WO2014102946A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2014102946A1
WO2014102946A1 PCT/JP2012/083750 JP2012083750W WO2014102946A1 WO 2014102946 A1 WO2014102946 A1 WO 2014102946A1 JP 2012083750 W JP2012083750 W JP 2012083750W WO 2014102946 A1 WO2014102946 A1 WO 2014102946A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
engine
rotational speed
temperature
rotating machine
Prior art date
Application number
PCT/JP2012/083750
Other languages
English (en)
French (fr)
Inventor
杉村 敏夫
桑原 清二
貴彦 堤
幸毅 南川
佐藤 俊
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112012007261.8T priority Critical patent/DE112012007261T5/de
Priority to JP2014553950A priority patent/JP5939309B2/ja
Priority to CN201280077978.7A priority patent/CN104870285B/zh
Priority to US14/654,399 priority patent/US9381801B2/en
Priority to PCT/JP2012/083750 priority patent/WO2014102946A1/ja
Publication of WO2014102946A1 publication Critical patent/WO2014102946A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/1843Overheating of driveline components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0291Clutch temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a control apparatus for a hybrid vehicle, and more particularly to control when switching to an engine running mode by slipping engagement of a clutch and starting the engine by cranking.
  • the present invention has been made against the background of the above circumstances.
  • the purpose of the present invention is to cause the clutch to be forcibly released due to a rise in the clutch temperature when switching to the engine running mode, and to generate a driving force by the rotating machine. When the temperature drops, the clutch is engaged again to shift to the engine running mode, thereby preventing the driver from feeling uncomfortable due to insufficient driving force.
  • the first invention comprises (a) an engine connected to the power transmission path via a clutch, and a rotating machine that functions as at least an electric motor, and (b) ⁇ said clutch.
  • An engine running mode that engages and runs using at least the engine as a driving force source, and a motor running mode that runs using the rotating machine as a driving force source by releasing the clutch and
  • the hybrid vehicle control device that fully engages the clutch after the clutch is slip-engaged and the engine is cranked and started
  • D When the clutch reaches a predetermined temperature when switching to the engine travel mode It is adapted to open the clutch, while traveling by generating a driving force by the rotating machine, and controlling the rotational speed of the engine to synchronize the rotational speed of the front and rear of the clutch.
  • a second aspect of the invention is the hybrid vehicle control apparatus according to the first aspect of the invention, wherein (a) the engine is directly connected to the rotating machine via the clutch, and (b) the rotational speed before and after the clutch.
  • the speed change portion provided in the power transmission path is shifted so that the rotation speed of the rotating machine, which is the rotation speed on the power transmission path side of the clutch, becomes the idle rotation speed of the engine,
  • the engine is controlled using the rotation speed of the rotating machine after the speed change as the target rotation speed of the engine.
  • the second invention is a case where the engine and the rotating machine are directly connected via a clutch, and the transmission unit is shifted so that the rotating speed of the rotating machine becomes the idle rotating speed of the engine, and the rotating speed of the rotating machine
  • the engine is controlled using the idle rotation speed as the target rotation speed, so that the engine rotation speed can be stably controlled with high accuracy using an idle rotation speed control device or the like.
  • the shock at the time of clutch engagement can be reduced appropriately.
  • FIG. 2 is a flowchart specifically illustrating switching control to an engine traveling mode executed by an engine traveling switching unit in FIG. 1.
  • FIG. 4 is an example of a time chart showing changes of each part when the K0 clutch is temporarily forcibly released due to a thermal failure (thermal limit) when switching to the engine running mode according to the flowchart of FIG. 3.
  • a dry or wet single-plate or multi-plate friction clutch is preferably used.
  • other clutch capable of slip engagement engagement that transmits torque while allowing relative rotation
  • a clutch can also be employed.
  • the engine is an internal combustion engine that generates power by burning fuel, and is directly connected to a rotating machine via a clutch, for example. The position of the rotating machine is appropriately set within a range in which driving force can be generated when the clutch is released. Determined.
  • An electric motor can be used as the rotating machine, but a motor generator having a function as a generator can also be employed.
  • the vehicle travels using at least the engine as a driving force source and may travel using only the engine as the driving power source. However, the vehicle travels using both the engine and the rotating machine as the driving power source. You can also.
  • the switching to the engine travel mode is, for example, a case where the motor travel mode is switched to the engine travel mode as the driver's required driving force increases. At least from the engine stop state where the clutch is released, the clutch slip engagement is performed.
  • the engine may be cranked and started and switched to the engine running mode.
  • the clutch temperature may be detected by a temperature sensor, but it can also be calculated by calculating the amount of heat generation or heat release from the clutch engagement torque, slip engagement time, or the like.
  • both the rotational speed of the engine and the rotational speed on the power transmission path side may be controlled.
  • the engine and the rotating machine are directly connected via the clutch, they may be controlled so that their rotational speeds substantially coincide.
  • the engine is controlled with the actual rotational speed of the rotating machine as the target rotational speed of the engine. It ’s fine.
  • the present invention can also be applied to a case where a speed reducer or the like is interposed between the engine and the rotating machine in addition to the clutch, and even in this case, the clutch is synchronized when the engine is operated at the idle rotational speed. If the speed change portion provided in the power transmission path is changed, the same effect as that of the second invention can be obtained.
  • an automatic transmission interposed in the power transmission path can be used.
  • the rotation speed on the power transmission path side of the clutch By changing the rotation speed on the power transmission path side of the clutch by the shift control of the automatic transmission, can do.
  • the lock-up clutch can be used as a transmission unit, and the rotational speed on the power transmission path side of the clutch can be changed by slip control of the lock-up clutch.
  • synchronization may be performed at a rotational speed other than the idle rotational speed.
  • the synchronization of the rotational speeds before and after the clutch is controlled so that the rotational speeds are substantially the same, but there may be rotational fluctuations due to pulsation of the engine rotation or control hunting, etc. There may be a difference in rotational speed of, for example, several tens of rpm due to an error.
  • FIG. 1 is a schematic configuration diagram including a skeleton diagram of a drive system of a hybrid vehicle 10 to which the present invention is preferably applied.
  • the hybrid vehicle 10 includes an engine 12 that is an internal combustion engine such as a gasoline engine or a diesel engine that generates power by combustion of fuel, and a motor generator MG that functions as an electric motor and a generator as driving power sources.
  • the outputs of the engine 12 and the motor generator MG are transmitted from the torque converter 14 which is a fluid transmission device to the automatic transmission 20 via the turbine shaft 16 and the C1 clutch 18, and further to the output shaft 22 and the differential gear. It is transmitted to the left and right drive wheels 26 via the device 24.
  • the torque converter 14 includes a lock-up clutch (LU clutch) 30 that directly connects the pump impeller and the turbine impeller, and an oil pump 32 is integrally connected to the pump impeller.
  • a hydraulic pressure is generated mechanically by the motor generator MG and supplied to the hydraulic control device 28.
  • the lock-up clutch 30 can be engaged and released by an electromagnetic hydraulic control valve, a switching valve or the like provided in the hydraulic control device 28, and can be engaged in a predetermined slip state by hydraulic control.
  • the motor generator MG corresponds to a rotating machine.
  • the engine 12 includes an idle rotational speed control device 36 such as an idle rotational speed control valve (ISC valve) that can control the idle rotational speed NEidl within the range of the minimum idle rotational speed NEidl1 to the maximum idle rotational speed NEidl2.
  • a K0 clutch 34 is provided between the engine 12 and the motor generator MG to directly connect them.
  • the K0 clutch 34 is a dry or wet friction clutch that is frictionally engaged by a hydraulic cylinder.
  • the K0 clutch 34 is a hydraulic friction engagement device, and functions as a connection / disconnection device that connects or disconnects the engine 12 to / from the power transmission path.
  • the K0 clutch 34 is also engaged and released by a hydraulic control valve, a switching valve, and the like provided in the hydraulic control device 28, and can be engaged in a predetermined slip state by hydraulic control.
  • the motor generator MG is connected to the battery 44 via the inverter 42.
  • the automatic transmission 20 is a stepped automatic transmission such as a planetary gear type in which a plurality of gear stages having different gear ratios are established depending on a disengagement state of a plurality of hydraulic friction engagement devices (clutch and brake). Shift control is performed by an electromagnetic hydraulic control valve, a switching valve or the like provided in the hydraulic control device 28.
  • the C1 clutch 18 functions as an input clutch of the automatic transmission 20 and is similarly controlled to be disengaged by the hydraulic control device 28.
  • a continuously variable transmission such as a belt type may be used.
  • the hybrid vehicle 10 includes an electronic control device 70.
  • the electronic control unit 70 includes a so-called microcomputer having a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing according to a program stored in the ROM in advance using the temporary storage function of the RAM. Do.
  • the electronic control unit 70 includes an engine speed sensor 50, an MG speed sensor 52, an accelerator operation amount sensor 54, a vehicle speed sensor 56, and a clutch temperature sensor 58.
  • the engine speed 12 (engine speed) NE, motor Generator MG rotation speed (MG rotation speed) NMG, accelerator pedal operation amount (accelerator operation amount) Acc, output shaft 22 rotation speed (output shaft rotation speed corresponds to vehicle speed V) NOUT, temperature of K0 clutch 34 (clutch A signal representing the temperature) TK0 is supplied.
  • the clutch temperature sensor 58 detects, for example, the temperature of the K0 clutch 34 itself, but can also be obtained by calculation from the engagement torque (hydraulic pressure), the engagement time, or the like. The temperature may be detected.
  • the accelerator operation amount Acc corresponds to the driver's required driving force.
  • the electronic control unit 70 functionally includes hybrid control means 72, shift control means 74, and engine travel switching means 80.
  • the hybrid control means 72 controls the operation of the engine 12 and the motor generator MG, for example, an engine travel mode in which the engine 12 travels using the engine 12 as a drive power source, or a motor that travels using the motor generator MG as the drive power source.
  • a plurality of predetermined driving modes such as a driving mode are switched in accordance with the driving state such as the accelerator operation amount Acc and the vehicle speed V.
  • FIG. 2 is a diagram for explaining the engine travel mode and the motor travel mode.
  • the K0 clutch 34 In the engine travel mode, the K0 clutch 34 is engaged (O), the engine 12 is connected to the power transmission path, and the engine 12 is operated (O ) Motor generator MG is power running controlled in an assisting manner as necessary during acceleration and the like.
  • the K0 clutch 34 In the motor travel mode, the K0 clutch 34 is released (x) to disconnect the engine 12 from the power transmission path, the operation of the engine 12 is stopped (x), and the motor generator MG is powered according to the accelerator operation amount Acc. Drive under control (O).
  • the motor generator MG In the motor travel mode, the motor generator MG is regeneratively controlled to charge the battery 44 under certain conditions during inertial travel where the accelerator operation amount Acc is zero (accelerator OFF).
  • the shift control means 74 controls an electromagnetic hydraulic control valve, a switching valve, and the like provided in the hydraulic control device 28 to switch the disengagement state of the plurality of hydraulic friction engagement devices. These gear stages are switched according to a predetermined shift map with the operating state such as the accelerator operation amount Acc and the vehicle speed V as parameters.
  • the engine travel switching means 80 is used when the hybrid control means 72 determines to switch to the engine travel mode because the accelerator operation amount Acc or the vehicle speed V increases when traveling in the motor travel mode.
  • the engine 12 is cranked and started by slipping the K0 clutch 34, and the K0 clutch 34 is completely engaged and switched to the engine running mode after the engine is started.
  • the K0 clutch 34 reaches the thermal limit, the K0 clutch 34 is forcibly released to prevent damage to the friction material and the like, and synchronous control is performed to synchronize the rotational speeds before and after the K0 clutch 34. Also, it has a function of engaging the K0 clutch 34 and shifting to the engine running mode without performing torque compensation after the temperature drop.
  • the engine travel switching means 80 functionally includes a clutch engagement control means 82, an engine start control means 84, and a synchronization control means 86, and executes engine travel switching control according to the flowchart of FIG. Steps S2, S3, S10, S11, and S13 in FIG. 3 correspond to the clutch engagement control means 82, step S14 corresponds to the engine start control means 84, and steps S5 to S9 correspond to the synchronization control means 86.
  • step S1 of FIG. 3 it is determined whether or not the hybrid control means 72 has determined whether to switch to the engine running mode. If the switching determination is made, step S2 and subsequent steps are executed.
  • step S2 it is determined whether or not the clutch temperature TK0 is equal to or lower than a predetermined engagement prohibition temperature TK01. If TK0 ⁇ TK01, step S13 and subsequent steps are executed to control switching to the engine travel mode.
  • step S13 the K0 clutch 34 is slip-engaged to crank the engine 12, and in step S14, fuel supply control and ignition timing control are performed, and the engine 12 is started. Then, after the engine 12 is started, the transition to the engine travel mode is completed by completely engaging the K0 clutch 34.
  • step S15 it is determined whether or not the K0 clutch 34 is completely engaged and the transition to the engine travel mode is completed, and the execution of steps S2, S13, and S14 is repeated until the transition is completed.
  • the transition is completed and the determination in step S15 is YES (positive), the series of engine travel switching control is terminated.
  • step S2 corresponds to a thermal limit for avoiding damage to the friction material of the K0 clutch 34 due to overheating, and when the clutch temperature TK0 exceeds the engagement prohibition temperature TK01 (K0 thermal failure). ),
  • the determination in step S2 is NO (negative), and step S3 is executed.
  • step S3 slip engagement of the K0 clutch 34 is prohibited and the K0 clutch 34 is forcibly released.
  • step S4 the running by the motor generator MG is continued.
  • the K0 clutch 34 is engaged in step S11, it is necessary to secure the compensation torque T ⁇ for preventing a shock due to the inertia of the engine 12. Therefore, the vehicle can travel using the maximum torque TMGmaxG of the motor generator MG.
  • step S5 it is determined whether or not the MG rotational speed NMG, that is, the rotational speed on the power transmission path side of the K0 clutch 34 is within the range of the minimum idle rotational speed NEidl1 to the maximum idle rotational speed NEidl2. If it is within, step S9 is immediately executed.
  • step S5 determines whether or not the speed NMG can be shifted within the range of the idle rotational speed NEidl1 to NEidl2.
  • the MG rotation speed NMG can be increased (raised) to some extent by the torque of the motor generator MG by reducing the hydraulic pressure and slipping, and the lock-up clutch 30 Is open, the MG rotation speed NMG can be lowered (lowered) until it coincides with the turbine rotation speed NT by increasing the hydraulic pressure and causing slipping.
  • step S7 is executed, and the lockup clutch 30 is slipped. NMG is shifted to a range of idle speed NEidl1 to NEidl2.
  • the lock-up clutch 30 corresponds to a transmission unit that changes the rotational speed (MG rotational speed NMG) on the power transmission path side of the K0 clutch 34 for synchronization.
  • step S8 is executed.
  • step S8 the gear stage of the automatic transmission 20 is switched so that the MG rotational speed NMG falls within the range of the idle rotational speed NEidl1 to NEidl2.
  • the automatic transmission 20 corresponds to a transmission unit that changes the rotational speed (MG rotational speed NMG) on the power transmission path side of the K0 clutch 34 for synchronization.
  • step S7 or S8 after shifting so that the MG rotational speed NMG falls within the range of the idle rotational speed NEidl1 to NEidl2, the step S9 is executed, and the target rotational speed NEt of the engine 12 is set to the MG rotational speed at that time.
  • the engine 12 is controlled to idle at a speed NMG.
  • step S10 it is determined whether or not the clutch temperature TK0 has fallen to a predetermined engagement prohibition release temperature TK02 or less. While the clutch temperature TK0 is higher than the engagement prohibition release temperature TK02, the above step S4 or less is performed. The above steps are repeated.
  • step S11 the K0 clutch 34 is quickly and completely engaged to shift to the engine travel mode.
  • step S12 the rotational speed control of the engine 12 is canceled and a driving force corresponding to the accelerator operation amount Acc is generated. The engine output control is executed.
  • the engagement prohibition release temperature TK02 is a temperature at which the transition can be completed before the clutch temperature TK0 reaches the engagement prohibition temperature TK01 when the K0 clutch 34 is engaged and the transition to the engine travel mode is resumed. Thus, a temperature sufficiently lower than the engagement prohibition temperature TK01 is set.
  • the synchronous control in steps S5 to S9 is based on the assumption that the engine 12 has already rotated by itself when the determination in step S2 is NO. If the temperature of the K0 clutch 34 becomes equal to or lower than the engagement prohibition release temperature TK02 without performing the synchronization control in steps S5 to S9, the control for switching to the engine running mode is performed by executing the steps S13 to S15. I do.
  • Time t1 is the time when the accelerator pedal is depressed during inertial running when the accelerator is OFF, and the torque (MG torque) TMG of the motor generator MG is immediately raised and is stepped according to the switching determination for switching from the motor running mode to the engine running mode.
  • the determination in S1 is YES (affirmation), and the execution after step S2 is started.
  • the MG torque TMG is lower than the maximum torque TMGmax by the compensation torque T ⁇ in preparation for the slip engagement of the K0 clutch 34. Drive limited by torque.
  • the compensation torque T ⁇ is increased so as to cancel the shock caused by the inertia of the engine 12, and the maximum torque TMGmax is set.
  • the K0 clutch 34 is slip-engaged in this manner, the engine 12 is cranked and the engine rotational speed NE is increased, and the clutch temperature TK0 is increased due to heat generated by friction.
  • the K0 hydraulic pressure command value 0 means that the K0 clutch 34 is in the released state.
  • Time t3 is the time when the clutch temperature TK0 exceeds the engagement prohibition temperature TK01 due to heat generated by slip engagement of the K0 clutch 34, the determination in step S2 is NO, and the execution of each step after step S3 is started. . That is, the K0 clutch 34 is immediately forcibly released, and the motor generator MG generates driving force to travel while starting the synchronous control so that the rotational speeds of the K0 clutch 34 before and after substantially match. Since the motor generator MG does not need to secure the compensation torque T ⁇ , the motor generator MG travels using the maximum torque TMGmax.
  • step S9 is executed immediately when the MG rotational speed NMG, which is the rotational speed on the power transmission path side of the K0 clutch 34, is within the range of the idle rotational speed NEidl1 to NEidl2, and the target rotational speed NEt of the engine 12 is set.
  • the MG rotation speed NMG at that time is set, and the idle rotation speed control of the engine 12 is performed.
  • the engine rotational speed NE is substantially matched with the MG rotational speed NMG within the range of the idle rotational speed NEidl1 to NEidl2.
  • the K0 clutch 34 when switching to the engine running mode, the K0 clutch 34 is forcibly released when the clutch temperature TK0 of the K0 clutch 34 exceeds the engagement prohibition temperature TK01 which is the thermal limit.
  • the engine speed NE is controlled so as to synchronize the front and rear rotational speeds (NE and NMG) of the K0 clutch 34 (steps S5 to S9).
  • the shock (driving force fluctuation) when shifting to the engine running mode is reduced. This eliminates the need for torque compensation when the clutch is engaged, and it is not necessary to secure the compensation torque T ⁇ when traveling with the motor generator MG generating driving force during the K0 thermal failure (step S4).
  • the vehicle can travel up to TMGmax, and it is possible to suppress the driver from feeling uncomfortable due to insufficient driving force. That is, the vehicle can travel with a driving force generated with a torque that is larger by the compensation torque T ⁇ than in the case without synchronous control.
  • the engine 12 and the motor generator MG are directly connected via the K0 clutch 34 so that the MG rotational speed NMG falls within the range of the idle rotational speed NEidl1 to NEidl2 of the engine 12.
  • the slip control of the lockup clutch 30 and the shift control of the automatic transmission 20 are performed as necessary, and the engine 12 is controlled with the MG rotational speed NMG as the target rotational speed NEt.
  • the engine speed NE can be stably controlled with high accuracy by the speed control device 36 or the like, and the shock when the K0 clutch 34 is engaged can be appropriately reduced.
  • Hybrid vehicle 12 Engine 20: Automatic transmission (transmission unit) 30: Lock-up clutch (transmission unit) 34: K0 clutch (clutch) 58: Clutch temperature sensor 70: Electronic control unit 80: Engine travel switching means 82: Clutch engagement control means 84: Engine start control means 86: Synchronization control means MG: Motor generator (rotating machine) TK0: Clutch temperature TK01: Engagement prohibition temperature (predetermined temperature) NE: Engine rotation speed NMG: MG rotation Speed (rotational speed on the power transmission path side) NEidl1: Minimum idle rotational speed NEidl2: Maximum idle rotational speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 エンジン走行モードへ切り換える際にK0クラッチ34のクラッチ温度TK0が係合禁止温度TK01を超えてK0クラッチ34が強制的に開放された場合(K0熱フェール時)、K0クラッチ34の前後の回転速度(NEおよびNMG)を同期させるようにエンジン回転速度NEが制御されるため、温度降下後にK0クラッチ34を係合させてエンジン走行モードへ移行する際のショックが低減される。これにより、クラッチ係合時のトルク補償が不要となり、K0熱フェール時にモータジェネレータMGにより駆動力を発生させて走行する際に、補償トルクTαを担保する必要がなく、最大トルクTMGmax まで用いて走行することが可能で、駆動力不足により運転者に違和感を生じさせることが抑制される。

Description

ハイブリッド車両の制御装置
 本発明はハイブリッド車両の制御装置に係り、特に、クラッチをスリップ係合させてエンジンをクランキングして始動することによりエンジン走行モードへ切り換える際の制御に関するものである。
 (a) クラッチを介して動力伝達経路に接続されるエンジンと、少なくとも電動モータとして機能する回転機とを備えており、(b) 前記クラッチを係合して少なくとも前記エンジンを駆動力源として用いて走行するエンジン走行モード、およびそのクラッチを開放して前記回転機を駆動力源として用いて走行するモータ走行モードが可能なハイブリッド車両が知られている(特許文献1参照)。このようなハイブリッド車両において、前記クラッチが開放されたエンジンの停止時にエンジン走行モードへ切り換える際には、一般にクラッチをスリップ係合させてエンジンをクランキングして始動した後にそのクラッチを完全係合させるようになっている。
特開平11-285107号公報
 ところで、このようにクラッチをスリップ係合させてエンジンをクランキングする場合、摩擦による発熱でクラッチ温度が上昇するため、過熱により摩擦材等を損傷する恐れがある。これに対し、未だ公知ではないが、クラッチ温度が所定の温度(熱限界など)を超えたらクラッチを強制的に開放し、回転機により駆動力を発生させて走行するとともに、温度が降下したら再びクラッチを係合させてエンジン走行モードへ移行することが考えられる。その場合、クラッチを係合する際にエンジンのイナーシャに起因してショック(駆動力変動)が生じるため、これを回転機のトルクで補償する必要があり、クラッチ開放状態での走行時には温度降下後のクラッチ係合に備えて補償トルク分だけ回転機のトルクを制限した状態で走行することになる。この段階ではエンジントルクを利用できない上に、回転機のトルクも制限されるため、駆動力不足で運転者に違和感を生じさせる可能性がある。
 本発明は以上の事情を背景として為されたもので、その目的とするところは、エンジン走行モードへ切り換える際にクラッチ温度の上昇でクラッチが強制的に開放され、回転機により駆動力を発生させて走行するとともに、温度が降下したら再びクラッチを係合させてエンジン走行モードへ移行する場合に、駆動力不足で運転者に違和感を生じさせることを抑制することにある。
 かかる目的を達成するために、第1発明は、(a) クラッチを介して動力伝達経路に接続されるエンジンと、少なくとも電動モータとして機能する回転機とを備えており、(b) 前記クラッチを係合して少なくとも前記エンジンを駆動力源として用いて走行するエンジン走行モード、およびそのクラッチを開放して前記回転機を駆動力源として用いて走行するモータ走行モードが可能であるとともに、(c) 前記クラッチが開放された前記エンジンの停止時に前記エンジン走行モードへ切り換える際には、そのクラッチをスリップ係合させてエンジンをクランキングして始動した後にクラッチを完全係合させるハイブリッド車両の制御装置において、(d) 前記エンジン走行モードへ切り換える際に、前記クラッチが予め定められた温度に達した場合には、そのクラッチを開放するとともに、前記回転機により駆動力を発生させて走行する一方、そのクラッチの前後の回転速度を同期させるように前記エンジンの回転速度を制御することを特徴とする。
 第2発明は、第1発明のハイブリッド車両の制御装置において、(a) 前記エンジンは前記クラッチを介して前記回転機に直結されるようになっており、(b) 前記クラッチの前後の回転速度を同期させるため、そのクラッチの動力伝達経路側の回転速度である前記回転機の回転速度が前記エンジンのアイドル回転速度となるように、その動力伝達経路に設けられた変速部を変速させるとともに、その変速後の回転機の回転速度を前記エンジンの目標回転速度としてそのエンジンを制御することを特徴とする。
 このようなハイブリッド車両の制御装置においては、エンジン走行モードへ切り換える際にクラッチが予め定められた温度に達して開放された場合、そのクラッチの前後の回転速度を同期させるようにエンジンの回転速度が制御されるため、温度降下後にクラッチを係合させてエンジン走行モードへ移行する際のショック(駆動力変動)が低減される。これにより、クラッチ係合時のトルク補償が不要乃至は低減され、回転機により駆動力を発生させて走行する際に、トルク補償のためのトルクの制限が解消乃至は緩和されるため、駆動力不足で運転者に違和感を生じさせることが抑制される。
 第2発明は、クラッチを介してエンジンと回転機とが直結される場合で、その回転機の回転速度がエンジンのアイドル回転速度となるように変速部を変速させるとともに、その回転機の回転速度を目標回転速度としてエンジンを制御するため、結局、エンジンはアイドル回転速度を目標回転速度として制御されることになり、アイドル回転速度制御装置などでエンジン回転速度を高い精度で安定して制御することが可能で、クラッチ係合時のショックを適切に低減することができる。
本発明が好適に適用されるハイブリッド車両の骨子図に、制御系統の要部を併せて示した概略構成図である。 図1のハイブリッド制御手段によって実行されるエンジン走行モードおよびモータ走行モードを説明する図である。 図1のエンジン走行切換手段によって実行されるエンジ走行モードへの切換制御を具体的に説明するフローチャートである。 図3のフローチャートに従ってエンジン走行モードへ切り換える際に、K0クラッチが熱フェール(熱限界)で一時的に強制的に開放された場合の各部の変化を示すタイムチャートの一例である。
 クラッチは、乾式または湿式の単板式、多板式の摩擦クラッチが好適に用いられるが、磁粉式電磁クラッチ等のスリップ係合(相対回転を許容しつつトルクを伝達する係合)が可能な他のクラッチを採用することもできる。エンジンは燃料の燃焼で動力を発生する内燃機関などで、例えばクラッチを介して回転機に直結されるが、回転機の配設位置は、クラッチ開放時に駆動力を発生させることができる範囲で適宜定められる。回転機としては、電動モータを用いることもできるが、発電機としての機能も有するモータジェネレータを採用することも可能である。
 エンジン走行モードは、少なくともエンジンを駆動力源として用いて走行するもので、エンジンのみを駆動力源として用いて走行するものでも良いが、エンジンおよび回転機の両方を駆動力源として用いて走行することもできる。エンジン走行モードへの切換は、例えば運転者の要求駆動力の増大に伴ってモータ走行モードからエンジン走行モードへ切り換える場合であるが、少なくともクラッチが開放されたエンジン停止状態から、クラッチのスリップ係合でエンジンをクランキングして始動し、エンジン走行モードへ切り換えるものであれば良い。
 クラッチは、例えば熱限界よる所定の係合禁止温度を超えたらスリップ係合が禁止されて強制的に開放される一方、係合禁止解除温度以下になったらスリップ係合や完全係合が許容されるように制御される。クラッチ温度は、温度センサによって検出しても良いが、クラッチの係合トルクやスリップ係合時間などから発熱量や放熱量を求めるなどして計算によって算出することもできる。
 クラッチが開放された場合、クラッチの前後の回転速度を同期させるため、エンジンの回転速度が同期回転速度(クラッチが同期するエンジン回転速度)となるようにエンジンがフィードバック制御等によって制御されるが、第2発明のようにエンジンの回転速度および動力伝達経路側の回転速度の両方を制御するようにしても良い。クラッチを介してエンジンと回転機とが直結される場合、それ等の回転速度が略一致するように制御すれば良く、例えば回転機の実際の回転速度をエンジンの目標回転速度としてエンジンを制御すれば良い。エンジンと回転機との間に、クラッチの他に減速機等が介在している場合にも本発明は適用され得、その場合でもエンジンをアイドル回転速度で作動させた場合にクラッチが同期するように動力伝達経路に設けられた変速部を変速すれば、第2発明と同様の効果が得られる。
 第2発明の変速部としては、例えば動力伝達経路に介在させられた自動変速機を利用でき、その自動変速機の変速制御でクラッチの動力伝達経路側の回転速度を変化させてアイドル回転速度とすることができる。また、ロックアップクラッチ付きの流体式伝動装置を有する場合、そのロックアップクラッチを変速部として利用し、そのロックアップクラッチのスリップ制御でクラッチの動力伝達経路側の回転速度を変化させることができる。他の発明の実施に際しては、アイドル回転速度以外の回転速度で同期させるようにしても良い。
 クラッチの前後の回転速度の同期は、それ等の回転速度が略一致するように制御することであるが、エンジン回転の脈動や制御上のハンチングなどによる回転変動があっても良いし、制御の誤差などで例えば数十rpm程度の回転速度差があっても差し支えない。
 以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
 図1は、本発明が好適に適用されるハイブリッド車両10の駆動系統の骨子図を含む概略構成図である。このハイブリッド車両10は、燃料の燃焼で動力を発生するガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン12と、電動モータおよび発電機として機能するモータジェネレータMGとを駆動力源として備えている。そして、それ等のエンジン12およびモータジェネレータMGの出力は、流体式伝動装置であるトルクコンバータ14からタービン軸16、C1クラッチ18を経て自動変速機20に伝達され、更に出力軸22、差動歯車装置24を介して左右の駆動輪26に伝達される。トルクコンバータ14は、ポンプ翼車とタービン翼車とを直結するロックアップクラッチ(LUクラッチ)30を備えているとともに、ポンプ翼車にはオイルポンプ32が一体的に接続されており、エンジン12やモータジェネレータMGによって機械的に回転駆動されることにより油圧を発生して油圧制御装置28に供給する。ロックアップクラッチ30は、油圧制御装置28に設けられた電磁式の油圧制御弁や切換弁等によって係合開放されるとともに、油圧制御によって所定のスリップ状態で係合させることができる。上記モータジェネレータMGは回転機に相当する。
 エンジン12は、アイドル回転速度NEidl を最低アイドル回転速度NEidl1~最高アイドル回転速度NEidl2の範囲内で制御可能なアイドル回転速度制御バルブ(ISCバルブ)等のアイドル回転速度制御装置36を備えている。また、エンジン12とモータジェネレータMGとの間には、それ等を直結するK0クラッチ34が設けられている。このK0クラッチ34は、油圧シリンダによって摩擦係合させられる乾式または湿式の摩擦クラッチである。K0クラッチ34は油圧式摩擦係合装置で、エンジン12を動力伝達経路に接続したり遮断したりする断接装置として機能する。このK0クラッチ34も、油圧制御装置28に設けられた油圧制御弁や切換弁等によって係合開放されるとともに、油圧制御によって所定のスリップ状態で係合させることができる。
 前記モータジェネレータMGは、インバータ42を介してバッテリー44に接続されている。自動変速機20は、複数の油圧式摩擦係合装置(クラッチやブレーキ)の係合開放状態によって変速比が異なる複数のギヤ段が成立させられる遊星歯車式等の有段の自動変速機で、油圧制御装置28に設けられた電磁式の油圧制御弁や切換弁等によって変速制御が行われる。C1クラッチ18は自動変速機20の入力クラッチとして機能するもので、同じく油圧制御装置28によって係合開放制御される。自動変速機20として、ベルト式等の無段変速機を用いることも可能である。
 上記ハイブリッド車両10は電子制御装置70を備えている。電子制御装置70は、CPU、ROM、RAM、および入出力インターフェースなどを有する所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行う。この電子制御装置70には、エンジン回転速度センサ50、MG回転速度センサ52、アクセル操作量センサ54、車速センサ56、クラッチ温度センサ58から、それぞれエンジン12の回転速度(エンジン回転速度)NE、モータジェネレータMGの回転速度(MG回転速度)NMG、アクセルペダルの操作量(アクセル操作量)Acc、出力軸22の回転速度(出力軸回転速度で車速Vに対応)NOUT、K0クラッチ34の温度(クラッチ温度)TK0を表す信号が供給される。この他、各種の制御に必要な種々の情報が供給されるようになっている。上記クラッチ温度センサ58は、例えばK0クラッチ34そのものの温度を検出するが、係合トルク(油圧)や係合時間などから計算によって求めることもできるし、K0クラッチ34が湿式の場合は冷却媒体の温度を検出しても良い。アクセル操作量Accは、運転者の要求駆動力に対応する。
 上記電子制御装置70は、機能的にハイブリッド制御手段72、変速制御手段74、エンジン走行切換手段80を備えている。ハイブリッド制御手段72は、エンジン12およびモータジェネレータMGの作動を制御することにより、例えばエンジン12を駆動力源として用いて走行するエンジン走行モードや、モータジェネレータMGを駆動力源として用いて走行するモータ走行モード等の予め定められた複数の走行モードを、アクセル操作量Accや車速V等の運転状態に応じて切り換えて走行する。図2は、エンジン走行モードおよびモータ走行モードを説明する図で、エンジン走行モードでは、K0クラッチ34が係合(○)させられてエンジン12が動力伝達経路に接続され、エンジン12が運転(○)させられる。モータジェネレータMGは、加速時等に必要に応じてアシスト的に力行制御される。モータ走行モードでは、K0クラッチ34が開放(×)されてエンジン12が動力伝達経路から切り離されるとともに、エンジン12の運転が停止(×)させられ、モータジェネレータMGがアクセル操作量Accに応じて力行制御(○)されて走行する。モータ走行モードではまた、アクセル操作量Accが零(アクセルOFF)の惰性走行時に、一定の条件下でモータジェネレータMGが回生制御されてバッテリー44を充電する。
 変速制御手段74は、油圧制御装置28に設けられた電磁式の油圧制御弁や切換弁等を制御して複数の油圧式摩擦係合装置の係合開放状態を切り換えることにより、自動変速機20の複数のギヤ段を、アクセル操作量Accや車速V等の運転状態をパラメータとして予め定められた変速マップに従って切り換える。
 エンジン走行切換手段80は、上記モータ走行モードでの走行時に運転者のアクセル操作量Accや車速Vが増加するなどして、ハイブリッド制御手段72によりエンジン走行モードへ切り換える判定が為された場合に、K0クラッチ34をスリップ係合させてエンジン12をクランキングして始動するとともに、エンジン始動後にK0クラッチ34を完全係合させてエンジン走行モードへ切り換えるものである。また、K0クラッチ34が熱限界に達した場合には、K0クラッチ34を強制的に開放して摩擦材等の損傷を防止するとともに、K0クラッチ34の前後の回転速度を同期させる同期制御を行い、温度降下後にトルク補償を行うことなくK0クラッチ34を係合してエンジン走行モードへ移行する機能も有する。すなわち、このエンジン走行切換手段80は、機能的にクラッチ係合制御手段82、エンジン始動制御手段84、および同期制御手段86を備えており、図3のフローチャートに従ってエンジン走行切換制御を実行する。図3のステップS2、S3、S10、S11、S13はクラッチ係合制御手段82に相当し、ステップS14はエンジン始動制御手段84に相当し、ステップS5~S9は同期制御手段86に相当する。
 図3のステップS1では、ハイブリッド制御手段72によりエンジン走行モードへの切換判定が為されたか否かを判断し、切換判定が為されたらステップS2以下を実行する。ステップS2では、クラッチ温度TK0が予め定められた係合禁止温度TK01以下か否かを判断し、TK0≦TK01であればステップS13以下を実行してエンジン走行モードへの切換制御を行う。ステップS13では、K0クラッチ34をスリップ係合させてエンジン12をクランキングし、ステップS14では燃料供給制御や点火時期制御を行ってエンジン12を始動する。そして、エンジン12が始動した後、K0クラッチ34を完全係合させることにより、エンジン走行モードへの移行が終了する。ステップS15では、K0クラッチ34が完全係合させられてエンジン走行モードへの移行が終了したか否かを判断し、移行が終了するまではステップS2、S13、S14の実行を繰り返す。そして、移行が終了してステップS15の判断がYES(肯定)になったら、一連のエンジン走行切換制御を終了する。
 一方、このようにK0クラッチ34をスリップ係合させてエンジン12をクランキングすると、摩擦による発熱でクラッチ温度TK0が上昇し、過熱により摩擦材等を損傷する恐れがある。前記ステップS2の係合禁止温度TK01は、K0クラッチ34の摩擦材が過熱により損傷することを回避する熱限界に相当し、クラッチ温度TK0がその係合禁止温度TK01を超えた場合(K0熱フェール)には、ステップS2の判断がNO(否定)になってステップS3を実行する。ステップS3では、K0クラッチ34のスリップ係合を禁止し、K0クラッチ34を強制的に開放する。これにより、K0クラッチ34のそれ以上の温度上昇が防止されるとともに、放熱によりクラッチ温度TK0が徐々に降下する。また、ステップS4では、モータジェネレータMGによる走行を継続するが、本実施例ではステップS11でK0クラッチ34を係合させる際にエンジン12のイナーシャによるショックを防止するための補償トルクTαを担保する必要がなく、モータジェネレータMGの最大トルクTMGmax まで用いて走行することができる。
 次のステップS5では、MG回転速度NMGすなわちK0クラッチ34の動力伝達経路側の回転速度が、エンジン12の最低アイドル回転速度NEidl1~最高アイドル回転速度NEidl2の範囲内か否かを判断し、その範囲内であれば直ちにステップS9を実行する。ステップS9では、エンジン12の目標回転速度NEtとしてその時のMG回転速度NMGを設定し、エンジン回転速度NEがその目標回転速度NEt(=NMG)になるように、言い換えればK0クラッチ34の前後の回転速度が同期(略一致)するように、前記アイドル回転速度制御装置36のフィードバック制御等によって制御する。
 一方、ステップS5の判断がNO(否定)の場合、すなわちMG回転速度NMGがアイドル回転速度NEidl1~NEidl2の範囲内でない場合には、ステップS6を実行し、ロックアップクラッチ30のスリップ制御でMG回転速度NMGをそのアイドル回転速度NEidl1~NEidl2の範囲内まで変速できるか否かを判断する。すなわち、ロックアップクラッチ30が完全係合の状態であれば、油圧を低下させてスリップさせることによりモータジェネレータMGのトルクでMG回転速度NMGをある程度上昇させる(引き上げる)ことができ、ロックアップクラッチ30が開放状態であれば、油圧を上昇させてスリップさせることによりMG回転速度NMGをタービン回転速度NTと一致するまで降下させる(引き下げる)ことができる。そして、ロックアップクラッチ30のスリップ制御でMG回転速度NMGをアイドル回転速度NEidl1~NEidl2の範囲内まで変速できる場合には、ステップS7を実行し、ロックアップクラッチ30をスリップさせることにより、MG回転速度NMGをアイドル回転速度NEidl1~NEidl2の範囲内まで変速する。ロックアップクラッチ30は、同期のためにK0クラッチ34の動力伝達経路側の回転速度(MG回転速度NMG)を変化させる変速部に相当する。
 上記ステップS6の判断がNOの場合、すなわちロックアップクラッチ30のスリップ制御でMG回転速度NMGをアイドル回転速度NEidl1~NEidl2の範囲内まで変速できない場合は、ステップS8を実行する。ステップS8では、MG回転速度NMGがアイドル回転速度NEidl1~NEidl2の範囲内に入るように、前記自動変速機20のギヤ段を切り換える。自動変速機20は、同期のためにK0クラッチ34の動力伝達経路側の回転速度(MG回転速度NMG)を変化させる変速部に相当する。
 そして、上記ステップS7またはS8で、MG回転速度NMGがアイドル回転速度NEidl1~NEidl2の範囲内に入るように変速した後、前記ステップS9を実行し、エンジン12の目標回転速度NEtをその時のMG回転速度NMGに設定してエンジン12のアイドル回転速度制御を行う。
 次のステップS10では、クラッチ温度TK0が予め定められた係合禁止解除温度TK02以下まで降下したか否かを判断し、クラッチ温度TK0が係合禁止解除温度TK02よりも高い間は前記ステップS4以下のステップを繰り返すが、TK0≦TK02になったらステップS11以下を実行する。ステップS11では、K0クラッチ34を速やかに完全係合させてエンジン走行モードへ移行し、ステップS12では、エンジン12の回転速度制御を解除して、アクセル操作量Accに応じた駆動力を発生させる通常のエンジン出力制御を実行する。本実施例では、K0クラッチ34の前後の回転速度(NEおよびNMG)が同期させられているため、ステップS11でK0クラッチ34を完全係合させる際にエンジン12のイナーシャによるショックが略解消し、モータジェネレータMGによるトルク補償が不要であるため、前記ステップS4のモータ走行では補償トルクTαを担保する必要がないのである。上記係合禁止解除温度TK02は、K0クラッチ34を係合制御してエンジン走行モードへの移行を再開した場合に、クラッチ温度TK0が係合禁止温度TK01に達する前に移行を終了できる程度の温度で、その係合禁止温度TK01よりも十分に低い温度が設定される。
 なお、上記ステップS5~S9の同期制御は、ステップS2の判断がNOになった時に既にエンジン12が自力回転している場合を想定したもので、エンジン12が自力回転できずに回転停止している場合は、ステップS5~S9の同期制御を行うことなく、K0クラッチ34の温度が係合禁止解除温度TK02以下になった後に、前記ステップS13~S15を実行してエンジン走行モードへの切換制御を行う。
 図4は、アクセル操作量Acc=0であるアクセルOFFの惰性走行時にアクセルペダルが踏込み操作され、上記図3のフローチャートに従ってモータ走行モードからエンジン走行モードへ切り換える際に、熱フェールでK0クラッチ34が開放され、同期制御を行ってエンジン走行モードへ移行させられた場合のタイムチャートの一例である。時間t1は、アクセルOFFの惰性走行時にアクセルペダルが踏込み操作された時間で、モータジェネレータMGのトルク(MGトルク)TMGが直ちに立ち上げられるとともに、モータ走行モードからエンジン走行モードへ切り換える切換判定に従ってステップS1の判断がYES(肯定)になり、ステップS2以下の実行が開始される。当初は、クラッチ温度TK0が係合禁止温度TK01以下でステップS13~S15が実行されるため、MGトルクTMGは、K0クラッチ34のスリップ係合に備えて最大トルクTMGmax よりも補償トルクTα分だけ低いトルクに制限されて走行する。そして、K0クラッチ34のスリップ係合が始まると(時間t2)、エンジン12のイナーシャによるショックを相殺するように補償トルクTαだけ増大させられ、最大トルクTMGmax とされる。また、このようにK0クラッチ34がスリップ係合させられると、エンジン12がクランキングされてエンジン回転速度NEが上昇するとともに、摩擦による発熱でクラッチ温度TK0が上昇する。図4の最下段の「K0油圧指令値」は、K0クラッチ34を係合させる油圧の指令値で、伝達トルクに対応する実際の油圧はピストン詰めの後(時間t2)から上昇し、その伝達トルク(スリップ係合)に基づいてエンジン12がクランキングされる。K0油圧指令値=0はK0クラッチ34が開放状態であることを意味している。
 時間t3は、K0クラッチ34のスリップ係合による発熱でクラッチ温度TK0が係合禁止温度TK01を上回り、ステップS2の判断がNOとなってステップS3以下の各ステップの実行が開始された時間である。すなわち、K0クラッチ34が直ちに強制的に開放されるとともに、モータジェネレータMGにより駆動力を発生して走行する一方、K0クラッチ34の前後の回転速度が略一致するように同期制御を開始する。モータジェネレータMGは、補償トルクTαを担保する必要がないため最大トルクTMGmax まで用いて走行する。また、同期制御は、K0クラッチ34の動力伝達経路側の回転速度であるMG回転速度NMGがアイドル回転速度NEidl1~NEidl2の範囲内で、直ちにステップS9が実行され、エンジン12の目標回転速度NEtとしてその時のMG回転速度NMGを設定してエンジン12のアイドル回転速度制御が行われる。これにより、エンジン回転速度NEが、アイドル回転速度NEidl1~NEidl2の範囲内でMG回転速度NMGと略一致させられる。
 そして、K0クラッチ34の強制開放によりクラッチ温度TK0が降下し、係合禁止解除温度TK02以下になると(時間t4)、ステップS11によりK0クラッチ34の係合制御が再開されてエンジン走行モードへ移行する。その場合に、K0クラッチ34の前後の回転速度(NEおよびNMG)が同期させられているため、モータジェネレータMGによるトルク補償が無くても、エンジン12のイナーシャによるショックを生じることなくK0クラッチ34を速やかに完全係合させることができる。時間t5は、K0クラッチ34が完全係合させられてエンジン走行モードが成立させられた時間である。
 これに対し、同期制御を行わない場合は、図4に二点鎖線で示すように、K0熱フェールによるK0クラッチ34の強制開放時にエンジン回転速度NEとMG回転速度NMGとの間に回転速度差があるため、クラッチ温度TK0が係合禁止解除温度TK02以下になってK0クラッチ34を係合制御する際に、エンジン回転速度NEを引き上げる必要があり、エンジン12のイナーシャによりショック(駆動力の落ち込み)が生じる。これを防止するためには、モータジェネレータMGによりトルク補償を行う必要があるが、MGトルクTMGの欄に二点鎖線で示すように、温度降下後のクラッチ係合に備えて補償トルクTα分だけMGトルクTMGを制限した状態で走行する必要がある。このため、十分な駆動力が得られず、駆動力不足で運転者に違和感を生じさせる可能性があった。
 このように、本実施例のハイブリッド車両10は、エンジン走行モードへ切り換える際にK0クラッチ34のクラッチ温度TK0が熱限界である係合禁止温度TK01を超えてK0クラッチ34が強制的に開放された場合(ステップS3)、そのK0クラッチ34の前後の回転速度(NEおよびNMG)を同期させるようにエンジン回転速度NEが制御されるため(ステップS5~S9)、温度降下後にK0クラッチ34を係合させてエンジン走行モードへ移行する際のショック(駆動力変動)が低減される。これにより、そのクラッチ係合時のトルク補償が不要となり、K0熱フェール時にモータジェネレータMGにより駆動力を発生させて走行する際に(ステップS4)、補償トルクTαを担保する必要がなく、最大トルクTMGmax まで用いて走行することが可能で、駆動力不足により運転者に違和感を生じさせることが抑制される。すなわち、同期制御無しの場合に比べて補償トルクTα分だけ大きなトルクで駆動力を発生させて走行することができる。
 また、本実施例では、K0クラッチ34を介してエンジン12とモータジェネレータMGとが直結されるようになっており、MG回転速度NMGがエンジン12のアイドル回転速度NEidl1~NEidl2の範囲内になるように、必要に応じてロックアップクラッチ30のスリップ制御や自動変速機20の変速制御が行われるとともに、そのMG回転速度NMGを目標回転速度NEtとしてエンジン12の回転速度制御が行われるため、アイドル回転速度制御装置36などでエンジン回転速度NEを高い精度で安定して制御することが可能で、K0クラッチ34の係合時のショックを適切に低減することができる。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
 10:ハイブリッド車両  12:エンジン  20:自動変速機(変速部)  30:ロックアップクラッチ(変速部)  34:K0クラッチ(クラッチ)  58:クラッチ温度センサ  70:電子制御装置  80:エンジン走行切換手段  82:クラッチ係合制御手段  84:エンジン始動制御手段  86:同期制御手段  MG:モータジェネレータ(回転機)  TK0:クラッチ温度  TK01:係合禁止温度(予め定められた温度)  NE:エンジン回転速度  NMG:MG回転速度(動力伝達経路側の回転速度)  NEidl1:最低アイドル回転速度  NEidl2:最高アイドル回転速度

Claims (2)

  1.  クラッチを介して動力伝達経路に接続されるエンジンと、少なくとも電動モータとして機能する回転機とを備えており、
     前記クラッチを係合して少なくとも前記エンジンを駆動力源として用いて走行するエンジン走行モード、および該クラッチを開放して前記回転機を駆動力源として用いて走行するモータ走行モードが可能であるとともに、
     前記クラッチが開放された前記エンジンの停止時に前記エンジン走行モードへ切り換える際には、該クラッチをスリップ係合させて該エンジンをクランキングして始動した後に該クラッチを完全係合させるハイブリッド車両の制御装置において、
     前記エンジン走行モードへ切り換える際に、前記クラッチが予め定められた温度に達した場合には、該クラッチを開放するとともに、前記回転機により駆動力を発生させて走行する一方、該クラッチの前後の回転速度を同期させるように前記エンジンの回転速度を制御する
     ことを特徴とするハイブリッド車両の制御装置。
  2.  前記エンジンは前記クラッチを介して前記回転機に直結されるようになっており、
     前記クラッチの前後の回転速度を同期させるため、該クラッチの動力伝達経路側の回転速度である前記回転機の回転速度が前記エンジンのアイドル回転速度となるように、該動力伝達経路に設けられた変速部を変速させるとともに、該変速後の回転機の回転速度を前記エンジンの目標回転速度として該エンジンを制御する
     ことを特徴とする請求項1に記載のハイブリッド車両の制御装置。
PCT/JP2012/083750 2012-12-26 2012-12-26 ハイブリッド車両の制御装置 WO2014102946A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112012007261.8T DE112012007261T5 (de) 2012-12-26 2012-12-26 Steuervorrichtung für ein Hybridfahrzeug
JP2014553950A JP5939309B2 (ja) 2012-12-26 2012-12-26 ハイブリッド車両の制御装置
CN201280077978.7A CN104870285B (zh) 2012-12-26 2012-12-26 混合动力车辆的控制装置
US14/654,399 US9381801B2 (en) 2012-12-26 2012-12-26 Control device for hybrid vehicle
PCT/JP2012/083750 WO2014102946A1 (ja) 2012-12-26 2012-12-26 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/083750 WO2014102946A1 (ja) 2012-12-26 2012-12-26 ハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
WO2014102946A1 true WO2014102946A1 (ja) 2014-07-03

Family

ID=51020102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083750 WO2014102946A1 (ja) 2012-12-26 2012-12-26 ハイブリッド車両の制御装置

Country Status (5)

Country Link
US (1) US9381801B2 (ja)
JP (1) JP5939309B2 (ja)
CN (1) CN104870285B (ja)
DE (1) DE112012007261T5 (ja)
WO (1) WO2014102946A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896858B2 (ja) * 2012-08-02 2016-03-30 アイシン精機株式会社 ハイブリッド駆動装置
KR101500403B1 (ko) * 2013-12-26 2015-03-09 현대자동차 주식회사 하이브리드 차량의 클러치 슬립 제어 장치 및 방법
US10411631B2 (en) * 2016-04-27 2019-09-10 GM Global Technology Operations LLC Method and apparatus for vibration damping in a powertrain system
CN107867169A (zh) * 2016-09-28 2018-04-03 比亚迪股份有限公司 用于车辆的动力驱动系统以及车辆
CN109996695B (zh) * 2016-11-30 2022-06-28 德纳有限公司 电动车辆和混合电动车辆的电动车轴传动装置
JP6624107B2 (ja) * 2017-02-10 2019-12-25 株式会社豊田中央研究所 車両の熱管理制御装置、熱管理制御プログラム
JP6780566B2 (ja) * 2017-04-04 2020-11-04 トヨタ自動車株式会社 ハイブリッド自動車
KR102278348B1 (ko) * 2017-06-29 2021-07-19 현대자동차주식회사 차량 및 그 제어 방법
US20190354838A1 (en) * 2018-05-21 2019-11-21 Uber Technologies, Inc. Automobile Accident Detection Using Machine Learned Model
CN110562238B (zh) * 2019-08-26 2021-03-02 海博瑞德(北京)汽车技术有限公司 混合动力汽车发动机自动启动控制方法
JP7287350B2 (ja) * 2020-05-29 2023-06-06 トヨタ自動車株式会社 ハイブリッド車両

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263389A (ja) * 2000-03-22 2001-09-26 Jatco Transtechnology Ltd 電磁クラッチの締結制御装置
JP2010144851A (ja) * 2008-12-19 2010-07-01 Nissan Motor Co Ltd 車両の制御装置
JP2011025858A (ja) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285107A (ja) * 1998-03-30 1999-10-15 Nissan Motor Co Ltd ハイブリッド車両の変速機用油圧装置
JP3551178B2 (ja) * 2001-09-10 2004-08-04 日産自動車株式会社 車両のクラッチ制御装置
US6932738B2 (en) * 2002-12-26 2005-08-23 Honda Motor Co., Ltd. Drive control apparatus for hybrid vehicle
JP2005121089A (ja) 2003-10-15 2005-05-12 Nissan Motor Co Ltd ハイブリッド変速機のエンジンクラッチ保護制御装置
JP2005138743A (ja) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP4492585B2 (ja) * 2006-05-29 2010-06-30 日産自動車株式会社 ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP5103992B2 (ja) * 2006-05-29 2012-12-19 日産自動車株式会社 ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
DE102006058724B3 (de) * 2006-12-13 2008-04-17 Dr.Ing.H.C. F. Porsche Ag Verfahren zum Schutz einer Kupplung in einem Triebstrang eines Kraftfahrzeugs
KR100992781B1 (ko) * 2007-12-13 2010-11-05 기아자동차주식회사 하이브리드 차량의 클러치 결합제어를 위한 시스템과 그방법
JP5080525B2 (ja) * 2009-03-30 2012-11-21 ジヤトコ株式会社 ハイブリッド車両の制御装置
JP5510702B2 (ja) 2009-07-07 2014-06-04 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP5506484B2 (ja) * 2010-03-23 2014-05-28 アイシン・エーアイ株式会社 車両の動力伝達制御装置
US8983696B2 (en) * 2010-08-27 2015-03-17 Toyota Jidosha Kabushiki Kaisha Control device for a vehicle
JP5472227B2 (ja) * 2011-08-08 2014-04-16 アイシン・エィ・ダブリュ株式会社 制御装置
JP5565637B2 (ja) * 2011-08-24 2014-08-06 アイシン・エィ・ダブリュ株式会社 制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263389A (ja) * 2000-03-22 2001-09-26 Jatco Transtechnology Ltd 電磁クラッチの締結制御装置
JP2010144851A (ja) * 2008-12-19 2010-07-01 Nissan Motor Co Ltd 車両の制御装置
JP2011025858A (ja) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
US20150336570A1 (en) 2015-11-26
CN104870285A (zh) 2015-08-26
US9381801B2 (en) 2016-07-05
JP5939309B2 (ja) 2016-06-22
JPWO2014102946A1 (ja) 2017-01-12
CN104870285B (zh) 2017-07-18
DE112012007261T5 (de) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5939309B2 (ja) ハイブリッド車両の制御装置
JP5807560B2 (ja) 制御装置
JP5926197B2 (ja) ハイブリッド車両の制御装置
JP5553175B2 (ja) 制御装置
JP5305115B2 (ja) 制御装置
WO2014045412A1 (ja) 車両の制御装置
JP6004007B2 (ja) 車両の制御装置
JP5772979B2 (ja) ハイブリッド車両の制御装置
US20140162841A1 (en) Control device
JP5821475B2 (ja) ハイブリッド車両の制御装置
JP2022063153A (ja) 車両の制御装置
JP2022057978A (ja) 車両の制御装置
JP5794318B2 (ja) ハイブリッド車両のエンジン始動制御装置
JP6036499B2 (ja) ハイブリッド車両のエンジン始動制御装置
JP2023002379A (ja) 車両の制御装置
JP2019209790A (ja) ハイブリッド車両
JP2012179999A (ja) ハイブリッド車両のエンジン始動制御装置
JP2012188023A (ja) 車両の制動制御装置
JP5998921B2 (ja) ハイブリッド車両の制御装置
JP7552538B2 (ja) ハイブリッド式電動車両の制御装置
JP2022113051A (ja) 車両の制御装置
JP2023029122A (ja) 車両の制御装置
JP2023008333A (ja) ハイブリッド車両の制御装置
JP2022112446A (ja) 車両の制御装置
JP2023076335A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553950

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14654399

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012007261

Country of ref document: DE

Ref document number: 1120120072618

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201504518

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 12891170

Country of ref document: EP

Kind code of ref document: A1