WO2014091919A1 - 車両用灯具ユニット - Google Patents

車両用灯具ユニット Download PDF

Info

Publication number
WO2014091919A1
WO2014091919A1 PCT/JP2013/081723 JP2013081723W WO2014091919A1 WO 2014091919 A1 WO2014091919 A1 WO 2014091919A1 JP 2013081723 W JP2013081723 W JP 2013081723W WO 2014091919 A1 WO2014091919 A1 WO 2014091919A1
Authority
WO
WIPO (PCT)
Prior art keywords
edge
projection lens
rotary shade
distribution pattern
light distribution
Prior art date
Application number
PCT/JP2013/081723
Other languages
English (en)
French (fr)
Inventor
照亮 山本
松本 昭則
清隆 望月
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to CN201380065123.7A priority Critical patent/CN104854395B/zh
Priority to US14/651,950 priority patent/US9441806B2/en
Priority to EP13863455.5A priority patent/EP2933553B1/en
Priority to JP2014551961A priority patent/JP6294832B2/ja
Publication of WO2014091919A1 publication Critical patent/WO2014091919A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/68Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens
    • F21S41/683Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens by moving screens
    • F21S41/695Screens rotating around a vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/68Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens
    • F21S41/683Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens by moving screens
    • F21S41/698Shaft-shaped screens rotating along its longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1415Dimming circuits
    • B60Q1/1423Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic
    • B60Q1/143Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic combined with another condition, e.g. using vehicle recognition from camera images or activation of wipers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/05Special features for controlling or switching of the light beam
    • B60Q2300/056Special anti-blinding beams, e.g. a standard beam is chopped or moved in order not to blind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/40Indexing codes relating to other road users or special conditions
    • B60Q2300/42Indexing codes relating to other road users or special conditions oncoming vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes

Definitions

  • the present invention relates to a lamp unit mounted on a vehicle headlamp.
  • This type of lamp unit is known to have a part called a rotary shade.
  • the rotary shade is a component having a rotating shaft extending in the left-right direction of the vehicle, and a plurality of light shielding plates having different edge shapes are provided at different angular positions in the circumferential direction (for example, Patent Document 1). reference).
  • one of the plurality of light shielding plates is arranged on the optical path connecting the light source and the projection lens. Thereby, a part of the light emitted from the light source is blocked, and the edge shape is projected to the front of the vehicle through the projection lens.
  • the peripheral edge portion of the light distribution pattern formed in front of the vehicle has a shape corresponding to the edge shape.
  • a low beam pattern that illuminates the front of a short distance so as not to give glare to the vehicle ahead
  • a high beam pattern that illuminates a wide area in front of a far distance.
  • a light distribution pattern that achieves both glare suppression and forward visibility is known by making only a region where a vehicle or a pedestrian detected in the high beam irradiation state is present as a non-illuminated region.
  • the light distribution pattern is referred to as a “partial high beam pattern”.
  • a partial left high beam pattern is formed in which the upper right portion of the high beam pattern is a non-illuminated region in the left headlamp, and a partial upper left portion of the high beam pattern is formed in the non-illuminated region in the right headlamp.
  • a right high beam pattern is formed.
  • a rotary shade having a twisted end surface extending around the rotation axis so as to connect different positions in the rotation axis direction is known (for example, see Patent Document 2).
  • the twisted end surface is a portion projected as a boundary with a non-illuminated region partially formed in the high beam pattern.
  • the position of the torsional end surface used for projection changes in the direction of the rotation axis, so the position of the boundary with the non-illuminated area, i.e. the position and size of the non-illuminated area, can be adjusted without swivel control. Can be changed.
  • a peripheral surface extending around the rotation axis of the rotary shade is required.
  • a solid volume portion is increased.
  • the volume portion is arranged in front of the rear focal point of the projection lens.
  • the light emitted from the light source and reflected by the reflector or the like travels from various directions toward the projection lens. Ideally, all light that is not subject to shading should be incident on the projection lens. However, as in the rotary shade described in Patent Document 2, if there is a solid volume portion between the entrance surface of the projection lens and the back focus, a part of the light that has passed through the back focus is blocked by the portion, or Reflected and the amount of light incident on the projection lens decreases. As a result, a desired illuminance cannot be obtained in the illumination region of the partial high beam pattern.
  • a first object of the present invention is to provide a technique capable of suppressing a decrease in illuminance in an illumination area when a partial high beam pattern is formed using a rotary shade.
  • a second object of the present invention is to provide a technique capable of suppressing the uncomfortable feeling given to the driver when the light distribution pattern is switched using the rotary shade.
  • a first aspect that the present invention can take is a lamp unit, A light source; A projection lens through which at least part of the light emitted from the light source passes; A rotary shade disposed behind the projection lens so as to block part of the light emitted from the light source and having a rotation axis; A drive mechanism for rotating the rotary shade around the rotation axis; With The rotary shade is When the driving mechanism rotates the rotary shade to the first angular position, a first edge projected in front of the projection lens as a peripheral portion of the first light distribution pattern; When the drive mechanism rotates the rotary shade to the second angular position, the rotary shade is projected in front of the projection lens as the first peripheral edge portion of the second light distribution pattern having a larger illumination area than the first light distribution pattern.
  • a second edge When the driving mechanism rotates the rotary shade to the third angular position, the rotary mechanism is projected in front of the projection lens as the first peripheral portion of the third light distribution pattern having a larger illumination area than the second light distribution pattern.
  • a third edge A first twisted end surface extending around the rotation axis so as to intersect the second end edge and the third end edge at different positions in the direction of the rotation axis;
  • the second angular position is located between the first angular position and the third angular position;
  • a part of the first twist end face is projected in front of the projection lens as a second peripheral edge of the second light distribution pattern and a second peripheral edge of the third light distribution pattern,
  • the first twisted end surface is arranged so as to approach the optical axis of the projection lens as it approaches the projection lens;
  • the drive mechanism rotates the rotary shade from the first angular position to the third angular position, the first twist end face moves from the front to the rear of the rear focal point of the projection lens.
  • the torsional end surface having a portion projected as the peripheral portion of the light distribution pattern moves to the rear of the rear focal point of the projection lens. To do. Therefore, it is possible to suppress a decrease in the amount of light incident on the projection lens due to a part of the light passing through the rear focus being blocked or reflected. Therefore, it is possible to avoid a situation in which desired illuminance cannot be obtained when forming a light distribution pattern that requires high illuminance.
  • the 1st twist end surface is arrange
  • the rotary shade may include a second torsion end surface extending around the rotation axis so as to intersect the first torsion end surface and the first end edge at different positions in the rotation axis direction.
  • the shape change from the first light distribution pattern to the second light distribution pattern can be smoothed, and the uncomfortable feeling given to the driver can be suppressed.
  • the rotary shade includes a peripheral surface extending concentrically with the rotation shaft, and a part of the first end edge, a part of the second end edge, and the third end edge are parallel to the rotation axis. It is good also as a structure which is extended and has comprised a part of said surrounding surface.
  • the position of the peripheral portion of the light distribution pattern that is sequentially formed by projecting these edges does not change with the transition of the light distribution pattern. Accordingly, it is possible to minimize the change in shape accompanying the transition of the light distribution pattern, and to suppress the uncomfortable feeling given to the driver.
  • the first light distribution pattern may be a light distribution pattern that illuminates the lower side than the peripheral portion.
  • the second light distribution pattern and the third light distribution pattern are either left or right of the second peripheral edge in a region below the first peripheral edge or above the first peripheral edge. It can be set as the light distribution pattern which illuminates one side. In this case, when the drive mechanism rotates the rotary shade from the second angular position to the third angular position, the second peripheral edge moves in the left-right direction.
  • a second aspect that the present invention can take is a lamp unit mounted on a vehicle, A light source; A projection lens through which at least part of the light emitted from the light source passes; A rotary shade disposed behind the projection lens so as to block part of the light emitted from the light source and having a rotation axis; A drive mechanism for rotating the rotary shade around the rotation axis; With The rotary shade is When the driving mechanism rotates the rotary shade to the first angular position, a first edge projected in front of the projection lens as a peripheral portion of the first light distribution pattern; When the drive mechanism rotates the rotary shade to the second angular position, the rotary shade is projected in front of the projection lens as the first peripheral edge portion of the second light distribution pattern having a larger illumination area than the first light distribution pattern.
  • the position where the torsional end surface intersects with the first edge corresponds to the outer edge of the vehicle in the left-right direction in the first light distribution pattern.
  • the second peripheral edge portion of the second light distribution pattern formed by the torsional end surface first has the second light distribution pattern. Appears at the outer edge of the vehicle in the left-right direction in the pattern. As the rotary shade rotates, it moves toward the center in the left-right direction. Therefore, the shape change from the first light distribution pattern to the second light distribution pattern becomes continuous and smooth, and the uncomfortable feeling given to the driver can be suppressed.
  • the rotary shade includes a circumferential surface extending concentrically with the rotation axis between the first angular position and the second angular position, and the circumferential surface includes the first light distribution pattern and the second light distribution. It is good also as a structure arrange
  • the position of the peripheral portion of the light distribution pattern that is sequentially formed by projecting the edge of the outer peripheral portion does not change with the transition of the light distribution pattern.
  • the central part of the vehicle in the left-right direction in the light distribution pattern is a part where the shape finally changes or a part where the shape does not change as the rotary shade rotates. Accordingly, it is possible to minimize the change in shape accompanying the transition of the light distribution pattern, and to suppress the uncomfortable feeling given to the driver.
  • the twist end surface is arranged so as to approach the optical axis of the projection lens as it approaches the projection lens, and when the drive mechanism rotates the rotary shade from the first angular position to the second angular position.
  • the twist end face may be configured to move from the front to the rear of the rear focal point of the projection lens.
  • the torsional end surface having a portion projected as the peripheral portion of the light distribution pattern moves to the rear of the rear focal point of the projection lens. To do. Therefore, it is possible to suppress a decrease in the amount of light incident on the projection lens due to a part of the light passing through the rear focus being blocked or reflected. Therefore, it is possible to avoid a situation in which desired illuminance cannot be obtained when forming a light distribution pattern that requires high illuminance.
  • the twist end surface is arrange
  • the first light distribution pattern may be a light distribution pattern that illuminates the lower side than the peripheral portion.
  • the second light distribution pattern illuminates the lower side of each of the first peripheral portions and the left or right of each of the second peripheral portions in a region above the first peripheral portions. It can be a pattern. In this case, when the drive mechanism rotates the rotary shade from the first angular position to the second angular position, the second peripheral edge moves in the left-right direction.
  • FIG. 1 It is a figure which shows typically the whole structure of the vehicle by which the lamp unit which concerns on this invention is mounted. It is a perspective view which shows the structure of the right lamp unit which concerns on one Embodiment of this invention. It is a figure which shows the positional relationship between the components of a right lamp unit. It is a perspective view which shows the external appearance of the right rotary shade with which a right lamp unit is provided. It is a figure which shows the relationship between the rotation angle position of a right rotary shade, and the light distribution pattern formed. It is a figure which shows the relationship between the rotation angle position of a right rotary shade, and the light distribution pattern formed.
  • FIG. 1 It is a perspective view which shows the external appearance of the left rotary shade with which the left lamp unit which concerns on one Embodiment of this invention is provided. It is a figure which shows the relationship between the rotation angle position of a left rotary shade, and the light distribution pattern formed. It is a figure which shows the relationship between the rotation angle position of a left rotary shade, and the light distribution pattern formed. It is a figure which shows the partial high beam pattern formed by the lamp unit on either side.
  • FIG. 1 schematically shows the overall configuration of a vehicle 10 equipped with a headlamp device 12 according to an embodiment of the present invention.
  • the headlamp device 12 constitutes the headlamp control system 11 together with the integrated controller 14, the wheel speed sensor 16, the steering angle sensor 17, and the camera 18.
  • the integrated control unit 14 includes a CPU that executes various arithmetic processes, a ROM that stores various control programs, a RAM that is used as a work area for data storage and program execution, and executes various controls in the vehicle 10. .
  • the wheel speed sensor 16 is provided corresponding to each of the four wheels of the left and right front wheels and the rear wheel assembled to the vehicle 10. Each of the wheel speed sensors 16 is communicably connected to the integrated control unit 14 and outputs a signal corresponding to the rotational speed of the wheel to the integrated control unit 14. The integrated control unit 14 calculates the speed of the vehicle 10 using the signal input from the wheel speed sensor 16.
  • the steering angle sensor 17 is provided on the steering wheel and is communicably connected to the integrated control unit 14.
  • the steering angle sensor 17 outputs a signal corresponding to the steering rotation angle of the steering wheel by the driver to the integrated control unit 14.
  • the integrated control unit 14 calculates the traveling direction of the vehicle 10 using the signal input from the steering angle sensor 17.
  • the camera 18 includes an image sensor such as a CCD (Charged Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor, and shoots the front of the vehicle to generate image data.
  • the camera 18 is communicably connected to the integrated control unit 14, and the generated image data is output to the integrated control unit 14.
  • the headlamp device 12 includes a right headlamp unit 22R disposed on the front right side of the vehicle 10 and a left headlamp unit 22L disposed on the front left side of the vehicle 10.
  • a translucent cover 24R is attached to the lamp body 23R to partition the lamp chamber 25R.
  • FIG. 2 is a perspective view showing the configuration of the right lamp unit 30R housed in the lamp chamber 25R of the right headlamp unit 22R.
  • the right lamp unit 30R includes a light source 31, a heat sink 32, a reflector 33, a projection lens 34, a lens holder 35, a right rotary shade 36, a drive mechanism 37, and a support mechanism 38.
  • the light source 31 is a semiconductor light emitting element such as a white light emitting diode (LED) or an organic EL element.
  • the light source 31 is fixed to the heat sink 32.
  • the heat sink 32 is made of a known material and shape suitable for dissipating heat generated from the light source 31.
  • the light emitted from the light source 31 is reflected by the reflector 33 and travels forward. At least a part of the light passes through the projection lens 34 disposed in front of the reflector 33.
  • FIG. 3 is a vertical sectional view showing a positional relationship between some elements constituting the right lamp unit 30R.
  • the reflector 33 has a reflecting surface based on a substantially elliptical spherical surface having an optical axis A1 extending in the front-rear direction of the vehicle 10 as a central axis.
  • the light source 31 is disposed at the first focal point of an ellipse that constitutes the vertical cross section of the reflecting surface. Thereby, the light emitted from the light source 31 is configured to converge to the second focal point of the ellipse.
  • the projection lens 34 is made of resin, and is a plano-convex aspheric lens having a convex front surface and a flat rear surface.
  • the projection lens 34 is arranged so that the rear focal point F coincides with the second focal point of the reflecting surface of the reflector 33, and is configured to project an image on the rear focal point F as a reverse image in front of the vehicle 10. Yes.
  • the peripheral edge of the projection lens 34 is held by a lens holder 35 and fixed to the heat sink 32.
  • FIG. 3 is a plan view showing a positional relationship between some elements constituting the right lamp unit 30R.
  • the right rotary shade 36 is disposed behind the projection lens 34 so as to block a part of the light emitted from the light source 31.
  • the right rotary shade 36 has a rotation axis A ⁇ b> 2, and the rotation axis A ⁇ b> 2 is disposed so as to pass below the rear focal point F of the projection lens 34.
  • the drive mechanism 37 has a motor and a gear mechanism, and rotates the right rotary shade 36 around the rotation axis A2. Specifically, the motor and the gear mechanism are driven in accordance with a control signal input from the integrated control unit 14 of the vehicle 10, and the right rotary shade 36 is rotated in an angle and direction according to the signal. Yes.
  • the drive mechanism 37 is fixed to the left end of the right rotary shade 36 in the axial direction, and the support mechanism 38 rotatably supports the right end of the right rotary shade 36 in the axial direction. is doing.
  • “right” and “left” indicate left and right directions as viewed from the driver's seat.
  • FIG. 4 is a perspective view showing the external appearance of the right rotary shade 36.
  • a peripheral surface in which an edge having a different shape is arranged at the rear focal point F of the projection lens 34 according to the rotation angle based on the drive by the drive mechanism 37. And it is set as the shape which has an end surface.
  • the light emitted from the light source 31 is reflected by the reflector 33 and travels forward. Part of the light is blocked by the right rotary shade 36. At this time, the shape of the edge arranged at the rear focal point F of the projection lens 34 is projected as a peripheral portion of the light distribution pattern formed in front of the vehicle 10.
  • the right rotary shade 36 includes a left cylindrical portion 36a, a right cylindrical portion 36b, a first connection portion 36c, a second connection portion 36d, a third connection portion 36e, and a fourth connection portion 36f. Yes.
  • the left cylindrical portion 36a has a shape in which a cross-sectional shape viewed from the direction along the rotation axis A2 is a concentric circle centering on the rotation axis A2.
  • a shaft hole 36a1 coaxial with the rotation axis A2 is formed in the left cylindrical portion 36a.
  • the shaft hole 36 a 1 is coupled to the drive mechanism 37.
  • the right cylindrical portion 36b has a shape in which a cross-sectional shape viewed from the direction along the rotation axis A2 is a concentric circle with the rotation axis A2 as the center.
  • a shaft hole 36b1 coaxial with the rotation axis A2 is formed in the right cylindrical portion 36b.
  • the shaft hole 36b1 is supported by the support mechanism 38.
  • the first connecting portion 36c is a portion that is formed continuously with the right cylindrical portion 36b and is arranged on the right side of the right cylindrical portion 36b when viewed from the front of the vehicle 10.
  • the first connecting portion 36c has a shape in which a cross-sectional shape viewed from the direction along the rotation axis A2 is a concentric semicircle centered on the rotation axis A2.
  • the radius of the concentric semicircle is larger than the radius of the concentric circle forming the cross section of the right cylindrical portion 36b.
  • the second connecting portion 36d is a portion arranged on the right side of the first connecting portion 36c when viewed from the front of the vehicle 10, and has a cylindrical portion 36d1, a first twisted end surface 36d2, and a second twisted end surface 36d3. .
  • the cylindrical portion 36d1 is based on a shape in which a cross-sectional shape viewed from the direction along the rotation axis A2 is a concentric semicircle centered on the rotation axis A2, and a part of the cylindrical portion 36d1 is a first twist end surface 36d2 and a second twist end surface 36d3. It has a shape cut out by.
  • the radius of the concentric semicircle is larger than the radius of the concentric circle forming the cross section of the first connection portion 36c.
  • the third connection part 36e is a part that is formed continuously from the first connection part 36c and the cylindrical part 36d1 of the second connection part 36d and connects them.
  • the third connecting portion 36e is arranged around the rotation axis A2 so as to connect the semi-cylindrical peripheral surface formed by the first connecting portion 36c and the peripheral surface formed by the cylindrical portion 36d1 of the second connecting portion 36d. And a surface inclined along the direction of the rotation axis A2.
  • the boundary line between the second connection portion 36 d and the third connection portion 36 e is disposed so as to pass through the rear focal point F of the projection lens 34.
  • the fourth connecting portion 36f is a portion that is formed continuously from the left cylindrical portion 36a and the second twisted end surface 36d3 of the second connecting portion 36d and connects them.
  • the shapes of the first twist end face 36d2, the second twist end face 36d3, and the fourth connecting portion 36f will be described in detail later with reference to FIGS.
  • FIG. 5A shows a state where the right rotary shade 36 rotated by the drive mechanism 37 to the angular position where the end edge 36g is arranged at the rear focal point F of the projection lens 34 is viewed from the front of the vehicle 10. ing.
  • the edge portion 36g includes a first horizontal portion 36g1, a second horizontal portion 36g2, and an inclined portion 36g3.
  • the first horizontal portion 36g1 is a portion that is disposed on the right side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction, and is formed by the second connection portion 36d and the fourth connection portion 36f. is there.
  • the second horizontal portion 36g2 is a portion that is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction, and is formed by the first connection portion 36c.
  • the inclined portion 36g3 extends from the first horizontal portion 36g1 toward the second horizontal portion 36g2 so as to be inclined downward, and is a portion formed by the third connection portion 36e.
  • FIG. 5B is a diagram showing a light distribution pattern formed by projecting the edge portion 36g onto a virtual vertical screen arranged in front of the vehicle 10.
  • This light distribution pattern corresponds to the right low beam pattern 50 (an example of a first light distribution pattern).
  • the right low beam pattern 50 has a first horizontal cutoff line 51, a second horizontal cutoff line 52, and an inclined cutoff line 53 at the upper edge.
  • first horizontal cut-off line 51, the second horizontal cut-off line 52, and the inclined cut-off line 53 are collectively referred to as “right-side cut-off line 54” as necessary.
  • the first horizontal cut-off line 51 is formed by the first horizontal part 36g1 of the edge part 36g and extends horizontally slightly below the horizontal line HH, and is used as an oncoming lane side cut-off line.
  • the second horizontal cut-off line 52 is formed by the second horizontal part 36g2 of the end edge part 36g and extends along the horizontal line HH, and is used as the own lane side cut-off line.
  • the inclined cut-off line 53 is formed by the inclined part 36g3 of the end edge part 36g, extends obliquely from the left end of the first horizontal cut-off line 51 toward the upper left, and is connected to the right end of the second horizontal cut-off line 52.
  • the edge portion 36g (an example of the first edge) is moved to the right. It is projected in front of the projection lens 34 as a horizontal cut-off line 54 (an example of a peripheral portion of the first light distribution pattern). The light passing above the edge 36 g illuminates the lower side of the right lateral cut-off line 54 as the right low beam pattern 50.
  • FIG. 5C shows a state in which the right rotary shade 36 rotated about 90 degrees from the state shown in FIG. 5A toward the front of the vehicle 10 is viewed from the front of the vehicle 10.
  • the first connecting portion 36c, the second connecting portion 36d, the third connecting portion 36e, and the fourth connecting portion 36f form a flat surface 36h that is continuous along the rotation axis A2 by a part of each.
  • the flat surface 36h defines a space 36i between the left cylindrical portion 36a and the right cylindrical portion 36b.
  • the space 36i opens a space including the optical axis A1 of the projection lens 34. Therefore, the light emitted from the light source 31 and reflected by the reflector 33 passes through the space 36i and the projection lens 34 without being blocked, and forms a right high beam pattern 55 shown in FIG. .
  • the right high beam pattern 55 is a light distribution pattern that illuminates the front of the vehicle 10 over a wide area far away.
  • FIG. 6A shows a state in which the right rotary shade 36 rotated about 90 degrees from the state shown in FIG. 5A toward the rear of the vehicle 10 is viewed from the front of the vehicle 10.
  • FIGS. 6B and 6C show a state in which the right rotary shade 36 further rotated from the state shown in FIG. 6A toward the rear of the vehicle 10 is viewed from the front of the vehicle 10. Yes.
  • the first twisted end face 36d2 includes a first end edge 36d21, a second end edge 36d22, a third end edge 36d23, and a fourth end. This is an end face defined by the edge 36d24.
  • the first end edge portion 36d21 is a linear end edge that intersects the cylindrical portion 36d1 and the fourth connection portion 36f of the second connection portion 36d and defines the boundary with the second twisted end surface 36d3.
  • the first twisted end face 36d2 crosses not only the cylindrical portion 36d1 of the second connecting portion 36d but also the position corresponding to the optical axis A1 of the projection lens 34,
  • the third connecting part 36e and the first connecting part 36c extend so as to cut out a part thereof.
  • the second end edge portion 36d22 is a curved edge that approaches the right cylindrical portion 36b while sequentially intersecting the peripheral surfaces of the cylindrical portion 36d1, the third connection portion 36e, and the first connection portion 36c.
  • the third end edge portion 36d23 is a linear end edge that defines the boundary between the first twisted end surface 36d2 and the flat surface 36h.
  • the second end edge portion 36d22 and the third end edge portion 36d23 intersect with the end edge portion 36c1 where the peripheral surface of the first connection portion 36c and the flat surface 36h intersect.
  • the fourth end edge 36d24 is a curved edge that connects the first end edge 36d21 and the third end edge 36d23.
  • the second twisted end face 36d3 is an end face defined by the first end edge 36d31, the second end edge 36d32, and the first end edge 36d21 of the first twisted end face 36d2.
  • the first edge portion 36d31 is a curved edge that defines the boundary between the second connection portion 36d and the fourth connection portion 36f at a position where it intersects with the edge portion 36g.
  • the first end edge portion 36d31 approaches the third connection portion 36e while intersecting with the peripheral surface of the cylindrical portion 36d1, and extends to a position where it intersects with the first end edge portion 36d21 of the first torsion end surface 36d2. By extending in this way, the boundary between the cylindrical portion 36d1 and the second twisted end surface 36d3 is defined.
  • the second edge portion 36d32 is a curved edge.
  • the second end edge portion 36d32 defines the boundary between the second connection portion 36d and the fourth connection portion 36f together with the first end edge portion 36d31 at a position where it intersects the end edge portion 36g.
  • the second end edge portion 36d32 extends to a position where it intersects with the first end edge portion 36d21 of the first twisted end surface 36d2 while intersecting with the peripheral surface of the fourth connection portion 36f. Thereby, the boundary of the 4th connection part 36f and the 2nd twist end surface 36d3 is defined.
  • the position where the first end edge 36d31 of the second twisted end face 36d3 intersects the end edge 36g is the right low beam pattern 50 (an example of the first light distribution pattern). It is determined so as to correspond to the right end portion.
  • the upper end of the right rotary shade 36 has a first horizontal edge 36j1, a first inclined edge 36j2, a second horizontal edge 36j3, and a second inclined edge.
  • An edge 36j4 appears.
  • the first horizontal edge portion 36j1 is a portion that is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction.
  • the first horizontal edge portion 36j1 is a portion formed by the peripheral surface of the first connection portion 36c.
  • the second horizontal edge 36j3 is a portion that is disposed on the right side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction.
  • the second horizontal end edge portion 36j3 is a portion formed by the cylindrical portion 36d1 of the second connection portion 36d.
  • the first inclined end edge 36j2 is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10, and extends upward from the first horizontal end edge 36j1 toward the second horizontal end edge 36j3. It is a part extending so as to be inclined.
  • the first inclined end edge portion 36j2 is a portion formed by the peripheral surface of the third connection portion 36e.
  • the second inclined edge portion 36j4 is disposed on the right side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10, and is inclined downward from the second horizontal edge portion 36j3 toward the fourth connecting portion 36f. It extends like so.
  • the second inclined end edge portion 36j4 is a portion formed by the first end edge portion 36d21 of the first twisted end face 36d2.
  • the first horizontal end edge 36j1, the first inclined end edge 36j2, the second horizontal end edge 36j3, and the second inclined end edge 36j4 are disposed in front of the vehicle 10. It is a figure which shows the light distribution pattern formed by projecting on a virtual vertical screen. This light distribution pattern corresponds to the first partial right high beam pattern 60 (an example of the second light distribution pattern), and has a larger illumination area than the right low beam pattern 50.
  • the first partial right high beam pattern 60 has a first horizontal cutoff line 61, a first inclined cutoff line 62, a second horizontal cutoff line 63, and a second inclined cutoff line 64.
  • first horizontal cut-off line 61, the first inclined cut-off line 62, and the second horizontal cut-off line 63 are collectively referred to as “right-side cut-off line 65” as necessary.
  • the first horizontal cut-off line 61 is formed by the first horizontal edge 36j1 and extends along the horizontal line HH, and is used as the own lane side cut-off line.
  • the second horizontal cut-off line 63 is formed by the second horizontal end edge portion 36j3 and extends horizontally slightly below the horizontal line HH, and is used as an oncoming lane side cut-off line.
  • the first inclined cut-off line 62 is formed by the first inclined end edge 36j2, extends obliquely from the right end of the first horizontal cut-off line 61 toward the lower right, and is connected to the left end of the second horizontal cut-off line 63.
  • the second inclined cut-off line 64 is formed by the second inclined end edge 36j4 (the first end edge 36d21 of the first twisted end face 36d2), and extends obliquely from the right end of the second horizontal cut-off line 63 toward the upper right. ing.
  • a space 36k through which light can pass is formed on the right side of the second inclined end edge portion 36j4 as viewed from the front of the vehicle 10.
  • the light that has passed through the space 36k illuminates the area on the right side of the second inclined cutoff line 64.
  • the drive mechanism 37 rotates the right rotary shade 36 to the position shown in FIG. 6A (an example of the second angular position)
  • the second horizontal edge 36j3 is projected in front of the projection lens 34 as the right lateral cutoff line 65 (an example of the first peripheral edge of the second light distribution pattern).
  • the first end edge portion 36d21 that is a part of the first twisted end surface 36d2 is projected in front of the projection lens 34 as the second inclined cutoff line 64 (an example of the second peripheral edge portion of the second light distribution pattern).
  • the light passing above the right rotary shade 36 and through the space 36k is, as the first partial right high beam pattern 60, the second slope of the region below the right lateral cutoff line 65 and above the right lateral cutoff line 65.
  • the right side of the cut-off line 64 is illuminated.
  • FIG. 6C shows a state where the right rotary shade 36 rotated about 90 degrees from the state shown in FIG. 6A toward the rear of the vehicle 10 is viewed from the front of the vehicle 10. At this time, a horizontal edge 36p1 and an inclined edge 36p2 appear at the upper end of the right rotary shade 36.
  • the horizontal edge 36p1 is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction.
  • the horizontal edge 36p1 is a part formed by the edge 36c1 of the first connection part 36c.
  • the inclined end edge 36p2 is disposed on the right side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10, and extends to incline downward from the horizontal end edge 36p1 toward the fourth connecting portion 36f. Yes.
  • the inclined end edge portion 36p2 is a portion formed by the second end edge portion 36d22 of the first twisted end face 36d2.
  • FIG. 6F shows a second partial right high beam pattern 66 (formed by projecting the horizontal edge 36p1 and the inclined edge 36p2 onto a virtual vertical screen disposed in front of the vehicle 10. It is a figure which shows an example of a 3rd light distribution pattern.
  • the second partial right high beam pattern 66 has a larger illumination area than the first partial right high beam pattern 60.
  • the second partial right high beam pattern 66 has a horizontal cutoff line 67 and an inclined cutoff line 68.
  • the horizontal cut-off line 67 is formed by the horizontal edge 36p1 and extends along the horizontal line HH, and is used as the own lane side cut-off line.
  • the inclined cut-off line 68 is formed by the inclined end edge 36p2 (the second end edge 36d22 of the first twisted end surface 36d2), and extends obliquely from the right end of the horizontal cut-off line 67 toward the upper right.
  • a space 36k through which light can pass is formed on the right side of the inclined edge 36p2 when viewed from the front of the vehicle 10.
  • the light that has passed through the space 36k illuminates the area on the right side of the inclined cutoff line 68.
  • the horizontal edge 36p1 (an example of the third edge) It is projected in front of the projection lens 34 as a horizontal cutoff line 67 (an example of the first peripheral edge of the third light distribution pattern).
  • the second end edge portion 36d22 that is a part of the first twisted end surface 36d2 is projected in front of the projection lens 34 as an inclined cutoff line 68 (an example of the second peripheral edge portion of the third light distribution pattern).
  • the light passing above the right rotary shade 36 and passing through the space 36k is, as the second partial right high beam pattern 66, of the inclined cutoff line 68 in the region below the horizontal cutoff line 67 and above the horizontal cutoff line 67. Illuminate the right side.
  • the state shown in FIG. 6A (an example of the second angular position) is the same as the state shown in FIG. 5A (an example of the first angular position) and the state shown in FIG. It can be seen that it is located between the state shown (an example of the third angle position).
  • a state in the middle of rotating the right rotary shade 36 from the state shown in FIG. 6A to the state shown in FIG. 6C (from the second angle position example to the third angle position example). explain in detail.
  • FIG. 6B shows a state where the right rotary shade 36 rotated about 45 degrees toward the rear of the vehicle 10 from the state shown in FIG. 6A is viewed from the front of the vehicle 10.
  • a first horizontal end edge 36m1 a first inclined end edge 36m2, a second horizontal end edge 36m3, and a second inclined end edge 36m4 appear at the upper end of the right rotary shade 36.
  • the first horizontal edge 36m1 is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction.
  • the first horizontal end edge portion 36m1 is a portion formed by the peripheral surface of the first connection portion 36c.
  • the second horizontal edge 36m3 is disposed on the right side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction.
  • the second horizontal end edge portion 36m3 is a portion formed by the cylindrical portion 36d1 of the second connection portion 36d.
  • the first inclined end edge 36m2 is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10, and is upward from the first horizontal end edge 36m1 toward the second horizontal end edge 36m3. It extends to incline.
  • the first inclined end edge portion 36m2 is a portion formed by the peripheral surface of the third connection portion 36e.
  • the second inclined edge portion 36m4 is disposed on the right side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10, and is inclined downward from the second horizontal edge portion 36m3 toward the fourth connecting portion 36f. It extends like so.
  • the second inclined end edge portion 36m4 is a portion formed by the second end edge portion 36d22 of the first twisted end face 36d2.
  • FIG. 6E shows that the first horizontal end edge 36m1, the first inclined end edge 36m2, the second horizontal end edge 36m3, and the second inclined end edge 36m4 are arranged in front of the vehicle 10. It is a figure which shows the light distribution pattern formed by projecting on a virtual vertical screen. This light distribution pattern has a cut-off line similar to the first partial right high beam pattern 60 shown in FIG. 6D, and only the shape is different. Therefore, similarly, the first partial right high beam pattern 60 (an example of the second light distribution pattern) is referred to, and the same reference numerals are assigned to the corresponding cutoff lines.
  • the first horizontal cutoff line 61 is formed by the first horizontal end edge 36m1 and extends along the horizontal line HH, and is used as the own lane side cutoff line.
  • the second horizontal cut-off line 63 is formed by the second horizontal end edge portion 36m3 and extends horizontally slightly below the horizontal line HH, and is used as an oncoming lane side cut-off line.
  • the first inclined cutoff line 62 is formed by the first inclined end edge 36m2.
  • the first inclined cutoff line 62 extends obliquely from the right end of the first horizontal cutoff line 61 toward the lower right and is connected to the left end of the second horizontal cutoff line 63.
  • the second inclined cutoff line 64 is formed by the second inclined end edge portion 36m4 (the first end edge portion 36d22 of the first twisted end surface 36d2).
  • the second inclined cutoff line 64 extends obliquely from the right end of the second horizontal cutoff line 63 toward the upper right.
  • a space 36k through which light can pass is formed on the right side of the second inclined end edge portion 36m4 when viewed from the front of the vehicle 10.
  • the light that has passed through the space 36n illuminates the area on the right side of the second inclined cutoff line 64.
  • the drive mechanism 37 rotates the right rotary shade 36 to the position shown in FIG. 6B (an example of the second angle position)
  • the second horizontal edge 36m3 is projected in front of the projection lens 34 as the right lateral cutoff line 65 (an example of the first peripheral edge of the second light distribution pattern).
  • the second end edge portion 36d22 which is a part of the first twisted end surface 36d2 is projected in front of the projection lens 34 as the second inclined cutoff line 64 (an example of the second peripheral edge portion of the second light distribution pattern).
  • the light passing above the right rotary shade 36 and through the space 36k is, as the first partial right high beam pattern 60, the second slope of the region below the right lateral cutoff line 65 and above the right lateral cutoff line 65.
  • the right side of the cut-off line 64 is illuminated.
  • FIG. 3B shows a state where the right rotary shade 36 shown in FIG. 6B is viewed from above.
  • the first twisted end surface 36d2 intersects the second horizontal end edge portion 36j3 (an example of a part of the second end edge) and the end edge portion 36c1 (an example of the third end edge) at different positions in the direction of the rotation axis A2. Thus, it extends around the rotation axis A2.
  • the light emitted from the light source 31 and reflected by the reflector 33 travels from various directions toward the projection lens 34.
  • the light having a great influence on the amount of light incident on the projection lens 34 is light incident from the direction indicated by the arrow B in FIG. Specifically, the light passes through the space 36k from the rear of the rear focal point F of the projection lens 34 toward the optical axis A1.
  • the first twist end surface 36d2 and the second twist end surface 36d3 of the present embodiment are arranged so as to approach the optical axis A1 as the projection lens 34 is approached. Therefore, the first twist end surface 36d2 and the second twist end surface 36d3 do not become an obstacle to the progress of light as described above, and a decrease in the amount of light incident on the projection lens 34 can be suppressed.
  • the first twisted end surface 36d2 extends across the optical axis A1 of the projection lens 34. Strictly speaking, as the projection lens 34 is approached, a portion extending away from the optical axis A1 is present. Exists.
  • the above description that “the first twisted end surface 36d2 is arranged so as to approach the optical axis A1 as it approaches the projection lens 34” does not mean that the presence of a portion away from the optical axis A1 in this way is excluded. . As in the present embodiment, this means including the case where most of the first twisted end face 36d2 satisfies the above-described requirements.
  • the second twisted end surface 36d3 in the right rotary shade 36 of the present embodiment includes a first twisted end surface 36d2 and an end edge portion 36g (an example of the first end edge) and the first The two horizontal end edges 36j3 (an example of the second end edge) extend around the rotation axis A2 so as to intersect at different positions with respect to the rotation axis A2.
  • the first end edge 36d31 of the second twisted end face 36d3 is projected in front of the projection lens 34 as a second inclined cutoff line 64 'indicated by a broken line in FIG.
  • the first end edge portion 36d31 of the second twisted end surface 36d3 gradually approaches the right cylindrical portion 36b. Accordingly, the space 36k located to the left of the second twisted end surface 36d3 through which light can pass gradually increases. Therefore, the second inclined cut-off line 64 'gradually moves to the left side, and the area of the right illumination area increases.
  • the position where the first end edge portion 36d31 of the second twisted end face 36d3 intersects the end edge portion 36g (an example of the first end edge) is the right end of the right low beam pattern 50 (an example of the first light distribution pattern). It is determined to correspond to the department. Therefore, the second inclined cutoff line 64 'appears from the right end of the first partial right high beam pattern 60 (an example of the second light distribution pattern) and gradually moves to the left as described above.
  • the shape change from the right low beam pattern 50 to the first partial right high beam pattern 60 accompanying the rotation of the right rotary shade 36 becomes continuous and smooth. . Therefore, the uncomfortable feeling given to the driver can be suppressed.
  • the first connecting portion 36c in the right rotary shade 36 has a shape in which the cross-sectional shape viewed from the direction along the rotation axis A2 is a concentric semicircle centering on the rotation axis A2. That is, the first connection portion 36c has a peripheral surface extending concentrically with the rotation axis A2.
  • the circumferential surface Of the second horizontal portion 36g2 (an example of a part of the first edge)
  • the first horizontal edge parts 36j1 and 36m1 (a part of the second edge) that sequentially appear at the upper end of the right rotary shade 36 as part of An example
  • a horizontal edge 36p1 (an example of a third edge) extend in parallel with the rotation axis A2, and the position of the vehicle 10 in the vertical direction does not change.
  • edges correspond to the center in the left-right direction of the vehicle 10 in the right low beam pattern 50 (an example of a first light distribution pattern) and the first partial right high beam pattern 60 (an example of a second light distribution pattern). It is a part arranged like this. In other words, it is a portion where the shape changes last or a portion where the shape does not change as the right rotary shade 36 rotates. Accordingly, it is possible to minimize the change in shape accompanying the transition of the light distribution pattern, and to suppress the uncomfortable feeling given to the driver.
  • the left lamp unit 30L is accommodated in the lamp chamber 25L of the left headlamp unit 22L.
  • the left lamp unit 30L corresponds to a unit obtained by replacing the right rotary shade 36 of the right lamp unit 30R shown in FIG. 2 with a left rotary shade 46 described later. Since the other configuration is the same as that of the right lamp unit 30R, illustration and repeated description are omitted.
  • FIG. 7 is a perspective view showing an appearance of the left rotary shade 46.
  • a peripheral surface in which an edge having a different shape is arranged at the rear focal point F of the projection lens 34 according to the rotation angle based on the drive by the drive mechanism 37. And it is set as the shape which has an end surface.
  • the light emitted from the light source 31 is reflected by the reflector 33 and travels forward. Part of the light is blocked by the left rotary shade 46. At this time, the shape of the edge arranged at the rear focal point F of the projection lens 34 is projected as a part of the periphery of the light distribution pattern formed in front of the vehicle 10.
  • the left rotary shade 46 includes a left cylindrical portion 46a, a right cylindrical portion 46b, a first connection portion 46c, a second connection portion 46d, a third connection portion 46e, and a fourth connection portion 46f. Yes.
  • the left cylindrical portion 46a has a shape in which a cross-sectional shape viewed from the direction along the rotation axis A3 is a concentric circle with the rotation axis A3 as the center.
  • a shaft hole 46a1 coaxial with the rotation axis A3 is formed in the left cylindrical portion 46a.
  • the shaft hole 46 a 1 is coupled to the drive mechanism 37.
  • the right cylindrical portion 46b has a shape in which the cross-sectional shape viewed from the direction along the rotation axis A3 is a concentric circle with the rotation axis A3 as the center.
  • a shaft hole 46b1 coaxial with the rotation axis A3 is formed in the right cylindrical portion 46b.
  • the shaft hole 46b1 is supported by the support mechanism 38.
  • the first connection portion 46 c is a portion that is formed continuously with the left cylindrical portion 46 a and is arranged on the left side of the left cylindrical portion 46 a when viewed from the front of the vehicle 10.
  • the first connection portion 46c has a shape in which a cross-sectional shape viewed from the direction along the rotation axis A3 is a concentric semicircle centered on the rotation axis A3.
  • the radius of the concentric semicircle is larger than the radius of the concentric circle forming the cross section of the left cylindrical portion 46a.
  • the second connecting portion 46d is a portion disposed on the left side of the first connecting portion 46c when viewed from the front of the vehicle 10, and includes a cylindrical portion 46d1, a first twisted end surface 46d2, and a second twisted end surface 46d3. .
  • the cylindrical portion 46d1 is based on a shape in which a cross-sectional shape viewed from the direction along the rotation axis A3 is a concentric semicircle centering on the rotation axis A3, and a part thereof is a first twist end surface 46d2 and a second twist end surface 46d3. It has a shape cut out by.
  • the radius of the concentric semicircle is smaller than the radius of the concentric circle forming the cross section of the first connection portion 46c.
  • the third connection portion 46e is a portion that is formed continuously from the first connection portion 46c and the cylindrical portion 46d1 of the second connection portion 46d and connects them. That is, the third connection portion 46e is connected around the rotation axis A3 so as to connect the semi-cylindrical circumferential surface formed by the first connection portion 46c and the circumferential surface formed by the cylindrical portion 46d1 of the second connection portion 46d. And a surface inclined along the direction of the rotation axis A3. As shown in FIGS. 8 and 9, the boundary line between the first connection portion 46 c and the second connection portion 46 d is disposed so as to pass through the rear focal point F of the projection lens 34.
  • the fourth connecting portion 46f is a portion that is formed continuously from the right cylindrical portion 46b and the second twisted end surface 46d3 of the second connecting portion 46d and connects them.
  • the shapes of the first twist end face 46d2, the second twist end face 46d3, and the fourth connection portion 46f will be described in detail later with reference to FIGS. 8 and 9 as well.
  • FIG. 8A shows a state in which the left rotary shade 46 rotated by the drive mechanism 37 to the angular position where the edge 46g is arranged at the rear focal point F of the projection lens 34 is viewed from the front of the vehicle 10. ing.
  • the edge portion 46g includes a first horizontal portion 46g1, a second horizontal portion 46g2, and an inclined portion 46g3.
  • the first horizontal portion 46g1 is disposed on the right side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction.
  • the first horizontal portion 46g1 is a portion formed by the first connection portion 46c.
  • the second horizontal portion 46g2 is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction.
  • the second horizontal portion 46g2 is a portion formed by the second connection portion 46d and the fourth connection portion 46f.
  • the inclined portion 46g3 extends so as to be inclined downward from the first horizontal portion 46g1 toward the second horizontal portion 46g2.
  • the inclined part 46g3 is a part formed by the third connection part 46e.
  • FIG. 8B shows a left low beam pattern 70 (an example of a first light distribution pattern) formed by projecting the edge 46g onto a virtual vertical screen disposed in front of the vehicle 10. It is.
  • the left low beam pattern 70 has a first horizontal cutoff line 71, a second horizontal cutoff line 72, and an inclined cutoff line 73 at the upper edge.
  • first horizontal cut-off line 71, the second horizontal cut-off line 72, and the inclined cut-off line 73 are collectively referred to as “right-side cut-off line 74” as necessary.
  • the first horizontal cut-off line 71 is formed by the first horizontal part 46g1 of the edge part 46g and extends horizontally slightly below the horizontal line HH, and is used as an oncoming lane side cut-off line.
  • the second horizontal cut-off line 72 is formed by the second horizontal part 46g2 of the end edge part 46g and extends along the horizontal line HH, and is used as the own lane side cut-off line.
  • the inclined cut-off line 73 is formed by the inclined part 46 g 3 of the end edge part 46 g, extends obliquely from the left end of the first horizontal cut-off line 71 toward the upper left, and is connected to the right end of the second horizontal cut-off line 72.
  • the edge 46g (an example of the first edge) is moved to the right. It is projected in front of the projection lens 34 as a horizontal cut-off line 74 (an example of a peripheral portion of the first light distribution pattern). The light passing above the edge 46g illuminates the lower side of the right lateral cut-off line 74 as the left low beam pattern 70.
  • FIG. 8C shows a state in which the left rotary shade 46 rotated about 90 degrees from the state shown in FIG. 8A toward the front of the vehicle 10 is viewed from the front of the vehicle 10.
  • the first connecting portion 46c, the second connecting portion 46d, the third connecting portion 46e, and the fourth connecting portion 46f form a flat surface 46h that is continuous along the rotation axis A3 by a part thereof.
  • the flat surface 46h partitions a space 46i between the left cylindrical portion 46a and the right cylindrical portion 46b.
  • the space 46i opens a space including the optical axis A1 of the projection lens 34. Therefore, the light emitted from the light source 31 and reflected by the reflector 33 passes through the space 46i and the projection lens 34 without being blocked, and forms a left high beam pattern 75 shown in FIG. .
  • the left high beam pattern 75 is a light distribution pattern that illuminates the front of the vehicle 10 over a wide range far.
  • FIG. 9A shows a state in which the left rotary shade 46 rotated about 90 degrees from the state shown in FIG. 8A toward the rear of the vehicle 10 is viewed from the front of the vehicle 10.
  • FIGS. 9B and 9C show a state in which the left rotary shade 46 rotated further from the state shown in FIG. 9A toward the rear of the vehicle 10 is viewed from the front of the vehicle 10. Yes.
  • the first twisted end face 46d2 includes a first end edge 46d21, a second end edge 46d22, a third end edge 46d23, and a fourth end. This is an end face defined by the edge 46d24.
  • the first end edge portion 46d21 is a linear end edge that intersects the cylindrical portion 46d1 and the fourth connection portion 46f of the second connection portion 46d and defines the boundary with the second torsion end surface 46d3.
  • the first twisted end face 46d2 crosses not only the cylindrical portion 46d1 of the second connection portion 46d but also the position corresponding to the optical axis A1 of the projection lens 34,
  • the third connecting portion 46e and the first connecting portion 46c extend so as to cut out a part.
  • the second end edge portion 46d22 is a curved edge that approaches the left cylindrical portion 46a while intersecting with the peripheral surfaces of the cylindrical portion 46d1, the third connection portion 46e, and the first connection portion 46c in this order.
  • the third end edge portion 46d23 is a linear end edge that defines the boundary between the first twisted end surface 46d2 and the flat surface 46h.
  • the second end edge portion 46d22 and the third end edge portion 46d23 intersect with the end edge portion 46c1 where the peripheral surface of the first connection portion 46c and the flat surface 46h intersect.
  • the fourth end edge 46d24 is a curved end edge that connects the first end edge 46d21 and the third end edge 46d23.
  • the second twisted end face 46d3 is an end face defined by the first end edge 46d31, the second end edge 46d32, and the first end edge 46d21 of the first twisted end face 46d2.
  • the first edge portion 46d31 is a curved edge that defines the boundary between the second connection portion 46d and the fourth connection portion 46f at a position where the first edge portion 46d intersects the edge portion 46g.
  • the first end edge portion 46d31 approaches the third connection portion 46e while intersecting with the peripheral surface of the cylindrical portion 46d1, and extends to a position where it intersects with the first end edge portion 46d21 of the first twisted end surface 46d2. By extending in this way, the boundary between the cylindrical portion 46d1 and the second torsion end face 46d3 is defined.
  • the second end edge portion 46d32 is a curved edge that defines the boundary between the second connection portion 46d and the fourth connection portion 46f together with the first end edge portion 46d31 at a position intersecting with the end edge portion 46g.
  • the second end edge portion 46d32 extends to a position where it intersects with the first end edge portion 46d21 of the first twisted end surface 46d2 while intersecting with the peripheral surface of the fourth connection portion 46f. By extending in this way, the boundary between the fourth connecting portion 46f and the second torsion end face 46d3 is defined.
  • the upper end of the left rotary shade 46 has a first horizontal end edge 46j1, a first inclined end edge 46j2, a second horizontal end edge 46j3, and a second inclined end.
  • An edge 46j4 appears.
  • the first horizontal edge 46j1 is a portion that is disposed on the right side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction, and is formed by the peripheral surface of the first connection portion 46c.
  • the second horizontal edge portion 46j3 is a portion that is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction, and is formed by the cylindrical portion 46d1 of the second connection portion 46d. is there.
  • the first inclined edge 46j2 is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10, and is downward from the first horizontal edge 46j1 toward the second horizontal edge 46j3. It extends to incline.
  • the first inclined end edge portion 46j2 is a portion formed by the peripheral surface of the third connection portion 46e.
  • the second inclined edge 46j4 is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10, and is inclined downward from the second horizontal edge 46j3 toward the fourth connection 46f. It extends like so.
  • the second inclined end edge 46j4 is a portion formed by the first end edge 46d21 of the first twisted end face 46d2.
  • the first horizontal edge 46j1, the first inclined edge 46j2, the second horizontal edge 46j3, and the second inclined edge 46j4 are arranged in front of the vehicle 10. It is a figure which shows the 1st partial left high beam pattern 80 (an example of a 2nd light distribution pattern) formed by projecting on a virtual vertical screen.
  • the first partial left high beam pattern 80 has a larger illumination area than the left low beam pattern 70.
  • the first partial left high beam pattern 80 has a first horizontal cutoff line 61, a first inclined cutoff line 62, a second horizontal cutoff line 63, and a second inclined cutoff line 64.
  • first horizontal cut-off line 81, the first inclined cut-off line 82, and the second horizontal cut-off line 83 are collectively referred to as “right-side cut-off line 85” as necessary.
  • the first horizontal cut-off line 81 is formed by the second horizontal end edge 46j3 and extends horizontally slightly below the horizontal line HH, and is used as an oncoming lane side cut-off line.
  • the second horizontal cut-off line 83 is formed by the first horizontal end edge 46j1 and extends along the horizontal line HH, and is used as the own lane side cut-off line.
  • the first inclined cut-off line 82 is formed by the first inclined end edge 46j2, extends obliquely from the left end of the first horizontal cut-off line 81 toward the upper left, and is connected to the right end of the second horizontal cut-off line 83.
  • the second inclined cut-off line 84 is formed by the second inclined end edge 46j4 (the first end edge 46d21 of the first twisted end face 46d2), and extends obliquely from the left end of the second horizontal cut-off line 83 toward the upper left. ing.
  • a space 46k through which light can pass is formed on the left side of the second inclined end edge 46j4 when viewed from the front of the vehicle 10.
  • the light that has passed through the space 46k illuminates the left region of the second inclined cutoff line 84.
  • the light passing above the left rotary shade 46 and passing through the space 46k is, as the first partial left high beam pattern 80, the second slope in the region below the right lateral cutoff line 85 and above the right lateral cutoff line 85. Illuminate the left side of the cut-off line 84.
  • FIG. 9C shows a state in which the left rotary shade 46 rotated from the state shown in FIG. 9A toward the rear of the vehicle 10 by about 90 degrees is viewed from the front of the vehicle 10. At this time, a horizontal edge 46p1 and an inclined edge 46p2 appear at the upper end of the left rotary shade 46.
  • the first horizontal end edge 46p1 is disposed on the right side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction.
  • the first horizontal edge portion 46p1 is a portion formed by the edge portion 46c1 of the first connection portion 46c.
  • the inclined end edge portion 46p2 is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10, and extends so as to incline downward from the horizontal end edge portion 46p1 toward the fourth connection portion 46f. Yes.
  • the inclined end edge 46p2 is a part formed by the second end edge 46d22 of the first twisted end face 46d2.
  • FIG. 9 (f) shows a second partial left high beam pattern 86 (formed by projecting the horizontal edge 46 p 1 and the inclined edge 46 p 2 onto a virtual vertical screen arranged in front of the vehicle 10. It is a figure which shows an example of a 3rd light distribution pattern.
  • the second partial left high beam pattern 86 has a larger illumination area than the first partial left high beam pattern 80.
  • the second partial left high beam pattern 86 has a horizontal cutoff line 87 and an inclined cutoff line 88.
  • the horizontal cut-off line 87 is formed by the horizontal end edge 46p1 and extends horizontally slightly below the horizontal line HH, and is used as an oncoming lane side cut-off line.
  • the inclined cut-off line 88 is formed by the inclined end edge 46p2 (the second end edge 46d22 of the first twisted end face 46d2), and extends obliquely from the left end of the horizontal cut-off line 87 toward the upper left.
  • a space 46k through which light can pass is formed on the left side of the inclined end edge 46p2 when viewed from the front of the vehicle 10.
  • the light that has passed through the space 46k illuminates the region on the left side of the inclined cutoff line 88.
  • the horizontal edge 46p1 (an example of the third edge) is It is projected in front of the projection lens 34 as a horizontal cutoff line 87 (an example of the first peripheral edge of the third light distribution pattern).
  • the second end edge portion 46d22 that is a part of the first twisted end face 46d2 is projected in front of the projection lens 34 as an inclined cutoff line 88 (an example of the second peripheral edge portion of the third light distribution pattern).
  • the light passing above the left rotary shade 46 and passing through the space 46k is, as the second partial left high beam pattern 86, below the horizontal cut-off line 87 and within the area above the horizontal cut-off line 87. Illuminate the left side.
  • the state shown in FIG. 9A (an example of the second angular position) is the same as the state shown in FIG. 8A (an example of the first angular position) and the state shown in FIG. 9C. It can be seen that it is located between the state shown (an example of the third angle position).
  • a state in the middle of rotating the left rotary shade 46 from the state shown in FIG. 9A to the state shown in FIG. 9C (from an example of the second angular position to an example of the third angular position). explain in detail.
  • FIG. 9B shows a state where the left rotary shade 46 rotated about 45 degrees toward the rear of the vehicle 10 from the state shown in FIG. 9A is viewed from the front of the vehicle 10.
  • a horizontal end edge 46m1, a first inclined end edge 46m2, and a second inclined end edge 46m4 appear at the upper end of the left rotary shade 46.
  • the horizontal edge portion 46m1 is disposed on the right side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10 and extends in the horizontal direction.
  • the horizontal edge portion 46m1 is a portion formed by the peripheral surface of the first connection portion 46c.
  • the first inclined end edge 46m2 is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10, and extends from the horizontal end edge 46m1 so as to be inclined downward.
  • the first inclined end edge portion 46m2 is a portion formed by the peripheral surface of the third connection portion 46e.
  • the second inclined edge portion 46m4 is disposed on the left side of the optical axis A1 of the projection lens 34 when viewed from the front of the vehicle 10, and is inclined downward from the first inclined edge portion 46m2 toward the fourth connecting portion 46f. It extends like so.
  • the second inclined end edge portion 46m4 is a portion formed by the second end edge portion 46d22 of the first twisted end face 46d2.
  • FIG. 9E is formed by projecting the horizontal edge 46m1, the first inclined edge 46m2, and the second inclined edge 46m4 onto a virtual vertical screen disposed in front of the vehicle 10.
  • FIG. It is a figure which shows the light distribution pattern performed.
  • This light distribution pattern has a cut-off line similar to the first partial left high beam pattern 80 shown in FIG. 9D, and only the shape is different. Therefore, it is similarly referred to as a first partial left high beam pattern 80 (an example of a second light distribution pattern), and the same reference number is assigned to the corresponding cutoff line.
  • the first horizontal cut-off line 81 is formed by the horizontal edge 46m1 and extends horizontally slightly below the horizontal line HH, and is used as an oncoming lane side cut-off line.
  • the first inclined cutoff line 82 is formed by the first inclined end edge portion 46m2.
  • the first inclined cutoff line 82 extends obliquely from the left end of the first horizontal cutoff line 81 toward the upper left and is connected to the right end of the second inclined cutoff line 84.
  • the second inclined cut-off line 84 is formed by the second inclined end edge 46m4 (the first end edge 46d22 of the first twisted end face 46d2), and extends obliquely from the left end of the second inclined cut-off line 82 toward the upper left. ing.
  • a space 46k through which light can pass is formed on the left side of the second inclined end edge 46m4 when viewed from the front of the vehicle 10.
  • the light that has passed through the space 46k illuminates the area on the right side of the second inclined cutoff line 84.
  • the horizontal edge 46m1 and the first inclined edge 46m2 (first An example of two end edges) is projected in front of the projection lens 34 as the right lateral cut-off line 85 (the first peripheral edge portion of the second light distribution pattern).
  • a second end edge 46d22 that is a part of the first twisted end face 46d2 is projected in front of the projection lens 34 as a second inclined cutoff line 84 (an example of the second peripheral edge of the second light distribution pattern).
  • the light passing above the left rotary shade 46 and passing through the space 46k is, as the first partial left high beam pattern 80, the second slope in the region below the right lateral cutoff line 85 and above the right lateral cutoff line 85. Illuminate the left side of the cut-off line 84.
  • the left rotary shade 46 As the left rotary shade 46 is rotated from the state shown in FIG. 9A to the state shown in FIG. 9B, a part of the first torsion end face 46d2 projected as the second inclined cut-off line 84 is The first end edge 46d21 moves to the second end edge 46d22, and gradually approaches the left cylindrical part 46a. Along with this, the space 46k through which light can pass gradually increases. Therefore, the second inclined cut-off line 84 gradually moves to the right side, and the area of the illumination area on the left side increases. Accordingly, the second horizontal cut-off line 83 is gradually shortened.
  • the first twisted end face 46d2 includes a second horizontal edge 46j3 (an example of a part of the second edge) and an edge 46c1 (the third edge).
  • One example extends around the rotation axis A3 so as to intersect at different positions in the direction of the rotation axis A3.
  • the light emitted from the light source 31 and reflected by the reflector 33 travels from various directions toward the projection lens 34. At this time, the light having a great influence on the amount of light incident on the projection lens 34 is light that passes through the space 46k from the rear of the rear focal point F of the projection lens 34 toward the optical axis A1.
  • the first twisted end face 46d2 and the second twisted end face 46d3 of the present embodiment approach the optical axis A1 as they approach the projection lens 34. Is arranged. Therefore, the first twisted end surface 46d2 and the second twisted end surface 46d3 do not become an obstacle to the above-described light progression, and the decrease in the amount of light incident on the projection lens 34 can be suppressed.
  • the first twisted end face 46d2 extends across the optical axis A1 of the projection lens 34, strictly speaking, as the projection lens 34 is approached, a portion extending away from the optical axis A1 is present.
  • the above description that “the first twisted end face 46d2 is arranged so as to approach the optical axis A1 as it approaches the projection lens 34” does not mean that the presence of a portion away from the optical axis A1 in this way is excluded. .
  • the meaning includes the case where the majority of the first twisted end face 46d2 satisfies the requirements described above.
  • the second twisted end surface 46d3 in the left rotary shade 46 of the present embodiment includes a first twisted end surface 46d2, an end edge 46g (an example of a first end edge), and a second horizontal end edge 46j3 ( An example of the second end edge) extends around the rotation axis A3 so as to intersect at a different position with respect to the rotation axis A3.
  • the first end edge 46d31 of the second twisted end face 46d3 is projected in front of the projection lens 34 as a second inclined cutoff line 84 'indicated by a broken line in FIG.
  • the first end edge portion 46d31 of the second twisted end surface 46d3 gradually approaches the left cylindrical portion 46a. Accordingly, the light passage space 46k located on the right side of the second twisted end face 46d3 gradually increases. Therefore, the second inclined cutoff line 84 'gradually moves to the right side, and the area of the illumination area on the left side increases.
  • the position where the first end edge 46d31 of the second twisted end face 46d3 intersects the end edge 46g is the left end of the left low beam pattern 70 (an example of the first light distribution pattern). It is determined to correspond to the department. Therefore, the second inclined cutoff line 84 ′ appears from the left end portion of the first partial left high beam pattern 80 (an example of the second light distribution pattern) and gradually moves to the right side as described above.
  • the shape change from the left low beam pattern 70 to the first partial left high beam pattern 80 accompanying the rotation of the left rotary shade 46 becomes continuous and smooth. . Therefore, the uncomfortable feeling given to the driver can be suppressed.
  • the first connecting portion 46c of the left rotary shade 46 has a shape in which the cross-sectional shape viewed from the direction along the rotation axis A3 is a concentric semicircle centering on the rotation axis A3. That is, the first connection portion 46c has a peripheral surface extending concentrically with the rotation axis A3.
  • the second rotary shade 46 sequentially appears at the upper end of the left rotary shade 46 as a part of the peripheral surface.
  • One horizontal portion 46g1 (an example of a part of the first edge), the first horizontal edge 46j1, the horizontal edge 46m1 (an example of a part of the second edge), and a horizontal edge 46p1 (third An example of the end edge) extends in parallel with the rotation axis A3, and the position of the vehicle 10 in the vertical direction does not change.
  • edges correspond to the center in the left-right direction of the vehicle 10 in the left low beam pattern 70 (an example of the first light distribution pattern) and the first partial left high beam pattern 80 (an example of the second light distribution pattern). It is a part arranged like this. In other words, it is a portion where the shape finally changes or the shape does not change as the left rotary shade 46 rotates. Accordingly, it is possible to minimize the change in shape accompanying the transition of the light distribution pattern, and to suppress the uncomfortable feeling given to the driver.
  • FIG. 10A schematically shows a partial right high beam pattern RPH (corresponding to the first partial right high beam pattern 60 or the second partial right high beam pattern 66) formed by the right lamp unit 30R. is there.
  • FIG. 10B schematically shows a partial left high beam pattern LPH (corresponding to the first partial left high beam pattern 80 or the second partial left high beam pattern 86) formed by the left lamp unit 30L. is there.
  • the right rotary shade 36 blocks a part of the light emitted from the light source 31, so that the right non-illumination region RS is formed in a part of the high beam pattern as shown in FIG. Is done.
  • the right non-illumination region RS has a right cutoff line RC corresponding to the second inclined cutoff line 64 or the inclined cutoff line 68.
  • the right cut-off line RC moves in the left-right direction in the high beam irradiation region according to the angular position, and the area of the right non-illumination region RS changes. In other words, the shape of the partial right high beam pattern RPH changes.
  • the left rotary shade 46 blocks a part of the light emitted from the light source 31, so that a left non-illuminated region LS is formed in a part of the high beam pattern as shown in FIG. Is done.
  • the left non-illuminated area LS has a left cutoff line LC corresponding to the second inclined cutoff line 84 or the inclined cutoff line 88.
  • the left cut-off line LC moves in the left-right direction within the high beam irradiation region according to the angular position, and the area of the left non-illumination region LS changes. In other words, the shape of the partial left high beam pattern LPH changes.
  • FIG. 10 shows a partial high beam pattern PH obtained by superimposing the partial right high beam pattern RPH and the partial left high beam pattern LPH. A portion where the right non-illumination region RS and the left non-illumination region LS are overlapped becomes a non-illumination region S.
  • the non-illumination area S is formed, for example, in order to suppress glare of the preceding vehicle detected in the high beam irradiation area.
  • FIG. 10 (c) there is a forward vehicle F1 on the own lane, and the positions of the right cut-off line RC and the left cut-off line LC are determined so that the front drive vehicle F1 falls within the non-illuminated region S. Yes.
  • the right rotary shade 36 and the left rotary shade 46 are each angular positions that do not block the light emitted from the light source 31 (( c) and the state shown in FIG. 8C), the right high beam pattern 55 and the left high beam pattern 75 are formed. By superimposing these, a high beam pattern not including the non-illuminated region S is formed.
  • the integrated control unit 14 detects the presence or absence of a forward vehicle or a pedestrian based on the forward image of the vehicle 10 acquired by the camera 18, and determines whether or not it is necessary to form a partial high beam pattern PH.
  • the position and range of the non-illuminated area S are determined by the positions of the right cutoff line RC and the left cutoff line LC, that is, the angular positions of the right rotary shade 36 and the left rotary shade 46.
  • the integrated control unit 14 generates a control signal for rotating the right rotary shade 36 and the left rotary shade 46 to an angular position that can realize the non-illumination region S of the determined position and range, and the right lamp unit 30R and the left lamp unit 30L. Are respectively transmitted to the drive mechanisms 37.
  • the drive mechanisms 37 of the right lamp unit 30R and the left lamp unit 30L rotate the right rotary shade 36 and the left rotary shade 46 in the direction and angle specified by the control signal, respectively, and are emitted from the light source 31 and reflected by the reflector 33. Block out some of the light. Accordingly, a partial high beam pattern PH having a desired non-illuminated region S is formed in front of the vehicle 10.
  • a semiconductor light emitting element is used as the light source 31 and a resin lens is used as the projection lens 34 mainly from the viewpoint of ease of measures against chromatic aberration.
  • the light source 31 may be a laser light source or a lamp light source (incandescent lamp, halogen lamp, discharge lamp, neon lamp, etc.).
  • a glass lens may be used as the projection lens 34.
  • the peripheral portions of the light distribution pattern formed by the first twist end surface 36d2 of the right rotary shade 36 and the first twist end surface 46d2 of the left rotary shade 46 that is, the positions and shapes of the right cutoff line RC and the left cutoff line LC are as described above. It is not restricted to what was shown in the embodiment. As long as the torsional end surface capable of continuously changing the position of each cut-off line with the rotation of each rotary shade is formed, the shape of the torsional end surface can be arbitrarily determined. However, as it approaches the optical axis A1 as it approaches the projection lens 34, and as the rotary shade is rotated in the direction in which the illumination area increases, the rear focal point F of the projection lens 34 moves from the front to the rear.
  • the twist end face is required to be arranged.
  • the second twisted end surface 36d3 of the right rotary shade 36 and the second twisted end surface 46d3 of the left rotary shade 46 are not necessarily formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

 光源31から出射された光の一部を遮るように、ロータリーシェード36が投影レンズ34の後方に配置される。ロータリーシェード36は、その回転に伴い位置が変化する配光パターンの周縁部として投影される端縁を形成するための、ねじれ端面36d2を有している。ねじれ端面36d2は、投影レンズ34に近づくにつれてその光軸A1に近づくように配置される。ねじれ端面36d2は、配光パターンの照明面積が増す向きにロータリーシェード36が回転されるのに伴い、投影レンズ34の後方焦点Fの前方から後方へ移動する。

Description

車両用灯具ユニット
 本発明は、車両の前照灯に搭載される灯具ユニットに関する。
 この種の灯具ユニットとして、ロータリーシェードと称される部品を備えたものが知られている。ロータリーシェードは、車両の左右方向に延びる回転軸を有する部品であり、その周方向について異なる角度位置には、互いに異なる端縁形状を有する複数の遮光板が設けられている(例えば、特許文献1参照)。
 ロータリーシェードがその回転軸周りに回転されることにより、当該複数の遮光板の1つが光源と投影レンズを結ぶ光路上に配置される。これにより光源から出射された光の一部が遮られ、端縁形状が投影レンズを通じて車両の前方に投影される。車両の前方に形成される配光パターンの周縁部は、端縁形状に応じた形状を有することとなる。光路上に配置される遮光板を選択することにより、単一の光源を用いつつも複数の配光パターンを選択的に形成することができる。
 複数の配光パターンとして、前方車両にグレアを与えないように近距離前方を照明するロービームパターンや、遠方まで前方の広範囲を照明するハイビームパターンが知られている。さらに、ハイビーム照射状態において前方に検出された車両や歩行者の存在する領域のみを非照明領域とすることにより、グレア抑制と前方視認性の確保を両立した配光パターンが知られている。本明細書においては、当該配光パターンを「部分的ハイビームパターン」と称する。
 特許文献1に記載のように、左前照灯においてハイビームパターンの右上部分を非照明領域とする部分的左ハイビームパターンを形成し、右前照灯においてハイビームパターンの左上部分を非照明領域とする部分的右ハイビームパターンを形成する。これらの配光パターンを重ね合わせることにより、上記の部分的ハイビームパターンを形成することができる。灯具ユニットの光軸を左右方向に旋回させるスイブル制御を行なうことにより、非照明領域の位置や大きさを変化させることができる。
 回転軸方向について異なる位置を接続するように回転軸周りに延びるねじれ端面を備えたロータリーシェードが知られている(例えば特許文献2参照)。ねじれ端面は、ハイビームパターン内に部分的に形成される非照明領域との境界として投影される部分である。ロータリーシェードの回転に伴い、投影に供されるねじれ端面の位置が回転軸方向について変化するため、スイブル制御を行なうことなく非照明領域との境界の位置、すなわち非照明領域の位置や大きさを変化させることができる。
日本国特許出願公開2011-005992号公報 日本国特許出願公開2010-232081号公報
 上記のねじれ端面を形成するためには、ロータリーシェードの回転軸周りに延びる周面が必要となる。当該周面を形成することにより、中実の体積部分が増すこととなる。特許文献2に記載のロータリーシェードは、部分的ハイビームパターンの形成時において、当該体積部分が、投影レンズの後方焦点の前方に配置されている。
 光源より出射されてリフレクタ等により反射された光は、様々な方向から投影レンズに向かって進行する。遮光に供されない光は、理想的には全てが投影レンズに入射されるべきである。しかしながら特許文献2に記載のロータリーシェードのように、投影レンズの入射面と後方焦点の間に中実の体積部分が存在すると、後方焦点を通過した光の一部が当該部分によって遮られ、あるいは反射され、投影レンズへの入射光量が低下する。その結果、部分的ハイビームパターンの照明領域において所望の照度が得られなくなる。
 よって本発明は、ロータリーシェードを用いて部分的ハイビームパターンを形成する場合において、照明領域の照度低下を抑制しうる技術を提供することを第1の目的とする。
 特許文献1に記載のロータリーシェードでは、その周面に複数の遮光板が不連続に配置されているため、ロータリーシェードの回転に伴い、配光パターンの形状が不連続に変化する。このため運転者に違和感を与えることを避けられない。
 よって本発明は、ロータリーシェードを用いて配光パターンの切替を行なう場合において、運転者に与える違和感を抑制しうる技術を提供することを第2の目的とする。
 上記第1の目的を達成するために、本発明がとりうる第1の態様は、灯具ユニットであって、
 光源と、
 前記光源から出射された光の少なくとも一部が通過する投影レンズと、
 前記光源から出射された光の一部を遮るように前記投影レンズの後方に配置され、回転軸を有するロータリーシェードと、
 前記ロータリーシェードを前記回転軸周りに回転させる駆動機構と、
を備え、
 前記ロータリーシェードは、
  前記駆動機構が前記ロータリーシェードを第1角度位置まで回転させたときに、第1配光パターンの周縁部として前記投影レンズの前方に投影される第1端縁と、
  前記駆動機構が前記ロータリーシェードを第2角度位置まで回転させたときに、前記第1配光パターンよりも照明面積の広い第2配光パターンの第1周縁部として前記投影レンズの前方に投影される第2端縁と、
  前記駆動機構が前記ロータリーシェードを第3角度位置まで回転させたときに、前記第2配光パターンよりも照明面積の広い第3配光パターンの第1周縁部として前記投影レンズの前方に投影される第3端縁と、
  前記第2端縁および前記第3端縁と前記回転軸の方向について異なる位置で交わるように、前記回転軸周りに延びる第1ねじれ端面とを備え、
 前記第2角度位置は、前記第1角度位置と前記第3角度位置の間に位置しており、
 前記第1ねじれ端面の一部は、前記第2配光パターンの第2周縁部、および前記第3配光パターンの第2周縁部として前記投影レンズの前方に投影されるものであり、
 前記第1ねじれ端面は、前記投影レンズに近づくにつれて前記投影レンズの光軸に近づくように配置されており、
 前記駆動機構が前記ロータリーシェードを前記第1角度位置から前記第3角度位置まで回転させたとき、前記第1ねじれ端面は、前記投影レンズの後方焦点の前方から後方へ移動する。
 このような構成によれば、照明面積が増す向きにロータリーシェードが回転されるのに伴い、配光パターンの周縁部として投影される部分を有するねじれ端面が、投影レンズの後方焦点の後方へ移動する。そのため後方焦点を通過した光の一部が遮られたり反射されたりすることによる、投影レンズへの入射光量低下を抑制することができる。したがって、高い照度が求められる配光パターンの形成時において、所望の照度が得られないという事態を回避することができる。
 また光源より出射された光は、様々な方向から投影レンズに向かって進行する。このとき特に投影レンズへの入射光量に及ぼす影響が大きいのが、投影レンズの後方焦点の後方から、投影レンズの光軸に向かってロータリーシェードを通過する光である。上記の構成によれば、投影レンズに近づくにつれてその光軸に近づくように第1ねじれ端面が配置されている。したがって上記のような光の進行に対して第1ねじれ端面が障害となることがなく、投影レンズへの入射光量の低下を抑制することができる。
 前記ロータリーシェードは、前記回転軸方向について異なる位置で前記第1ねじれ端面および前記第1端縁に交わるように、前記回転軸周りに延びる第2ねじれ端面を備えている構成としてもよい。
 このような構成によれば、第1配光パターンから第2配光パターンへの形状変化を滑らかにすることができ、運転者に与える違和感を抑制することができる。
 前記ロータリーシェードは、前記回転軸と同心状に延びる周面を備え、前記第1端縁の一部、前記第2端縁の一部、および前記第3端縁は、前記回転軸と平行に延び、前記周面の一部をなしている構成としてもよい。
 このような構成によれば、これらの端縁が投影されることにより順次形成される配光パターンの周縁部の位置が、配光パターンの遷移に伴って変化しない。したがって配光パターンの遷移に伴う形状の変化を必要最小限とし、運転者に与える違和感を抑制することができる。
 例えば、前記第1配光パターンは、前記周縁部よりも下方を照明する配光パターンとすることができる。また前記第2配光パターンおよび前記第3配光パターンは、それぞれの前記第1周縁部よりも下方と、当該第1周縁部よりも上方の領域におけるそれぞれの前記第2周縁部の左右いずれか一方とを照明する配光パターンとすることができる。この場合、前記駆動機構が前記ロータリーシェードを前記第2角度位置から前記第3角度位置まで回転させたとき、前記第2周縁部は左右方向に移動する。
 前記光源として半導体発光素子を用い、前記投影レンズとして樹脂製レンズを用いる場合、色収差対策を容易にすることができる。
 上記の第2の目的を達成するために、本発明がとりうる第2の態様は、車両に搭載される灯具ユニットであって、
 光源と、
 前記光源から出射された光の少なくとも一部が通過する投影レンズと、
 前記光源から出射された光の一部を遮るように前記投影レンズの後方に配置され、回転軸を有するロータリーシェードと、
 前記ロータリーシェードを前記回転軸周りに回転させる駆動機構と、
を備え、
 前記ロータリーシェードは、
  前記駆動機構が前記ロータリーシェードを第1角度位置まで回転させたときに、第1配光パターンの周縁部として前記投影レンズの前方に投影される第1端縁と、
  前記駆動機構が前記ロータリーシェードを第2角度位置まで回転させたときに、前記第1配光パターンよりも照明面積の広い第2配光パターンの第1周縁部として前記投影レンズの前方に投影される第2端縁と、
  前記回転軸の方向について異なる位置で前記第1端縁と前記第2端縁にそれぞれ交わるように、前記回転軸周りに延びるねじれ端面とを備え、
 前記ねじれ端面の一部は、前記第2配光パターンの第2周縁部として前記投影レンズの前方に投影されるものであり、
 前記ねじれ端面が前記第1端縁と交わる位置は、前記第1配光パターンにおける前記車両の左右方向外側の端部に対応する。
 このような構成によれば、第1配光パターンから第2配光パターンへの遷移に際し、ねじれ端面により形成される第2配光パターンの周縁の第2周縁部は、先ず当該第2配光パターンにおける車両の左右方向外側の端部に現れる。そしてロータリーシェードの回転に伴い、左右方向中央部に向かって移動していく。したがって、第1配光パターンから第2配光パターンへの形状変化が連続的かつ滑らかなものとなり、運転者に与える違和感を抑制することができる。
 前記ロータリーシェードは、前記第1角度位置と前記第2角度位置の間において、前記回転軸と同心状に延びる周面を含み、前記周面は、前記第1配光パターンおよび前記第2配光パターンにおける前記車両の左右方向中央部に対応するように配置されている構成としてもよい。
 このような構成によれば、当外周部の端縁が投影されることにより順次形成される配光パターンの周縁部の位置が、配光パターンの遷移に伴って変化しない。そして配光パターンにおける車両の左右方向中央部は、ロータリーシェードの回転に伴い、最後に形状が変化する部分あるいは形状が変化しない部分である。したがって配光パターンの遷移に伴う形状の変化を必要最小限とし、運転者に与える違和感を抑制することができる。
 前記ねじれ端面は、前記投影レンズに近づくにつれて前記投影レンズの光軸に近づくように配置されており、前記駆動機構が前記ロータリーシェードを前記第1角度位置から前記第2角度位置まで回転させたとき、前記ねじれ端面は、前記投影レンズの後方焦点の前方から後方に移動する構成としてもよい。
 このような構成によれば、照明面積が増す向きにロータリーシェードが回転されるのに伴い、配光パターンの周縁部として投影される部分を有するねじれ端面が、投影レンズの後方焦点の後方へ移動する。そのため後方焦点を通過した光の一部が遮られたり反射されたりすることによる、投影レンズへの入射光量低下を抑制することができる。したがって、高い照度が求められる配光パターンの形成時において、所望の照度が得られないという事態を回避することができる。
 また光源より出射された光は、様々な方向から投影レンズに向かって進行する。このとき特に投影レンズへの入射光量に及ぼす影響が大きいのが、投影レンズの後方焦点の後方から、投影レンズの光軸に向かってロータリーシェードを通過する光である。上記の構成によれば、投影レンズに近づくにつれてその光軸に近づくようにねじれ端面が配置されている。したがって上記のような光の進行に対してねじれ端面が障害となることがなく、投影レンズへの入射光量の低下を抑制することができる。
 例えば、前記第1配光パターンは、前記周縁部よりも下方を照明する配光パターンとすることができる。また前記第2配光パターンは、それぞれの前記第1周縁部よりも下方と、当該第1周縁部よりも上方の領域におけるそれぞれの前記第2周縁部の左右いずれか一方とを照明する配光パターンとすることができる。この場合、前記駆動機構が前記ロータリーシェードを前記第1角度位置から前記第2角度位置まで回転させたとき、前記第2周縁部は左右方向に移動する。
 前記光源として半導体発光素子を用い、前記投影レンズとして樹脂製レンズを用いる場合、色収差対策を容易にすることができる。
本発明に係る灯具ユニットが搭載された車両の全体構成を模式的に示す図である。 本発明の一実施形態に係る右灯具ユニットの構成を示す斜視図である。 右灯具ユニットの構成要素間の位置関係を示す図である。 右灯具ユニットが備える右ロータリーシェードの外観を示す斜視図である。 右ロータリーシェードの回転角度位置と形成される配光パターンの関係を示す図である。 右ロータリーシェードの回転角度位置と形成される配光パターンの関係を示す図である。 本発明の一実施形態に係る左灯具ユニットが備える左ロータリーシェードの外観を示す斜視図である。 左ロータリーシェードの回転角度位置と形成される配光パターンの関係を示す図である。 左ロータリーシェードの回転角度位置と形成される配光パターンの関係を示す図である。 左右の灯具ユニットにより形成される部分的ハイビームパターンを示す図である。
 添付の図面を参照しつつ本発明について以下詳細に説明する。なお以下の説明に用いる各図面では、各部材を認識可能な大きさとするために縮尺を適宜変更している。
 図1に本発明の一実施形態に係る前照灯装置12が搭載された車両10の全体構成を模式的に示す。前照灯装置12は、統合制御部14、車輪速センサ16、操舵角センサ17、およびカメラ18とともに前照灯制御システム11を構成している。
 統合制御部14は、各種演算処理を実行するCPU、各種制御プログラムを格納するROM、データ格納やプログラム実行のためのワークエリアとして利用されるRAM等を備え、車両10における様々な制御を実行する。
 車輪速センサ16は、車両10に組み付けられる左右の前輪および後輪の4つの車輪の各々に対応して設けられている。車輪速センサ16の各々は統合制御部14と通信可能に接続されており、車輪の回転速度に応じた信号を統合制御部14に出力する。統合制御部14は、車輪速センサ16から入力された信号を利用して車両10の速度を算出する。
 操舵角センサ17は、ステアリングホイールに設けられて統合制御部14と通信可能に接続されている。操舵角センサ17は、運転手によるステアリングホイールの操舵回転角に対応した信号を統合制御部14に出力する。統合制御部14は、操舵角センサ17から入力された信号を利用して車両10の進行方向を算出する。
 カメラ18は、例えばCCD(Charged Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサ等の撮像素子を備え、車両前方を撮影して画像データを生成する。カメラ18は統合制御部14と通信可能に接続されており、生成された画像データは統合制御部14に出力される。
 前照灯装置12は、車両10の前部右寄りに配置される右前照灯ユニット22R、および車両10の前部左寄りに配置される左前照灯ユニット22Lを備えている。右前照灯ユニット22Rにおいては、ランプボディ23Rに透光カバー24Rが装着されて灯室25Rを区画している。
 図2は、右前照灯ユニット22Rの灯室25Rに収容されている右灯具ユニット30Rの構成を示す斜視図である。右灯具ユニット30Rは、光源31、ヒートシンク32、リフレクタ33、投影レンズ34、レンズホルダ35、右ロータリーシェード36、駆動機構37、および支持機構38を備えている。
 光源31は、白色発光ダイオード(LED)や有機EL素子などの半導体発光素子である。光源31は、ヒートシンク32に対して固定されている。ヒートシンク32は、光源31から発する熱を発散させるのに適した周知の材質および形状とされている。光源31から出射された光は、リフレクタ33によって反射され前方に向かう。その光の少なくとも一部は、リフレクタ33の前方に配置された投影レンズ34を通過する。
 図3の(a)は、右灯具ユニット30Rを構成する一部の要素間の位置関係を示す垂直断面図である。リフレクタ33は、車両10の前後方向に延びる光軸A1を中心軸とする略楕円球面を基調とする反射面を有している。光源31は、反射面の鉛直断面を構成する楕円の第1焦点に配置されている。これにより、光源31から出射された光が当該楕円の第2焦点に収束するように構成されている。
 投影レンズ34は樹脂製であり、前方側表面が凸面で後方側表面が平面の平凸非球面レンズである。投影レンズ34は、後方焦点Fがリフレクタ33の反射面の第2焦点に一致するように配置されており、後方焦点F上の像を車両10の前方に反転像として投影するように構成されている。投影レンズ34の周縁部はレンズホルダ35により保持され、ヒートシンク32に対して固定されている。
 図3の(b)は、右灯具ユニット30Rを構成する一部の要素間の位置関係を示す平面図である。右ロータリーシェード36は、光源31から出射された光の一部を遮るように、投影レンズ34の後方に配置されている。右ロータリーシェード36は回転軸A2を有しており、当該回転軸A2が、投影レンズ34の後方焦点Fの下方を通るように配置されている。
 駆動機構37は、モータと歯車機構を有しており、右ロータリーシェード36を回転軸A2周りに回転させる。具体的には、車両10の統合制御部14から入力される制御信号に応じてモータおよび歯車機構が駆動され、右ロータリーシェード36を当該信号に応じた角度および方向に回転させるように構成されている。
 図2に示すように、駆動機構37は、右ロータリーシェード36の軸方向左側の端部に固定されており、支持機構38は、右ロータリーシェード36の軸方向右側の端部を回転可能に支持している。ここで「右」および「左」は、運転席から見た左右の方向を示している。
 図4は、右ロータリーシェード36の外観を示す斜視図である。後に図5および図6を参照して詳述するように、駆動機構37による駆動に基づく回転角度に応じて異なる形状の端縁が、投影レンズ34の後方焦点Fに配置されるような周面および端面を有する形状とされている。
 光源31から出射された光は、リフレクタ33によって反射されて前方に向かう。その光の一部は、右ロータリーシェード36によって遮られる。このとき投影レンズ34の後方焦点Fに配置されている端縁の形状が、車両10の前方に形成される配光パターンの周縁部として投影される。
 図4に示すように、右ロータリーシェード36は、左側円筒部36a、右側円筒部36b、第1接続部36c、第2接続部36d、第3接続部36e、および第4接続部36fを備えている。
 左側円筒部36aは、回転軸A2に沿う向きから見た断面形状が、回転軸A2を中心とする同心円となる形状を有している。左側円筒部36aには、回転軸A2と同軸の軸孔36a1が形成されている。軸孔36a1は、駆動機構37と結合される。
 右側円筒部36bは、回転軸A2に沿う向きから見た断面形状が、回転軸A2を中心とする同心円となる形状を有している。右側円筒部36bには、回転軸A2と同軸の軸孔36b1が形成されている。軸孔36b1は、支持機構38に支持される。
 第1接続部36cは、右側円筒部36bに連続して形成され、車両10の前方から見て右側円筒部36bの右側に配置される部分である。第1接続部36cは、回転軸A2に沿う向きから見た断面形状が、回転軸A2を中心とする同心半円となる形状を有している。当該同心半円の半径は、右側円筒部36bの断面を形成する同心円の半径よりも大きい。
 第2接続部36dは、車両10の前方から見て第1接続部36cの右側に配置される部分であり、円筒部36d1、第1ねじれ端面36d2、および第2ねじれ端面36d3を有している。円筒部36d1は、回転軸A2に沿う向きから見た断面形状が、回転軸A2を中心とする同心半円となる形状を基調とし、その一部が第1ねじれ端面36d2および第2ねじれ端面36d3により切り欠かれた形状を呈している。当該同心半円の半径は、第1接続部36cの断面を形成する同心円の半径よりも大きい。
 第3接続部36eは、第1接続部36cと第2接続部36dの円筒部36d1に連続して形成され、これらを接続する部分である。すなわち第3接続部36eは、第1接続部36cにより形成される半円筒状の周面と第2接続部36dの円筒部36d1により形成される周面とを接続するように、回転軸A2周りに延び、かつ回転軸A2の方向に沿って傾斜する面である。図3の(b)にも示すように、第2接続部36dと第3接続部36eの境界線は、投影レンズ34の後方焦点Fを通るように配置される。
 第4接続部36fは、左側円筒部36aと第2接続部36dの第2ねじれ端面36d3に連続して形成され、これらを接続する部分である。第1ねじれ端面36d2、第2ねじれ端面36d3、および第4接続部36fの形状については、図5および図6も参照しつつ、詳しく後述する。
 第1接続部36c、第2接続部36d、第3接続部36e、および第4接続部36fが形成する周面の一部は、それぞれ面取りされて回転軸A2と平行な向きに延びる平坦な端縁部36gを形成している。図5の(a)は、端縁部36gが投影レンズ34の後方焦点Fに配置される角度位置まで駆動機構37により回転された右ロータリーシェード36を、車両10の前方から見た状態を示している。
 このとき端縁部36gは、第1水平部36g1、第2水平部36g2、および傾斜部36g3を含んでいる。第1水平部36g1は、車両10の前方から見て投影レンズ34の光軸A1よりも右側に配置されて水平方向に延び、第2接続部36dおよび第4接続部36fにより形成される部分である。第2水平部36g2は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置されて水平方向に延び、第1接続部36cにより形成される部分である。傾斜部36g3は、第1水平部36g1から第2水平部36g2に向かって下方に傾斜するように延び、第3接続部36eにより形成される部分である。
 図5の(b)は、この端縁部36gが車両10の前方に配置された仮想鉛直スクリーンに投影されることにより形成される配光パターンを示す図である。この配光パターンは、右ロービームパターン50(第1配光パターンの一例)に相当する。
 右ロービームパターン50は、その上端縁に第1水平カットオフライン51、第2水平カットオフライン52、および傾斜カットオフライン53を有している。以降の説明においては、第1水平カットオフライン51、第2水平カットオフライン52、および傾斜カットオフライン53を、必要に応じて「右横カットオフライン54」と総称する。
 第1水平カットオフライン51は、端縁部36gの第1水平部36g1により形成されて水平線H-Hのやや下方において水平に延びており、対向車線側カットオフラインとして利用される。第2水平カットオフライン52は、端縁部36gの第2水平部36g2により形成されて水平線H-Hに沿って延びており、自車線側カットオフラインとして利用される。傾斜カットオフライン53は、端縁部36gの傾斜部36g3により形成され、第1水平カットオフライン51の左端から左上方に向かって斜めに延び、第2水平カットオフライン52の右端に接続している。
 すなわち、図5の(a)に示す位置(第1角度位置の一例)まで、駆動機構37が右ロータリーシェード36を回転させたとき、端縁部36g(第1端縁の一例)が、右横カットオフライン54(第1配光パターンの周縁部の一例)として投影レンズ34の前方に投影される。端縁部36gの上方を通過する光は、右ロービームパターン50として右横カットオフライン54の下方を照明する。
 図5の(c)は、図5の(a)に示す状態から車両10の前方に向けて約90度回転させた右ロータリーシェード36を、車両10の前方から見た状態を示している。第1接続部36c、第2接続部36d、第3接続部36e、および第4接続部36fは、それぞれの一部によって、回転軸A2に沿って連続した平坦面36hを形成している。平坦面36hは、左側円筒部36aと右側円筒部36bの間に空間36iを区画している。
 空間36iは、投影レンズ34の光軸A1を含む空間を開放している。そのため光源31から出射され、リフレクタ33により反射された光は、遮られることなく空間36iおよび投影レンズ34を通過し、車両10の前方に図5の(d)に示す右ハイビームパターン55を形成する。右ハイビームパターン55は、車両10の前方を遠方まで広範囲に照明する配光パターンである。
 図6の(a)は、図5の(a)に示す状態から車両の10の後方に向けて約90度回転させた右ロータリーシェード36を、車両10の前方から見た状態を示している。図6の(b)および(c)は、図6の(a)に示す状態から車両10の後方に向けてさらに回転させた右ロータリーシェード36を、車両10の前方から見た状態を示している。
 図4および図6の(a)~(c)に示すように、第1ねじれ端面36d2は、第1端縁部36d21、第2端縁部36d22、第3端縁部36d23、および第4端縁部36d24により区画される端面である。
 第1端縁部36d21は、第2接続部36dの円筒部36d1、および第4接続部36fと交わるとともに、第2ねじれ端面36d3との境界を定める直線状の端縁である。
 図6の(a)~(c)より明らかなように、第1ねじれ端面36d2は、第2接続部36dの円筒部36d1のみならず、投影レンズ34の光軸A1に対応する位置を横切り、第3接続部36eと第1接続部36cの一部を切り欠くように延びている。第2端縁部36d22は、円筒部36d1、第3接続部36e、および第1接続部36cの周面と順に交わりながら右側円筒部36bに接近する曲線状の端縁である。
 第3端縁部36d23は、第1ねじれ端面36d2と平坦面36hの境界を定める直線状の端縁である。第2端縁部36d22と第3端縁部36d23は、第1接続部36cの周面と平坦面36hが交わる端縁部36c1と交わっている。第4端縁部36d24は、第1端縁部36d21と第3端縁部36d23を接続する曲線状の端縁である。
 第2ねじれ端面36d3は、第1端縁部36d31、第2端縁部36d32、および第1ねじれ端面36d2の第1端縁部36d21により区画される端面である。
 第1端縁部36d31は、端縁部36gと交わる位置において第2接続部36dと第4接続部36fの境界を定める曲線状の端縁である。第1端縁部36d31は、円筒部36d1の周面と交わりながら第3接続部36eに接近し、第1ねじれ端面36d2の第1端縁部36d21と交わる位置まで延びている。このように延びることにより、円筒部36d1と第2ねじれ端面36d3の境界が定められている。
 第2端縁部36d32は、曲線状の端縁である。第2端縁部36d32は、端縁部36gと交わる位置において第1端縁部36d31とともに第2接続部36dと第4接続部36fの境界を定めている。第2端縁部36d32は、第4接続部36fの周面と交わりながら、第1ねじれ端面36d2の第1端縁部36d21と交わる位置まで延びている。これにより、第4接続部36fと第2ねじれ端面36d3の境界が定められている。
 また本実施形態においては、第2ねじれ端面36d3の第1端縁部36d31が端縁部36g(第1端縁の一例)と交わる位置は、右ロービームパターン50(第1配光パターンの一例)の右端部に対応するように定められている。
 図6の(a)に示す状態において、右ロータリーシェード36の上端部には、第1水平端縁部36j1、第1傾斜端縁部36j2、第2水平端縁部36j3、および第2傾斜端縁部36j4が現れる。
 第1水平端縁部36j1は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置されて水平方向に延びる部分である。第1水平端縁部36j1は、第1接続部36cの周面により形成される部分である。第2水平端縁部36j3は、車両10の前方から見て投影レンズ34の光軸A1よりも右側に配置されて水平方向に延びる部分である。第2水平端縁部36j3は、第2接続部36dの円筒部36d1により形成される部分である。
 第1傾斜端縁部36j2は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置され、第1水平端縁部36j1から第2水平端縁部36j3に向かって上方に傾斜するように延びる部分である。第1傾斜端縁部36j2は、第3接続部36eの周面により形成される部分である。第2傾斜端縁部36j4は、車両10の前方から見て投影レンズ34の光軸A1よりも右側に配置され、第2水平端縁部36j3から第4接続部36fに向かって下方に傾斜するように延びている。第2傾斜端縁部36j4は、第1ねじれ端面36d2の第1端縁部36d21により形成される部分である。
 図6の(d)は、第1水平端縁部36j1、第1傾斜端縁部36j2、第2水平端縁部36j3、および第2傾斜端縁部36j4が、車両10の前方に配置された仮想鉛直スクリーンに投影されることにより形成される配光パターンを示す図である。この配光パターンは、第1部分的右ハイビームパターン60(第2配光パターンの一例)に相当し、右ロービームパターン50よりも照明面積が広い。
 第1部分的右ハイビームパターン60は、第1水平カットオフライン61、第1傾斜カットオフライン62、第2水平カットオフライン63、および第2傾斜カットオフライン64を有している。以降の説明においては、第1水平カットオフライン61、第1傾斜カットオフライン62、および第2水平カットオフライン63を、必要に応じて「右横カットオフライン65」と総称する。
 第1水平カットオフライン61は、第1水平端縁部36j1により形成されて水平線H-Hに沿って延びており、自車線側カットオフラインとして利用される。第2水平カットオフライン63は、第2水平端縁部36j3により形成されて水平線H-Hのやや下方において水平に延びており、対向車線側カットオフラインとして利用される。
 第1傾斜カットオフライン62は、第1傾斜端縁部36j2により形成され、第1水平カットオフライン61の右端から右下方に向かって斜めに延び、第2水平カットオフライン63の左端に接続している。第2傾斜カットオフライン64は、第2傾斜端縁部36j4(第1ねじれ端面36d2の第1端縁部36d21)により形成され、第2水平カットオフライン63の右端から右上方に向かって斜めに延びている。
 図6の(a)に示すように、車両10の前方から見て第2傾斜端縁部36j4の右側には、光が通過可能な空間36kが形成されている。当該空間36kを通過した光は、第2傾斜カットオフライン64の右側の領域を照明する。
 すなわち、図6の(a)に示す位置(第2角度位置の一例)まで、駆動機構37が右ロータリーシェード36を回転させたとき、第1水平端縁部36j1、第1傾斜端縁部36j2、および第2水平端縁部36j3(第2端縁の一例)が、右横カットオフライン65(第2配光パターンの第1周縁部の一例)として投影レンズ34の前方に投影される。また第1ねじれ端面36d2の一部である第1端縁部36d21が、第2傾斜カットオフライン64(第2配光パターンの第2周縁部の一例)として投影レンズ34の前方に投影される。右ロータリーシェード36の上方および空間36kを通過する光は、第1部分的右ハイビームパターン60として、右横カットオフライン65の下方、および当該右横カットオフライン65の上方の領域のうち、第2傾斜カットオフライン64の右側を照明する。
 図6の(c)は、図6の(a)に示す状態から車両10の後方に向けて約90度回転させた右ロータリーシェード36を、車両10の前方から見た状態を示している。このとき右ロータリーシェード36の上端部には、水平端縁部36p1および傾斜端縁部36p2が現れる。
 水平端縁部36p1は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置されて水平方向に延びている。水平端縁部36p1は、第1接続部36cの端縁部36c1により形成される部分である。傾斜端縁部36p2は、車両10の前方から見て投影レンズ34の光軸A1よりも右側に配置され、水平端縁部36p1から第4接続部36fに向かって下方に傾斜するように延びている。傾斜端縁部36p2は、第1ねじれ端面36d2の第2端縁部36d22により形成される部分である。
 図6の(f)は、水平端縁部36p1および傾斜端縁部36p2が、車両10の前方に配置された仮想鉛直スクリーンに投影されることにより形成される第2部分的右ハイビームパターン66(第3配光パターンの一例)を示す図である。第2部分的右ハイビームパターン66は、第1部分的右ハイビームパターン60よりも照明面積が広い。
 第2部分的右ハイビームパターン66は、水平カットオフライン67、および傾斜カットオフライン68を有している。水平カットオフライン67は、水平端縁部36p1により形成されて水平線H-Hに沿って延びており、自車線側カットオフラインとして利用される。傾斜カットオフライン68は、傾斜端縁部36p2(第1ねじれ端面36d2の第2端縁部36d22)により形成され、水平カットオフライン67の右端から右上方に向かって斜めに延びている。
 図6の(c)に示すように、車両10の前方から見て傾斜端縁部36p2の右側には、光が通過可能な空間36kが形成されている。当該空間36kを通過した光は、傾斜カットオフライン68の右側の領域を照明する。
 すなわち、図6の(c)に示す位置(第3角度位置の一例)まで、駆動機構37が右ロータリーシェード36を回転させたとき、水平端縁部36p1(第3端縁の一例)が、水平カットオフライン67(第3配光パターンの第1周縁部の一例)として投影レンズ34の前方に投影される。また第1ねじれ端面36d2の一部である第2端縁部36d22が、傾斜カットオフライン68(第3配光パターンの第2周縁部の一例)として投影レンズ34の前方に投影される。右ロータリーシェード36の上方および空間36kを通過する光は、第2部分的右ハイビームパターン66として、水平カットオフライン67の下方、および当該水平カットオフライン67の上方の領域のうち、傾斜カットオフライン68の右側を照明する。
 以上の説明より、図6の(a)に示す状態(第2角度位置の一例)は、図5の(a)に示す状態(第1角度位置の一例)と、図6の(c)に示す状態(第3角度位置の一例)との間に位置していることが判る。次に、右ロータリーシェード36を図6の(a)に示す状態から図6の(c)に示す状態まで(第2角度位置の一例から第3角度位置の一例まで)回転させる途中の状態について詳しく説明する。
 図6の(b)は、図6の(a)に示す状態から車両10の後方に向けて約45度回転させた右ロータリーシェード36を、車両10の前方から見た状態を示している。このとき右ロータリーシェード36の上端部には、第1水平端縁部36m1、第1傾斜端縁部36m2、第2水平端縁部36m3、および第2傾斜端縁部36m4が現れる。
 第1水平端縁部36m1は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置されて水平方向に延びている。第1水平端縁部36m1は、第1接続部36cの周面により形成される部分である。第2水平端縁部36m3は、車両10の前方から見て投影レンズ34の光軸A1よりも右側に配置されて水平方向に延びている。第2水平端縁部36m3は、第2接続部36dの円筒部36d1により形成される部分である。
 第1傾斜端縁部36m2は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置され、第1水平端縁部36m1から第2水平端縁部36m3に向かって上方に傾斜するように延びている。第1傾斜端縁部36m2は、第3接続部36eの周面により形成される部分である。第2傾斜端縁部36m4は、車両10の前方から見て投影レンズ34の光軸A1よりも右側に配置され、第2水平端縁部36m3から第4接続部36fに向かって下方に傾斜するように延びている。第2傾斜端縁部36m4は、第1ねじれ端面36d2の第2端縁部36d22により形成される部分である。
 図6の(e)は、第1水平端縁部36m1、第1傾斜端縁部36m2、第2水平端縁部36m3、および第2傾斜端縁部36m4が、車両10の前方に配置された仮想鉛直スクリーンに投影されることにより形成される配光パターンを示す図である。この配光パターンは、図6の(d)に示した第1部分的右ハイビームパターン60と同様のカットオフラインを備えており、形状のみが異なっている。よって同様に第1部分的右ハイビームパターン60(第2配光パターンの一例)と称し、対応するカットオフラインには同一の参照番号を付与することとする。
 第1水平カットオフライン61は、第1水平端縁部36m1により形成されて水平線H-Hに沿って延びており、自車線側カットオフラインとして利用される。第2水平カットオフライン63は、第2水平端縁部36m3により形成されて水平線H-Hのやや下方において水平に延びており、対向車線側カットオフラインとして利用される。
 第1傾斜カットオフライン62は、第1傾斜端縁部36m2により形成される。第1傾斜カットオフライン62は、第1水平カットオフライン61の右端から右下方に向かって斜めに延び、第2水平カットオフライン63の左端に接続している。第2傾斜カットオフライン64は、第2傾斜端縁部36m4(第1ねじれ端面36d2の第1端縁部36d22)により形成される。第2傾斜カットオフライン64は、第2水平カットオフライン63の右端から右上方に向かって斜めに延びている。
 図6の(b)に示すように、車両10の前方から見て第2傾斜端縁部36m4の右側には、光が通過可能な空間36kが形成されている。当該空間36nを通過した光は、第2傾斜カットオフライン64の右側の領域を照明する。
 すなわち、図6の(b)に示す位置(第2角度位置の一例)まで、駆動機構37が右ロータリーシェード36を回転させたとき、第1水平端縁部36m1、第1傾斜端縁部36m2、および第2水平端縁部36m3(第2端縁の一例)が、右横カットオフライン65(第2配光パターンの第1周縁部の一例)として投影レンズ34の前方に投影される。また第1ねじれ端面36d2の一部である第2端縁部36d22が、第2傾斜カットオフライン64(第2配光パターンの第2周縁部の一例)として投影レンズ34の前方に投影される。右ロータリーシェード36の上方および空間36kを通過する光は、第1部分的右ハイビームパターン60として、右横カットオフライン65の下方、および当該右横カットオフライン65の上方の領域のうち、第2傾斜カットオフライン64の右側を照明する。
 右ロータリーシェード36が図6の(a)に示す状態から(b)に示す状態まで回転されるのに伴い、第2傾斜カットオフライン64として投影される第1ねじれ端面36d2の一部は、第1端縁部36d21から第2端縁部36d22に移行し、徐々に右側円筒部36bに近づいていく。これに伴い、光が通過可能な空間36kは、徐々に広くなっていく。したがって、第2傾斜カットオフライン64は徐々に左側へ移動し、その右側の照明領域の面積が大きくなる。これに伴い、第2水平カットオフライン63は徐々に短くなる。
 さらに右ロータリーシェード36が回転されて図6の(c)に示す状態に達すると、第2傾斜カットオフライン64は、さらに左側へ移動し、傾斜カットオフライン68となる。このとき第1傾斜カットオフライン62および第2水平カットオフライン63は、形成されなくなる。
 図3の(b)は、図6の(b)に示す右ロータリーシェード36を上方から見た状態を示している。第1ねじれ端面36d2は、第2水平端縁部36j3(第2端縁の一部の一例)および端縁部36c1(第3端縁の一例)と、回転軸A2の方向について異なる位置で交わるように、回転軸A2の周りを延びている。
 駆動機構37が右ロータリーシェード36を図5の(a)に示す状態(第1角度位置の一例)から図6の(c)に示す状態(第3角度位置の一例)まで回転させると、第1ねじれ端面36d2および第2ねじれ端面36d3は、投影レンズ34の後方焦点Fよりも前方から後方に移動する。
 したがって図3の(b)および図6の(b)に示す状態においては、投影レンズ34の後方焦点Fと入射面の間には、右ロータリーシェード36における中実の体積部分がほとんど存在しない。したがって後方焦点Fを通過した光の一部が遮られたり反射されたりすることによる、投影レンズ34への入射光量低下を抑制することができる。
 また光源31より出射されてリフレクタ33により反射された光は、様々な方向から投影レンズ34に向かって進行する。このとき特に投影レンズ34への入射光量に及ぼす影響が大きいのが、図3の(b)において矢印Bで示す方向から入射する光である。具体的には、投影レンズ34の後方焦点Fの後方から、光軸A1に向かって空間36kを通過する光である。
 本実施形態の第1ねじれ端面36d2および第2ねじれ端面36d3は、投影レンズ34に近づくにつれてその光軸A1に近づくように配置されている。したがって上記のような光の進行に対して第1ねじれ端面36d2および第2ねじれ端面36d3が障害となることがなく、投影レンズ34への入射光量の低下を抑制することができる。
 図6の(a)に示す状態においては、右ロータリーシェード36における第2接続部36dの円筒部36d1の一部および第1ねじれ端面36d2は、投影レンズ34の後方焦点Fの前方に位置している(図5の(a)に示す形状が上方から見た状態に対応する)。しかしながら、投影レンズ34に近づくにつれてその光軸A1に近づくように、第1ねじれ端面36d2および第2ねじれ端面36d3が延びているため、矢印Bの方向から空間38kに進入する光に対して障害となりにくい。よって図6の(a)に示す状態においても、投影レンズ34への入射光量低下を抑制することができる。
 したがって高い照度が求められる第1部分的右ハイビームパターン60や第2部分的右ハイビームパターン66を形成するにあたり、所望の照度が得られないという事態を回避することができる。
 上述のように、第1ねじれ端面36d2は、投影レンズ34の光軸A1を横切って延びているため、厳密には、投影レンズ34に近づくにつれて、光軸A1から離れるように延びている部分が存在する。上記の「第1ねじれ端面36d2は、投影レンズ34に近づくにつれてその光軸A1に近づくように配置されている」という記載は、このように光軸A1から離れる部分の存在を排除する意味ではない。本実施形態のように、第1ねじれ端面36d2の大部分が上記の記載の要件を満たしている場合も含む意味である。
 図3の(b)と図4に示すように、本実施形態の右ロータリーシェード36における第2ねじれ端面36d3は、第1ねじれ端面36d2および端縁部36g(第1端縁の一例)および第2水平端縁部36j3(第2端縁の一例)に、その回転軸A2について異なる位置で交わるように、回転軸A2の周りに延びている。
 したがって図5の(a)に示す状態(第1角度位置の一例)から図6の(a)に示す状態(第2角度位置の一例)まで右ロータリーシェード36を回転させる間、第2ねじれ端面36d3の第1端縁部36d31が、右ロータリーシェード36の上端部に現れる。
 この第2ねじれ端面36d3の第1端縁部36d31は、図6の(a)に破線で示す第2傾斜カットオフライン64’として投影レンズ34の前方に投影される。右ロータリーシェード36が回転されるのに伴い、第2ねじれ端面36d3の第1端縁部36d31は、徐々に右側円筒部36bに近づいていく。これに伴い、光が通過可能な第2ねじれ端面36d3の左方に位置する空間36kは、徐々に広くなっていく。したがって、第2傾斜カットオフライン64’は徐々に左側へ移動し、その右側の照明領域の面積が大きくなる。
 上述のように、第2ねじれ端面36d3の第1端縁部36d31が端縁部36g(第1端縁の一例)と交わる位置は、右ロービームパターン50(第1配光パターンの一例)の右端部に対応するように定められている。そのため第2傾斜カットオフライン64’は、第1部分的右ハイビームパターン60(第2配光パターンの一例)の右端部より現れ、上述のように徐々に左側へ移動していくこととなる。
 上記のような第2ねじれ端面36d3を形成することにより、右ロータリーシェード36の回転に伴う、右ロービームパターン50から第1部分的右ハイビームパターン60への形状変化が連続的かつ滑らかなものとなる。したがって、運転者に与える違和感を抑制することができる。
 前述のように、右ロータリーシェード36における第1接続部36cは、回転軸A2に沿う向きから見た断面形状が、回転軸A2を中心とする同心半円となる形状を有している。すなわち第1接続部36cは回転軸A2と同心状に延びる周面を有している。
 このため右ロータリーシェード36を図5の(a)に示す状態(第1角度位置の一例)から図6の(c)に示す状態(第3角度位置の一例)まで回転させる間、上記周面の一部として右ロータリーシェード36の上端部において順次現れる、第2水平部36g2(第1端縁の一部の一例)、第1水平端縁部36j1、36m1(第2端縁の一部の一例)、および水平端縁部36p1(第3端縁の一例)は、回転軸A2と平行に延び、車両10の上下方向についての位置が変化しない。
 これらの端縁は、右ロービームパターン50(第1配光パターンの一例)、および第1部分的右ハイビームパターン60(第2配光パターンの一例)における、車両10の左右方向中央部に対応するように配置される部分である。換言すると、右ロータリーシェード36の回転に伴い、最後に形状が変化する部分あるいは形状が変化しない部分である。したがって配光パターンの遷移に伴う形状の変化を必要最小限とし、運転者に与える違和感を抑制することができる。
 左前照灯ユニット22Lの灯室25Lには、左灯具ユニット30Lが収容されている。左灯具ユニット30Lは、図2に示す右灯具ユニット30Rの右ロータリーシェード36を、後述する左ロータリーシェード46で置き換えたものに相当する。それ以外の構成は右灯具ユニット30Rと同一であるため、図示および繰り返しとなる説明は割愛する。
 図7は、左ロータリーシェード46の外観を示す斜視図である。後に図8および図9を参照して詳述するように、駆動機構37による駆動に基づく回転角度に応じて異なる形状の端縁が、投影レンズ34の後方焦点Fに配置されるような周面および端面を有する形状とされている。
 光源31から出射された光は、リフレクタ33によって反射されて前方に向かう。その光の一部は、左ロータリーシェード46によって遮られる。このとき投影レンズ34の後方焦点Fに配置されている端縁の形状が、車両10の前方に形成される配光パターンの周縁の一部として投影される。
 図7に示すように、左ロータリーシェード46は、左側円筒部46a、右側円筒部46b、第1接続部46c、第2接続部46d、第3接続部46e、および第4接続部46fを備えている。
 左側円筒部46aは、回転軸A3に沿う向きから見た断面形状が、回転軸A3を中心とする同心円となる形状を有している。左側円筒部46aには、回転軸A3と同軸の軸孔46a1が形成されている。軸孔46a1は、駆動機構37と結合される。
 右側円筒部46bは、回転軸A3に沿う向きから見た断面形状が、回転軸A3を中心とする同心円となる形状を有している。右側円筒部46bには、回転軸A3と同軸の軸孔46b1が形成されている。軸孔46b1は、支持機構38に支持される。
 第1接続部46cは、左側円筒部46aに連続して形成され、車両10の前方から見て左側円筒部46aの左側に配置される部分である。第1接続部46cは、回転軸A3に沿う向きから見た断面形状が、回転軸A3を中心とする同心半円となる形状を有している。当該同心半円の半径は、左側円筒部46aの断面を形成する同心円の半径よりも大きい。
 第2接続部46dは、車両10の前方から見て第1接続部46cの左側に配置される部分であり、円筒部46d1、第1ねじれ端面46d2、および第2ねじれ端面46d3を有している。円筒部46d1は、回転軸A3に沿う向きから見た断面形状が、回転軸A3を中心とする同心半円となる形状を基調とし、その一部が第1ねじれ端面46d2および第2ねじれ端面46d3により切り欠かれた形状を呈している。当該同心半円の半径は、第1接続部46cの断面を形成する同心円の半径よりも小さい。
 第3接続部46eは、第1接続部46cと第2接続部46dの円筒部46d1に連続して形成され、これらを接続する部分である。すなわち第3接続部46eは、第1接続部46cにより形成される半円筒状の周面と第2接続部46dの円筒部46d1により形成される周面とを接続するように、回転軸A3周りに延び、かつ回転軸A3の方向に沿って傾斜する面である。図8および図9に示すように、第1接続部46cと第2接続部46dの境界線は、投影レンズ34の後方焦点Fを通るように配置される。
 第4接続部46fは、右側円筒部46bと第2接続部46dの第2ねじれ端面46d3に連続して形成され、これらを接続する部分である。第1ねじれ端面46d2、第2ねじれ端面46d3、および第4接続部46fの形状については、図8および図9も参照しつつ、詳しく後述する。
 第1接続部46c、第2接続部46d、第3接続部46e、および第4接続部46fが形成する周面の一部は、それぞれ面取りされて回転軸A3と平行な向きに延びる平坦な端縁部46gを形成している。図8の(a)は、端縁部46gが投影レンズ34の後方焦点Fに配置される角度位置まで駆動機構37により回転された左ロータリーシェード46を、車両10の前方から見た状態を示している。
 このとき端縁部46gは、第1水平部46g1、第2水平部46g2、および傾斜部46g3を含んでいる。第1水平部46g1は、車両10の前方から見て投影レンズ34の光軸A1よりも右側に配置されて水平方向に延びている。第1水平部46g1は、第1接続部46cにより形成される部分である。第2水平部46g2は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置されて水平方向に延びている。第2水平部46g2は、第2接続部46dおよび第4接続部46fにより形成される部分である。傾斜部46g3は、第1水平部46g1から第2水平部46g2に向かって下方に傾斜するように延びている。傾斜部46g3は、第3接続部46eにより形成される部分である。
 図8の(b)は、この端縁部46gが車両10の前方に配置された仮想鉛直スクリーンに投影されることにより形成される左ロービームパターン70(第1配光パターンの一例)を示す図である。
 左ロービームパターン70は、その上端縁に第1水平カットオフライン71、第2水平カットオフライン72、および傾斜カットオフライン73を有している。以降の説明においては、第1水平カットオフライン71、第2水平カットオフライン72、および傾斜カットオフライン73を、必要に応じて「右横カットオフライン74」と総称する。
 第1水平カットオフライン71は、端縁部46gの第1水平部46g1により形成されて水平線H-Hのやや下方において水平に延びており、対向車線側カットオフラインとして利用される。第2水平カットオフライン72は、端縁部46gの第2水平部46g2により形成されて水平線H-Hに沿って延びており、自車線側カットオフラインとして利用される。傾斜カットオフライン73は、端縁部46gの傾斜部46g3により形成され、第1水平カットオフライン71の左端から左上方に向かって斜めに延び、第2水平カットオフライン72の右端に接続している。
 すなわち、図8の(a)に示す位置(第1角度位置の一例)まで、駆動機構37が左ロータリーシェード46を回転させたとき、端縁部46g(第1端縁の一例)が、右横カットオフライン74(第1配光パターンの周縁部の一例)として投影レンズ34の前方に投影される。端縁部46gの上方を通過する光は、左ロービームパターン70として右横カットオフライン74の下方を照明する。
 図8の(c)は、図8の(a)に示す状態から車両10の前方に向けて約90度回転させた左ロータリーシェード46を、車両10の前方から見た状態を示している。第1接続部46c、第2接続部46d、第3接続部46e、および第4接続部46fは、それぞれの一部によって、回転軸A3に沿って連続した平坦面46hを形成している。平坦面46hは、左側円筒部46aと右側円筒部46bの間に空間46iを区画している。
 空間46iは、投影レンズ34の光軸A1を含む空間を開放している。そのため光源31から出射され、リフレクタ33により反射された光は、遮られることなく空間46iおよび投影レンズ34を通過し、車両10の前方に図8の(d)に示す左ハイビームパターン75を形成する。左ハイビームパターン75は、車両10の前方を遠方まで広範囲に照明する配光パターンである。
 図9の(a)は、図8の(a)に示す状態から車両の10の後方に向けて約90度回転させた左ロータリーシェード46を、車両10の前方から見た状態を示している。図9の(b)および(c)は、図9の(a)に示す状態から車両10の後方に向けてさらに回転させた左ロータリーシェード46を、車両10の前方から見た状態を示している。
 図7および図9の(a)~(c)に示すように、第1ねじれ端面46d2は、第1端縁部46d21、第2端縁部46d22、第3端縁部46d23、および第4端縁部46d24により区画される端面である。
 第1端縁部46d21は、第2接続部46dの円筒部46d1、および第4接続部46fと交わるとともに、第2ねじれ端面46d3との境界を定める直線状の端縁である。
 図9の(a)~(c)より明らかなように、第1ねじれ端面46d2は、第2接続部46dの円筒部46d1のみならず、投影レンズ34の光軸A1に対応する位置を横切り、第3接続部46eと第1接続部46cの一部を切り欠くように延びている。第2端縁部46d22は、円筒部46d1、第3接続部46e、および第1接続部46cの周面と順に交わりながら左側円筒部46aに接近する曲線状の端縁である。
 第3端縁部46d23は、第1ねじれ端面46d2と平坦面46hの境界を定める直線状の端縁である。第2端縁部46d22と第3端縁部46d23は、第1接続部46cの周面と平坦面46hが交わる端縁部46c1と交わっている。第4端縁部46d24は、第1端縁部46d21と第3端縁部46d23を接続する曲線状の端縁である。
 第2ねじれ端面46d3は、第1端縁部46d31、第2端縁部46d32、および第1ねじれ端面46d2の第1端縁部46d21により区画される端面である。
 第1端縁部46d31は、端縁部46gと交わる位置において第2接続部46dと第4接続部46fの境界を定める曲線状の端縁である。第1端縁部46d31は、円筒部46d1の周面と交わりながら第3接続部46eに接近し、第1ねじれ端面46d2の第1端縁部46d21と交わる位置まで延びている。このように延びることにより、円筒部46d1と第2ねじれ端面46d3の境界が定められている。
 第2端縁部46d32は、端縁部46gと交わる位置において第1端縁部46d31とともに第2接続部46dと第4接続部46fの境界を定める曲線状の端縁である。第2端縁部46d32は、第4接続部46fの周面と交わりながら、第1ねじれ端面46d2の第1端縁部46d21と交わる位置まで延びている。このように延びることにより、第4接続部46fと第2ねじれ端面46d3の境界が定められている。
 図9の(a)に示す状態において、左ロータリーシェード46の上端部には、第1水平端縁部46j1、第1傾斜端縁部46j2、第2水平端縁部46j3、および第2傾斜端縁部46j4が現れる。
 第1水平端縁部46j1は、車両10の前方から見て投影レンズ34の光軸A1よりも右側に配置されて水平方向に延び、第1接続部46cの周面により形成される部分である。第2水平端縁部46j3は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置されて水平方向に延び、第2接続部46dの円筒部46d1により形成される部分である。
 第1傾斜端縁部46j2は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置され、第1水平端縁部46j1から第2水平端縁部46j3に向かって下方に傾斜するように延びている。第1傾斜端縁部46j2は、第3接続部46eの周面により形成される部分である。第2傾斜端縁部46j4は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置され、第2水平端縁部46j3から第4接続部46fに向かって下方に傾斜するように延びている。第2傾斜端縁部46j4は、第1ねじれ端面46d2の第1端縁部46d21により形成される部分である。
 図9の(d)は、第1水平端縁部46j1、第1傾斜端縁部46j2、第2水平端縁部46j3、および第2傾斜端縁部46j4が、車両10の前方に配置された仮想鉛直スクリーンに投影されることにより形成される第1部分的左ハイビームパターン80(第2配光パターンの一例)を示す図である。第1部分的左ハイビームパターン80は、左ロービームパターン70よりも照明面積が広い。
 第1部分的左ハイビームパターン80は、第1水平カットオフライン61、第1傾斜カットオフライン62、第2水平カットオフライン63、および第2傾斜カットオフライン64を有している。以降の説明においては、第1水平カットオフライン81、第1傾斜カットオフライン82、および第2水平カットオフライン83を、必要に応じて「右横カットオフライン85」と総称する。
 第1水平カットオフライン81は、第2水平端縁部46j3により形成されて水平線H-Hのやや下方において水平に延びており、対向車線側カットオフラインとして利用される。第2水平カットオフライン83は、第1水平端縁部46j1により形成されて水平線H-Hに沿って延びており、自車線側カットオフラインとして利用される。
 第1傾斜カットオフライン82は、第1傾斜端縁部46j2により形成され、第1水平カットオフライン81の左端から左上方に向かって斜めに延び、第2水平カットオフライン83の右端に接続している。第2傾斜カットオフライン84は、第2傾斜端縁部46j4(第1ねじれ端面46d2の第1端縁部46d21)により形成され、第2水平カットオフライン83の左端から左上方に向かって斜めに延びている。
 図9の(a)に示すように、車両10の前方から見て第2傾斜端縁部46j4の左側には、光が通過可能な空間46kが形成されている。当該空間46kを通過した光は、第2傾斜カットオフライン84の左側の領域を照明する。
 すなわち、図9の(a)に示す位置(第2角度位置の一例)まで、駆動機構37が左ロータリーシェード46を回転させたとき、第1水平端縁部46j1、第1傾斜端縁部46j2、および第2水平端縁部46j3(第2端縁の一例)が、右横カットオフライン85(第2配光パターンの第1周縁部の一例)として投影レンズ34の前方に投影される。また第1ねじれ端面46d2の一部である第1端縁部46d21が、第2傾斜カットオフライン84(第2配光パターンの第2周縁部の一例)として投影レンズ34の前方に投影される。左ロータリーシェード46の上方および空間46kを通過する光は、第1部分的左ハイビームパターン80として、右横カットオフライン85の下方、および当該右横カットオフライン85の上方の領域のうち、第2傾斜カットオフライン84の左側を照明する。
 図9の(c)は、図9の(a)に示す状態から車両10の後方に向けて約90度回転させた左ロータリーシェード46を、車両10の前方から見た状態を示している。このとき左ロータリーシェード46の上端部には、水平端縁部46p1および傾斜端縁部46p2が現れる。
 第1水平端縁部46p1は、車両10の前方から見て投影レンズ34の光軸A1よりも右側に配置されて水平方向に延びている。第1水平端縁部46p1は、第1接続部46cの端縁部46c1により形成される部分である。傾斜端縁部46p2は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置され、水平端縁部46p1から第4接続部46fに向かって下方に傾斜するように延びている。傾斜端縁部46p2は、第1ねじれ端面46d2の第2端縁部46d22により形成される部分である。
 図9の(f)は、水平端縁部46p1および傾斜端縁部46p2が、車両10の前方に配置された仮想鉛直スクリーンに投影されることにより形成される第2部分的左ハイビームパターン86(第3配光パターンの一例)を示す図である。第2部分的左ハイビームパターン86は、第1部分的左ハイビームパターン80よりも照明面積が広い。
 第2部分的左ハイビームパターン86は、水平カットオフライン87、および傾斜カットオフライン88を有している。水平カットオフライン87は、水平端縁部46p1により形成されて水平線H-Hのやや下方において水平に延びており、対向車線側カットオフラインとして利用される。傾斜カットオフライン88は、傾斜端縁部46p2(第1ねじれ端面46d2の第2端縁部46d22)により形成され、水平カットオフライン87の左端から左上方に向かって斜めに延びている。
 図9の(c)に示すように、車両10の前方から見て傾斜端縁部46p2の左側には、光が通過可能な空間46kが形成されている。当該空間46kを通過した光は、傾斜カットオフライン88の左側の領域を照明する。
 すなわち、図9の(c)に示す位置(第3角度位置の一例)まで、駆動機構37が左ロータリーシェード46を回転させたとき、水平端縁部46p1(第3端縁の一例)が、水平カットオフライン87(第3配光パターンの第1周縁部の一例)として投影レンズ34の前方に投影される。また第1ねじれ端面46d2の一部である第2端縁部46d22が、傾斜カットオフライン88(第3配光パターンの第2周縁部の一例)として投影レンズ34の前方に投影される。左ロータリーシェード46の上方および空間46kを通過する光は、第2部分的左ハイビームパターン86として、水平カットオフライン87の下方、および当該水平カットオフライン87の上方の領域のうち、傾斜カットオフライン88の左側を照明する。
 以上の説明より、図9の(a)に示す状態(第2角度位置の一例)は、図8の(a)に示す状態(第1角度位置の一例)と、図9の(c)に示す状態(第3角度位置の一例)との間に位置していることが判る。次に、左ロータリーシェード46を図9の(a)に示す状態から図9の(c)に示す状態まで(第2角度位置の一例から第3角度位置の一例まで)回転させる途中の状態について詳しく説明する。
 図9の(b)は、図9の(a)に示す状態から車両10の後方に向けて約45度回転させた左ロータリーシェード46を、車両10の前方から見た状態を示している。このとき左ロータリーシェード46の上端部には、水平端縁部46m1、第1傾斜端縁部46m2、および第2傾斜端縁部46m4が現れる。
 水平端縁部46m1は、車両10の前方から見て投影レンズ34の光軸A1よりも右側に配置されて水平方向に延びている。水平端縁部46m1は、第1接続部46cの周面により形成される部分である。第1傾斜端縁部46m2は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置され、水平端縁部46m1から下方に傾斜するように延びている。第1傾斜端縁部46m2は、第3接続部46eの周面により形成される部分である。第2傾斜端縁部46m4は、車両10の前方から見て投影レンズ34の光軸A1よりも左側に配置され、第1傾斜端縁部46m2から第4接続部46fに向かって下方に傾斜するように延びている。第2傾斜端縁部46m4は、第1ねじれ端面46d2の第2端縁部46d22により形成される部分である。
 図9の(e)は、水平端縁部46m1、第1傾斜端縁部46m2、および第2傾斜端縁部46m4が、車両10の前方に配置された仮想鉛直スクリーンに投影されることにより形成される配光パターンを示す図である。この配光パターンは、図9の(d)に示した第1部分的左ハイビームパターン80と同様のカットオフラインを備えており、形状のみが異なっている。よって同様に第1部分的左ハイビームパターン80(第2配光パターンの一例)と称し、対応するカットオフラインには同一の参照番号を付与する。
 第1水平カットオフライン81は、水平端縁部46m1により形成されて水平線H-Hのやや下方を水平に延びており、対向車線側カットオフラインとして利用される。第1傾斜カットオフライン82は、第1傾斜端縁部46m2により形成される。第1傾斜カットオフライン82は、第1水平カットオフライン81の左端から左上方に向かって斜めに延び、第2傾斜カットオフライン84の右端に接続している。第2傾斜カットオフライン84は、第2傾斜端縁部46m4(第1ねじれ端面46d2の第1端縁部46d22)により形成され、第2傾斜カットオフライン82の左端から左上方に向かって斜めに延びている。
 図9の(b)に示すように、車両10の前方から見て第2傾斜端縁部46m4の左側には、光が通過可能な空間46kが形成されている。当該空間46kを通過した光は、第2傾斜カットオフライン84の右側の領域を照明する。
 すなわち、図9の(b)に示す位置(第2角度位置の一例)まで、駆動機構37が左ロータリーシェード46を回転させたとき、水平端縁部46m1および第1傾斜端縁部46m2(第2端縁の一例)が、右横カットオフライン85(第2配光パターンの第1周縁部)として投影レンズ34の前方に投影される。また第1ねじれ端面46d2の一部である第2端縁部46d22が、第2傾斜カットオフライン84(第2配光パターンの第2周縁部の一例)として投影レンズ34の前方に投影される。左ロータリーシェード46の上方および空間46kを通過する光は、第1部分的左ハイビームパターン80として、右横カットオフライン85の下方、および当該右横カットオフライン85の上方の領域のうち、第2傾斜カットオフライン84の左側を照明する。
 左ロータリーシェード46が図9の(a)に示す状態から(b)に示す状態まで回転されるのに伴い、第2傾斜カットオフライン84として投影される第1ねじれ端面46d2の一部は、第1端縁部46d21から第2端縁部46d22に移行し、徐々に左側円筒部46aに近づいていく。これに伴い、光が通過可能な空間46kは、徐々に広くなっていく。したがって、第2傾斜カットオフライン84は徐々に右側へ移動し、その左側の照明領域の面積が大きくなる。これに伴い、第2水平カットオフライン83は徐々に短くなる。
 さらに左ロータリーシェード46が回転されて図9の(c)に示す状態に達すると、第2傾斜カットオフライン84は、さらに右側へ移動し、傾斜カットオフライン88となる。このとき第1傾斜カットオフライン82および第2水平カットオフライン83は、形成されなくなる。
 右ロータリーシェード36の第1ねじれ端面36d2と同様に、第1ねじれ端面46d2は、第2水平端縁部46j3(第2端縁の一部の一例)および端縁部46c1(第3端縁の一例)と、回転軸A3の方向について異なる位置で交わるように、回転軸A3の周りを延びている。
 駆動機構37が左ロータリーシェード46を図8の(a)に示す状態(第1角度位置の一例)から図9の(c)に示す状態(第3角度位置の一例)まで回転させると、第1ねじれ端面46d2および第2ねじれ端面46d3は、投影レンズ34の後方焦点Fよりも前方から後方に移動する。
 したがって図9の(b)に示す状態においては、投影レンズ34の後方焦点Fと入射面の間には、左ロータリーシェード46における中実の体積部分がほとんど存在しない。したがって後方焦点Fを通過した光の一部が遮られたり反射されたりすることによる、投影レンズ34への入射光量低下を抑制することができる。
 また光源31より出射されてリフレクタ33により反射された光は、様々な方向から投影レンズ34に向かって進行する。このとき特に投影レンズ34への入射光量に及ぼす影響が大きいのが、投影レンズ34の後方焦点Fの後方から、光軸A1に向かって空間46kを通過する光である。
 右ロータリーシェード36の第1ねじれ端面36d2および第2ねじれ端面36d3と同様に、本実施形態の第1ねじれ端面46d2および第2ねじれ端面46d3は、投影レンズ34に近づくにつれてその光軸A1に近づくように配置されている。したがって上記のような光の進行に対して第1ねじれ端面46d2および第2ねじれ端面46d3が障害となることがなく、投影レンズ34への入射光量の低下を抑制することができる。
 図9の(a)に示す状態においては、左ロータリーシェード46における第2接続部46dの円筒部46d1の一部および第1ねじれ端面46d2は、投影レンズ34の後方焦点Fの前方に位置している(図8の(a)に示す形状が上方から見た状態に対応する)。しかしながら、投影レンズ34に近づくにつれてその光軸A1に近づくように、第1ねじれ端面46d2および第2ねじれ端面46d3が延びているため、光軸A1に向かって空間46kに進入する光に対して障害となりにくい。よって図9の(a)に示す状態においても、投影レンズ34への入射光量低下を抑制することができる。
 したがって高い照度が求められる第1部分的左ハイビームパターン80や第2部分的左ハイビームパターン86を形成するにあたり、所望の照度が得られないという事態を回避することができる。
 上述のように、第1ねじれ端面46d2は、投影レンズ34の光軸A1を横切って延びているため、厳密には、投影レンズ34に近づくにつれて、光軸A1から離れるように延びている部分が存在する。上記の「第1ねじれ端面46d2は、投影レンズ34に近づくにつれてその光軸A1に近づくように配置されている」という記載は、このように光軸A1から離れる部分の存在を排除する意味ではない。本実施形態のように、第1ねじれ端面46d2の大部分が上記の記載の要件を満たしている場合も含む意味である。
 図7に示すように、本実施形態の左ロータリーシェード46における第2ねじれ端面46d3は、第1ねじれ端面46d2および端縁部46g(第1端縁の一例)および第2水平端縁部46j3(第2端縁の一例)に、その回転軸A3について異なる位置で交わるように、回転軸A3の周りに延びている。
 したがって図8の(a)に示す状態(第1角度位置の一例)から図9の(a)に示す状態(第2角度位置の一例)まで左ロータリーシェード46を回転させる間、第2ねじれ端面46d3の第1端縁部46d31が、左ロータリーシェード46の上端部に現れる。
 この第2ねじれ端面46d3の第1端縁部46d31は、図9の(a)に破線で示す第2傾斜カットオフライン84’として投影レンズ34の前方に投影される。左ロータリーシェード46が回転されるのに伴い、第2ねじれ端面46d3の第1端縁部46d31は、徐々に左側円筒部46aに近づいていく。これに伴い、第2ねじれ端面46d3の右方に位置する光通過空間46kは、徐々に広くなっていく。したがって、第2傾斜カットオフライン84’は徐々に右側へ移動し、その左側の照明領域の面積が大きくなる。
 上述のように、第2ねじれ端面46d3の第1端縁部46d31が端縁部46g(第1端縁の一例)と交わる位置は、左ロービームパターン70(第1配光パターンの一例)の左端部に対応するように定められている。そのため第2傾斜カットオフライン84’は、第1部分的左ハイビームパターン80(第2配光パターンの一例)の左端部より現れ、上述のように徐々に右側へ移動していくこととなる。
 上記のような第2ねじれ端面46d3を形成することにより、左ロータリーシェード46の回転に伴う、左ロービームパターン70から第1部分的左ハイビームパターン80への形状変化が連続的かつ滑らかなものとなる。したがって、運転者に与える違和感を抑制することができる。
 前述のように、左ロータリーシェード46における第1接続部46cは、回転軸A3に沿う向きから見た断面形状が、回転軸A3を中心とする同心半円となる形状を有している。すなわち第1接続部46cは回転軸A3と同心状に延びる周面を有している。
 このため左ロータリーシェード46を図8の(a)に示す状態から図9の(c)に示す状態まで回転させる間、上記周面の一部として左ロータリーシェード46の上端部において順次現れる、第1水平部46g1(第1端縁の一部の一例)、第1水平端縁部46j1ならびに水平端縁部46m1(第2端縁の一部の一例)、および水平端縁部46p1(第3端縁の一例)は、回転軸A3と平行に延び、車両10の上下方向についての位置が変化しない。
 これらの端縁は、左ロービームパターン70(第1配光パターンの一例)、および第1部分的左ハイビームパターン80(第2配光パターンの一例)における、車両10の左右方向中央部に対応するように配置される部分である。換言すると、左ロータリーシェード46の回転に伴い、最後に形状が変化する部分あるいは形状が変化しない部分である。したがって配光パターンの遷移に伴う形状の変化を必要最小限とし、運転者に与える違和感を抑制することができる。
 次に図10を参照しつつ、上述の構成を有する右灯具ユニット30Rおよび左灯具ユニット30Lにより形成される配光パターンを説明する。図10の(a)は、右灯具ユニット30Rにより形成された部分的右ハイビームパターンRPH(第1部分的右ハイビームパターン60または第2部分的右ハイビームパターン66に相当)を模式的に示す図である。図10の(b)は、左灯具ユニット30Lにより形成された部分的左ハイビームパターンLPH(第1部分的左ハイビームパターン80または第2部分的左ハイビームパターン86に相当)を模式的に示す図である。
 右灯具ユニット30Rにおいては、右ロータリーシェード36が光源31から出射する光の一部を遮ることにより、図10の(a)に示すように、ハイビームパターンの一部に右非照明領域RSが形成される。右非照明領域RSは、第2傾斜カットオフライン64または傾斜カットオフライン68に対応する右カットオフラインRCを有している。
 右ロータリーシェード36を回転させることにより、その角度位置に応じて右カットオフラインRCがハイビーム照射領域内を左右方向に移動し、右非照明領域RSの面積が変化する。換言すると、部分的右ハイビームパターンRPHの形状が変化する。
 左灯具ユニット30Lにおいては、左ロータリーシェード46が光源31から出射する光の一部を遮ることにより、図10の(b)に示すように、ハイビームパターンの一部に左非照明領域LSが形成される。左非照明領域LSは、第2傾斜カットオフライン84または傾斜カットオフライン88に対応する左カットオフラインLCを有している。
 左ロータリーシェード46を回転させることにより、その角度位置に応じて左カットオフラインLCがハイビーム照射領域内を左右方向に移動し、左非照明領域LSの面積が変化する。換言すると、部分的左ハイビームパターンLPHの形状が変化する。
 図10の(c)は、上記の部分的右ハイビームパターンRPHおよび部分的左ハイビームパターンLPHを重ね合わせて得られる部分的ハイビームパターンPHを示している。右非照明領域RSと左非照明領域LSが重ね合わされた部分は非照明領域Sとなる。
 非照明領域Sは、例えばハイビーム照射領域に検出された前走車のグレアを抑制するために形成するものである。図10の(c)では自車線上に前走車F1が存在しており、当該前走車F1が非照明領域Sに収まるように右カットオフラインRCと左カットオフラインLCの位置が定められている。
 前走車などが存在しない場合は、右灯具ユニット30Rおよび左灯具ユニット30Lにおいて、右ロータリーシェード36と左ロータリーシェード46を、各々光源31から出射される光を遮らない角度位置(図5の(c)および図8の(c)に示す状態)まで回転させることにより、右ハイビームパターン55と左ハイビームパターン75を形成する。これらを重ね合わせることにより、非照明領域Sを含まないハイビームパターンが形成される。
 統合制御部14は、カメラ18が取得した車両10の前方画像に基づいて、前方車両や歩行者等の有無を検出し、部分的ハイビームパターンPHを形成することの要否を判断する。部分的ハイビームパターンPHの形成が必要と判断された場合、カメラ18を通じて検出された対象物の位置、車輪速センサ16が検出した車両10の速度、および操舵角センサ17が検出した車両10の進行方向に基づき、形成すべき非照明領域Sの位置および範囲を決定する。
 上述のように、非照明領域Sの位置および範囲は、右カットオフラインRCと左カットオフラインLCの位置、すなわち右ロータリーシェード36と左ロータリーシェード46の角度位置により定まる。統合制御部14は、決定した位置および範囲の非照明領域Sを実現しうる角度位置まで右ロータリーシェード36と左ロータリーシェード46を回転させる制御信号を生成し、右灯具ユニット30Rと左灯具ユニット30Lの駆動機構37へそれぞれ送信する。
 右灯具ユニット30Rと左灯具ユニット30Lの駆動機構37は、それぞれ右ロータリーシェード36と左ロータリーシェード46を制御信号が指定する方向および角度に回転させ、光源31から出射されてリフレクタ33に反射された光の一部を遮光する。これにより所望の非照明領域Sを有する部分的ハイビームパターンPHが、車両10の前方に形成される。
 上記の実施形態は本発明の理解を容易にするためのものであって、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく変更・改良され得ると共に、本発明にはその等価物が含まれることは明らかである。
 上記の実施形態においては、主として色収差対策の容易性という観点から、光源31として半導体発光素子を用い、投影レンズ34として樹脂性レンズを用いている。しかしながら、光源31としてはレーザ光源や、ランプ光源(白熱ランプ、ハロゲンランプ、放電ランプ、ネオンランプなど)を用いてもよい。また投影レンズ34としては、ガラスレンズを用いてもよい。
 右ロータリーシェード36の第1ねじれ端面36d2、および左ロータリーシェード46の第1ねじれ端面46d2によって形成される配光パターンの周縁部、すなわち右カットオフラインRCおよび左カットオフラインLCの位置および形状は、上記の実施形態において示したものに限られない。各ロータリーシェードの回転に伴って各カットオフラインの位置を連続的に変化させることが可能なねじれ端面を形成する限りにおいて、当該ねじれ端面の形状は任意に定めることができる。但し、投影レンズ34に近づくにつれてその光軸A1に近づくように、また照明面積が増す向きにロータリーシェードが回転されるのに伴い、投影レンズ34の後方焦点Fの前方から後方へ移動するように、当該ねじれ端面が配置されることを要する。
 右ロータリーシェード36の第2ねじれ端面36d3、および左ロータリーシェード46の第2ねじれ端面46d3は必ずしも形成することを要しない。
 本出願は、2012年12月13日に提出された日本国特許出願2012-272244、および2012年12月13日に提出された日本国特許出願2012-272247に基づくものであり、その内容はここに参照として取り込まれる。

Claims (5)

  1.  光源と、
     前記光源から出射された光の少なくとも一部が通過する投影レンズと、
     前記光源から出射された光の一部を遮るように前記投影レンズの後方に配置され、回転軸を有するロータリーシェードと、
     前記ロータリーシェードを前記回転軸周りに回転させる駆動機構とを備え、
     前記ロータリーシェードは、
      前記駆動機構が前記ロータリーシェードを第1角度位置まで回転させたときに、第1配光パターンの周縁部として前記投影レンズの前方に投影される第1端縁と、
      前記駆動機構が前記ロータリーシェードを第2角度位置まで回転させたときに、前記第1配光パターンよりも照明面積の広い第2配光パターンの第1周縁部として前記投影レンズの前方に投影される第2端縁と、
      前記駆動機構が前記ロータリーシェードを第3角度位置まで回転させたときに、前記第2配光パターンよりも照明面積の広い第3配光パターンの第1周縁部として前記投影レンズの前方に投影される第3端縁と、
      前記第2端縁および前記第3端縁と前記回転軸の方向について異なる位置で交わるように、前記回転軸周りに延びる第1ねじれ端面とを備え、
     前記第2角度位置は、前記第1角度位置と前記第3角度位置の間に位置しており、
     前記第1ねじれ端面の一部は、前記第2配光パターンの第2周縁部、および前記第3配光パターンの第2周縁部として前記投影レンズの前方に投影されるものであり、
     前記第1ねじれ端面は、前記投影レンズに近づくにつれて前記投影レンズの光軸に近づくように配置されており、
     前記駆動機構が前記ロータリーシェードを前記第1角度位置から前記第3角度位置まで回転させたとき、前記第1ねじれ端面は、前記投影レンズの後方焦点の前方から後方へ移動する、灯具ユニット。
  2.  前記ロータリーシェードは、前記回転軸方向について異なる位置で前記第1ねじれ端面および前記第1端縁に交わるように、前記回転軸周りに延びる第2ねじれ端面を備えている、請求項1に記載の灯具ユニット。
  3.  前記ロータリーシェードは、前記回転軸と同心状に延びる周面を備え、
     前記第1端縁の一部、前記第2端縁の一部、および前記第3端縁は、前記回転軸と平行に延びるとともに、前記周面の一部をなしている、請求項1または2に記載の灯具ユニット。
  4.  前記第1配光パターンは、前記周縁部よりも下方を照明する配光パターンであり、
     前記第2配光パターンおよび前記第3配光パターンは、それぞれの前記第1周縁部よりも下方と、当該第1周縁部よりも上方の領域におけるそれぞれの前記第2周縁部の左右いずれか一方とを照明する配光パターンであり、
     前記駆動機構が前記ロータリーシェードを前記第2角度位置から前記第3角度位置まで回転させたとき、前記第2周縁部は左右方向に移動する、請求項1から3のいずれか一項に記載の灯具ユニット。
  5.  前記光源は、半導体発光素子であり、前記投影レンズは、樹脂製レンズである、請求項1から4のいずれか一項に記載の灯具ユニット。
PCT/JP2013/081723 2012-12-13 2013-11-26 車両用灯具ユニット WO2014091919A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380065123.7A CN104854395B (zh) 2012-12-13 2013-11-26 车辆用灯具单元
US14/651,950 US9441806B2 (en) 2012-12-13 2013-11-26 Lamp unit
EP13863455.5A EP2933553B1 (en) 2012-12-13 2013-11-26 Vehicle lighting tool unit
JP2014551961A JP6294832B2 (ja) 2012-12-13 2013-11-26 車両用灯具ユニット

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-272247 2012-12-13
JP2012272244 2012-12-13
JP2012-272244 2012-12-13
JP2012272247 2012-12-13

Publications (1)

Publication Number Publication Date
WO2014091919A1 true WO2014091919A1 (ja) 2014-06-19

Family

ID=50934213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081723 WO2014091919A1 (ja) 2012-12-13 2013-11-26 車両用灯具ユニット

Country Status (5)

Country Link
US (1) US9441806B2 (ja)
EP (1) EP2933553B1 (ja)
JP (1) JP6294832B2 (ja)
CN (1) CN104854395B (ja)
WO (1) WO2014091919A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088124A (ja) * 2015-11-17 2017-05-25 株式会社小糸製作所 車両用灯具システム
US10024513B2 (en) 2015-05-22 2018-07-17 Koito Manufacturing Co., Ltd. Vehicle lamp unit and rotary light shielding member

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484240B1 (ko) * 2013-12-18 2015-01-16 현대자동차 주식회사 헤드램프 컷오프 위치 보정장치 및 방법
WO2017047598A1 (ja) * 2015-09-14 2017-03-23 株式会社小糸製作所 車輌用灯具
CN108107666A (zh) * 2016-11-24 2018-06-01 北京比兴科技有限公司 相机成像性能的光源检测的方法和系统
KR101899926B1 (ko) * 2017-05-31 2018-09-19 현대모비스 주식회사 헤드램프의 배광방향 전환장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232081A (ja) 2009-03-27 2010-10-14 Stanley Electric Co Ltd 車両用前照灯の配光制御システム及び車両用前照灯
JP2011005992A (ja) 2009-06-26 2011-01-13 Koito Mfg Co Ltd 車両用前照灯装置
JP2013140779A (ja) * 2011-12-28 2013-07-18 Hyundai Motor Co Ltd 車両用ヘッドランプ構造

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2765643B2 (ja) * 1992-06-03 1998-06-18 株式会社小糸製作所 投射型自動車用ヘッドランプ
JP2538132Y2 (ja) * 1992-07-24 1997-06-11 株式会社小糸製作所 投射型自動車用ヘッドランプ
JP2862766B2 (ja) * 1993-08-03 1999-03-03 株式会社小糸製作所 自動車用ヘッドランプの配光制御装置
JP3224951B2 (ja) * 1994-10-05 2001-11-05 株式会社小糸製作所 投射型自動車用ヘッドランプ
US6116764A (en) * 1997-09-06 2000-09-12 Hella Kg Hueck & Co. Headlight for vehicle
DE19909413A1 (de) * 1999-03-04 2000-09-07 Hella Kg Hueck & Co Scheinwerfer für Fahrzeuge
JP4343003B2 (ja) * 2004-03-31 2009-10-14 株式会社小糸製作所 車両用前照灯
FR2902499B1 (fr) * 2006-06-15 2015-01-23 Valeo Vision Module optique pour un projecteur destine notamment a un vehicule automobile.
KR100896081B1 (ko) * 2007-11-23 2009-05-18 에스엘 주식회사 차량용 전조등
EP2157362A1 (de) * 2008-08-11 2010-02-24 Hella KG Hueck & Co. Projektionsscheinwerferanordnung für Fahrzeuge
FR2944857B1 (fr) * 2009-04-24 2017-02-03 Valeo Vision Dispositif optique pour vehicule automobile.
JP5301383B2 (ja) * 2009-07-29 2013-09-25 株式会社小糸製作所 車両用前照灯装置
JP5398443B2 (ja) * 2009-09-15 2014-01-29 株式会社小糸製作所 車両用前照灯装置
KR101344423B1 (ko) * 2011-06-08 2013-12-23 에스엘 주식회사 차량용 헤드램프 제어 장치 및 방법
JP5833861B2 (ja) * 2011-08-11 2015-12-16 株式会社小糸製作所 車両用前照灯装置および配光制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232081A (ja) 2009-03-27 2010-10-14 Stanley Electric Co Ltd 車両用前照灯の配光制御システム及び車両用前照灯
JP2011005992A (ja) 2009-06-26 2011-01-13 Koito Mfg Co Ltd 車両用前照灯装置
JP2013140779A (ja) * 2011-12-28 2013-07-18 Hyundai Motor Co Ltd 車両用ヘッドランプ構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024513B2 (en) 2015-05-22 2018-07-17 Koito Manufacturing Co., Ltd. Vehicle lamp unit and rotary light shielding member
JP2017088124A (ja) * 2015-11-17 2017-05-25 株式会社小糸製作所 車両用灯具システム
US10220764B2 (en) 2015-11-17 2019-03-05 Koito Manufacturing Co., Ltd. Vehicular head-lighting system

Also Published As

Publication number Publication date
CN104854395B (zh) 2017-10-27
JPWO2014091919A1 (ja) 2017-01-05
US20150316225A1 (en) 2015-11-05
EP2933553B1 (en) 2020-02-12
JP6294832B2 (ja) 2018-03-14
EP2933553A1 (en) 2015-10-21
EP2933553A4 (en) 2016-11-16
US9441806B2 (en) 2016-09-13
CN104854395A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
JP6294832B2 (ja) 車両用灯具ユニット
JP6284781B2 (ja) 配光制御システム
US7478934B2 (en) Lamp assembly automatically controlling main beam direction and additional beam direction
KR101789416B1 (ko) 차량용 등기구 유닛 및 회전 차광 부재
JP5467917B2 (ja) 車両用照明灯具
US9285094B2 (en) Vehicle lamp unit
JP5763475B2 (ja) 車両用照明灯具
JP5539796B2 (ja) 車両用前照灯システム
JP2015158977A (ja) 車両用灯具ユニット
JP5645724B2 (ja) 灯具ユニット
JP6076184B2 (ja) 車両用灯具ユニット
JP2013114770A (ja) 車両用前照灯装置
JP5525389B2 (ja) 車両用灯具及びその回転シェード
JP6124695B2 (ja) 車両用灯具
JP2013239408A (ja) 車両用前照灯
JP2014113964A (ja) 灯具制御システムおよび制御装置
JP6079059B2 (ja) 前照灯装置
JP2006100132A (ja) 車両用前照灯
JP5934915B2 (ja) 車両用照明装置
JP2014165117A (ja) 車両用灯具
JP2006012450A (ja) 車両用灯具
JP6197660B2 (ja) 車両用前照灯
JP2014227161A (ja) 車両用灯具システム
JP2013032127A (ja) 二輪車用ヘッドランプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551961

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14651950

Country of ref document: US

Ref document number: 2013863455

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE