, and a transformer is disposed in the opening and placed on the base plate.
  • a metal cover with the base plate that houses the circuit board and transformer.
  • a protruding portion protruding inward is formed on the top plate portion of the cover. The projecting portion of the cover is pressed against the transformer, and the transformer is sandwiched between the base plate and the cover (see, for example, Patent Document 1).
  • the DC-DC converter device includes a transformer, a high-voltage side circuit board assembly that is connected to the primary side of the transformer and forms a high-voltage side circuit, and a secondary side of the transformer.
  • the electromagnetic noise from the transformer is shielded by the metal frame disposed between the control circuit board assembly and the transformer. Further, since the transformer is pressed and fixed to the bottom side of the case by the metal frame via the elastic member, the possibility that the transformer is damaged due to impact or vibration can be reduced.
  • FIG. 1 is an external perspective view showing an embodiment of a DC-DC converter device of the present invention.
  • FIG. 2 is an exploded perspective view of the DC-DC converter device illustrated in FIG. 1.
  • FIG. 4 is an enlarged perspective view of the transformer illustrated in FIG. 3.
  • FIG. 5 is an exploded perspective view of the transformer illustrated in FIG. 4.
  • FIG. 3 is a perspective view of a control circuit board and a metal frame illustrated in FIG. 2. The perspective view which looked at the metal frame illustrated in FIG. 6 from the back surface. The top view of the state which accommodated the high voltage side circuit board assembly and the metal frame in the case.
  • FIG. 11 is a sectional view taken along line XII-XII in FIG. 10.
  • FIG. 1 is an external perspective view of a DC-DC converter device 100 of the present invention.
  • the DC-DC converter device 100 is applied to an electric vehicle, a plug-in hybrid vehicle, and the like.
  • the vehicle is equipped with a low voltage storage battery for operating auxiliary equipment such as a light and a radio, and the DC-DC converter device 100 converts power from a high voltage storage battery to a low voltage storage battery or a high voltage from a low voltage storage battery.
  • a circuit for performing the power conversion is housed inside the case 101.
  • an upper surface lid 102 is attached by a fastening member such as a bolt.
  • a bottom portion 101a is integrally formed on the lower side of the case 101.
  • a predetermined space is provided from the bottom portion 101a, and the lower surface lid 103 is attached to the case 101 with a fastening member such as a bolt.
  • a cooling flow path 351 through which a cooling medium such as cooling water and a cooling gas flows is formed in the space between the bottom 101a of the case 101 and the lower surface lid 103.
  • a sealing member such as an O-ring (not shown) is interposed between the case 101 and the lower surface lid 103 to seal the cooling medium.
  • the case 101, the upper surface lid 102, and the lower surface lid 103 are each formed by, for example, aluminum die casting.
  • an inlet pipe 104 serving as a guide for allowing the cooling medium to flow into the cooling flow path 351 and an outlet pipe 105 serving as a guide for causing the cooling medium to flow out from the cooling flow path 351 are attached.
  • the case 101 is provided with an input connector 106 for connecting wiring for supplying high-voltage high-voltage power from the high-voltage storage battery to the power conversion circuit inside the case 101 on the one side surface of the case 101. It is derived from an opening (not shown). On the one side surface of the case 101, an output connector 107 to which wiring for outputting a DC low voltage from the power conversion circuit inside the case 101 is connected is provided. Further, a signal connector 108 to which a signal wiring for exchanging a low-power signal with a power conversion circuit inside the case 101 is provided on the one side surface of the case 101.
  • the input connector 106, the output connector 107, and the signal connector 108 may be provided on different side surfaces of the case 101.
  • FIG. 2 is a circuit diagram of the DC-DC converter device of the present invention.
  • the DC-DC converter device 100 includes a high voltage side switching circuit (high voltage side circuit) 210 that converts a high voltage DC voltage into an AC voltage, a transformer 250 that converts an AC high voltage into an AC low voltage, and a low voltage AC voltage. Is converted to a DC voltage by a low voltage side rectifier circuit (low voltage side circuit) 220.
  • high voltage side switching circuit high voltage side circuit
  • transformer 250 that converts an AC high voltage into an AC low voltage
  • low voltage AC voltage Is converted to a DC voltage by a low voltage side rectifier circuit (low voltage side circuit) 220.
  • the DC-DC converter device 100 includes an active clamp circuit 230 for suppressing a surge voltage applied to MOSFETs (field effect transistors) S 1 and S 2 of the low-voltage side rectifier circuit 220. ing.
  • the active clamp circuit 230 includes active clamp MOSFETs S 3 and S 4 and an active clamp capacitor 209 (C c ).
  • the DC-DC converter device 100 that does not include the active clamp circuit 230 may be used.
  • a resonant choke coil 203 (L r ) is connected between the high voltage side switching circuit 210 and the transformer 250, and a high inductance is obtained by using a combined inductance of the resonance choke coil 203 and the leakage inductance of the transformer 250.
  • the zero voltage switching of the MOSFET constituting the voltage side switching circuit 210 is enabled.
  • a filter coil 207 (L 1 ) and a filter capacitor 205 (C 1 ) are provided on the output side of the low voltage side rectifier circuit 220 in order to remove noise superimposed on the output voltage.
  • the resonance choke coil 203, the filter coil 207, and the filter capacitor 205 are not necessarily required. Even if the circuit configuration in which the resonance choke coil 203 is omitted is possible, the efficiency may decrease and the noise may increase, but the DCDC converter device converts power. I can do it.
  • the high voltage side switching circuit 210, the low voltage side rectifier circuit 220, and the active clamp circuit 230 are switch-controlled by the control circuit 240.
  • the high voltage side switching circuit 210 includes four MOSFETs H 1 to H 4 connected as an H bridge type and a smoothing input capacitor 202 (C in ). Each MOSFET H 1 to H 4 is provided with a snubber capacitor in parallel. By performing phase shift PWM control on the four MOSFETs H 1 to H 4 of the high voltage side switching circuit 210, an AC voltage is generated on the primary side of the transformer 250.
  • the low-voltage side rectifier circuit 220 has two rectification phases composed of MOSFETs S 1 and S 2 and a smoothing circuit composed of a choke coil 206 (L out ) and a smoothing capacitor 208 (C out ). is doing.
  • the high potential side of each rectifying phase that is, the drain side wirings of the MOSFETs S 1 and S 2 are connected to the secondary side of the transformer 250.
  • the secondary center tap terminal of the transformer 250 is the choke coil 206 (L out ), and a smoothing capacitor 208 ( Cout ) is connected to the output side of the choke coil 206 ( Lout ).
  • FIG. 3 is an exploded perspective view of the DC-DC converter apparatus shown in FIG.
  • the case 101 is formed of an aluminum-based metal such as aluminum or an aluminum alloy, and is formed in a substantially rectangular parallelepiped box shape having a side wall 101b around it.
  • a high voltage side circuit board assembly 210A Inside the case 101 is a high voltage side circuit board assembly 210A, a transformer 250, a resonant choke coil 203, a choke coil 206, a filter coil 207, a low voltage side circuit board assembly 220A, a metal frame 300, and a control circuit board assembly 240A. Is done.
  • the high voltage side circuit board assembly 210A electronic components such as MOSFETs H 1 to H 4 , a smoothing input capacitor 212 and a gate resistor (not shown) constituting the high voltage side circuit 210 are mounted on the high voltage side circuit board 211. Configured.
  • the MOSFETs H 1 to H 4 mounted on the high voltage side circuit board 211 are fixed to the bottom 101a of the case 101 by a fastening member (not shown) via an insulating sheet (not shown).
  • the insulating sheet (not shown) is fixed in a state where one side surface is in contact with the bottom 101a of the case 101, and is cooled by a cooling medium flowing through a cooling flow path 351 provided on the bottom 101a side of the case 101.
  • the low voltage side circuit board assembly 220 ⁇ / b > A constitutes the MOSFETs S 1 and S 2 , the smoothing capacitor 208 (C out ), and the active clamp circuit 230 that constitute the low voltage side rectifier circuit 220 on the low voltage side circuit board 221.
  • Active clamp MOSFETs S 3 and S 4 an active clamp capacitor 209 (C c ), and electronic components such as a gate resistor (not shown) are mounted.
  • the low-voltage side circuit board 221 has, for example, a structure in which an insulating film is formed on one surface of a metal substrate and a wiring pattern is formed on the insulating film.
  • the MOSFETs S 1 to S 4 have a package structure in which the switching portion is sealed with resin, and a drain terminal connected to the drain electrode is provided on one surface of the resin.
  • the drain terminals of the MOSFETs S 1 to S 4 are And soldered to the drain pattern of the metal substrate.
  • the low voltage side circuit board 221 is fixed to the bottom 101a of the case 101 directly or via a heat conducting member on the surface opposite to the mounting surface, and the heat generated from each of the MOSFETs S 1 to S 4 Is transmitted to the bottom 101a of the case 101.
  • the heat transferred to the bottom 101a of the case 101 is cooled by the cooling medium flowing through the cooling flow path 351 provided on the bottom 101a side of the case 101.
  • the transformer 250, the choke coil 206, and the filter coil 207 are disposed on the bottom 101a of the case 101 and are fixed by a fastening member (not shown).
  • a metal frame 300 is attached to cover the transformer 250, the choke coil 206, and the filter coil 207 housed in the case 101. Although details will be described later, the transformer 250, the choke coil 206, and the filter coil 207 are fixed in a state of being pressed against the bottom 101 a of the case 101 by the metal frame 300.
  • a recess (not shown) is formed in the bottom 101a of the case 101 corresponding to the upper side of the high voltage side circuit board assembly 210A, and the resonance choke coil 203 is accommodated in the recess.
  • a high voltage side circuit board assembly 210 ⁇ / b> A is disposed on the upper side of the resonance choke coil 203.
  • the control circuit board assembly 240A is configured by mounting electronic components constituting the control circuit 240 on the control circuit board 241, and is fixed on the metal frame 300 by a fastening member (not shown).
  • the top cover 102 is fastened to the case 101 by a fastening member in the control circuit board assembly 240A.
  • FIG. 5 is an exploded perspective view of the transformer illustrated in FIG.
  • the transformer 250 has a structure in which a bobbin 255 wound with a primary winding 254 and a pair of upper and lower secondary windings 252 are sandwiched between a pair of E-type cores 251.
  • the primary winding 254 has a pair of terminals 254a, and each terminal 254a has a through hole 254b through which a fastening member such as a bolt is inserted.
  • Each secondary winding 252 is formed by press-molding a copper plate and integrally forming a secondary winding portion and a bus bar, and has a terminal 252a and a center tap terminal 252b at the end.
  • Each of the terminal 252a and the center tap terminal 252b is formed with a through hole 252c for inserting a fastening member such as a bolt.
  • Center tap terminals 252b of the upper and lower secondary windings 252 are stacked.
  • a transmission made of an elastic material made of silicon or the like is used between the core 251 and the secondary winding 252 on the upper side and between the core 251 and the secondary winding 252 on the lower side, respectively.
  • a thermal sheet 253 is disposed. As illustrated in FIG. 4, the core 251 is formed to be narrower than the heat transfer sheet 253, and each heat transfer sheet 253 is exposed from the side portion of the core 251.
  • the terminal 254 a of the primary winding 254, the terminal 252 a of the secondary winding 252, and the center tap terminal 252 b are extended to the side of the heat transfer sheet 253.
  • One terminal 254a of the primary winding 254 of the transformer 250 is connected to the resonance choke coil 203 by a fastening member inserted through the through hole 254b.
  • the other terminal 254a of the primary winding 254 of the transformer 250 is electrically connected to the high voltage side circuit board assembly 210A directly or via a bus bar by a fastening member inserted through the through hole 254b.
  • the terminal 252a and the center tap terminal 252b of the secondary winding 252 of the transformer 250 are electrically connected to the low voltage side circuit board assembly 220A directly or via a bus bar by a fastening member inserted into each through hole 252c. Connected.
  • FIG. 6 is a perspective view of the control circuit board and the metal frame shown in FIG. 2
  • FIG. 7 is a perspective view of the metal frame shown in FIG. 6 as viewed from the back side
  • FIG. FIG. 2 is a plan view of a state in which a high voltage side circuit board assembly and a metal frame are housed.
  • FIG. 9 is a plan view showing the arrangement of the internal components that have passed through the metal frame in FIG.
  • the high-voltage side circuit board assembly 210 ⁇ / b> A is disposed at the lower left corner of the case 101.
  • the transformer 250 is disposed above the high voltage side circuit board assembly 210A.
  • the upper left corner of the transformer 250 is close to the upper left corner of the case 101.
  • the resonance choke coil 203 is disposed below the upper side of the high voltage side circuit board assembly 210A. 8 and 9, the upper side of the high voltage side circuit board assembly 210A is removed and the resonance choke coil 203 is exposed.
  • the low voltage side circuit board assembly 220 ⁇ / b> A is arranged on the right side of the transformer 250.
  • the upper right corner of the low-voltage circuit board assembly 220 ⁇ / b> A is close to the upper right corner of the case 101.
  • the choke coil 206 and the filter coil 207 are close to the lower side of the low-voltage side circuit board assembly 220A, with the choke coil 206 on the center side of the case 101 and the filter coil 207 on the right side of the case 101. Adjacent, they are arranged side by side in the left-right direction.
  • the metal frame 300 has a rectangular large area 300a that covers the low-voltage circuit board assembly 220A, the choke coil 206, and the filter coil 207, and a rectangular small area that extends from the large area 300a and covers the transformer 250. Part 300b. As illustrated in FIG. 8, the small area portion 300 b has an area enough to cover only the transformer 250.
  • the metal frame 300 has an area that covers the entire area in the case 101 except for the arrangement area of the high-voltage side circuit board assembly 210A.
  • the metal frame 300 is formed with a plurality of boss portions 301 planted toward the control circuit board assembly 240A.
  • the control circuit board assembly 240A is fastened and fixed to the boss portion 301 of the metal frame 300 by a fastening member such as a bolt (not shown).
  • a fastening member such as a bolt (not shown).
  • three leaf springs 311 to 313 are attached to the metal frame 300 on the side opposite to the control circuit board assembly 240A side (back side) by fastening members such as bolts.
  • the leaf springs 311 to 313 are made of stainless steel.
  • the leaf spring 311 is attached to a position corresponding to the transformer 250 on the back surface side of the small area portion 300b.
  • the leaf springs 312 and 313 are attached to positions on the back side of the large area portion 300a corresponding to the choke coil 206 and the filter coil 207, which are relatively heavy electronic components.
  • the metal frame 300 is provided with a partition 302 that is bent toward the bottom 101a of the case 101 on the side of the high-voltage circuit board assembly 210A.
  • the partition part 302 extends to the entire area of the small area part 300b, and the small area part 300b is located on the bottom part 101a side of the case 101 from the large area part 300a by the level difference of the partition part 302.
  • the metal frame 300 is provided with a plurality of through holes 303, and a boss portion 101 c (planted on the bottom portion 101 a of the case 101 by a fastening member (not shown) such as a bolt inserted through the through hole 303. (See FIG. 3).
  • FIG. 10 is a plan view showing a state where the control circuit board assembly 240A is mounted on the high-voltage side circuit board assembly 210A and the metal frame 300 shown in FIG. As described above, the control circuit board assembly 240A is fixed to the boss portion 301 of the metal frame 300 by a fastening member such as a bolt.
  • control circuit board assembly 240A is partitioned from the transformer 250, the low voltage side circuit board assembly 220A, the choke coil 206, and the filter coil 207 by the metal frame 300. Accordingly, the control circuit board assembly 240A is shielded from electromagnetic noise generated from the transformer 250, the low voltage side circuit board assembly 220A, the choke coil 206, and the filter coil 207.
  • 11 and 12 are a cross-sectional view taken along line XI-XI and a cross-sectional view taken along line XII-XII in FIG. 10, respectively.
  • a raised portion 304 is formed in a region corresponding to the core 251 of the transformer 250.
  • a boss portion 301a is formed on the raised portion 304 toward the outer side, which is the upper side in FIG.
  • a leaf spring 311 is attached to the inside of the raised portion 304.
  • the leaf spring 311 is attached to the metal frame 300 by a fastening member 361 such as a bolt formed on the boss portion 301a and screwed into the screw portion.
  • the leaf spring 311 presses the core 251 of the transformer 250 against the bottom 101 a of the case 101.
  • the transformer 250 is fixed between the leaf spring 311 and the bottom 101a of the case 101.
  • the heat dissipating contact portion 305 around the raised portion 304 of the metal frame 300 contacts the upper heat transfer sheet 253.
  • the boss portion 101 c 1 formed on the bottom portion 101 a of the case 101 contacts the lower heat transfer sheet 253. Therefore, the heat generated from the secondary winding 252 of the transformer 250 is transmitted to the metal frame 300 through the core 251 and the leaf spring 311 and is radiated. Further, the heat generated from the secondary winding 252 of the transformer 250 is transmitted to the metal frame 300 through the heat transfer sheet 253 and radiated.
  • a heat transfer sheet 257 made of an elastic material such as silicon is disposed on the bus bar which is the upper and lower secondary windings 252 of the transformer 250.
  • the heat transfer sheet 257 on the upper side contacts the heat radiating contact portion 306 of the metal frame 300, and the boss 101 c 2 formed on the bottom 101 a of the case 101 contacts the heat transfer sheet 257 on the lower side. .
  • a cooling flow path 351 in which a cooling medium circulates is formed between the bottom 101a of the case 101 and the lower surface lid 103. For this reason, the heat generated from the transformer 250 is transmitted to the bottom 101a of the case 101 via the heat transfer sheets 253 and 257, and is cooled by the cooling medium flowing through the cooling flow path 351.
  • the leaf springs 312 and 313 attached to the metal frame 300 correspond to the upper portions of the choke coil 206 and the filter coil 207, respectively.
  • the choke coil 206 and the filter coil 207 are pressed and fixed to the bottom 101a of the case 101 by the leaf springs 312 and 313, respectively, with the metal frame 300 fixed to the case 101. Therefore, the heat generated from the choke coil 206 and the filter coil 207 is also transmitted to the metal frame 300 or the case 101 and is cooled by the cooling medium flowing through the cooling flow path 351.
  • FIG. 13 is a plan view of the cooling flow path formed at the bottom of the case
  • FIG. 14 is a plan view showing the relationship between the arrangement of the internal components and the cooling flow path that is transmitted through the bottom of the case. In FIGS. 13 and 14, the lower surface lid 103 is removed.
  • the cooling flow path 351 includes a region I and a region II that each recirculate the cooling medium. That is, the cooling medium flowing in from the inlet pipe 204 reciprocates in the vertical direction in FIGS. 13 and 14 in the region I, and also in the region II after reciprocating in the vertical direction, that is, after refluxing in each region, It flows out from the outlet pipe 105.
  • the high voltage side circuit board assembly 210A, the resonant choke coil 203, and the transformer 250 connect the high voltage side circuit board assembly 210A to the inlet pipe 104.
  • the choke coil 206, the filter coil 207, and the low voltage side circuit board assembly 220A are arranged.
  • the choke coil 206 and the filter coil 207 are arranged in the left-right direction on the outlet pipe 105 side, and the low-voltage side circuit board assembly 220A is arranged above the choke coil 206 and the filter coil 207.
  • the cooling medium that has flowed into the region I of the cooling flow path 351 from the inlet pipe 104 cools the high-voltage side circuit board assembly 210A, the resonant choke coil 203, and the transformer 250. Then, after flowing into the region II from the position returned to the inlet pipe 104 side and flowing to the low voltage side circuit board assembly 220A side, the low voltage side circuit board assembly 220A, the choke coil 206, and the filter coil 207 are sequentially arranged. Then, it flows in the left and right direction in the region II so as to cool, and reaches the outlet pipe 105.
  • the cooling medium flowing in from the inlet pipe 104 does not absorb heat from the power supply electronic components housed in the case 101 and is at a low temperature. Therefore, the high-voltage circuit board assembly 210A, the resonance choke coil 203, and the transformer 250 that generate a large amount of heat can be efficiently cooled. As described above, after the power supply electronic component having a large calorific value is cooled, it flows into the region II and sequentially cools the low voltage side circuit board assembly 220A, the choke coil 206, and the filter coil 207.
  • the cooling capacity is also related to the depth of the cooling channel 351.
  • the depth of the cooling flow path 351 in the region of the component for which the cooling capacity is desired to be increased is made shallower than that in the surrounding area, thereby reducing the flow rate of the cooling medium and improving the overall cooling capacity. It is preferable to improve the efficiency.
  • the board assembly constituting the power conversion circuit unit of the DC-DC converter device 100 is divided into a high voltage side circuit board assembly 210A, a low voltage side circuit board assembly 220A, and a control circuit board assembly 240A.
  • the control circuit board assembly 240A was partitioned from the transformer 250, the low voltage side circuit board assembly 220A, the choke coil 206, and the filter coil 207 by the metal frame 300. Therefore, the control circuit board assembly 240A can be shielded from electromagnetic noise generated from the transformer 250, the low voltage side circuit board assembly 220A, the choke coil 206, and the filter coil 207.
  • the transformer 250, the choke coil 206, and the filter coil 207 which are heavy in weight, are pressed against the bottom 101a of the case 101 by leaf springs 311, 312, and 313 attached to the metal frame 300, respectively. It fixed between 101a. Since the leaf springs 311 to 313 have elasticity, the possibility that the transformer 250, the choke coil 206, and the filter coil 207 are damaged even when an impact or vibration is applied to the DC-DC converter device 100 can be reduced.
  • the leaf springs 311 to 313 are formed of a metal member such as stainless steel having thermal conductivity. For this reason, the heat generated from the transformer 250, the choke coil 206 and the filter coil 207 can be transmitted to the metal frame 300 and dissipated.
  • the transformer 250 has a structure in which the heat transfer sheet 253 is built directly below the pair of upper and lower cores 251, and the heat dissipation contact portion 306 of the metal frame 300 contacts the heat transfer sheet 253 on the upper side.
  • the structure Thereby, the heat generated from the secondary winding 252 of the transformer 250 is transmitted to the metal frame 300 through the core 251, and is directly transmitted to the heat radiation contact portion 306 of the metal frame 300 to be radiated. . For this reason, the heat dissipation from the transformer 250 to the metal frame 300 is improved. Further, since the heat transfer sheet 253 is integrated with the transformer 250, disassembly and assembly at the time of repair and service can be efficiently performed.
  • a heat transfer sheet 257 is interposed between the secondary winding 252 on the upper side of the transformer 250 and the heat radiation contact portion 306 of the metal frame 300.
  • the boss portion 101 c 1 formed on the bottom portion 101 a of the case 101 was brought into contact with the heat transfer sheet 253 on the lower side of the transformer 250. Thereby, the heat generated from the transformer 250 can be transmitted to the bottom 101a of the case 101 via the heat transfer sheet 253, and the heat dissipation of the transformer 250 is improved.
  • a heat transfer sheet 257 is interposed between the secondary winding 252 on the lower side of the transformer 250 and the boss portion 101 c 2 formed on the bottom 101 a of the case 101. Thereby, the heat generated from the transformer 250 can be transmitted to the metal frame 300 via the heat transfer sheet 257, and the heat dissipation of the transformer 250 is improved.
  • a cooling flow path 351 in which a cooling medium flows is formed between the bottom 101a of the case 101 and the lower surface lid 103. Thereby, the heat generated in the transformer 250, the resonance choke coil 203, the choke coil 206 and the filter coil 207 and transmitted to the case 101 can be cooled by the cooling medium flowing in the cooling flow path 351.
  • the bottom 101a of the case 101 is in contact with an insulating sheet (not shown) of the high voltage side circuit board assembly 210A and a metal substrate of the low voltage side circuit board 221 in the low voltage side circuit board assembly 220A.
  • the insulating sheet a silicon rubber sheet having a high thermal conductivity or a ceramic plate such as silicon nitride can be used.
  • the rectifying elements in the low voltage side rectifying circuit 220 are exemplified as the MOSFETs S 1 and S 2.
  • the rectifying elements may be replaced with diodes.
  • each rectifying phase is exemplified by a circuit configured by one rectifying element, but each rectifying phase may be configured by a circuit in which a plurality of rectifying elements are connected in parallel.
  • the transformer 250, the choke coil 206, and the filter coil 207 are fixed to the bottom 101a of the case 101 by the leaf springs 111 to 113.
  • cushion members formed of an insulating resin may be used instead of the leaf springs 111 to 113.
  • any member having elasticity may be used.
  • the choke coil 206 and the filter coil 207 may be pressed by the metal frame 300 itself.
  • at least the transformer 250 may be fixed by being pressed against the bottom 101a of the case 101 by an elastic member.
  • the transformer 250, the control circuit board assembly 240A, the high-voltage side circuit board assembly 210A, and the low-voltage side circuit board assembly 220A are exemplified as a structure that is shielded from each other by the metal frame 300. .
  • the electromagnetic noise from the transformer 250 may be shielded by the metal frame 300 with respect to the control circuit board assembly 240A.
  • the case 101 is exemplified as a structure in which the cooling channel 351 is formed between the bottom 101a and the lower surface lid 103.
  • the DC-DC converter apparatus 100 is connected to, for example, a DC that does not include the cooling flow path 351 by fastening the bottom 101a of the case 101 with a cooling jacket provided in another apparatus such as an inverter apparatus.
  • a DC converter device 100 may be used.
  • the leaf spring 311 is exemplified as a structure for fixing to the metal frame 300.
  • a structure may be used in which a cushion member or the like is used instead of the leaf spring 311 and this cushion member is fixed to the transformer 250 by adhesion or the like.
  • the transformer 250 and the like are exemplified as a structure directly fixed to the bottom 101a of the case 101.
  • a heat conductive member may be attached between the transformer 250 or the like and the bottom 101a of the case 101, and the transformer 250 or the like may be pressed against the heat conductive member.
  • any structure may be used as long as the transformer 250 or the like is pressed against and fixed to the bottom 101a side of the case 101 by an elastic member interposed between the metal frame 300 and the transformer 250 or the like.
  • the DC-DC converter device 100 that does not include the resonant choke coil 203 and the filter coil 207 may be used. Conversely, the DC-DC converter device 100 to which other electronic components such as the filter capacitor 205 are added may be used.
  • a metal frame is provided between the transformer arranged in the case and the control circuit board assembly. If an elastic member is interposed between the metal frame and the transformer, and the transformer is pressed against the bottom side of the case and fixed by the elastic member interposed between the metal frame and the transformer Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 トランスからの電磁ノイズの影響が無く、衝撃・振動により破損する可能性を低減することを目的とし、本発明のDC-DCコンバータ装置は、ケース101内に収納されたトランス250と制御回路基板アセンブリ240Aとの間に、シールド用の金属フレーム300を配置する。金属フレーム300に取り付けた板ばね311をトランス250のコア251に押し付け、トランス250をケース101の底部101aに固定する。トランス250からの熱は、金属フレーム300およびケース101の底部101aに伝達されて放熱される。

Description

DC-DCコンバータ装置
 本発明は、DC-DCコンバータ装置に関し、より詳細には、交流高電圧を交流低電圧に変換するトランスを備えるDC-DCコンバータ装置に関する。
 電気自動車やプラグインハイブリッド車は、動力駆動用の高電圧蓄電池でモータ駆動するためのインバータ装置および車両のライトやラジオなどの補機を作動させるための低電圧蓄電池を備えている。このような車両には、高電圧蓄電池から低電圧蓄電池への電力変換または低電圧蓄電池から高電圧蓄電池への電力変換を行うDC-DCコンバータ装置が搭載されている。
 DC-DCコンバータ装置は、高電圧の直流電圧を交流電圧に変換する高電圧側スイッチング回路と、交流高電圧を交流低電圧に変換するトランスと、低電圧交流電圧を直流電圧に変換する低電圧側整流回路と、高電圧側スイッチング回路および低電圧側整流回路を制御する制御回路とを備えている。
 DC-DCコンバータ装置では、高電圧側スイッチング回路および低電圧側整流回路を構成する半導体素子およびトランス等が発熱する。発熱により温度が上昇すると損失が増大するため、トランスや上記回路を構成する電子部品を収納する容器は放熱構造を備えたものとなっている。
 DC-DCコンバータ装置として、下記の構造が知られている。
 金属製のベースプレートに回路基板を取り付ける。回路基板の一部に開口を設け、この開口内にトランスを配置してベースプレート上に載置する。回路基板およびトランスが収納されたベースプレートに金属製のカバーを組み合わせる。カバーの天板部に内側に突出した突出部を形成する。トランスにカバーの突出部を押圧接触させ、トランスをベースプレートとカバーとの間で挟持する(例えば、特許文献1参照)。
特開2007-6635号公報
 上記特許文献1に記載された構造では、トランスと回路基板とが仕切りの無い空間内に密封されているので、高電圧側スイッチング回路、低電圧側整流回路およびトランス等から発生する電磁ノイズにより、誤動作が生じたり、性能が低下したりする。
 また、カバーの突出部をトランスに押圧接触させ、トランスをベースプレートとカバーとの間で挟持する構造のため、衝撃や振動等によりトランスが破損する可能性がある。
 本発明のDC-DCコンバータ装置は、トランスと、トランスの一次側に接続され、高電圧側回路を構成する高電圧側回路基板アセンブリと、トランスの二次側に接続され、低電圧側回路を構成する低電圧側回路基板アセンブリと、高電圧側回路および低電圧側回路を制御する制御回路を構成する制御回路基板アセンブリと、トランス、高電圧側回路基板アセンブリ、低電圧側回路基板アセンブリおよび制御回路基板アセンブリを収納するケースと、ケース内に配置され、トランスと制御回路基板アセンブリとの間に配置された金属フレームと、金属フレームとトランスの間に介装された弾性部材と、を備え、金属フレームとトランスの間に介装された弾性部材により、トランスがケースの底部側に押し付けられて固定されている。
 本発明によれば、制御回路基板アセンブリと、トランスとの間に配置された金属フレームにより、トランスからの電磁ノイズがシールドされる。また、トランスは、弾性部材を介して、金属フレームによりケースの底部側に押し付けられて固定されているので、衝撃や振動によりトランスが破損する可能性を低減することができる。
本発明のDC-DCコンバータ装置の一実施の形態を示す外観斜視図。 図1に図示されたDC-DCコンバータ装置の回路構成の一実施の形態を示す図。 図1に図示されたDC-DCコンバータ装置の分解斜視図。 図3に図示されたトランスの拡大斜視図。 図4に図示されたトランスの分解斜視図。 図2に図示された制御回路基板と金属フレームの斜視図。 図6に図示された金属フレームを裏面からみた斜視図。 ケース内に、高電圧側回路基板アセンブリおよび金属フレームを収納した状態の平面図。 図8における金属フレームを透過した、内部部品の配置を示す平面図。 図8に図示された高電圧側回路基板アセンブリおよび金属フレーム上に、制御回路基板を取り付けた状態を示す平面図。 図10のXI-XI線断面図。 図10のXII-XII線断面図。 ケースの底部に形成された冷却流路の平面図。 ケースの底部を透過した、内部部品の配置と冷却流路との関係を説明するための平面図。
[DC-DCコンバータ装置の外観]
 以下、図面を参照して、本発明のDC-DCコンバータ装置の一実施の形態を説明する。
 図1は、本発明のDC-DCコンバータ装置100の外観斜視図である。
 DC-DCコンバータ装置100は電気自動車やプラグインハイブリッド車等に適用される。車両にはライトやラジオなどの補機を作動させるための低電圧蓄電池が搭載されており、DC-DCコンバータ装置100は、高電圧蓄電池から低電圧蓄電池への電力変換または低電圧蓄電池から高電圧蓄電池への電力変換を行う。
 ケース101の内部には、上記電力変換を行うための回路が収納されている。
 ケース101の上部側には、上面蓋102がボルト等の締結部材により取付けられている。ケース101の下部側には底部101a(図11参照)が一体に成形されており、この底部101aから所定の空間を設けて下面蓋103がボルト等の締結部材によりケース101に取付けられている。
 詳細は後述するが、ケース101の底部101aと下面蓋103との間の空間には、冷却水、冷却用気体等の冷却媒体が流れる冷却流路351(図13参照)が形成されている。ケース101と下面蓋103との間には不図示のOリング等のシール部材が介装されており、冷却媒体を密封する構造とされている。
 ケース101、上面蓋102および下面蓋103は、それぞれ、例えば、アルミダイキャスト等により形成される。
 ケース101の一側面には、冷却媒体を上記冷却流路351に流入させる案内となる入口配管104、冷却媒体を冷却流路351から流出させる案内となる出口配管105が取り付けられている。
 ケース101の上記一側面には、高電圧蓄電池からケース101内部の電力変換回路へ、高電圧高電圧の電力を供給するための配線を接続するための入力コネクタ106が、ケース101に設けられた不図示の開口から導出されている。
 ケース101の上記一側面には、ケース101内部の電力変換回路から直流低電圧を出力するための配線が接続された出力コネクタ107が設けられている。また、ケース101の上記一側面には、ケース101内部の電力変換回路と小電力の信号をやり取りするための信号配線が接続された信号コネクタ108が設けられている。
 入力コネクタ106、出力コネクタ107、信号コネクタ108は、ケース101のそれぞれ異なる側面に設けてもよい。
[DC-DCコンバータ装置の回路構成]
 次に、DC-DCコンバータ装置100の回路構成を説明する。
 図2は本発明のDC-DCコンバータ装置の回路図である。このDC-DCコンバータ装置100は高電圧の直流電圧を交流電圧に変換する高電圧側スイッチング回路(高電圧側回路)210、交流高電圧を交流低電圧に変換するトランス250、低電圧の交流電圧を直流電圧に変換する低電圧側整流回路(低電圧側回路)220を備えている。
 また、上記一実施の形態のDC-DCコンバータ装置100においては、低電圧側整流回路220のMOSFET(電界効果トランジスタ) S1、S2にかかるサージ電圧を抑
制するためのアクティブクランプ回路230を備えている。アクティブクランプ回路230は、アクティブクランプ用MOSFET S3、S4、およびアクティブクランプ用コンデンサ209(Cc)を備えている。アクティブクランプ回路230を有していないDC-DCコンバータ装置100でも良い。
 高電圧側スイッチング回路210とトランス250との間には、共振チョークコイル203(Lr)が接続されており、この共振チョークコイル203のインダクタンスとトランス250の漏れインダクタンスの合成インダクタンスを用いて、高電圧側スイッチング回路210を構成するMOSFETのゼロ電圧スイッチングを可能としている。
 低電圧側整流回路220の出力側には出力電圧に重畳するノイズを除去するために、フィルタコイル207(L1)とフィルタコンデンサ205(C1)が設けられている。
 なお、共振チョークコイル203、フィルタコイル207およびフィルタコンデンサ205は必ずしも必要ではなく、これらを省略した回路構成でも、効率低下やノイズ増加してしまう可能性があるが、DCDCコンバータ装置は電力を変換することが出来る。
 高電圧側スイッチング回路210、低電圧側整流回路220およびアクティブクランプ回路230は、制御回路240によりスイッチ制御が行われる。
(高電圧側スイッチング回路の回路構成)
 高電圧側スイッチング回路210は、Hブリッジ型として接続された4つのMOSFET H1~H4と平滑用入力コンデンサ202(Cin)とから構成されている。各MOSFET H1~H4には、スナバコンデンサが並列に設けられている。
高電圧側スイッチング回路210の4つのMOSFET H1~H4を位相シフトPWM制御することで、トランス250の一次側には交流電圧が発生する。
(低電圧側整流回路の回路構成)
 低電圧側整流回路220は、MOSFET S1、S2で構成される二つの整流相と、チョークコイル206(Lout)および平滑用コンデンサ208(Cout)から構成される平滑回路と、を有している。それぞれの整流相の高電位側(すなわちMOSFET S1、S2のドレイン側配線は、トランス250の二次側へ接続されている。トランス250の二次側センタタップ端子は、チョークコイル206(Lout)に接続され、チョークコイル206(Lout)の出力側に平滑用コンデンサ208(Cout)が接続されている。
[DC-DCコンバータ装置の全体構造]
 図3は、図1に図示されたDC-DCコンバータ装置の分解斜視図である。
 ケース101は、アルミニウム、アルミニウム合金等のアルミニウム系金属により形成され、周囲に側壁101bを有する、ほぼ直方体状形状のボックス状に形成されている。ケース101の内部には、高電圧側回路基板アセンブリ210A、トランス250、共振チョークコイル203、チョークコイル206、フィルタコイル207、低電圧側回路基板アセンブリ220A、金属フレーム300および制御回路基板アセンブリ240Aが収納される。
 高電圧側回路基板アセンブリ210Aは、高電圧側回路基板211に、高電圧側回路を210構成するMOSFET H1~H4、平滑用入力コンデンサ212および不図示のゲート抵抗等の電子部品が実装されて構成されている。高電圧側回路基板211に実装されたMOSFET H1~H4は、絶縁シート(図示せず)を介し、ケース101の底部101aに締結部材(図示せず)により固定される。不図示の絶縁シートは、一側面がケース101の底部101aに接触した状態で固定され、ケース101の底部101a側に設けられた冷却流路351を流れる冷却媒体により冷却される。
 低電圧側回路基板アセンブリ220Aは、低電圧側回路基板221に、低電圧側整流回路220を構成するMOSFET S1、S2、平滑用コンデンサ208(Cout)、およびアクティブクランプ回路230を構成するアクティブクランプ用MOSFET S3、S4、アクティブクランプ用コンデンサ209(Cc)および不図示のゲート抵抗等の電子部
品が実装されて構成されている。
 低電圧側回路基板221は、図示はしないが、例えば、金属基板の一面に絶縁膜を形成し、絶縁膜上に配線パターンが形成された構造を有する。MOSFET S1~S4は、スイッチング部が樹脂で封止され、樹脂の一面にドレイン電極に接続されたドレイン端子が設けられたパッケージ構造を有し、各MOSFET S1~S4のドレイン端子は、金属基板のドレインパターンに半田付けされている。低電圧側回路基板221は、実装面と反対面を直接、または、熱伝導部材を介してケース101の底部101aに固定されており、各MOSFET S1~S4から発生する熱は、金属基板を介して、ケース101の底部101aに伝達される。ケース101の底部101aに伝達された熱は、ケース101の底部101a側に設けられた冷却流路351を流れる冷却媒体により冷却される。
 トランス250、チョークコイル206およびフィルタコイル207は、ケース101の底部101a上に配置され、締結部材(図示せず)により固定される。ケース101内に収納されたトランス250、チョークコイル206およびフィルタコイル207を覆って金属フレーム300が取り付けられる。
 詳細は後述するが、トランス250、チョークコイル206およびフィルタコイル207は、金属フレーム300によってケース101の底部101aに押し付けられた状態で固定される。
 高電圧側回路基板アセンブリ210Aの上部側に対応するケース101の底部101aには凹部(図示せず)形成されており、共振チョークコイル203は、その凹部内に収容されている。共振チョークコイル203の上部側に、高電圧側回路基板アセンブリ210Aが配置される。
 制御回路基板アセンブリ240Aは、制御回路基板241に制御回路240を構成する電子部品が実装されて構成されており、金属フレーム300上に締結部材(図示せず)により固定される。制御回路基板アセンブリ240Aには、上面蓋102がケース101に締結部材により締結される。
[トランスの構造]
 図4は、図3に図示されたトランスの拡大斜視図であり、図5は、図4に図示されたトランスの分解斜視図である。
 図5に図示されるように、トランス250は、一次巻線254を巻いたボビン255と、上下一対の二次巻線252とを、一対のE型コア251で挟み込んだ構造を有する。
 一次巻線254には一対の端子254aが形成され、各端子254aには、ボルト等の締結部材を挿通するための貫通孔254bが形成されている。各二次巻線252は、銅板をプレス成形して二次巻線部とバスバーとを一体に形成したものであり、端部に端子252aとセンタタップ端子252bとを有している。端子252aとセンタタップ端子252bには、それぞれ、ボルト等の締結部材を挿通するための貫通孔252cが形成されている。上下の二次巻線252のセンタタップ端子252bは積層されている。
 上部側におけるコア251と二次巻線252との間、および下部側におけるコア251と二次巻線252との間には、それぞれ、シリコン等から形成された弾性を有する材料により形成された伝熱シート253が配置されている。
 図4に図示されるように、コア251は、伝熱シート253よりも幅狭に形成されており、各伝熱シート253は、コア251の側部から露出している。一次巻線254の端子254aおよび二次巻線252の端子252a、センタタップ端子252bは、伝熱シート253の側方に延出されている。
 トランス250の一次巻線254の一方の端子254aは、貫通孔254bに挿通される締結部材により共振チョークコイル203に接続される。トランス250の一次巻線254の他方の端子254aは、貫通孔254bに挿通される締結部材により、直接、またはバスバーを介して高電圧側回路基板アセンブリ210Aに電気的に接続される。また、トランス250の二次巻線252の端子252aおよびセンタタップ端子252bは、各貫通孔252cに挿通される締結部材により、直接、またはバスバーを介して低電圧側回路基板アセンブリ220Aに電気的に接続される。
[ケース内における配置構造]
 図6は、図2に図示された制御回路基板と金属フレームの斜視図であり、図7は、図6に図示された金属フレームを裏面からみた斜視図であり、図8は、ケース内に、高電圧側回路基板アセンブリおよび金属フレームを収納した状態の平面図である。また、図9は、図8における金属フレームを透過した、内部部品の配置を示す平面図である。
 図9に図示されるように、高電圧側回路基板アセンブリ210Aは、ケース101内の左下の角部に配置されている。トランス250は、高電圧側回路基板アセンブリ210Aの上方に配置されている。トランス250の左上の角部は、ケース101の左上の角部に近接している。
 上述した如く、共振チョークコイル203は、高電圧側回路基板アセンブリ210Aの上部側付近の下方に配置されている。なお、図8および図9においては、高電圧側回路基板アセンブリ210Aの上部側を除去し、共振チョークコイル203が表出された状態で図示されている。
 低電圧側回路基板アセンブリ220Aは、トランス250の右側に配置されている。低電圧側回路基板アセンブリ220Aの右上の角部は、ケース101の右上の角部に近接している。チョークコイル206およびフィルタコイル207は、低電圧側回路基板アセンブリ220Aの下側の側辺に近接して、チョークコイル206がケース101の中央側に、フィルタコイル207がケース101の右側の側辺に近接して、左右方向に並んで配置されている。
 金属フレーム300は、低電圧側回路基板アセンブリ220A、チョークコイル206およびフィルタコイル207を覆う矩形形状の大面積部300aと、この大面積部300aから延出され、トランス250を覆う矩形形状の小面積部300bとを有する。図8に図示されるように、小面積部300bは、トランス250のみを覆う程度の面積を有する。金属フレーム300は、高電圧側回路基板アセンブリ210Aの配置領域を除く、ケース101内の全領域を覆う面積を有する。
 図6に図示されるように、金属フレーム300には、制御回路基板アセンブリ240A側に向けて植立された複数のボス部301が形成されている。制御回路基板アセンブリ240Aは、不図示のボルト等の締結部材により、金属フレーム300のボス部301に締結されて固定される。
 図7に図示されるように、金属フレーム300における制御回路基板アセンブリ240A側の反対面側(裏面側)には、3つの板ばね311~313が、ボルト等の締結部材により取り付けられている。板ばね311~313は、ステンレスにより形成されている。板ばね311は、小面積部300bの裏面側におけるトランス250に対応する位置に取り付けられている。板ばね312、313は、大面積部300aの裏面側における、それぞれ、重量の比較的大きい電子部品であるチョークコイル206、フィルタコイル207に対応する位置に取り付けられている。
 金属フレーム300には、高電圧側回路基板アセンブリ210A側の側辺に、ケース101の底部101a側に向けて屈曲された仕切部302が設けられている。仕切部302は小面積部300bの領域全体まで延出されており、小面積部300bは、仕切部302の段差分、大面積部300aより、ケース101の底部101a側に位置している。
 金属フレーム300には、複数の貫通孔303が設けられており、この貫通孔303を挿通するボルト等の締結部材(図示せず)により、ケース101の底部101aに植立されたボス部101c(図3参照)に固定される。
 金属フレーム300および高電圧側回路基板アセンブリ210Aの上部には、制御回路基板アセンブリ240Aが取り付けられる。
 図10は、図8に図示された高電圧側回路基板アセンブリ210Aおよび金属フレーム300上に、制御回路基板アセンブリ240Aを取り付けた状態を示す平面図である。
 上述した如く、制御回路基板アセンブリ240Aは、ボルト等の締結部材により、金属フレーム300のボス部301に固定される。
 上記構造により、制御回路基板アセンブリ240Aは、金属フレーム300によって、トランス250、低電圧側回路基板アセンブリ220A、チョークコイル206およびフィルタコイル207と仕切られる。従って、制御回路基板アセンブリ240Aは、トランス250、低電圧側回路基板アセンブリ220A、チョークコイル206およびフィルタコイル207から発生する電磁ノイズからシールドされる。
[トランスの固定構造]
 次に、トランス250の固定構造の一実施の形態を説明する。
 図11、図12は、それぞれ、図10のXI-XI線断面図、XII-XII線断面図である。
 金属フレーム300には、トランス250のコア251に対応する領域に隆起部304が形成されている。隆起部304には、図11における上方側である外側に向かってボス部301aが形成されている。また、隆起部304の内側には板ばね311が取り付けられている。板ばね311は、ボス部301aに形成されためねじ部に螺合されたボルト等の締結部材361により金属フレーム300に取り付けられる。
 金属フレーム300がケース101に固定された状態で、板ばね311は、トランス250のコア251をケース101の底部101aに押し付ける。これにより、トランス250は、板ばね311とケース101の底部101a間に固定される。
 この状態で、金属フレーム300の隆起部304の周囲の放熱用接触部305が上部側の伝熱シート253に接触する。また、ケース101の底部101aに形成されたボス部101c1が下部側の伝熱シート253に接触する。
 従って、トランス250の二次巻線252から発生した熱は、コア251および板ばね311を介して金属フレーム300に伝達され放熱される。また、トランス250の二次巻線252から発生した熱は、伝熱シート253を介して金属フレーム300に伝達され放熱される。
 トランス250の上下の二次巻線252であるバスバー上には、シリコン等の弾性を有する材料により形成された伝熱シート257が配置されている。上部側の伝熱シート257には、金属フレーム300の放熱用当接部306が接触し、下部側の伝熱シート257には、ケース101の底部101aに形成されたボス部101c2が接触する。
 ケース101の底部101aと下面蓋103との間には、冷却媒体が循環する冷却流路351が形成されている。
 このため、トランス250から発生した熱は、伝熱シート253、257を介して、ケース101の底部101aに伝達され、冷却流路351を流れる冷却媒体によって冷却される。
 上述した如く、金属フレーム300に取り付けられた板ばね312、313は、それぞれ、チョークコイル206、フィルタコイル207の上部に対応する。
 チョークコイル206およびフィルタコイル207は、トランス250と同様に、金属フレーム300がケース101に固定された状態で、それぞれ、板ばね312、313によってケース101の底部101aに押し付けられて固定される。従って、チョークコイル206およびフィルタコイル207から発生した熱も、金属フレーム300またはケース101に伝達され、冷却流路351を流れる冷却媒体によって冷却される。
[冷却流路の構造]
 トランス250、共振チョークコイル203、チョークコイル206、フィルタコイル207、高電圧側回路基板アセンブリ210A,低電圧側回路基板アセンブリ220A等の電源用電子部品から発生する熱を冷却媒体により冷却する冷却能力は、冷却流路の構造により、その効率を向上することが可能である。
 以下に、冷却効率を向上することができる冷却流路の構造の一実施の形態を説明する。
 図13は、ケースの底部に形成された冷却流路の平面図であり、図14は、ケースの底部を透過した、内部部品の配置と冷却流路との関係を示す平面図である。なお、図13および図14においては、下面蓋103は除去されている。
 図13に図示されるように、ケース101の底部101aには、冷却流路351を流れる冷却媒体の流れ方向のガイドとなる複数のガイド壁352が、ケース101と一体に形成されている。
 冷却流路351は、それぞれが冷却媒体を還流させる領域Iおよび領域IIを備えている。すなわち、入口配管204から流入した冷却媒体は、領域Iにおいて、図13、図14における上下方向に往復し、領域IIにおいても、上下方向に往復した後、すなわち、それぞれの領域で還流した後、出口配管105から流出する。
 図14に図示されるように、冷却流路351の領域Iには、高電圧側回路基板アセンブリ210Aと、共振チョークコイル203と、トランス250とが、高電圧側回路基板アセンブリ210Aを入口配管104側にして配置されている。
 冷却流路351の領域IIには、チョークコイル206、フィルタコイル207および低電圧側回路基板アセンブリ220Aが配置されている。チョークコイル206、フィルタコイル207は、出口配管105側に左右方向に配列され、低電圧側回路基板アセンブリ220Aは、チョークコイル206、フィルタコイル207よりも上方に配列されている。
 入口配管104から冷却流路351の領域I内に流入した冷却媒体は、高電圧側回路基板アセンブリ210Aと、共振チョークコイル203と、トランス250とを冷却する。そして、入口配管104側に戻った位置から領域II内に流入し、低電圧側回路基板アセンブリ220A側に流動してから、低電圧側回路基板アセンブリ220Aおよびチョークコイル206、フィルタコイル207を、順次、冷却するように領域II内を左右方向に流れて出口配管105に達する。
 入口配管104から流入する冷却媒体は、ケース101内に収納された電源用電子部品からの熱を吸収しておらず、低温である。このため、発熱量が大きい高電圧側回路基板アセンブリ210A、共振チョークコイル203およびトランス250を効率的に冷却することができる。
 このように、発熱量が大きい電源用電子部品を冷却した後、領域II内に流動して低電圧側回路基板アセンブリ220A、チョークコイル206、フィルタコイル207を、順次、冷却する。
 冷却能力は、冷却流路351の深さにも関連する。浅い冷却流路351aでは、冷却媒体の流速が速くなり流量が増大するので、冷却能力が大きくなる。従って、冷却能力を大きくしたい部品の領域における冷却流路351の深さを、周囲の領域よりも浅くするようにして、冷却媒体の流量を少なくして全体の冷却能力を向上する、すなわち、冷却効率を向上するようにすることが好ましい。
[実施形態の効果]
 上記実施形態によれば下記の効果を奏する。
(1)DC-DCコンバータ装置100の電力変換回路部を構成する基板アセンブリを、高電圧側回路基板アセンブリ210Aと、低電圧側回路基板アセンブリ220Aと、制御回路基板アセンブリ240Aとに分けた。そして、制御回路基板アセンブリ240Aを、金属フレーム300により、トランス250、低電圧側回路基板アセンブリ220A、チョークコイル206およびフィルタコイル207と仕切った。このため、制御回路基板アセンブリ240Aを、トランス250、低電圧側回路基板アセンブリ220A、チョークコイル206およびフィルタコイル207から発生する電磁ノイズからシールドすることができる。
(2)重量の大きいトランス250、チョークコイル206およびフィルタコイル207を、それぞれ、金属フレーム300に取り付けた板ばね311、312、313によりケース101の底部101aに押し付け、各板ばね311~313と底部101aとの間に固定した。
 板ばね311~313は、弾性を有するので、DC-DCコンバータ装置100に衝撃や振動が加わった場合でも、トランス250、チョークコイル206およびフィルタコイル207が破損する可能性を低減することができる。
(3)板ばね311~313は、熱伝導性のあるステンレス等の金属部材で形成されている。このため、トランス250、チョークコイル206およびフィルタコイル207から発生する熱を、金属フレーム300に伝達して放熱することができる。
(4)トランス250を、上下一対のコア251の直下に、それぞれ、伝熱シート253が内蔵される構造とし、上部側の伝熱シート253に金属フレーム300の放熱用当接部306が接触する構造とした。これにより、トランス250の二次巻線252から発生する熱が、コア251を介して金属フレーム300に伝達されると共に、直接、金属フレーム300の放熱用当接部306に伝達されて放熱される。このため、トランス250から金属フレーム300への放熱性が向上する。また、伝熱シート253がトランス250に一体化されているので、修理、サービス時における分解、組立を能率的に行うことができる。
(5)トランス250の上部側の二次巻線252と金属フレーム300の放熱用当接部306との間に伝熱シート257を介在させた。これにより、トランス250の二次巻線252から発生する熱を、放熱用当接部306からも金属フレーム300に伝達することができ、放熱性が向上する。
(6)トランス250の下部側の伝熱シート253にケース101の底部101aに形成されたボス部101c1を接触させた。これにより、トランス250から発生する熱を、伝熱シート253を介してケース101の底部101aに伝達することができ、トランス250の放熱性が向上する。
(7)トランス250の下部側の二次巻線252とケース101の底部101aに形成されたボス部101c2との間に伝熱シート257を介在させた。これにより、トランス250から発生した熱を、伝熱シート257を介して金属フレーム300に伝達させることができ、トランス250の放熱性が向上する。
(8)ケース101の底部101aと下面蓋103との間に、冷却媒体が流動する冷却流路351を形成した。これにより、トランス250、共振チョークコイル203、チョークコイル206およびフィルタコイル207で発生し、ケース101に伝達された熱を、冷却流路351を流動する冷却媒体により冷却することができる。
(9)ケース101の底部101aには、高電圧側回路基板アセンブリ210Aの絶縁シート(図示せず)および低電圧側回路基板アセンブリ220Aにおける低電圧側回路基板221の金属基板が接触している。このため、高電圧側回路基板アセンブリ210AのMOSFET H1~H4、低電圧側回路基板アセンブリ220AのMOSFET S1~S4等から発生する熱を、ケース101の底部101aに伝達し、冷却流路351を流動する冷却媒体により効率的に冷却することができる。絶縁シートは熱伝導率の高い、シリコンゴムシートや、窒化ケイ素等のセラミック板を使用する事が出来る。
 なお、上記一実施の形態では、低電圧側整流回路220における整流素子を、MOSFET S1、S2として例示したが、整流素子をダイオードに置換してもよい。また、各整流相を、それぞれ、1つの整流素子で構成した回路で例示したが、各整流相を複数の整流素子を並列に接続した回路で構成するようにしてもよい。
 上記一実施の形態では、板ばね111~113により、トランス250、チョークコイル206およびフィルタコイル207をケース101の底部101aに固定した構造として例示した。しかし、板ばね111~113に代えて、絶縁性樹脂により形成されたクッション部材を用いてもよい。要は、弾性を有する部材であればよい。
 また、チョークコイル206およびフィルタコイル207をケース101の底部101aに押し付ける部材として、弾性部材を用いる必要はなく、金属フレーム300自体により押し付けるようにしてもよい。要は、少なくとも、トランス250を弾性部材によりケース101の底部101aに押し付けて固定するようにすればよい。
 上記一実施の形態では、金属フレーム300により、トランス250、制御回路基板アセンブリ240A、高電圧側回路基板アセンブリ210A、低電圧側回路基板アセンブリ220Aを、金属フレーム300により相互にシールドする構造として例示した。しかし、少なくとも、制御回路基板アセンブリ240Aに対して、トランス250からの電磁ノイズを金属フレーム300によりシールドするようにすればよい。
 上記一実施の形態では、ケース101は底部101aと下面蓋103との間に冷却流路351が形成された構造として例示した。しかし、DC-DCコンバータ装置100が連結される、例えば、インバータ装置等の別の装置に設けられた冷却ジャケットによりケース101の底部101aを締結するようにして、冷却流路351を備えていないDC-DCコンバータ装置100とすることもできる。
 上記一実施の形態では、板ばね311を金属フレーム300に固定する構造として例示した。しかし、板ばね311に代えてクッション部材等を用い、このクッション部材をトランス250に接着等により固定する構造としてもよい。
 上記一実施の形態では、トランス250等を、直接、ケース101の底部101aに固定した構造として例示した。しかし、トランス250等とケース101の底部101aとの間に熱伝導性部材を取り付け、この熱伝導性部材にトランス250等を押し付けるようにしてもよい。要は、金属フレーム300とトランス250等との間に介装された弾性部材により、トランス250等をケース101の底部101a側に押し付けて固定する構造であればよい。
 また、上述した如く、共振チョークコイル203およびフィルタコイル207を備えていないDC-DCコンバータ装置100としてもよい。逆に、フィルタコンデンサ205等、他の電子部品を付加したDC-DCコンバータ装置100としてもよい。
 その他、本発明は、本発明の趣旨の範囲内において、種々、変形して適用することが可能であり、要は、ケース内に配置されたトランスと制御回路基板アセンブリとの間に金属フレームを配置し、金属フレームとトランスの間に弾性部材を介装し、金属フレームとトランスの間に介装された弾性部材により、トランスがケースの底部側に押し付けられて固定されているものであればよい。
 100 DC-DCコンバータ装置 
 101   ケース
 101a  底部
 101c  ボス部
 101c1、101c2  ボス部
 104   入口配管
 105   出口配管
 203   共振チョークコイル
 206   チョークコイル
 207   フィルタコイル
 210   高電圧側スイッチング回路
 210A  高電圧側回路基板アセンブリ
 220   低電圧側整流回路
 220A  低電圧側回路基板アセンブリ
 240   制御回路
 240A  制御回路基板アセンブリ
 250   トランス
 251   コア
 252   二次巻線
 253、257   伝熱シート
 254   一次巻線
 300   金属フレーム
 301   ボス部
 302   仕切部
 305   放熱用接触部
 306   放熱用当接部
 311~313   板ばね
 351   冷却流路
 S1a~S1d、S2a~S2d  MOSFET(電界効果トランジスタ)

Claims (10)

  1.  トランスと、
     前記トランスの一次側に接続され、高電圧側回路を構成する高電圧側回路基板アセンブリと、
     前記トランスの二次側に接続され、低電圧側回路を構成する低電圧側回路基板アセンブリと、
     前記高電圧側回路および前記低電圧側回路を制御する制御回路を構成する制御回路基板アセンブリと、
     前記トランス、前記高電圧側回路基板アセンブリ、前記低電圧側回路基板アセンブリおよび前記制御回路基板アセンブリを収納するケースと、
     前記ケース内に配置され、前記トランスと前記制御回路基板アセンブリとの間に配置された金属フレームと、
     前記金属フレームと前記トランスの間に介装された弾性部材と、を備え、
     前記金属フレームと前記トランスの間に介装された前記弾性部材により、前記トランスが前記ケースの底部側に押し付けられて固定されている、DC-DCコンバータ装置。
  2.  請求項1に記載のDC-DCコンバータ装置において、
    前記弾性部材は、ばね部材である、DC-DCコンバータ装置。
  3.  請求項1に記載のDC-DCコンバータ装置において、
    前記弾性部材は、樹脂により形成されている、DC-DCコンバータ装置。
  4.  請求項1に記載のDC-DCコンバータ装置において、
     前記ケースは底部側に前記トランスを冷却する冷却流路を備えている、DC-DCコンバータ装置。
  5.  請求項1に記載のDC-DCコンバータ装置において、
     前記トランスは伝熱シートを備え、前記金属フレームは、前記伝熱シートに接触する放熱用接触部を有する、DC-DCコンバータ装置。
  6.  請求項1に記載のDC-DCコンバータ装置において、
     前記金属フレームは、前記トランスの二次巻線に接続されたバスバーに接触する放熱用突当部を有する、DC-DCコンバータ装置。
  7.  請求項1に記載のDC-DCコンバータ装置において、
     さらに、チョークコイルを備え、前記チョークコイルは、前記金属フレームと前記チョークコイルとの間に介装された弾性部材を介して、前記金属フレームにより前記ケースの底部側に押し付けられて固定されている、DC-DCコンバータ装置。
  8.  請求項1に記載のDC-DCコンバータ装置において、
     さらに、フィルタコイルを備え、前記フィルタコイルは、前記金属フレームと前記フィルタコイルとの間に介装された弾性部材により前記ケースの底部側に押し付けられて固定されている、DC-DCコンバータ装置。
  9.  請求項1に記載のDC-DCコンバータ装置において、
     前記ケースは、前記制御回路基板アセンブリ側に突き出す複数のボス部を有し、前記金属フレームは、前記複数のボス部に固定されている、DC-DCコンバータ装置。
  10.  請求項1に記載のDC-DCコンバータ装置において、
     前記金属フレームは、前記高電圧側回路基板アセンブリを露出する形状を有する、DC-DCコンバータ装置。
PCT/JP2013/082124 2012-12-28 2013-11-29 Dc-dcコンバータ装置 WO2014103614A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/655,211 US9608528B2 (en) 2012-12-28 2013-11-29 DC-DC converter apparatus
DE112013006259.3T DE112013006259T5 (de) 2012-12-28 2013-11-29 DC/DC-Wandlervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-287448 2012-12-28
JP2012287448A JP6045340B2 (ja) 2012-12-28 2012-12-28 Dc−dcコンバータ装置

Publications (1)

Publication Number Publication Date
WO2014103614A1 true WO2014103614A1 (ja) 2014-07-03

Family

ID=51020708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082124 WO2014103614A1 (ja) 2012-12-28 2013-11-29 Dc-dcコンバータ装置

Country Status (4)

Country Link
US (1) US9608528B2 (ja)
JP (1) JP6045340B2 (ja)
DE (1) DE112013006259T5 (ja)
WO (1) WO2014103614A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026758B1 (en) * 2014-11-25 2018-01-31 ABB Schweiz AG Modular high voltage supply system
DE102015217583A1 (de) * 2015-09-15 2017-03-16 Siemens Aktiengesellschaft Entladungsverfahren für ein Elektro- oder Hybridfahrzeug zur Entladung von elektrischer Energie aus einem Hochvoltnetz
CN106655806B (zh) 2015-10-29 2019-02-26 台达电子企业管理(上海)有限公司 电源转换装置
CN106655807B (zh) * 2015-10-29 2019-02-26 台达电子企业管理(上海)有限公司 电源转换装置
CN106655710B (zh) * 2015-10-29 2019-02-22 台达电子企业管理(上海)有限公司 电源转换装置
DE112017000450T5 (de) 2016-01-21 2018-10-11 Mitsubishi Electric Corporation Schaltungseinrichtung und Leistungswandler
WO2017141422A1 (ja) * 2016-02-19 2017-08-24 三菱電機株式会社 電力変換装置
CN109565244B (zh) * 2016-08-22 2021-06-22 三菱电机株式会社 电力转换装置
CN108123617B (zh) * 2016-11-29 2020-05-05 台达电子企业管理(上海)有限公司 用于安装高低压转换电路的装置、高低压转换系统及电源
JP2018182860A (ja) * 2017-04-10 2018-11-15 ファナック株式会社 モータ駆動装置
DE202017107002U1 (de) * 2017-11-18 2019-02-19 Bdr Thermea Group B.V. Blockheizkraftwerk
CN109861556A (zh) * 2018-02-06 2019-06-07 台达电子企业管理(上海)有限公司 电源转换装置
DE102018218860A1 (de) * 2018-11-06 2020-05-07 Zf Friedrichshafen Ag Haltevorrichtung für eine verkoppelte Drosseleinheit, Stromverdoppleranordnung mit der Haltevorrichtung und der Drosseleinheit sowie Verfahren zur Montage der Drosseleinheit
JP7338434B2 (ja) * 2019-11-28 2023-09-05 株式会社デンソー 電気装置
IT202100013679A1 (it) * 2021-05-26 2022-11-26 Ferrari Spa Convertitore elettronico di potenza con raffreddamento a liquido per il controllo di almeno un motore elettrico di un veicolo
KR20230041548A (ko) * 2021-09-17 2023-03-24 엘지이노텍 주식회사 컨버터
JP7180805B1 (ja) 2022-03-08 2022-11-30 富士電機株式会社 電力変換装置および直流直流コンバータ装置
FR3136333A1 (fr) * 2022-06-07 2023-12-08 Valeo Siemens Eautomotive France Sas Dispositif électronique de puissance destiné à un dispositif d’entrainement pour un engin de mobilité

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180089A (ja) * 2001-12-11 2003-06-27 Denso Corp 車両用電力変換装置
JP2007006635A (ja) * 2005-06-24 2007-01-11 Tdk Corp 電源装置
JP2009303285A (ja) * 2008-06-10 2009-12-24 Panasonic Corp モジュールとその製造方法
JP2010153722A (ja) * 2008-12-26 2010-07-08 Tdk Corp 基板保持構造及びスイッチング電源装置
JP2011182500A (ja) * 2010-02-26 2011-09-15 Keihin Corp スイッチング電源
JP2012134424A (ja) * 2010-12-24 2012-07-12 Toyota Industries Corp 誘導機器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872102A (en) * 1986-04-28 1989-10-03 Dimensions Unlimited, Inc. D.C. to A.C. inverter having improved structure providing improved thermal dissipation
JP4730116B2 (ja) * 2005-04-11 2011-07-20 株式会社デンソー 放電灯点灯装置
JP4979909B2 (ja) * 2005-08-19 2012-07-18 株式会社日立製作所 電力変換装置
JP5185676B2 (ja) * 2008-03-28 2013-04-17 アスモ株式会社 ブラシホルダ及びブラシホルダの製造方法
JP5042141B2 (ja) * 2008-06-20 2012-10-03 パナソニック株式会社 電子機器
US8188829B2 (en) * 2008-12-26 2012-05-29 Tdk Corporation Coil substrate structure, substrate holding structure, and switching power supply
JP5459191B2 (ja) * 2010-12-03 2014-04-02 株式会社デンソー 電圧変換装置
JP6217957B2 (ja) * 2011-09-29 2017-10-25 東芝ライテック株式会社 照明装置
US9456530B2 (en) * 2011-11-21 2016-09-27 Autonetworks Technologies, Ltd. DC-DC converter
JP2013150414A (ja) * 2012-01-18 2013-08-01 Tdk Corp トランス及びスイッチング電源装置
WO2013140502A1 (ja) * 2012-03-19 2013-09-26 三菱電機株式会社 電力変換装置
JP6101484B2 (ja) * 2012-12-28 2017-03-22 日立オートモティブシステムズ株式会社 Dc−dcコンバータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180089A (ja) * 2001-12-11 2003-06-27 Denso Corp 車両用電力変換装置
JP2007006635A (ja) * 2005-06-24 2007-01-11 Tdk Corp 電源装置
JP2009303285A (ja) * 2008-06-10 2009-12-24 Panasonic Corp モジュールとその製造方法
JP2010153722A (ja) * 2008-12-26 2010-07-08 Tdk Corp 基板保持構造及びスイッチング電源装置
JP2011182500A (ja) * 2010-02-26 2011-09-15 Keihin Corp スイッチング電源
JP2012134424A (ja) * 2010-12-24 2012-07-12 Toyota Industries Corp 誘導機器

Also Published As

Publication number Publication date
US20150357923A1 (en) 2015-12-10
JP2014131394A (ja) 2014-07-10
DE112013006259T5 (de) 2015-10-08
US9608528B2 (en) 2017-03-28
JP6045340B2 (ja) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6045340B2 (ja) Dc−dcコンバータ装置
JP6383408B2 (ja) コンバータ及び電力変換装置
US9578790B2 (en) Power conversion apparatus
JP6104347B1 (ja) 電力変換装置
US9834097B2 (en) Hybrid power control apparatus for vehicle
JP5644712B2 (ja) 電源装置
JP6308109B2 (ja) 電力変換装置
WO2013061799A1 (ja) 電力変換装置
JP6180857B2 (ja) 電力変換装置
JP5818754B2 (ja) Dc−dcコンバータ装置
JP6161550B2 (ja) 電力変換装置
JP2014131395A (ja) Dc−dcコンバータ装置および共振コイルユニット
JP6183302B2 (ja) 電力変換装置
JP5926651B2 (ja) Dc−dcコンバータ装置および電力変換装置
JP6945671B2 (ja) 電力変換装置
JP2015070682A (ja) 電力変換装置
JP5342623B2 (ja) スイッチング電源装置
JP6809563B2 (ja) 電力変換装置
JP5958493B2 (ja) 電源装置
JP7464183B1 (ja) 電力変換装置
JP5609811B2 (ja) 電源装置
JP2023084144A (ja) トランス
JP2018206933A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14655211

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130062593

Country of ref document: DE

Ref document number: 112013006259

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869515

Country of ref document: EP

Kind code of ref document: A1