WO2014084685A1 - 차단층의 손상을 감소시키는 코팅방법 - Google Patents

차단층의 손상을 감소시키는 코팅방법 Download PDF

Info

Publication number
WO2014084685A1
WO2014084685A1 PCT/KR2013/011040 KR2013011040W WO2014084685A1 WO 2014084685 A1 WO2014084685 A1 WO 2014084685A1 KR 2013011040 W KR2013011040 W KR 2013011040W WO 2014084685 A1 WO2014084685 A1 WO 2014084685A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
coating
barrier
substrate
barrier layer
Prior art date
Application number
PCT/KR2013/011040
Other languages
English (en)
French (fr)
Inventor
김동렬
황장연
이성환
류상욱
김준형
손범권
이현지
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201380062671.4A priority Critical patent/CN104822860A/zh
Priority to EP13857896.8A priority patent/EP2927346A4/en
Priority to US14/646,606 priority patent/US20150337440A1/en
Priority to JP2015545374A priority patent/JP2016502465A/ja
Publication of WO2014084685A1 publication Critical patent/WO2014084685A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates

Definitions

  • the present application relates to a coating method capable of suppressing a decrease in moisture permeability through a coating method in which there is no direct contact with a barrier layer in carrying out a protective coating for protecting a gas layer of a barrier film.
  • a gas barrier film that is, a barrier film having a thickness of about several tens to 100 nm is laminated on the barrier film to exhibit gas barrier property.
  • an atomic layer deposition method is used, which is excellent in thickness uniformity, film density, and conformality, such as a metal barrier layer, abrasion resistant film, and corrosion resistant film of a semiconductor device. Used for filmmaking.
  • atomic layer deposition is usually performed using an inorganic deposition substrate such as a silicon wafer.
  • the barrier layer is very thin and if damaged, the gas barrier properties are drastically degraded. Therefore, it is necessary to protect the barrier layer with a coating layer in order to prevent the gas barrier property from deteriorating.
  • the present application relates to a barrier film that can protect products that are easily degraded by moisture, such as a display device and a photovoltaic device in a daily living environment, and a thin inorganic thin film layer formed on a substrate through an atomic layer deposition method, that is, a blocking layer.
  • a protective layer to protect the barrier layer by using a non-contact coating method to minimize the contact with the barrier layer to prevent damage to the barrier layer production method of the barrier film with less gas barrier property, barrier film It is an object to provide a manufacturing apparatus.
  • the present application relates to a method for producing a barrier film comprising forming a barrier layer and a protective layer on a substrate layer, and an exemplary method for manufacturing the barrier film includes forming a barrier layer on an substrate layer by atomic layer deposition. On the barrier layer, the coating composition may be coated by a non-contact coating method to form a protective layer.
  • the present application is to form a protective layer according to the non-contact coating method on the barrier layer formed by atomic layer deposition method on the substrate to minimize contact with the barrier layer to prevent damage of the barrier layer to suppress the gas barrier property degradation durability and There is an effect of providing a barrier film with increased gas barrier properties.
  • the barrier film of the present application can be usefully used in products that are easily deteriorated by moisture, for example, display devices such as LCDs or OLEDs, and photovoltaic power generation devices such as solar cells.
  • FIG. 1 is a view showing a barrier film according to an example of the present application.
  • FIG. 2 is a view showing the structure of a barrier film according to another example of the present application.
  • FIG 3 is a view showing a cross section of an apparatus for manufacturing a barrier film according to one example of the present application.
  • the present application relates to a method for producing a barrier film comprising forming a barrier layer and a protective layer on a substrate layer, and an exemplary method for manufacturing the barrier film includes forming a barrier layer on an substrate layer by atomic layer deposition. On the barrier layer, the coating composition may be coated by a non-contact coating method to form a protective layer.
  • Barrier film of the present application to form a thin barrier layer on the base layer by the atomic layer deposition method, in forming a protective layer to protect the barrier layer, a protective layer using a non-contact coating method to minimize contact with the barrier layer It is characterized in that to prevent damage to the barrier layer to reduce the gas barrier properties.
  • the barrier layer of the barrier film of the present application can be formed anywhere in the upper and lower portions of the substrate layer, and may be used by laminating two composite films.
  • a metal oxide substrate As the substrate layer, a metal oxide substrate, a semiconductor substrate, a glass substrate or a plastic substrate can be used.
  • a single layer may be sufficient as the said base material layer, and a multilayer of two or more layers of the same kind or different types may be sufficient as it.
  • the substrate layer may be a film that has a corona treatment, atmospheric pressure plasma treatment, easy adhesion primer treatment on the surface to enable easy adhesion.
  • an intermediate layer may be further formed on the substrate layer.
  • the intermediate layer may planarize the surface of the base layer having a surface roughness of several tens to several hundred nm.
  • the intermediate layer may include a functional group that can easily react with the organometallic, so that the functional group is evenly distributed on the surface of the base layer so that the organic metal used for atomic layer deposition can be evenly adsorbed on the surface of the base layer.
  • the intermediate layer preferably has a thickness of 0.1 to 10 nm or 0.3 to 2 ⁇ m. By having the thickness range to cover the rough surface of the commercially produced substrate layer to planarize to prevent local stress concentration, it is possible to improve the durability of the composite film by minimizing the occurrence of cracks during bending or thermal contraction and expansion. .
  • Exemplary interlayers may be disposed on one or both surfaces of an optionally primerd substrate.
  • the intermediate layer can be one of organic and organic-inorganic hybrids.
  • Exemplary interlayers typically include (i) photoinitiators; (ii) low molecular weight reactive diluents (eg monomer acrylates); (iii) unsaturated oligomers (eg, acrylates, urethane acrylates, polyether acrylates, epoxy acrylates or polyester acrylates); And (iv) a solvent comprising a coating composition.
  • photoinitiators eg monomer acrylates
  • unsaturated oligomers eg, acrylates, urethane acrylates, polyether acrylates, epoxy acrylates or polyester acrylates
  • a solvent comprising a coating composition.
  • Such coating compositions can be cured by free radical reactions initiated by photodegradable pathways. The combination of the individual components can vary depending on the final feature desired.
  • the coating composition forming the interlayer comprises a UV-curable mixture of monomers and oligomer acrylates (preferably including methyl methacrylate and ethyl acrylate) in a solvent (eg methyl ethyl ketone), wherein the coating composition comprises acrylate in a solid content of about 20-30% by weight of the total weight of the composition, and a minor amount (eg, about 1% by weight solids) of photoinitiator (eg Irgacure) TM 2959; Ciba).
  • a UV-curable mixture of monomers and oligomer acrylates preferably including methyl methacrylate and ethyl acrylate
  • a solvent eg methyl ethyl ketone
  • the term “low molecular weight” describes a polymerizable monomer species.
  • the term “reactive” means the polymerizability of monomeric species.
  • the coating composition is crosslinkable organic polymer in a solvent (usually an aqueous solvent) such as polyethyleneimine (PEI), polyester, polyvinylalcohol (PVOH), polyamide, polythiol or polyacrylic acid, and a crosslinking agent (e.g. , Cymel TM 385 or those mentioned herein).
  • a solvent usually an aqueous solvent
  • PEI polyethyleneimine
  • PVOH polyvinylalcohol
  • polyamide polyamide
  • polythiol or polyacrylic acid e.g. , Cymel TM 385 or those mentioned herein
  • a crosslinking agent e.g. , Cymel TM 385 or those mentioned herein.
  • the coating composition may preferably comprise PEI (preferably, molecular weight (Mw) in the range of 600,000 to 900,000).
  • interlayers are disclosed, for example, in US4198465, US3708225, US4177315, US4309319, US4436851, US4455205, US0142362, WO2003 / 087247 and EP1418197.
  • Interlayer coating compositions can be applied using conventional coating techniques, including continuous as well as dip coating procedures.
  • the coating is generally applied to provide a dry thickness of about 1 to about 20 ⁇ m, preferably about 2 to 10 ⁇ m, especially about 3 to about 10 ⁇ m.
  • the coating composition may be applied "offline” as a process step that is distinct from film making, or "inline” as a continuous step of the film making process.
  • the coating is preferably carried out inline.
  • the heat-curable coating composition may be cured at a temperature of 20 to about 200 ° C, specifically 20 to 150 ° C. An ambient temperature of 20 ° C. requires a cure time of several days, while an elevated temperature of 150 ° C. can cure the coating in seconds.
  • the surface flatness of the interlayer is less than 0.7 nm, less than 0.6 nm, less than 0.5 nm, less than 0.4 nm, less than 0.3 nm, or less than 0.25 nm, and / or less than 0.9 nm, less than 0.8 nm, 0.75 nm.
  • the surface of the intermediate layer may be subjected to plasma pretreatment.
  • plasma pretreatment can be carried out under an argon / nitrogen or argon / oxygen atmosphere for 2 to 8 minutes, specifically about 5 minutes.
  • the plasma pretreatment is microwave-activated. That is, it is carried out using a microwave plasma source without another plasma source.
  • the barrier layer is formed by chemical bonding with the functional groups in the intermediate layer, it is possible to solve the peeling problem that is likely to occur in the multilayer composite film.
  • a blocking layer is formed on a base material layer.
  • the barrier layer provides in particular barrier properties for water vapor and / or oxygen permeation, where the water vapor transmission rate may be less than 10 ⁇ 3 g / m 2 / day and the oxygen transmission rate may be less than 10 ⁇ 3 / mL / m 2 / day. Specifically, the water vapor transmission rate may be less than 10 ⁇ 4 g / m 2 / day, less than 10 ⁇ 5 g / m 2 / day or less than 10 ⁇ 6 g / m 2 / day, and the oxygen transmission rate is 10 ⁇ 4 g / m Less than 2 / day, or less than 10 -5 g / m 2 / day.
  • the barrier layer is formed by atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • ALD is a self-limiting sequential surface chemistry that deposits conformal thin films of material on a substrate to allow atomic level deposition. Films grown by ALD are formed in a layer-wise fashion, allowing atomic layer control of fine film growth to about 0.1 microseconds per monolayer. The total thickness of the deposited film is typically about 1 to 500 nm.
  • the ALD allows the coating to be deposited to a thickness that will be completely uniform in deep trenches, in porous media and around particles.
  • the ALD-grown film is chemically bonded to the substrate layer.
  • a description of the ALD process can be found, for example, in “Atomic Layer Epitaxy” by Tuomo Suntola in Thin Solid Films, vol.
  • ALD is chemically similar to CVD except that the ALD reaction divides the chemical vapor deposition (CVD) reaction into two half-reactions while keeping the precursor material separate during the coating process and reaction.
  • CVD chemical vapor deposition
  • the vapor of the layer precursor is absorbed onto the substrate layer in a vacuum chamber.
  • the vapor is then pumped out of the chamber and leaves a thin layer (blocking layer) of the absorbed precursor on the substrate layer.
  • the reactant is then introduced into a chamber under thermal conditions that facilitate the reaction with the absorbed precursor to form a layer of the desired material.
  • the reaction byproduct is pumped out of the chamber.
  • the substrate may be exposed again to the precursor vapor and the deposition process may be repeated to form subsequent layers of material.
  • ALD is distinguished from conventional CVD and physical vapor deposition (PVD) methods that proceed after growth is initiated at a limited number of nucleation sites on the substrate layer surface.
  • CVD and PVD techniques can induce column growth with granular microstructures, indicating boundaries between columns that can facilitate gas permeation.
  • the ALD process includes a non-directional growth mechanism for obtaining microstructures without features.
  • Materials formed by ALD and suitable as barrier layers in the present application are inorganic and include oxides, nitrides and sulfides of the Periodic Tables IVB, VB, VIB, IIIA, IIB, IVA, VA and VIA groups, and combinations thereof. In particular, a mixture of oxides, nitrides or oxide-nitrides is preferable.
  • Oxides exhibit excellent optical transparency for electronic displays and photovoltaic cells where visible light must exit or enter the device, and nitrides of Si and Al are transparent in the visible light spectrum.
  • SiO 2 , Al 2 O 3 , ZnO, ZnS, HfO 2 , HfON, AlN, Si 3 N 4 , SiON or SnO 2 may be used.
  • Precursors used in ALD processes to form such barrier materials are well known (see, eg, M. Leskela and M. Ritala, "ALD precursor chemistry: Evolution and future challenges", Journal de Physique IV, vol. 9, pp 837-852 (1999) and references cited therein).
  • Preferred substrate layers for synthesizing barrier coatings with ALD are from 50 to 250 ° C. Temperatures above 250 ° C. are undesirable because dimensional changes in the substrate layer can cause chemical degradation of the substrate layer or collapse of the ALD coating.
  • the barrier layer may have a thickness of 2 nm to 100 nm, 2 to 50 nm, or 2 to 20 nm. The thinner the thickness, the more it can withstand bending without cracking the film.
  • the protective layer may be formed by a non-contact coating method on the aforementioned blocking layer.
  • the non-contact coating method includes inkjet coating, capillary coating, slot die coating, plasma polymerization, sputtering, and evaporation. , CVD coating or iCVD coating can be used.
  • the protective layer is formed by coating a coating composition on a barrier layer, wherein the coating composition comprises nanoparticles and a binder, wherein the proportion of the nanoparticles is 40 to 70 wt% based on the total weight of the nanoparticles and the binder. Can be.
  • the nanoparticles may be spherical nanoparticles having an average diameter of 1 to 100 nm, 1 to 90 nm, 1 to 80 nm, 1 to 70 nm, 1 to 60 nm, 1 to 50 nm, or 5 to 50 nm.
  • a material having low conductivity or an insulating material may be used.
  • the nanoparticles may be silica particles, alumina particles.
  • the nanoparticles may be included in a ratio of 40 to 70% by weight based on the total weight of the nanoparticles and the binder, and specifically, may include 45 to 55% by weight of nanoparticles having an average diameter of 10 to 20 nm. have.
  • the binder may include one or more selected from the group consisting of a radical curable compound and a cation curable compound.
  • the said radical curable compound can be classified into a radically polymerizable monofunctional monomer, a radically polymerizable polyfunctional monomer, or a radically polymerizable oligomer.
  • acrylic acid methyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, tetrahydrofurfuryl acrylate, phenoxy Ethylacrylate, triyloxyethyl acrylate, nonylphenoxyethyl acrylate, tetrahydrofurfuryloxyethyl acrylate, phenoxydiethylene glycol acrylate, benzyl acrylate, butoxyethyl acrylate, cyclohexyl acrylate, dicyclo Fentanyl acrylate, dicyclopentenyl acrylate, glycidyl acrylate, carbitol acrylate, isobornyl acrylate and the like can be used.
  • polyester acrylate polyether acrylate, urethane acrylate, epoxy acrylate, polyol acrylate and the like can be used.
  • a cationically polymerizable epoxy compound a vinyl ether compound, an oxetane compound, an oxolane compound, a cyclic acetal compound, a cyclic lactone compound, a thiranne compound, a thio Vinyl ether compounds, spirortho ester compounds, ethylenically unsaturated compounds, cyclic ether compounds or cyclic thioether compounds and the like
  • a vinyl ether compound an oxetane compound, an oxolane compound, a cyclic acetal compound, a cyclic lactone compound, a thiranne compound, a thio Vinyl ether compounds, spirortho ester compounds, ethylenically unsaturated compounds, cyclic ether compounds or cyclic thioether compounds and the like
  • a cationically polymerizable epoxy compounds or oxetane compounds can be used.
  • a cresol novolak type epoxy resin or a phenol novolak type epoxy resin may be exemplified, and preferably a phenol novolak type epoxy resin.
  • an alicyclic epoxy compound aromatic epoxy compound As a cationically polymerizable epoxy compound, an alicyclic epoxy compound aromatic epoxy compound, an aliphatic epoxy compound, etc. may be illustrated, and 1 or more types of the above may be used.
  • alicyclic epoxy compound means a compound containing at least one alicyclic epoxy group.
  • an alicyclic epoxy group refers to a functional group having an aliphatic saturated hydrocarbon ring, and the two carbon atoms constituting the ring also constitute an epoxy group.
  • Epoxycyclohexylmethyl epoxycyclohexane carboxylate type compound For example, Epoxycyclohexane carboxylate type compound; Epoxycyclohexane carboxylate compounds of alkanediols; Epoxy cyclohexylmethyl ester compounds of dicarboxylic acids; Epoxycyclohexylmethyl ether compounds of polyethylene glycol; Epoxycyclohexylmethyl ether compounds of alkanediols; Diepoxy citris-pyro compounds; Diepoxy monospiro compounds; Vinylcyclohexene diepoxide compound; Epoxycyclopentyl ether compounds, diepoxy tricyclo decane compounds, and the like can be exemplified.
  • alicyclic epoxy compound it is preferable to use a bifunctional epoxy compound, that is, a compound having two epoxies, and it is more preferable to use a compound in which the two epoxy groups are both alicyclic epoxy groups. no.
  • the epoxy compound which has an aliphatic epoxy group other than an alicyclic epoxy group can be illustrated.
  • polyglycidyl ether of aliphatic polyhydric alcohol Polyglycidyl ethers of alkylene oxide adducts of aliphatic polyhydric alcohols; Polyglycidyl ethers of polyester polyols of aliphatic polyhydric alcohols and aliphatic polyhydric carboxylic acids; Polyglycidyl ethers of aliphatic polyvalent carboxylic acids; Polyglycidyl ethers of polyester polycarboxylic acids of aliphatic polyhydric alcohols and aliphatic polyhydric carboxylic acids; Dimers, oligomers or polymers obtained by vinyl polymerization of glycidyl acrylate or glycidyl methacrylate; Or oligomers or polymers obtained by vinyl polymerization of glycidyl acrylate or glycidyl meth
  • aliphatic polyhydric alcohol for example, an aliphatic polyhydric alcohol having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms or 2 to 4 carbon atoms may be exemplified.
  • Ethylene glycol 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, neo Pentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 3,5-heptanediol, 1,8-octanediol, 2-methyl-1,8- Aliphatic diols such as octanediol, 1,9-nonane
  • alkylene oxide of 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms can be exemplified, for example, ethylene jade Seeds, propylene oxide or butylene oxide and the like can be used.
  • aliphatic polyhydric carboxylic acid for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, subberic acid, azelaic acid, sebacic acid, dodecaneic acid, 2-methyl succinic acid , 2-methyl adipic acid, 3-methyl adipic acid, 3-methylpentaneic acid, 2-methyloctanoic acid, 3,8-dimethyldecane diacid, 3,7-dimethyldecane diacid, 1,20-eicosamethylene Dicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1 , 4-cyclohexanedicarboxylic acid, 1,4-dicarboxymethylenecyclohexane, 1,2,
  • aliphatic epoxy compound it is appropriate to use a compound which does not include an alicyclic epoxy group and also contains three or more epoxy groups, preferably three epoxy groups, in consideration of curability, weather resistance and refractive index characteristics, but is not limited thereto. It is not.
  • an aromatic epoxy compound As an aromatic epoxy compound, As an aromatic epoxy compound containing an aromatic group in a molecule
  • Bisphenol-type epoxy resins such as bisphenol A type
  • Novolac type epoxy resins such as phenol novolac type epoxy resins and cresol novolac type epoxy resins
  • Examples of the cationically polymerizable oxetane compound include 3-ethyl-3-hydroxymethyl oxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, and 3-ethyl-3- (Phenoxymethyl) oxetane, di [(3-ethyl-3-oxetanyl) methyl] ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane or phenol novolak oxetane are exemplified Can be.
  • oxetane compound For example, "Alon oxetane OXT-101", “Alon oxetane OXT-121", “Alon oxetane OXT-211", “Alon oxetane OXT-221" of Toagosei Co., Ltd., or "Alonoxetane OXT-212" etc. can be used.
  • an epoxy compound can be used, More preferably, an epoxy resin, such as a cresol novolak-type epoxy resin or a phenol novolak-type epoxy resin, can be used.
  • the protective layer may further include a radical initiator or a cationic initiator as a component for initiating a curing reaction.
  • radical initiator for example, radical photoinitiators or radical thermal initiators can be used.
  • radical photoinitiator for example, an initiator such as a benzoin-based, hydroxyketone compound, aminoketone compound or phosphine oxide compound can be used, and preferably a phosphine oxide compound can be used.
  • benzoin benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylanino acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropane-1one, 1-hydroxycyclohexylphenyl Ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propane-1-one, 4- (2-hydroxyethoxy) phenyl-2- (hydroxy-2-propyl Ketone, benzophenone, p-phenylbenzophenone, 4,4'-diethylaminobenzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanth
  • a cationic photoinitiator that emits a component capable of initiating cationic polymerization by irradiation of an active energy ray or application of heat, that is, a cationic photoinitiator or a cationic thermal initiator can be used.
  • an ionizing cation initiator of an onium salt or an organometallic salt series or a nonionic cation photoinitiator such as an organic silane or a latent sulfonic acid series or other non-ionizing compounds can be used.
  • the onium salt-based initiator include a diaryliodonium salt, a triarylsulfonium salt, an aryldiazonium salt, and the like.
  • the zero, iron arene and the like can be exemplified.
  • the organosilane-based initiator include o-nitrobenzyl triaryl silyl ether and triaryl silyl peroxide.
  • acyl silane (acyl silane)
  • a latent sulfuric acid-based initiator may be exemplified by a-sulfonyloxy ketone or a-hydroxymethylbenzoin sulfonate, but is not limited thereto.
  • a mixture of an iodine-based initiator and a photosensitizer may be used as the cationic initiator.
  • a cation initiator it is preferable to use an ionization cation photoinitiator, It is more preferable to use an onium salt type
  • the thickness of the protective layer is appropriately determined according to the material used, the light transmittance required for the gas barrier film, the required durability, and the like. If the thickness of the protective layer formed on the blocking layer is very thin, this protective layer cannot sufficiently protect the blocking layer. On the contrary, when the thickness of the protective layer becomes thick, transparency decreases. This drawback is particularly serious when insulating materials are used. If the protective layer is thick, the gas barrier film itself is also thick.
  • the thickness of the protective layer is preferably set to 0.5 to 100 nm, or 0.5 to 50 nm.
  • Barrier film of the present application as described above may have a water permeability of 0.00085 to 0.00200 g / m 2 / day.
  • the barrier film 10 according to an example of the present application sequentially includes a base layer 14, an intermediate layer 13, and a blocking layer 12.
  • a protective layer 11 is formed on the blocking layer 13 to further improve durability and gas barrier properties.
  • FIG. 2 is a schematic cross-sectional view of a barrier film according to another example of the present application.
  • a base layer 24, an intermediate layer 23, and a blocking layer 22 are sequentially stacked, but the intermediate layer 23 and the blocking layer are sequentially stacked.
  • Two sheets 22 are laminated, and a protective layer 21 is attached to the upper portion of the blocking layer 22.
  • the present application also provides a transfer means comprising a take-up roll installed to introduce the substrate layer into the treatment region, one or more guide rolls installed to transfer the substrate layer and a take-up roll installed to recover the substrate layer. ; And a deposition apparatus installed to form a barrier layer on the surface of the substrate layer by an atomic layer deposition method, and a non-contact coating means for forming a protective layer on the barrier layer of the substrate layer on which the barrier layer is formed.
  • a processing region comprising a layer forming apparatus,
  • the said conveying means relates to the barrier film manufacturing apparatus formed so that the base material layer introduce
  • the barrier film manufacturing apparatus of the present application may include a transfer means and a treatment region, and the treatment region may include a deposition apparatus and a protective layer forming apparatus.
  • the substrate layer introduced into the processing region by the unwinding roll by the conveying means may be recovered by the winding roll after sequentially passing through the deposition apparatus and the protective layer forming apparatus of the processing region, and in the vapor deposition apparatus of the processing region, atomic layer deposition
  • the barrier layer is formed by depositing a precursor gas on the substrate layer using the method, and in the protective layer forming apparatus, the protective layer may be formed by using a non-contact coating method on the barrier layer of the substrate layer discharged from the treatment region.
  • the treatment region may further include an intermediate layer forming apparatus installed to form an intermediate layer on the substrate layer.
  • the substrate layer introduced into the processing region by the unwinding roll by the conveying means may be recovered by the winding roll after sequentially passing through the intermediate layer forming apparatus, the vapor deposition apparatus, and the protective layer forming apparatus of the processing region.
  • the barrier film manufacturing apparatus includes a conveying means and a treatment region, and the conveying means includes a unwinding roll 120, a guide roll 110, and a winding roll 130, and the treating region includes an intermediate layer forming apparatus. 160, a deposition apparatus 140, and a protective layer forming apparatus 130.
  • Exemplary interlayer forming apparatus can form an interlayer on a substrate layer using methods used in the art.
  • the formation of the interlayer can be applied using conventional coating techniques, including continuous coating as well as dip coating procedures.
  • the coating composition forming the intermediate layer may use the above-described composition.
  • the exemplary treatment region may include at least two regions (hereinafter, referred to as first and second regions, respectively), and one or more flow restriction passages may be formed in the first region and the second region, respectively. have.
  • the term flow restriction passage may refer to a passage in which the substrate may move through the passage, and the precursor gas that may exist in each region does not move through the passage. An example of the formation of such a passage will be described later.
  • Each of the regions is provided to form a barrier layer by depositing a precursor gas on the surface of the substrate introduced through the flow restriction passage.
  • At least one guide roll of the conveying means is present in each of the first and second regions.
  • the flow restriction passage defines a path that allows the substrate to pass through the first and second regions at least once by the guide rolls, respectively.
  • the barrier film forming apparatus may be provided with precursor gas supply means capable of supplying precursor gas to the first and second regions. For example, a first precursor gas is supplied in the first region to form a first monolayer on the substrate layer, and a second precursor gas is supplied in the second region to form the substrate or on the first monolayer. Through the process of forming a second single layer on the target block can be formed on the base layer.
  • the first and second precursor gases may be the same or different types, and if necessary, the process of forming the first and second monolayers may be repeated a plurality of times in consideration of the desired thickness.
  • a third region in which the third monolayer is formed by the third precursor gas or purging with the inert gas is performed as described below, may also be included in the apparatus.
  • the exemplary protective layer forming apparatus may use a non-contact coating method in forming a protective layer on the surface of the blocking layer of the substrate layer on which the blocking layer is formed.
  • the non-contact coating method may be an inkjet coating method, capillary coating method, slot die coating method, plasma polymerization coating method, sputtering coating method, evaporation coating method, CVD coating method or iCVD coating method.
  • ALD atomic layer deposition method
  • An exemplary deposition apparatus is divided into a first region and a second region.
  • the first region and the second region may be divided by a wall so that precursor gas present in each region does not diffuse into another region, and a flow restriction passage is formed in the wall, and the substrate layer may be transferred through the passage.
  • a flow restriction passage is formed in the wall, and the substrate layer may be transferred through the passage.
  • exhaust means by which means precursor gas may be exhausted.
  • the substrate layer introduced into the deposition apparatus by the conveying means may be recovered by the protective layer forming apparatus and the winding roll after being processed by sequentially moving the region.
  • the first region and the second region are sequentially arranged in a row, and the base layer may be provided so as to pass through the upper portion of the substrate by guide rolls in each region.
  • the precursor gas can be exhausted from the side of each region.
  • a third region which will be described later, may be further provided between the regions as long as the apparatus is configured such that the base layer can pass through the first region and the second region sequentially.
  • the deposition apparatus may further include a third region.
  • the third region is, for example, a region in which an inert gas required in a purging process of an atomic layer deposition process is introduced, or a precursor gas different from or identical to that introduced in the first and / or second region is introduced. It may be an area to be introduced.
  • the sieve 3 region may be connected with the first and / or second region by the flow restriction passage, and the transfer means may be connected to the substrate via the third region. It may be provided so that a 2nd area
  • a guide roll may be present in the region if necessary.
  • a plurality of third regions may exist. That is, a plurality of third regions may be interposed between the first region and the second region, and each of the plurality of third regions is divided by a wall in which a flow restriction passage exists, and the base layer is the first region. The plurality of third regions may be introduced into the second region after passing through the plurality of third regions through the flow restriction passage.
  • the transfer means for example, the guide roll, may be provided to pass the first and second regions a plurality of times while passing through the third region through the substrate.
  • the conveying means may comprise a plurality of first guide rolls present in the first region and a plurality of second guide rolls present in the second region. At least a part of the first guide roll may be formed to change the path of the base layer toward the second area, and at least part of the second guide roll may change the path of the base layer toward the first area. It may be formed to be.
  • the substrate is passed through each region by the transfer means, and precursor gas is deposited in the region so that a single layer may be formed or purged.
  • the precursor gas may be supplied by separate precursor gas supply means.
  • the supply means may comprise a precursor gas source installed inside or outside each zone, and may additionally include piping, pumps, valves, tanks and other necessary known means for supplying the precursor gas to the zone. . Further, for example, when there are other regions such as a third region in addition to the first and second regions, a precursor gas or an inert gas may be introduced into the region by the supply means.
  • Each region in the barrier film forming apparatus may be a chamber in which an internal pressure may be controlled through the exhaust pressure by the exhaust means or an introduction pressure of a precursor gas or an inert gas.
  • the chamber may be interfaced with other processing modules or equipment for controlling the progress of the process, and the like.
  • each zone can be connected by the above flow restriction passage or additionally the internal pressure can be adjusted.
  • the method of constructing the flow restriction passage (hereinafter may be simply referred to as passage) is not particularly limited and a known technique can be adopted.
  • each passage may be a slit that is only slightly thicker and more loaded than the thickness and width of the substrate passing through the passage.
  • the passage allows only a very small clearance when passing through the substrate and can be installed so that the substrate can pass through the passage without scratching each side of the passage.
  • the clearance may be defined within a range between several microns and several millimeters.
  • the passageway may also be formed to include an elongated tunnel through which the substrate may pass, and may include wipers to further restrict the flow of gas through the passageway as needed.
  • the passage may be formed as an extended series of long narrow passages, and an inert gas injected into the third region or the like may be directly injected into the passage in the middle of the first and second regions to prevent the movement and mixing of the precursor gas. Can help.
  • a pressure difference between each region to prevent mixing of the precursor gases may be a pressure difference between each region to prevent mixing of the precursor gases.
  • inert gas or precursor gas may be injected into the third region at a pressure greater than the pressure of each region to prevent mixing of the gas.
  • the pressure may be controlled by throttling or manually evacuating the exhaust flow of the gas.
  • a pressure difference can be created by pumping into a region using a pump or other suction source.
  • the pump is connected to all zones and can be controlled to adjust the pressure in each zone to create a pressure differential. Movement of the precursor gas can also be prevented by controlling the relative flow rate and pumping rate of the gas using flow control valves or other flow control devices.
  • a control device responsive to the pressure sensor may be used to help maintain the desired pressure differential by controlling the gas injection and discharge flow rates.
  • the present application relates to a method for producing a barrier film using the above-described barrier film production apparatus.
  • the substrate layer is introduced into the deposition apparatus of the treatment region by using the unwinding roll of the conveying means to form the barrier layer in the atomic layer deposition method in the apparatus, and then the substrate layer on which the barrier layer is formed is a protective layer forming apparatus. It can be recovered by a winding roll after being introduced into a non-contact coating means to form a protective layer on the barrier layer.
  • the method may further comprise forming an intermediate layer on the substrate layer prior to introducing the substrate layer into the deposition apparatus of the treatment region.
  • the present application relates to a display device or a photovoltaic device having a barrier film with improved durability and gas barrier properties.
  • the barrier film of the present application can be used to protect products that are susceptible to degradation by moisture, such as display devices such as LCDs or OLEDs, and photovoltaic devices such as solar cells, in the daily living environment.
  • display devices such as LCDs or OLEDs
  • photovoltaic devices such as solar cells
  • a PET film having a thickness of about 125 ⁇ m and a WVTR of about 3 to 4 g / m 2 / day was used as the substrate layer.
  • 50 g of tetraethoxy orthosilicate and 50 g of 3-glycidoxypropyltrimethoxysilane were diluted in 150 g of ethanol, 56.4 g of water, and 0.1N HCl 1.6 on the substrate layer.
  • the coating composition solution of the sol state which reacted for 1 day at room temperature with the addition of g was coated by bar coating method, and thermally cured at 120 ° C. for 10 minutes to form an intermediate layer having a thickness of about 0.6 ⁇ m.
  • a TiO 2 layer (blocking layer) having a thickness of about 15 nm was formed on the intermediate layer by a general ALD (Atomic Layer Deposition) method using TiCl 4 and H 2 O as precursor gases. Specifically, the process of depositing and reacting TiCl 4 and H 2 O on the intermediate layer in pulse form for 5 seconds to form a film, and purging with argon (Ar) gas to remove unreacted H 2 O or reaction byproducts. The cycle was repeated 40 times to form a barrier layer.
  • ALD argon
  • a coating composition for forming a protective layer a composition comprising a condensate of pentaerythritol triacrylate and tetraethoxysilane is coated and cured on the barrier layer in an ink jet manner to have a thickness of about 200 nm. Formed.
  • a barrier film was prepared in the same manner as in Example 1 except that the capillary coating method was applied at the time of coating the coating composition.
  • a barrier film was prepared in the same manner as in Example 1 except that the slot die coating method was applied at the time of coating the coating composition.
  • a barrier film was prepared in the same manner as in Example 1, except that the barrier layer was formed to a thickness of about 12 nm.
  • a barrier film was prepared in the same manner as in Example 1 except that the protective layer was formed by a bar coating method.
  • WVTR Water vapor transmission rate
  • Example 1 Example 2
  • Example 3 Example 4 Comparative Example 1 Water vapor transmission rate (unit: g / m 2 / day) 0.0016 0.0016 0.0016 0.0016 0.0145
  • the barrier film of the present application can be usefully used in products that are easily deteriorated by moisture, for example, display devices such as LCDs or OLEDs, and photovoltaic power generation devices such as solar cells.

Abstract

본 출원은 차단층의 손상을 감소시키는 코팅 방법에 관한 것이다. 본 출원의 베리어 필름은 베리어 필름의 차단층을 보호하기 위한 보호 코팅을 진행함에 있어서 차단층과 직접 접촉이 없는 방식의 코팅법을 통해 수분투과도의 저하를 억제할 수 있어 가스 차단성을 향상시킬 수 있다.

Description

차단층의 손상을 감소시키는 코팅방법
본 출원은 베리어 필름의 가스층을 보호하기 위한 보호 코팅을 진행함에 있어서 차단층과 직접 접촉이 없는 방식의 코팅 방법을 통해 수분투과도의 저하를 억제할 수 있는 코팅방법에 관한 것이다.
가스 차단성 필름, 즉 베리어 필름에는 수십 내지 100 nm 정도의 차단층이 적층되어 가스 차단성을 나타낸다. 상기 차단층을 형성하는 방법으로, 원자층 증착 방법{Atomic layer deposition}을 사용하는데, 두께 균일도, 막 밀도, 점착성(conformality)이 우수하여 반도체 소자의 금속 차단층, 내마모성막, 내부식성막 등의 제막에 사용한다. 반도체 분야에서는 보통 실리콘 웨이퍼와 같은 무기물 재질의 증착 기판을 사용하여 원자층 증착을 실시한다. 이들 무기물 재질의 표면에는 물분자가 흡착되어 자연스럽게 하이드록시기를 생성하여 유기금속(organometallics)과 반응하므로 원자층 증착 방법의 특성을 살려 부착력이 우수한 산화물의 균질한 막을 적층할 수 있다. 예를 들어, Al2O3를 증착하는 과정은 하기 반응식 1에 의해 나타낼 수 있는데, 반응식 1(a)에서 알 수 있듯이 기판 표면의 하이드록시기의 농도가 높으면 증착층과 기판 사이의 결합이 증가되어 복합 적층체의 내구성이 향상되며 동시에 표면에서 보다 치밀한 차단층이 형성된다:
[반응식 1]
(a): 기판-OH + Al(CH3)3 → 기판-O-Al(CH3)2 + CH4
(b): 기판-O-Al(CH3)2 + 2H2O → 기판-O-Al(OH)2 + 2CH4
그러나, 차단층은 매우 얇으며 손상을 받으면 가스 차단성이 급격히 저하된다. 따라서, 가스차단성의 저하를 막기 위해 차단층을 코팅층으로 보호할 필요가 있다.
본 출원은 디스플레이 소자, 태양광 발전 소자 등 수분에 의해 열화되기 쉬운 제품들을 일상 생활 환경에서 보호할 수 있는 베리어 필름에 관한 것으로, 원자층 증착 방법을 통해 기판 위에 형성된 얇은 무기 박막층, 즉, 차단층을 보호하는 보호층을 형성함에 있어서 비접촉식 코팅 방법을 이용하여 차단층과 접촉을 최소화하는 방식으로 보호층을 형성함으로써 차단층의 손상을 막아 가스 차단성의 저하가 적은 베리어 필름의 제조 방법, 베리어 필름의 제조 장치를 제공하는 것을 목적으로 한다.
본 출원은 기재층 상에 차단층 및 보호층을 형성하는 것을 포함하는 베리어 필름의 제조 방법에 관한 것이고, 예시적인 상기 베리어 필름의 제조 방법은 기재층 상에 차단층을 원자층 증착 방식으로 형성하고, 상기 차단층 상에 비접촉식 코팅 방식으로 코팅 조성물을 코팅하여 보호층을 형성할 수 있다.
본 출원은 기판 상에 원자층 증착 방식을 통해 형성된 차단층 상에 비접촉식 코팅 방법에 따라 보호층을 형성함으로써 차단층과의 접촉을 최소화하여 차단층의 손상을 막아 가스 차단성 저하를 억제하여 내구성 및 가스 차단성이 증대된 베리어 필름을 제공하는 효과가 있다.
따라서, 본 출원의 베리어 필름은 수분에 의해 열화되기 쉬운 제품, 예컨대 LCD 또는 OLED 등의 디스플레이 소자나, 태양전지 등의 태양광 발전 소자 등에서 유용하게 사용될 수 있다.
도 1은 본 출원의 하나의 예시에 따른 베리어 필름을 나타내는 도면이다.
도 2는 본 출원의 다른 예시에 따른 베리어 필름의 구조를 나타내는 도면이다.
도 3은 본 출원의 하나의 예시에 따른 베리어 필름의 제조 장치의 단면을 나타내는 도면이다.
본 출원은 기재층 상에 차단층 및 보호층을 형성하는 것을 포함하는 베리어 필름의 제조 방법에 관한 것이고, 예시적인 상기 베리어 필름의 제조 방법은 기재층 상에 차단층을 원자층 증착 방식으로 형성하고, 상기 차단층 상에 비접촉식 코팅 방식으로 코팅 조성물을 코팅하여 보호층을 형성할 수 있다.
이하, 본 출원을 구체적으로 설명한다.
본 출원의 베리어 필름은 기재층 상에 원자층 증착 방식으로 얇은 차단층을 형성하고, 상기 차단층을 보호하는 보호층을 형성함에 있어서, 차단층과 접촉을 최소화하는 비접촉식 코팅 방식을 사용하여 보호층을 형성하여 차단층의 손상을 막아 가스 차단성의 저하가 적은 것을 특징으로 한다.
본 출원의 베리어 필름의 차단층은 기재층의 상하부 어디든지 형성이 가능하며, 2장의 복합 필름을 합지하여 사용할 수도 있다.
상기 기재층으로, 금속 산화물 기재, 반도체 기재, 유리 기재 또는 플라스틱 기재 등을 사용할 수 있다.
상기 기재층은, 단층이어도 되고, 동종 또는 이종의 2층 이상의 다층이어도 된다.
또한, 상기 기재층은 이접착이 가능하도록 표면에 코로나 처리, 상압플라즈마 처리, 이접착 프라이머 처리가 된 필름을 사용할 수 있다.
본 출원에서 상기 기재층 상에는 중간층을 추가로 형성할 수 있다.
상기 중간층은, 수십 내지 수백 nm의 표면 거칠기를 갖는 기재층의 표면을 평탄화할 수 있다. 또한, 상기 중간층은 유기금속과 쉽게 반응할 수 있는 작용기를 포함하여, 상기 작용기를 기재층 표면에 고르게 분포시킴으로써 원자층 증착에 사용되는 유기금속이 기재층 표면에 고르게 흡착될 수 있게 할 수 있다. 일례에서, 상기 중간층은, 0.1 내지 10 nm 또는 0.3 내지 2 ㎛의 두께를 갖는 것이 좋다. 상기 두께 범위를 가짐으로써 상업적으로 생산되는 기재층의 거친 표면을 덮어 평탄화하여 국부적인 응력 집중을 방지하므로, 굴곡이나 열수축과 팽창 등의 과정에서 균열 발생을 최소화하여 복합 필름의 내구성을 향상시킬 수 있다.
예시적인 중간층은, 임의적으로 프라이머화된 기재의 하나 또는 두 표면상에 배치될 수 있다. 상기 중간층은 유기 및 유무기 혼성 중 하나일 수 있다.
예시적인 중간층은, 통상 (i) 광개시제; (ii) 저분자량 반응성 희석제 (예를 들어, 단량체 아크릴레이트); (iii) 불포화 올리고머 (예를 들어, 아크릴레이트, 우레탄 아크릴레이트, 폴리에테르 아크릴레이트, 에폭시 아크릴레이트 또는 폴리에스테르 아크릴레이트); 및 (iv) 용매를 포함하는 코팅 조성물로부터 형성된다. 이러한 코팅 조성물은 광분해성 경로에 의해 개시되는 자유 라디칼 반응에 의해 경화될 수 있다. 각 성분들의 배합은 목적하는 최종 특징에 따라 변화할 수 있다. 일례에서, 중간층을 형성하는 코팅 조성물은 단량체 및 올리고머 아크릴레이트(바람직하게는 메틸메타크릴레이트 및 에틸아크릴레이트를 포함)의 UV-경화성 혼합물을 용매(예를 들어, 메틸에틸케톤) 중에 포함하고, 여기서 코팅 조성물은 조성물의 총 중량의 약 20 내지 30 중량%의 고형분으로 아크릴레이트를 포함하며, 미량(예를 들어, 약 1 중량%의 고형분)의 광개시제(예를 들어, 이르가큐어 (Irgacure)™ 2959; 시바 (Ciba))를 추가로 포함할 수 있다.
본 출원에서 사용된 용어 "저분자량"은 중합가능한 단량체 종을 기술한다. 또한, 용어 "반응성"은 단량체 종의 중합가능성을 의미한다.
상기 코팅 조성물은 용매(통상 수성 용매) 중에 가교성 유기 중합체, 예를 들어 폴리에틸렌이민(PEI), 폴리에스테르, 폴리비닐알코올(PVOH), 폴리아미드, 폴리티올 또는 폴리아크릴산, 및 가교제(예를 들어, 사이멜 (Cymel)™ 385 또는 본원에 언급된 것들)를 포함할 수 있다. 상기에서, 코팅 조성물은 바람직하게는 PEI(바람직하게는, 600,000 내지 900,000 범위의 분자량 (Mw))를 포함할 수 있다.
중간층의 다른 예는, 예를 들어 US4198465, US3708225, US4177315, US4309319, US4436851, US4455205, US0142362, WO2003/087247 및 EP1418197에 개시되어 있다.
중간층 코팅 조성물은 연속식뿐만 아니라 딥(dip) 코팅 절차를 비롯한 통상의 코팅 기술을 사용하여 적용될 수 있다. 코팅은 일반적으로 약 1 내지 약 20 ㎛, 바람직하게는 약 2 내지 10 ㎛, 특히 약 3 내지 약 10 ㎛의 건조 두께가 제공되도록 적용된다. 코팅 조성물은 필름 제조와 구분되는 공정 단계로서 "오프라인"으로, 또는 필름 제조 공정의 연속 단계로서 "인라인"으로 적용될 수 있다. 코팅은 바람직하게는 인라인으로 실시된다. 기재층에의 적용 후 열-경화성 코팅 조성물은 20 내지 약 200℃, 구체적으로는 20 내지 150℃의 온도에서 경화될 수 있다. 20℃의 상온은 수일의 경화 시간을 요구하는 한편, 150℃의 승온은 수초에 코팅을 경화시킬 수 있다.
상기 중간층 상에는 차단층이 증착되므로, 평탄하지 않으면 차단층 증착 시 결함이 발생하고 결국 가스 차단성이 떨어지는 결과를 초래한다. 표면의 평탄도 값은 낮으면 낮을수록 가스 차단성이 증가하는 결과를 나타낸다. 따라서, 상기 중간층의 표면 평탄도는 0.7 nm 미만, 0.6 nm 미만, 0.5 nm 미만, 0.4 nm 미만, 0.3 nm 미만, 또는 0.25 nm 미만의 Ra 값, 및/또는 0.9 nm 미만, 0.8 nm 미만, 0.75 nm 미만, 0.65 nm 미만, 0.6 nm 미만, 0.50 nm 미만, 0.45 nm 미만, 0.35 nm 미만, 또는 0.3 nm 미만의 Rq 값을 갖는 표면을 나타낼 수 있다.
차단층의 증착시키기 전, 중간층의 표면은 플라즈마 전처리를 수행할 수 있다. 통상, 플라즈마 전처리는 2 내지 8분, 구체적으로 약 5분동간 아르곤/질소 또는 아르곤/산소 대기 하에서 실시될 수 있다. 구체적으로, 플라즈마 전처리는 마이크로웨이브-활성화된다. 즉, 또 다른 플라즈마 발생원 없이 마이크로웨이브 플라즈마 발생원을 사용하여 실시된다.
상기 중간층 내부의 작용기들과 화학적 결합으로 차단층이 형성되므로 다층 복합 필름에서 발생하기 쉬운 박리 문제를 해결할 수 있다.
본 출원의 베리어 필름의 제조 방법에서는 기재층 상에 차단층이 형성된다.
상기 차단층은 특히 수증기 및/또는 산소 투과에 대한 차단 특성을 제공하는데, 수증기 투과율은 10-3g/m2/일 미만, 산소 투과율이 10-3/mL/m2/일 미만일 수 있다. 구체적으로, 수증기 투과율은 10-4g/m2/일 미만, 10-5g/m2/일 미만 또는 10-6g/m2/일 미만일 수 있으며, 산소 투과율은 10-4g/m2/일 미만, 또는 10-5g/m2/일 미만일 수 있다.
상기 차단층은 원자층 증착 방식(ALD)에 의해 형성된다. ALD는 물질의 등각 박막을 기판 상에 침착시켜 원자 수준의 침착이 가능하게 하는 자기-제한적 순차적 표면 화학이다. ALD에 의해 성장된 필름은 층별(layer-wise) 방식으로 형성되고, 단일층 당 약 0.1 Å정도로 미세한 필름 성장의 원자층 제어를 허용한다. 증착된 필름의 총 두께는 전형적으로 약 1 내지 500 nm이다. ALD로 깊은 트렌치 내부, 다공성 매질 내부 및 입자 주위에 완전하게 균일할 두께로 코팅을 증착시킬 수 있다. ALD-성장 필름은 기재층에 화학적으로 결합된다. ALD 공정에 대한 설명은, 예를 들어 문헌 ["Atomic Layer Epitaxy" by Tuomo Suntola in Thin Solid Films, vol. 216 (1992) pp. 84-89]에 구체적으로 기재되어 있다. ALD는 코팅 공정 및 반응 동안 전구체 물질을 분리되게 유지하면서 ALD 반응이 화학적 증기 증착(CVD) 반응을 2개의 반쪽-반응으로 나누는 것을 제외하고는 CVD와 화학적 측면에서 유사하다. 공정 중, 층 전구체의 증기는 진공 챔버에서 기재층 상에 흡수된다. 이후, 증기는 챔버로부터 펌핑되어 흡수된 전구체의 박층(차단층)을 기재층 상에 남긴다. 이후, 반응물을, 목적 물질의 층을 형성하도록 흡수된 전구체와의 반응을 촉진시키는 열 조건 하의 챔버에 도입한다. 반응 부산물을 챔버로부터 펌핑한다. 기재를 다시 전구체 증기에 노출시키고 증착 공정을 반복하여 물질의 후속 층을 형성할 수 있다. ALD는 기재층 표면 상에 한정된 수의 핵형성 부위에서 성장이 개시된 후 진행되는 통상의 CVD 및 물리적 증기 증착(PVD) 방법과는 구별된다. CVD 및 PVD 기술은 기체 투과가 용이할 수 있는 컬럼들 사이의 경계를 나타내는, 과립 미세구조를 갖는 컬럼 성장을 유도할 수 있다. ALD 공정은 특징부가 없는 미세구조를 얻기 위한 비-방향성 성장 메커니즘을 포함한다. 본 출원에서 ALD에 의해 형성되고 차단층으로서 적합한 물질은 무기이고, 주기율표 IVB, VB, VIB, IIIA, IIB, IVA, VA 및 VIA 족의 산화물, 질화물 및 황화물 및 이들의 조합을 포함한다. 특히 산화물, 질화물 또는 산화물-질화물의 혼합이 좋다. 산화물은 가시광선이 소자로부터 빠져 나오거나 또는 소자에 들어가야 하는 전자 디스플레이 및 광기전 전지에 대해 우수한 광학적 투명성을 나타내며, Si 및 Al의 질화물은 가시광선 스펙트럼에서 투명하다. 예컨대, SiO2, Al2O3, ZnO, ZnS, HfO2, HfON, AlN, Si3N4, SiON 또는 SnO2 등을 사용할 수 있다.
이러한 차단 물질을 형성하기 위해서 ALD 공정에서 사용되는 전구체는 널리 공지되어 있다(예를 들어, 문헌 [M. Leskela and M. Ritala, "ALD precursor chemistry: Evolution and future challenges", Journal de Physique IV, vol. 9, pp 837-852 (1999)] 및 이 문헌에 인용된 참고문헌 참고). ALD로 차단 코팅을 합성하기에 바람직한 기재층의 온도는 50 내지 250℃이다. 기재층에서의 치수 변화로 인해 기재층의 화학적 분해 또는 ALD 코팅의 붕괴를 유발할 수 있기 때문에 250℃를 초과하는 온도는 바람직하지 않다.
상기 차단층의 두께는 2 nm 내지 100 nm, 2 내지 50 nm 또는 2 내지 20 nm일 수 있다. 두께가 얇을수록 필름에 크랙이 생기게 하지 않으면서 구부림을 더 견딜 수 있다.
본 출원에서 보호층은 전술한 차단층 상에 비접촉식 코팅 방식에 의해 형성될 수 있다.
상기 비접촉식 코팅 방식으로는 잉크젯 코팅(inkjet coating), 캐필러리 코팅(capillary coating), 슬롯 다이 코팅(slot die coating), 플라즈마 중합 코팅(plasma polymerization), 스퍼터링 코팅(sputtering), 증발 코팅(evaporation), CVD 코팅 또는 iCVD 코팅 등을 사용할 수 있다.
상기 보호층은 차단층 상에 코팅 조성물을 코팅하여 형성되는데, 이러한 코팅 조성물은 나노 입자 및 바인더를 포함하며, 상기 나노 입자의 비율이 상기 나노 입자와 바인더의 합계 중량을 기준으로 40 내지 70 중량%일 수 있다.
상기 나노 입자는 평균 직경이 1 내지 100 nm, 1 내지 90 nm, 1 내지 80 nm, 1 내지 70 nm, 1 내지 60 nm, 1 내지 50 nm, 또는 5 내지 50 nm인 구상 나노 입자일 수 있다. 상기 나노 입자는 도전성이 낮은 소재 또는 절연 소재를 사용할 수 있다. 예컨대, 나노 입자는 실리카 입자, 알루미나 입자일 수 있다.
상기 나노 입자는 나노 입자와 바인더의 합계 중량을 기준으로 40 내지 70 중량%의 비율로 포함될 수 있으며, 구체적으로, 평균 직경이 10 내지 20 nm인 나노 입자가 45 내지 55 중량%의 비율로 포함될 수 있다.
상기 바인더는 라디칼 경화성 화합물 및 양이온 경화성 화합물로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
상기 라디칼 경화성 화합물은 라디칼 중합성 단관능기 모노머, 라디칼 중합성 다관능기 모노머, 또는 라디칼 중합성 올리고머로 분류할 수 있다.
상기 라디칼 중합성 단관능기 모노머로, 아크릴산, 아크릴산 메틸, 헥실아크릴레이트, 2-에틸헥실아크릴레이트, 2-하이드록시에틸아크릴레이트, 2-하이드록시프로필아크릴레이트, 테트라하이드로푸르푸릴아크릴레이트, 페녹시에틸아크릴레이트, 트릴옥시에틸아크릴레이트, 노닐페녹시에틸아크릴레이트, 테트라하이드로 푸르푸릴옥시에틸아크릴레이트, 페녹시디에틸렌글리콜아크릴레이트, 벤질아크릴레이트, 부톡시에틸아크릴레이트, 사이클로헥실아크릴레이트, 디사이클로펜타닐아크릴레이트, 디사이클로펜테닐아크릴레이트, 글리시딜아크릴레이트, 카르비톨아크릴레이트, 이소보닐아크릴레이트 등을 사용할 수 있다.
라디칼 중합성 다관능기 모노머로서는, 1,6-헥산디올디아크릴레이트, 네오펜틸글리콜디아크릴레이트, 디에틸렌글리콜디아크릴레이트, 트리프로필렌글리콜디아크릴레이트, 디사이클로펜타닐디아크릴레이트, 부틸렌글리콜디아크릴레이트, 펜타리스리토르디아크릴레이트, 트리메틸올프로판트리아크릴레이트, 프로피온옥사이드 변성 트리메틸올프로판트리아크릴레이트, 펜타에리트리톨트리아크릴레이트, 디트리메틸올프로판테트라아크릴레이트, 디펜타에리트리톨헥사아크릴레이트, 카프로락톤 변성 디펜타에리트리톨 헥사아크릴레이트, 테트라메틸올메탄테트라아크릴레이트 등을 사용할 수 있다.
라디컬 중합성 올리고머로서는, 폴리에스테르아크릴레이트, 폴리에테르아크릴레이트, 우레탄아크릴레이트, 에폭시아크릴레이트, 폴리올아크릴레이트 등을 사용할 수 있다.
상기 양이온성 경화성 화합물로는, 예를 들면, 양이온 중합성 에폭시 화합물, 비닐 에테르 화합물, 옥세탄 화합물, 옥소란(oxolane) 화합물, 고리형 아세탈 화합물, 고리형 락톤 화합물, 티란(thiirane) 화합물, 티오비닐에테르 화합물, 스피로오소 에스테르(spirortho ester) 화합물, 에틸렌성 불포화 화합물, 고리형 에테르 화합물 또는 고리형 티오에테르 화합물 등이 예시될 수 있고, 바람직하게는 양이온 중합성의 에폭시 화합물 또는 옥세탄 화합물 등이 사용될 수 있다.
양이온 중합성의 에폭시 화합물로는, 예를 들면, 크레졸 노볼락 타입 에폭시 수지 또는 페놀 노볼록 타입 에폭시 수지 등이 예시될 수 있고, 바람직하게는 페놀 노볼락 타입의 에폭시 수지일 수 있다.
양이온 중합성 에폭시 화합물로는, 또한 지환식 에폭시 화합물 방향족 에폭시 화합물 또는 지방족 에폭시 화합물 등이 예시될 수도 있고, 상기 중 1종 이상이 사용될 수 있다.
본 명세서에서 용어 지환식 에폭시 화합물은, 지환식 에폭시기를 하나 이상 포함하는 화합물을 의미한다. 본 명세서에서 지환식 에폭시기는 지방족 포화 탄화수소 고리를 가지고, 상기 고리를 구성하는 2개의 탄소 원자가 또한 에폭시기를 구성하고 있는 관능기를 의미한다.
지환식 에폭시 화합물로는, 예를 들면, 에폭시시클로헥실메틸 에폭시시클로헥산카복실레이트계 화합물; 알칸디올의 에폭시시클로헥산 카복실레이트계 화합물; 디카르복시산의 에폭시 시클로헥실메틸 에스테르계 화합물; 폴리에틸렌글리콜의 에폭시시클로헥실메틸 에테르계 화합물; 알칸디올의 에폭시시클로헥실메틸 에테르계 화합물; 디에폭시트리스피로계 화합물; 디에폭시모노스피로계 화합물; 비닐시클로헥센 디에폭시드 화합물; 에폭시시클로펜틸 에테르 화합물 또는 디에폭시 트리시클로 데칸 화합물 등이 예시될 수 있다.
지환식 에폭시 화합물로는, 2관능형 에폭시 화합물, 즉 2개의 에폭시를 가지는 화합물을 사용하는 것이 바람직하고, 상기 2개의 에폭시기가 모두 지환식 에폭시기인 화합물을 사용하는 것이 보다 바람직하지만, 이에 제한되는 것은 아니다.
지방족 에폭시 화합물로는, 지환식 에폭시기가 아닌 지방족 에폭시기를 가지는 에폭시 화합물이 예시될 수 있다. 예를 들면, 지방족 다가 알코올의 폴리글리시딜에테르; 지방족 다가 알코올의 알킬렌옥시드 부가물의 폴리글리시딜에테르; 지방족 다가 알코올과 지방족 다가 카복실산의 폴리에스테르 폴리올의 폴리글리시딜에테르; 지방족 다가 카복실산의 폴리글리시딜에테르; 지방족 다가 알코올과 지방족 다가 카복실산의 폴리에스테르 폴리카복실산의 폴리글리시딜에테르; 글리시딜 아크릴레이트 또는 글리시딜 메타크릴레이트의 비닐 중합에 의해 얻어지는 다이머, 올리고머 또는 폴리머; 또는 글리시딜 아크릴레이트 또는 글리시딜 메타크릴레이트와 다른 비닐계 단량체의 비닐 중합에 의해 얻어지는 올리고머 또는 폴리머가 예시될 수 있고, 바람직하게는 지방족 다가 알코올 또는 그 알킬렌옥시드 부가물의 폴리글리시딜에테르가 사용될 수 있으나, 이에 제한되는 것은 아니다.
상기에서 지방족 다가 알코올로는, 예를 들면, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 지방족 다가 알코올이 예시될 수 있고, 예를 들면, 에틸렌글리콜, 1,2-프로판디올, 1,3-프로판디올, 2-메틸-1,3-프로판디올, 2-부틸-2-에틸-1,3-프로판디올, 1,4-부탄디올, 네오펜틸글리콜, 3-메틸-2,4-펜탄디올, 2,4-펜탄디올, 1,5-펜탄디올, 3-메틸-1,5-펜탄디올, 2-메틸-2,4-펜탄디올, 2,4-디에틸-1,5-펜탄디올, 1,6-헥산디올, 1,7-헵탄디올, 3,5-헵탄디올, 1,8-옥탄디올, 2-메틸-1,8-옥탄디올, 1,9-노난디올, 1,10-데칸디올 등의 지방족 디올; 시클로헥산디메탄올, 시클로헥산디올, 수소 첨가 비스페놀 A, 수소 첨가 비스페놀 F 등의 지환식 디올; 트리메틸올에탄, 트리메틸올프로판, 헥시톨류, 펜티톨류, 글리세린, 폴리글리세린, 펜타에리스리톨, 디펜타에리스리톨, 테트라메틸올프로판 등이 예시될 수 있다.
또한, 상기에서 알킬렌옥시드로는, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌옥시드가 예시될 수 있고, 예를 들면, 에틸렌옥시드, 프로필렌옥시드 또는 부틸렌옥시드 등이 사용될 수 있다.
또한, 상기에서 지방족 다가 카복실산으로는, 예를 들면, 옥살산, 말론산, 숙신산, 글루타르산, 아디프산, 피멜산, 수베린산, 아젤라산, 세바신산, 도데칸이산, 2-메틸숙신산, 2-메틸아디프산, 3-메틸아디프산, 3-메틸펜탄이산, 2-메틸옥탄이산, 3,8-디메틸데칸이산, 3,7-디메틸데칸이산, 1,20-에이코사메틸렌디카르복실산, 1,2-시클로펜탄디카르복실산, 1,3-시클로펜탄디카르복실산, 1,2-시클로헥산디카르복실산, 1,3-시클로헥산디카르복실산, 1,4-시클로헥산디카르복실산, 1,4-디카르복실메틸렌시클로헥산, 1,2,3-프로판트리카르복실산, 1,2,3,4-부탄테트라카르복실산, 1,2,3,4-시클로부탄테트라카르복실산 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
지방족 에폭시 화합물로는, 지환식 에폭시기를 포함하지 않고, 또한 3개 이상의 에폭시기, 바람직하게는 3개의 에폭시기를 포함하는 화합물을 사용하는 것이 경화성, 내후성 및 굴절률 특성 등을 고려할 때 적절하지만, 이에 제한되는 것은 아니다.
방향족 에폭시 화합물로는 분자 내에 방향족기를 포함하는 에폭시 화합물로서, 예를 들면, 비스페놀 A 계 에폭시, 비스페놀 F 계 에폭시, 비스페놀 S 에폭시, 브롬화 비스페놀계 에폭시와 같은 비스페놀형 에폭시 수지; 페놀노볼락형 에폭시 수지 및 크레졸노볼락형 에폭시 수지와 같은 노볼락형 에폭시 수지; 크레졸 에폭시, 레졸시놀글리시딜에테르 등이 사용될 수 있다.
양이온 중합성의 옥세탄 화합물로는, 3-에틸-3-히드록시메틸 옥세탄, 1,4-비스[(3-에틸-3-옥세타닐)메톡시메틸]벤젠, 3-에틸-3-(페녹시메틸)옥세탄, 디[(3-에틸-3-옥세타닐)메틸]에테르, 3-에틸-3-(2-에틸헥실옥시메틸)옥세탄 또는 페놀노볼락 옥세탄 등이 예시될 수 있다. 옥세탄 화합물로는, 예를 들면, 토아고세이㈜사의 「알론옥세탄 OXT-101」, 「알론옥세탄 OXT-121」, 「알론옥세탄 OXT-211」, 「알론옥세탄 OXT-221」 또는 「알론옥세탄 OXT-212」 등을 사용할 수 있다.
양이온 중합성 화합물로는, 바람직하게는 에폭시 화합물을 사용할 수 있고, 보다 바람직하게는 크레졸 노볼락 타입 에폭시 수지 또는 페놀 노볼록 타입 에폭시 수지 등과 같은 에폭시 수지를 사용할 수 있다.
상기 보호층은 경화 반응을 개시시키기 위한 성분으로서, 라디칼 개시제 또는 양이온 개시제를 추가로 포함할 수 있다.
라디칼 개시제로는, 예를 들면 라디칼 광개시제 또는 라디칼 열개시제가 사용될 수 있다. 라디칼 광개시제로는, 예를 들면, 벤조인계, 히드록시케톤 화합물, 아미노케톤 화합물 또는 포스핀 옥시드 화합물 등과 같은 개시제를 사용할 수 있고, 바람직하게는 포스핀 옥시드 화합물 등을 사용할 수 있다. 광개시제로는, 보다 구체적으로는, 벤조인, 벤조인 메틸에테르, 벤조인 에틸에테르, 벤조인 이소프로필에테르, 벤조인 n-부틸에테르, 벤조인 이소부틸에테르, 아세토페논, 디메틸아니노 아세토페논, 2,2-디메톡시-2-페닐아세토페논, 2,2-디에톡시-2-페닐아세토페논, 2-히드록시-2-메틸-1-페닐프로판-1온, 1-히드록시시클로헥실페닐케톤, 2-메틸-1-[4-(메틸티오)페닐]-2-몰포리노-프로판-1-온, 4-(2-히드록시에톡시)페닐-2-(히드록시-2-프로필)케톤, 벤조페논, p-페닐벤조페논, 4,4'-디에틸아미노벤조페논, 디클로로벤조페논, 2-메틸안트라퀴논, 2-에틸안트라퀴논, 2-t-부틸안트라퀴논, 2-아미노안트라퀴논, 2-메틸티오잔톤(thioxanthone), 2-에틸티오잔톤, 2-클로로티오잔톤, 2,4-디메틸티오잔톤, 2,4-디에틸티오잔톤, 벤질디메틸케탈, 아세토페논 디메틸케탈, p-디메틸아미노 안식향산 에스테르, 올리고[2-히드록시-2-메틸-1-[4-(1-메틸비닐)페닐]프로판논], 비스(2,4,6-트리메틸벤조일)-페닐-포스핀옥시드 및 2,4,6-트리메틸벤조일-디페닐-포스핀옥시드 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
양이온 개시제로는, 예를 들면, 활성 에너지선의 조사 또는 열의 인가에 의하여 양이온 중합을 개시시킬 수 있는 성분을 방출하는 양이온 광개시제, 즉 양이온 광개시제 또는 양이온 열개시제를 사용할 수 있다.
양이온 광개시제로는, 오늄 염(onium salt) 또는 유기금속염(organometallic salt) 계열의 이온화 양이온 개시제 또는 유기 실란 또는 잠재성 황산(latent sulfonic acid) 계열이나 그 외의 비이온화 화합물 등과 같은 비이온화 양이온 광개시제를 사용할 수 있다. 오늄염 계열의 개시제로는, 디아릴이오도늄 염(diaryliodonium salt), 트리아릴술포늄 염(triarylsulfonium salt) 또는 아릴디아조늄 염(aryldiazonium salt) 등이 예시될 수 있고, 유기금속 염 계열의 개시제로는 철 아렌(iron arene) 등이 예시될 수 있으며, 유기 실란 계열의 개시제로는, o-니트릴벤질 트리아릴 실리 에테르(o-nitrobenzyl triaryl silyl ether), 트리아릴 실리 퍼옥시드(triaryl silyl peroxide) 또는 아실 실란(acyl silane) 등이 예시될 수 있고, 잠재성 황산 계열의 개시제로는 a-설포닐옥시 케톤 또는 a-히드록시메틸벤조인 설포네이트 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 양이온 개시제로는 요오드 계열의 개시제와 광증감제의 혼합물을 사용할 수도 있다.
양이온 개시제로는, 이온화 양이온 광개시제를 사용하는 것이 바람직하고, 오늄염 계열의 이온화 양이온 광개시제를 사용하는 것이 보다 바람직하며, 트리아릴설포늄 염 계열의 이온화 양이온 광개시제를 사용하는 것이 더욱 바람직하지만, 이에 제한되는 것은 아니다.
상기 보호층의 두께는 사용 재료, 가스차단성 필름에 요구되는 광 투과율, 필요한 내구성 등에 따라서 적절하게 결정된다. 차단층상에 형성되는 보호층의 두께가 매우 얇으면, 이 보호층은 차단층을 충분하게 보호할 수 없다. 이와 반대로, 보호층의 두께가 두꺼워지면 투명성이 저하하게 된다. 특히 절연성 소재를 이용한 경우에는 이러한 단점이 심각하다. 그리고, 보호층이 두꺼워지면, 가스차단성 필름 자체도 두껍게 된다. 보호층의 두께는 0.5 내지 100 nm, 또는 0.5 내지 50 nm로 설정 하는 것이 좋다.
상술한 바에 따른 본 출원의 베리어 필름은 수분투과도가 0.00085 내지 0.00200 g/m2/day일 수 있다.
도 1은 본 출원의 일례에 따른 베리어 필름의 단면 개략도이다. 도 1을 참조하면, 본 출원의 일례에 의한 베리어 필름(10)은 기재층(14), 중간층(13) 및 차단층(12)을 순차로 포함한다. 또한, 상기 차단층(13)의 상부에는 내구성과 가스 차단성을 보다 개선하기 위해 보호층(11)이 형성되어 있다.
도 2는 본 출원의 다른 례에 따른 베리어 필름의 단면 개략도이다. 도 2를 참조하면, 본 출원의 다른 례에 의한 베리어 필름(20)은 기재층(24), 중간층(23) 및 차단층(22)이 순차로 적층되어 있되, 상기 중간층(23) 및 차단층(22)은 2장이 합지되어 있고, 차단층(22)의 상부에는 보호층(21)이 부착되어 있다.
본 출원은 또한 기재층을 처리 영역으로 도입할 수 있도록 설치된 권출롤, 기재층을 이송할 수 있도록 설치된 하나 이상의 가이드롤(guide roll) 및 기재층을 회수할 수 있도록 설치된 권취롤을 포함하는 이송 수단; 및 상기 기재층의 표면에 원자층 증착 방식으로 차단층을 형성할 수 있도록 설치되어 있는 증착 장치 및 차단층이 형성된 기재층의 차단층 상에 보호층을 형성할 수 있는 비접촉식 코팅 수단이 구비된 보호층 형성 장치를 포함하는 처리 영역을 포함하고,
상기 이송 수단은 상기 권출롤에 의해 처리 영역으로 도입된 기재층이 상기 증착 장치 및 보호층 형성 장치를 순차 거친 후에 권취롤에 의해 회수될 수 있도록 형성되어 있는 베리어 필름 제조 장치에 관한 것이다.
본 출원의 베리어 필름 제조 장치는 이송 수단, 처리 영역을 포함하며, 상기 처리 영역은 증착 장치 및 보호층 형성 장치를 포함할 수 있다. 상기 이송 수단에 의해 권출롤에 의해 처리 영역으로 도입된 기재층이 상기 처리 영역의 증착 장치 및 보호층 형성 장치를 순차 거친 후에 권취롤에 의해 회수될 수 있으며, 처리 영역의 증착 장치에서는 원자층 증착 방식을 이용하여 기재층 상에 전구체 가스를 증착시켜 차단층을 형성하고, 보호층 형성 장치에서는 처리 영역에서 배출된 기재층의 차단층 상에 비접촉식 코팅 방식을 사용하여 보호층을 형성시킬 수 있다.
본 출원에서 처리 영역은 기재층에 중간층을 형성할 수 있도록 설치된 중간층 형성 장치를 추가로 포함할 수 있다. 이 경우, 상기 이송 수단에 의해 권출롤에 의해 처리 영역으로 도입된 기재층이 상기 처리 영역의 중간층 형성 장치, 증착 장치 및 보호층 형성 장치를 순차 거친 후에 권취롤에 의해 회수될 수 있다.
도 3은 본 출원의 일례에 따른 베리어 필름의 제조 장치의 단면도이다. 상기 도 3에 나타난 바와 같이 베리어 필름 제조 장치는 이송 수단 및 처리 영역를 포함하며, 이송 수단은 권출롤(120), 가이드 롤(110) 및 권취롤(130)을 포함하며, 처리 영역은 중간층 형성 장치(160), 증착 장치(140) 및 보호층 형성 장치(130)를 포함한다.
예시적인 중간층 형성 장치는 당업계에서 사용되는 방식을 사용하여 기재층 상에 중간층을 형성시킬 수 있다. 여기서, 상기 중간층의 형성은 중간층 코팅 조성물은 연속식 뿐만 아니라 딥(dip) 코팅 절차를 비롯한 통상의 코팅 기술을 사용하여 적용될 수 있다. 상기 중간층을 형성하는 코팅 조성물은 전술한 조성물을 사용할 수 있다.
예시적인 처리 영역은 적어도 2개의 영역(이하, 각각 제 1 및 2 영역으로 호칭할 수 있다.)을 포함할 수 있으며, 상기 제 1 영역 및 제 2 영역에는 각각 하나 이상의 흐름 제한 통로가 형성될 수 있다. 본 명세서에서 용어 흐름 제한 통로는 그 통로를 통해 기판이 이동할 수 있고, 각 영역 내에 존재할 수 있는 전구체 가스는 그 통로를 통해 이동하지 않도록 형성되어 있는 통로를 의미할 수 있다. 이러한 통로의 형성 방식의 예시는 후술한다. 상기 각 영역은 상기 흐름 제한 통로를 통해 도입되는 상기 기판의 표면에 전구체 가스를 증착시켜 차단층을 형성할 수 있도록 설치되어 있다.
이송 수단의 가이드롤은 제 1 및 제 2 영역 내에 각각 적어도 하나 존재한다. 흐름 제한 통로는 상기 기판이 상기 가이드롤에 의해 상기 제 1 및 제 2 영역을 각각 적어도 1회 통과할 수 있도록 하는 경로를 형성하고 있다. 상기 베리어 필름 형성 장치는 상기 제 1 및 제 2 영역으로 전구체 가스를 공급할 수 있는 전구체 가스 공급 수단이 설치될 수 있다. 예를 들면, 상기 제 1 영역 내에 제 1 전구체 가스가 공급되어 기재층 상에 제 1 단층(monolayer)가 형성되고, 상기 제 2 영역 내에 제 2 전구체 가스가 공급되어 기재층 상 또는 상기 제 1 단층상에 제 2 단층이 형성되는 과정을 거쳐 목적하는 차단이 기재층 상에 형성될 수 있다. 상기 제 1 및 제 2 전구체 가스는 서로 동일하거나 혹은 상이한 종류일 수 있고, 필요한 경우에 목적하는 두께를 고려하여 상기 제 1 및 제 2 단층의 형성 과정이 복수회 반복될 수 있다. 또한, 후술하는 바와 같이 제 3 전구체 가스에 의해 제 3 단층을 형성하거나 불활성 가스에 의한 퍼징(purging)이 수행되는 제 3 영역이 장치에 또한 포함될 수 있다.
또한, 예시적인 보호층 형성 장치는 차단층이 형성된 기재층의 차단층 표면에 보호층을 형성함에 있어서 비접촉식 코팅 방법을 사용할 수 있다. 상기 방법에 의해 처리층과의 접촉을 최소화함으로써 처리층의 손상을 막아 가스 차단성의 저하를 억제할 수 있다.
상기 비접촉식 코팅 방법은 잉크젯 코팅 방법, 캐필러리 코팅 방법, 슬롯 다이 코팅 방법, 플라즈마 중합 코팅 방법, 스퍼터링 코팅 방법, 증발 코팅 방법, CVD 코팅 방법 또는 iCVD 코팅 방법 등을 사용할 수 있다.
이하, 본 출원의 일례에 따른 증착 장치, 즉 원자층 증착 방식(ALD)을 이용한 증착 장치를 구체적으로 설명한다.
예시적인 증착 장치는 제 1 영역 및 제 2 영역으로 구분된다. 상기 제 1 영역 및 제 2 영역은 각 영역에 존재하는 전구체 가스가 다른 영역으로 확산되지 않도록 벽에 의해 구분되고, 상기 벽에는 흐름 제한 통로가 형성되어, 그 통로를 통해 기재층이 이송될 수 있다. 각 영역에는 배기 수단이 존재할 수 있고, 그 수단에 의해서 전구체 가스가 배기될 수 있다.
이송 수단에 의해 증착 장치로 도입된 기재층은 상기 영역을 순차 이동하여 처리된 후에, 보호층 형성 장치 및 권취롤에 의해 회수될 수 있다.
예시적인 증착 장치는 제 1 영역과 제 2 영역이 일렬로 순차 배치되어 있고, 각 영역 내의 가이드롤에 의해 기재층은 상기 영역의 상부를 경유하도록 설치되어 있을 수 있다. 이러한 구조에서는 각 영역의 측면에서 전구체 가스가 배기될 수 있다. 또한, 기재층이 상기 제 1 영역과 제 2 영역을 순차 경유할 수 있도록 장치가 구성되는 한 상기 영역의 사이에는 후술하는 제 3 영역 등이 추가로 존재할 수 있다.
증착 장치는, 제 3 영역을 추가로 포함할 수 있다. 제 3 영역은, 예를 들면, 통상 원자층 증착 공정의 퍼징(purging) 공정에서 요구되는 불활성 가스가 도입되는 영역이거나 혹은 제 1 및/또는 제 2 영역에서 도입되는 것과는 다르거나 혹은 동일한 전구체 가스가 도입되는 영역일 수 있다. 제 3 영역이 존재하는 경우에 상기 체 3 영역은 상기 제 1 및/또는 제 2 영역과 상기 흐름 제한 통로에 의해 연결되어 있을 수 있고, 이송 수단은 기판을 상기 제 3 영역을 경유하여 제 1 및 제 2 영역을 순차 통과시킬 수 있도록 설치되어 있을 수 있다(즉, 「제 1 영역 → 제 3 영역 → 제 2 영역」의 순서).
상기 제 3 영역 내에는 별도의 롤이 존재하지 않으나, 필요한 경우에 상기 영역 내에도 가이드롤 등이 존재할 수 있다. 또한, 제 3 영역은 복수 존재할 수 있다. 즉, 제 1 영역과 제 2 영역의 사이에 제 3 영역이 복수 개재되어 있을 수 있고, 이러한 복수의 제 3 영역은 각각 흐름 제한 통로가 존재하는 벽에 의해 분할되어 있으며, 기재층이 제 1 영역을 거쳐 복수의 제 3 영역을 흐름 제한 통로를 통해 순차 경유한 후에 제 2 영역으로 도입될 수 있다.
상기 제 3 영역이 존재하는 경우에는 상기 이송 수단, 예를 들면 가이드롤은, 기판을 제 3 영역을 매회 거치면서 제 1 및 제 2 영역을 복수 회 통과시킬 수 있도록 설치되어 있을 수 있다.
일례에서, 이송 수단은 제 1 영역 내에 존재하는 복수의 제 1 가이드롤 및 제 2 영역 내에 존재하는 복수의 제 2 가이드롤을 포함할 수 있다. 상기에서 제 1 가이드롤 중 적어도 일부는 상기 제 2 영역쪽으로 기재층의 경로를 변화시킬 수 있도록 형성되어 있고, 상기 제 2 가이드롤 중 적어도 일부는 상기 제 1 영역쪽으로 기재층의 경로를 변화시킬 수 있도록 형성되어 있을 수 있다.
상기 기술한 장치에서는 이송 수단에 의해 기판은 각 영역을 경유하고, 그 영역에서 전구체 가스가 증착되어 단층이 형성되거나 혹은 퍼징(purging)될 수 있다. 전구체 가스는 별도의 전구체 가스 공급 수단에 의해 공급될 수 있다. 상기 공급 수단은 각 영역의 내부 또는 외부에 설치되는 전구체 가스 소스를 포함할 수 있으며, 추가적으로, 전구체 가스를 영역으로 공급하기 위한 배관, 펌프, 밸브, 탱크 및 다른 필요한 공지의 수단을 포함할 수 있다. 또한, 예를 들어 제 1 및 제 2 영역 외에 제 3 영역 등 다른 영역이 존재하는 경우에 상기 영역으로는 공급 수단에 의해 전구체 가스 또는 비활성 가스가 도입될 수 있다.
상기 베리어 필름 형성 장치에서 각 영역은 상기한 배기 수단에 의한 배기 또는 전구체 가스 또는 비활성 가스의 도입 압력 등을 통해 내부의 압력이 제어될 수 있는 챔버일 수 있다. 상기 챔버는 공정의 진행의 제어 등을 위한 다른 처리 모듈 또는 장비 등과 인터페이스되어 있을 수 있다.
상기 베리어 필름 형성 장치에서는 각 영역에 존재하는 기판에 미흡착된 전구체 가스가 다른 영역의 가스와 혼합되는 것 등에 의해 야기될 수 있는 비-ALD 반응을 방지하기 위해 각 영역의 전구체 가스가 다른 영역으로 이동하는 것을 억제할 필요가 있다. 이에 따라서 각 영역은 상기한 흐름 제한 통로에 의해서 연결되어 있거나 추가적으로 내부 압력이 조절될 수 있다. 흐름 제한 통로(이하, 단순히 통로라고 호칭할 수 있다.)를 구성하는 방법은 특별히 제한되지 않으며 공지된 수법을 채용할 수 있다. 예를 들면 각 통로는 그 통로를 통과하는 기판의 두께 및 폭보다 약간만 더 두껍고 더 넣은 크기를 갖는 슬릿일 수 있다. 통로는 기판의 통과할 때에 매우 작은 여유 공간만을 허용하고, 기판이 통로의 각 면들과 긁힘 없이 통로를 통과할 수 있도록 설치될 수 있다. 예를 들면, 상기 여유 공간은 수 마이크론과 수 밀리미터 사이의 범위 내에서 규정될 수 있다. 통로는 또한 기판이 통과할 수 있는 가늘고 긴 터널을 포함하여 형성될 수 있고, 필요한 경우에는 통로를 통한 가스의 흐름을 추가로 제한하기 위한 와이퍼를 포함할 수 있다. 또한, 통로는 연장된 일련의 길고 협소한 통로로 형성될 수 있으며, 제 3 영역 등에 주입되는 비활성 가스는 제 1 및 제 2 영역의 중간에서 통로에 직접 주입되어 전구체 가스의 이동 및 혼합을 방지하는 것을 도울 수 있다.
전구체 가스의 혼합을 방지하기 위하여 각 영역의 사이에는 압력차가 존재할 수 있다. 제 1 영역 및 제 2 영역의 사이에 제 3 영역이 존재하는 경우에는 각 영역의 압력보다 더 큰 압력으로 비활성 가스 또는 전구체 가스를 상기 제 3 영역에 주입함으로써 가스의 혼합 등을 방지할 수 있다. 예를 들어, 가스의 배출 흐름을 스로틀하거나 수동 배출하여 압력이 제어될 수 있다. 다른 예시에서는, 펌프 또는 다른 흡입 소스를 이용하여 영역으로 펌핑함으로써 압력차를 생성할 수 있다. 예를 들면, 펌프는 모든 영역에 연결되어 있고, 각 영역의 압력을 조절하여 압력차를 생성할 수 있도록 제어될 수 있다. 전구체 가스의 이동은 또한 흐름 제어 밸브 또는 다른 흐름 제어 디바이스를 사용하여, 가스의 상대적 흐름속도 및 펌핑 속도를 제어함으로써 방지할 수 있다. 또한, 압력 센서에 응답하는 제어 장치를 사용하여 가스 주입 및 배출 흐름 속도를 제어함으로써 원하는 압력차를 유지하는 것을 보조할 수 있다.
또한, 본 출원은 전술한 베리어 필름 제조 장치를 사용하여 베리어 필름을 제조하는 방법에 관한 것이다.
상기 제조 방법에서는 이송 수단의 권출롤을 사용하여 기재층을 처리 영역의 증착 장치로 도입하여 상기 장치 내에서 차단층을 원자층 증착 방식으로 형성한 후 상기 차단층이 형성된 기재층을 보호층 형성 장치로 도입하여 비접촉식 코팅 수단으로 차단층상에 보호층을 형성한 후에 권취롤에 의해 회수할 수 있다.
상기 방법에서는 기재층을 처리 영역의 증착 장치로 도입하기 전에 기재층 상에 중간층을 형성시키는 단계를 추가로 포함할 수 있다.
또한, 본 출원은 내구성 및 가스 차단성이 개선된 베리어 필름을 구비한 디스플레이 소자 또는 태양광 발전 소자에 관한 것이다.
본 출원의 베리어 필름은 LCD 또는 OLED 등의 디스플레이 소자나 태양전지 등의 태양광 발전 소자와 같이 수분에 의해 열화되기 쉬운 제품들을 일상 생활 환경에서 보호하는데 사용할 수 있다.
이하 본 출원에 따르는 실시예 및 본 출원에 따르지 않는 비교예를 통하여 본 출원을 보다 상세히 설명하나, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 1.
기재층으로서, 두께가 약 125 ㎛이고, WVTR이 약 3~4 g/m2/day 정도인 PET 필름을 사용하였다. 상기 기재층 상에 테트라에톡시 올쏘실리케이트(tetraethoxy orthosilicate) 50 g와 3-글리시독시프로필트리메톡시실란(3-glycidoxypropyltrimethoxysilane) 50 g을 에탄올 150 g에 희석하고, 물 56.4 g, 0.1N HCl 1.6 g을 첨가하여 실온에서 1일 동안 반응한 졸 상태의 코팅 조성물 용액을 바코팅법으로 코팅하고, 120 ℃에서 10분간 열 경화하여 약 0.6 ㎛ 두께의 중간층을 형성하였다. 이어서 상기 중간층상에 TiCl4와 H2O를 전구체 가스로 사용하는 일반적인 ALD(Atomic Layer Deposition)의 방식으로 두께가 약 15 nm인 TiO2층(차단층)을 형성하였다. 구체적으로는 중간층상에 TiCl4 및 H2O를 각각 5초간 펄스 형태로 침착 및 반응시켜서 막을 형성하고, 아르곤(Ar) 가스로 퍼징하여 반응되지 않은 H2O나 반응 부산물들을 제거하는 과정을 1 사이클로 하여 40회 반복하여 차단층을 형성하였다. 이어서 보호층의 형성을 위한 코팅 조성물로서, 펜타에리트리톨 트리아크릴레이트 및 테트라에톡시실란의 축합물을 포함하는 조성물을 잉크 젯 방식으로 상기 차단층상에 코팅 및 경화시켜서 두께가 약 200 nm인 보호층을 형성하였다.
실시예 2.
코팅 조성물의 코팅 시에 캐필러리 코팅 방식을 적용한 것을 제외하고는 실시예 1과 동일한 방법으로 베리어 필름을 제조하였다.
실시예 3.
코팅 조성물의 코팅 시에 슬롯 다이 코팅 방식을 적용한 것을 제외하고는 실시예 1과 동일한 방법으로 베리어 필름을 제조하였다.
실시예 4.
차단층을 약 12 nm의 두께로 형성한 것을 제외하고는 실시예 1과 동일한 방법으로 베리어 필름을 제조하였다.
비교예 1.
보호층을 바 코팅 방식으로 형성한 것을 제외하고는 실시예 1과 동일한 방법으로 베리어 필름을 제조하였다.
<실험예 1>
상기 실시예 1 내지 4 및 비교예 1 내지 3에서 제조한 베리어 필름의 수증기 투과율(WVTR, Water Vapor Transmission rate)을 Mocon사의 Aquatran을 사용하여 100%의 상대습도 및 상온에서 100 시간 동안 측정하고, 그 결과를 표 1에 기재하였다.
표 1
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1
수증기 투과율(단위: g/m2/day) 0.0016 0.0016 0.0016 0.0016 0.0145
본 출원의 베리어 필름은 수분에 의해 열화되기 쉬운 제품, 예컨대 LCD 또는 OLED 등의 디스플레이 소자나, 태양전지 등의 태양광 발전 소자 등에서 유용하게 사용될 수 있다.

Claims (14)

  1. 기재층상에 차단층을 원자층 증착 방식으로 형성하고, 상기 차단층상에 비접촉식 코팅 방식으로 코팅 조성물을 코팅하여 보호층을 형성하는 것을 포함하는 베리어 필름의 제조 방법.
  2. 제 1 항에 있어서, 차단층은 SiO2, Al2O3, ZnO, ZnS, HfO2, HfON, AlN, Si3N4, SiON 또는 SnO2를 포함하는 베리어 필름의 제조 방법.
  3. 제 1 항에 있어서, 차단층은 두께가 5 nm 내지 20 nm가 되도록 형성하는 베리어 필름의 제조 방법.
  4. 제 1 항에 있어서, 비접촉식 코팅 방식으로 잉크젯 코팅, 캐필러리 코팅, 슬롯 다이 코팅, 플라즈마 중합 코팅, 스퍼터링 코팅, 증발 코팅, CVD 코팅 또는 iCVD 코팅을 사용하는 베리어 필름의 제조 방법.
  5. 제 1 항에 있어서, 코팅 조성물은, 바인더로서, 축합 경화형 화합물, 열경화성 화합물, 라디칼 경화성 화합물 및 양이온 경화성 화합물로 이루어진 군에서 선택된 하나 이상을 포함하는 베리어 필름의 제조 방법.
  6. 제 5 항에 있어서, 코팅 조성물은 나노 입자를 포함하고, 상기 나노 입자의 비율은 상기 나노 입자 및 바인더의 합계 중량을 기준으로 40 중량% 내지 70 중량%인 베리어 필름의 제조 방법.
  7. 제 6 항에 있어서, 나노 입자는 구상 나노 입자인 베리어 필름.
  8. 제 6 항에 있어서, 나노 입자의 평균 직경이 1 내지 100 nm인 베리어 필름.
  9. 제 6 항에 있어서, 나노 입자는 실리카 입자 또는 알루미나 입자인 베리어 필름.
  10. 제 1 항에 있어서, 차단층을 형성하기 전에 기재층상에 중간층을 형성하는 것을 추가로 수행하는 베리어 필름의 제조 방법.
  11. 기재층을 처리 영역으로 도입할 수 있도록 설치된 권출롤, 기재층을 이송할 수 있도록 설치된 하나 이상의 가이드롤(guide roll) 및 기재층을 회수할 수 있도록 설치된 권취롤을 포함하는 이송 수단; 및 상기 기재층의 표면에 원자층 증착 방식으로 차단층을 형성할 수 있도록 설치되어 있는 증착 장치 및 차단층이 형성된 기재층의 차단층 상에 보호층을 형성할 수 있는 비접촉식 코팅 수단이 구비된 보호층 형성 장치를 포함하는 처리 영역을 포함하고,
    상기 이송 수단은 상기 권출롤에 의해 처리 영역으로 도입된 기재층이 상기 증착 장치 및 보호층 형성 장치를 순차 거친 후에 권취롤에 의해 회수될 수 있도록 형성되어 있는 베리어 필름 제조 장치.
  12. 제 11 항에 있어서, 비접촉식 코팅 수단이 잉크젯 코팅 장치, 캐필러리 코팅 장치, 슬롯 다이 코팅 장치, 플라즈마 중합 코팅 장치, 스퍼터링 코팅 장치, 증발 코팅 장치, CVD 코팅 장치 또는 iCVD 코팅 장치인 베리어 필름의 제조 장치.
  13. 제 11 항에 있어서, 처리 영역은 기재층에 중간층을 형성할 수 있도록 설치된 중간층 형성 장치를 추가로 포함하고, 이송 수단은 상기 권출롤에 의해 처리 영역으로 도입된 기재층이 상기 중간층 형성 장치, 증착 장치 및 보호층 형성 장치를 순차 거친 후에 권취롤에 의해 회수될 수 있도록 설치되어 있는 베리어 필름 제조 장치.
  14. 제 11 항의 장치를 사용하여 베리어 필름을 제조하는 방법으로서,
    이송 수단의 권출롤을 사용하여 기재층을 처리 영역의 증착 장치로 도입하여 상기 장치 내에서 차단층을 원자층 증착 방식으로 형성한 후 상기 차단층이 형성된 기재층을 보호층 형성 장치로 도입하여 비접촉식 코팅 수단으로 차단층상에 보호층을 형성한 후에 권취롤에 의해 회수하는 것을 포함하는 베리어 필름의 제조 방법.
PCT/KR2013/011040 2012-11-29 2013-11-29 차단층의 손상을 감소시키는 코팅방법 WO2014084685A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380062671.4A CN104822860A (zh) 2012-11-29 2013-11-29 用于减少阻隔层的伤害的涂布方法
EP13857896.8A EP2927346A4 (en) 2012-11-29 2013-11-29 COATING METHOD FOR REDUCING DAMAGE TO A SHOCK LAYER
US14/646,606 US20150337440A1 (en) 2012-11-29 2013-11-29 Coating method for decreasing damage of barrier layer
JP2015545374A JP2016502465A (ja) 2012-11-29 2013-11-29 バリア層の損傷を低減させるコーティング方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20120137345 2012-11-29
KR10-2012-0137345 2012-11-29
KR20120138316 2012-11-30
KR10-2012-0138316 2012-11-30
KR1020130147836A KR101528407B1 (ko) 2012-11-29 2013-11-29 차단층의 손상을 감소시키는 코팅방법
KR10-2013-0147836 2013-11-29

Publications (1)

Publication Number Publication Date
WO2014084685A1 true WO2014084685A1 (ko) 2014-06-05

Family

ID=51125296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011040 WO2014084685A1 (ko) 2012-11-29 2013-11-29 차단층의 손상을 감소시키는 코팅방법

Country Status (7)

Country Link
US (1) US20150337440A1 (ko)
EP (1) EP2927346A4 (ko)
JP (1) JP2016502465A (ko)
KR (1) KR101528407B1 (ko)
CN (1) CN104822860A (ko)
TW (1) TWI583820B (ko)
WO (1) WO2014084685A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9675222B2 (en) 2013-03-28 2017-06-13 Yujin Robot Co., Ltd. Cleaning robot having expanded cleaning territory
KR20150109984A (ko) * 2014-03-21 2015-10-02 삼성전자주식회사 기체 차단 필름, 이를 포함하는 냉장고 및 기체 차단 필름의 제조방법
KR102182521B1 (ko) * 2014-12-30 2020-11-24 코오롱글로텍주식회사 고유연성 배리어 섬유기판 및 그의 제조방법
JP6743829B2 (ja) * 2015-10-27 2020-08-19 凸版印刷株式会社 積層体及びガスバリアフィルム
EP3436620A1 (en) * 2016-04-01 2019-02-06 3M Innovative Properties Company Roll-to-roll atomic layer deposition apparatus and method
WO2018092039A1 (en) * 2016-11-15 2018-05-24 Sabic Global Technologies B.V. Atomic layer deposition in combination with polymer coating
WO2018113326A1 (zh) * 2017-07-17 2018-06-28 青岛三益塑料机械有限公司 压延机、发泡地板生产线及一次成型生产工艺
JP7211740B2 (ja) * 2017-09-13 2023-01-24 住友化学株式会社 ガスバリア性フィルムおよびフレキシブル電子デバイス
EP3771751A1 (en) * 2019-08-02 2021-02-03 AR Metallizing N.V. Multi-metal layer wvtr barrier products on water vapour and oxygen permeable bio-based substrates
CN115124031A (zh) * 2021-03-25 2022-09-30 电子科技大学 卷对卷制备系统及卷对卷制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US142362A (en) 1873-09-02 Improvement in animal-traps
US3708225A (en) 1971-06-09 1973-01-02 Mbt Corp Coated synthetic plastic lens
US4177315A (en) 1977-03-04 1979-12-04 E. I. Du Pont De Nemours And Company Coated Polymeric substrates
US4198465A (en) 1978-11-01 1980-04-15 General Electric Company Photocurable acrylic coated polycarbonate articles
US4309319A (en) 1978-11-30 1982-01-05 General Electric Company Silicone resin coating composition
US4436851A (en) 1978-11-30 1984-03-13 General Electric Company Silicone resin coating composition containing an ultraviolet light absorbing agent
US4455205A (en) 1981-06-01 1984-06-19 General Electric Company UV Curable polysiloxane from colloidal silica, methacryloyl silane, diacrylate, resorcinol monobenzoate and photoinitiator
WO2003087247A1 (en) 2002-04-12 2003-10-23 Dupont Teijin Films U.S. Limited Partnership Coated polymeric substrates having improved surface smoothness suitable for use in flexible electronic and opto-electronic devices
EP1418197A1 (en) 2001-08-07 2004-05-12 Teijin Dupont Films Japan Limited Biaxially oriented layered polyester film and film with hard coat layer
US20060165886A1 (en) * 1996-08-29 2006-07-27 Harald Werenicz Method for producing a continuous thermoplastic coating and articles constructed therefrom
KR20080036042A (ko) * 2005-07-20 2008-04-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 방습 코팅
KR20090077801A (ko) * 2006-11-06 2009-07-15 에이전시 포 사이언스, 테크놀로지 앤드 리서치 나노입자 캡슐 배리어 스택
US20120021236A1 (en) * 2009-05-19 2012-01-26 Evonik Roehm Gmbh Transparent, weathering-resistant barrier foil, production thereof by means of lamination, extrusion lamination or extrusion coating
KR20120061906A (ko) * 2003-05-16 2012-06-13 이 아이 듀폰 디 네모아 앤드 캄파니 원자층 증착에 의해 제작된 플라스틱 기판용 배리어 필름

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311635A (ja) * 1996-05-20 1997-12-02 Meiwa Packs:Kk ラベル用積層フィルムおよびその製造法
US8304019B1 (en) * 2004-02-19 2012-11-06 Nanosolar Inc. Roll-to-roll atomic layer deposition method and system
JP2009095764A (ja) * 2007-10-17 2009-05-07 Sumitomo Chemical Co Ltd 多層構造体の製造方法
TWI420722B (zh) * 2008-01-30 2013-12-21 Osram Opto Semiconductors Gmbh 具有封裝單元之裝置
FR2933538B1 (fr) * 2008-07-07 2012-09-21 Commissariat Energie Atomique Dispositif electroluminescent d'affichage, d'eclairage ou de signalisation, et son procede de fabrication
US8343575B2 (en) * 2008-12-30 2013-01-01 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
DE102009024411A1 (de) * 2009-03-24 2010-09-30 Osram Opto Semiconductors Gmbh Dünnschichtverkapselung für ein optoelektronisches Bauelement, Verfahren zu dessen Herstellung und optoelektronisches Bauelement
US20120164434A1 (en) * 2009-06-02 2012-06-28 Senthil Kumar Ramadas Multilayer barrier film
EP2471105A2 (en) * 2009-08-24 2012-07-04 E. I. du Pont de Nemours and Company Barrier films for thin-film photovoltaic cells
FI20095947A0 (fi) * 2009-09-14 2009-09-14 Beneq Oy Monikerrospinnoite, menetelmä monikerrospinnoitteen valmistamiseksi, ja sen käyttötapoja
JP5912228B2 (ja) * 2010-05-17 2016-04-27 凸版印刷株式会社 ガスバリア性積層体の製造方法
JP2012069515A (ja) * 2010-08-25 2012-04-05 Toray Ind Inc 透明導電積層体およびその製造方法
JP2012182303A (ja) * 2011-03-01 2012-09-20 Toppan Printing Co Ltd 太陽電池バックシート
CN103459665B (zh) * 2011-03-29 2017-02-22 凸版印刷株式会社 卷绕成膜装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US142362A (en) 1873-09-02 Improvement in animal-traps
US3708225A (en) 1971-06-09 1973-01-02 Mbt Corp Coated synthetic plastic lens
US4177315A (en) 1977-03-04 1979-12-04 E. I. Du Pont De Nemours And Company Coated Polymeric substrates
US4198465A (en) 1978-11-01 1980-04-15 General Electric Company Photocurable acrylic coated polycarbonate articles
US4309319A (en) 1978-11-30 1982-01-05 General Electric Company Silicone resin coating composition
US4436851A (en) 1978-11-30 1984-03-13 General Electric Company Silicone resin coating composition containing an ultraviolet light absorbing agent
US4455205A (en) 1981-06-01 1984-06-19 General Electric Company UV Curable polysiloxane from colloidal silica, methacryloyl silane, diacrylate, resorcinol monobenzoate and photoinitiator
US20060165886A1 (en) * 1996-08-29 2006-07-27 Harald Werenicz Method for producing a continuous thermoplastic coating and articles constructed therefrom
EP1418197A1 (en) 2001-08-07 2004-05-12 Teijin Dupont Films Japan Limited Biaxially oriented layered polyester film and film with hard coat layer
WO2003087247A1 (en) 2002-04-12 2003-10-23 Dupont Teijin Films U.S. Limited Partnership Coated polymeric substrates having improved surface smoothness suitable for use in flexible electronic and opto-electronic devices
KR20120061906A (ko) * 2003-05-16 2012-06-13 이 아이 듀폰 디 네모아 앤드 캄파니 원자층 증착에 의해 제작된 플라스틱 기판용 배리어 필름
KR20080036042A (ko) * 2005-07-20 2008-04-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 방습 코팅
KR20090077801A (ko) * 2006-11-06 2009-07-15 에이전시 포 사이언스, 테크놀로지 앤드 리서치 나노입자 캡슐 배리어 스택
US20120021236A1 (en) * 2009-05-19 2012-01-26 Evonik Roehm Gmbh Transparent, weathering-resistant barrier foil, production thereof by means of lamination, extrusion lamination or extrusion coating

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M. LESKELA; M. RITALA: "ALD precursor chemistry: Evolution and future challenges", JOURNAL DE PHYSIQUE IV, vol. 9, 1999, pages 837 - 852, XP008006493
See also references of EP2927346A4 *
TUOMO SUNTOLA: "Atomic Layer Epitaxy", THIN SOLID FILMS, vol. 216, 1992, pages 84 - 89

Also Published As

Publication number Publication date
EP2927346A1 (en) 2015-10-07
TW201435137A (zh) 2014-09-16
JP2016502465A (ja) 2016-01-28
CN104822860A (zh) 2015-08-05
KR20140070477A (ko) 2014-06-10
US20150337440A1 (en) 2015-11-26
KR101528407B1 (ko) 2015-06-11
TWI583820B (zh) 2017-05-21
EP2927346A4 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2014084685A1 (ko) 차단층의 손상을 감소시키는 코팅방법
CN102015287B (zh) 柔性基板
EP2660042B1 (en) Method for manufacturing gas-barrier film, gas-barrier film, and electronic device
US10654070B2 (en) Method for preparing a barrier film
WO2014084686A1 (ko) 무기 입자를 포함하는 보호코팅층이 적층된 가스차단성 필름
JP5540949B2 (ja) ガスバリア性フィルム、及び有機光電変換素子、有機エレクトロルミネッセンス素子
KR101335266B1 (ko) 디스플레이용 광학 투명 복합 필름 및 이의 제조방법
KR101583119B1 (ko) 가스차단성 필름
KR20110105346A (ko) 가스 배리어성 적층체 필름
CN113717350A (zh) 光固化组合物、封装结构和半导体器件
KR101917156B1 (ko) 프린팅 프로세스용 광경화성 수지 조성물
KR20160063073A (ko) 하드코팅층 형성용 조성물
KR20120078491A (ko) 유-무기 복합 배리어 필름 및 그 제조 방법
JP2012139963A (ja) ガスバリア性積層体フィルムとその製造方法
KR20160060301A (ko) iCVD층의 형성방법
KR20160081848A (ko) 하드 코팅용 수지 조성물 및 이의 경화물을 코팅층으로 포함하는 하드코팅 필름
KR102071915B1 (ko) 배리어 필름의 제조 방법
KR102630372B1 (ko) 공용매를 이용하여 제조된 기체 차단용 고분자 코팅 필름 및 이의 제조방법
KR102660944B1 (ko) 광학 적층체 및 이를 포함하는 플렉서블 디스플레이 장치
KR102654811B1 (ko) 하드 코팅 조성물, 이를 이용한 하드 코팅층 및 커버 윈도우
KR20180001692A (ko) 하드 코팅 필름의 제조방법
KR20120078489A (ko) 유-무기 복합 배리어 필름 및 그 제조 방법
KR20090011809A (ko) 전자재료용 봉지제 조성물 및 이에 의해 제조된 다층플라스틱 기판
KR20150011936A (ko) 박막 트랜지스터용 기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857896

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14646606

Country of ref document: US

Ref document number: 2013857896

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015545374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE