WO2014103508A1 - 硫化物固体電解質の製造方法 - Google Patents

硫化物固体電解質の製造方法 Download PDF

Info

Publication number
WO2014103508A1
WO2014103508A1 PCT/JP2013/079721 JP2013079721W WO2014103508A1 WO 2014103508 A1 WO2014103508 A1 WO 2014103508A1 JP 2013079721 W JP2013079721 W JP 2013079721W WO 2014103508 A1 WO2014103508 A1 WO 2014103508A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
sulfide
electrolyte
temperature
solid electrolyte
Prior art date
Application number
PCT/JP2013/079721
Other languages
English (en)
French (fr)
Inventor
拓男 柳
拓海 田中
真一郎 橘内
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020147033881A priority Critical patent/KR20150015489A/ko
Priority to US14/651,479 priority patent/US9761906B2/en
Priority to CN201380064390.2A priority patent/CN104871359B/zh
Priority to EP13867878.4A priority patent/EP2940778B1/en
Priority to KR1020197001119A priority patent/KR102046768B1/ko
Priority to JP2014554211A priority patent/JP5904291B2/ja
Publication of WO2014103508A1 publication Critical patent/WO2014103508A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/321Chalcogenide glasses, e.g. containing S, Se, Te
    • C03C3/323Chalcogenide glasses, e.g. containing S, Se, Te containing halogen, e.g. chalcohalide glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing a sulfide solid electrolyte, and more particularly to a method for producing a sulfide solid electrolyte produced using a raw material containing LiI.
  • a lithium ion secondary battery has a higher energy density than a conventional secondary battery and can be operated at a high voltage. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
  • a lithium ion secondary battery has a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed between them.
  • the electrolyte used for the electrolyte layer include non-aqueous liquid and solid substances. Are known.
  • electrolytic solution a liquid electrolyte (hereinafter referred to as “electrolytic solution”)
  • the electrolytic solution easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, an interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolytic solution is easily formed, and the performance is easily improved.
  • the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety.
  • solid electrolyte that is flame retardant
  • all-solid battery a lithium ion secondary battery
  • solid electrolyte layer a layer containing a solid electrolyte
  • Patent Document 1 discloses Li 2 SP—S 2 S 5 -based crystallized glass (lithium ion conductive sulfide-based crystallized glass) by a mechanical milling method. ) Is disclosed.
  • a Li 2 S—P 2 S 5 —LiI electrolyte obtained by adding LiI to a Li 2 S—P 2 S 5 system electrolyte, which is a sulfide solid electrolyte having ion conductivity, can exhibit high ion conduction performance.
  • This Li 2 S—P 2 S 5 —LiI electrolyte can be produced using a mechanical milling method as disclosed in Patent Document 1.
  • Patent Document 1 when a Li 2 S—P 2 S 5 —LiI electrolyte is produced by the technique disclosed in Patent Document 1, it is easy to produce a Li 2 S—P 2 S 5 —LiI electrolyte with reduced ion conduction performance. There was a problem.
  • an object of the present invention is to provide a method for producing a sulfide solid electrolyte capable of producing a sulfide solid electrolyte having improved ion conduction performance using a raw material containing LiI.
  • the reaction field temperature in the vessel for synthesizing sulfide glass when producing a sulfide solid electrolyte mainly composed of is y [° C.]
  • y exceeds a predetermined temperature
  • a specific crystal phase Li 3 PS 4 -LiI crystal phase and Li 3 PS 4 crystal phase (the same applies hereinafter)
  • the present inventors control the reaction field temperature y in the vessel when synthesizing the sulfide glass so that the above x and y satisfy a predetermined conditional expression, thereby allowing the specific crystal phase to appear.
  • the present inventors control the reaction field temperature y in the vessel when synthesizing the sulfide glass so that the above x and y satisfy a predetermined conditional expression, thereby the specific crystal phase of the specific crystal phase. It has been found that it is easy to increase the productivity of sulfide solid electrolytes with improved ion conduction performance while preventing their appearance.
  • the present invention has been completed based on these findings.
  • the present invention relates to a sulfide solid mainly composed of the general formula (100-x) (0.75Li 2 S ⁇ 0.25P 2 S 5 ) ⁇ xLiI (where x is 0 ⁇ x ⁇ 100, the same applies hereinafter).
  • the reaction field temperature in the container is controlled so that the reaction field temperature y [° C.] in the container in the amorphization step satisfies the following formula (1). y ⁇ 2.00x + 1.79 ⁇ 10 2 (1)
  • a sulfide solid electrolyte mainly composed of the general formula (100-x) (0.75Li 2 S ⁇ 0.25P 2 S 5 ) ⁇ xLiI” is included in the sulfide solid electrolyte.
  • the ratio of the sulfide solid electrolyte represented by the general formula (100-x) (0.75Li 2 S ⁇ 0.25P 2 S 5 ) ⁇ xLiI is at least 50 mol% or more.
  • a raw material for producing a sulfide solid electrolyte mainly composed of general formula (100-x) (0.75Li 2 S ⁇ 0.25P 2 S 5 ) ⁇ xLiI” is Li 2 SP—P 2 S
  • the raw material is not particularly limited as long as it is a raw material capable of producing a 5- LiI electrolyte (hereinafter, simply referred to as “electrolyte raw material”).
  • electrolyte raw materials include combinations of Li 2 S, P 2 S 5 , and LiI, as well as combinations of other raw materials including Li, P, S, and I.
  • the “charging step” may be a step of charging at least an electrolyte raw material into a container, and is a step of charging a liquid such as that used in a wet mechanical milling method into the container together with the electrolyte raw material. May be.
  • the “amorphization step” may be a wet mechanical milling method using a liquid that does not react with a raw material or an electrolyte to be generated, such as a hydrocarbon, and is a dry mechanical method that does not use the liquid. A milling method or a melt quenching method may be used.
  • controlling the reaction field temperature in the container so as to satisfy the formula (1) means in the amorphization process. It means that the reaction field temperature in the container is controlled so that the maximum temperature of the reaction field satisfies the formula (1).
  • Li 2 S—P 2 S 5 —LiI electrolyte It is possible to produce a Li 2 S—P 2 S 5 —LiI electrolyte without generating a specific crystal phase that causes a decrease. By not generating crystals that cause a decrease in ion conductivity, it becomes easy to improve the ion conductivity of the produced Li 2 S—P 2 S 5 —LiI electrolyte.
  • x may be x ⁇ 20 (20 ⁇ x ⁇ 100).
  • the reaction field temperature in the container is preferably 40 ° C. or higher in the amorphization step.
  • reaction field temperature in a container is further controlled so that x and reaction field temperature y may satisfy
  • x and reaction field temperature y may satisfy
  • thermal energy in a container at an amorphization process.
  • applying thermal energy to the container means that heat energy is generated in the container without using an external heat source in addition to the form of applying thermal energy to the container by heating from the outside of the container.
  • a form for example, a form using a container larger than the container used when heating from the outside of the container in the mechanical milling method
  • a form that can set the reaction field temperature in the container to a predetermined temperature or more by suppressing heat dissipation, etc. It can be illustrated.
  • the amorphization step may be a step of amorphizing the raw material by a wet mechanical milling method. Even in such a form, it is possible to produce a sulfide solid electrolyte having improved ion conduction performance using a raw material containing LiI.
  • FIG. 1 is a diagram for explaining a method for producing a sulfide solid electrolyte of the present invention (hereinafter sometimes referred to as “the production method of the present invention”).
  • the manufacturing method of the present invention shown in FIG. 1 includes a charging step (S1), an amorphization step (S2), a recovery step (S3), and a drying step (S4).
  • the charging step (hereinafter sometimes referred to as “S1”) is a step of charging raw materials for producing the Li 2 S—P 2 S 5 —LiI electrolyte into the container.
  • S1 includes an electrolyte raw material, the electrolyte raw material, and a Li to be synthesized.
  • examples of electrolyte materials that can be used in S1 include combinations of Li 2 S, P 2 S 5 , and LiI, and combinations of other materials including Li, P, S, and I. Can do.
  • examples of the liquid that can be used in S1 include alkanes such as heptane, hexane, and octane, and aromatic hydrocarbons such as benzene, toluene, and xylene.
  • the amorphization step (hereinafter sometimes referred to as “S2”) is a step of amorphizing the raw material charged into the container in S1 to synthesize sulfide glass.
  • S2 when the liquid is put into the container together with the electrolyte raw material, S2 can be a step of making the raw material amorphous by a wet mechanical milling method to synthesize sulfide glass.
  • S2 when the liquid is not put into the container together with the electrolyte raw material in S1, S2 can be a step of making the raw material amorphous by a dry mechanical milling method to synthesize sulfide glass.
  • S2 can be a step of making the raw material amorphous by a melt quenching method to synthesize sulfide glass.
  • S2 is preferably a step of synthesizing a sulfide glass by a mechanical milling (wet or dry) method from the viewpoint of making it possible to reduce the manufacturing cost because processing at normal temperature is possible.
  • a mechanical milling method from the viewpoint of preventing the raw material composition from adhering to the wall surface of a container or the like and making it easier to obtain a more amorphous sulfide glass.
  • sulfides are obtained by a wet mechanical milling method. More preferably, the step of synthesizing glass.
  • the melting and quenching method has limitations on the reaction atmosphere and reaction vessel, whereas the mechanical milling method has an advantage that a sulfide glass having a target composition can be easily synthesized.
  • S 2 In order to prevent the formation of a specific crystal phase, which is observed in a Li 2 S—P 2 S 5 —LiI electrolyte having a reduced ionic conductivity, S 2 generally uses a Li 2 S—P 2 S 5 —LiI electrolyte.
  • LiI content x [mol%] expressed by the formula (100-x) (0.75Li 2 S ⁇ 0.25P 2 S 5 ) ⁇ xLiI (content of LiI contained in the electrolyte raw material x [mol%] )
  • the reaction field temperature y [° C.] in the container when the sulfide glass is synthesized in the amorphization process is controlled so that the reaction field temperature y in the container satisfies the following formula (1).
  • the sulfide glass is synthesized. y ⁇ 2.00x + 1.79 ⁇ 10 2 (1)
  • Li 2 S—P 2 S with reduced ionic conductivity was obtained by synthesizing sulfide glass while controlling the reaction field temperature in the container so that x and y satisfy the above formula (1). It becomes possible to prevent the formation of a specific crystal phase, which is confirmed by the 5- LiI electrolyte. As a result, it is possible to produce a sulfide solid electrolyte (Li 2 S—P 2 S 5 —LiI electrolyte, the same applies hereinafter) with improved ion conduction performance.
  • the reaction field temperature in the predetermined container is about 20 ° C. higher than the outer surface temperature of the predetermined container.
  • the reaction field temperature in the predetermined container is about 20 ° C. than the outer surface temperature of the predetermined container. We know that it is low. Therefore, in any form, it is possible to indirectly control the reaction field temperature in the container by controlling the outer surface temperature of the container.
  • the temperature difference between the inside and outside of the container can be set to about 20 ° C., regardless of whether the container is heated from the outside or not.
  • the temperature difference between the inside and outside of the container is about 20 ° C. even when cooling from the outside of the container, and the reaction field temperature in the container when cooling from the outside of the container is about 20 ° C. than the outer surface temperature of the container. It is considered high. Therefore, even when a sulfide glass is synthesized through a rapid cooling process, it is possible to indirectly control the reaction field temperature in the container by controlling the outer surface temperature of the container.
  • the recovery step (hereinafter sometimes referred to as “S3”) is a step of taking out and recovering the sulfide glass synthesized in S2 from the container.
  • the drying step (hereinafter sometimes referred to as “S4”) is a step of volatilizing the liquid charged into the container together with the electrolyte raw material by drying the sulfide glass collected in S3.
  • S4 is not necessary.
  • a sulfide solid electrolyte can be manufactured through S1 to S4.
  • the sulfide glass is synthesized while controlling the reaction field temperature in the container at the time of synthesizing the sulfide glass so as to satisfy the above formula (1).
  • the formation of a specific crystal phase which is confirmed in the Li 2 S—P 2 S 5 —LiI electrolyte having a reduced ionic conductivity, is prevented. Therefore, according to the production method of the present invention, it is possible to produce a sulfide solid electrolyte with improved ion conduction performance.
  • the mode of controlling the reaction field temperature in the vessel when the sulfide glass is synthesized in the amorphization step so that x and y satisfy the above formula (1) has been mentioned.
  • the ion conduction performance is controlled by controlling the reaction field temperature in the vessel when the sulfide glass is synthesized in the amorphization step so that x and y satisfy the above formula (1). It is possible to produce a sulfide solid electrolyte with improved resistance.
  • the reaction field temperature in the amorphization step should be as high as possible within the range satisfying the above formula (1). Is preferred.
  • the reaction field temperature in the container it is preferable to set the reaction field temperature in the container to 40 ° C. or higher in the amorphization step. From the same point of view, the reaction field in the container when the sulfide glass is synthesized in the amorphization step so that x and y satisfy not only the above formula (1) but also the following formula (2): It is preferable to control the temperature. y> ⁇ 2.00x + 1.52 ⁇ 10 2 Formula (2)
  • the reaction in the container when the sulfide glass is synthesized in the amorphization step so that x and y satisfy not only the above formula (1) and the above formula (2) but also the following formula (3) By controlling the reaction field temperature in the container, it is easy to produce a sulfide solid electrolyte with improved ion conduction performance. Therefore, in the present invention, the reaction in the container when the sulfide glass is synthesized in the amorphization step so as to satisfy the above formula (1), the above formula (2), and the following formula (3). It is particularly preferable to control the field temperature y.
  • Example 1 Production of Sulfide Solid Electrolyte
  • lithium sulfide Li 2 S, manufactured by Nippon Kagaku Kogyo Co., Ltd., purity 99.9%, the same applies below
  • diphosphorus pentasulfide P 2 S 5 , manufactured by Aldrich, purity 99.9% applied
  • lithium iodide LiI, manufactured by Aldrich, the same applies hereinafter
  • the weighed electrolyte material was put together with tridecane into a planetary ball mill machine container (45 ml, made of ZrO 2 ), and a ZrO 2 ball having a diameter of 5 mm was put into the container, and the container was completely sealed.
  • a heat label manufactured by Micron
  • a heat label was attached to the outer surface of the container.
  • Example 2 A sulfide glass (85 (0.75Li 2 S ⁇ 0.25P 2 S 5 ) ⁇ 15LiI) was synthesized under the same conditions as in Example 1 except that the set temperature when heating the container from the outside was 150 ° C. did. Since the temperature of the heat label when synthesizing the sulfide glass was 149 ° C., the reaction field temperature in Example 2 was 129 ° C.
  • Example 3 A sulfide glass (85 (0.75Li 2 S ⁇ 0.25P 2 S 5 ) ⁇ 15LiI) was synthesized under the same conditions as in Example 1 except that the set temperature when heating the container from the outside was 145 ° C. did. Since the temperature of the heat label when synthesizing the sulfide glass was 143 ° C., the reaction field temperature in Example 3 was 123 ° C.
  • the reaction field temperature in Example 4 was 123 ° C.
  • Example 5 A sulfide glass (80 (0.75Li 2 S ⁇ 0.25P 2 S 5 ) ⁇ 20LiI) was synthesized under the same conditions as in Example 4 except that the set temperature when heating the container from the outside was set to 135 ° C. did. Since the temperature of the heat label when synthesizing the sulfide glass was 132 ° C., the reaction field temperature in Example 5 was 112 ° C.
  • Example 6 A sulfide glass (80 (0.75Li 2 S ⁇ 0.25P 2 S 5 ) ⁇ 20LiI) was synthesized under the same conditions as in Example 4 except that the set temperature when heating the container from the outside was 125 ° C. did. Since the temperature of the heat label when synthesizing the sulfide glass was 122 ° C., the reaction field temperature in Example 6 was 102 ° C.
  • the reaction field temperature in Example 7 was 123 ° C.
  • P5 made by Fritsch
  • This vessel was attached to a planetary ball mill and mechanical milling was performed at 280 revolutions per minute for 60 hours to obtain the sulfide glass of Example 8 (70 (0.75 Li 2 S ⁇ 0.25P 2 S 5 )). -30LiI) was synthesized.
  • the outer surface temperature of the container during the mechanical milling (attainment temperature of the heat label) was 88 ° C.
  • the reaction field temperature in the container is 20 ° C. higher than the outer surface temperature of the container.
  • the reaction field temperature in 8 was 108 ° C.
  • Example 1 A sulfide glass (85 (0.75Li 2 S ⁇ 0.25P 2 S 5 ) ⁇ 15LiI) was synthesized under the same conditions as in Example 1 except that the set temperature when heating the container from the outside was set to 170 ° C. did. Since the temperature of the heat label when synthesizing the sulfide glass was 169 ° C., the reaction field temperature in Comparative Example 1 was 149 ° C.
  • means that the Li 3 PS 4 —LiI crystal phase and the Li 3 PS 4 crystal phase were not confirmed, and “ ⁇ ” means the Li 3 PS 4 —LiI crystal phase and Li 3 PS 4 crystal phase. This means that a crystalline phase has been confirmed.
  • FIG. 3 shows the X-ray diffraction patterns of the sulfide solid electrolyte produced under the conditions of Example 1 and the sulfide solid electrolyte produced under the conditions of Comparative Example 1, and FIG.
  • the X-ray diffraction patterns of the electrolyte and the sulfide solid electrolyte synthesized under the conditions of Comparative Example 4 are shown in FIG.
  • “ ⁇ ” represents a peak derived from the Li 3 PS 4 —LiI crystal phase
  • represents a peak derived from the Li 3 PS 4 crystal phase.
  • FIG. 4 “ ⁇ ” represents a peak derived from LiI
  • ⁇ ” represents a peak derived from the Li 3 PS 4 —LiI crystal phase.
  • Example 8 and Comparative Example 4 were pelletized, and Li ion conductivity (room temperature) was calculated from the resistance value measured by the AC impedance method.
  • a Solartron 1260 was used for measurement. The measurement conditions were an applied voltage of 5 mV, a measurement frequency range of 0.01 MHz to 1 MHz, a resistance value of 100 kHz was read, corrected by thickness, and converted to Li ion conductivity.
  • the Li ion conductivity of the sulfide solid electrolyte produced under the conditions of Example 8 was 1.76 ⁇ 10 ⁇ 3 S / cm
  • the sulfide solid electrolyte produced under the conditions of Comparative Example 4 The Li ion conductivity was 1.50 ⁇ 10 ⁇ 3 S / cm. That, Li ion conductivity of the Li 3 PS 4 -LiI crystalline phase and Li 3 PS 4 crystal phase is not confirmed sulfide solid electrolyte, Li 3 PS 4 -LiI crystalline phase and Li 3 PS 4 crystal phase is confirmed It was higher than the Li ion conductivity of the sulfide solid electrolyte.
  • Li 2 SP with improved ion conduction performance by controlling the reaction field temperature when the sulfide glass was synthesized by the wet mechanical milling method This makes it possible to produce 2 S 5 -LiI electrolytes.
  • the mechanical milling method is a method of synthesizing a target substance by reacting solid raw materials with each other
  • the technical idea of the present invention is that Li 2 SP is obtained by reacting solid raw materials with each other. It is considered to be applicable when synthesizing a 2 S 5 -LiI electrolyte.
  • the Li 2 S-P 2 S 5 -LiI electrolyte when manufacturing the Li 2 S-P 2 S 5 -LiI electrolyte, even when using a method other than mechanical milling method, it is the method, Li 2 by reacting the starting materials with each other solids If a method of synthesizing S-P 2 S 5 -LiI electrolyte, by controlling the reaction field temperature during the synthesis, the Li 2 S-P 2 S 5 -LiI electrolyte having enhanced ionic conductivity performance It will be possible to manufacture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Glass Compositions (AREA)

Abstract

本発明は、イオン伝導性能を高めやすい硫化物固体電解質を製造することが可能な、硫化物固体電解質の製造方法を提供することを主目的とする。 本発明は、一般式(100-x)(0.75LiS・0.25P)・xLiI(ただし、xは0<x<100)を主体とする硫化物固体電解質を製造するための原料を容器に投入する投入工程と、該投入工程後に、原料を非晶質化する非晶質化工程と、を有し、上記一般式に含まれるx、及び、非晶質化工程における容器内の反応場温度y[℃]が、y<-2.00x+1.79×10を満たすように、容器内の反応場温度が制御される、硫化物固体電解質の製造方法とする。

Description

硫化物固体電解質の製造方法
 本発明は、硫化物固体電解質の製造方法に関し、特に、LiIを含む原料を用いて製造する、硫化物固体電解質の製造方法に関する。
 リチウムイオン二次電池は、従来の二次電池よりもエネルギー密度が高く、高電圧で作動させることができる。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車用やハイブリッド自動車用等、大型の動力用としての需要も高まっている。
 リチウムイオン二次電池は、正極層及び負極層と、これらの間に配置された電解質層とを有し、電解質層に用いられる電解質としては、例えば非水系の液体状や固体状の物質等が知られている。液体状の電解質(以下において、「電解液」という。)が用いられる場合には、電解液が正極層や負極層の内部へと浸透しやすい。そのため、正極層や負極層に含有されている活物質と電解液との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、難燃性である固体状の電解質(以下において、「固体電解質」という。)を用いると、上記システムを簡素化できる。それゆえ、固体電解質を含有する層(以下において、「固体電解質層」という。)が備えられる形態のリチウムイオン二次電池(以下において、「全固体電池」ということがある。)の開発が進められている。
 このような全固体電池で使用可能な固体電解質に関する技術として、例えば特許文献1には、メカニカルミリング法によりLiS-P系結晶化ガラス(リチウムイオン伝導性硫化物系結晶化ガラス)を製造する技術が開示されている。
特開2005-228570号公報
 イオン伝導性を有する硫化物固体電解質であるLiS-P系電解質にLiIを添加した、LiS-P-LiI電解質は、高いイオン伝導性能を発現し得る。このLiS-P-LiI電解質は、特許文献1に開示されているようなメカニカルミリング法を用いて製造することが可能である。しかしながら、特許文献1に開示されている技術によってLiS-P-LiI電解質を製造した場合、イオン伝導性能が低下したLiS-P-LiI電解質が製造されやすいという問題があった。
 そこで本発明は、LiIを含む原料を用いてイオン伝導性能を高めた硫化物固体電解質を製造することが可能な、硫化物固体電解質の製造方法を提供することを課題とする。
 本発明者らは、鋭意検討の結果、LiIを含む原料を用いて一般式(100-x)(0.75LiS・0.25P)・xLiI(xは0<x<100)を主体とする硫化物固体電解質を製造する際の、硫化物ガラスを合成する容器内の反応場温度をy[℃]とするとき、yが所定温度以上になると、特定の結晶相(LiPS-LiI結晶相やLiPS結晶相。以下において同じ。)が出現し、当該特定の結晶相を有する硫化物固体電解質はイオン伝導性能が低下しやすいことを知見した。さらに、本発明者らは、上記x及びyが所定の条件式を満たすように、硫化物ガラスを合成する際の容器内の反応場温度yを制御することにより、上記特定の結晶相の出現を防止することが可能になり、その結果、イオン伝導性能を高めた硫化物固体電解質を製造することが可能になることを知見した。加えて、本発明者らは、上記x及びyが所定の条件式を満たすように、硫化物ガラスを合成する際の容器内の反応場温度yを制御することにより、上記特定の結晶相の出現を防止しつつ、イオン伝導性能を高めた硫化物固体電解質の生産性を高めやすくなることを知見した。本発明は、これらの知見に基づいて完成させた。
 上記課題を解決するために、本発明は以下の手段をとる。すなわち、
  本発明は、一般式(100-x)(0.75LiS・0.25P)・xLiI(ただし、xは0<x<100。以下において同じ。)を主体とする硫化物固体電解質を製造するための原料を容器に投入する投入工程と、該投入工程後に、上記原料を非晶質化する非晶質化工程と、を有し、上記一般式に含まれるx、及び、非晶質化工程における容器内の反応場温度y[℃]が、下記式(1)を満たすように、上記容器内の反応場温度が制御される、硫化物固体電解質の製造方法である。
  y<-2.00x+1.79×10     …式(1)
 ここに、本発明において、「一般式(100-x)(0.75LiS・0.25P)・xLiIを主体とする硫化物固体電解質」とは、硫化物固体電解質に含まれる、一般式(100-x)(0.75LiS・0.25P)・xLiIで表される硫化物固体電解質の割合が、少なくとも50mol%以上であることをいう。また、「一般式(100-x)(0.75LiS・0.25P)・xLiIを主体とする硫化物固体電解質を製造するための原料」は、LiS-P-LiI電解質を製造可能な原料(以下において、単に「電解質原料」ということがある。)であれば、特に限定されない。そのような電解質原料としては、LiS、P、及び、LiIの組合せのほか、Li、P、S、及び、Iを含むその他の原料の組合せ等を例示することができる。また、本発明において、「投入工程」は、容器に少なくとも電解質原料を投入する工程であれば良く、電解質原料とともに、例えば、湿式のメカニカルミリング法で用いるような液体を容器に投入する工程であっても良い。また、本発明において、「非晶質化工程」は、炭化水素等、原料や生成する電解質と反応しない液体を使用する湿式のメカニカルミリング法であっても良く、当該液体を使用しない乾式のメカニカルミリング法であっても良く、溶融急冷法であっても良い。このほか、容器内に投入された原料を加熱、攪拌して反応させることにより原料を非晶質化する、メカニカルミリング以外の方法を用いることも可能である。なお、メカニカルミリング法で非晶質化する形態の非晶質化工程である場合、「式(1)を満たすように容器内の反応場温度を制御する」とは、非晶質化工程における反応場の最高温度が式(1)を満たすように、容器内の反応場温度を制御することを意味する。これに対し、溶融急冷法で非晶質化する形態の非晶質化工程である場合、「式(1)を満たすように容器内の反応場温度を制御する」とは、非晶質化工程でy≧-2.00x+1.79×10となる温度へと一旦昇温した後の急冷時の到達温度(最低温度)が式(1)を満たすように、容器内の反応場温度を制御することを意味する。
  原料を非晶質化する際の容器内の反応場温度yが上記式(1)を満たすように制御しながら、原料を非晶質化する非晶質化工程を有することにより、イオン伝導性低下の要因となる特定の結晶相を発生させることなく、LiS-P-LiI電解質を製造することが可能になる。イオン伝導性低下の要因となる結晶を発生させないことにより、製造したLiS-P-LiI電解質のイオン伝導性能を高めやすくなる。
 また、上記本発明において、xがx≧20(20≦x<100)であっても良い。
 また、上記本発明において、非晶質化工程で、容器内の反応場温度を40℃以上にすることが好ましい。かかる形態とすることにより、原料を非晶質化し、硫化物ガラスを合成する速度を高めやすくなるので、硫化物固体電解質の製造コストを低減しやすくなる。
 また、上記本発明において、さらに、x及び反応場温度yが、下記式(2)を満たすように、容器内の反応場温度が制御されることが好ましい。かかる形態とすることにより、上記特定の結晶相の出現を防止しつつ、硫化物ガラスを合成する速度を高めやすくなるので、イオン伝導性能を高めた硫化物固体電解質の生産性を高めやすくなる。
  y>-2.00x+1.52×10     …式(2)
 また、上記本発明において、非晶質化工程で、容器内に熱エネルギーを付与することが好ましい。かかる形態とすることにより、付与する熱エネルギーの制御を通じて、硫化物ガラスの合成速度を制御しやすくなる。その結果、硫化物ガラスの合成速度を高めつつ、優れたイオン伝導性能を有する硫化物固体電解質を製造しやすくなる。
  ここで、「容器内に熱エネルギーを付与する」とは、容器の外側から加熱することによって容器内に熱エネルギーを付与する形態のほか、外部熱源を用いなくても容器内で熱エネルギーを発生させ、かつ放熱を抑制することで容器内の反応場温度を所定温度以上にし得る形態(例えば、メカニカルミリング法において、容器の外側から加熱する際に用いる容器よりも大きい容器を用いる形態)等を例示することができる。
 また、上記本発明において、非晶質化工程が、湿式のメカニカルミリング法により原料を非晶質化する工程であっても良い。かかる形態であっても、LiIを含む原料を用いて、イオン伝導性能を高めた硫化物固体電解質を製造することが可能である。
 本発明によれば、LiIを含む原料を用いてイオン伝導性能を高めた硫化物固体電解質を製造することが可能な、硫化物固体電解質の製造方法を提供することができる。
本発明の硫化物固体電解質の製造方法を説明する図である。 実験結果を説明する図である。 X線回折測定の結果を示す図である。 X線回折測定の結果を示す図である。
 以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されない。
 図1は、本発明の硫化物固体電解質の製造方法(以下において、「本発明の製造方法」ということがある。)を説明する図である。図1に示した本発明の製造方法は、投入工程(S1)と、非晶質化工程(S2)と、回収工程(S3)と、乾燥工程(S4)と、を有している。
 投入工程(以下において、「S1」ということがある。)は、LiS-P-LiI電解質を製造するための原料を容器に投入する工程である。例えば、後述する非晶質化工程が、湿式のメカニカルミリング法によりLiS-P-LiI電解質を合成する工程である場合、S1は、電解質原料と、当該電解質原料や合成するLiS-P-LiI電解質と反応しない炭化水素等の液体とを、容器に投入する工程、とすることができる。
  ここで、S1において使用可能な電解質原料としては、LiS、P、及び、LiIの組合せや、Li、P、S、及び、Iを含むその他の原料の組合せ等を例示することができる。また、S1において使用可能な液体としては、ヘプタン、ヘキサン、オクタン等のアルカン、ベンゼン、トルエン、キシレン等の芳香族炭化水素等を例示することができる。
 非晶質化工程(以下において、「S2」ということがある。)は、S1で容器内に投入された原料を非晶質化し、硫化物ガラスを合成する工程である。S1で、電解質原料とともに液体を容器に投入した場合、S2は湿式のメカニカルミリング法により原料を非晶質化し、硫化物ガラスを合成する工程とすることができる。これに対し、S1で、電解質原料とともに液体を容器に投入しなかった場合、S2は乾式のメカニカルミリング法により原料を非晶質化し、硫化物ガラスを合成する工程とすることができる。このほか、S2は、溶融急冷法により原料を非晶質化し、硫化物ガラスを合成する工程とすることも可能である。ただし、常温での処理が可能であることにより製造コストを低減しやすい形態にする等の観点から、S2はメカニカルミリング(湿式又は乾式)法により硫化物ガラスを合成する工程、とすることが好ましい。さらに、容器等の壁面に原料組成物が固着することを防止して、より非晶質性の高い硫化物ガラスが得られやすい形態にする等の観点からは、湿式のメカニカルミリング法により硫化物ガラスを合成する工程、とすることがより好ましい。なお、溶融急冷法は、反応雰囲気や反応容器に制限があるのに対し、メカニカルミリング法は、目的とする組成の硫化物ガラスを簡便に合成できるという利点がある。
 イオン伝導性能が低下したLiS-P-LiI電解質で確認される、特定の結晶相が形成されないようにするため、S2では、LiS-P-LiI電解質を一般式(100-x)(0.75LiS・0.25P)・xLiIで表したときのLiI含有量x[mol%](電解質原料に含まれるLiIの含有量x[mol%])、及び、非晶質化工程で硫化物ガラスを合成しているときの容器内の反応場温度y[℃]が、下記式(1)を満たすように容器内の反応場温度yを制御しながら、硫化物ガラスを合成する。
  y<-2.00x+1.79×10     …式(1)
このように、x及びyが上記式(1)を満たすように容器内の反応場温度を制御しながら、硫化物ガラスを合成することにより、イオン伝導性能が低下したLiS-P-LiI電解質で確認される、特定の結晶相の形成を防止することが可能になる。その結果、イオン伝導性能を向上させた硫化物固体電解質(LiS-P-LiI電解質。以下において同じ。)を製造することが可能になる。
  なお、本発明者らは、所定の容器の外側から加熱せず、当該所定の容器内に収容された原料等の運動の摩擦によって反応場の温度が上昇する形態のメカニカルミリング法を実施する場合、当該所定の容器内の反応場温度は、当該所定の容器の外表面温度よりも約20℃高いことを知見している。また、本発明者らは、所定の容器の外側から加熱する形態でメカニカルミリング法を実施する場合、当該所定の容器内の反応場温度は、当該所定の容器の外表面温度よりも約20℃低いことを知見している。したがって、何れの形態であっても、容器の外表面温度を制御することにより、間接的に、容器内の反応場温度を制御することが可能である。このように、容器の外側から加熱する場合であっても加熱しない場合であっても、容器内外の温度差を約20℃にすることが可能であるため、上記所定の容器を使用する場合には、容器の外側から冷却する場合であっても容器内外の温度差は約20℃であり、容器の外側から冷却する場合における容器内の反応場温度は容器の外表面温度よりも約20℃高いと考えられる。したがって、急冷する過程を経て硫化物ガラスを合成する場合であっても、容器の外表面温度を制御することにより、間接的に、容器内の反応場温度を制御することが可能である。
 回収工程(以下において、「S3」ということがある。)は、S2で合成した硫化物ガラスを容器から取り出して回収する工程である。
 乾燥工程(以下において、「S4」ということがある。)は、S3で回収した硫化物ガラスを乾燥することにより、電解質原料とともに容器に投入した液体を揮発させる工程である。例えばS2が乾式のメカニカルミリング法により硫化物ガラスを合成する工程である場合、S4は不要である。
 上記S1乃至S4を経ることにより、硫化物固体電解質を製造することができる。本発明の製造方法では、硫化物ガラスを合成する際の容器内の反応場温度が、上記式(1)を満たすように制御しながら、硫化物ガラスを合成する。このようにして温度を制御しながら硫化物ガラスを合成することにより、イオン伝導性能が低下したLiS-P-LiI電解質で確認される、特定の結晶相の形成を防止することが可能になるので、本発明の製造方法によれば、イオン伝導性能を向上させた硫化物固体電解質を製造することが可能になる。
 上記説明では、x及びyが上記式(1)を満たすように、非晶質化工程で硫化物ガラスを合成しているときの容器内の反応場温度を制御する形態について言及した。上述のように、x及びyが上記式(1)を満たすように、非晶質化工程で硫化物ガラスを合成しているときの容器内の反応場温度を制御することにより、イオン伝導性能を向上させた硫化物固体電解質を製造することが可能になる。ここで、イオン伝導性能を向上させた硫化物固体電解質の生産性を高めるためには、非晶質化工程における反応場温度を、上記式(1)を満たす範囲内で可能な限り高くすることが好ましい。かかる観点から、本発明の製造方法では、非晶質化工程で、容器内の反応場温度を40℃以上にすることが好ましい。また、同様の観点から、x及びyが上記式(1)のみならず下記式(2)を満たすように、非晶質化工程で硫化物ガラスを合成しているときの容器内の反応場温度を制御することが好ましい。
  y>-2.00x+1.52×10     …式(2)
 さらに、後述するように、x及びyが上記式(1)や上記式(2)のみならず下記式(3)を満たすように、非晶質化工程で硫化物ガラスを合成しているときの容器内の反応場温度を制御することにより、イオン伝導性能を向上させた硫化物固体電解質を製造しやすくなる。そこで、本発明では、上記式(1)、上記式(2)、及び、下記式(3)を満たすように、非晶質化工程で硫化物ガラスを合成しているときの容器内の反応場温度yを制御することが特に好ましい。
  y≦-1.70x+1.655×10    …式(3)
本発明の製造方法では、上記式(1)を満たす範囲内で反応場温度yが可能な限り高くなるように制御することにより、硫化物ガラスの合成時間を短縮することが可能になるので、硫化物固体電解質の製造コストを低減することが可能になる。
 以下に実施例を示して、本発明をさらに具体的に説明する。
 1.硫化物固体電解質の製造
  [実施例1]
  電解質原料として、硫化リチウム(LiS、日本化学工業製、純度99.9%。以下において同じ。)、五硫化二リン(P、Aldrich製、純度99.9%。以下において同じ。)、及び、ヨウ化リチウム(LiI、アルドリッチ製。以下において同じ。)を用いた。これらの電解質原料を、モル比がLiS:P:LiI=63.75:21.25:15となるように秤量した。秤量した電解質原料をトリデカンとともに、遊星型ボールミル機の容器(45ml、ZrO製)に投入し、さらに直径5mmのZrOボールを容器へ投入し、容器を完全に密閉した。メカニカルミリング中の温度を測定するため、容器の外表面に、ヒートラベル(ミクロン社製)を貼り付けた。
  この容器を、容器を外側から加熱する機能を備えた遊星型ボールミル機(伊藤製作所製)に取り付け、設定温度160℃、毎分488回転で4時間に亘ってメカニカルミリングを行うことにより、実施例1の硫化物ガラス(85(0.75LiS・0.25P)・15LiI)を合成した。この際、メカニカルミリング実施中における容器の外表面温度(ヒートラベルの到達温度)は、160℃であった。予備実験により、メカニカルミリング中にこの容器を外側から加熱した場合、容器内の反応場温度は容器の外表面温度よりも20℃低いことが分かっているので、実施例1における反応場温度は140℃であった。
  メカニカルミリング終了後に、容器から85(0.75LiS・0.25P)・15LiIを回収し、80℃で真空乾燥してトリデカンを除去することにより、実施例1にかかる硫化物固体電解質(85(0.75LiS・0.25P)・15LiI)を得た。
 [実施例2]
  容器を外側から加熱する際の設定温度を150℃にしたほかは、実施例1と同様の条件で硫化物ガラス(85(0.75LiS・0.25P)・15LiI)を合成した。硫化物ガラスを合成しているときのヒートラベルの温度は149℃であったので、実施例2における反応場温度は129℃であった。
 [実施例3]
  容器を外側から加熱する際の設定温度を145℃にしたほかは、実施例1と同様の条件で硫化物ガラス(85(0.75LiS・0.25P)・15LiI)を合成した。硫化物ガラスを合成しているときのヒートラベルの温度は143℃であったので、実施例3における反応場温度は123℃であった。
 [実施例4]
  モル比がLiS:P:LiI=60:20:20となるように秤量した硫化リチウム、五硫化二リン、及び、ヨウ化リチウムを電解質原料として用いたほかは、実施例3と同様の条件で硫化物ガラス(80(0.75LiS・0.25P)・20LiI)を合成した。実施例4における反応場温度は123℃であった。
 [実施例5]
  容器を外側から加熱する際の設定温度を135℃にしたほかは、実施例4と同様の条件で硫化物ガラス(80(0.75LiS・0.25P)・20LiI)を合成した。硫化物ガラスを合成しているときのヒートラベルの温度は132℃であったので、実施例5における反応場温度は112℃であった。
 [実施例6]
  容器を外側から加熱する際の設定温度を125℃にしたほかは、実施例4と同様の条件で硫化物ガラス(80(0.75LiS・0.25P)・20LiI)を合成した。硫化物ガラスを合成しているときのヒートラベルの温度は122℃であったので、実施例6における反応場温度は102℃であった。
 [実施例7]
  モル比がLiS:P:LiI=56.25:18.75:25となるように秤量した硫化リチウム、五硫化二リンおよびヨウ化リチウムを電解質原料として用いたほかは、実施例3と同様の条件で硫化物ガラス(75(0.75LiS・0.25P)・25LiI)を合成した。実施例7における反応場温度は123℃であった。
  [実施例8]
  電解質原料として、硫化リチウム、五硫化二リンおよびヨウ化リチウムを用いた。これらの電解質原料を、モル比がLiS:P:LiI=52.5:17.5:30となるように秤量した。秤量した電解質原料をヘプタンとともに、遊星型ボールミル機(フリッチュ社製P5)の容器(500ml、ZrO製)に投入し、さらに直径5mmのZrOボールを容器へ投入し、容器を完全に密閉した。メカニカルミリング中の温度を測定するため、容器の外表面に、ヒートラベル(ミクロン社製)を貼り付けた。
  この容器を遊星型ボールミル機に取り付け、毎分280回転で60時間に亘ってメカニカルミリングを行うことにより、実施例8の硫化物ガラス(70(0.75LiS・0.25P)・30LiI)を合成した。この際、メカニカルミリング実施中における容器の外表面温度(ヒートラベルの到達温度)は、88℃であった。予備実験により、容積500mlのこの容器を用いたメカニカルミリング中に容器を外側から加熱しない場合、容器内の反応場温度は容器の外表面温度よりも20℃高いことが分かっているので、実施例8における反応場温度は108℃であった。
  メカニカルミリング終了後に、容器から70(0.75LiS・0.25P)・30LiIを回収し、100℃で乾燥してヘプタンを除去することにより、実施例8にかかる硫化物固体電解質(70(0.75LiS・0.25P)・30LiI)を得た。
 [比較例1]
  容器を外側から加熱する際の設定温度を170℃にしたほかは、実施例1と同様の条件で硫化物ガラス(85(0.75LiS・0.25P)・15LiI)を合成した。硫化物ガラスを合成しているときのヒートラベルの温度は169℃であったので、比較例1における反応場温度は149℃であった。
 [比較例2]
  容器を外側から加熱する際の設定温度を160℃にしたほかは、実施例4と同様の条件で硫化物ガラス(80(0.75LiS・0.25P)・20LiI)を合成した。硫化物ガラスを合成しているときのヒートラベルの温度は160℃であったので、比較例2における反応場温度は140℃であった。
 [比較例3]
  容器を外側から加熱する際の設定温度を155℃にしたほかは、実施例7と同様の条件で硫化物ガラス(75(0.75LiS・0.25P)・25LiI)を合成した。硫化物ガラスを合成しているときのヒートラベルの温度は155℃であったので、比較例3における反応場温度は135℃であった。
 [比較例4]
  メカニカルミリングを行う際の回転数を毎分300回転にしたほかは、実施例8と同様の条件で硫化物ガラス(70(0.75LiS・0.25P)・30LiI)を合成した。硫化物ガラスを合成しているときのヒートラベルの温度は139℃であったので、比較例4における反応場温度は119℃であった。
 2.分析
  [X線回折]
  実施例1乃至実施例8、及び、比較例1乃至比較例4で製造した、それぞれの硫化物固体電解質について、X線回折法により、イオン伝導性能が低下したLiS-P-LiI電解質で確認される、LiPS-LiI結晶相及びLiPS結晶相の有無を調査した。調査結果を、図2に示す。図2の縦軸は反応場温度[℃]、横軸は電解質原料中のLiI含有量[mol%]である。図2において、「○」はLiPS-LiI結晶相及びLiPS結晶相が確認されなかったことを意味し、「×」はLiPS-LiI結晶相やLiPS結晶相が確認されたことを意味している。図2に示した直線は、y=-2.00x+1.79×10及びy=-2.00x+1.52×10(ただし、xは電解質原料中のLi含有量[mol%]、yは反応場温度[℃]。)である。なお、y=-2.00x+1.52×10は実施例5の結果を通る、傾きが-2.00の直線である。
 また、実施例1の条件で製造した硫化物固体電解質、及び、比較例1の条件で製造した硫化物固体電解質のX線回折パターンを図3に、実施例8の条件で合成した硫化物固体電解質、及び、比較例4の条件で合成した硫化物固体電解質のX線回折パターンを図4に、それぞれ示す。図3において、「▼」はLiPS-LiI結晶相に由来するピークであることを表し、「▽」はLiPS結晶相に由来するピークであることを表している。また、図4において、「○」はLiIに由来するピークであることを表し、「▼」はLiPS-LiI結晶相に由来するピークであることを表している。
 [イオン伝導度の特定]
  実施例8、及び、比較例4の条件で製造したそれぞれの硫化物固体電解質をペレット化し、交流インピーダンス法により測定した抵抗値からLiイオン伝導度(常温)を算出した。なお、測定にはソーラトロン1260を用い、測定条件は、印加電圧5mV、測定周波数域0.01MHz~1MHzとし、100kHzの抵抗値を読み、厚さで補正し、Liイオン伝導度へ換算した。
 3.結果
  図2に示した、比較例1の結果と比較例4の結果とを結んだ直線がy=-2.00x+1.79×10である。図3に示した比較例1のX線回折パターン、及び、図4に示した比較例4のX線回折パターンに例示されるように、比較例1乃至比較例4の条件で製造した硫化物固体電解質からは、LiPS-LiI結晶相、又は、LiPS-LiI結晶相及びLiPS結晶相が確認された。そして、比較例1乃至比較例4は、(100-x)(0.75LiS・0.25P)・xLiIのx、及び、反応場温度yとの間に、y≧-2.00x+1.79×10の関係が成立していた。これに対し、図3に示した実施例1のX線回折パターン、及び、図4に示した実施例8のX線回折パターンに例示されるように、実施例1乃至実施例8の条件で製造した硫化物固体電解質はアモルファス(非晶質)であり、これらの電解質からは、LiPS-LiI結晶相及びLiPS結晶相が確認されなかった。そして、実施例1乃至実施例8は、y<-2.00x+1.79×10を満たしていた。なお、実施例1及び実施例7の結果を通る直線は、y=-1.70x+1.655×10なので、実施例1乃至実施例8は、y≦-1.70x+1.655×10を満たしていた。また、実施例1乃至実施例4、実施例7、及び、実施例8は、y>-2.00x+1.52×10も満たしていた。
 また、実施例8の条件で製造した硫化物固体電解質のLiイオン伝導度は1.76×10-3S/cmであったのに対し、比較例4の条件で製造した硫化物固体電解質のLiイオン伝導度は1.50×10-3S/cmであった。すなわち、LiPS-LiI結晶相及びLiPS結晶相が確認されない硫化物固体電解質のLiイオン伝導度は、LiPS-LiI結晶相やLiPS結晶相が確認される硫化物固体電解質のLiイオン伝導度よりも高かった。
  以上より、y<-2.00x+1.79×10を満たすように反応場温度を制御しながら硫化物ガラスを合成する過程を経て硫化物固体電解質を製造することにより、イオン伝導性能を高めたLiS-P-LiI電解質を製造可能であることが確認された。また、y≦-1.70x+1.655×10を満たすように反応場温度を制御しながら硫化物ガラスを合成する過程を経て硫化物固体電解質を製造することにより、イオン伝導性能を高めたLiS-P-LiI電解質を製造しやすくなることが分かった。
 以上説明したように、実施例1乃至実施例8では、湿式のメカニカルミリング法により硫化物ガラスを合成する際に、反応場温度を制御することにより、イオン伝導性能を高めたLiS-P-LiI電解質の製造を可能にしている。ここで、メカニカルミリング法は、固体の原料同士を反応させることによって、目的の物質を合成する手法であるので、本発明の技術思想は、固体の原料同士を反応させることによってLiS-P-LiI電解質を合成する際に適用可能であると考えられる。それゆえ、LiS-P-LiI電解質を製造する際に、メカニカルミリング法以外の方法を用いた場合であっても、その方法が、固体の原料同士を反応させることによってLiS-P-LiI電解質を合成する方法である場合には、当該合成時における反応場温度を制御することにより、イオン伝導性能を高めたLiS-P-LiI電解質を製造することが可能になると考えられる。

Claims (6)

  1. 一般式(100-x)(0.75LiS・0.25P)・xLiI(ただし、xは0<x<100)を主体とする硫化物固体電解質を製造するための原料を容器に投入する投入工程と、
     前記投入工程後に、前記原料を非晶質化する非晶質化工程と、を有し、
     前記一般式に含まれるx、及び、前記非晶質化工程における前記容器内の反応場温度y[℃]が、下記式(1)を満たすように、前記容器内の反応場温度が制御される、硫化物固体電解質の製造方法。
      y<-2.00x+1.79×10     …式(1)
  2. 前記xがx≧20である、請求項1に記載の硫化物固体電解質の製造方法。
  3. 前記非晶質化工程で、前記容器内の反応場温度を40℃以上にする、請求項1又は2に記載の硫化物固体電解質の製造方法。
  4. さらに、前記x及び前記反応場温度yが、下記式(2)を満たすように、前記容器内の反応場温度が制御される、請求項1又は2に記載の硫化物固体電解質の製造方法。
      y>-2.00x+1.52×10     …式(2)
  5. 前記非晶質化工程で、前記容器内に熱エネルギーを付与する、請求項1~4のいずれか1項に記載の硫化物固体電解質の製造方法。
  6. 前記非晶質化工程が、湿式のメカニカルミリング法により前記原料を非晶質化する工程である、請求項1~5のいずれか1項に記載の硫化物固体電解質の製造方法。
PCT/JP2013/079721 2012-12-27 2013-11-01 硫化物固体電解質の製造方法 WO2014103508A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147033881A KR20150015489A (ko) 2012-12-27 2013-11-01 황화물 고체 전해질의 제조 방법
US14/651,479 US9761906B2 (en) 2012-12-27 2013-11-01 Method for manufacturing sulfide solid electrolyte
CN201380064390.2A CN104871359B (zh) 2012-12-27 2013-11-01 硫化物固体电解质的制造方法
EP13867878.4A EP2940778B1 (en) 2012-12-27 2013-11-01 Sulfide-solid-electrolyte manufacturing method
KR1020197001119A KR102046768B1 (ko) 2012-12-27 2013-11-01 황화물 고체 전해질의 제조 방법
JP2014554211A JP5904291B2 (ja) 2012-12-27 2013-11-01 硫化物固体電解質の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-286176 2012-12-27
JP2012286176 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103508A1 true WO2014103508A1 (ja) 2014-07-03

Family

ID=51020607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079721 WO2014103508A1 (ja) 2012-12-27 2013-11-01 硫化物固体電解質の製造方法

Country Status (6)

Country Link
US (1) US9761906B2 (ja)
EP (1) EP2940778B1 (ja)
JP (1) JP5904291B2 (ja)
KR (2) KR20150015489A (ja)
CN (1) CN104871359B (ja)
WO (1) WO2014103508A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340611A (zh) * 2015-07-08 2017-01-18 丰田自动车株式会社 粒子的制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450440B (zh) * 2016-09-13 2020-08-04 清华大学 全固态锂离子电池、固态电解质化合物及制备方法
WO2018054709A1 (en) * 2016-09-20 2018-03-29 Basf Se Solid lithium electrolytes and process of production
KR20180055086A (ko) * 2016-11-16 2018-05-25 현대자동차주식회사 습식공정을 통한 황화물계 고체전해질의 제조방법
KR102417506B1 (ko) * 2016-11-16 2022-07-05 현대자동차주식회사 단일원소로부터 유래된 고체전해질 및 이의 제조방법
CN108114492B (zh) * 2016-11-28 2020-06-09 丰田自动车株式会社 复合化粒子的制造方法
JP6558357B2 (ja) * 2016-12-27 2019-08-14 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法
US10854877B2 (en) * 2017-08-25 2020-12-01 Samsung Electronics Co., Ltd. All-solid-state secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228570A (ja) 2004-02-12 2005-08-25 Idemitsu Kosan Co Ltd リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法
JP2010030889A (ja) * 2008-07-01 2010-02-12 Idemitsu Kosan Co Ltd リチウムイオン伝導性硫化物ガラスの製造方法、リチウムイオン伝導性硫化物ガラスセラミックスの製造方法及び硫化物ガラス製造用のメカニカルミリング処理装置
JP2012104279A (ja) * 2010-11-08 2012-05-31 Toyota Motor Corp 硫化物固体電解質材料、リチウム固体電池、および硫化物固体電解質材料の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396239B2 (ja) 2008-11-17 2014-01-22 出光興産株式会社 固体電解質の製造装置及び製造方法
JP5521899B2 (ja) * 2010-08-26 2014-06-18 トヨタ自動車株式会社 硫化物固体電解質材料およびリチウム固体電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228570A (ja) 2004-02-12 2005-08-25 Idemitsu Kosan Co Ltd リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法
JP2010030889A (ja) * 2008-07-01 2010-02-12 Idemitsu Kosan Co Ltd リチウムイオン伝導性硫化物ガラスの製造方法、リチウムイオン伝導性硫化物ガラスセラミックスの製造方法及び硫化物ガラス製造用のメカニカルミリング処理装置
JP2012104279A (ja) * 2010-11-08 2012-05-31 Toyota Motor Corp 硫化物固体電解質材料、リチウム固体電池、および硫化物固体電解質材料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2940778A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340611A (zh) * 2015-07-08 2017-01-18 丰田自动车株式会社 粒子的制造方法

Also Published As

Publication number Publication date
KR20190007109A (ko) 2019-01-21
US20150318569A1 (en) 2015-11-05
KR102046768B1 (ko) 2019-11-20
JPWO2014103508A1 (ja) 2017-01-12
US9761906B2 (en) 2017-09-12
JP5904291B2 (ja) 2016-04-13
EP2940778B1 (en) 2022-10-05
CN104871359A (zh) 2015-08-26
EP2940778A1 (en) 2015-11-04
KR20150015489A (ko) 2015-02-10
EP2940778A4 (en) 2016-09-07
CN104871359B (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
JP5904291B2 (ja) 硫化物固体電解質の製造方法
US10573884B2 (en) Ionic liquid-enabled high-energy Li-ion batteries
JP6302901B2 (ja) 固体電解質の製造方法
CN109775744B (zh) 卤化钇锂的制备方法及其在固态电解质和电池中的应用
WO2015064518A1 (ja) 硫化物固体電解質の製造方法
US10361451B2 (en) Sulfide solid electrolyte material, lithium solid battery, and producing method for sulfide solid electrolyte material
JP5838954B2 (ja) 硫化物固体電解質の製造方法
JP5888609B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5158008B2 (ja) 全固体電池
JP5594364B2 (ja) 硫化物固体電解質材料の製造方法、リチウム固体電池の製造方法
US20150214574A1 (en) Method for producing sulfide solid electrolyte
KR20120136372A (ko) 황화물 고체 전해질 재료, 전지 및 황화물 고체 전해질 재료의 제조 방법
KR101646416B1 (ko) 붕산염이 첨가된 전고체 이차전지용 황화물계 결정화 유리 및 이의 제조방법
US10897059B2 (en) Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
JP6118521B2 (ja) 硫化物系固体電解質を含む電極層、硫化物系固体電解質を含む電解質層及びそれらを用いた全固体電池
JP2017199631A (ja) 硫化物固体電解質、電極合材及びリチウムイオン電池
JP2014029796A (ja) リチウムイオン伝導性結晶化固体電解質およびリチウムイオン伝導性結晶化固体電解質の製造方法
JP2014130733A (ja) 硫化物固体電解質材料の製造方法、及び当該方法により製造された硫化物固体電解質材料を含むリチウム固体電池
JP2015002052A (ja) 正極合材及びそれを用いた固体リチウム電池
JP6285317B2 (ja) 全固体電池システム
Rangaswamy et al. Enhanced electrochemical performance of LiVPO 4 F/f-graphene composite electrode prepared via ionothermal process
JP2015002053A (ja) 固体電解質組成物
JP2013179025A (ja) アルカリイオン電解質組成物
JP2014127387A (ja) 硫化物固体電解質材料の製造方法およびリチウム固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867878

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554211

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147033881

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14651479

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013867878

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE