WO2014084061A1 - 二次電池およびそれに用いるセパレータ - Google Patents
二次電池およびそれに用いるセパレータ Download PDFInfo
- Publication number
- WO2014084061A1 WO2014084061A1 PCT/JP2013/080827 JP2013080827W WO2014084061A1 WO 2014084061 A1 WO2014084061 A1 WO 2014084061A1 JP 2013080827 W JP2013080827 W JP 2013080827W WO 2014084061 A1 WO2014084061 A1 WO 2014084061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- alkali metal
- separator
- layer
- react
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a secondary battery and a separator used therefor.
- the present invention relates to a secondary battery and a separator used therefor, which can suppress the growth of dendrites that can be generated from an electrode composed of an alkali metal.
- the positive electrode (cathode) and the negative electrode (anode) are usually separated by a porous polymer film containing an organic electrolyte, thereby preventing direct electrical contact between the anode and the cathode. It is structured.
- V 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 , and the like are known as positive electrode active materials of this non-aqueous electrolyte secondary battery.
- LiCoO 2 , LiMn 2 O 4 , LiNiO 2 and the like are used as 4V-class positive electrode active materials in lithium ion batteries that are currently commercialized.
- metallic lithium is considered to be an ideal negative electrode material because it has a very high theoretical energy density (weight capacity density 3861 mAh / g) and a low charge / discharge potential ( ⁇ 3.045 Vvs. SHE).
- the electrolyte for example, a lithium salt dissolved in a non-aqueous organic solvent is used, which has good ionic conductivity and negligible electrical conductivity.
- a lithium salt dissolved in a non-aqueous organic solvent is used, which has good ionic conductivity and negligible electrical conductivity.
- lithium ions move from the positive electrode to the negative electrode (lithium).
- lithium ions move in the opposite direction and are returned to the positive electrode.
- lithium metal as the negative electrode has the following problems.
- Dendritic lithium lithium dendrite precipitates on the lithium surface of the negative electrode during charging. When charging and discharging are repeated, dendritic lithium grows, causing peeling from the lithium metal and lowering cycle characteristics. In the worst case, it grows to the extent that it breaks through the separator, causing a short circuit of the battery and causing ignition of the battery. Therefore, in order to use lithium metal as a negative electrode, it is necessary to solve the problem of lithium dendrite.
- Patent Document 1 Japanese Patent Laid-Open No. 5-258741 grows from the negative electrode side by using a separator having a smaller pore diameter than before in order to prevent the growth of the dendritic crystals (dendrites). It has been proposed not to grow crystals in the pores.
- Patent Document 2 Japanese Patent Laid-Open No. 9-293492 uses a stretched porous polytetrafluoroethylene (PTFE) membrane as a battery separator having high porosity and mechanical strength and high heat resistance. It has been proposed to treat the surface of the expanded porous PTFE membrane and the surface of the internal pores, and to modify and coat this surface with a hydrocarbon or a carbon oxide compound. This is because lithium metal reacts with PTFE. That is, since the separator (PTFE) is in contact with the entire surface of the negative electrode (lithium), a reaction occurs at the electrode / separator interface, and the surface of the lithium electrode is covered with the reactant, which adversely affects the electrolysis / deposition of lithium.
- PTFE polytetrafluoroethylene
- Patent Document 2 if the surface of the expanded porous PTFE membrane and the surface of the internal pores are treated, and this surface is modified and coated with a hydrocarbon or a carbon oxide compound, lithium and PTFE groups are obtained. It describes that the reaction of the material can be prevented.
- Patent Document 3 discloses a lithium electrode (anode) secondary battery including a first porous separator and a second separator, where The first separator is adjacent to the anode and is formed of an aliphatic hydrocarbon resin that does not react with lithium and lithium ions, and the second separator is located between the first separator and the cathode. It consists of thermoplastic polytetrafluoroethylene that reacts with lithium metal.
- Patent Document 1 to Patent Document 3 described above are intended to realize a secondary battery using lithium metal.
- the separator having a small pore diameter of Patent Document 1 in principle, the growth of lithium dendrite cannot be completely prevented as long as ions pass and precipitation occurs even in a small pore.
- Patent Document 2 even if the reaction between the electrode (lithium) / separator (fluorine content) can be prevented, the growth of lithium dendrite cannot be prevented.
- the calorific value is not sufficient, and polytetrafluoroethylene is dissolved to cause non-porous clogging. I can't.
- Patent Documents 1 to 3 describes or suggests the hydrophilic treatment of the separator. Therefore, in Patent Document 1 to Patent Document 3, it is considered that the hydrophilic treatment is not performed. A separator that has not been subjected to a hydrophilic treatment is not sufficiently wetted with an electrolytic solution, so that ions cannot move smoothly, and sufficient battery performance cannot be obtained.
- the separator is hydrophilized, it is self-evident that the separator is completely hydrophilized so that ions can move smoothly and the original battery performance can be obtained unless there is a special reason.
- Patent Documents 1 to 3 neither describe nor suggest such special reasons.
- the separator made of PTFE of Patent Documents 1 to 3 is completely hydrophilized, that is, completely coated with a hydrophilized material, and PTFE (separator) and lithium dendrite do not react. Absent. This means that the invention of Patent Document 3 (the PTFE is dissolved by the heat of reaction of PTFE and lithium to form a clog) is not realized.
- Patent Document 3 is considered to have not been subjected to a hydrophilic treatment, and therefore sufficient battery performance cannot be obtained.
- Patent Document 2 also presupposes that PTFE and lithium react with each other, and if it is completely hydrophilic, the problem of Patent Document 2 does not exist from the beginning.
- the invention of Patent Document 2 is also considered to have not been subjected to a hydrophilic treatment, and therefore sufficient battery performance cannot be obtained.
- Patent Document 1 cannot completely prevent the growth of lithium dendrite in principle. Therefore, when the hydrophilic treatment is performed so that PTFE does not react with lithium, the dendrite is promoted to grow and the possibility of reaching the cathode and causing a short circuit is increased.
- an object of the present invention is to provide a secondary battery and a separator used therefor that can reliably suppress the growth of dendrite that can be generated from an electrode composed of an alkali metal.
- a positive electrode A negative electrode composed of an alkali metal
- a separator composed of a tetrafluoroethylene (TFE) polymer or copolymer layer that reacts with the alkali metal dendrite, and having a hydrophilization treatment of 10% or more and 80% or less, and the separator and the separator
- a secondary battery comprising: a layer that does not react with the alkali metal dendrite positioned between the anode and the anode.
- TFE tetrafluoroethylene
- the layer that does not react with the alkali metal dendrite is part of the separator;
- Any of glass, polyvinylidene fluoride (PVDF), polyimide (PI), polyethylene (PE), or polypropylene (PP) composed of SiO x (0 ⁇ x ⁇ 2) is used as the layer that does not react with the alkali metal dendrite. Or a mixture thereof.
- the secondary battery according to (3) is any one of inorganic oxides selected from the group consisting of alumina, titanium oxide, sodium oxide, calcium oxide, boron oxide, potassium oxide, lead oxide, or a mixture thereof and a binder.
- the inner surface of the pore is coated with a material other than the tetrafluoroethylene (TFE) polymer or copolymer, (1) to (1)
- TFE tetrafluoroethylene
- a material other than the tetrafluoroethylene (TFE) polymer or copolymer is made of glass composed of SiO x (0 ⁇ x ⁇ 2), polyvinylidene fluoride (PVDF), polyimide (PI), polyethylene (PE),
- PVDF polyvinylidene fluoride
- PI polyimide
- PE polyethylene
- PP polypropylene
- the layer that does not react with the alkali metal dendrite is hydrophilized.
- the tetrafluoroethylene (TFE) polymer or copolymer is expanded polytetrafluoroethylene, perfluoroalkoxyalkane (PFA), tetrafluoroethylene / hexafluoropropene copolymer (FEP), ethylene / tetrafluoroethylene copolymer
- PFA perfluoroalkoxyalkane
- FEP tetrafluoroethylene / hexafluoropropene copolymer
- ethylene / tetrafluoroethylene copolymer The secondary battery according to any one of (1) to (9), which is a combination (ETFE), an ethylene / chlorotrifluoroethylene copolymer (ECTFE), or a mixture thereof.
- a secondary battery and a separator used therefor that can surely suppress the growth of dendrite that can be generated from an electrode composed of an alkali metal.
- the secondary battery of the present invention includes the following. ⁇ Positive electrode, A negative electrode composed of an alkali metal, A separator composed of a layer of tetrafluoroethylene (TFE) polymer or copolymer that reacts with the alkali metal dendrite, and having a hydrophilization treatment in a proportion of 10% to 80%, and the separator And a layer that does not react with the alkali metal dendrite located between the anode and the anode.
- TFE tetrafluoroethylene
- a secondary battery is basically composed of a positive electrode, a negative electrode, and a separator including an electrolyte serving as an ion conductive medium between the two electrodes.
- the negative electrode is made of an alkali metal.
- Alkali metals are considered to be ideal negative electrode materials because they have very high theoretical energy density and low charge / discharge potential.
- lithium is considered to be an ideal negative electrode material because it has a very high theoretical energy density (weight capacity density 3861 mAh / g) and a low charge / discharge potential ( ⁇ 3.045 Vvs. SHE).
- ions in the separator move from the positive electrode to the negative electrode.
- the ions move in the opposite direction and are returned to the positive electrode.
- dendritic alkali metal dendritic alkali metal (dendrites) is deposited on the surface of the negative electrode composed of alkali metal.
- the dendrite grows, peels off from the negative electrode metal, and the like, thereby reducing the cycle characteristics. In the worst case, the dendrite grows so as to break through the separator, causing a short circuit of the battery and causing the battery to ignite.
- the separator plays a role of separating the positive electrode and the negative electrode to prevent a short circuit, and retaining an electrolyte necessary for a battery reaction to ensure high ionic conductivity.
- the separator is composed of a layer of tetrafluoroethylene (TFE) polymer or copolymer. This is because the tetrafluoroethylene (TFE) polymer or copolymer has high porosity, high strength, and excellent heat resistance. This tetrafluoroethylene (TFE) polymer or copolymer contains fluorine.
- A means an alkali metal.
- TFE tetrafluoroethylene
- the present inventor has come up with utilizing the property that this fluorine reacts with an alkali metal. That is, the present invention has been completed on the basis of a new idea of the present inventor that dendrite growth can be suppressed by reacting with an alkali metal dendrite.
- the tetrafluoroethylene (TFE) polymer or copolymer constituting the separator is a fluororesin and itself is hydrophobic.
- separators are those in which ions present in the electrolyte (aqueous solution, organic solvent, etc.) can move from one location isolated by the separator to the other through the separator porous or fiber. It must be. Therefore, the tetrafluoroethylene (TFE) polymer or copolymer constituting the separator is subjected to a hydrophilic treatment. The hydrophilic treatment must be sufficiently performed so that the separator is hydrophilic and the inside of the separator is wet with the electrolyte.
- one feature of the present invention is that the hydrophilization treatment is performed at a ratio of 10% to 80%.
- the separator is not hydrophilized.
- the fluorine content which reacts with a dendrite contained in the tetrafluoroethylene (TFE) which comprises a separator remains exposed.
- the fluorine component that reacts with the dendrite remains exposed, the fluorine component reacts reliably with the dendrite and suppresses the growth of the dendrite.
- the proportion of the hydrophilic treatment is less than 10%, the hydrophilicity is not sufficient, that is, the ionic conductivity is not sufficient. In this case, the internal resistance as a battery becomes high, and the original battery performance cannot be obtained.
- the ratio of the hydrophilization treatment exceeds 80%, the fluorine component that reacts with the alkali metal dendrite is not sufficiently exposed, and the dendrite growth suppressing effect is lowered.
- performing this hydrophilic treatment in the ratio of 10% or more and 80% or less can be appropriately adjusted by the method of the hydrophilic treatment described below.
- the method for the hydrophilization treatment is not particularly limited, and a method described in Japanese Patent Publication No. 3463801 patented to the present applicant may be used.
- the polymer porous body having continuous pores has a hydrolyzable metal-containing organic compound (for example, a silicone-based organic compound such as tetraethoxysilane) on at least the surface of the fine fibers, micro-nodules or pore walls.
- a hydrolyzable metal-containing organic compound for example, a silicone-based organic compound such as tetraethoxysilane
- This is a method in which a solution-like gelation product formed by a partial gelation reaction of alkoxide) is attached, completely gelled, and dried to coat a metal oxide gel.
- a silicone-based alkoxide such as tetraethoxysilane when used as the hydrolyzable metal-containing organic compound, it can be made hydrophilic by coating silica gel.
- a hydrophilic polymer for example, PVA
- PVA may be impregnated into a porous body and then dried to form a structure in which the hydrophilic polymer is coated.
- the state of hydrophilization can be measured by various surface analysis methods.
- TFE tetrafluoroethylene
- FE-SEM field emission-scanning electron microscope
- the state of the porous structure can be confirmed from the electron microscope image. For example, it is possible to confirm a situation in which a hydrophilic treatment layer of several nm to several tens of nm is provided on the surface of a TFE node or fibril while maintaining a porous structure.
- the ratio of the elements present on the sample surface can be measured using the composition analysis function of the electron microscope.
- SiOx as a hydrophilic treatment material
- Si and O exist on the sample surface. From the surface presence rate of F after the hydrophilization treatment, the ratio of hydrophilization (the coverage with the hydrophilization treatment material) can be determined.
- the secondary battery of the present invention comprises a negative electrode composed of an alkali metal and a separator composed of a layer of a tetrafluoroethylene (TFE) polymer or copolymer that reacts with an alkali metal dendrite.
- TFE tetrafluoroethylene
- a negative electrode composed of an alkali metal and a separator that reacts with an alkali metal dendrite are brought into direct contact with each other, it is composed of a separator (tetrafluoroethylene (TFE) polymer or copolymer layer).
- the fluorine content in the catalyst reacts with the alkali metal of the negative electrode on the entire contact surface, and the defluorination of the separator proceeds regardless of the occurrence of dendrites, maintaining high strength and heat resistance with high porosity. become unable. That is, it cannot play the role of a separator.
- the layer that does not react with the dendrite plays a role of separating the positive electrode and the negative electrode to prevent a short circuit and retaining an electrolyte necessary for the battery reaction to ensure high ionic conductivity. Therefore, a material having high porosity, high strength and excellent heat resistance is used. Therefore, the dendrite that starts growing from the negative electrode grows through the vacancies in the layer that does not react with the dendrite. Since the layer that does not react with dendrite does not react with dendrite, the pore structure is kept healthy even if dendrite grows. The dendrite passes through the pores of the layer that does not react with the dendrite, and finally reaches the separator.
- the separator is composed of a tetrafluoroethylene (TFE) polymer or copolymer layer
- the fluorine content contained in the separator reacts with the alkali metal dendrite, and the dendrite growth stops here.
- the timing and place where the dendrites reach the separator depend on the route of pores in the layer that does not react with the dendrites, and the reaction between the dendrites and the fluorine content in the separator occurs in a dispersed manner in both time and place. Therefore, it is remarkably suppressed that the fluorine content in the separator reacts with the dendrite temporarily and locally to defluorinate, that is, carbonize and cannot serve as the separator. Thereby, the problem that a dendrite penetrates the separator and causes a short circuit between the negative electrode and the positive electrode is also solved.
- TFE tetrafluoroethylene
- any known or well-known material can be used as the positive electrode of a conventional lithium secondary battery.
- the material used as the positive electrode in the secondary battery of the present invention is not particularly limited, but a metal chalcogen compound that can occlude and release alkali metal ions such as sodium ions and lithium ions during charge and discharge is preferable.
- metal chalcogen compounds include vanadium oxide, vanadium sulfide, molybdenum oxide, molybdenum sulfide, manganese oxide, chromium oxide, titanium oxide, titanium sulfide, and the like. And composite oxides and sulfides.
- Examples of such compounds include Cr 3 O 8 , V 2 O 5 , V 5 O 18 , VO 2 , Cr 2 O 5 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 V 2 S 5 MoS 2. MoS 3 VS 2 , Cr 0.25 V 0.75 S 2 , Cr 0.5 V 0.5 S 2 and the like.
- LiMY 2 (M is a transition metal such as Co and Ni, Y is a chalcogen compound such as O and S), LiM 2 Y 4 (M is Mn and Y is O), an oxide such as WO 3 , CuS, It is also possible to use sulfides such as Fe 0.25 V 0.75 S 2 and Na 0.1 CrS 2 , phosphorus such as NiPS 8 and FePS 8 , sulfur compounds, selenium compounds such as VSe 2 and NbSe 3 , and iron compounds such as iron oxide. it can. Further, manganese oxide and lithium / manganese composite oxide having a spinel structure are also preferable.
- More specific materials include LiCoO 2 , LiCo 1-x Al x O 2 , LiCo 1-x Mg x O 2 , LiCo 1-x Zr x O 2 , LiMn 2 O 4 , Li 1-x Mn 2 ⁇ x O 4, LiCr x Mn 2 -x O 4, LiFe x Mn 2-x O 4, LiCo x Mn 2-x O 4, LiCu x Mn 2-x O 4, LiAl x Mn 2-x O 4, LiNiO 2, LiNi x Mn 2-x O 4, Li 6 FeO 4, NaNi 1-x Fe x O 2, NaNi 1-x Ti x O 2, FeMoO 4 Cl, LiFe 5 O 8, FePS 3, FeOCl, FeS 2 , Fe 2 O 3, Fe 3 O 4, ⁇ -FeOOH, ⁇ -FeOOH, ⁇ -FeOOH, ⁇ -LiFeO 2, ⁇ -NaFeO 2, LiFe 2 (MoO 4) 3, LiFe 2 (WO 4)
- the electrolyte solution is held in the separator between the positive electrode and the negative electrode.
- the electrolytic solution for example, an alkali metal salt dissolved in a non-aqueous organic solvent such as a sodium salt or a lithium salt is used.
- the electrolyte solution is not particularly limited as long as it has good ionic conductivity and negligible electrical conductivity, and any known or well-known material can be used as an electrolyte solution for a conventional lithium secondary battery. it can.
- Nonaqueous solvents that can be used in the electrolyte of the secondary battery of the present invention include acetonitrile (AN), ⁇ -butyrolactone (BL), ⁇ -valerolactone (VL), ⁇ -octanoic lactone (OL), diethyl ether (DEE), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), dimethyl sulfoxide (DMSO), 1,3-dioxolane (DOL), ethylene carbonate (EC), propylene carbonate (PC ), Dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl formate (MF), tetrahydrofuran (THF), 2-methyltetrahydrofuran (MTHF), 3-methyl-1,3-oxaziridine- 2-one (MOX), sulfolane (S), etc.
- AN acetonitrile
- BL
- alkali metal salts, particularly lithium salts, used for the electrolyte of the secondary battery include LiPF 6 , LiAsF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC.
- lithium salts such as 4 F 9 SO 3, and one or more of these are dissolved in the non-aqueous solvent at a concentration of about 0.5 to 2.0 M to form a non-aqueous electrolyte.
- the layer that does not react with an alkali metal dendrite is part of the separator, In the layer that does not react with the alkali metal dendrite, the inner surface of the pore may be at least partially covered with a material that does not react with the dendrite.
- a part of the separator is at least partially covered with a material whose inner surface of the pores does not react with dendrite, and this is a layer that does not react with alkali metal dendrite.
- the separator is composed of a tetrafluoroethylene (TFE) polymer or copolymer layer, and the fluorine content contained in this layer reacts with the dendrite.
- the layer of tetrafluoroethylene (TFE) polymer or copolymer is covered with a material that does not react with dendrite, that is, the fluorine content contained in this layer, and in this place the fluorine content and dendrite Reaction can occur, and this location can be a layer that does not react with alkali metal dendrites.
- TFE tetrafluoroethylene
- the separator since a part of the separator is only at least partially covered with a material that does not react with dendrite, the number of battery parts is reduced, which is advantageous in assembling a secondary battery.
- the layer that does not react with the alkali metal dendrite may be independent of the separator.
- a step of covering a part of the separator with the material that does not react with dendrite is unnecessary.
- the layer that does not react with the alkali metal dendrite independent of this separator is glass, polyvinylidene fluoride (PVDF), polyimide (PI), polyethylene (PE), or polypropylene composed of SiO x (0 ⁇ x ⁇ 2). It may be composed of any of (PP) or a mixture thereof. These materials do not react with alkali metal dendrites. These materials can be appropriately prepared with high porosity, high strength and heat resistance.
- PVDF polyvinylidene fluoride
- PVDF polyvinylidene fluoride
- the layer that does not react with the alkali metal dendrite independent of this separator is either an inorganic oxide selected from the group consisting of alumina, titanium oxide, sodium oxide, calcium oxide, boron oxide, potassium oxide, lead oxide, or those It may be composed of a mixture of and a binder. These materials also do not react with alkali metal dendrites. These materials can also be appropriately prepared with high porosity and high strength and heat resistance.
- the inner surface of the pore is a tetrafluoroethylene (TFE) polymer. Or you may coat
- TFE tetrafluoroethylene
- the method for coating the material is not particularly limited, and a conventional method corresponding to the material can be appropriately used.
- the material to be coated may be made into solution and impregnated.
- any method such as vacuum pressure impregnation, vacuum impregnation, spraying, evaporation to dryness, metering bar method, die coating method, gravure method, reverse roll method, doctor blade method, knife coating method, bar coating method, etc. Good.
- the solution is only applied to the inner surface of the pores, the solution fills the voids. That is, the term “impregnation” here is a concept that includes pores as long as the pores are filled with a solution, and also includes application and the like.
- the application method is not particularly limited, and any method such as a metalling bar method, a die coating method, a gravure method, a reverse roll method, or a doctor blade method may be used.
- chemical modification or physical modification may be used as a coating method.
- the chemical modification include a method of adding a functional group to the inner surface of the pores by acetylation, isocyanateation, acetalization, or the like, and a method of coating the inner surface of the pores with an organic or inorganic substance by a chemical reaction.
- Examples of the physical modification include physical vapor deposition methods such as vacuum vapor deposition, ion plating, and sputtering, chemical vapor deposition methods, and plating methods such as electroless plating and electrolytic plating.
- the material to be coated in order to increase the bonding force between the material to be coated as a pretreatment and the material to be coated (raw material is tetrafluoroethylene (TFE))
- TFE tetrafluoroethylene
- the inner surface of the pores is coated with chemical treatment (alcohol replacement treatment, alkali treatment, etc.) and physical treatment (corona treatment, plasma treatment, UV treatment, etc.) Adhesive strength is improved by attaching surface functional groups to the FC bonds on the inner surface of the pores of the material to be produced.
- TFE tetrafluoroethylene
- Materials other than tetrafluoroethylene (TFE) polymer or copolymer that coat the inner surface of the pores of the layer that does not react with dendrite include glass composed of SiO x (0 ⁇ x ⁇ 2), polyfluoride It may be any of vinylidene (PVDF), polyimide (PI), polyethylene (PE), polypropylene (PP), or a mixture thereof. These materials do not react with alkali metal dendrites. These materials can be appropriately prepared having high strength and heat resistance. Furthermore, these materials can be appropriately coated (without blocking the pores) on the inner surface of the pores of the layer that does not react with dendrite, and it is also possible to maintain a high porosity as a layer that does not react with dendrite. Is possible.
- the layer that does not react with the alkali metal dendrite may be hydrophilized.
- hydrophilizing the property which does not react with an alkali metal dendrite is brought about, or the property can be improved. This is presumably because a hydrophilic group or hydrophilic substance is attached to the inner surface of the pores of the layer that does not react with dendrite, and this hydrophilic group or hydrophilic substance does not react with dendrite.
- the hydrophilic treatment applied to the separator described above may be applied to a layer that does not react with dendrite. Even if the layer that does not react with dendrite is a part of the separator and contains a fluorine component that reacts with dendrite, the inner surface of the pore is hydrophilized so that the fluorine component that reacts with dendrite becomes hydrophilic. It can be coated with a functional group or a hydrophilic substance, where reaction with dendrites can be prevented. In other words, a layer that does not react with dendrite can be formed by the hydrophilic treatment.
- the tetrafluoroethylene (TFE) polymer or copolymer constituting the separator and the layer that does not react with dendrite may be stretched or stretched porous.
- TFE tetrafluoroethylene
- Many studies have been made on stretched porous membranes of tetrafluoroethylene (TFE) polymers or copolymers, and high porosity and high strength membranes have been obtained.
- Tetrafluoroethylene (TFE) polymers or copolymers are known to have high crystallinity and high strength per se.
- a stretched porous membrane of tetrafluoroethylene (TFE) polymer or copolymer is suitable by stretching a precursor made by melting and fusing a fine powder of tetrafluoroethylene (TFE) polymer or copolymer.
- TFE tetrafluoroethylene
- the tetrafluoroethylene (TFE) polymer or copolymer has a high melting point and has an advantage that it does not melt even at 250 ° C. or higher.
- the stretched porous membrane of tetrafluoroethylene (TFE) polymer or copolymer is obtained by mixing fine powder of tetrafluoroethylene (TFE) polymer or copolymer with a molding aid. It is obtained by removing the molding aid after or without removing the molding aid from the molded article of paste, and firing it as necessary.
- TFE tetrafluoroethylene
- a fibril is oriented in the stretching direction, and a fibrous structure is formed in which pores are formed between the fibrils.
- the fibrils spread radially and have a cobweb-like fibrous structure in which a large number of pores defined by nodes and fibrils exist.
- the porosity can be appropriately adjusted by stretching. Although it will not specifically limit if electrolyte solution can be hold
- the thickness of the porous membrane (the layer that does not react with the separator and dendrite) is not particularly limited, and may be appropriately determined depending on the application. As long as it is disposed between the electrodes, the thickness may be preferably 1 ⁇ m or more and 1000 ⁇ m or less. When the thickness is less than 1 ⁇ m, the strength may be insufficient and handling may be difficult. On the other hand, when the thickness exceeds 1000 ⁇ m, it may be difficult to uniformly impregnate the electrolytic solution.
- the thickness of the porous film disposed between the electrodes is more preferably 10 ⁇ m or more and 500 ⁇ m or less, and further preferably 20 ⁇ m or more and 200 ⁇ m or less.
- the tetrafluoroethylene (TFE) polymer or copolymer is not limited as long as it has high porosity, high strength and heat resistance, and can react with an alkali metal dendrite. More specifically, the tetrafluoroethylene (TFE) polymer or copolymer includes expanded polytetrafluoroethylene, perfluoroalkoxyalkane (PFA), tetrafluoroethylene / hexafluoropropene copolymer (FEP), ethylene.
- PFA perfluoroalkoxyalkane
- FEP tetrafluoroethylene / hexafluoropropene copolymer
- ETFE ethylene-Tetrafluoroethylene copolymer
- ECTFE ethylene-chlorotrifluoroethylene copolymer
- the thickness of the layer that does not react with the alkali metal dendrite may be 0.1 ⁇ m or more.
- the dendrite starts growing from the negative electrode, passes through the pores of the layer that does not react with the dendrite, and finally reaches the separator. Reacts with the alkali metal dendrite so that the time and place where the dendrite reaches the separator is dispersed so that the fluorine content in the separator temporarily and locally reacts with the dendrite to prevent defluorination, ie, carbonization. It is preferable to adjust the thickness of the non-performing layer to an appropriate thickness. If it is said thickness, the time and place which reaches
- the thickness of this layer is preferably 1.0 ⁇ m or more, more preferably 10 ⁇ m or more. There is no particular upper limit to the thickness of this layer, but an appropriate thickness may be set from the viewpoint of space saving of the secondary battery.
- the separator may contain at least fluorine that can react with the total mass of the alkali metal constituting the negative electrode. Even if all the alkali metals constituting the negative electrode may react with the separator, the separator contains fluorine that can react with the total mass of the alkali metal constituting the negative electrode, so the alkali metal constituting the negative electrode Is completed in the separator. Therefore, it is possible to reliably prevent the dendrite from penetrating the separator and short-circuiting from the negative electrode to the positive electrode.
- the alkali metal constituting the negative electrode may be lithium or sodium. This is because metallic lithium is considered as an ideal negative electrode material because it has a very high theoretical energy density (weight capacity density 3861 mAh / g) and a low charge / discharge potential ( ⁇ 3.045 Vvs. SHE). Metallic sodium also has a high theoretical energy density and a low charge / discharge potential. Lithium or sodium has also been reported to grow as dendrites, but according to the present invention, the growth of these dendrites can be suppressed.
- the secondary battery according to the present invention may further include a shutdown layer.
- the shutdown layer is a layer having a shutdown function.
- the shutdown function is a function that interrupts current when the temperature of the battery rises, that is, a function that stops thermal runaway of the battery.
- a layer having micropores which is a relatively low melting point layer that closes the micropores when the battery temperature rises above a certain level, is particularly limited. It is not a thing.
- a polyolefin, particularly a polyethylene microporous film may be used as the shutdown layer.
- it is not limited to the membrane, and a nanofiber web, a fiber web, or the like may be used.
- the shutdown layer may include a thermally reactive microsphere or a PTC element.
- a shutdown layer may be located between the separator and the positive electrode. Since the position of the shutdown layer is for cutting off the current, there is no particular limitation as long as it is between the positive electrode and the negative electrode in the secondary battery, and the shutdown layer is positioned between the separator and the positive electrode. Also good. In this case, even if the dendrite continues to grow and reaches the shutdown layer through the separator, the shutdown layer melts and closes due to the heat generated by the defluorination reaction between the dendrite (alkali metal) and the separator (TFE). . Therefore, it is possible to reliably prevent the dendrite from penetrating the separator and short-circuiting from the negative electrode to the positive electrode.
- the present invention also relates to a separator used in the above secondary battery.
- PTFE membrane manufactured by Nippon Gore Co., Ltd.
- Comparative Example 4 generally available porous membranes shown in Table 1 were employed.
- the film thickness other than the glass fiber cloth was approximately 25 ⁇ m, and the porosity was approximately 50%.
- the film thickness of the glass fiber cloth was 100 um.
- the separator was hydrophilized using silica.
- the hydrophilization ratio was changed between 10% and 80% (20% to 90% in terms of internal exposure rate).
- 100 parts of tetraethoxysilane manufactured by Shin-Etsu Silicone Co., Ltd.]
- 52 parts of water 52 parts of water
- 133 parts of ethanol were reacted at 80 ° C. for 24 hours under reflux with the moisture supply from the outside air blocked by a calcium chloride tube.
- a partially gelled solution of the precursor was prepared.
- the diluted solution of this solution was impregnated into the PTFE membrane, and then immersed in warm water at 60 ° C. to complete the gelation.
- Example 1 the coating material or laminate shown in Table 1 was prepared between the separator and the negative electrode as a layer that did not react with dendrite.
- the separator was coated with SiOx (glass-like substance) as a layer that did not react with dendrite.
- SiOx coating agent (New Technology Creation Laboratory, Siragusital B4373 (A) solid content 60%) was dissolved in IPA solvent, and the solid content concentration of SiOx coating agent was adjusted to 5%.
- a porous PTFE film having a thickness of 25 ⁇ m was coated only on the surface layer by the gravure coating method with the SiOx coating agent having the above-mentioned concentration adjustment.
- the drying conditions were 60 ° C. and 1 hour pre-drying, followed by curing for 96 hours in an environment of room temperature 25 ° C. and 60% (relative humidity).
- the thickness of the layer that did not react with dendrite was 0.2 ⁇ m. This thickness was determined by observing the thickness of the SiOx layer on the surface of the PTFE film (separator) using a TEM (transmission electron microscope).
- Example 6 PVDF (manufacturer: ARKEMA specification: KYNAR710) was dissolved in a predetermined organic solvent so as to have a predetermined concentration, and this was coated in the same manner as in Example 1 and dried.
- Example 7 PI (manufacturer: Hitachi Chemical Co., Ltd. specification: HCI) dissolved in a predetermined organic solvent was coated in the same manner as in Example 1, dried and cured.
- PI manufactured by Hitachi Chemical Co., Ltd. specification: HCI
- Example 8 a PE porous film (with a film thickness of 25 ⁇ m and a porosity of 50%) was laminated on the separator as a layer that did not react with dendrite.
- Example 9 as a layer that does not react with dendrite, a PP porous film (with a film thickness of 25 ⁇ m and a porosity of 50%) was laminated on the separator.
- the amount of F, O, C, and Si on the inner surface of the pore was quantified.
- F / C 2: 1 (66.7: 33.3%). Based on this ratio, the silica coverage was calculated from the ratio of the surface F determined.
- the extent to which the inner surface of the pores was coated with the coating material was measured. As a result, as shown in Table 1, 95% of the inner surface of the pore was covered with the coating material. The measurement method was the same as described above.
- ⁇ Charge / discharge test> Using this coin cell, a charge / discharge test (a coin cell cycle using Li / Li) was performed. The charge / discharge measurement was performed using a battery charge / discharge device (HJ1001SM8A) manufactured by Hokuto Denko. A charge / discharge test (DOD: depth of discharge of about 25%) for 30 minutes was repeated at a current density of 10 mA / cm 2 . The number of cycles until an internal short circuit occurred due to dendrite was measured. The results are shown in Table 2.
- the number of cycles until the short circuit is 1000 or more.
- the number of cycles to short circuit was dramatically reduced. It was confirmed that the secondary battery of the present invention can suppress the growth of dendrite that can be generated from an electrode composed of an alkali metal.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Cell Separators (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
そのためリチウム金属を負極として用いるためにはリチウムデンドライトの問題を解決する必要がある。
しかしながら、特許文献1の細孔径の小さなセパレータでは、小さな細孔であってもイオンが通過して析出が生じる限り、原理的にリチウムデンドライトの成長を完全に防ぐことはできない。
特許文献2では、電極(リチウム)/セパレータ(フッ素分)間での反応を防ぐことができても、リチウムデンドライトの成長を防ぐことはできない。
特許文献3で記載されている、リチウムデンドライトとポリテトラフルオロエチレンとの反応では、その発熱量(理論値)が十分ではなく、ポリテトラフルオロエチレンを溶解して、非多孔性の閉塞を生じることはできない。実際に追試も行ったが、この反応によって、ポリテトラフルオロエチレンを溶解して、非多孔性の閉塞を生じることはできなかった。
いずれの場合も、最終的なリチウムデンドライトと正極との短絡や、剥離した孤立リチウムデンドライトによるサイクル特性の低下が生じる可能性が残っている。
このことは、特許文献3の発明(PTFEとリチウムとの反応熱により、PTFEを溶解させて、閉塞を形成する)は成立しないことを意味する。言い換えれば、特許文献3の発明は、親水化処理をしていないものであると考えられ、したがって十分な電池性能を得られない。
また、特許文献2もPTFEとリチウムが反応することを前提としており、完全に親水化していれば、特許文献2の課題ははじめから存在しない。言い換えれば、特許文献2の発明も、親水化処理をしていないものであると考えられ、したがって十分な電池性能を得られない。
特許文献1は、上述のとおり、原理的にリチウムデンドライトの成長を完全に防ぐことはできない。したがって、親水化処理をしてPTFEがリチウムと反応しないものにした場合、デンドライトは却って成長が促進され、カソードに到達して短絡を生じる可能性が高まる。
正極、
アルカリ金属から構成される負極、
該アルカリ金属のデンドライトと反応するテトラフルオロエチレン(TFE)重合体または共重合体の層から構成され、親水化処理が10%以上且つ80%以下の割合でされているセパレータ、および
該セパレータと該負極との間に位置する該アルカリ金属のデンドライトと反応しない層、を含むことを特徴とする、二次電池。
(2)
該アルカリ金属のデンドライトと反応しない層が、該セパレータの一部であり、
該アルカリ金属のデンドライトと反応しない層において、その細孔の内表面が該アルカリ金属のデンドライトと反応しない材料で少なくとも部分的に覆われていることを特徴とする、(1)に記載の二次電池。
(3)
該アルカリ金属のデンドライトと反応しない層が、該セパレータから独立していることを特徴とする、(1)に記載の二次電池。
(4)
該アルカリ金属のデンドライトと反応しない層が、SiOX(0<x≦2)から構成されるガラス、ポリフッ化ビニリデン(PVDF)、ポリイミド(PI)、ポリエチレン(PE)、またはポリプロピレン(PP)のいずれかまたはそれらの混合物から構成されることを特徴とする、(3)に記載の二次電池。
(5)
該アルカリ金属のデンドライトと反応しない層が、アルミナ、酸化チタン、酸化ナトリウム、酸化カルシウム、酸化ホウ素、酸化カリウム、酸化鉛からなる群から選択される無機酸化物のいずれかまたはそれらの混合物およびバインダから構成されることを特徴とする、(3)に記載の二次電池。
(6)
該アルカリ金属のデンドライトと反応しない層において、その細孔の内表面が、テトラフルオロエチレン(TFE)重合体または共重合体以外の材料で被覆されていることを特徴とする、(1)~(5)のいずれか1項に記載の二次電池。
(7)
該テトラフルオロエチレン(TFE)重合体または共重合体以外の材料が、SiOX(0<x≦2)から構成されるガラス、ポリフッ化ビニリデン(PVDF)、ポリイミド(PI)、ポリエチレン(PE)、またはポリプロピレン(PP)のいずれかまたはそれらの混合物であることを特徴とする、(6)に記載の二次電池。
(8)
該アルカリ金属のデンドライトと反応しない層が、親水化処理されていることを特徴とする、請求項(1)~(7)のいずれか1項に記載の二次電池。
(9)
該テトラフルオロエチレン(TFE)重合体または共重合体が、延伸または延伸多孔質である、(1)~(8)のいずれか1項に記載の二次電池。
(10)
該テトラフルオロエチレン(TFE)重合体または共重合体が、延伸ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン(PFA)、テトラフルオロエチレン・ヘキサフルオロプロペン共重合体(FEP)、エチレン・テトラフルオロエチレン共重合体(ETFE)、もしくはエチレン・クロロトリフルオロエチレン共重合体(ECTFE)またはこれらの混合物である、(1)~(9)のいずれか1項に記載の二次電池。
(11)
該アルカリ金属のデンドライトと反応しない層の厚みは、0.1μm以上であることを特徴とする、(1)~(10)のいずれか1項に記載の二次電池。
(12)
該セパレータは、少なくとも該負極を構成する該アルカリ金属の全質量と反応し得るフッ素を含んでいることを特徴とする、(1)~(11)のいずれか1項に記載の二次電池。
(13)
該アルカリ金属がリチウムまたはナトリウムである、(1)~(12)のいずれか1項に記載の二次電池。
(14)
シャットダウン層をさらに含んでなる、(1)~(13)のいずれか1項に記載の二次電池。
(15)
該シャットダウン層が、該セパレータと該正極との間に位置する、(14)に記載の二次電池。
(16)
(1)~(15)のいずれか1項に記載の二次電池で用いられる、該セパレータ。
・正極、
・アルカリ金属から構成される負極、
・該アルカリ金属のデンドライトと反応するテトラフルオロエチレン(TFE)重合体または共重合体の層から構成され、親水化処理が10%以上且つ80%以下の割合でされているセパレータ、および
・該セパレータと該負極との間に位置する該アルカリ金属のデンドライトと反応しない層。
充電中、セパレータ中のイオンは正極から負極へと移動する。放電中は、イオンは逆方向に移動して、正極へと戻される。
充電時に、アルカリ金属から構成される負極の表面に樹枝状のアルカリ金属(デンドライト)が析出する。充放電を繰り返すとデンドライトは成長していき、負極金属からの剥離などを生じて、サイクル特性を低下させる。最悪の場合にはデンドライトはセパレータを突き破る程に成長し、電池の短絡を引き起こし、電池の発火の原因になる。
-[CF2-CF2]-n + 4nA -> =[C=C]=n + 4nAF
ここで、Aはアルカリ金属を意味する。
テトラフルオロエチレン(TFE)重合体または共重合体中は、含有されているフッ素がアルカリ金属と反応すると、脱フッ素化(すなわち炭化)がおこり、高空孔率で高強度かつ耐熱性を保つことができないと考えられていた。逆に、本発明者は、このフッ素がアルカリ金属と反応する性質を利用することに思い至った。つまり、本発明は、アルカリ金属のデンドライトと反応をさせることにより、デンドライトの成長を抑制させることができる、という本発明者の新たな発想に基づいて完成されたものである。
なお、この親水化処理を10%以上且つ80%以下の割合で行うことは、次に述べる親水化処理の方法によって適宜調整することができる。
または、親水性ポリマー(例えばPVA等)を、多孔質体に含浸させて、その後乾燥して形成して、親水性ポリマーを被覆した構造としてもよい。
該アルカリ金属のデンドライトと反応しない層において、その細孔の内表面がデンドライトと反応しない材料で少なくとも部分的に覆われていてもよい。
テトラフルオロエチレン(TFE)に含まれるフッ素分は、アルカリ金属のデンドライトと反応を生じる。テトラフルオロエチレン(TFE)以外の材料であれば、デンドライトと反応する可能性は小さく、デンドライトと反応しない層の、デンドライトと反応しない機能をさらに向上させることができる。
なお、細孔の内表面へ溶液を塗布するのみであっても、溶液は空隙を満たす。即ち、ここでの「含浸」は、細孔の空隙が溶液で満たされればよく、塗布等も含む概念である。
塗布方法は特に限定されないが、例えば、メタリングバー方式、ダイコート方式、グラビア方式、リバースロール方式、ドクターブレード方式などいずれの方式であってもよい。
また、被覆する方法として、化学修飾や物理修飾を用いてもよい。化学修飾としては、アセチル化、イソシアネート化、アセタール化などにより細孔の内表面に官能基を付加させる方法や、化学反応により有機物や無機物を細孔の内表面に被覆する方法などが挙げられる。物理修飾としては、真空蒸着、イオンプレーティング、スパッタリングなどの物理蒸着法、化学蒸着法、無電解メッキや電解メッキなどのメッキ法などが挙げられる。これらの被覆するための方法は単独で用いてもよく、また複数を併用してもよい。
また、デンドライトと反応しない層がセパレータの一部である場合、前処理として被覆する材料と被覆される材料(原材料がテトラフルオロエチレン(TFE))との接合力を増す為に、被覆される材料(二次電池における、デンドライトと反応しない層に相当)の細孔の内表面を化学処理(アルコール置換処理、アルカリ処理等)、物理処理(コロナ処理、プラズマ処理、UV処理等)して、被覆される材料の細孔の内表面のF-C結合に表面官能基を付着させると接着強度が向上する。
親水化することによって、アルカリ金属のデンドライトと反応しない性質をもたらすか、またはその性質を向上させることができる。これは、デンドライトと反応しない層の細孔の内表面に、親水性基または親水性物質が付着され、この親水性基または親水性物質がデンドライトと反応しないためと考えられる。
テトラフルオロエチレン(TFE)重合体または共重合体の延伸多孔質膜は従来から多くの研究がなされており、高空孔率で高強度の膜が得られている。テトラフルオロエチレン(TFE)重合体または共重合体は結晶性が高く、それ自身が高い強度を持つことが知られている。テトラフルオロエチレン(TFE)重合体または共重合体の延伸多孔質膜は、テトラフルオロエチレン(TFE)重合体または共重合体の微粉末を溶融融着してできた前駆体を延伸することによって好適に得られる(特公昭56-45773号公報、同56-17216号公報、米国特許第4187390号各明細書参照)。テトラフルオロエチレン(TFE)重合体または共重合体の微粉末の融着条件あるいは前駆体の延伸条件を制御することにより高空孔率で高強度の膜を作製することができる。また、テトラフルオロエチレン(TFE)重合体または共重合体は融点が高く、250℃以上でも溶融しないという利点がある。
空孔率(%)=[(2.2-ρ)/2.2]×100
デンドライトは、負極から成長を開始し、デンドライトと反応しない層の空孔をくぐり抜けて、ようやく、セパレータに到達する。セパレータ中のフッ素分が、一時的かつ局部的にデンドライトと反応して、脱フッ素化、すなわち炭化しないように、デンドライトがセパレータに到達する時期と場所が分散するように、アルカリ金属のデンドライトと反応しない層を適当な厚さに調整することが好ましい。上記の厚みであれば、十分に、デンドライトのセパレータに到達する時期と場所が分散する。この分散をより確実なものにするために、この層の厚みは、好ましくは1.0μm以上、より好ましくは10μm以上としてもよい。この層の厚みに、特に上限はないが、二次電池の省スペース化の観点から、適当な厚さを設定してもよい。
万一、負極を構成する全てのアルカリ金属がセパレータと反応することがあっても、セパレータが負極を構成するアルカリ金属の全質量と反応し得るフッ素を含んでいるので、負極を構成するアルカリ金属の反応はセパレータ中で完了する。したがって、デンドライトがセパレータを貫通して、負極から正極への短絡することを確実に防止することができる。
金属リチウムは非常に高い理論エネルギー密度(重量容量密度3861mAh/g)および低い充放電電位(-3.045Vvs.SHE)を有するため理想的な負極材料と考えられているからである。また、金属ナトリウムも高い理論エネルギー密度および低い充放電電位を有する。そして、リチウムまたはナトリウムは、デンドライトとして成長することも報告されているが、本発明によって、これらのデンドライトの成長を抑制することが可能である。
シャットダウン層とは、シャットダウン機能を有する層である。シャットダウン機能とは、電池の温度が上昇したときに、電流を遮断する機能、すなわち電池の熱暴走を食い止める機能である。シャットダウン層の一例としては、微細孔を有する層であって、電池の温度がある一定以上に上昇した場合に、微細孔が閉塞するような比較的低融点の層であれば、特に制限されるものではない。例えば、シャットダウン層として、ポリオレフィン、特にポリエチレン微多孔膜が用いられてもよい。また、膜にかぎらずnanofiberウェブ、ファイバーウェブなどでも構わない。上記以外にも、シャットダウン層に熱反応性の小球体を含んだり、PTC要素を含むようなものであっても構わない。
シャットダウン層の位置は、電流を遮断するためのものであるため、二次電池内の正極および負極の間であれば、特に制限はなく、シャットダウン層を、セパレータと正極との間に位置してもよい。この場合、万一デンドライトが成長し続けて、セパレータを貫通してシャットダウン層に達しても、デンドライト(アルカリ金属)とセパレータ(TFE)の脱フッ素化反応の発熱により、シャットダウン層は溶融し閉塞する。したがって、デンドライトがセパレータを貫通して、負極から正極への短絡することを確実に防止することができる。
IPA溶媒にSiOxコート剤(新技術創造研究所 シラグシタール B4373(A) 固形分60%)を溶解させ、SiOxコート剤の固形分濃度が5%になるように調整した。
25μmの厚みを有する多孔質PTFEフィルムに上記濃度調整を行ったSiOxコート剤をグラビアコート法により表面層にのみコーティングした。
乾燥条件は、60℃、1hr予備乾燥した後、室温25℃、60%(相対湿度)の環境下で96hr硬化させた。
デンドライトと反応しない層の厚みは、0.2μmであった。この厚みは、TEM(透過型電子顕微鏡)を用いて、PTFE膜(セパレータ)表面のSiOx層の厚みを観察して求めた。
電極としてφ14mm、厚さ100umのLiを2枚用意した(8.21mg 31.7mAh)。実施例1~9、比較例1~4のセパレータおよびデンドライトと反応しない層を、φ17mmに成形した。電解液として、1moldm-3LiPF6/EC:PC=1:1を用意した。これらの部材をグローブボックス中で、宝泉製2032コインセルに組み込むことで、図1のコインセルを作製した。
このコインセルを用いて、充放電試験(Li/Liによるコインセルサイクル)を実施した。 充放電測定は、北斗電工製電池充放電装置(HJ1001SM8A)を用いて行った。電流密度10mA/cm2で30分間の充放電試験(DOD:放電深度 約25%)を繰り返した。デンドライトによる内部ショートが生じるまでのサイクル数を計測した。結果を表2に示す。
本発明の二次電池により、アルカリ金属から構成される電極から発生し得るデンドライトの成長を抑制することができる、ことが確認された。
Claims (16)
- 正極、
アルカリ金属から構成される負極、
該アルカリ金属のデンドライトと反応するテトラフルオロエチレン(TFE)重合体または共重合体の層から構成され、親水化処理が10%以上且つ80%以下の割合でされているセパレータ、および
該セパレータと該負極との間に位置する該アルカリ金属のデンドライトと反応しない層、を含むことを特徴とする、二次電池。 - 該アルカリ金属のデンドライトと反応しない層が、該セパレータの一部であり、
該アルカリ金属のデンドライトと反応しない層において、その細孔の内表面が該アルカリ金属のデンドライトと反応しない材料で少なくとも部分的に覆われていることを特徴とする、請求項1に記載の二次電池。 - 該アルカリ金属のデンドライトと反応しない層が、該セパレータから独立していることを特徴とする、請求項1に記載の二次電池。
- 該アルカリ金属のデンドライトと反応しない層が、SiOX(0<x≦2)から構成されるガラス、ポリフッ化ビニリデン(PVDF)、ポリイミド(PI)、ポリエチレン(PE)、またはポリプロピレン(PP)のいずれかまたはそれらの混合物から構成されることを特徴とする、請求項3に記載の二次電池。
- 該アルカリ金属のデンドライトと反応しない層が、アルミナ、酸化チタン、酸化ナトリウム、酸化カルシウム、酸化ホウ素、酸化カリウム、酸化鉛からなる群から選択される無機酸化物のいずれかまたはそれらの混合物およびバインダから構成されることを特徴とする、請求項3に記載の二次電池。
- 該アルカリ金属のデンドライトと反応しない層において、その細孔の内表面が、テトラフルオロエチレン(TFE)重合体または共重合体以外の材料で被覆されていることを特徴とする、請求項1~5のいずれか1項に記載の二次電池。
- 該テトラフルオロエチレン(TFE)重合体または共重合体以外の材料が、SiOX(0<x≦2)から構成されるガラス、ポリフッ化ビニリデン(PVDF)、ポリイミド(PI)、ポリエチレン(PE)、またはポリプロピレン(PP)のいずれかまたはそれらの混合物であることを特徴とする、請求項6に記載の二次電池。
- 該アルカリ金属のデンドライトと反応しない層が、親水化処理されていることを特徴とする、請求項1~7のいずれか1項に記載の二次電池。
- 該テトラフルオロエチレン(TFE)重合体または共重合体が、延伸または延伸多孔質である、請求項1~8のいずれか1項に記載の二次電池。
- 該テトラフルオロエチレン(TFE)重合体または共重合体が、延伸ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン(PFA)、テトラフルオロエチレン・ヘキサフルオロプロペン共重合体(FEP)、エチレン・テトラフルオロエチレン共重合体(ETFE)、もしくはエチレン・クロロトリフルオロエチレン共重合体(ECTFE)またはこれらの混合物である、請求項1~9のいずれか1項に記載の二次電池。
- 該アルカリ金属のデンドライトと反応しない層の厚みは、0.1μm以上であることを特徴とする、請求項1~10のいずれか1項に記載の二次電池。
- 該セパレータは、少なくとも該負極を構成する該アルカリ金属の全質量と反応し得るフッ素を含んでいることを特徴とする、請求項1~11のいずれか1項に記載の二次電池。
- 該アルカリ金属がリチウムまたはナトリウムである、請求項1~12のいずれか1項に記載の二次電池。
- シャットダウン層をさらに含んでなる、請求項1~13のいずれか1項に記載の二次電池。
- 該シャットダウン層が、該セパレータと該正極との間に位置する、請求項14に記載の二次電池。
- 請求項1~15のいずれか1項に記載の二次電池で用いられる、該セパレータ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/440,909 US9627673B2 (en) | 2012-11-27 | 2013-11-14 | Second battery and separator used therein |
CN201380061130.XA CN104838520B (zh) | 2012-11-27 | 2013-11-14 | 二次电池及其使用的间隔物 |
EP13857713.5A EP2930766B1 (en) | 2012-11-27 | 2013-11-14 | Secondary battery and separator used therein |
KR1020157013958A KR101720445B1 (ko) | 2012-11-27 | 2013-11-14 | 이차 전지 및 그것에 사용하는 세퍼레이터 |
JP2014550123A JP6226879B2 (ja) | 2012-11-27 | 2013-11-14 | 二次電池およびそれに用いるセパレータ |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-258782 | 2012-11-27 | ||
JP2012258782 | 2012-11-27 | ||
JPPCT/JP2013/076741 | 2013-10-01 | ||
JP2013076741 | 2013-10-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014084061A1 true WO2014084061A1 (ja) | 2014-06-05 |
Family
ID=50827706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080827 WO2014084061A1 (ja) | 2012-11-27 | 2013-11-14 | 二次電池およびそれに用いるセパレータ |
Country Status (6)
Country | Link |
---|---|
US (1) | US9627673B2 (ja) |
EP (1) | EP2930766B1 (ja) |
JP (1) | JP6226879B2 (ja) |
KR (1) | KR101720445B1 (ja) |
CN (1) | CN104838520B (ja) |
WO (1) | WO2014084061A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015182615A1 (ja) * | 2014-05-26 | 2015-12-03 | 日本ゴア株式会社 | 二次電池およびそれに用いるセパレータ |
KR20220115606A (ko) | 2020-01-31 | 2022-08-17 | 아사히 가세이 가부시키가이샤 | 미다공막 및 그의 제조 방법 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018529179A (ja) * | 2015-07-22 | 2018-10-04 | セルガード エルエルシー | 改良された膜、セパレータ、電池及び方法 |
FR3084528B1 (fr) * | 2018-07-27 | 2022-11-18 | Arkema France | Anode pour batterie li-ion |
CN113540390B (zh) * | 2021-06-29 | 2022-04-01 | 哈尔滨工业大学 | 一种锌离子电池金属锌负极动态界面涂层的制备方法及其应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4187390A (en) | 1970-05-21 | 1980-02-05 | W. L. Gore & Associates, Inc. | Porous products and process therefor |
JPS5645773B2 (ja) | 1973-06-14 | 1981-10-28 | ||
JPH05258741A (ja) | 1992-03-11 | 1993-10-08 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用セパレータ |
US5427872A (en) | 1993-11-17 | 1995-06-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Dendrite preventing separator for secondary lithium batteries |
JPH08250101A (ja) * | 1995-03-15 | 1996-09-27 | Japan Gore Tex Inc | 電気化学反応装置用セパレータ及びそれを用いた電気化学反応装置 |
JPH09293492A (ja) | 1996-04-25 | 1997-11-11 | Nippon Telegr & Teleph Corp <Ntt> | 電池用セパレータ |
US20060222955A1 (en) * | 2005-04-04 | 2006-10-05 | Kenichi Ogawa | Battery |
WO2010026954A1 (ja) * | 2008-09-03 | 2010-03-11 | 三菱樹脂株式会社 | セパレータ用積層多孔性フィルム |
JP2010061974A (ja) * | 2008-09-03 | 2010-03-18 | Mitsubishi Plastics Inc | セパレータ用積層多孔性フィルム、およびその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5830603A (en) * | 1993-09-03 | 1998-11-03 | Sumitomo Electric Industries, Ltd. | Separator film for a storage battery |
JPH0825010A (ja) | 1994-07-13 | 1996-01-30 | Sumitomo Metal Ind Ltd | 丸鋳片の連続鋳造方法及びその丸鋳片連続鋳造用鋳型 |
US9368775B2 (en) * | 2004-02-06 | 2016-06-14 | Polyplus Battery Company | Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers |
US7112389B1 (en) * | 2005-09-30 | 2006-09-26 | E. I. Du Pont De Nemours And Company | Batteries including improved fine fiber separators |
US8216712B1 (en) * | 2008-01-11 | 2012-07-10 | Enovix Corporation | Anodized metallic battery separator having through-pores |
JP5235715B2 (ja) * | 2009-02-25 | 2013-07-10 | 富士重工業株式会社 | 蓄電デバイスおよびその製造方法 |
-
2013
- 2013-11-14 WO PCT/JP2013/080827 patent/WO2014084061A1/ja active Application Filing
- 2013-11-14 US US14/440,909 patent/US9627673B2/en active Active
- 2013-11-14 EP EP13857713.5A patent/EP2930766B1/en active Active
- 2013-11-14 KR KR1020157013958A patent/KR101720445B1/ko active IP Right Grant
- 2013-11-14 JP JP2014550123A patent/JP6226879B2/ja active Active
- 2013-11-14 CN CN201380061130.XA patent/CN104838520B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5617216B2 (ja) | 1970-05-21 | 1981-04-21 | ||
US4187390A (en) | 1970-05-21 | 1980-02-05 | W. L. Gore & Associates, Inc. | Porous products and process therefor |
JPS5645773B2 (ja) | 1973-06-14 | 1981-10-28 | ||
JPH05258741A (ja) | 1992-03-11 | 1993-10-08 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池用セパレータ |
US5427872A (en) | 1993-11-17 | 1995-06-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Dendrite preventing separator for secondary lithium batteries |
JP3463081B2 (ja) | 1995-03-15 | 2003-11-05 | ジャパンゴアテックス株式会社 | 電気化学反応装置用セパレータ及びそれを用いた電気化学反応装置 |
JPH08250101A (ja) * | 1995-03-15 | 1996-09-27 | Japan Gore Tex Inc | 電気化学反応装置用セパレータ及びそれを用いた電気化学反応装置 |
JPH09293492A (ja) | 1996-04-25 | 1997-11-11 | Nippon Telegr & Teleph Corp <Ntt> | 電池用セパレータ |
US20060222955A1 (en) * | 2005-04-04 | 2006-10-05 | Kenichi Ogawa | Battery |
JP2006286531A (ja) * | 2005-04-04 | 2006-10-19 | Sony Corp | 電池 |
WO2010026954A1 (ja) * | 2008-09-03 | 2010-03-11 | 三菱樹脂株式会社 | セパレータ用積層多孔性フィルム |
JP2010061974A (ja) * | 2008-09-03 | 2010-03-18 | Mitsubishi Plastics Inc | セパレータ用積層多孔性フィルム、およびその製造方法 |
EP2337114A1 (en) * | 2008-09-03 | 2011-06-22 | Mitsubishi Plastics, Inc. | Laminated porous film for separator |
US20110159346A1 (en) * | 2008-09-03 | 2011-06-30 | Mitsubishi Plastics, Inc. | Laminated porous film for separator |
Non-Patent Citations (1)
Title |
---|
See also references of EP2930766A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015182615A1 (ja) * | 2014-05-26 | 2015-12-03 | 日本ゴア株式会社 | 二次電池およびそれに用いるセパレータ |
JPWO2015182615A1 (ja) * | 2014-05-26 | 2017-04-20 | 日本ゴア株式会社 | 二次電池およびそれに用いるセパレータ |
KR20220115606A (ko) | 2020-01-31 | 2022-08-17 | 아사히 가세이 가부시키가이샤 | 미다공막 및 그의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
EP2930766B1 (en) | 2018-10-03 |
CN104838520A (zh) | 2015-08-12 |
CN104838520B (zh) | 2017-08-25 |
EP2930766A4 (en) | 2016-06-22 |
US20150303429A1 (en) | 2015-10-22 |
JP6226879B2 (ja) | 2017-11-08 |
KR20150080576A (ko) | 2015-07-09 |
US9627673B2 (en) | 2017-04-18 |
KR101720445B1 (ko) | 2017-03-27 |
JPWO2014084061A1 (ja) | 2017-01-05 |
EP2930766A1 (en) | 2015-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6297145B2 (ja) | 二次電池およびそれに用いるセパレータ | |
KR102119801B1 (ko) | 플렉시블 집전체 및 이를 이용한 이차전지 | |
JP2022095821A (ja) | リチウム金属が正極に形成されたリチウム二次電池とこの製造方法 | |
JP4127989B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
CN105794018B (zh) | 保护膜、使用该保护膜的间隔物以及充电电池 | |
KR20180036600A (ko) | 이중 보호층이 형성된 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지 | |
KR101628901B1 (ko) | 플렉시블 전극, 그의 제조 방법 및 그를 이용한 이차 전지 | |
CN110622338B (zh) | 用于锂离子二次电池的隔板和包括该隔板的锂金属电池 | |
JP2001135359A (ja) | 非水電解質電池 | |
JP2010044935A (ja) | 複合多孔質フィルムおよびそれを用いた電池用セパレータ、並びに非水系電解液二次電池 | |
JP2008204788A (ja) | 非水電解質二次電池 | |
JP6226879B2 (ja) | 二次電池およびそれに用いるセパレータ | |
JP4606705B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
CN111328435A (zh) | 具有改进安全性的锂金属二次电池和包含其的电池模块 | |
JP4952314B2 (ja) | 非水系二次電池用セパレータおよびこれを備えた非水系二次電池 | |
JPH09259923A (ja) | ポリマー電池及びその製造法 | |
JP4240008B2 (ja) | 多孔性リチウムイオン導電性ポリマー電解質の製造方法。 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13857713 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014550123 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14440909 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013857713 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157013958 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |