WO2014083827A1 - 車両用加速抑制装置 - Google Patents

車両用加速抑制装置 Download PDF

Info

Publication number
WO2014083827A1
WO2014083827A1 PCT/JP2013/006887 JP2013006887W WO2014083827A1 WO 2014083827 A1 WO2014083827 A1 WO 2014083827A1 JP 2013006887 W JP2013006887 W JP 2013006887W WO 2014083827 A1 WO2014083827 A1 WO 2014083827A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking frame
frame line
line
line candidate
acceleration suppression
Prior art date
Application number
PCT/JP2013/006887
Other languages
English (en)
French (fr)
Inventor
早川 泰久
修 深田
明 森本
大介 笈木
田中 大介
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP13858256.4A priority Critical patent/EP2927077B1/en
Priority to CN201380060885.8A priority patent/CN104812646B/zh
Priority to US14/647,647 priority patent/US9616885B2/en
Priority to JP2014549820A priority patent/JP5846317B2/ja
Publication of WO2014083827A1 publication Critical patent/WO2014083827A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/12Limiting control by the driver depending on vehicle state, e.g. interlocking means for the control input for preventing unsafe operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/586Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of parking space
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/103Speed profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space

Definitions

  • the present invention relates to a technology for suppressing acceleration for a vehicle for providing driving assistance during parking.
  • a safety device As a device for controlling the speed of a vehicle, for example, there is a safety device described in Patent Document 1.
  • this safety device it is detected from the map data of the navigation device and the current position information that the vehicle is off the road, there is an accelerator operation in a direction to increase the vehicle traveling speed, and the vehicle traveling speed is predetermined.
  • the throttle is controlled in the deceleration direction regardless of the operation of the accelerator.
  • the above-described Patent Document 1 aims to prevent acceleration of a vehicle that is not intended by the driver even if an accelerator operation is erroneously performed. At this time, it becomes a problem to determine whether or not the accelerator operation is an erroneous operation. And in the above-mentioned Patent Document 1, it is assumed that the accelerator depressing operation when the host vehicle is at a position deviating from the road based on the map information and the traveling speed of a predetermined value or more is detected may be an accelerator misoperation,
  • the above conditions are operating conditions for throttle suppression. However, under the above-mentioned operating conditions, the throttle control is activated depending on the vehicle speed only by getting off the road and entering the parking lot, and the drivability in the parking lot is reduced.
  • the present invention has been made paying attention to the above points, and an object thereof is to improve the accuracy of driving assistance when the host vehicle is parked.
  • a captured image of an area including a road surface around the host vehicle is acquired, and the acquired captured image is overhead-converted to obtain an overhead image. Furthermore, parking frame line candidates located on the road surface are extracted from the overhead image. A parking frame is detected from the parking frame line candidates, and based on the detected parking frame, the acceleration generated in the host vehicle is reduced according to the acceleration operation amount of the acceleration operating element operated by the driver to instruct acceleration. Acceleration suppression control that is control is performed. On the other hand, a parking frame line candidate corresponding line corresponding to the detected parking frame line candidate is extracted from the captured image in front of the host vehicle.
  • the parking frame line candidate corresponding to the parking frame line candidate corresponding line is detected as a parking frame. Exclude from candidates.
  • the present invention extracts a parking frame line candidate as a parking frame line candidate from an overhead image obtained by overhead-converting a captured image around the host vehicle, and corresponds to the parking frame line candidate from a captured image in front of the host vehicle.
  • a parking frame line candidate corresponding line By extracting the parking frame line candidate corresponding line, an extended portion of the parking frame line candidate outside the overhead image is extracted from the captured image.
  • the thing of the length of this parking frame line candidate corresponding line more than a parking frame line length threshold value (for example, more than the length inappropriate as a parking frame line) is excluded from a detection candidate of a parking frame.
  • FIG. 1 is a figure which shows the bird's-eye view image example around the own vehicle V, and is a figure which shows an example of parking frame line candidate corresponding
  • (A) is a figure which shows a mode that the parking frame line candidates La and Lb at the time of the own vehicle V going straight ahead continue out of the front side bird's-eye view image BVPF
  • (b) is a figure at the time of the own vehicle V going straight ahead. It is a figure which shows an example of the search area
  • (A) is a figure which shows a mode that parking frame line candidate La and Lb at the time of the own vehicle V turning operation
  • (b) is a turn operation of the own vehicle V. It is a figure which shows an example of the search area
  • (A) And (b) shows an example of the relationship between the parking frame line candidate corresponding lines xLa and xLb extracted from the individual images SPF when the host vehicle V is traveling straight and turning, and the parking frame line length threshold Lth1.
  • FIG. (A)-(c) is a figure which shows the example of the far end part detected from the front side bird's-eye view image BVPF.
  • FIG. 1 is a conceptual diagram illustrating a configuration of a vehicle V including the vehicle acceleration suppression device 1 of the present embodiment.
  • the host vehicle V includes wheels W (right front wheel WFR, left front wheel WFL, right rear wheel WRR, left rear wheel WRL), a brake device 2, a fluid pressure circuit 4, and a brake controller 6. Is provided.
  • the host vehicle V includes an engine 8 and an engine controller 12.
  • the brake device 2 is formed using, for example, a wheel cylinder and provided on each wheel W.
  • the brake device 2 is not limited to a device that applies a braking force with fluid pressure, and may be formed using an electric brake device or the like.
  • the fluid pressure circuit 4 is a circuit including piping connected to each brake device 2.
  • the brake controller 6 responds to the braking force command value generated by each brake device 2 via the fluid pressure circuit 4 based on the braking force command value received from the travel controller 10 that is the host controller. To control the value. That is, the brake controller 6 forms a deceleration control device. In addition, the description regarding the traveling control controller 10 is mentioned later. Therefore, the brake device 2, the fluid pressure circuit 4, and the brake controller 6 form a braking device that generates a braking force.
  • the engine 8 forms a drive source for the host vehicle V.
  • the engine controller 12 controls the torque (driving force) generated by the engine 8 based on the target throttle opening signal (acceleration command value) received from the travel controller 10. That is, the engine controller 12 forms an acceleration control device. A description regarding the target throttle opening signal will be given later. Therefore, the engine 8 and the engine controller 12 form a driving device that generates a driving force.
  • the drive source of the own vehicle V is not limited to the engine 8, You may form using an electric motor.
  • the driving source of the host vehicle V may be formed by combining the engine 8 and the electric motor.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the vehicle acceleration suppression device 1 of the present embodiment.
  • the vehicle acceleration suppression device 1 includes an ambient environment recognition sensor 14, a wheel speed sensor 16, a steering angle sensor 18, a shift position sensor 20, and a brake operation detection sensor 22.
  • the accelerator operation detection sensor 24 is provided.
  • the vehicle acceleration suppression device 1 includes a navigation device 26 and a travel control controller 10.
  • the ambient environment recognition sensor 14 captures an image around the host vehicle V, and based on each captured image, an information signal including individual images corresponding to a plurality of imaging directions (in the following description, “individual image signal”). May be written). Then, the generated individual image signal is output to the travel controller 10.
  • the surrounding environment recognition sensor 14 is formed using the front camera 14F, the right side camera 14SR, the left side camera 14SL, and the rear camera 14R
  • the front camera 14F is a camera that images the front of the host vehicle V in the vehicle front-rear direction
  • the right side camera 14SR is a camera that images the right side of the host vehicle V
  • the left-side camera 14SL is a camera that images the left side of the host vehicle V
  • the rear camera 14R is a camera that images the rear side of the host vehicle V in the vehicle front-rear direction.
  • the surrounding environment recognition sensor 14 images the distance range of the maximum imaging range (for example, 100 [m]) of each camera at an angle of view where the road surface around the host vehicle V enters, for example.
  • the wheel speed sensor 16 is formed using, for example, a pulse generator such as a rotary encoder that measures wheel speed pulses. Further, the wheel speed sensor 16 detects the rotational speed of each wheel W, and an information signal including the detected rotational speed (which may be referred to as “wheel speed signal” in the following description) is used as a travel controller. 10 is output.
  • the steering angle sensor 18 is provided in a steering column (not shown) that rotatably supports the steering wheel 28.
  • the steering angle sensor 18 detects a current steering angle that is a current rotation angle (steering operation amount) of the steering wheel 28 that is a steering operator, and an information signal including the detected current steering angle (in the following description). , May be described as “current steering angle signal”) to the travel controller 10. In addition, you may detect the information signal containing the steering angle of a steered wheel as information which shows a steering angle.
  • the steering operator is not limited to the steering wheel 28 that is rotated by the driver, and may be, for example, a lever that is operated by the driver to tilt by hand. In this case, the lever tilt angle from the neutral position is output as an information signal corresponding to the current steering angle signal.
  • the shift position sensor 20 detects the current position of a member that changes the shift position (for example, “P”, “D”, “R”, etc.) of the host vehicle V, such as a shift knob or a shift lever. Then, an information signal including the detected current position (which may be described as a “shift position signal” in the following description) is output to the travel controller 10.
  • a member that changes the shift position for example, “P”, “D”, “R”, etc.
  • the brake operation detection sensor 22 detects the opening degree of the brake pedal 30 that is a braking force instruction operator. Then, an information signal including the detected opening of the brake pedal 30 (in the following description, may be described as “brake opening signal”) is output to the travel controller 10.
  • the braking force instruction operator is configured to be operable by the driver of the host vehicle V and to instruct the braking force of the host vehicle V by a change in the opening degree. Note that the braking force instruction operator is not limited to the brake pedal 30 that the driver steps on with his / her foot, and may be, for example, a lever that is manually operated by the driver.
  • the accelerator operation detection sensor 24 detects the opening degree of the accelerator pedal 32 that is a driving force instruction operator. Then, an information signal including the detected opening of the accelerator pedal 32 (in the following description, it may be described as “accelerator opening signal”) is output to the travel controller 10.
  • the driving force instruction operator is configured to be operable by the driver of the host vehicle V and to instruct the driving force of the host vehicle V by changing the opening. Note that the driving force instruction operator is not limited to the accelerator pedal 32 that the driver steps on with his / her foot.
  • the navigation device 26 includes a GPS (Global Positioning System) receiver, a map database, an information presentation device having a display monitor, and the like, and performs route search, route guidance, and the like.
  • the navigation device 26 is based on the current position of the host vehicle V acquired using the GPS receiver and the road information stored in the map database, such as the type and width of the road on which the host vehicle V is traveling. Is possible to get.
  • the navigation device 26 uses an information signal (which may be referred to as “own vehicle position signal” in the following description) including the current position of the own vehicle V acquired using the GPS receiver, as the traveling control controller 10. Output to.
  • the navigation device 26 outputs an information signal including the type of road on which the vehicle V is traveling, the road width, etc. (in the following description, it may be described as “traveling road information signal”) to the travel control controller. 10 is output.
  • the information presenting device outputs an alarm or other presenting by voice or image in accordance with a control signal from the travel controller 10.
  • the information presentation apparatus includes, for example, a speaker that provides information to the driver by a buzzer sound or voice, and a display unit that provides information by displaying an image or text. Further, the display unit may divert the display monitor of the navigation device 26, for example.
  • the travel control controller 10 is an electronic control unit that includes a CPU and CPU peripheral components such as a ROM and a RAM.
  • the travel controller 10 also includes a parking driving support unit that performs driving support processing for parking.
  • the parking driving support unit functionally includes an ambient environment recognition information calculation unit 10A, a host vehicle vehicle speed calculation unit 10B, a steering angle calculation unit 10C, and a steering angular velocity calculation as shown in FIG.
  • the processing of unit 10D is provided.
  • the parking driving support unit functionally includes a shift position calculation unit 10E, a brake pedal operation information calculation unit 10F, an accelerator operation amount calculation unit 10G, an accelerator operation speed calculation unit 10H, and an acceleration suppression control content calculation unit 10I.
  • the parking driving support unit functionally includes processing of an acceleration suppression command value calculation unit 10J and a target throttle opening calculation unit 10K. These functions are composed of one or more programs.
  • the surrounding environment recognition information calculation unit 10 ⁇ / b> A forms an image (overhead image) around the host vehicle V viewed from above the host vehicle V based on the individual image signal received from the surrounding environment recognition sensor 14.
  • an acceleration suppression control content calculation unit 10I includes an information signal including the formed overhead image (in the following description, may be referred to as “overhead image signal”) and an individual image signal corresponding to the overhead image signal.
  • the bird's-eye view image is formed by, for example, synthesizing images captured by the respective cameras (front camera 14F, right side camera 14SR, left side camera 14SL, and rear camera 14R).
  • the overhead image includes, for example, an image showing a road marking such as a line of a parking frame displayed on the road surface (may be described as “parking frame line” in the following description).
  • the own vehicle vehicle speed calculation unit 10 ⁇ / b> B calculates the speed (vehicle speed) of the own vehicle V from the rotation speed of the wheel W based on the wheel speed signal received from the wheel speed sensor 16. Then, an information signal including the calculated speed (in the following description, may be described as “vehicle speed calculation value signal”) is output to the acceleration suppression control content calculation unit 10I.
  • the steering angle calculation unit 10C calculates the operation amount (rotation angle) from the neutral position of the steering wheel 28 from the current rotation angle of the steering wheel 28 based on the current steering angle signal received from the steering angle sensor 18. . Then, an information signal including the calculated operation amount from the neutral position (in the following description, may be described as “steering angle signal”) is output to the acceleration suppression control content calculation unit 10I.
  • the steering angular velocity calculation unit 10D calculates the steering angular velocity of the steering wheel 28 by differentiating the current steering angle included in the current steering angle signal received from the operation angle sensor 18. Then, an information signal including the calculated steering angular velocity (may be described as “steering angular velocity signal” in the following description) is output to the acceleration suppression control content calculation unit 10I.
  • the shift position calculation unit 10E determines the current shift position based on the shift position signal received from the shift position sensor 20. Then, an information signal including the calculated current shift position (in the following description, may be described as “current shift position signal”) is output to the acceleration suppression control content calculation unit 10I.
  • the brake pedal operation information calculation unit 10F calculates the depression amount of the brake pedal 30 based on the state where the depression amount is “0” based on the brake opening signal received from the brake operation detection sensor 22. Then, an information signal including the calculated depression amount of the brake pedal 30 (in the following description, may be described as “braking side depression amount signal”) is output to the acceleration suppression control content calculation unit 10I.
  • the accelerator operation amount calculation unit 10G calculates the depression amount of the accelerator pedal 32 with reference to the state where the depression amount is “0” based on the accelerator opening signal received from the accelerator operation detection sensor 24.
  • an information signal including the calculated depression amount of the accelerator pedal 32 (in the following description, may be described as a “driving-side depression amount signal”), an acceleration suppression control content calculation unit 10I, and an acceleration suppression command value calculation To the unit 10J and the target throttle opening calculation unit 10K.
  • the accelerator operation speed calculation unit 10H calculates the operation speed of the accelerator pedal 32 by differentiating the opening of the accelerator pedal 32 included in the accelerator opening signal received from the accelerator operation detection sensor 24. Then, an information signal including the calculated operation speed of the accelerator pedal 32 (in the following description, may be described as “accelerator operation speed signal”) is output to the acceleration suppression command value calculation unit 10J.
  • the acceleration suppression control content calculation unit 10I includes the above-described various information signals (overhead image signal, individual image signal, vehicle speed calculation value signal, steering angle signal, steering angular velocity signal, current shift position signal, braking side depression amount signal, driving side Input of a depression amount signal, a vehicle position signal, and a traveling road information signal).
  • acceleration suppression control content calculation unit 10I based on the various information signals which received the input, the acceleration suppression operation condition judgment result mentioned later, acceleration suppression control start timing, and acceleration suppression control amount are calculated. Furthermore, an information signal including these calculated parameters is output to the acceleration suppression command value calculation unit 10J.
  • the detailed configuration of the acceleration suppression control content calculation unit 10I and the processing performed by the acceleration suppression control content calculation unit 10I will be described later.
  • the acceleration suppression command value calculation unit 10J inputs the drive side depression amount signal and the accelerator operation speed signal described above, and inputs an acceleration suppression operation condition determination result signal, an acceleration suppression control start timing signal, and an acceleration suppression control amount signal described later. receive. And according to the depression amount (acceleration operation amount) of the accelerator pedal 32, the acceleration suppression command value which is a command value for reducing the acceleration generated to the own vehicle V is calculated. Further, an information signal including the calculated acceleration suppression command value (in the following description, may be described as “acceleration suppression command value signal”) is output to the target throttle opening calculation unit 10K.
  • the acceleration suppression command value calculation unit 10J calculates a normal acceleration command value, which is a command value used in normal acceleration control, according to the content of the received acceleration suppression operation condition determination result signal. Furthermore, an information signal including the calculated normal acceleration command value (in the following description, may be described as “normal acceleration command value signal”) is output to the target throttle opening calculation unit 10K. The processing performed by the acceleration suppression command value calculation unit 10J will be described later.
  • the target throttle opening calculation unit 10K receives a drive side depression amount signal and an acceleration suppression command value signal or a normal acceleration command value signal. Based on the depression amount of the accelerator pedal 32 and the acceleration suppression command value or the normal acceleration command value, a target throttle opening that is a throttle opening corresponding to the depression amount of the accelerator pedal 32 or the acceleration suppression command value is calculated. Further, an information signal including the calculated target throttle opening (in the following description, may be described as “target throttle opening signal”) is output to the engine controller 12. Further, when the acceleration suppression command value includes an acceleration suppression control start timing command value described later, the target throttle opening calculation unit 10K sends the target throttle opening signal to the engine controller 12 based on the acceleration suppression control start timing described later. Output. The processing performed by the target throttle opening calculation unit 10K will be described later.
  • FIG. 3 is a block diagram illustrating a configuration of the acceleration suppression control content calculation unit 10I.
  • the acceleration suppression control content calculation unit 10I includes an acceleration suppression operation condition determination unit 34, a parking frame certainty setting unit 36, a parking frame approach certainty setting unit 38, and an overall certainty setting unit. 40.
  • the acceleration suppression control content calculation unit 10I includes an acceleration suppression control start timing calculation unit 42 and an acceleration suppression control amount calculation unit 44.
  • the acceleration suppression operation condition determination unit 34 determines whether or not a condition for operating acceleration suppression control is satisfied, and describes an information signal including the determination result (in the following description, “acceleration suppression operation condition determination result signal”). Is output to the acceleration suppression command value calculation unit 10J.
  • the acceleration suppression control is a control for setting the acceleration command value for accelerating the vehicle V in accordance with the depression amount of the accelerator pedal 32 to a value in which the acceleration is reduced than usual.
  • the acceleration suppression control is a control for reducing the acceleration command value for accelerating the vehicle V according to the depression amount of the accelerator pedal 32.
  • the parking frame certainty factor setting unit 36 sets a parking frame certainty factor that is a certainty factor that the parking frame exists in the traveling direction of the host vehicle V. Then, an information signal including the set parking frame certainty factor (may be described as “parking frame certainty factor signal” in the following description) is output to the total certainty factor setting unit 40.
  • the parking frame certainty setting unit 36 refers to various information included in the overhead image signal, the individual image signal, the vehicle speed calculation value signal, the current shift position signal, the own vehicle position signal, and the traveling road information signal, and refers to the parking frame. Set confidence.
  • FIG. 4 is a figure which shows the pattern of the parking frame which the parking frame reliability setting part 36 makes the setting object of parking frame reliability.
  • the parking frame certainty setting unit 36 is estimated to constitute a parking frame from an overhead view image of the host vehicle V in the front-rear direction of the vehicle (in the following description, it may be described as “overhead view image BVF”). A line on the road surface is detected as a parking frame line candidate.
  • the detected parking frame line candidate (in the following description, “parking frame line candidate”).
  • a parking frame line candidate corresponding line that is a line corresponding to (which may be described) is extracted. Furthermore, it is determined whether or not the length of the extracted parking frame line candidate corresponding line is equal to or greater than a preset parking frame line length threshold Th1. And based on this determination result, the frame line candidate exclusion process which excludes the detected parking frame line candidate from the detection candidate of a parking frame is implemented. Details of the process for setting the parking frame certainty factor by the parking frame certainty factor setting unit 36 and the details of the frame line candidate exclusion process will be described later.
  • the parking frame approach certainty factor setting unit 38 sets a parking frame approach certainty factor that is a certainty factor that the host vehicle V enters the parking frame. Then, an information signal including the set parking frame approach certainty factor (may be described as “parking frame approach certainty signal” in the following description) is output to the total confidence setting unit 40.
  • the parking frame approach certainty factor setting unit 38 sets the parking frame approach certainty factor with reference to various information included in the bird's-eye view image signal, the vehicle speed calculation value signal, the current shift position signal, and the steering angle signal.
  • the process which the parking frame approach reliability setting part 38 sets a parking frame approach reliability is mentioned later.
  • the comprehensive certainty setting unit 40 receives the input of the parking frame certainty signal and the parking frame approach certainty signal, and sets the general certainty that is the certainty corresponding to the parking frame certainty and the parking frame approach certainty. Then, an information signal including the set total certainty factor (may be described as “total confidence factor signal” in the following description) is output to the acceleration suppression control start timing calculation unit 42 and the acceleration suppression control amount calculation unit 44. To do. In addition, the process which the comprehensive reliability setting part 40 sets a comprehensive reliability is mentioned later.
  • the acceleration suppression control start timing calculation unit 42 calculates an acceleration suppression control start timing that is a timing for starting the acceleration suppression control. Then, an information signal including the calculated acceleration suppression control start timing (may be described as “acceleration suppression control start timing signal” in the following description) is output to the acceleration suppression command value calculation unit 10J.
  • the acceleration suppression control start timing calculation unit 42 refers to various information included in the comprehensive certainty signal, the braking side depression amount signal, the vehicle speed calculation value signal, the current shift position signal, and the steering angle signal, and starts the acceleration suppression control. Calculate timing. The process in which the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing will be described later.
  • the acceleration suppression control amount calculation unit 44 calculates an acceleration suppression control amount that is a control amount for reducing the acceleration command value corresponding to the depression amount of the accelerator pedal 32. Then, an information signal including the calculated acceleration suppression control amount (in the following description, may be described as “acceleration suppression control amount signal”) is output to the acceleration suppression command value calculation unit 10J.
  • the acceleration suppression control amount calculation unit 44 refers to various information included in the comprehensive certainty signal, the braking side depression amount signal, the vehicle speed calculation value signal, the current shift position signal, and the steering angle signal, and determines the acceleration suppression control amount. Calculate. The process in which the acceleration suppression control amount calculation unit 44 calculates the acceleration suppression control amount will be described later.
  • FIG. 5 is a flowchart illustrating processing in which the acceleration suppression operation condition determination unit 34 determines whether or not the acceleration suppression operation condition is satisfied.
  • the acceleration suppression operation condition determination unit 34 performs the process described below for each preset sampling time (for example, 10 [msec]). As shown in FIG.
  • step S100 a process of acquiring the parking frame certainty level set by the parking frame certainty factor setting unit 36 (FIG. 5). “Parking frame certainty acquisition process”) shown in FIG. If the process which acquires parking frame reliability is performed in step S100, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S102.
  • step S102 based on the parking frame certainty acquired in step S100, a process of determining the presence or absence of a parking frame ("parking presence / absence determination process" shown in the figure) is performed.
  • the process which determines the presence or absence of a parking frame is performed based on a parking frame reliability. Specifically, if it is determined that the parking frame certainty factor is a preset minimum value (level 0), for example, there is no parking frame within a distance or area (area) set in advance with the vehicle V as a reference ( "No" shown in the figure). In this case, the process performed by the acceleration suppression operation condition determination unit 34 proceeds to step S120.
  • step S104 a process for acquiring the vehicle speed of the host vehicle V ("own vehicle speed information acquisition process" shown in the figure) is performed with reference to the vehicle speed calculation value signal received from the host vehicle speed calculation unit 10B. If the process which acquires the vehicle speed of the own vehicle V is performed in step S104, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S106.
  • step S106 based on the vehicle speed acquired in step S104, it is determined whether or not a condition that the vehicle speed of the host vehicle V is less than a preset threshold vehicle speed is satisfied ("own vehicle vehicle speed shown in the figure"). "Condition judgment process”).
  • a condition that the vehicle speed of the host vehicle V is less than a preset threshold vehicle speed is satisfied (“own vehicle vehicle speed shown in the figure”).
  • “Condition judgment process” In the present embodiment, a case where the threshold vehicle speed is set to 15 [km / h] will be described as an example.
  • the threshold vehicle speed is not limited to 15 [km / h], and may be changed according to the specifications of the host vehicle V such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels. If it is determined in step S106 that the condition that the vehicle speed of the host vehicle V is less than the threshold vehicle speed is satisfied (“Yes” in the figure), the processing
  • step S106 if it is determined in step S106 that the condition that the vehicle speed of the host vehicle V is less than the threshold vehicle speed is not satisfied ("No" shown in the figure), the processing performed by the acceleration suppression operation condition determination unit 34 is performed in step S106.
  • the process proceeds to S120.
  • step S108 referring to the brake-side depression amount signal received from the brake pedal operation information calculation unit 10F, processing for acquiring information on the depression amount (braking force operation amount) of the brake pedal 30 (" Brake pedal operation amount information acquisition processing ”).
  • step S108 when processing for obtaining information on the depression amount (braking force operation amount) of the brake pedal 30 is performed, the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S110.
  • step S110 based on the depression amount of the brake pedal 30 acquired in step S108, a process for determining whether or not the brake pedal 30 is operated ("brake pedal operation determination process" shown in the figure) is performed. If it is determined in step S110 that the brake pedal 30 has not been operated ("No" shown in the figure), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S112.
  • step S110 when it is determined in step S110 that the brake pedal 30 is operated (“Yes” shown in the drawing), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S120.
  • step S112 with reference to the drive side depression amount signal received from the accelerator operation amount calculation unit 10G, information on the depression amount (acceleration operation amount) of the accelerator pedal 32 is acquired ("accelerator pedal shown in the figure"). Operation amount information acquisition processing ”) is performed. If the process which acquires the information of the depression amount (acceleration operation amount) of the accelerator pedal 32 is performed in step S112, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S114.
  • step S114 a process for determining whether or not a condition that the depression amount (acceleration operation amount) of the accelerator pedal 32 is equal to or larger than a preset threshold accelerator operation amount is satisfied ("accelerator pedal operation determination process shown in the figure"). ")I do.
  • the process of step S114 is performed based on the depression amount of the accelerator pedal 32 acquired in step S112.
  • the threshold accelerator operation amount is set to an operation amount corresponding to 3% of the opening of the accelerator pedal 32.
  • the threshold accelerator operation amount is not limited to the operation amount corresponding to 3% of the opening degree of the accelerator pedal 32. It may be changed.
  • step S114 when it is determined that the condition that the depression amount (acceleration operation amount) of the accelerator pedal 32 is equal to or greater than the threshold accelerator operation amount is satisfied ("Yes" shown in the figure), the acceleration suppression operation condition determination unit 34 The process performed by the process proceeds to step S116.
  • step S114 processing for acquiring information for determining whether or not the host vehicle V enters the parking frame ("parking frame entry determination information acquisition processing" shown in the figure) is performed.
  • parking frame entry determination information acquisition processing processing for acquiring information for determining whether or not the host vehicle V enters the parking frame.
  • the process performed by the acceleration suppression operation condition determination unit 34 proceeds to step S118.
  • step S116 the rotation angle (steering angle) of the steering wheel 28 is acquired with reference to the steering angle signal received from the steering angle calculation unit 10C.
  • the angle ⁇ between the host vehicle V and the parking frame L0, the host vehicle V, and The distance D with the parking frame L0 is acquired.
  • the angle ⁇ is an absolute value of an intersection angle between the straight line X and the line on the frame line L1 and the parking frame L0 side.
  • FIG. 6 is a figure explaining the distance D of the own vehicle V, the parking frame L0, and the own vehicle V and the parking frame L0.
  • the straight line X is a straight line in the front-rear direction of the host vehicle V that passes through the center of the host vehicle V (a straight line extending in the traveling direction). It is a frame line of the parking frame L0 part which becomes parallel or substantially parallel to the front-back direction.
  • the line on the parking frame L0 side is a line on the parking frame L0 side that is an extension of L1.
  • the distance D is, for example, the distance between the center point PF of the front end face of the host vehicle V and the center point PP of the entrance L2 of the parking frame L0 as shown in FIG. However, the distance D is a negative value after the front end surface of the host vehicle V passes through the entrance L2 of the parking frame L0.
  • the distance D may be set to zero after the front end surface of the host vehicle V passes through the entrance L2 of the parking frame L0.
  • the position on the own vehicle V side for specifying the distance D is not limited to the center point PF, and may be, for example, a position set in advance in the own vehicle V and a preset position in the entrance L2.
  • the distance D is a distance between a position set in advance in the host vehicle V and a position set in advance at the entrance L2.
  • step S116 as information for determining whether or not the host vehicle V enters the parking frame L0, the steering angle, the angle ⁇ between the host vehicle V and the parking frame L0, the host vehicle V and the parking The distance D of the frame L0 is acquired.
  • step S118 based on the information acquired in step S116, a process for determining whether or not the host vehicle V enters the parking frame ("parking frame entry determining process" shown in the figure) is performed. If it is determined in step S118 that the host vehicle V does not enter the parking frame ("No" shown in the figure), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S120.
  • step S118 determines whether the host vehicle V enters the parking frame ("Yes" shown in the figure).
  • the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S122.
  • step S118 for example, when all of the following three conditions (A1 to A3) are satisfied, it is determined that the host vehicle V enters the parking frame.
  • Condition A1 The elapsed time after the steering angle detected in step S116 is equal to or greater than a preset steering angle value (eg, 45 [deg]) is within a preset setup time (eg, 20 [sec]). is there.
  • a preset steering angle value eg, 45 [deg]
  • a preset setup time eg, 20 [sec]
  • the angle ⁇ between the host vehicle V and the parking frame L0 is a preset angle (for example, 40 [deg]) or less.
  • Condition A3 The distance D between the host vehicle V and the parking frame L0 is equal to or less than a preset set distance (for example, 3 [m]).
  • a preset set distance for example, 3 [m]
  • step S120 an acceleration suppression operation condition determination result signal is generated as an information signal including a determination result that the acceleration suppression control operation condition is not satisfied ("acceleration suppression operation condition not satisfied" shown in the drawing). If the process which produces
  • step S122 an acceleration suppression operation condition determination result signal is generated as an information signal including a determination result that the acceleration suppression control operation condition is satisfied ("acceleration suppression operation condition satisfaction" shown in the figure). If the process which produces
  • step S124 a process of outputting the acceleration suppression operation condition determination result signal generated in step S120 or step S122 to the acceleration suppression command value calculation unit 10J ("acceleration suppression operation condition determination result output" shown in the figure) is performed. If the process which outputs an acceleration suppression operation condition judgment result signal to the acceleration suppression command value calculating part 10J is performed in step S124, the process which the acceleration suppression operation condition judgment part 34 performs will return to the process of step S100 (RETURN).
  • FIG. 7 is a flowchart showing a process in which the parking frame certainty setting unit 36 sets the parking frame certainty.
  • the parking frame certainty setting unit 36 starts the process (START)
  • step S200 the level of the parking frame certainty is set to the lowest value (level 0) (in the figure). "Set to level 0"). If the process which sets parking frame reliability to level 0 is performed in step S200, the process which the parking frame reliability setting part 36 performs will transfer to step S202.
  • step S202 an overhead image around the host vehicle V included in the overhead image signal received from the ambient environment recognition information calculation unit 10A and an individual image used to generate the overhead image included in the individual image signal are acquired.
  • Ambient image acquisition process shown in the figure.
  • step S202 when processing for acquiring an overhead image around the host vehicle V and an individual image used to generate the overhead image is performed, the processing performed by the parking frame certainty setting unit 36 proceeds to step S204. .
  • step S204 first, a process of extracting parking frame line candidates used for setting the parking frame certainty factor from the overhead image acquired in step S202 (“parking frame line candidate extraction process" shown in the figure) is performed.
  • Condition B1 when the acquired line state satisfies all of the following three conditions (B1 to B3), for example, the line is extracted as a parking frame line candidate.
  • Condition B1 If the marked line on the road surface has a broken part, the broken part is a part where the marked line is faint (for example, a part having a lower clarity than the line and a higher clarity than the road surface). ).
  • Condition B2. The width of the line marked on the road surface is equal to or larger than a preset setting width (for example, 10 [cm]).
  • the length of the line marked on the road surface is greater than or equal to a preset set line length (for example, 2.5 [m]).
  • the parking frame line candidate is a line (white line or the like) marked on the road surface, such as a parking frame line.
  • the pixels of the bird's-eye view image are scanned in the horizontal direction to extract edge pixels having a luminance difference equal to or greater than a preset first luminance threshold. That is, in the present embodiment, the first luminance threshold value is a luminance difference threshold value.
  • the line comprised by this edge pixel is acquired. Specifically, a difference between adjacent pixels is calculated, and a pixel whose absolute value is equal to or greater than a first luminance value threshold is extracted as an edge pixel.
  • two adjacent lines in the bird's-eye view image are identified as one set (in the following description, “pair” May be described as “ring”.
  • two or more sets are specified by two adjacent lines for each of the three or more lines.
  • step S206 based on the extraction result of step S204, a process for detecting a parking frame line candidate to be excluded from the parking frame line candidates extracted from the overhead view image in front of the host vehicle V in the front-rear direction (“exclusion shown in the drawing” Subject detection process "). If the process which detects the parking frame line candidate used as exclusion object is performed in step S206, the process which the parking frame reliability setting part 36 performs will transfer to step S208.
  • FIG. 8 is a flowchart which shows the process which the parking frame reliability setting part 36 detects the parking frame line candidate used as exclusion object.
  • step S206 When the parking frame certainty setting unit 36 starts processing (START) in step S206, first, a parking frame line candidate is extracted from the overhead image in front of the host vehicle V in step S2000 as shown in FIG.
  • the process (“Extract the parking frame line candidate ahead of the host vehicle?" Shown in the figure) is determined. In the present embodiment, it is determined whether or not a pair of paired parking frame line candidates has been extracted. If it is determined in step S2000 that a set of parking frame line candidates has been extracted from within the overhead view image in front of the host vehicle V ("Yes" shown in the figure), the process performed by the parking frame certainty setting unit 36 is performed as follows: The process proceeds to S2010.
  • the parking frame certainty setting unit 36 determines whether parking frame line candidate set has been extracted from the overhead view image of the front side of the host vehicle V ("No" shown in the figure).
  • the parking frame certainty setting unit 36 returns to the original processing.
  • the bird's-eye view image around the host vehicle V has, for example, the configuration shown in FIG.
  • FIG. 9A is a diagram illustrating an example of an overhead image around the host vehicle V.
  • a virtual viewpoint is set at a position overlooking the road surface environment from directly above the host vehicle V, and each camera (front camera 14F, right side) using a known conversion method (for example, geometric conversion).
  • the individual images corresponding to the side camera 14SR, the left side camera 14SL, and the rear camera 14R) are overhead-converted.
  • a part of each individual image for example, a range of 3 [m] around the own vehicle V
  • the cut out image portion is subjected to overhead view conversion.
  • the bird's-eye view image corresponding to each camera obtained by the bird's-eye view conversion is combined with an image VR obtained by viewing the host vehicle V prepared in advance from above.
  • the bird's-eye view image around the host vehicle V including the front bird's-eye view image BVPF, the rear bird's-eye view image BVPB, the left bird's-eye view image BVPL, and the right bird's-eye view image BVPR shown in FIG.
  • step S2010 a process for extracting a parking frame line candidate corresponding line corresponding to the set of parking frame line candidates extracted in step S204 from the individual image corresponding to the front bird's-eye view image BVPF ("parking frame line candidate corresponding" shown in the figure). Line extraction process "). If the process which extracts a parking frame line candidate corresponding line from the individual image corresponding to the front side bird's-eye view image BVPF is performed in step S2010, the process which the parking frame reliability setting part 36 performs will transfer to step S2020.
  • FIG. 9B is a diagram illustrating an example of the parking frame line candidate corresponding lines xLa and xLb corresponding to the parking frame line candidates La and Lb.
  • the parking frame line candidate corresponding lines corresponding to the parking frame line candidates La and Lb shown in FIG. 9A are individually associated with the front side bird's-eye view image BVPF as shown in FIG. 9B, for example. Lines (xLa and xLb) extending in the image perspective direction in the image SPF.
  • the solid line portions of the parking frame line candidate corresponding lines xLa and xLb shown in FIG. 9B are portions corresponding to the parking frame line candidates La and Lb.
  • the dotted line portions of the parking frame line candidate corresponding lines xLa and xLb shown in FIG. 9B correspond to the portions of the parking frame line candidate corresponding lines xLa and xLb that are not included in the front bird's-eye view image BVPF. That is, as described above, the front side bird's-eye view image BVPF is generated by performing bird's-eye conversion on a part of the individual image SPF. Therefore, the front side bird's-eye view image BVPF includes only a part of the image of the individual image SPF. Therefore, as shown by the dotted line portion in FIG. 9B, the parking frame line candidates La and Lb extracted from the front bird's-eye view image BVPF may extend further in the individual image SPF.
  • step S2010 the parking frame line candidate corresponding lines xLa and xLb, which are lines corresponding to the parking frame line candidates La and Lb, are extracted from the individual image SPF.
  • FIG. 10A is a diagram showing a state in which the parking frame line candidates La and Lb when the host vehicle V goes straight ahead continue outside the front-side overhead image BVPF.
  • FIG. 10B is a diagram illustrating an example of a search area set in the individual image SPF when the host vehicle V is traveling straight ahead.
  • FIG. 10A when the host vehicle V goes straight, for example, as shown in FIG. 10A, a dotted line portion outside the overhead view image that is estimated to be extended from the parking frame line candidates La and Lb is illustrated. Extracted from the individual image SPF shown in FIG. In this extraction, in this embodiment, as shown in FIG. 10B, search areas SA1 and SA2 extending from the far side end in the image perspective direction of the solid line portions of the parking frame line candidate corresponding lines xLa and xLb. Set.
  • the search area SA1 is a search area for searching for the remaining part extending from the solid line part of the parking frame line candidate corresponding line xLa from the individual image SPF, that is, the extension line of the parking frame line candidate La.
  • the search area SA2 is a search area for searching for the remaining part extending from the solid line part of the parking frame line candidate corresponding line xLb, that is, the extension line of the parking frame line candidate Lb, from the individual image SPF.
  • the search areas SA1 and SA2 have a width Wsah having a length set in advance in a direction perpendicular to the solid line part around the solid line part of the parking frame line candidate corresponding lines xLa and xLb (in the following description, “half width Wsah”).
  • the search areas SA1 and SA2 have a full width Wsa (half width Wsah ⁇ 2).
  • the half width Wsah is set to a length in the individual image corresponding to an actual length of 50 [cm], for example.
  • the lengths of the search areas SA1 and SA2 in the perspective direction are set to a preset length (for example, a length in the individual image SPF corresponding to an actual 8 [m]).
  • the edge pixels of the remaining portions of the parking frame line candidate corresponding lines xLa and xLb extension portions of the parking frame line candidates La and Lb are extracted from the search areas SA1 and SA2.
  • the extended part from the part corresponding to parking frame line candidate La and Lb of parking frame line candidate corresponding line xLa and xLb in search area SA1 and SA2 is extracted.
  • the reason why the second luminance threshold is made smaller than the first luminance threshold is that a line extending further away in the image has a lower luminance than a neighboring line and is difficult to extract. is there.
  • FIG. 11A is a diagram illustrating a state where the parking frame line candidates La and Lb when the host vehicle V is turning are continuing outside the front-side overhead image BVPF.
  • FIG. 11B is a diagram illustrating an example of a search area set in the individual image SPF when the host vehicle V is turning.
  • the extracted line corresponds to the turning direction of the host vehicle V. It becomes a diagonal line.
  • the search areas SA1 and SA2 are set in the same manner as when the host vehicle V is going straight ahead, and the second brightness threshold is used from the set search areas SA1 and SA2.
  • the extended portions from the portions corresponding to the parking frame line candidates La and Lb of the parking frame line candidate corresponding lines xLa and xLb are extracted.
  • the threshold vehicle speed is set to 15 [km / h]
  • the acceleration suppression control is not operated when the host vehicle V travels at a speed of 15 [km / h] or higher. Yes.
  • a configuration may be adopted in which the exclusion target detection process of the present embodiment is performed.
  • the above-described step S2000 when the information for calculating the turning angle such as the steering angle is acquired, the presence / absence of the turning operation is detected, and it is determined that the turning operation is performed, the above-described step is performed. Shift to S2000.
  • step S2020 a process of determining whether or not the line length of the extracted parking frame line candidate corresponding line is equal to or larger than a preset parking frame line length threshold Lth1 ("parking frame line length threshold or more?" Shown in the figure).
  • FIGS. 12A and 12B show the parking frame line candidate corresponding lines xLa and xLb and the parking frame line length threshold Lth1 extracted from the individual image SPF when the host vehicle V is traveling straight and turning. It is a figure which shows an example of a relationship.
  • the parking frame line candidate corresponding lines xLa and xLb shown in FIGS. 12A and 12B are a part corresponding to the parking frame line candidates La and Lb and a part extracted from the search areas SA1 and SA2 by the search. Will be combined. Then, the lengths of the parking frame line candidate corresponding lines xLa and xLb are compared with the parking frame line length threshold Lth1, and whether the lengths of the parking frame line candidate corresponding lines xLa and xLb exceed the parking frame line length threshold Lth1 Determine whether or not.
  • the parking frame line length threshold Lth1 is set based on the length of the parking frame line in the longitudinal direction constituting the existing parking frame. For example, the length in the individual image corresponding to the actual length 6.5 [m] is set.
  • the lengths of the parking frame line candidate corresponding lines xLa and xLb are both longer than the parking frame line length threshold Lth1. Therefore, in such a case, it is determined in step S2020 that the length of the parking frame line candidate corresponding line exceeds the parking frame line length threshold Lth1. In this case, the process performed by the parking frame certainty level setting unit 36 proceeds to step S2030.
  • the parking frame line candidate corresponding lines xLa and xLb both show an example having a length exceeding the parking frame line length threshold Lth1, but in the present embodiment, either one of them If the parking frame line length threshold Lth1 is exceeded, it is determined that the parking frame line length threshold Lth1 is exceeded.
  • step S2020 it is determined that the length of the parking frame line candidate corresponding line does not exceed the parking frame line length threshold Lth1.
  • the process performed by the parking frame certainty factor setting unit 36 proceeds to step S2000.
  • step S2030 processing for detecting a far end that is a far end from the host vehicle V with respect to a set of parking frame line candidates extracted from the front bird's-eye view image BVPF (“discover far end?” Shown in the figure). )I do. If the process which detects a far end part is performed in step S2030, the process which the parking frame reliability setting part 36 performs will transfer to step S2040.
  • FIGS. 13A to 13C are diagrams showing an example of a far end portion detected from the front side bird's-eye view image BVPF.
  • the far end portions Pa and Pb of the parking frame line candidates La and Lb are detected in the front side bird's-eye view image BVPF.
  • far-end portions Pa and Pb are detected as intersections with the horizontal line HL in the front side bird's-eye view image BVPF.
  • the parking frame line candidates La and Lb have broken lines La2 and Lb2 in the front bird's-eye view image BVPF, but the far ends Pa and Pb of the parking frame line candidates La and Lb. Has been detected.
  • step S2040 a process of determining whether or not a far end corresponding to a set of parking frame line candidates has been detected from the front bird's-eye view image BVPF ("discover far end?" Shown in the figure) is performed. Specifically, it is determined whether or not the far end as illustrated in FIGS. 13A to 13C is detected.
  • the process which the parking frame reliability setting part 36 performs transfers to step S2050.
  • step S2040 processing for setting a preset frame line candidate exclusion flag to OFF (“set frame line candidate exclusion flag to OFF” shown in the drawing) is performed.
  • the frame line candidate exclusion flag is a flag for determining whether or not the extracted parking frame line candidate is a parking frame exclusion target.
  • the frame line candidate exclusion flag is set for each set of extracted parking frame line candidates. A set of parking frame line candidates whose frame line candidate exclusion flag is set to ON are excluded from the detection candidates of the parking frame.
  • a set of parking frame line candidates whose frame line candidate exclusion flag is set to OFF are parking frame detection candidates.
  • the process performed by the parking frame certainty factor setting unit 36 returns to the original process (RETURN).
  • step S2060 a process of detecting an intersection line that intersects with a set of parking frame line candidates from the individual image SPF ("intersection line detection process" shown in the figure) is performed. If the process which detects an intersection line is performed in step S2060, the process which the parking frame reliability setting part 36 performs will transfer to step S2070.
  • a luminance difference that is greater than or equal to the third luminance threshold value from the individual image SPF is used by using a third luminance threshold value that is larger than the first luminance threshold value used when the parking frame line candidate is extracted from the front bird's-eye view image BVPF.
  • the intersection line is detected by extracting the edge pixel.
  • step S2070 based on the detection result in step S2060, a process of determining whether or not an intersection line that satisfies a preset intersection condition has been detected ("detect an intersection line that satisfies the intersection condition?" Shown in the figure) is performed. .
  • satisfying the intersection condition means a case where all of the following three conditions (C1 to C3) are satisfied.
  • Condition C1 The intersection line CL detected from the individual image SPF intersects the parking frame line candidate corresponding lines xLa and xLb at a length position equal to or less than the parking frame line length threshold Lth1.
  • Condition C2. The length of the intersection line CL is not less than a preset intersection line length threshold Lth2.
  • the intersection line length threshold Lth2 is preferably set to be equal to or longer than the length corresponding to the horizontal width of at least two parking frames.
  • the intersection line CL intersects the parking frame line candidate corresponding lines xLa and xLb at an intersection angle equal to or less than a preset intersection angle threshold. This is a condition for determining the presence or absence of a horizontal line constituting the H-shaped parking frame, and excludes those that exceed the range of the horizontal line intersection angle in the H-shaped parking frame.
  • FIG. 14 is a diagram illustrating an example of the intersection line CL that intersects the parking frame line candidate corresponding lines xLa and xLb.
  • parking frame line candidate corresponding lines xLa2 and xLb2 are extracted from the individual image SPF, and the intersection line CL intersects the parking frame line candidate corresponding lines xLa2 and xLb2.
  • the parking frame line candidate corresponding lines xLa2 and xLb2 both have a length exceeding the parking frame line length threshold Lth1.
  • intersection line CL intersects the parking frame line candidate corresponding lines xLa2 and xLb2 at a length position equal to or less than the parking frame line length threshold Lth1 (satisfies the condition C1).
  • the intersection line CL has a length equal to or greater than the intersection line length threshold Lth2 (satisfies the condition C2).
  • the intersection line CL is substantially orthogonal to the parking frame line candidate corresponding lines xLa2 and xLb2 (satisfies the condition C3). From the above, in the example of FIG. 14, the detected intersection line CL satisfies the above conditions C1 to C3. In this case, in step S2070, it is determined that the intersection condition is satisfied, and the processing performed by the parking frame certainty setting unit 36 proceeds to step S2050.
  • step S2070 if it is determined in step S2070 that at least one of the above conditions C1 to C3 is not satisfied and the intersection condition is not satisfied, the process performed by the parking frame certainty setting unit 36 proceeds to step S2080.
  • step S2080 a process for setting the frame line candidate exclusion flag to ON (“set frame line candidate exclusion flag” shown in the figure) is performed.
  • step S2080 when the process of setting the frame line candidate exclusion flag is performed, the process performed by the parking frame certainty factor setting unit 36 returns to the original process (RETURN).
  • step S2090 it is determined whether or not the line detected in the search area has gone out of the area in the middle of the search area ("A line has gone out of the search area in the middle?" In the figure). I do. If it is determined in step S2090 that the line is out of the search area in the middle, the process performed by the parking frame certainty setting unit 36 proceeds to step S2100.
  • step S2090 if it is determined in step S2090 that the line is not on the way out of the search area, the process performed by the parking frame certainty setting unit 36 proceeds to step S2110.
  • step S2100 a process for setting the frame line candidate exclusion flag to ON ("set frame line candidate exclusion flag to ON" shown in the drawing) is performed. If the process which sets a frame line candidate exclusion flag to ON is performed in step S2100, the process which the parking frame reliability setting part 36 performs will return to the original process (RETURN).
  • FIG. 15 is a diagram illustrating an example in which the parking frame line candidate corresponding line is out of the search area in the middle.
  • the situation where the parking frame line candidate corresponding lines xLa3 and xLb3 go out of the search areas SA1 and SA2 in the individual image SPF3 occurs due to the behavior of the host vehicle V such as pitching, for example.
  • the frame line candidate exclusion flag is set to ON, and the parking frame line candidates corresponding to the parking frame line candidate corresponding lines xLa3 and xLb3 are set as exclusion targets.
  • step S2110 processing for setting the frame line candidate exclusion flag to OFF ("set frame line candidate exclusion flag to OFF" shown in the figure) is performed.
  • step S2110 when the process for setting the frame line candidate exclusion flag to OFF is performed, the process performed by the parking frame certainty factor setting unit 36 returns to the original process (RETURN). That is, when the parking frame line candidate corresponding line has a length equal to or less than the parking frame line length threshold Lth1, the corresponding parking frame line candidate is excluded from the exclusion target.
  • step S208 based on the processing result of the exclusion target detection process in step S206, a process for determining whether there is a parking frame line candidate whose frame line candidate exclusion flag is ON (shown in the figure). "Is the frame line candidate exclusion flag ON?”). If it is determined in step S208 that the frame line candidate exclusion flag is ON (“Yes” shown in the figure), the process performed by the parking frame certainty setting unit 36 proceeds to step S210.
  • step S210 a process of excluding a set of parking frame line candidates whose frame line candidate exclusion flag is ON from the parking frame line candidate set extracted in step S204 from the detection candidates for the parking frame (shown in the figure). “Frame candidate removal process”). Specifically, the information of the corresponding parking frame line candidate set is deleted from the memory. If the process which excludes the group of parking frame line candidates from the detection candidate of a parking frame is performed in step S210, the process which the parking frame reliability setting part 36 performs will transfer to step S212.
  • step S212 the parking frame line candidate group extracted in step S204 or the remaining parking frame line candidate group subjected to the frame line candidate exclusion process in step S210 of the parking frame line candidate group forms a parking frame.
  • a process is performed to determine whether or not the line condition is met. This process corresponds to “parking frame condition conformance?” Shown in the figure.
  • step S212 when it is determined that the set of parking frame line candidates to be determined does not conform to the conditions of the lines forming the parking frame ("No" shown in the figure), the parking frame certainty setting unit 36 The process performed by the process proceeds to step S202.
  • step S212 when it is determined in step S212 that the set of parking frame line candidates to be determined is suitable for the conditions of the lines forming the parking frame ("Yes" shown in the figure), the parking frame certainty setting is made.
  • the processing performed by the unit 36 proceeds to step S214.
  • the process performed by step S212 is performed with reference to the overhead image signal received from 10 A of surrounding environment recognition information calculating parts, for example.
  • FIG. 16 is a figure which shows the content of the process which the parking frame reliability setting part 36 performs. Further, in FIG. 16, a region indicating an image captured by the front camera 14 ⁇ / b> F in the overhead view image is denoted by a symbol “PE”.
  • step S212 for example, when all of the following four conditions (D1 to D4) are satisfied with respect to the two paired lines that are the set of parking frame line candidates to be determined, the target parking frame line It is determined that the candidate is suitable for the condition of the line forming the parking frame.
  • Condition D1 As shown in FIG. 16A, the width WL between two paired lines (in the figure, indicated by the symbols “La” and “Lb”) is a preset pairing width (for example, 2.5 [m]) or less.
  • Condition D2 As shown in FIG. 16B, the angle (degree of parallelism) formed by the line La and the line Lb is within a preset angle (for example, 3 [°]).
  • a reference line (a line extending in the vertical direction of the region PE) is indicated by a dotted line with a reference “CLc”, and a central axis of the line La is indicated by a reference “CLa”.
  • the central axis of the line Lb is indicated by a broken line with the sign “CLb”.
  • the inclination angle of the central axis line CLa with respect to the reference line CLc is indicated by a symbol “ ⁇ a”
  • the inclination angle of the central axis line CLb with respect to the reference line CLc is indicated by a reference symbol “ ⁇ b”. Therefore, if the conditional expression of
  • Condition D3 As shown in FIG. 16C, a straight line connecting the end of the line La on the own vehicle V side (the lower end in the drawing) and the end of the line Lb on the own vehicle V side, and the own vehicle The angle ⁇ formed with the line L closer to V is equal to or larger than a preset setting deviation angle (for example, 45 [°]).
  • Condition D4 As shown in FIG. 16D, the absolute value (
  • step S214 a process of setting the parking frame certainty level to a level (level 1) that is one step higher than the lowest value (level 0) ("set to level 1" shown in the figure) is performed. If the process which sets parking frame reliability to level 1 is performed in step S214, the process which the parking frame reliability setting part 36 performs will transfer to step S216.
  • step S216 a process of determining whether or not the process of step S212 is continuously verified after the process of step S212 is started until the movement distance of the host vehicle V reaches a preset travel distance (see FIG. "Continuous verification fit?") Shown in the inside.
  • the set movement distance is set within a range of 1 to 2.5 [m], for example, according to the specifications of the host vehicle V and the forward or backward state.
  • step S216 is performed with reference to the bird's-eye view image signal received from 10 A of surrounding environment recognition information calculating parts, and the vehicle speed calculation value signal received from the own vehicle vehicle speed calculating part 10B, for example. If it is determined in step S216 that the processing in step S212 is not continuously collated ("No" shown in the figure), the processing performed by the parking frame certainty setting unit 36 proceeds to step S202.
  • step S216 determines whether the process in step S212 is continuously collated (“Yes” shown in the figure).
  • the process performed by the parking frame certainty setting unit 36 proceeds to step S218.
  • the process performed in step S216 for example, as shown in FIG. 17, the movement distance of the host vehicle V is determined according to the state in which the process in step S212 is collated and the state in which the process in step S212 is not collated. Operate virtually.
  • FIG. 17 is a figure which shows the content of the process which the parking frame reliability setting part 36 performs. In FIG.
  • step S ⁇ b> 212 when the state in which the process in step S ⁇ b> 212 is collated is “ON”, the virtual travel distance increases.
  • the state checked in step S212 is “OFF”, the virtual travel distance decreases.
  • the slope (increase gain) when the virtual travel distance increases is set larger than the slope (decrease gain) when the virtual travel distance decreases. That is, if the “verification state” is “ON” and the “OFF” state is the same time, the virtual travel distance increases.
  • step S212 if the virtual travel distance reaches the set travel distance without returning to the initial value (indicated as “0 [m]” in the figure), it is determined that the processing in step S212 is continuously verified.
  • step S218 a process of setting the parking frame certainty level to a level (level 2) that is two steps higher than the lowest value (level 0) ("set to level 2" shown in the figure) is performed. If the process which sets parking frame reliability to level 2 is performed in step S218, the process which the parking frame reliability setting part 36 performs will transfer to step S220.
  • step S220 the end points located on the same side with respect to the host vehicle V (the end points on the near side or the end points on the far side) with respect to the lines La and Lb that are continuously collated in the process of step S212. Is detected. Then, a process of determining whether or not the end points located on the same side face each other along the direction of the width WL (“approaching near and far end point?” Shown in the figure) is performed. The process performed in step S220 is performed with reference to, for example, an overhead image signal received from the ambient environment recognition information calculation unit 10A and a vehicle speed calculation value signal received from the host vehicle vehicle speed calculation unit 10B. In step S220, when it is determined that the end points located on the same side do not face each other along the direction of the width WL ("No" shown in the drawing), the process performed by the parking frame certainty setting unit 36 is as follows. The process proceeds to step S222.
  • step S220 when it is determined that the end points located on the same side face each other along the direction of the width WL ("Yes" shown in the drawing), the process performed by the parking frame certainty setting unit 36 Shifts to step S202.
  • step S222 a process of setting the level of parking frame certainty to a level (level 3) that is three levels higher than the lowest value (level 0) ("set to level 3" shown in the figure) is performed. If the process which sets parking frame reliability to level 3 is performed in step S222, the process which the parking frame reliability setting part 36 performs will transfer to step S224.
  • step S224 the end points located on the other side are further detected with respect to the lines La and Lb that are determined that the end points located on the same side face each other along the direction of the width WL in the process of step S220.
  • the processing performed in step S224 is performed with reference to, for example, an overhead image signal received from the ambient environment recognition information calculation unit 10A and a vehicle speed calculation value signal received from the host vehicle vehicle speed calculation unit 10B.
  • straight end points such as the end points of the lines shown in FIG. 4A and upper end points of the lines shown in FIG. All the intersection points of the U-shaped end points and the double lines and horizontal lines shown in FIG. 4 (o) are processed as end points of one straight line.
  • a gap is formed in the end point of a double line such as the upper end point of the line shown in FIG. 4H and the U-shaped curve such as the upper end point of the line shown in FIG. All the end points are processed as end points of one straight line.
  • step S224 when it is determined that the end points located on the other side do not face each other along the direction of the width WL ("No" shown in the drawing), the process performed by the parking frame certainty setting unit 36 is performed. The process proceeds to step S202.
  • step S224 when it is determined that the end points located on the other side face each other along the direction of the width WL (“Yes” shown in the drawing), the parking frame certainty setting unit 36 performs the processing.
  • the process proceeds to step S226.
  • step S226 a process of setting the parking frame certainty level to a level (level 4) that is four levels higher than the lowest value (level 0) ("set to level 4" shown in the figure) is performed. If the process which sets parking frame reliability to level 4 is performed in step S226, the process which the parking frame reliability setting part 36 performs will transfer to step S228. Therefore, in the process of setting the parking frame certainty level to level 3, among the parking frames shown in FIG.
  • the parking frame certainty factor is calculated for the patterns (d), (e), (j), and (k). It will be set. Further, in the process of setting the parking frame certainty level to level 4, among the parking frames shown in FIG. 4, the parking frame certainty factor for patterns excluding (d), (e), (j), and (k). Will be set.
  • step S2208 a process of determining whether or not a condition for ending the process performed by the parking frame certainty setting unit 36, which has been set in advance, is satisfied ("end condition satisfied?" Shown in the figure) is performed. Specifically, for example, based on the shift position signal received from the shift position sensor 20, whether or not the shift position is in the parking ("P") shift position, and the termination condition based on the detection of ignition ON ⁇ OFF, etc. It is determined whether or not the above is satisfied. If it is determined in step S228 that the end condition is satisfied, the process performed by the parking frame certainty setting unit 36 ends (END). On the other hand, if it is determined in step S228 that the end condition is not satisfied, the process performed by the parking frame certainty setting unit 36 proceeds to step S202. The series of processes performed by the parking frame certainty setting unit 36 is repeatedly performed every time the start condition is satisfied.
  • FIG. 18 is a flowchart illustrating a process in which the parking frame approach certainty setting unit 38 sets the parking frame approach certainty factor.
  • the parking frame approach reliability setting part 38 performs the process demonstrated below for every preset sampling time (for example, 10 [msec]).
  • the parking frame approach certainty setting unit 38 starts the process (START)
  • step S300 a process for detecting the amount of deviation between the predicted locus of the host vehicle V and the parking frame (FIG. 18).
  • step S300 If the process which detects the deviation
  • the unit of deviation detected in step S300 is [cm].
  • the width of a parking frame is 2.5 [m] is demonstrated as an example.
  • the expected rear wheel trajectory TR of the host vehicle V is calculated, and the intersection of the calculated expected rear wheel trajectory TR and the entrance L2 of the parking frame L0.
  • TP is calculated.
  • a distance Lfl between the left frame line L1l of the parking frame L0 and the intersection TP and a distance Lfr between the right frame line L1r of the parking frame L0 and the intersection TP are calculated, and the distance Lfl and the distance Lfr are compared.
  • the longer one of the distance Lfl and the distance Lfr is detected as a deviation amount between the predicted rear wheel trajectory TR of the host vehicle V and the parking frame L0.
  • FIG. 19 is a diagram showing the contents of processing for detecting the amount of deviation between the predicted rear wheel trajectory TR of the host vehicle V and the parking frame L0.
  • the center point PR in the vehicle width direction of the right rear wheel WRR and the left rear wheel WRL of the host vehicle V is used as the reference point of the host vehicle V.
  • the virtual movement path of the center point PR is calculated using the images captured by the front camera 14F and the left camera 14SL in the overhead view image, the vehicle speed of the host vehicle V, and the rotation angle (steering angle) of the steering wheel 28. Then, a predicted rear wheel trajectory TR is calculated.
  • step S302 for example, processing for detecting parallelism between the straight line X and the length direction (for example, the depth direction) of the parking frame L0 using an image captured by the front camera 14F among the overhead images (shown in the figure). “Parallelity detection”). If the process which detects the parallelism of the straight line X and the length direction of the parking frame L0 is performed in step S302, the process which the parking frame approach reliability setting part 38 performs will transfer to step S304.
  • the parallelism detected in step S302 is detected as an angle ⁇ ap formed by the center line Y and the straight line X of the parking frame L0 as shown in FIG.
  • step S302 when the host vehicle V moves to the parking frame L0 while moving backward, for example, using the image captured by the rear camera 14R in the overhead view image, the straight line X and the length direction of the parking frame L0 are used. Processing to detect parallelism is performed.
  • the moving direction (forward, backward) of the host vehicle V is detected with reference to a current shift position signal, for example.
  • step S304 processing for calculating the turning radius of the host vehicle V ("turning radius calculation” shown in the figure) is performed using the vehicle speed of the host vehicle V and the rotation angle (steering angle) of the steering wheel 28. If the process which calculates the turning radius of the own vehicle V is performed in step S304, the process which the parking frame approach reliability setting part 38 performs will transfer to step S306. In step S306, it is determined whether or not the parallelism ( ⁇ ap) detected in step S302 is less than a preset parallelism threshold (for example, 15 [°]) (“parallelism ⁇ parallel” shown in the figure). Degree threshold? ").
  • a preset parallelism threshold for example, 15 [°]
  • step S306 If it is determined in step S306 that the parallelism ( ⁇ ap) detected in step S302 is equal to or greater than the parallelism threshold (“No” in the drawing), the process performed by the parking frame approach certainty setting unit 38 is step S308. Migrate to
  • step S306 determines whether or not the parallelism ( ⁇ ap) detected in step S302 is less than the parallelism threshold (“Yes” shown in the figure).
  • step S308 it is determined whether or not the turning radius detected in step S304 is greater than or equal to a preset turning radius threshold (for example, 100 [R]) (“turning radius ⁇ turning radius threshold? ")I do. If it is determined in step S308 that the turning radius detected in step S304 is less than the turning radius threshold value ("No" shown in the figure), the processing performed by the parking frame approach certainty setting unit 38 proceeds to step S312. .
  • a preset turning radius threshold for example, 100 [R]
  • step S310 a process for determining whether or not the amount of deviation detected in step S300 is greater than or equal to a preset first threshold (for example, 75 [cm]) (“deviation amount ⁇ first threshold? ”)I do.
  • a preset first threshold for example, 75 [cm]
  • step S310 determines whether or not the amount of deviation detected in step S300 is less than the first threshold ("No" shown in the figure).
  • step S316 a process for determining whether or not the deviation amount detected in step S300 is greater than or equal to a preset second threshold (for example, 150 [cm]) (“deviation amount ⁇ second threshold? ”)I do.
  • the second threshold value is larger than the first threshold value described above.
  • step S312 when it is determined that the amount of deviation detected in step S300 is greater than or equal to the second threshold ("Yes" shown in the figure), the processing performed by the parking frame approach certainty setting unit 38 proceeds to step S318. .
  • finished (END). In step S318, a process of setting the parking frame approach certainty level to the lowest value (level 0) (“entry certainty level 0” shown in the figure) is performed. If the process which sets parking frame approach reliability to level 0 is performed in step S318, the process which the parking frame approach reliability setting part 38 performs will be complete
  • the overall certainty setting unit 40 receives the parking frame certainty signal and the parking frame approach certainty signal, and receives the parking frame certainty included in the parking frame certainty signal and the parking frame entered certainty included in the parking frame approach certainty signal.
  • the degree is adapted to the comprehensive confidence setting map shown in FIG.
  • FIG. 20 is a diagram illustrating a comprehensive certainty setting map.
  • the parking frame certainty factor is indicated as “frame certainty factor”
  • the parking frame approach certainty factor is indicated as “entry certainty factor”. 20 is a map used when the host vehicle V travels forward.
  • the comprehensive certainty setting unit 40 sets the comprehensive certainty
  • the case where the parking frame certainty is “level 3” and the parking frame approach certainty is “level high” is shown in FIG.
  • the overall certainty factor is set to “high”.
  • the overall confidence setting unit 40 performs a process of setting the overall confidence
  • the set overall confidence is stored in a storage unit in which data is not erased even when the ignition switch is turned off.
  • the storage unit from which data is not erased even when the ignition switch is turned off is, for example, a nonvolatile memory such as a flash memory.
  • the overall certainty factor set immediately before is stored. . For this reason, it becomes possible to start control based on the overall certainty factor set immediately before the ignition switch is turned on when the host vehicle V restarts.
  • FIG. 21 is a diagram showing an acceleration suppression condition calculation map.
  • the acceleration suppression control start timing is indicated as “suppression control start timing (accelerator opening)” in the “acceleration suppression condition” column.
  • the acceleration suppression control start timing is increased by increasing the opening of the accelerator pedal 32 as shown in FIG. Then, the timing is set to reach “50%”. The opening degree of the accelerator pedal 32 is set to 100% when the accelerator pedal 32 is depressed (operated) to the maximum value.
  • the acceleration suppression control amount calculation unit 44 receives an input of the total certainty factor signal, and adapts the total certainty factor included in the total certainty factor signal to the acceleration suppression condition calculation map shown in FIG. Then, an acceleration suppression control amount is calculated based on the total certainty factor.
  • the acceleration suppression control amount is indicated as “suppression amount” in the “acceleration suppression condition” column.
  • the acceleration suppression control amount calculation unit 44 sets the presence / absence of control for outputting a warning sound by adapting the total certainty factor to the acceleration suppression condition calculation map.
  • a warning sound for example, character information on the content that activates the acceleration suppression control and visual information such as a symbol and light emission may be displayed on a display monitor included in the navigation device 26.
  • FIG. 22 is a flowchart showing processing performed by the acceleration suppression command value calculation unit 10J.
  • the acceleration suppression command value calculation unit 10J performs the processing described below for each preset sampling time (for example, 10 [msec]).
  • a preset sampling time for example, 10 [msec]
  • step S400 an acceleration suppression operation condition determination result signal received from the acceleration suppression control content calculation unit 10I is displayed.
  • step S400 an acceleration suppression operation condition determination result signal received from the acceleration suppression control content calculation unit 10I is displayed.
  • the process (“acceleration suppression operation condition judgment result acquisition process” shown in the figure) which acquires an acceleration suppression operation condition judgment result is performed. If the process which acquires an acceleration suppression operation condition judgment result is performed in step S400, the process which the acceleration suppression command value calculating part 10J performs will transfer to step S402.
  • step S402 in addition to the acceleration suppression operation condition determination result acquired in step S400, processing for acquiring information for calculating the acceleration suppression command value ("acceleration suppression command value calculation information acquisition processing" shown in the figure) is performed. . If the process which acquires the information for calculating an acceleration suppression command value in step S402 is performed, the process which the acceleration suppression command value calculating part 10J performs will transfer to step S404.
  • the information for calculating the acceleration suppression command value is, for example, information included in the acceleration suppression control start timing signal, the acceleration suppression control amount signal, the drive side depression amount signal, and the accelerator operation speed signal described above.
  • step S404 a process of determining whether or not the acceleration suppression operation condition determination result acquired in step S400 is a determination result that the acceleration suppression control operation condition is satisfied (“acceleration suppression control operation condition satisfied?” Shown in the figure). Do. If it is determined in step S404 that the acceleration suppression control operation condition is satisfied ("Yes" shown in the figure), the processing performed by the acceleration suppression command value calculation unit 10J proceeds to step S406.
  • step S404 determines whether the acceleration suppression control operation condition is not satisfied ("No" shown in the figure).
  • step S404 determines whether the acceleration suppression control operation condition is not satisfied ("No" shown in the figure).
  • step S406 based on the information for calculating the acceleration suppression command value acquired in step S402, a process of calculating an acceleration suppression command value that is an acceleration command value for performing acceleration suppression control ("Acceleration suppression command shown in the figure"). Control command value calculation "). If the process which calculates an acceleration suppression command value is performed in step S406, the process which the acceleration suppression command value calculating part 10J performs will transfer to step S410.
  • the depression amount of the accelerator pedal 32 included in the drive side depression amount signal and the acceleration suppression control amount included in the acceleration suppression control amount signal are referred to.
  • an acceleration suppression control amount command value is calculated that sets the throttle opening to a degree of suppression (see FIG. 21) corresponding to the acceleration suppression control amount with respect to the actual accelerator pedal 32 opening.
  • the depression amount of the accelerator pedal 32 included in the driving side depression amount signal and the acceleration suppression control start timing included in the acceleration suppression control start timing signal are referred to.
  • the acceleration suppression control start timing command value which makes the acceleration suppression control start timing the timing (refer FIG. 21) according to the opening degree of the actual accelerator pedal 32 is calculated.
  • the command value including the acceleration suppression control amount command value and the acceleration suppression control start timing command value calculated as described above is calculated as the acceleration suppression command value.
  • driving force control without acceleration suppression control that is, processing for calculating a normal acceleration command value that is an acceleration command value used in normal acceleration control ("command value calculation for normal acceleration control" shown in the figure). I do.
  • the process which calculates a normal acceleration command value is performed in step S408, the process which the acceleration suppression command value calculating part 10J performs will transfer to step S412.
  • the command value for calculating the throttle opening based on the depression amount of the accelerator pedal 32 included in the drive side depression amount signal is calculated as the normal acceleration command value.
  • step S410 an acceleration suppression command value signal including the acceleration suppression command value calculated in step S406 is output to the target throttle opening calculation unit 10K ("acceleration suppression command value output" shown in the figure). If the process which outputs an acceleration suppression command value signal is performed in step S410, the process which the acceleration suppression command value calculating part 10J performs will be complete
  • FIG. 23 is a flowchart showing a process performed by the target throttle opening calculation unit 10K.
  • the target throttle opening calculation unit 10K performs the process described below for each preset sampling time (for example, 10 [msec]). As shown in FIG. 23, when the target throttle opening calculation unit 10K starts processing (START), first, in step S500, the drive side depression amount signal received from the accelerator operation amount calculation unit 10 is referred to.
  • step S500 the process which acquires the depression amount (acceleration operation amount) of the accelerator pedal 32 which the drive side depression amount signal contains is performed. If the process which acquires the depression amount (acceleration operation amount) of the accelerator pedal 32 is performed in step S500, the process which the target throttle opening calculating part 10K performs will transfer to step S502.
  • step S502 based on the information signal received from the acceleration suppression command value calculation unit 10J, the suppression with acceleration suppression command value (see step 408), the acceleration suppression command value (see step S414) or the normal acceleration command value (step S418). (Refer to) is performed ("command value acquisition process" shown in the figure). If the process which acquires an acceleration suppression command value or a normal acceleration command value is performed in step S502, the process which the target throttle opening calculating part 10K performs will transfer to step S504.
  • step S504 calculation of the target throttle opening (“target throttle opening calculation” shown in the figure) is performed based on the depression amount of the accelerator pedal 32 acquired in step S500 and the command value acquired in step S502.
  • the processing performed by the target throttle opening calculation unit 10K proceeds to step S506.
  • the command value acquired in step S502 is a normal acceleration command value (when the acceleration suppression operation condition is not established)
  • the throttle opening corresponding to the depression amount of the accelerator pedal 32 is set as follows. Calculated as the target throttle opening.
  • the throttle opening corresponding to the acceleration suppression control amount command value is set as the target throttle opening.
  • step S506 a target throttle opening signal including the target throttle opening ⁇ * calculated in step S504 is output to the engine controller 12 (“target throttle opening output” shown in the figure).
  • target throttle opening output shown in the figure.
  • the process performed by the target throttle opening calculation unit 10K ends (END).
  • the command value acquired in step S502 is a suppression-accelerated suppression command value or an acceleration suppression command value
  • the opening degree (depression amount) of the accelerator pedal 32 corresponds to the acceleration suppression control start timing. At the timing when the opening is reached, the target throttle opening signal is output.
  • the parking frame certainty setting unit 36 sets the parking frame certainty factor
  • the parking frame approach certainty setting unit 38 sets the parking frame approach certainty factor
  • the comprehensive reliability setting part 40 sets the comprehensive reliability based on a parking frame reliability and a parking frame approach reliability.
  • the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing based on the total reliability set by the total reliability setting unit 40
  • the acceleration suppression control amount calculation unit 44 calculates an acceleration suppression control amount.
  • the acceleration suppression command value calculation unit 10J outputs an acceleration suppression command value signal to the target throttle opening calculation unit 10K.
  • the target throttle opening calculation unit 10K outputs a target throttle opening signal to the engine controller 12.
  • the acceleration suppression control amount command value is subtracted from the throttle opening corresponding to the depression amount of the accelerator pedal 32, and the throttle is opened.
  • the degree is set to 50 [%] of the actual throttle opening.
  • the accelerator pedal 32 is operated by an erroneous operation or the like in a situation where the braking operation is an appropriate driving operation, such as a state where the host vehicle V is close to a position suitable for parking within the parking frame L0, It becomes possible to reduce the throttle opening according to the total certainty factor. That is, since the acceleration suppression amount (the degree of throttle opening reduction) is small when the overall confidence level is low, it is possible to reduce the reduction in drivability, and when the overall confidence level is high, the acceleration suppression amount is large. Therefore, the acceleration suppression effect of the host vehicle V can be increased.
  • the acceleration suppression amount the degree of throttle opening reduction
  • the acceleration of the host vehicle V is suppressed and the safety is improved by increasing the acceleration suppression control amount as the total certainty factor is higher. Further, the lower the overall certainty, the later the acceleration suppression control start timing is delayed, and the drivability is suppressed from decreasing. This makes it possible to improve safety and suppress deterioration of drivability under the following conditions. For example, in the situation where the host vehicle V standing by in the vicinity of the parking frame L0 for parallel parking on the side of the traveling road is started, it is necessary to allow a certain degree of acceleration.
  • FIG. 24 is a diagram illustrating an operation example at the intersection of a crossroad.
  • the parking frame certainty setting unit 36 displays a road marking line (in the drawing)
  • the bird's-eye view image BV1 including the white lines BL1 and BL2) shown is acquired.
  • the parking frame reliability setting part 36 extracts the white lines BL1 and BL2 in the bird's-eye view image BV1 as parking frame line candidates, and pairs them (step S204).
  • the parking frame certainty setting unit 36 Since the parking frame certainty setting unit 36 has extracted a set of parking frame line candidates (“Yes” in step S2000), the parking frame line candidate corresponding lines corresponding to the parking frame line candidates BL1 and BL2 in the individual image. Set the search area on a part of the extension. And it searches based on the 2nd brightness
  • the frame line candidate exclusion flag for the parking frame line candidates BL1 and BL2 is set to ON (step S2080). Since the frame line candidate exclusion flag is set to ON (“Yes” in step S208), the parking frame certainty setting unit 36 excludes the parking frame line candidates BL1 and BL2 from the parking frame detection candidates (step S210). ).
  • the parking frame line candidate extracted when the host vehicle V makes a left turn at the intersection can be excluded from the detection target of the parking frame. Therefore, the parking frame certainty level becomes level 0, the acceleration suppression operation condition determination unit 34 determines that there is no parking frame (“No” in step S102), and the acceleration suppression operation condition becomes inactive (step S128). ). Thereby, in the scene which makes a left turn at the intersection, in the vehicle acceleration suppression device 1, the normal acceleration control reflecting the driver's intention of acceleration operates without operating the acceleration suppression control.
  • the parking frame line candidates BL3 and BL4 are excluded from the parking frame detection candidates as in the case of a left turn.
  • normal acceleration control that reflects the driver's intention to accelerate operates without operating acceleration suppression control.
  • the parking frame line candidates BL5 and BL6 are excluded from the parking frame detection candidates, and the vehicle acceleration suppression device 1
  • the normal acceleration control that reflects the driver's intention to accelerate operates without the acceleration suppression control.
  • FIG. 24 shows an example in which the road white line continues without interruption, for example, as shown in FIG. 25, there is an intersection where the white line on the road is a broken line.
  • FIG. 25 is a diagram for explaining an operation example at the intersection of the T-junction where the white line on the road is a broken line.
  • parking frame line candidates BL7 and BL8 are extracted from the overhead image BV4 in the case of a left turn. Therefore, the parking frame certainty setting unit 36 performs a process of extracting a parking frame line candidate corresponding line for the set of parking frame line candidates BL7 and BL8.
  • the parking frame line candidates BL7 and BL8 are, for example, broken lines of 5 [m] or less. Accordingly, the lengths of the parking frame line candidate corresponding lines corresponding to the parking frame line candidates BL7 and BL8 are shorter than the parking frame line length threshold Lth1 (here, 6.5 [m]) (“No” in step S2020). Become.
  • the parking frame line candidate corresponding line does not go out of the area in the middle of the search area (“No” in step S2090), and the frame line candidate exclusion flag for the parking frame line candidates BL7 and BL8 is set to OFF ( Step S2110). Since the frame line candidate exclusion flag is set to OFF (“No” in step S208), the parking frame certainty setting unit 36 leaves the parking frame line candidates BL7 and BL8 as parking frame detection candidates. When the parking frame line candidates BL7 and BL8 meet the parking frame condition (“Yes” in step S212), the parking frame certainty factor is set to level 1 (step S214).
  • the acceleration suppression control is performed when the host vehicle V travels at a speed of 15 [km / h] or higher, which is the threshold vehicle speed. Inactive.
  • FIG. 26 is a diagram for explaining an operation example in the case where there is a road marking in a stop-prohibited zone at the left after an intersection.
  • the stop prohibited zone NSA since the fire station is immediately after the host vehicle V makes a left turn, there is a road marking of the stop prohibited zone NSA on the road in front of the fire station. This stop prohibition zone NSA is likely to be erroneously detected as a parking frame line candidate because the shape is similar to the parking frame.
  • the stop prohibited band NSA included in the overhead view image It is possible to exclude the set of extracted parking frame line candidates from the parking frame line detection candidates. Therefore, even if the stop prohibition zone NSA in which the length of the frame line exceeds the parking frame line length threshold Lth1 is erroneously detected as a parking frame line candidate, it is possible to deactivate the acceleration suppression control. Therefore, it is possible to prevent a decrease in drivability due to the acceleration suppression control.
  • Lth1 for example, 6.5 [m]
  • the acceleration suppression control includes control for causing the vehicle V to travel at a low vehicle speed that is equal to or lower than a preset vehicle speed, and control for decelerating (including stopping) the vehicle V using not only the driving force control but also a braking device.
  • the acceleration suppression control includes power transmission control based on clutch connection control (for example, when suppression is performed, the clutch is disconnected from the gear and power is not transmitted).
  • the accelerator operation detection sensor 24 and the accelerator operation amount calculation unit 10G described above correspond to an acceleration operation amount detection unit.
  • the acceleration suppression command value calculation unit 10J and the target throttle opening calculation unit 10K described above correspond to an acceleration control unit.
  • the ambient environment recognition sensor 14 described above corresponds to an imaging unit and an overhead image acquisition unit.
  • the parking frame line candidate extraction process (step S204) performed by the parking frame certainty factor setting unit 36 described above corresponds to the parking frame line candidate extraction unit.
  • a series of processing (steps S212 to S226) for detecting the parking frame and setting the parking frame certainty performed by the parking frame certainty setting unit 36 described above corresponds to the parking frame detection unit.
  • the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K described above correspond to the acceleration suppression control unit.
  • the parking frame line candidate corresponding line extraction process (step S2010) performed by the parking frame certainty factor setting unit 36 described above corresponds to the parking frame line candidate corresponding line extraction unit.
  • the above-described process for setting the frame line candidate exclusion flag (steps S2020 to S2110) performed by the parking frame certainty factor setting unit 36 and the process for excluding the parking frame line candidates based on the frame line candidate exclusion flag (steps S208 to S210). ) Corresponds to the frame line candidate exclusion unit.
  • movement of the own vehicle V based on the information for calculating turning angles, such as a steering angle, which the parking frame reliability setting part 36 mentioned above performs corresponds to a turning operation
  • the travel route determination process (step S2030) performed by the parking frame certainty factor setting unit 36 described above corresponds to the travel region determination unit.
  • the accelerator operation detection sensor 24 and the accelerator operation amount calculation unit 10G detect the operation amount (acceleration operation amount) of the accelerator pedal 32.
  • the acceleration suppression command value calculation unit 10J and the target throttle opening calculation unit 10K control the acceleration generated in the host vehicle V according to the acceleration operation amount detected by the accelerator operation detection sensor 24 and the accelerator operation amount calculation unit 10G.
  • the surrounding environment recognition sensor 14 captures an area including the road surface around the host vehicle, and obtains an overhead image by performing overhead conversion of the captured image obtained by imaging.
  • the parking frame certainty setting unit 36 extracts a line located on the road surface from the overhead image as a parking frame line candidate, and detects a parking frame from the extracted parking frame line candidate.
  • the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K are added to the parking frame extracted by the parking frame reliability setting unit 36.
  • the acceleration suppression control which is control for reducing the acceleration (throttle opening) generated in the vehicle V according to the acceleration operation amount, is performed.
  • a parking frame line candidate that is a line corresponding to the parking frame line candidate extracted from the overhead image from the captured image (individual image SPF) in front of the host vehicle V acquired by the surrounding environment recognition sensor 14 by the parking frame certainty setting unit 36. Extract corresponding lines.
  • the parking frame certainty setting unit 36 determines that the length of the parking frame line candidate corresponding line exceeds the preset parking frame line length threshold Lth1, the parking frame corresponding to the parking frame line candidate corresponding line Line candidates are excluded from parking frame detection candidates.
  • a parking frame line candidate corresponding line corresponding to the parking frame line candidate is extracted from the captured image (individual image SPF) corresponding to the overhead image and extracted. It is determined whether the length of the corresponding parking frame line candidate corresponding line exceeds the parking frame line length threshold. When it is determined that the parking frame line length threshold is exceeded, the parking frame line candidate corresponding to the parking frame line candidate corresponding line is excluded from the parking frame detection candidates. As a result, a line having an inappropriate length as a parking frame line candidate (for example, a length of a road marking line on a public road, etc.) can be excluded from the parking frame detection candidates. It is possible to prevent or reduce the occurrence of acceleration suppression processing in a region other than the region where the operation is performed. Therefore, it becomes possible to prevent or reduce a decrease in drivability due to acceleration suppression processing in an area other than the parking area.
  • the parking frame certainty setting unit 36 sets a line corresponding to the parking frame line candidate in the captured image as a part of the parking frame line candidate corresponding line, and a part of the parking frame line candidate corresponding line set in advance
  • the remaining part of the parking frame line candidate corresponding line is extracted from the search area which is an image area having a width equal to or larger than the width of a part of the parking frame line candidate corresponding line extending from the far end in the perspective direction. To do.
  • By giving a width to the search area it is possible to extract a curved line or the like along the way, so that it is possible to improve the extraction accuracy of the parking frame line candidate corresponding line.
  • the parking frame line candidate corresponding line When the parking frame certainty setting unit 36 determines that a part of the extended line of the parking frame line candidate corresponding line is out of the area from the middle of the search area, the parking frame line candidate corresponding line The parking frame line candidate in the bird's-eye view image corresponding to the section is excluded from the parking frame detection candidates.
  • the situation where the line goes out in the middle of the search area is highly likely to occur due to the behavior of the host vehicle V such as pitching, and the possibility that the parking frame line candidate corresponding line continues further. Therefore, in such a situation, the parking frame line candidate corresponding to the parking frame line candidate corresponding line is excluded from the parking frame detection candidates.
  • the parking frame certainty setting unit 36 detects the far end of the parking frame line candidate extracted from the overhead image by the parking frame line candidate extraction unit from the host vehicle V. Further, for the parking frame line candidate corresponding to the parking frame line candidate corresponding line determined to be longer than the parking frame line length threshold Lth1, the far end of the parking frame line candidate is detected in the overhead image. If determined, the parking frame line candidate is left as a parking frame detection candidate.
  • the extraction result of the parking frame line candidate extracted from the relatively neighboring image region is more reliable than the extraction result of the parking frame line candidate corresponding line extracted from the relatively far image region.
  • this parking frame line candidate is left without being excluded from the parking frame detection candidates. Accordingly, it is possible to prevent or reduce the occurrence of a situation in which the acceleration suppression control is not performed in the parking area while preventing or reducing the decrease in drivability due to the acceleration suppression process in the area other than the parking area.
  • the parking frame certainty setting unit 36 detects an intersection line CL that intersects with the parking frame line candidate corresponding line at an angle equal to or less than a preset intersection angle threshold value from the captured image. And in the parking frame line candidate corresponding line determined to be longer than the parking frame line length threshold Lth1, the vehicle intersects at a length position equal to or less than the parking frame line length threshold Lth1, and is equal to or greater than the preset intersection line length threshold Lth2. If it is determined that the intersection line CL having the length of is detected, the parking frame line candidate corresponding to the parking frame line candidate corresponding line is left as a parking frame line candidate.
  • the intersection line CL that intersects the parking frame line candidate corresponding line at an angle equal to or smaller than the intersection angle threshold is equal to or less than the parking frame line length threshold Lth1.
  • the parking frame line candidate corresponding to the parking frame line candidate corresponding line is left without being excluded from the parking frame detection candidates.
  • acceleration suppression control is not performed in a parking area where parking frames for a plurality of vehicles are vertically connected while preventing or reducing a decrease in drivability due to acceleration suppression processing in an area other than the parking area. It is possible to prevent or reduce the occurrence.
  • the parking frame certainty setting unit 36 detects edge pixels having a luminance equal to or higher than a first luminance threshold that is a preset luminance threshold in the overhead view image, and extracts parking frame line candidates based on the edge pixels. To do. Further, the parking frame certainty setting unit 36 detects an edge pixel having a luminance equal to or higher than a second luminance threshold smaller than a first luminance threshold that is a predetermined luminance threshold in the captured image, and based on the edge pixel. A parking frame line candidate corresponding line is extracted. Since the parking frame line candidate corresponding line needs to extract a line part located farther than the parking frame line candidate from the captured image, if the luminance threshold is set too high, the extraction accuracy decreases, and the line actually exists. May not be extracted. Therefore, it is possible to improve the extraction accuracy of a parking frame line candidate corresponding line by lowering the luminance threshold than when extracting a parking frame line candidate.
  • the parking frame certainty setting unit 36 selects parking frame line candidates only for a combination of two adjacent parking frame line candidates in the overhead image among the parking frame line candidates extracted from the overhead image. A process of excluding the parking frame detection candidate is performed. In other words, since the parking frame is composed of at least a pair of two adjacent lines, only the combination of two adjacent lines extracted in the overhead image satisfies the condition as a parking frame detection candidate. It is determined whether or not. As a result, it is possible to more reliably exclude those having a low possibility as parking frames from detection candidates.
  • the parking frame certainty setting unit 36 detects the turning operation of the host vehicle V based on information for calculating a turning angle such as a steering angle. Further, when the parking frame certainty setting unit 36 determines that the host vehicle V has performed a turning operation that satisfies a predetermined turning condition, a process of excluding the parking frame line candidate from the parking frame detection candidates is performed.
  • a road marking on a public road for example, a white line
  • the vehicle speed is 15 [km / h]
  • the process of excluding the parking frame line candidate from the detection candidate of the parking frame the occurrence of erroneous exclusion of the parking frame line candidate is reduced, and at a more effective timing. Processing can be performed.
  • the structure which determines whether the extracted parking frame line candidate is made into the exclusion object of a parking frame based on these determination results it is not limited to this.
  • the visible lines extractable parking frame line candidates
  • This method may be either a configuration performed instead of the method of the present embodiment, or a configuration performed in addition. It should be noted that for a situation in which the road marking is difficult to see, other methods such as detecting the driving state of the wiper or detecting the lighting of the fog lamp may be used, or may be used in combination.
  • the parking frame line candidate corresponding line is extracted from the individual image (captured image).
  • the present invention is not limited to this.
  • a configuration may be adopted in which a bird's-eye view image in a wide range compared to a bird's-eye view image for display is generated in advance, and a captured frame image is extracted from an image obtained by processing a captured image, such as extracting a parking frame line candidate corresponding line from this wide bird's-eye view image Good.
  • the intersection angle is equal to or smaller than a preset intersection angle threshold value, intersects with the parking frame line candidate corresponding line at a length position equal to or smaller than the parking frame line length threshold value Lth1, and further, the length intersects.
  • the parking frame line candidate corresponding to the parking frame line candidate corresponding line is left as a parking frame detection candidate, but the present invention is not limited to this.
  • the crossing position may be another configuration such as a position shorter than the parking frame line length threshold Lth1 (for example, 6.5 [m]) (for example, 6 [m]).
  • the parking frame line candidate corresponding to the parking frame line candidate corresponding line is parked even when there is an intersection line on either of the left and right sides. It is good also as a structure left as a detection candidate of a frame.
  • the acceleration suppression control start timing and the acceleration suppression control amount are calculated based on the total reliability set by the total reliability setting unit 40, but the present invention is not limited to this. That is, the acceleration suppression control start timing and the acceleration suppression control amount may be calculated based only on the parking frame reliability set by the parking frame reliability setting unit 36. In this case, the acceleration suppression control start timing and the acceleration suppression control amount are calculated by adapting the parking frame certainty to, for example, an acceleration suppression condition calculation map shown in FIG. FIG. 27 is a diagram showing a modification of the present embodiment.
  • the configuration of the parking frame certainty factor setting unit 36 is set based on the bird's-eye view image (environment) around the host vehicle V and the vehicle speed (running state) of the host vehicle V.
  • the configuration of the parking frame certainty level setting unit 36 is not limited to this. That is, the configuration of the parking frame certainty setting unit 36 is added to the current position of the host vehicle V included in the host vehicle position signal and the host vehicle included in the traveling road information signal in addition to the overhead view image and the vehicle speed around the host vehicle V. It is good also as a structure which sets parking frame reliability using the classification (road classification) of the road where V drive
  • the parking frame certainty is set to “level 0”.
  • the host vehicle V enters a parking frame where the operation of the acceleration suppression control is not preferable, such as a parking frame disposed on the road edge on a public road, the drivability reduction of the host vehicle V is suppressed. It becomes possible.
  • the parking frame certainty level is set. 3 or level 4 is set (see step S230).
  • the process of setting the parking frame certainty level to level 3 or level 4 is not limited to this. That is, the shape of the end point of the line L is not marked on the public road, for example, when it is U-shaped (see FIGS. 4 (g) to (k), (m), (n)).
  • the parking frame certainty may be set to level 3 or level 4.
  • the configuration of the parking frame certainty level setting unit 36 is set based on the bird's-eye view image (environment) around the host vehicle V and the vehicle speed (running state) of the host vehicle V.
  • the configuration of the parking frame certainty setting unit 36 is not limited to this. That is, if the configuration of the host vehicle V is, for example, a configuration that includes a device (parking support device) that assists the driver in steering to the parking frame L0, and the parking support device is in the ON state, parking is performed. It is good also as a structure which becomes easy to raise the level of frame reliability.
  • the configuration in which the level of the parking frame certainty is likely to increase is, for example, a configuration in which the above-described set movement distance is set to a shorter distance than usual.
  • the acceleration suppression control amount and the acceleration suppression control start timing are changed based on the total certainty factor, and the reduction degree of the acceleration command value is changed.
  • the present invention is not limited to this. That is, only the acceleration suppression control start timing or only the acceleration suppression control amount may be changed according to the total certainty factor, and the degree of reduction of the acceleration command value may be changed. In this case, for example, the higher the total certainty factor, the larger the acceleration suppression control amount may be set, and the acceleration command value reduction degree may be increased without changing the acceleration suppression control start timing.
  • the acceleration command value is controlled to suppress the acceleration of the host vehicle V according to the depression amount (acceleration operation amount) of the accelerator pedal 32.
  • the present invention is not limited to this. That is, for example, the throttle opening corresponding to the depression amount (acceleration operation amount) of the accelerator pedal 32 is set as the target throttle opening, and further, the braking force is generated by the above-described braking device, and the host vehicle corresponding to the acceleration operation amount is generated. The acceleration of V may be suppressed.
  • the parking frame certainty factor is calculated as level 0, which is the lowest value, and a level (levels 1 to 4) above the lowest value, but the parking frame certainty level is
  • the present invention is not limited to this.
  • the parking frame certainty factor may be calculated as only two levels: a level that is the lowest value (for example, “level 0”) and a level that is higher than the lowest value (for example, “level 100”).
  • the parking frame approach reliability is calculated as “level 0” as the lowest value, “level low” at a level higher than level 0, and “level high” at a level higher than level low.
  • the parking frame approach reliability level is not limited to this. That is, the parking frame approach reliability may be calculated as only two levels: a level that is the lowest value (for example, “level 0”) and a level that is higher than the lowest value (for example, “level 100”).
  • the overall confidence level is divided into four levels according to the parking frame confidence level calculated as one of the five levels and the parking frame approach reliability level calculated as one of the three levels.
  • Level (“very low”, “low”, “high”, “very high”).
  • the overall confidence level is not limited to this.
  • the total certainty factor may be calculated as only two levels: a level that is the lowest value (for example, “level 0”) and a level that is higher than the lowest value (for example, “level 100”). In this case, for example, when the parking frame certainty factor and the parking frame approach certainty factor are calculated as the lowest level, the total certainty factor is calculated as the lowest level. For example, when the parking frame certainty factor and the parking frame approach certainty factor are calculated as a level higher than the minimum value, the total certainty factor is calculated as a level higher than the minimum value.
  • the present embodiment is a preferable specific example of the present invention, and various technically preferable limitations are given.
  • the scope of the present invention is described in particular in the above description to limit the present invention. As long as there is no, it is not restricted to these forms.
  • the drawings used in the above description for convenience of illustration, the vertical and horizontal scales of members or parts are schematic views different from actual ones.
  • the present invention is not limited to the above-described embodiments, and modifications, improvements, equivalents, and the like within the scope that can achieve the object of the present invention are included in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 駐車を行う領域以外での加速抑制処理の作動による運転性の低下を低減することが可能な、車両用加速抑制装置を提供する。自車両(V)の周囲の撮像画像を俯瞰変換してなる俯瞰画像から駐車枠線の候補となる駐車枠線候補を抽出し、自車両Vの前方の撮像画像から、この駐車枠線候補に対応する駐車枠線候補対応線を抽出する。そして、この駐車枠線候補対応線の長さが駐車枠線長閾値(Lth1)を超えるものを駐車枠の検出候補から除外する。

Description

車両用加速抑制装置
 本発明は、駐車の際の運転支援を行うための車両用の加速抑制の技術に関する。
 乗物の速度を制御する装置としては、例えば特許文献1に記載の安全装置がある。この安全装置では、ナビゲーション装置の地図データと現在位置の情報から乗物が道路から外れた位置にあることを検出し、乗物の走行速度を増加させる方向のアクセル操作があり且つ乗物の走行速度が所定の値より大きいと判断されたときは、アクセルの操作に拘わらずスロットルを減速方向に制御する。
特開2003-137001号公報
 上記特許文献1は、アクセル操作の誤操作があっても運転者の意図しない車両の加速を防止することを目的としている。このとき、アクセルの操作が誤操作であるか否かの判断が課題となる。そして、上記特許文献1では、地図情報に基づき自車両が道路から外れた位置にあり且つ所定値以上の走行速度を検出しているときのアクセル踏込み操作を、アクセル誤操作の可能性があるとし、上記条件をスロットル抑制の作動条件としている。
 しかし、上述の作動条件では、道路から外れて駐車場に進入するだけで、車速によってはスロットル抑制が作動してしまい、駐車場内での運転性を低下させてしまう。
 本発明は、上記のような点に着目してなされたもので、自車両が駐車する際の運転支援の精度を向上させることを目的とする。
 上記課題を解決するために、本発明の一態様は、自車両周囲の路面を含む領域の撮像画像を取得し、取得した撮像画像を俯瞰変換して俯瞰画像を得る。更に、俯瞰画像から、路面上に位置する駐車枠線候補を抽出する。この駐車枠線候補から駐車枠を検出し、検出した駐車枠に基づき、運転者が加速を指示するために操作する加速操作子の加速操作量に応じて、自車両に発生させる加速を低減する制御である加速抑制制御を実施する。一方、自車両前方の撮像画像から、検出した駐車枠線候補に対応する駐車枠線候補対応線を抽出する。更に、この駐車枠線候補対応線の長さが予め設定した駐車枠線長閾値以上の長さであると判定すると、該駐車枠線候補対応線に対応する駐車枠線候補を駐車枠の検出候補から除外する。
 本発明は、自車両周囲の撮像画像を俯瞰変換してなる俯瞰画像から駐車枠線の候補となる駐車枠線候補を抽出し、自車両前方の撮像画像から、この駐車枠線候補に対応する駐車枠線候補対応線を抽出することで、俯瞰画像外の駐車枠線候補の延長部分を撮像画像から抽出する。そして、この駐車枠線候補対応線の長さが駐車枠線長閾値以上(例えば、駐車枠線として不適切な長さ以上)のものを駐車枠の検出候補から除外する。これによって、自車両が駐車を行う領域以外の領域を走行時に発生する加速抑制制御による運転性の低下を低減することが可能となる。
車両用加速抑制装置を備える車両の構成を示す概念図である。 車両用加速抑制装置の概略構成を示すブロック図である。 加速抑制制御内容演算部の構成を示すブロック図である。 駐車枠確信度設定部が駐車枠確信度の設定対象とする駐車枠のパターンを示す図である。 加速抑制作動条件判断部が、加速抑制作動条件が成立するか否かを判断する処理を示すフローチャートである。 自車両と、駐車枠と、自車両と駐車枠との距離を説明する図である。 駐車枠確信度設定部が駐車枠確信度を設定する処理を示すフローチャートである。 駐車枠確信度設定部36が除外対象となる駐車枠線候補を検出する処理を示すフローチャートである。 (a)は、自車両Vの周囲の俯瞰画像例を示す図であり、駐車枠線候補LaおよびLbに対応する駐車枠線候補対応線xLaおよびxLbの一例を示す図である。 (a)は、自車両Vが直進時の駐車枠線候補LaおよびLbが前側俯瞰画像BVPFの外へと続いている様子を示す図であり、(b)は、自車両Vが直進時の個別画像SPFに設定した探索領域の一例を示す図である。 (a)は、自車両Vが旋回動作時の駐車枠線候補LaおよびLbが前側俯瞰画像BVPFの外へと続いている様子を示す図であり、(b)は、自車両Vが旋回動作時の個別画像SPFに設定した探索領域の一例を示す図である。 (a)および(b)は、自車両Vが直進時および旋回動作時の個別画像SPF内から抽出した駐車枠線候補対応線xLaおよびxLbと駐車枠線長閾値Lth1との関係の一例を示す図である。 (a)~(c)は、前側俯瞰画像BVPFから検出する遠端部の例を示す図である。 駐車枠線候補対応線xLaおよびxLbと交差する交差線CLの一例を示す図である。 駐車枠線候補対応線が途中で探索領域外に出ている一例を示す図である。 駐車枠確信度設定部が行う処理の内容を示す図である。 駐車枠確信度設定部が行う処理の内容を示す図である。 駐車枠進入確信度設定部が駐車枠進入確信度を設定する処理を示すフローチャートである。 自車両の予想軌跡と駐車枠とのずれ量を検出する処理の内容を示す図である。 総合確信度設定マップを示す図である。 加速抑制条件演算マップを示す図である。 加速抑制指令値演算部が行う処理を示すフローチャートである。 目標スロットル開度演算部が行う処理を示すフローチャートである。 十字路の交差点における動作例を説明する図である。 T字路の交差点における動作例を説明する図である。 交差点を左折した先に停車禁止帯の道路標示が存在する場合の動作例を説明する図である。 変形例を示す図である。
 以下、本発明の実施形態について、図面を参照しつつ説明する。
(構成)
 まず、図1を用いて、本実施形態の車両用加速抑制装置を備える車両の構成を説明する。
 図1は、本実施形態の車両用加速抑制装置1を備える車両Vの構成を示す概念図である。
 図1中に示すように、自車両Vは、車輪W(右前輪WFR、左前輪WFL、右後輪WRR、左後輪WRL)と、ブレーキ装置2と、流体圧回路4と、ブレーキコントローラ6を備える。これに加え、自車両Vは、エンジン8と、エンジンコントローラ12を備える。
 ブレーキ装置2は、例えば、ホイールシリンダを用いて形成し、各車輪Wにそれぞれ設ける。なお、ブレーキ装置2は、流体圧で制動力を付与する装置に限定するものではなく、電動ブレーキ装置等を用いて形成してもよい。
 流体圧回路4は、各ブレーキ装置2に接続する配管を含む回路である。
 ブレーキコントローラ6は、上位コントローラである走行制御コントローラ10から入力を受けた制動力指令値に基づき、各ブレーキ装置2で発生する制動力を、流体圧回路4を介して、制動力指令値に応じた値に制御する。すなわち、ブレーキコントローラ6は、減速制御装置を形成する。なお、走行制御コントローラ10に関する説明は、後述する。
 したがって、ブレーキ装置2、流体圧回路4およびブレーキコントローラ6は、制動力を発生する制動装置を形成する。
 エンジン8は、自車両Vの駆動源を形成する。
 エンジンコントローラ12は、走行制御コントローラ10から入力を受けた目標スロットル開度信号(加速指令値)に基づき、エンジン8で発生するトルク(駆動力)を制御する。すなわち、エンジンコントローラ12は、加速制御装置を形成する。なお、目標スロットル開度信号に関する説明は、後述する。
 したがって、エンジン8およびエンジンコントローラ12は、駆動力を発生する駆動装置を形成する。
 なお、自車両Vの駆動源は、エンジン8に限定するものではなく、電動モータを用いて形成してもよい。また、自車両Vの駆動源は、エンジン8と電動モータを組み合わせて形成してもよい。
 次に、図1を参照しつつ、図2を用いて、車両用加速抑制装置1の概略構成を説明する。
 図2は、本実施形態の車両用加速抑制装置1の概略構成を示すブロック図である。
 車両用加速抑制装置1は、図1および図2中に示すように、周囲環境認識センサ14と、車輪速センサ16と、操舵角センサ18と、シフトポジションセンサ20と、ブレーキ操作検出センサ22と、アクセル操作検出センサ24を備える。これに加え、車両用加速抑制装置1は、ナビゲーション装置26と、走行制御コントローラ10を備える。
 周囲環境認識センサ14は、自車両Vの周囲の画像を撮像し、撮像した各画像に基づき、複数の撮像方向に対応した個別の画像を含む情報信号(以降の説明では、「個別画像信号」と記載する場合がある)を生成する。そして、生成した個別画像信号を、走行制御コントローラ10へ出力する。
 なお、本実施形態では、一例として、周囲環境認識センサ14を、前方カメラ14Fと、右側方カメラ14SRと、左側方カメラ14SLと、後方カメラ14Rを用いて形成した場合を説明する。ここで、前方カメラ14Fは、自車両Vの車両前後方向前方を撮像するカメラであり、右側方カメラ14SRは、自車両Vの右側方を撮像するカメラである。また、左側方カメラ14SLは、自車両Vの左側方を撮像するカメラであり、後方カメラ14Rは、自車両Vの車両前後方向後方を撮像するカメラである。
 また、本実施形態では、周囲環境認識センサ14は、例えば、自車両Vの周囲の路面が入る画角で各カメラの最大撮影範囲(例えば100[m])の距離範囲を撮像する。
 車輪速センサ16は、例えば、車輪速パルスを計測するロータリエンコーダ等のパルス発生器を用いて形成する。
 また、車輪速センサ16は、各車輪Wの回転速度を検出し、この検出した回転速度を含む情報信号(以降の説明では、「車輪速信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
 操舵角センサ18は、例えば、ステアリングホイール28を回転可能に支持するステアリングコラム(図示せず)に設ける。
 また、操舵角センサ18は、操舵操作子であるステアリングホイール28の現在の回転角度(操舵操作量)である現在操舵角を検出し、この検出した現在操舵角を含む情報信号(以降の説明では、「現在操舵角信号」と記載する場合がある)を、走行制御コントローラ10に出力する。なお、操向輪の転舵角を含む情報信号を、操舵角を示す情報として検出してもよい。
 また、操舵操作子は、運転者が回転させるステアリングホイール28に限定するものではなく、例えば、運転者が手で傾ける操作を行うレバーとしてもよい。この場合、中立位置からのレバーの傾斜角度を、現在操舵角信号に相当する情報信号として出力する。
 シフトポジションセンサ20は、シフトノブやシフトレバー等、自車両Vのシフト位置(例えば、「P」、「D」、「R」等)を変更する部材の現在位置を検出する。そして、検出した現在位置を含む情報信号(以降の説明では、「シフト位置信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
 ブレーキ操作検出センサ22は、制動力指示操作子であるブレーキペダル30に対し、その開度を検出する。そして、検出したブレーキペダル30の開度を含む情報信号(以降の説明では、「ブレーキ開度信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
 ここで、制動力指示操作子は、自車両Vの運転者が操作可能であり、且つ開度の変化により自車両Vの制動力を指示する構成である。なお、制動力指示操作子は、運転者が足で踏込み操作を行うブレーキペダル30に限定するものではなく、例えば、運転者が手で操作するレバーとしてもよい。
 アクセル操作検出センサ24は、駆動力指示操作子であるアクセルペダル32に対し、その開度を検出する。そして、検出したアクセルペダル32の開度を含む情報信号(以降の説明では、「アクセル開度信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
 ここで、駆動力指示操作子は、自車両Vの運転者が操作可能であり、且つ開度の変化により自車両Vの駆動力を指示する構成である。なお、駆動力指示操作子は、運転者が足で踏込み操作を行うアクセルペダル32に限定するものではなく、例えば、運転者が手で操作するレバーとしてもよい。
 ナビゲーション装置26は、GPS(Global Positioning System)受信機、地図データベースと、表示モニタ等を有する情報呈示装置を備え、経路探索および経路案内等を行う装置である。
 また、ナビゲーション装置26は、GPS受信機を用いて取得した自車両Vの現在位置と、地図データベースに格納された道路情報に基づいて、自車両Vが走行する道路の種別や幅員等の道路情報を取得することが可能である。
 また、ナビゲーション装置26は、GPS受信機を用いて取得した自車両Vの現在位置を含む情報信号(以降の説明では、「自車位置信号」と記載する場合がある)を、走行制御コントローラ10に出力する。これに加え、ナビゲーション装置26は、自車両Vが走行する道路の種別や道路幅員等を含む情報信号(以降の説明では、「走行道路情報信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
 情報呈示装置は、走行制御コントローラ10からの制御信号に応じて、警報その他の呈示を音声や画像によって出力する。また、情報呈示装置は、例えば、ブザー音や音声により運転者への情報提供を行うスピーカと、画像やテキストの表示により情報提供を行う表示ユニットを備える。また、表示ユニットは、例えば、ナビゲーション装置26の表示モニタを流用してもよい。
 走行制御コントローラ10は、CPUと、ROMおよびRAM等のCPU周辺部品から構成される電子制御ユニットである。
 また、走行制御コントローラ10は、駐車のための運転支援処理を行う駐車運転支援部を備える。
 走行制御コントローラ10の処理のうち駐車運転支援部は、機能的に、図2中に示すように、周囲環境認識情報演算部10A、自車両車速演算部10B、操舵角演算部10C、操舵角速度演算部10Dの処理を備える。これに加え、駐車運転支援部は、機能的に、シフトポジション演算部10E、ブレーキペダル操作情報演算部10F、アクセル操作量演算部10G、アクセル操作速度演算部10H、加速抑制制御内容演算部10Iの処理を備える。さらに、駐車運転支援部は、機能的に、加速抑制指令値演算部10J、目標スロットル開度演算部10Kの処理を備える。これらの機能は、一または二以上のプログラムで構成される。
 周囲環境認識情報演算部10Aは、周囲環境認識センサ14から入力を受けた個別画像信号に基づき、自車両Vの上方から下方を見た自車両Vの周囲の画像(俯瞰画像)を形成する。そして、形成した俯瞰画像を含む情報信号(以降の説明では、「俯瞰画像信号」と記載する場合がある)と、この俯瞰画像信号に対応する個別画像信号とを、加速抑制制御内容演算部10Iへ出力する。
 ここで、俯瞰画像は、例えば、各カメラ(前方カメラ14F、右側方カメラ14SR、左側方カメラ14SL、後方カメラ14R)で撮像した画像を合成して形成する。また、俯瞰画像には、例えば、路面上に表示された駐車枠の線(以降の説明では、「駐車枠線」と記載する場合がある)等の道路標示を示す画像を含む。
 自車両車速演算部10Bは、車輪速センサ16から入力を受けた車輪速信号に基づき、車輪Wの回転速度から自車両Vの速度(車速)を演算する。そして、演算した速度を含む情報信号(以降の説明では、「車速演算値信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
 操舵角演算部10Cは、操舵角センサ18から入力を受けた現在操舵角信号に基づき、ステアリングホイール28の現在の回転角度から、ステアリングホイール28の中立位置からの操作量(回転角)を演算する。そして、演算した中立位置からの操作量を含む情報信号(以降の説明では、「操舵角信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
 操舵角速度演算部10Dは、操作角センサ18から入力を受けた現在操舵角信号が含む現在操舵角を微分処理することにより、ステアリングホイール28の操舵角速度を演算する。そして、演算した操舵角速度を含む情報信号(以降の説明では、「操舵角速度信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
 シフトポジション演算部10Eは、シフトポジションセンサ20から入力を受けたシフト位置信号に基づき、現在のシフト位置を判定する。そして、演算した現在のシフト位置を含む情報信号(以降の説明では、「現在シフト位置信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
 ブレーキペダル操作情報演算部10Fは、ブレーキ操作検出センサ22から入力を受けたブレーキ開度信号に基づき、踏込み量が「0」である状態を基準とした、ブレーキペダル30の踏込み量を演算する。そして、演算したブレーキペダル30の踏込み量を含む情報信号(以降の説明では、「制動側踏込み量信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
 アクセル操作量演算部10Gは、アクセル操作検出センサ24から入力を受けたアクセル開度信号に基づき、踏込み量が「0」である状態を基準とした、アクセルペダル32の踏込み量を演算する。そして、演算したアクセルペダル32の踏込み量を含む情報信号(以降の説明では、「駆動側踏込み量信号」と記載する場合がある)を、加速抑制制御内容演算部10Iと、加速抑制指令値演算部10Jと、目標スロットル開度演算部10Kへ出力する。
 アクセル操作速度演算部10Hは、アクセル操作検出センサ24から入力を受けたアクセル開度信号が含むアクセルペダル32の開度を微分処理することにより、アクセルペダル32の操作速度を演算する。そして、演算したアクセルペダル32の操作速度を含む情報信号(以降の説明では、「アクセル操作速度信号」と記載する場合がある)を、加速抑制指令値演算部10Jへ出力する。
 加速抑制制御内容演算部10Iは、上述した各種の情報信号(俯瞰画像信号、個別画像信号、車速演算値信号、操舵角信号、操舵角速度信号、現在シフト位置信号、制動側踏込み量信号、駆動側踏込み量信号、自車位置信号、走行道路情報信号)の入力を受ける。そして、入力を受けた各種の情報信号に基づいて、後述する加速抑制作動条件判断結果、加速抑制制御開始タイミング、加速抑制制御量を演算する。さらに、これらの演算したパラメータを含む情報信号を、加速抑制指令値演算部10Jへ出力する。
 なお、加速抑制制御内容演算部10Iの詳細な構成と、加速抑制制御内容演算部10Iで行う処理については、後述する。
 加速抑制指令値演算部10Jは、上述した駆動側踏込み量信号およびアクセル操作速度信号の入力と、後述する加速抑制作動条件判断結果信号、加速抑制制御開始タイミング信号および加速抑制制御量信号の入力を受ける。そして、アクセルペダル32の踏込み量(加速操作量)に応じて、自車両Vに発生させる加速を低減するための指令値である加速抑制指令値を演算する。さらに、演算した加速抑制指令値を含む情報信号(以降の説明では、「加速抑制指令値信号」と記載する場合がある)を、目標スロットル開度演算部10Kへ出力する。
 また、加速抑制指令値演算部10Jは、入力を受けた加速抑制作動条件判断結果信号の内容に応じて、通常の加速制御で用いる指令値である通常加速指令値を演算する。さらに、演算した通常加速指令値を含む情報信号(以降の説明では、「通常加速指令値信号」と記載する場合がある)を、目標スロットル開度演算部10Kへ出力する。
 なお、加速抑制指令値演算部10Jで行う処理については、後述する。
 目標スロットル開度演算部10Kは、駆動側踏込み量信号と、加速抑制指令値信号または通常加速指令値信号の入力を受ける。そして、アクセルペダル32の踏込み量と、加速抑制指令値または通常加速指令値に基づいて、アクセルペダル32の踏込み量または加速抑制指令値に応じたスロットル開度である目標スロットル開度を演算する。さらに、演算した目標スロットル開度を含む情報信号(以降の説明では、「目標スロットル開度信号」と記載する場合がある)を、エンジンコントローラ12へ出力する。
 また、目標スロットル開度演算部10Kは、加速抑制指令値が後述する加速抑制制御開始タイミング指令値を含む場合、後述する加速抑制制御開始タイミングに基づいて、目標スロットル開度信号をエンジンコントローラ12へ出力する。
 なお、目標スロットル開度演算部10Kで行う処理については、後述する。
(加速抑制制御内容演算部10Iの構成)
 次に、図1および図2を参照しつつ、図3および図4を用いて、加速抑制制御内容演算部10Iの詳細な構成について説明する。
 図3は、加速抑制制御内容演算部10Iの構成を示すブロック図である。
 図3中に示すように、加速抑制制御内容演算部10Iは、加速抑制作動条件判断部34と、駐車枠確信度設定部36と、駐車枠進入確信度設定部38と、総合確信度設定部40を備える。これに加え、加速抑制制御内容演算部10Iは、加速抑制制御開始タイミング演算部42と、加速抑制制御量演算部44を備える。
 加速抑制作動条件判断部34は、加速抑制制御を作動させる条件が成立するか否かを判断し、その判断結果を含む情報信号(以降の説明では、「加速抑制作動条件判断結果信号」と記載する場合がある)を、加速抑制指令値演算部10Jへ出力する。ここで、加速抑制制御とは、アクセルペダル32の踏込み量に応じて車両Vを加速させる加速指令値を、通常よりも加速を低減した値に設定する制御である。本実施形態では、加速指令値が大きいほど加速が大きくなるため、加速抑制制御は、アクセルペダル32の踏込み量に応じて車両Vを加速させる加速指令値を低減する制御となる。
 また、加速抑制作動条件判断部34が加速抑制制御を作動させる条件が成立するか否かを判断する処理については、後述する。
 駐車枠確信度設定部36は、自車両Vの進行方向に駐車枠が存在する確信度である駐車枠確信度を設定する。そして、設定した駐車枠確信度を含む情報信号(以降の説明では、「駐車枠確信度信号」と記載する場合がある)を、総合確信度設定部40へ出力する。
 ここで、駐車枠確信度設定部36は、俯瞰画像信号、個別画像信号、車速演算値信号、現在シフト位置信号、自車位置信号および走行道路情報信号が含む各種情報を参照して、駐車枠確信度を設定する。
 また、駐車枠確信度設定部36が確信度の設定対象とする駐車枠には、例えば、図4中に示すように、複数のパターンがある。なお、図4は、駐車枠確信度設定部36が駐車枠確信度の設定対象とする駐車枠のパターンを示す図である。
 また、駐車枠確信度設定部36は、自車両Vの車両前後方向前方の俯瞰画像(以降の説明では、「俯瞰画像BVF」と記載する場合がある)から、駐車枠を構成すると推定される路面上の線を駐車枠線の候補として検出する。さらに、俯瞰画像BVFに対応する個別画像(以降の説明では、「個別画像SPF」と記載する場合がある)から、検出した駐車枠線の候補(以降の説明では、「駐車枠線候補」と記載する場合がある)に対応する線である駐車枠線候補対応線を抽出する。さらに、抽出した駐車枠線候補対応線の長さが予め設定した駐車枠線長閾値Th1以上か否かを判定する。そして、この判定結果に基づき、検出した駐車枠線候補を駐車枠の検出候補から除外する枠線候補除外処理を実施する。
 なお、駐車枠確信度設定部36が駐車枠確信度を設定する処理についての詳細と、枠線候補除外処理についての詳細は、後述する。
 駐車枠進入確信度設定部38は、自車両Vが駐車枠へ進入する確信度である駐車枠進入確信度を設定する。そして、設定した駐車枠進入確信度を含む情報信号(以降の説明では、「駐車枠進入確信度信号」と記載する場合がある)を、総合確信度設定部40へ出力する。
 ここで、駐車枠進入確信度設定部38は、俯瞰画像信号、車速演算値信号、現在シフト位置信号および操舵角信号が含む各種情報を参照して、駐車枠進入確信度を設定する。
 なお、駐車枠進入確信度設定部38が駐車枠進入確信度を設定する処理については、後述する。
 総合確信度設定部40は、駐車枠確信度信号および駐車枠進入確信度信号の入力を受け、駐車枠確信度および駐車枠進入確信度に対応する確信度である総合確信度を設定する。そして、設定した総合確信度を含む情報信号(以降の説明では、「総合確信度信号」と記載する場合がある)を、加速抑制制御開始タイミング演算部42および加速抑制制御量演算部44へ出力する。
 なお、総合確信度設定部40が総合確信度を設定する処理については、後述する。
 加速抑制制御開始タイミング演算部42は、加速抑制制御を開始するタイミングである加速抑制制御開始タイミングを演算する。そして、演算した加速抑制制御開始タイミングを含む情報信号(以降の説明では、「加速抑制制御開始タイミング信号」と記載する場合がある)を、加速抑制指令値演算部10Jへ出力する。
 ここで、加速抑制制御開始タイミング演算部42は、総合確信度信号、制動側踏込み量信号、車速演算値信号、現在シフト位置信号および操舵角信号が含む各種情報を参照して、加速抑制制御開始タイミングを演算する。
 なお、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算する処理については、後述する。
 加速抑制制御量演算部44は、アクセルペダル32の踏込み量に応じた加速指令値を低減するための制御量である加速抑制制御量を演算する。そして、演算した加速抑制制御量を含む情報信号(以降の説明では、「加速抑制制御量信号」と記載する場合がある)を、加速抑制指令値演算部10Jへ出力する。
 ここで、加速抑制制御量演算部44は、総合確信度信号、制動側踏込み量信号、車速演算値信号、現在シフト位置信号および操舵角信号が含む各種情報を参照して、加速抑制制御量を演算する。
 なお、加速抑制制御量演算部44が加速抑制制御量を演算する処理については、後述する。
(加速抑制制御内容演算部10Iで行う処理)
 次に、図1から図4を参照しつつ、図5から図13を用いて、加速抑制制御内容演算部10Iで行う処理について説明する。
・加速抑制作動条件判断部34が行なう処理
 図1から図4を参照しつつ、図5および図6を用いて、加速抑制作動条件判断部34が加速抑制制御を作動させる条件(以降の説明では、「加速抑制作動条件」と記載する場合がある)が成立するか否かを判断する処理について説明する。
 図5は、加速抑制作動条件判断部34が、加速抑制作動条件が成立するか否かを判断する処理を示すフローチャートである。なお、加速抑制作動条件判断部34は、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
 図5中に示すように、加速抑制作動条件判断部34が処理を開始(START)すると、まず、ステップS100において、駐車枠確信度設定部36が設定した駐車枠確信度を取得する処理(図中に示す「駐車枠確信度取得処理」)を行う。ステップS100において、駐車枠確信度を取得する処理を行うと、加速抑制作動条件判断部34が行う処理は、ステップS102へ移行する。
 ステップS102では、ステップS100で取得した駐車枠確信度に基づいて、駐車枠の有無を判断する処理(図中に示す「駐車有無判断処理」)を行う。
 本実施形態において、駐車枠の有無を判断する処理は、駐車枠確信度に基づいて行う。具体的に、駐車枠確信度が、予め設定した最低値(レベル0)であると判定すると、例えば、自車両Vを基準として予め設定した距離や領域(エリア)内に、駐車枠が無い(図中に示す「No」)と判断する。この場合、加速抑制作動条件判断部34が行う処理は、ステップS120へ移行する。
 一方、駐車枠確信度が、予め設定した最低値以外の値であると判定すると、自車両Vを基準として予め設定した距離や領域(エリア)内に、駐車枠が有る(図中に示す「Yes」)と判断する。この場合、加速抑制作動条件判断部34が行う処理は、ステップS104へ移行する。
 ステップS104では、自車両車速演算部10Bから入力を受けた車速演算値信号を参照して、自車両Vの車速を取得する処理(図中に示す「自車両車速情報取得処理」)を行う。ステップS104において、自車両Vの車速を取得する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS106へ移行する。
 ステップS106では、ステップS104で取得した車速に基づいて、自車両Vの車速が、予め設定した閾値車速未満である条件が成立しているか否かを判断する処理(図中に示す「自車両車速条件判断処理」)を行う。
 なお、本実施形態では、一例として、閾値車速を15[km/h]とした場合について説明する。また、閾値車速は、15[km/h]に限定するものではなく、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
 ステップS106において、自車両Vの車速が閾値車速未満である条件が成立している(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS108へ移行する。
 一方、ステップS106において、自車両Vの車速が閾値車速未満である条件が成立していない(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS120へ移行する。
 ステップS108では、ブレーキペダル操作情報演算部10Fから入力を受けた制動側踏込み量信号を参照して、ブレーキペダル30の踏込み量(制動力操作量)の情報を取得する処理(図中に示す「ブレーキペダル操作量情報取得処理」)を行う。ステップS108において、ブレーキペダル30の踏込み量(制動力操作量)の情報を取得する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS110へ移行する。
 ステップS110では、ステップS108で取得したブレーキペダル30の踏込み量に基づいて、ブレーキペダル30が操作されているか否かを判断する処理(図中に示す「ブレーキペダル操作判断処理」)を行う。
 ステップS110において、ブレーキペダル30が操作されていない(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS112へ移行する。
 一方、ステップS110において、ブレーキペダル30が操作されている(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS120へ移行する。
 ステップS112では、アクセル操作量演算部10Gから入力を受けた駆動側踏込み量信号を参照して、アクセルペダル32の踏込み量(加速操作量)の情報を取得する処理(図中に示す「アクセルペダル操作量情報取得処理」)を行う。ステップS112において、アクセルペダル32の踏込み量(加速操作量)の情報を取得する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS114へ移行する。
 ステップS114では、アクセルペダル32の踏込み量(加速操作量)が、予め設定した閾値アクセル操作量以上である条件が成立しているか否かを判断する処理(図中に示す「アクセルペダル操作判断処理」)を行う。ここで、ステップS114の処理は、ステップS112で取得したアクセルペダル32の踏込み量に基づいて行なう。
 なお、本実施形態では、一例として、閾値アクセル操作量を、アクセルペダル32の開度の3[%]に相当する操作量に設定した場合について説明する。また、閾値アクセル操作量は、アクセルペダル32の開度の3[%]に相当する操作量に限定するものではなく、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。
 ステップS114において、アクセルペダル32の踏込み量(加速操作量)が閾値アクセル操作量以上である条件が成立している(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS116へ移行する。
 一方、ステップS114において、アクセルペダル32の踏込み量(加速操作量)が閾値アクセル操作量以上である条件が成立していない(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS120へ移行する。
 ステップS116では、自車両Vが駐車枠へ進入するか否かを判断するための情報を取得する処理(図中に示す「駐車枠進入判断情報取得処理」)を行う。ここで、本実施形態では、一例として、ステアリングホイール28の操舵角と、自車両Vと駐車枠とのなす角度と、自車両Vと駐車枠との距離に基づいて、自車両Vが駐車枠へ進入するか否かを判断する場合を説明する。ステップS116において、自車両Vが駐車枠へ進入するか否かを判断するための情報を取得する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS118へ移行する。
 ここで、ステップS116で行なう処理の具体例を説明する。
 ステップS116では、操舵角演算部10Cから入力を受けた操舵角信号を参照して、ステアリングホイール28の回転角(操舵角)を取得する。これに加え、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号が含む自車両Vの周囲の俯瞰画像に基づき、自車両Vと駐車枠L0とのなす角度αと、自車両Vと駐車枠L0との距離Dを取得する。
 ここで、角度αは、例えば、図6中に示すように、直線Xと、枠線L1および駐車枠L0側の線との交角の絶対値とする。なお、図6は、自車両Vと、駐車枠L0と、自車両Vと駐車枠L0との距離Dを説明する図である。
 また、直線Xは、自車両Vの中心を通る自車両Vの前後方向の直線(進行方向に延びる直線)であり、枠線L1は、駐車枠L0に駐車が完了した際に自車両Vの前後方向と平行または略平行になる駐車枠L0部分の枠線である。また、駐車枠L0側の線とは、L1の延長線からなる駐車枠L0側の線である。
 また、距離Dは、例えば、図6中に示すように、自車両Vの前端面の中心点PFと駐車枠L0の入り口L2の中心点PPとの距離とする。ただし、距離Dは、自車両Vの前端面が駐車枠L0の入り口L2を通過した後は、負の値とする。なお、距離Dは、自車両Vの前端面が駐車枠L0の入り口L2を通過した後は、ゼロに設定してもよい。
 ここで、距離Dを特定するための自車両V側の位置は、中心点PFに限定するものではなく、例えば、自車両Vに予め設定した位置と、入り口L2の予め設定した位置としてもよい。この場合、距離Dは、自車両Vに予め設定した位置と、入り口L2の予め設定した位置との距離とする。
 以上説明したように、ステップS116では、自車両Vが駐車枠L0へ進入するか否かを判断するための情報として、操舵角、自車両Vと駐車枠L0の角度α、自車両Vと駐車枠L0の距離Dを取得する。
 ステップS118では、ステップS116で取得した情報に基づいて、自車両Vが駐車枠へ進入するか否かを判断する処理(図中に示す「駐車枠進入判断処理」)を行う。
 ステップS118において、自車両Vが駐車枠へ進入しない(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS120へ移行する。
 一方、ステップS118において、自車両Vが駐車枠へ進入する(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS122へ移行する。
 ここで、ステップS118で行なう処理の具体例を説明する。
 ステップS118では、例えば、以下に示す三つの条件(A1~A3)を全て満足した場合に、自車両Vが駐車枠へ進入すると判断する。
 条件A1.ステップS116で検出した操舵角が予め設定した設定舵角値(例えば、45[deg])以上の値となってから経過した時間が、予め設定した設定時間(例えば、20[sec])以内である。
 条件A2.自車両Vと駐車枠L0の角度αが、予め設定した設定角度(例えば、40[deg])以下である。
 条件A3.自車両Vと駐車枠L0の距離Dが、予め設定した設定距離(例えば、3[m])以下である。
 なお、自車両Vが駐車枠へ進入するか否かを判断する処理としては、駐車枠進入確信度設定部38が駐車枠進入確信度を設定する際に行なう処理を用いてもよい。
 また、自車両Vが駐車枠へ進入するか否かの判断に用いる処理は、上記のように複数の条件を用いた処理に限定するものではなく、上述した三つの条件のうち一つ以上の条件で判断する処理を用いてもよい。また、自車両Vの車速を用いて、自車両Vが駐車枠へ進入するか否かを判断する処理を用いてもよい。
 ステップS120では、加速抑制作動条件判断結果信号を、加速抑制制御作動条件が成立しない判断結果を含む情報信号として生成する処理(図中に示す「加速抑制作動条件非成立」)を行う。ステップS120において、加速抑制制御作動条件が成立しない判断結果を含む加速抑制作動条件判断結果信号を生成する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS124へ移行する。
 ステップS122では、加速抑制作動条件判断結果信号を、加速抑制制御作動条件が成立する判断結果を含む情報信号として生成する処理(図中に示す「加速抑制作動条件成立」)を行う。ステップS122において、加速抑制制御作動条件が成立する判断結果を含む加速抑制作動条件判断結果信号を生成する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS124へ移行する。
 ステップS124では、ステップS120またはステップS122で生成した加速抑制作動条件判断結果信号を、加速抑制指令値演算部10Jへ出力する処理(図中に示す「加速抑制作動条件判断結果出力」)を行う。ステップS124において、加速抑制作動条件判断結果信号を加速抑制指令値演算部10Jへ出力する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS100の処理へ復帰(RETURN)する。
・駐車枠確信度設定部36が行う処理
 図1から図6を参照しつつ、図7から図13を用いて、駐車枠確信度設定部36が駐車枠確信度を設定する処理について説明する。
 図7は、駐車枠確信度設定部36が駐車枠確信度を設定する処理を示すフローチャートである。
 図7中に示すように、駐車枠確信度設定部36が処理を開始(START)すると、まず、ステップS200において、駐車枠確信度のレベルを最低値(レベル0)に設定する処理(図中に示す「レベル0に設定」)を行う。ステップS200において、駐車枠確信度をレベル0に設定する処理を行うと、駐車枠確信度設定部36が行う処理は、ステップS202へ移行する。
 ステップS202では、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号が含む自車両Vの周囲の俯瞰画像、および個別画像信号が含むこの俯瞰画像を生成するのに用いた個別画像を取得する処理(図中に示す「周囲画像取得処理」)を行う。ステップS202において、自車両Vの周囲の俯瞰画像およびこの俯瞰画像を生成するのに用いた個別画像を取得する処理を行うと、駐車枠確信度設定部36が行う処理は、ステップS204へ移行する。
 ステップS204では、まず、ステップS202で取得した俯瞰画像から、駐車枠確信度を設定するために用いる駐車枠線候補を抽出する処理(図中に示す「駐車枠線候補抽出処理」)を行う。
 次に、取得した線の状態が、例えば、以下に示す三つの条件(B1~B3)を全て満足した場合に、その線を、駐車枠線候補として抽出する。
 条件B1.路面上に標示されている線に破断部分がある場合、その破断部分が、標示されていた線がかすれている部分(例えば、線よりも明瞭度が低く、且つ路面よりも明瞭度が高い部分)である。
 条件B2.路面上に標示されている線の幅が、予め設定した設定幅(例えば、10[cm])以上である。
 条件B3.路面上に標示されている線の長さが、予め設定した設定標示線長さ(例えば、2.5[m])以上である。
 ここで、駐車枠線候補とは、駐車枠線等、路面上に標示されている線(白線等)である。本実施形態では、まず、俯瞰画像の画素を水平方向にスキャンして、予め設定した第1輝度閾値以上の輝度差を有するエッジ画素を抽出する。つまり、本実施形態において、第1輝度閾値は輝度差の閾値となる。そして、このエッジ画素によって構成される線を取得する。具体的に、各隣接する画素の差分を計算し、この差分の絶対値が第1輝度値閾値以上となる画素をエッジ画素として抽出する。このとき、道路白線等の路面との輝度差が大きい3画素以上の幅を有する、画像の垂直方向に伸びる線に対しては、輝度差がプラスとなるエッジとマイナスとなるエッジとが抽出される。
 次に、同一の俯瞰画像(個別画像に対応する俯瞰画像)から抽出した駐車枠線候補から、該俯瞰画像内において隣り合う二本の線を一つの組として特定(以降の説明では、「ペアリング」と記載する場合がある)する。なお、同一の俯瞰画像から三本以上の線が抽出されている場合は、三本以上の線に対し、それぞれ、隣り合う二本の線により、二つ以上の組を特定する。ステップS204において、俯瞰画像から駐車枠線候補を抽出する処理および抽出した駐車枠線候補のペアリングをする処理を行うと、駐車枠確信度設定部36が行う処理は、ステップS206へ移行する。
 ステップS206では、ステップS204の抽出結果に基づき、自車両Vの前後方向前方の俯瞰画像から抽出した駐車枠線候補から、除外対象となる駐車枠線候補を検出する処理(図中に示す「除外対象検出処理」)を行う。ステップS206において、除外対象となる駐車枠線候補を検出する処理を行うと、駐車枠確信度設定部36が行う処理は、ステップS208へ移行する。
 ここで、図8を用いて、ステップS206で行う処理の具体例を説明する。なお、図8は、駐車枠確信度設定部36が除外対象となる駐車枠線候補を検出する処理を示すフローチャートである。
 ステップS206において、駐車枠確信度設定部36が処理を開始(START)すると、図8中に示すように、まず、ステップS2000において、自車両Vの前方の俯瞰画像内から駐車枠線候補を抽出したか否かを判定する処理(図中に示す「自車両前方の駐車枠線候補を抽出?」)を行う。本実施形態では、ペアリングされた駐車枠線候補の組を抽出したか否かを判定する。
 ステップS2000において、自車両Vの前方の俯瞰画像内から駐車枠線候補の組を抽出した(図中に示す「Yes」)と判定した場合、駐車枠確信度設定部36が行う処理は、ステップS2010へ移行する。
 一方、ステップS2000において、自車両Vの前方側の俯瞰画像内から駐車枠線候補の組を抽出していない(図中に示す「No」)と判定した場合、駐車枠確信度設定部36が行う処理は、元の処理へ復帰する。
 本実施形態において、自車両Vの周囲の俯瞰画像は、例えば、図9(a)に示す構成となる。ここで、図9(a)は、自車両Vの周囲の俯瞰画像例を示す図である。かかる俯瞰画像の取得は、例えば、自車両Vの真上から路面環境を見下ろす位置に仮想視点を設定し、公知の変換手法(例えば、幾何変換等)を用いて各カメラ(前方カメラ14F、右側方カメラ14SR、左側方カメラ14SL、後方カメラ14R)に対応する個別画像を俯瞰変換する。このとき、本実施形態では、予め設定した俯瞰範囲に対応する各個別画像の一部(例えば、自車両Vの周囲3[m]の範囲)を切り取って、この切り取った画像部分を俯瞰変換する。さらに、俯瞰変換して得た各カメラに対応する俯瞰画像を、予め用意した自車両Vを真上から見た画像VRと合成する。このようにして、図9(a)に示す、前側俯瞰画像BVPF、後側俯瞰画像BVPB、左側俯瞰画像BVPLおよび右側俯瞰画像BVPRを含む自車両Vの周囲の俯瞰画像を取得する。
 従って、例えば、図9(a)の前側俯瞰画像BVPFに示すように、前側俯瞰画像BVPF内からペアリングされた駐車枠線候補の組である駐車枠線候補LaおよびLbを抽出している場合に、駐車枠線候補の組を抽出したと判定する。
 ステップS2010では、前側俯瞰画像BVPFに対応する個別画像から、ステップS204で抽出した駐車枠線候補の組に対応する駐車枠線候補対応線を抽出する処理(図中に示す「駐車枠線候補対応線抽出処理」)を行う。ステップS2010において、前側俯瞰画像BVPFに対応する個別画像から駐車枠線候補対応線を抽出する処理を行うと、駐車枠確信度設定部36が行う処理は、ステップS2020へ移行する。
 ここで、図9から図11を用いて、ステップS2010で行う処理の具体例を説明する。図9(b)は、駐車枠線候補LaおよびLbに対応する駐車枠線候補対応線xLaおよびxLbの一例を示す図である。
 例えば、図9(a)中に示す、駐車枠線候補LaおよびLbに対応する駐車枠線候補対応線は、例えば、図9(b)中に示すように、前側俯瞰画像BVPFに対応する個別画像SPF内において、画像遠近方向に伸びる線(xLaおよびxLb)となる。
 図9(b)中に示す、駐車枠線候補対応線xLaおよびxLbの実線部分は、駐車枠線候補LaおよびLbに対応する部分である。一方、図9(b)中に示す、駐車枠線候補対応線xLaおよびxLbの点線部分は、駐車枠線候補対応線xLaおよびxLbの前側俯瞰画像BVPF内に含まれない部分に対応する。つまり、上述したように、前側俯瞰画像BVPFは、個別画像SPFの一部を俯瞰変換して生成している。そのため、前側俯瞰画像BVPFは、個別画像SPFの画像の一部しか含んでいない。従って、図9(b)の点線部分に示すように、前側俯瞰画像BVPFから抽出した駐車枠線候補LaおよびLbが、個別画像SPF内ではもっと先まで伸びている可能性がある。
 本実施形態では、このことを踏まえて、まず、ステップS2010において、個別画像SPFから駐車枠線候補LaおよびLbに対応する線である駐車枠線候補対応線xLaおよびxLbを抽出する。
 ここで、図10(a)は、自車両Vが直進時の駐車枠線候補LaおよびLbが前側俯瞰画像BVPFの外へと続いている様子を示す図である。また、図10(b)は、自車両Vが直進時の個別画像SPFに設定した探索領域の一例を示す図である。
 本実施形態では、自車両Vが直進時において、例えば、図10(a)中に示すように、駐車枠線候補LaおよびLbから伸びていると推測される俯瞰画像外の点線部分を、図10(b)に示す、個別画像SPF内から抽出する。この抽出にあたって、本実施形態では、図10(b)に示すように、駐車枠線候補対応線xLaおよびxLbの実線部分の画像遠近方向の遠方側端部から延長して伸びる探索領域SA1およびSA2を設定する。
 ここで、探索領域SA1は、個別画像SPFから駐車枠線候補対応線xLaの実線部分から延長して伸びる残りの部分、即ち駐車枠線候補Laの延長線を探索するための探索領域である。また、探索領域SA2は、個別画像SPFから、駐車枠線候補対応線xLbの実線部分から延長して伸びる残りの部分、即ち駐車枠線候補Lbの延長線を探索するための探索領域である。また、探索領域SA1およびSA2は、駐車枠線候補対応線xLaおよびxLbの実線部分を中心に該実線部分と直行する方向にそれぞれ予め設定した長さの幅Wsah(以降の説明で、「半幅Wsah」と記載する場合がある)を有している。つまり、探索領域SA1およびSA2は、全幅Wsa(半幅Wsah×2)を有している。なお、半幅Wsahは、例えば、実際の長さ50[cm]に相当する個別画像中の長さに設定する。
 また、本実施形態では、探索領域SA1およびSA2の遠近方向の長さを、予め設定した長さ(例えば、実際の8[m]に相当する個別画像SPF内の長さ)に設定している。
 さらにまた、本実施形態では、探索領域SA1およびSA2から、上述した駐車枠線候補の抽出に用いている第1輝度閾値よりも小さい、予め設定した第2輝度閾値以上の輝度差を有するエッジ画素を抽出する。これにより、探索領域SA1およびSA2から駐車枠線候補対応線xLaおよびxLbの残りの部分(駐車枠線候補LaおよびLbの延長部分)のエッジ画素を抽出する。そして、この抽出したエッジ画素に基づき、探索領域SA1およびSA2内における、駐車枠線候補対応線xLaおよびxLbの駐車枠線候補LaおよびLbに対応する部分からの延長部分を抽出する。なお、第2輝度閾値を第1輝度閾値よりも小さくしているのは、画像中でより遠方へと伸びている線が、近傍の線と比較して輝度が低くなって抽出しにくいためである。
 また、図11(a)は、自車両Vが旋回動作時の駐車枠線候補LaおよびLbが前側俯瞰画像BVPFの外へと続いている様子を示す図である。また、図11(b)は、自車両Vが旋回動作時の個別画像SPFに設定した探索領域の一例を示す図である。
 図11(a)および(b)中に示すように、自車両Vが旋回動作時(図11の例では左旋回(左折)時)は、抽出される線が自車両Vの旋回方向に応じた斜め線となる。この場合も、図11(b)に示すように、上述した自車両Vが直進時と同様に、探索領域SA1およびSA2を設定し、設定した探索領域SA1およびSA2から、第2輝度閾値を用いて、駐車枠線候補対応線xLaおよびxLbの駐車枠線候補LaおよびLbに対応する部分からの延長部分を抽出する。
 なお、本実施形態では、閾値車速を15[km/h]に設定しており、自車両Vが、時速15[km/h]以上で走行する場合は、加速抑制制御を作動させないようにしている。
 従って、自車両Vの車速が15[km/h]未満になり易い、右折時又は左折時等の自車両Vが予め設定した旋回角以上の旋回角の旋回動作を行ったときのみに対して、本実施形態の除外対象検出処理を実施する構成としてもよい。その場合は、上述したステップS2000の前に、操舵角等の旋回角を演算するための情報を取得して、旋回動作の有無を検出し、旋回動作を行ったと判定した場合に、上述したステップS2000に移行するようにする。
 ステップS2020では、抽出した駐車枠線候補対応線の線長が予め設定した駐車枠線長閾値Lth1以上であるか否かを判定する処理(図中に示す「駐車枠線長閾値以上?」)を行う。
 ここで、図12(a)および(b)は、自車両Vが直進時および旋回動作時の個別画像SPF内から抽出した駐車枠線候補対応線xLaおよびxLbと駐車枠線長閾値Lth1との関係の一例を示す図である。
 ここで、図12(a)および(b)に示す駐車枠線候補対応線xLaおよびxLbは、駐車枠線候補LaおよびLbに対応する部分と、探索によって探索領域SA1およびSA2から抽出された部分とを合わせたものとなる。そして、この駐車枠線候補対応線xLaおよびxLbの長さと、駐車枠線長閾値Lth1とを比較し、駐車枠線候補対応線xLaおよびxLbの長さが駐車枠線長閾値Lth1を超えているか否かを判定する。ここで、駐車枠線長閾値Lth1は、既存の駐車枠を構成する長手方向の駐車枠線の長さに基づき設定する。例えば、実際の長さ6.5[m]に相当する個別画像中の長さに設定する。
 図12(a)の例では、駐車枠線候補対応線xLaおよびxLbの長さは、いずれも駐車枠線長閾値Lth1を超える長さとなっている。従って、このような場合に、ステップS2020において、駐車枠線候補対応線の長さが駐車枠線長閾値Lth1を超えていると判定される。この場合、駐車枠確信度設定部36が行う処理は、ステップS2030へ移行する。なお、図12(a)の例では、駐車枠線候補対応線xLaおよびxLbのいずれも駐車枠線長閾値Lth1を超える長さを有する例を示したが、本実施形態では、いずれか一方でも駐車枠線長閾値Lth1を超えている場合は、駐車枠線長閾値Lth1を超えていると判定する。
 一方、図12(b)の例では、駐車枠線候補対応線xLaおよびxLbの長さは、いずれも駐車枠線長閾値Lth1以下の長さとなっている。従って、このような場合に、ステップS2020において、駐車枠線候補対応線の長さが駐車枠線長閾値Lth1を超えていないと判定される。この場合、駐車枠確信度設定部36が行う処理は、ステップS2000へ移行する。
 ステップS2030では、前側俯瞰画像BVPFから抽出した駐車枠線候補の組について、自車両Vから遠方側の端部である遠端部を検出する処理(図中に示す「遠端部を検出?」)を行う。ステップS2030において、遠端部を検出する処理を行うと、駐車枠確信度設定部36が行う処理は、ステップS2040へ移行する。
 ここで、図13を用いて、ステップS2030で行う処理の具体例を説明する。
 図13(a)~(c)は、前側俯瞰画像BVPFから検出する遠端部の例を示す図である。
 図13(a)に示す例では、前側俯瞰画像BVPF内に駐車枠線候補LaおよびLbの遠端部PaおよびPbが検出されている。
 また、図13(b)の示す例では、前側俯瞰画像BVPF内に横線HLとの交点として、遠端部PaおよびPbが検出されている。
 また、図13(c)に示す例では、前側俯瞰画像BVPF内に駐車枠線候補LaおよびLbの途切れ線La2およびLb2が存在するが、駐車枠線候補LaおよびLbの遠端部PaおよびPbが検出されている。
 このように、駐車枠を構成する駐車枠線の端部と推定できるものを検出する。
 ステップS2040では、前側俯瞰画像BVPFから駐車枠線候補の組に対応する遠端部を検出したか否かを判定する処理(図中に示す「遠端部を検出?」)を行う。
 具体的に、上記図13(a)~(c)に例示したような遠端部を検出したか否かを判定する。
 ステップS2040において、遠端部を検出したと判定した場合、駐車枠確信度設定部36が行う処理は、ステップS2050へ移行する。
 一方、ステップS2040において、遠端部を検出していないと判定した場合、駐車枠確信度設定部36が行う処理は、ステップS2060へ移行する。
 ステップS2050では、予め設定した枠線候補除外フラグをOFFに設定する処理(図中に示す「枠線候補除外フラグをOFFに設定」)を行う。
 ここで、枠線候補除外フラグは、抽出した駐車枠線候補を駐車枠の除外対象とするか否かを判定するためのフラグである。本実施形態において、枠線候補除外フラグは、抽出した駐車枠線候補の組に対してそれぞれ設定される。枠線候補除外フラグがONに設定されている駐車枠線候補の組は、駐車枠の検出候補からの除外対象となる。一方、枠線候補除外フラグがOFFに設定されている駐車枠線候補の組は、駐車枠の検出候補となる。
 ステップS2050において、枠線候補除外フラグをOFFに設定する処理を行うと、駐車枠確信度設定部36が行う処理は、元の処理に復帰(RETURN)する。
 一方、ステップS2060では、個別画像SPFから駐車枠線候補の組と交差する交差線を検出する処理(図中に示す「交差線検出処理」)を行う。ステップS2060において、交差線を検出する処理を行うと、駐車枠確信度設定部36が行う処理は、ステップS2070へ移行する。本実実施形態では、前側俯瞰画像BVPFから駐車枠線候補を抽出する際に用いる第1輝度閾値よりも大きな第3輝度閾値を用いて、個別画像SPFから第3輝度閾値以上となる輝度差のエッジ画素を抽出することで交差線の検出を行う。
 ステップS2070では、ステップS2060の検出結果に基づき、予め設定した交差条件を満たす交差線を検出したか否かを判定する処理(図中に示す「交差条件を満たす交差線を検出?」)を行う。
 ここで、交差条件を満たすとは、以下に示す三つの条件(C1~C3)を全て満足した場合を示す。
 条件C1.個別画像SPFから検出した交差線CLが、駐車枠線候補対応線xLaおよびxLbに対して、駐車枠線長閾値Lth1以下となる長さ位置で交差している。
 条件C2.交差線CLの長さが予め設定した交差線長閾値Lth2以上となっている。なお、交差線長閾値Lth2は、少なくとも駐車枠2つ分の横幅に相当する長さ以上に設定することが望ましい。
 条件C3.駐車枠線候補対応線xLaおよびxLbに対して、交差線CLが予め設定した交差角度閾値以下の交差角で交差している。H形状の駐車枠を構成する横線の有無を判別するための条件でありH形状の駐車枠における横線の交差角度の範囲を超えるようなものは除外する。
 次に、図14を用いて、ステップS2070の処理について具体例を説明する。
 図14は、駐車枠線候補対応線xLaおよびxLbと交差する交差線CLの一例を示す図である。
 図14中に示すように、個別画像SPFから駐車枠線候補対応線xLa2およびxLb2が抽出されており、この駐車枠線候補対応線xLa2およびxLb2に対して、交差線CLが交差している。図14に示す例では、駐車枠線候補対応線xLa2およびxLb2は、いずれも駐車枠線長閾値Lth1を超える長さを有している。更に、交差線CLは、駐車枠線候補対応線xLa2およびxLb2における駐車枠線長閾値Lth1以下の長さ位置で交差している(条件C1を満たす)。加えて、交差線CLは、交差線長閾値Lth2以上の長さを有している(条件C2を満たす)。さらに、交差線CLは、駐車枠線候補対応線xLa2およびxLb2に対して略直交している(条件C3を満たす)。
 以上のことから、図14の例では、検出した交差線CLが、上記条件C1からC3を満たしている。この場合、ステップS2070において、交差条件を満たすと判定され、駐車枠確信度設定部36が行う処理は、ステップS2050へ移行する。
 一方、ステップS2070において、上記条件C1からC3の少なくとも1つを満たしておらず、交差条件を満たしていないと判定した場合、駐車枠確信度設定部36が行う処理は、ステップS2080へ移行する。
 ステップS2080では、枠線候補除外フラグをONに設定する処理(図中に示す「枠線候補除外フラグをONに設定」)を行う。ステップS2080において、枠線候補除外フラグをONに設定する処理を行うと、駐車枠確信度設定部36が行う処理は、元の処理へ復帰(RETURN)する。
 ステップS2090では、探索領域内で検出した線が探索領域の途中で領域外へと出ているか否かを判定する処理(図中に示す「線が途中で探索領域外に出ている?」)を行う。
 ステップS2090において、線が途中で探索領域外に出ていると判定した場合、駐車枠確信度設定部36が行う処理は、ステップS2100へ移行する。
 一方、ステップS2090において、線が途中で探索領域外に出ていないと判定した場合、駐車枠確信度設定部36が行う処理は、ステップS2110へ移行する。
 ステップS2100では、枠線候補除外フラグをONに設定する処理(図中に示す「枠線候補除外フラグをONに設定」)を行う。ステップS2100において、枠線候補除外フラグをONに設定する処理を行うと、駐車枠確信度設定部36が行う処理は、元の処理に復帰(RETURN)する。
 ここで、図15を用いて、ステップS2090からS2100で行う処理の具体例を説明する。
 図15は、駐車枠線候補対応線が途中で探索領域外に出ている一例を示す図である。
 図15に示すように、個別画像SPF3内において、駐車枠線候補対応線xLa3及びxLb3が探索領域SA1及びSA2の外に出てしまう状況は、例えば、ピッチングなどの自車両Vの挙動によって生じる。このような状況では、駐車枠線候補対応線xLa3及びxLb3がもっと先まで続いている可能性がある。従って、本実施形態では、このような場合に、枠線候補除外フラグをONに設定し、駐車枠線候補対応線xLa3及びxLb3に対応する駐車枠線候補を除外対象に設定する。
 一方、ステップS2110では、枠線候補除外フラグをOFFに設定する処理(図中に示す「枠線候補除外フラグをOFFに設定」)を行う。ステップS2110において、枠線候補除外フラグをOFFに設定する処理を行うと、駐車枠確信度設定部36が行う処理は、元の処理に復帰(RETURN)する。
 つまり、駐車枠線候補対応線が駐車枠線長閾値Lth1以下の長さの場合、これに対応する駐車枠線候補を除外対象から除外する。
 図7に戻って、ステップS208では、ステップS206の除外対象検出処理の処理結果に基づき、枠線候補除外フラグがONとなる駐車枠線候補があるか否かを判定する処理(図中に示す「枠線候補除外フラグはON?」)を行う。
 ステップS208において、枠線候補除外フラグがONである(図中に示す「Yes」)と判定した場合、駐車枠確信度設定部36が行う処理は、ステップS210へ移行する。
 一方、ステップS208において、枠線候補除外フラグがOFFである(図中に示す「No」)と判定した場合、駐車枠確信度設定部36が行う処理は、ステップS212へ移行する。
 ステップS210では、ステップS204で抽出した駐車枠線候補の組のうち、枠線候補除外フラグがONとなっている駐車枠線候補の組を駐車枠の検出候補から除外する処理(図中に示す「枠線候補除外処理」)を行う。具体的に、該当する駐車枠線候補の組の情報をメモリから削除する。ステップS210において、駐車枠線候補の組を駐車枠の検出候補から除外する処理を行うと、駐車枠確信度設定部36が行う処理は、ステップS212へ移行する。
 ステップS212では、ステップS204で抽出した駐車枠線候補の組、またはこの駐車枠線候補の組のうちステップS210で枠線候補除外処理を経た残りの駐車枠線候補の組が、駐車枠を形成する線の条件に適合しているか否かを判断する処理を行う。この処理は、図中に示す「駐車枠条件適合?」に対応する。
 ステップS212において、判断対象となる駐車枠線候補の組が、駐車枠を形成する線の条件に適合していない(図中に示す「No」)と判断した場合、駐車枠確信度設定部36が行う処理は、ステップS202へ移行する。
 一方、ステップS212において、判断対象となる駐車枠線候補の組が、駐車枠を形成する線の条件に適合している(図中に示す「Yes」)と判断した場合、駐車枠確信度設定部36が行う処理は、ステップS214へ移行する。なお、ステップS212で行う処理は、例えば、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号を参照して行う。
 ここで、図16を用いて、ステップS212で行う処理の具体例を説明する。なお、図16は、駐車枠確信度設定部36が行う処理の内容を示す図である。また、図16中には、俯瞰画像のうち前方カメラ14Fで撮像した画像を示す領域を、符号「PE」と示す。
 ステップS212では、判断対象の駐車枠線候補の組であるペアリングした二本の線に対し、例えば、以下に示す四つの条件(D1~D4)を全て満足した場合に、対象の駐車枠線候補が、駐車枠を形成する線の条件に適合していると判断する。
条件D1.図16(a)中に示すように、ペアリングした二本の線(図中では、符合「La」、符合「Lb」で示す)間の幅WLが、予め設定した設定ペアリング幅(例えば、2.5[m])以下である。
条件D2.図16(b)中に示すように、線Laと線Lbとのなす角度(平行度合い)が、予め設定した設定角度(例えば、3[°])以内である。
 なお、図16(b)中には、基準線(領域PEの垂直方向に延在する線)を、符合「CLc」を付した点線で示し、線Laの中心軸線を、符合「CLa」を付した破線で示し、線Lbの中心軸線を、符合「CLb」を付した破線で示す。また、基準線CLcに対する中心軸線CLaの傾斜角を符号「θa」で示し、基準線CLcに対する中心軸線CLbの傾斜角を符号「θb」で示す。
 したがって、|θa-θb|≦3[°]の条件式が成立すると、条件C2を満足することとなる。
条件D3.図16(c)中に示すように、線Laの自車両V側の端部(図中では、下方側の端部)と線Lbの自車両V側の端部を結ぶ直線と、自車両Vに近い側の線Lとのなす角度θが、予め設定した設定ずれ角度(例えば、45[°])以上である。
条件D4.図16(d)中に示すように、線Laの幅W0と線Lbの幅W1との差の絶対値(|W0-W1|)が、予め設定した設定線幅(例えば、10[cm])以下である。
 なお、上述した四つの条件(D1~D4)を満足するか否かを判定する処理では、線La,Lbのうち少なくとも一方の長さが、例えば、2[m]程度で途切れている場合、さらに、2[m]程度の仮想線を延長した4[m]程度の線として、処理を継続する。
 ステップS214では、駐車枠確信度のレベルを最低値(レベル0)よりも一段階上のレベル(レベル1)に設定する処理(図中に示す「レベル1に設定」)を行う。ステップS214において、駐車枠確信度をレベル1に設定する処理を行うと、駐車枠確信度設定部36が行う処理は、ステップS216へ移行する。
 ステップS216では、ステップS212の処理を開始してから自車両Vの移動距離が予め設定した設定移動距離となるまでに、ステップS212の処理が連続して照合するか否かを判断する処理(図中に示す「連続照合適合?」)を行う。なお、設定移動距離は、自車両Vの諸元や、前進または後退の状態に応じて、例えば、1~2.5[m]の範囲内に設定する。また、ステップS216で行う処理は、例えば、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号と、自車両車速演算部10Bから入力を受けた車速演算値信号を参照して行う。
 ステップS216において、ステップS212の処理が連続して照合していない(図中に示す「No」)と判断した場合、駐車枠確信度設定部36が行う処理は、ステップS202へ移行する。
 一方、ステップS216において、ステップS212の処理が連続して照合している(図中に示す「Yes」)と判断した場合、駐車枠確信度設定部36が行う処理は、ステップS218へ移行する。
 ここで、ステップS216で行う処理では、例えば、図17中に示すように、ステップS212の処理が照合された状態と、ステップS212の処理が照合されない状態に応じて、自車両Vの移動距離を仮想的に演算する。なお、図17は、駐車枠確信度設定部36が行う処理の内容を示す図である。また、図17中には、「照合状態」と記載した領域において、ステップS212の処理が照合された状態を「ON」と示し、ステップS212の処理が照合されない状態を「OFF」と示す。また、図17中には、仮想的に演算した自車両Vの移動距離を、「仮想走行距離」と示す。
 図17中に示すように、ステップS212の処理が照合された状態が「ON」であると、仮想走行距離が増加する。一方、ステップS212の処理が照合された状態が「OFF」であると、仮想走行距離が減少する。
 なお、本実施形態では、一例として、仮想走行距離が増加する際の傾き(増加ゲイン)を、仮想走行距離が減少する際の傾き(減少ゲイン)よりも大きく設定した場合について説明する。すなわち、「照合状態」が「ON」である状態と「OFF」である状態が同時間であれば、仮想走行距離は増加することとなる。
 そして、仮想走行距離が初期値(図中では、「0[m]」と示す)に戻ることなく、設定移動距離に達すると、ステップS212の処理が連続して照合していると判断する。
 ステップS218では、駐車枠確信度のレベルを最低値(レベル0)よりも二段階上のレベル(レベル2)に設定する処理(図中に示す「レベル2に設定」)を行う。ステップS218において、駐車枠確信度をレベル2に設定する処理を行うと、駐車枠確信度設定部36が行う処理は、ステップS220へ移行する。
 ステップS220では、ステップS212の処理が連続して照合している線La,Lbに対し、それぞれ、自車両Vを基準として同じ側に位置する端点(近い側の端点、または、遠い側の端点)を検出する。そして、同じ側に位置する端点同士が、幅WLの方向に沿って対向しているか否かを判断する処理(図中に示す「遠近端点対向適合?」)を行う。なお、ステップS220で行う処理は、例えば、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号と、自車両車速演算部10Bから入力を受けた車速演算値信号を参照して行う。
 ステップS220において、同じ側に位置する端点同士が、幅WLの方向に沿って対向していない(図中に示す「No」)と判断した場合、駐車枠確信度設定部36が行う処理は、ステップS222へ移行する。
 一方、ステップS220において、同じ側に位置する端点同士が、幅WLの方向に沿って対向している(図中に示す「Yes」)と判断した場合、駐車枠確信度設定部36が行う処理は、ステップS202へ移行する。
 ステップS222では、駐車枠確信度のレベルを最低値(レベル0)よりも三段階上のレベル(レベル3)に設定する処理(図中に示す「レベル3に設定」)を行う。ステップS222において、駐車枠確信度をレベル3に設定する処理を行うと、駐車枠確信度設定部36が行う処理は、ステップS224へ移行する。
 ステップS224では、ステップS220の処理において、同じ側に位置する端点同士が幅WLの方向に沿って対向していると判断した線La,Lbに対し、さらに、他方の側に位置する端点を検出する。すなわち、ステップS220の処理において、線La,Lbに対して近い側(一方の側)の端点を検出した場合、ステップS224では、線La,Lbに対して遠い側(他方の側)の端点を検出する。そして、他方の側に位置する端点同士が、幅WLの方向に沿って対向しているか否かを判断する処理(図中に示す「両端端点対向適合?」)を行う。なお、ステップS224で行う処理は、例えば、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号と、自車両車速演算部10Bから入力を受けた車速演算値信号を参照して行う。
 なお、線La,Lbの端点を検出する際には、例えば、図4(a)中に示す線の端点のような直線の端点と、図4(g)中に示す線の上端点のようなU字状の端点と、図4(o)中に示す二重線と横線との交点を、全て、一本の直線の端点として処理する。同様に、図4(h)中に示す線の上端点のような二重線の端点と、図4(m)中に示す線の上端点のようなU字状の曲線に空隙部が形成されている端点も、全て、一本の直線の端点として処理する。
 また、線La,Lbの端点を検出する際には、例えば、図4(n)中に示す上下方向に延在する傾斜した二重線と、左右方向に延在する一本の直線との交点は、端点として処理(認識)しない。これは、端点を検出する際には、撮像した画像を示す領域において、横方向への走査を行うことにより端点を検出するためである。また、例えば、図4(p)中に白枠の四角形で示す領域は、柱等の路上物体を示しているため、この物体の端点も検出しない。
 ステップS224において、他方の側に位置する端点同士が、幅WLの方向に沿って対向していない(図中に示す「No」)と判断した場合、駐車枠確信度設定部36が行う処理は、ステップS202へ移行する。
 一方、ステップS224において、他方の側に位置する端点同士が、幅WLの方向に沿って対向している(図中に示す「Yes」)と判断した場合、駐車枠確信度設定部36が行う処理は、ステップS226へ移行する。
 ステップS226では、駐車枠確信度のレベルを最低値(レベル0)よりも四段階上のレベル(レベル4)に設定する処理(図中に示す「レベル4に設定」)を行う。ステップS226において、駐車枠確信度をレベル4に設定する処理を行うと、駐車枠確信度設定部36が行う処理は、ステップS228へ移行する。
 したがって、駐車枠確信度をレベル3に設定する処理では、図4中に示す駐車枠のうち、(d),(e),(j),(k)のパターンに対し、駐車枠確信度を設定することとなる。また、駐車枠確信度をレベル4に設定する処理では、図4中に示す駐車枠のうち、(d),(e),(j),(k)を除くパターンに対し、駐車枠確信度を設定することとなる。
 ステップS228では、予め設定した、駐車枠確信度設定部36が行う処理の終了条件が成立したか否かを判定する処理(図中に示す「終了条件成立?」)を行う。
 具体的に、例えば、シフトポジションセンサ20から入力を受けたシフト位置信号に基づき、シフトポジションがパーキング(「P」)のシフト位置にあるか否か、イグニッションON→OFFの検出等に基づき終了条件を満足したか否かを判定する。
 ステップS228において、終了条件を満足したと判定した場合、駐車枠確信度設定部36が行う処理は終了(END)する。
 一方、ステップS228において、終了条件を満足していないと判定した場合、駐車枠確信度設定部36が行う処理は、ステップS202へ移行する。
 なお、駐車枠確信度設定部36が行う上記一連の処理は、開始条件が成立する毎に繰り返し実施される。
・駐車枠進入確信度設定部38が行う処理
 図1から図17を参照しつつ、図18および図19を用いて、駐車枠進入確信度設定部38が駐車枠進入確信度を設定する処理について説明する。
 図18は、駐車枠進入確信度設定部38が駐車枠進入確信度を設定する処理を示すフローチャートである。なお、駐車枠進入確信度設定部38は、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
 図18中に示すように、駐車枠進入確信度設定部38が処理を開始(START)すると、まず、ステップS300において、自車両Vの予想軌跡と駐車枠とのずれ量を検出する処理(図中に示す「ずれ量検出」)を行う。ステップS300において、自車両Vの予想軌跡と駐車枠とのずれ量を検出する処理を行うと、駐車枠進入確信度設定部38が行う処理は、ステップS302へ移行する。なお、本実施形態では、一例として、ステップS300で検出するずれ量の単位を[cm]とした場合について説明する。また、本実施形態では、一例として、駐車枠の幅を2.5[m]とした場合について説明する。
 ここで、ステップS300で行なう処理では、例えば、図19中に示すように、自車両Vの後輪予想軌跡TRを算出し、算出した後輪予想軌跡TRと駐車枠L0の入り口L2との交点TPを算出する。さらに、駐車枠L0の左側枠線L1lと交点TPとの距離Lflと、駐車枠L0の右側枠線L1rと交点TPとの距離Lfrを算出し、距離Lflと距離Lfrを比較する。そして、距離Lflと距離Lfrのうち長い方の距離を、自車両Vの後輪予想軌跡TRと駐車枠L0とのずれ量として検出する。なお、図19は、自車両Vの後輪予想軌跡TRと駐車枠L0とのずれ量を検出する処理の内容を示す図である。
 また、自車両Vの後輪予想軌跡TRを算出する際には、自車両Vのうち、右後輪WRRと左後輪WRLとの車幅方向における中心点PRを、自車両Vの基準点として設定する。そして、俯瞰画像のうち前方カメラ14Fおよび左側方カメラ14SLで撮像した画像と、自車両Vの車速と、ステアリングホイール28の回転角(操舵角)を用いて、中心点PRの仮想移動経路を演算し、後輪予想軌跡TRを算出する。
 ステップS302では、例えば、俯瞰画像のうち前方カメラ14Fで撮像した画像を用いて、直線Xと駐車枠L0の長さ方向(例えば、奥行き方向)との平行度を検出する処理(図中に示す「平行度検出」)を行う。ステップS302において、直線Xと駐車枠L0の長さ方向との平行度を検出する処理を行うと、駐車枠進入確信度設定部38が行なう処理は、ステップS304へ移行する。
 ここで、ステップS302で検出する平行度は、図19中に示すように、駐車枠L0の中心線Yと直線Xとのなす角度θapとして検出する。
 なお、ステップS302では、自車両Vが後退しながら駐車枠L0へ移動する場合、例えば、俯瞰画像のうち後方カメラ14Rで撮像した画像を用いて、直線Xと駐車枠L0の長さ方向との平行度を検出する処理を行う。ここで、自車両Vの移動方向(前進、後退)は、例えば、現在シフト位置信号を参照して検出する。
 ステップS304では、自車両Vの車速と、ステアリングホイール28の回転角(操舵角)を用いて、自車両Vの旋回半径を演算する処理(図中に示す「旋回半径演算」)を行う。ステップS304において、自車両Vの旋回半径を演算する処理を行うと、駐車枠進入確信度設定部38が行なう処理は、ステップS306へ移行する。
 ステップS306では、ステップS302で検出した平行度(θap)が、予め設定した平行度閾値(例えば、15[°])未満であるか否かを判断する処理(図中に示す「平行度<平行度閾値?」)を行う。
 ステップS306において、ステップS302で検出した平行度(θap)が平行度閾値以上である(図中に示す「No」)と判断した場合、駐車枠進入確信度設定部38が行なう処理は、ステップS308へ移行する。
 一方、ステップS306において、ステップS302で検出した平行度(θap)が平行度閾値未満である(図中に示す「Yes」)と判断した場合、駐車枠進入確信度設定部38が行なう処理は、ステップS310へ移行する。
 ステップS308では、ステップS304で検出した旋回半径が、予め設定した旋回半径閾値(例えば、100[R])以上であるか否かを判断する処理(図中に示す「旋回半径≧旋回半径閾値?」)を行う。
 ステップS308において、ステップS304で検出した旋回半径が旋回半径閾値未満である(図中に示す「No」)と判断した場合、駐車枠進入確信度設定部38が行う処理は、ステップS312へ移行する。
 一方、ステップS308において、ステップS304で検出した旋回半径が旋回半径閾値以上である(図中に示す「Yes」)と判断した場合、駐車枠進入確信度設定部38が行う処理は、ステップS310へ移行する。
 ステップS310では、ステップS300で検出したずれ量が、予め設定した第一閾値(例えば、75[cm])以上であるか否かを判断する処理(図中に示す「ずれ量≧第一閾値?」)を行う。
 ステップS310において、ステップS300で検出したずれ量が第一閾値以上である(図中に示す「Yes」)と判断した場合、駐車枠進入確信度設定部38が行う処理は、ステップS314へ移行する。
 一方、ステップS310において、ステップS300で検出したずれ量が第一閾値未満である(図中に示す「No」)と判断した場合、駐車枠進入確信度設定部38が行う処理は、ステップS316へ移行する。
 ステップS312では、ステップS300で検出したずれ量が、予め設定した第二閾値(例えば、150[cm])以上であるか否かを判断する処理(図中に示す「ずれ量≧第二閾値?」)を行う。ここで、第二閾値は、上述した第一閾値よりも大きな値とする。
 ステップS312において、ステップS300で検出したずれ量が第二閾値以上である(図中に示す「Yes」)と判断した場合、駐車枠進入確信度設定部38が行う処理は、ステップS318へ移行する。
 一方、ステップS312において、ステップS300で検出したずれ量が第二閾値未満である(図中に示す「No」)と判断した場合、駐車枠進入確信度設定部38が行う処理は、ステップS314へ移行する。
 ステップS314では、駐車枠進入確信度を低いレベルに設定する処理(図中に示す「進入確信度=レベル低」)を行う。ステップS314において、駐車枠進入確信度を低いレベルに設定する処理を行うと、駐車枠進入確信度設定部38が行う処理は終了(END)する。
 ステップS316では、駐車枠進入確信度を高いレベルに設定する処理(図中に示す「進入確信度=レベル高」)を行う。ステップS316において、駐車枠進入確信度を高いレベルに設定する処理を行うと、駐車枠進入確信度設定部38が行う処理は終了(END)する。
 ステップS318では、駐車枠進入確信度のレベルを最低値(レベル0)に設定する処理(図中に示す「進入確信度=レベル0」)を行う。ステップS318において、駐車枠進入確信度をレベル0に設定する処理を行うと、駐車枠進入確信度設定部38が行う処理は終了(END)する。
 以上説明したように、駐車枠進入確信度設定部38は、駐車枠進入確信度を、最低値の「レベル0」、レベル0よりも高いレベルの「レベル低」、レベル低よりも高いレベルの「レベル高」のうち、いずれかのレベルに設定する処理を行う。
・総合確信度設定部40が行う処理
 図1から図19を参照しつつ、図20を用いて、総合確信度設定部40が総合確信度を設定する処理について説明する。
 総合確信度設定部40は、駐車枠確信度信号および駐車枠進入確信度信号の入力を受け、駐車枠確信度信号が含む駐車枠確信度と、駐車枠進入確信度信号が含む駐車枠進入確信度を、図20中に示す総合確信度設定マップに適合させる。そして、駐車枠確信度と駐車枠進入確信度に基づき、総合確信度を設定する。
 なお、図20は、総合確信度設定マップを示す図である。また、図20中では、駐車枠確信度を「枠確信度」と示し、駐車枠進入確信度を「進入確信度」と示す。また、図20中に示す総合確信度設定マップは、自車両Vの前進走行時に用いるマップである。
 総合確信度設定部40が総合確信度を設定する処理の一例として、駐車枠確信度が「レベル3」であり、駐車枠進入確信度が「レベル高」である場合では、図20中に示すように、総合確信度を「高」に設定する。
 なお、本実施形態では、一例として、総合確信度設定部40が、総合確信度を設定する処理を行うと、設定した総合確信度を、イグニッションスイッチをオフ状態としてもデータが消去されない記憶部に記憶する処理を行う場合について説明する。ここで、イグニッションスイッチをオフ状態としてもデータが消去されない記憶部とは、例えば、フラッシュメモリ等の不揮発性のメモリである。
 したがって、本実施形態では、自車両Vの駐車完了後にイグニッションスイッチをオフ状態とし、自車両Vの再発進時にイグニッションスイッチをオン状態とした時点では、直前に設定した総合確信度が記憶されている。このため、自車両Vの再発進時にイグニッションスイッチをオン状態とした時点から、直前に設定した総合確信度に基づく制御を開始することが可能となる。
・加速抑制制御開始タイミング演算部42が行う処理
 図1から図20を参照しつつ、図21を用いて、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算する処理について説明する。
 加速抑制制御開始タイミング演算部42は、総合確信度信号の入力を受け、総合確信度信号が含む総合確信度を、図21中に示す加速抑制条件演算マップに適合させる。そして、総合確信度に基づき、加速抑制制御開始タイミングを演算する。
 なお、図21は、加速抑制条件演算マップを示す図である。また、図21中では、「加速抑制条件」の欄において、加速抑制制御開始タイミングを「抑制制御開始タイミング(アクセル開度)」と示す。
 加速抑制制御開始タイミング演算部42が行う処理の一例として、総合確信度が「高」である場合では、図21中に示すように、加速抑制制御開始タイミングを、アクセルペダル32の開度が増加して「50%」に達したタイミングに設定する。なお、アクセルペダル32の開度は、アクセルペダル32を最大値まで踏み込んだ(操作した)状態を100%として設定する。
・加速抑制制御量演算部44が行う処理
 図1から図21を参照して、加速抑制制御量演算部44が加速抑制制御量を演算する処理について説明する。
 加速抑制制御量演算部44は、総合確信度信号の入力を受け、総合確信度信号が含む総合確信度を、図21中に示す加速抑制条件演算マップに適合させる。そして、総合確信度に基づき、加速抑制制御量を演算する。なお、図21中では、「加速抑制条件」の欄において、加速抑制制御量を「抑制量」と示す。
 加速抑制制御量演算部44が行う処理の一例として、総合確信度が「高」である場合では、図31中に示すように、加速抑制制御量を、実際のアクセルペダル32の開度を、「中」レベルのスロットル開度に低減する制御量に設定する。なお、本実施形態では、一例として、「中」レベルのスロットル開度を、実際のアクセルペダル32の開度の25%の開度とする。同様に、「小」レベルのスロットル開度を、実際のアクセルペダル32の開度の50%の開度とし、「大」レベルのスロットル開度を、実際のアクセルペダル32の開度の10%の開度とする。
 また、加速抑制制御量演算部44は、総合確信度を加速抑制条件演算マップに適合させ、警告音を出力する制御の有無を設定する。なお、警告音を出力する場合、例えば、ナビゲーション装置26が備える表示モニタに、加速抑制制御を作動させている内容の文字情報や記号・発光等の視覚情報を表示してもよい。
(加速抑制指令値演算部10Jで行う処理)
 次に、図1から図21を参照しつつ、図22を用いて、加速抑制指令値演算部10Jで行う処理について説明する。
 図22は、加速抑制指令値演算部10Jが行う処理を示すフローチャートである。なお、加速抑制指令値演算部10Jは、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
 図22中に示すように、加速抑制指令値演算部10Jが処理を開始(START)すると、まず、ステップS400において、加速抑制制御内容演算部10Iから入力を受けた加速抑制作動条件判断結果信号を参照する。そして、加速抑制作動条件判断結果を取得する処理(図中に示す「加速抑制作動条件判断結果取得処理」)を行う。ステップS400において、加速抑制作動条件判断結果を取得する処理を行うと、加速抑制指令値演算部10Jが行う処理は、ステップS402へ移行する。
 ステップS402では、ステップS400において取得した加速抑制作動条件判断結果に加え、加速抑制指令値を演算するための情報を取得する処理(図中に示す「加速抑制指令値演算情報取得処理」)を行う。ステップS402において、加速抑制指令値を演算するための情報を取得する処理を行うと、加速抑制指令値演算部10Jが行なう処理は、ステップS404へ移行する。
 なお、加速抑制指令値を演算するための情報とは、例えば、上述した加速抑制制御開始タイミング信号、加速抑制制御量信号、駆動側踏込み量信号、アクセル操作速度信号が含む情報である。
 ステップS404では、ステップS400で取得した加速抑制作動条件判断結果が、加速抑制制御作動条件が成立する判断結果か否かを判断する処理(図中に示す「加速抑制制御作動条件成立?」)を行う。
 ステップS404において、加速抑制制御作動条件が成立する判断結果である(図中に示す「Yes」)と判断した場合、加速抑制指令値演算部10Jが行なう処理は、ステップS406へ移行する。
 一方、ステップS404において、加速抑制制御作動条件が成立しない判断結果である(図中に示す「No」)と判断した場合、加速抑制指令値演算部10Jが行なう処理は、ステップS408へ移行する。
 ステップS406では、ステップS402で取得した加速抑制指令値を演算するための情報に基づき、加速抑制制御を行うための加速指令値である加速抑制指令値を演算する処理(図中に示す「加速抑制制御用指令値演算」)を行う。ステップS406において、加速抑制指令値を演算する処理を行うと、加速抑制指令値演算部10Jが行なう処理は、ステップS410に移行する。
 ここで、加速抑制指令値を演算する処理では、駆動側踏込み量信号が含むアクセルペダル32の踏込み量と、加速抑制制御量信号が含む加速抑制制御量を参照する。そして、スロットル開度を、実際のアクセルペダル32の開度に対して加速抑制制御量に応じた抑制度合い(図21参照)とする加速抑制制御量指令値を演算する。
 さらに、加速抑制指令値を演算する処理では、駆動側踏込み量信号が含むアクセルペダル32の踏込み量と、加速抑制制御開始タイミング信号が含む加速抑制制御開始タイミングを参照する。そして、加速抑制制御開始タイミングを、実際のアクセルペダル32の開度に応じたタイミング(図21参照)とする加速抑制制御開始タイミング指令値を演算する。
 そして、加速抑制指令値を演算する処理では、上記のように演算した加速抑制制御量指令値及び加速抑制制御開始タイミング指令値を含む指令値を、加速抑制指令値として演算する。
 ステップS408では、加速抑制制御を行なわない駆動力制御、すなわち、通常の加速制御で用いる加速指令値である通常加速指令値を演算する処理(図中に示す「通常加速制御用指令値演算」)を行う。ステップS408において、通常加速指令値を演算する処理を行うと、加速抑制指令値演算部10Jが行なう処理は、ステップS412に移行する。
 ここで、通常加速指令値を演算する処理では、駆動側踏込み量信号が含むアクセルペダル32の踏込み量に基づいてスロットル開度を演算する指令値を、通常加速指令値として演算する。
 ステップS410では、ステップS406で演算した加速抑制指令値を含む加速抑制指令値信号を、目標スロットル開度演算部10Kに出力する処理(図中に示す「加速抑制指令値出力」)を行う。ステップS410において、加速抑制指令値信号を出力する処理を行うと、加速抑制指令値演算部10Jが行なう処理は終了(END)する。
 ステップS412では、ステップS408で演算した通常加速指令値を含む通常加速指令値信号を、目標スロットル開度演算部10Kに出力する処理(図中に示す「通常加速指令値出力」)を行う。ステップS412において、通常加速指令値信号を出力する処理を行うと、加速抑制指令値演算部10Jが行なう処理は終了(END)する。
(目標スロットル開度演算部10Kで行う処理)
 次に、図1から図22を参照しつつ、図23を用いて、目標スロットル開度演算部10Kで行う処理について説明する。
 図23は、目標スロットル開度演算部10Kが行う処理を示すフローチャートである。なお、目標スロットル開度演算部10Kは、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
 図23中に示すように、目標スロットル開度演算部10Kが処理を開始(START)すると、まず、ステップS500において、アクセル操作量演算部10から入力を受けた駆動側踏込み量信号を参照する。そして、駆動側踏込み量信号が含むアクセルペダル32の踏込み量(加速操作量)を取得する処理(図中に示す「アクセル操作量取得処理」)を行う。ステップS500において、アクセルペダル32の踏込み量(加速操作量)を取得する処理を行うと、目標スロットル開度演算部10Kが行う処理は、ステップS502へ移行する。
 ステップS502では、加速抑制指令値演算部10Jから入力を受けた情報信号に基づき、抑制有加速抑制指令値(ステップ408参照)、加速抑制指令値(ステップS414参照)または通常加速指令値(ステップS418参照)を取得する処理(図中に示す「指令値取得処理」)を行う。ステップS502において、加速抑制指令値または通常加速指令値を取得する処理を行うと、目標スロットル開度演算部10Kが行う処理は、ステップS504へ移行する。
 ステップS504では、ステップS500で取得したアクセルペダル32の踏込み量と、ステップS502で取得した指令値に基づき、目標スロットル開度の演算(図中に示す「目標スロットル開度演算」)を行う。ステップS504において、目標スロットル開度を演算すると、目標スロットル開度演算部10Kが行う処理は、ステップS506へ移行する。
 ここで、ステップS504では、ステップS502で取得した指令値が通常加速指令値である場合(加速抑制作動条件が非成立である場合)は、アクセルペダル32の踏込み量に応じたスロットル開度を、目標スロットル開度として演算する。
 一方、ステップS502で取得した指令値が加速抑制指令値である場合(加速抑制作動条件が成立している場合)は、加速抑制制御量指令値に応じたスロットル開度を、目標スロットル開度として演算する。
 目標スロットル開度は、例えば、以下の式(1)を用いて演算する。
   θ*=θ1-Δθ … (1)
 上式(1)中では、目標スロットル開度を「θ*」で示し、アクセルペダル32の踏込み量に応じたスロットル開度を「θ1」で示し、加速抑制制御量を「Δθ」で示す。
 ステップS506では、ステップS504で演算した目標スロットル開度θ*を含む目標スロットル開度信号を、エンジンコントローラ12に出力(図中に示す「目標スロットル開度出力」)する。ステップS506において、目標スロットル開度信号をエンジンコントローラ12に出力する処理を行うと、目標スロットル開度演算部10Kが行う処理は終了(END)する。
 ここで、ステップS506では、ステップS502で取得した指令値が抑制有加速抑制指令値または加速抑制指令値である場合は、アクセルペダル32の開度(踏み込み量)が加速抑制制御開始タイミングに応じた開度に達したタイミングで、目標スロットル開度信号を出力する。
(動作)
 次に、図1から図23を参照しつつ、本実施形態の車両用加速抑制装置1を用いて行う動作の一例を説明する。
 まず、駐車場内を走行する自車両Vが、運転者の選択した駐車枠L0に進入する例を説明する。
 駐車場内を走行する自車両Vの車速が、閾値車速である15[km/h]以上の状態では、加速抑制制御作動条件が成立しないため、自車両Vには加速抑制制御が作動することなく、運転者の加速意図を反映した通常の加速制御を行う。
 車速が閾値車速未満となり、駐車枠L0を検出し、さらに、ブレーキペダル30が操作されておらず、アクセルペダル32の踏込み量が閾値アクセル操作量以上であると、自車両Vが駐車枠L0へ進入するか否かの判断を行う。
 また、自車両Vの走行中には、駐車枠確信度設定部36が駐車枠確信度を設定し、駐車枠進入確信度設定部38が駐車枠進入確信度を設定する。そして、総合確信度設定部40が、駐車枠確信度および駐車枠進入確信度に基づく総合確信度を設定する。
 さらに、自車両Vの走行中には、総合確信度設定部40が設定した総合確信度に基づき、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算し、加速抑制制御量演算部44が加速抑制制御量を演算する。
 そして、自車両Vが駐車枠L0へ進入すると判断し、加速抑制制御作動条件が成立すると判断すると、加速抑制指令値演算部10Jが、加速抑制指令値信号を目標スロットル開度演算部10Kへ出力する。さらに、目標スロットル開度演算部10Kが、目標スロットル開度信号をエンジンコントローラ12へ出力する。
 このため、加速抑制制御作動条件が成立した状態で、運転者がアクセルペダル32を操作すると、アクセルペダル32の踏み込み量に応じたスロットル開度から、加速抑制制御量指令値が減算され、スロットル開度が、実際のスロットル開度の50[%]の開度に設定される。これにより、自車両Vに発生する加速が低減され車両Vの加速が抑制される。これに加え、アクセルペダル32の踏み込み量に応じたスロットル開度を低減(加速を抑制)する開始タイミングを、加速抑制制御開始タイミング指令値に応じたタイミングとする。
 したがって、自車両Vが駐車枠L0内で駐車に適した位置に近づいた状態等、制動操作が適切な運転操作である状況で、誤操作等によりアクセルペダル32が操作された場合であっても、総合確信度に応じてスロットル開度を低減することが可能となる。すなわち、総合確信度が低い状態では、加速抑制量(スロットル開度の低減度合い)が小さいため、運転性の低下を少なくすることが可能となり、総合確信度が高い状態では、加速抑制量が大きいため、自車両Vの加速抑制効果を高くすることが可能となる。
 以上説明したように、本実施形態では、駐車時において、駐車枠L0への進入を行う前には駐車場内における運転性低下を抑制することが可能であるとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
 また、本実施形態では、総合確信度が高いほど、加速抑制制御量を大きくすることにより、自車両Vの加速を抑制して、安全性を向上させる。また、総合確信度が低いほど、加速抑制制御開始タイミングを遅くして、運転性の低下を抑制する。これにより、以下に示す状況下において、安全性の向上と運転性低下の抑制が可能となる。
 例えば、路上において、走行路の脇に縦列駐車用の駐車枠L0が標示されている付近に待機している自車両Vを発進させる状況では、ある程度の加速を許容する必要がある。
 また、以下に示す状況下においても、ある程度の加速を許容する必要がある。これは、自車両Vを駐車させる駐車枠L0の両脇(左右の駐車枠)に他車両が存在し、その向かい側(各駐車枠から離れた側)に多少のスペースに自車両Vを前側から進入させる。その後、自車両Vを駐車させる駐車枠L0に自車両Vを後側から進入させて駐車を行う状況である。
 これらの状況に対し、総合確信度に基づいて加速抑制制御開始タイミングと加速抑制制御量を制御することにより、自車両Vの加速を抑制して、安全性を向上させることが可能となる。これに加え、自車両Vの加速を許容して、運転性低下を抑制することが可能となる。
 次に、自車両Vが交差点の手前(停止線)で停車した状態からの動作例を説明する。
 ここで、図24は、十字路の交差点における動作例を説明する図である。
 自車両Vが、例えば、図24の(1)に示すように、交差点を左折しようと旋回動作を行うと、駐車枠確信度設定部36は、進行した先にある道路標示線(図中に示す白線BL1およびBL2)を含む俯瞰画像BV1を取得する。これにより、駐車枠確信度設定部36は、俯瞰画像BV1内にある白線BL1およびBL2を、駐車枠線候補として抽出し、これらをペアリングする(ステップS204)。
 駐車枠確信度設定部36は、駐車枠線候補の組が抽出されているので(ステップS2000の「Yes」)、個別画像内の駐車枠線候補BL1およびBL2に対応する駐車枠線候補対応線の一部の延長上に探索領域を設定する。そして、設定した探索領域内を第2輝度閾値に基づき探索し、駐車枠線候補対応線を抽出する(ステップS2010)。駐車枠確信度設定部36は、駐車枠線候補対応線を抽出すると、その長さが駐車枠線長閾値Lth1を超えているか否かを判定する。図24の(1)の例では、道路白線が駐車枠線候補の組となって抽出されているので、駐車枠線候補BL1およびBL2の長さは、駐車枠線長閾値Lth1を超えており(ステップS2020の「Yes」)、俯瞰画像BV1内には遠端部も検出されず、また、交差線も検出されない。従って、この場合、駐車枠線候補BL1およびBL2に対する枠線候補除外フラグがONに設定される(ステップS2080)。駐車枠確信度設定部36は、枠線候補除外フラグがONに設定されているので(ステップS208の「Yes」)、駐車枠線候補BL1およびBL2を駐車枠の検出候補から除外する(ステップS210)。つまり、自車両Vが交差点を左折した場合において抽出される駐車枠線候補を駐車枠の検出対象から除外することができる。従って、駐車枠確信度がレベル0となって、加速抑制作動条件判断部34において、駐車枠が無いと判断され(ステップS102の「No」)、加速抑制作動条件が非作動となる(ステップS128)。これにより、交差点を左折するような場面において、車両用加速抑制装置1では、加速抑制制御が作動することなく、運転者の加速意図を反映した通常の加速制御が作動する。
 また、例えば、自車両Vが、図24の(2)に示すように、交差点を右折した場合も左折の場合と同様に、駐車枠線候補BL3およびBL4が駐車枠の検出候補から除外され、車両用加速抑制装置1では、加速抑制制御が作動することなく、運転者の加速意図を反映した通常の加速制御が作動する。
 同様に、図24の(3)に示すように、自車両Vが交差点を直進した場合も、駐車枠線候補BL5およびBL6が駐車枠の検出候補から除外され、車両用加速抑制装置1では、加速抑制制御が作動することなく、運転者の加速意図を反映した通常の加速制御が作動する。
 つまり、俯瞰画像から抽出した駐車枠線候補が加速抑制制御に使用される前に、先行して駐車枠線候補として適しているか否かを判定し、不適切なものを除外するようにしたので、交差点等の駐車領域外の領域における、加速抑制制御による運転性の低下を低減することが可能となる。
 なお、図24は、道路白線が途切れなく続いている例を示したが、例えば、図25に示すように、道路上の白線が破線となっている交差点も存在する。ここで、図25は、道路上の白線が破線となっているT字路の交差点における動作例を説明する図である。
 図25に示すT字路の交差点の例では、左折の場合に、俯瞰画像BV4から駐車枠線候補BL7およびBL8が抽出される。従って、駐車枠確信度設定部36は、駐車枠線候補BL7およびBL8の組に対して、駐車枠線候補対応線の抽出処理を行う。ここでは、駐車枠線候補BL7およびBL8が、例えば、5[m]以下の破線となっている。従って、駐車枠線候補BL7およびBL8に対応する駐車枠線候補対応線の長さが駐車枠線長閾値Lth1(ここでは、6.5[m])よりも短く(ステップS2020の「No」)なる。また、駐車枠線候補対応線は探索領域の途中で領域外に出ることもなく(ステップS2090の「No」)、駐車枠線候補BL7およびBL8に対する枠線候補除外フラグがOFFに設定される(ステップS2110)。駐車枠確信度設定部36は、枠線候補除外フラグがOFFに設定されているので(ステップS208の「No」)、駐車枠線候補BL7およびBL8を駐車枠の検出候補として残す。そして、駐車枠線候補BL7およびBL8が駐車枠条件に適合した場合(ステップS212の「Yes」)、駐車枠確信度がレベル1に設定される(ステップS214)。この場合、例えば、駐車枠進入確信度が加速抑制制御の作動条件を満たしていても、自車両Vが閾値車速である時速15[km/h]以上の速度で走行した場合は加速抑制制御が非作動となる。
 一方、駐車枠線候補BL7およびBL8が駐車枠条件に適合しなかった場合(ステップS212の「No」)、駐車枠確信度はレベル0のままとなる。この場合、車両用加速抑制装置1では、加速抑制制御が作動することなく、運転者の加速意図を反映した通常の加速制御が作動する。
 また、図26は、交差点を左折した先に停車禁止帯の道路標示が存在する場合の動作例を説明する図である。
 図26に示す例では、自車両Vが左折したすぐ先に消防署があるため、消防署の前の路上に停車禁止帯NSAの道路標示が存在する。この停車禁止帯NSAは、駐車枠に形状が類似しているため駐車枠線候補として誤検出しやすい。
 本実施形態では、停車禁止帯NSAの長手方向の枠線の長さが駐車枠線長閾値Lth1(例えば6.5[m])を超えていれば、俯瞰画像に含まれる停車禁止帯NSAから抽出した駐車枠線候補の組を、駐車枠線検出候補から除外することが可能である。従って、枠線の長さが駐車枠線長閾値Lth1を超えている停車禁止帯NSAを、駐車枠線候補として誤検出したとしても、加速抑制制御を非作動とすることが可能である。そのため、加速抑制制御による運転性の低下を防ぐことが可能となる。
 なお、加速抑制制御として、車両Vを加速させる加速指令値を低減する制御を例に挙げて説明したが、この構成に限らない。例えば、加速抑制制御は、車両Vを予め設定した車速以下の低車速で走行させる制御や、駆動力制御のみに限らず制動装置による車両Vを減速(停止も含む)させる制御なども含む。さらに、加速抑制制御は、クラッチの接続制御による動力の伝達制御(例えば、抑制時はクラッチをギアから切り離して動力を伝達させない)なども含む。
 ここで、上述したアクセル操作検出センサ24およびアクセル操作量演算部10Gは、加速操作量検出部に対応する。
 また、上述した加速抑制指令値演算部10Jと、目標スロットル開度演算部10Kは、加速制御部に対応する。
 また、上述した周囲環境認識センサ14は、撮像部および俯瞰画像取得部に対応する。
 また、上述した駐車枠確信度設定部36が行う駐車枠線候補抽出処理(ステップS204)は、駐車枠線候補抽出部に対応する。
 また、上述した駐車枠確信度設定部36が行う駐車枠を検出して駐車枠確信度を設定する一連の処理(ステップS212~S226)は、駐車枠検出部に対応する。
 また、上述した加速抑制制御開始タイミング演算部42と、加速抑制制御量演算部44と、加速抑制指令値演算部10Jと、目標スロットル開度演算部10Kは、加速抑制制御部に対応する。
 また、上述した駐車枠確信度設定部36が行う駐車枠線候補対応線抽出処理(ステップS2010)は、駐車枠線候補対応線抽出部に対応する。
 また、上述した駐車枠確信度設定部36が行う枠線候補除外フラグを設定する処理(ステップS2020~S2110)、および枠線候補除外フラグに基づき駐車枠線候補を除外する処理(ステップS208~S210)は、枠線候補除外部に対応する。
 また、上述した駐車枠確信度設定部36が行う、操舵角等の旋回角を演算するための情報に基づく自車両Vの旋回動作の検出処理は、旋回動作検出部に対応する。
 また、上述した駐車枠確信度設定部36が行う走行路判定処理(ステップS2030)は、走行領域判定部に対応する。
(実施形態の効果)
 本実施形態であれば、以下に記載する効果を奏することが可能となる。
(1)アクセル操作検出センサ24およびアクセル操作量演算部10Gが、アクセルペダル32の操作量(加速操作量)を検出する。加速抑制指令値演算部10Jおよび目標スロットル開度演算部10Kが、アクセル操作検出センサ24およびアクセル操作量演算部10Gが検出した加速操作量に応じて、自車両Vに発生させる加速を制御する。周囲環境認識センサ14が、自車両周囲の路面を含む領域を撮像し、撮像して得た撮像画像を俯瞰変換して俯瞰画像を取得する。駐車枠確信度設定部36が、俯瞰画像から路面上に位置する線を駐車枠線の候補として抽出し、抽出した駐車枠線候補から駐車枠を検出する。加速抑制制御開始タイミング演算部42と、加速抑制制御量演算部44と、加速抑制指令値演算部10Jと、目標スロットル開度演算部10Kが、駐車枠確信度設定部36で抽出した駐車枠に基づき、加速抑制指令値演算部10Jおよび目標スロットル開度演算部10Kが制御する、加速操作量に応じて自車両Vに発生させる加速(スロットル開度)を低減する制御である加速抑制制御を実施する。駐車枠確信度設定部36が、周囲環境認識センサ14が取得した自車両V前方の撮像画像(個別画像SPF)から、俯瞰画像から抽出した駐車枠線候補に対応する線である駐車枠線候補対応線を抽出する。駐車枠確信度設定部36が、駐車枠線候補対応線の長さが予め設定した駐車枠線長閾値Lth1を超える長さであると判定すると、該駐車枠線候補対応線に対応する駐車枠線候補を、駐車枠の検出候補から除外する。
 つまり、自車両V前方の俯瞰画像から駐車枠線候補を抽出すると、この俯瞰画像に対応する撮像画像(個別画像SPF)から駐車枠線候補に対応する駐車枠線候補対応線を抽出し、抽出した駐車枠線候補対応線の長さが駐車枠線長閾値を超えているか否かを判定する。そして、駐車枠線長閾値を超えていると判定すると、該駐車枠線候補対応線に対応する駐車枠線候補を駐車枠の検出候補から除外するようにした。
 これによって、駐車枠線候補として不適切な長さ(例えば、公道上の道路標示線等の長さ)のを有する線を、駐車枠の検出候補から除外することができるので、交差点等の駐車を行う領域以外の領域での加速抑制処理の発生を防止または低減することが可能である。そのため、駐車領域以外の領域における加速抑制処理による運転性の低下を防止または低減することが可能となる。
(2)駐車枠確信度設定部36が、撮像画像内の駐車枠線候補に対応する線を駐車枠線候補対応線の一部とし、予め設定した、該駐車枠線候補対応線の一部の遠近方向遠方の端部から延長して伸びる該駐車枠線候補対応線の一部の幅以上の幅を有する画像領域である探索領域内から、駐車枠線候補対応線の残りの部分を抽出する。
 探索領域に幅を持たせることで、途中で曲がっている線等も抽出することができるので、駐車枠線候補対応線の抽出精度を向上することが可能となる。
(3)駐車枠確信度設定部36が、駐車枠線候補対応線の一部の延長線が探索領域の途中から領域外へと出ていると判定すると、該駐車枠線候補対応線の一部に対応する俯瞰画像内の駐車枠線候補を、駐車枠の検出候補から除外する。
 ここで、探索領域の途中で線が外に出るといった状況は、ピッチングなどの自車両Vの挙動によって生じる可能性が高く、駐車枠線候補対応線がもっと先まで続いている可能性が高い。従って、このような状況においては、駐車枠線候補対応線に対応する駐車枠線候補を、駐車枠の検出候補から除外するようにした。これにより、ピッチングなどの車両挙動が生じている状態において発生する、駐車領域以外の領域における加速抑制処理による運転性の低下を防止または低減することが可能となる。
(4)駐車枠確信度設定部36が、俯瞰画像から駐車枠線候補抽出部が抽出した駐車枠線候補の自車両Vから遠方側の端部を検出する。さらに、駐車枠線長閾値Lth1を超える長さであると判定した駐車枠線候補対応線に対応する駐車枠線候補について、俯瞰画像内に該駐車枠線候補の遠方側の端部を検出したと判定すると、該駐車枠線候補を駐車枠の検出候補として残す。
 ここで、比較的遠方の画像領域から抽出される駐車枠線候補対応線の抽出結果よりも、比較的近傍の画像領域から抽出される駐車枠線候補の抽出結果の方が信頼性が高い。従って、駐車枠線4候補対応線が駐車枠線長閾値Lth1を超える長さであると判定されても、俯瞰画像内において、駐車枠としての可能性が高い駐車枠線候補の遠方側端部が抽出された際には、この駐車枠線候補を駐車枠の検出候補から除外せずに残すようにした。
 これによって、駐車領域以外の領域における加速抑制処理による運転性の低下を防止または低減しつつ、駐車領域内において加速抑制制御が実施されないといった状況の発生を防ぐまたは低減することが可能である。
(5)駐車枠確信度設定部36が、撮像画像から、予め設定した交差角度閾値以下の角度で駐車枠線候補対応線と交差する交差線CLを検出する。そして、駐車枠線長閾値Lth1を超える長さであると判定した駐車枠線候補対応線における、駐車枠線長閾値Lth1以下の長さ位置で交差し、且つ予め設定した交差線長閾値Lth2以上の長さを有する交差線CLを検出したと判定すると、該駐車枠線候補対応線に対応する駐車枠線候補を駐車枠線の候補として残す。
 駐車枠線候補対応線が駐車枠線長閾値Lth1を超える長さであっても、交差角度閾値以下の角度で駐車枠線候補対応線と交差する交差線CLが、駐車枠線長閾値Lth1以下の長さ位置で交差している場合に、例えば、2台分の駐車枠が縦につながっているH形の駐車場である可能性を有する。従って、このような交差線CLを検出した場合に、この駐車枠線候補対応線に対応する駐車枠線候補を駐車枠の検出候補から除外せずに残すようにした。これによって、駐車領域以外の領域における加速抑制処理による運転性の低下を防止または低減しつつ、複数台分の駐車枠が縦につながっている駐車領域内において、加速抑制制御が実施されないといった状況の発生を防ぐまたは低減することが可能である。
(6)駐車枠確信度設定部36が、俯瞰画像内の予め設定した輝度の閾値である第1輝度閾値以上の輝度を有するエッジ画素を検出し、該エッジ画素に基づき駐車枠線候補を抽出する。さらに、駐車枠確信度設定部36が、撮像画像内の予め設定した輝度の閾値である第1輝度閾値よりも小さい第2輝度閾値以上の輝度を有するエッジ画素を検出し、該エッジ画素に基づき駐車枠線候補対応線を抽出する。
 駐車枠線候補対応線は、撮像画像から駐車枠線候補よりも遠方に位置する線部分を抽出する必要があるため、輝度閾値を高くしすぎると抽出精度が低下して、実際に存在する線を抽出できない場合がある。従って、駐車枠線候補を抽出するときよりも輝度閾値を低くすることで、駐車枠線候補対応線の抽出精度を向上することが可能である。
(7)駐車枠確信度設定部36が、俯瞰画像内から抽出した駐車枠線候補のうち、俯瞰画像内で隣り合う2本の駐車枠線候補の組み合わせに対してのみ、駐車枠線候補を駐車枠の検出候補から除外する処理を実施する。
 つまり、駐車枠は少なくとも隣り合う2本の線の組で構成されるので、俯瞰画像内において抽出された隣り合う2本の線の組み合わせに対してのみ、駐車枠の検出候補としての条件を満たすか否かを判定する。これにより、駐車枠としての可能性の低いものをより確実に検出候補から除外することが可能である。
(8)駐車枠確信度設定部36が、操舵角等の旋回角を演算するための情報に基づき、自車両Vの旋回動作を検出する。さらに、駐車枠確信度設定部36が、自車両Vが予め設定した旋回条件を満たす旋回動作を行ったと判定すると、駐車枠線候補を駐車枠の検出候補から除外する処理を実施する。
 ここで、公道上の道路標示(例えば、白線等)を駐車枠として誤検知する可能性が高いのは、例えば、交差点での旋回動作、特に右折時および左折時は、車速が15[km/h]以下となりやすく、加えて、右折または左折した先には駐車枠線候補として誤検出しやすい道路標示も多く存在する。そのため、交差点の右折または左折後は、駐車枠の誤検知による加速抑制制御が発生しやすい状況となる。
 つまり、このような状況に限定して、駐車枠線候補を駐車枠の検出候補から除外する処理を実施することで、駐車枠線候補の誤った除外の発生を低減し、より有効なタイミングで処理を実施することが可能となる。
(変形例)
(1)本実施形態では、個別画像SPFから抽出した駐車枠線候補対応線の長さが駐車枠線長閾値Lth1を超えているか否か、前側俯瞰画像BVPF内に駐車枠線候補の遠方側端部があるか否かに基づき、駐車枠線候補を除外対象とするか否かを判定する。加えて、個別画像SPF内から抽出した駐車枠線候補対応線と予め設定した交差条件を満たして交差する交差線CLがあるか否か、探索領域内の途中で外に出ている線があるか否かを判定する。そして、これらの判定結果に基づき、抽出した駐車枠線候補を駐車枠の除外対象とするか否かを判定する構成としたが、これに限定するものではない。例えば、光センサ等によって、周囲の明るさを検出し、夜間等の遠方の道路標示の見えにくい状況を検出したときに、見える線(抽出可能な駐車枠線候補)を、駐車枠の検出候補から除外する構成としてもよい。この方法は、本実施形態の方法に代えて行う構成、または加えて行う構成のいずれでもよい。なお、道路標示の見えにくい状況は、ワイパーの駆動状態を検出したり、フォグランプの点灯を検出したりするなどの他の方法を用いてもよいしまたは併用してもよい。
(2)本実施形態では、個別画像(撮像画像)から駐車枠線候補対応線を抽出する構成としたが、これに限定するものではない。例えば、表示用の俯瞰画像と比較して広い範囲の俯瞰画像を予め生成しておき、この広い俯瞰画像から駐車枠線候補対応線を抽出するなど撮像画像を加工した画像から抽出する構成としてもよい。
(3)本実施形態では、予め設定した交差角度閾値以下の交差角で、かつ、駐車枠線候補対応線と駐車枠線長閾値Lth1以下の長さ位置で交差し、さらに、長さが交差線長閾値Lth2以上の長さを有する交差線を検出したか否かを判定する。そして、このような交差線を検出したと判定すると、この駐車枠線候補対応線に対応する駐車枠線候補を駐車枠の検出候補として残すようにしたが、これに限定するものではない。例えば、交差位置を、駐車枠線長閾値Lth1(例えば、6.5[m])よりも短い長さ位置(例えば、6[m])とするなど他の構成としてもよい。また、駐車枠線候補対応線の延長上に存在する交差線のみではなく、その左右のいずれかに交差線が存在する場合も、この駐車枠線候補対応線に対応する駐車枠線候補を駐車枠の検出候補として残す構成としてもよい。
(4)本実施形態では、総合確信度設定部40が設定した総合確信度に基づいて、加速抑制制御開始タイミングと加速抑制制御量を演算したが、これに限定するものではない。すなわち、駐車枠確信度設定部36が設定した駐車枠確信度のみに基づいて、加速抑制制御開始タイミングと加速抑制制御量を演算してもよい。この場合、加速抑制制御開始タイミングと加速抑制制御量は、駐車枠確信度を、例えば、図27中に示す加速抑制条件演算マップに適合させて演算する。なお、図27は、本実施形態の変形例を示す図である。
(5)本実施形態では、駐車枠確信度設定部36の構成を、自車両Vの周囲の俯瞰画像(環境)と自車両Vの車速(走行状態)に基づいて、駐車枠確信度を設定する構成としたが、駐車枠確信度設定部36の構成は、これに限定するものではない。すなわち、駐車枠確信度設定部36の構成を、自車両Vの周囲の俯瞰画像と車速に加え、さらに、自車位置信号が含む自車両Vの現在位置と、走行道路情報信号が含む自車両Vが走行する道路の種別(道路種別)を用いて、駐車枠確信度を設定する構成としてもよい。
 この場合、例えば、自車位置信号および走行道路情報信号が含む情報に基づき、自車両Vの現在位置が公道上であることを検出すると、自車両Vの周囲に駐車枠L0が存在しないと判断し、駐車枠確信度を「レベル0」に設定する。
 これにより、例えば、公道上で道路端に配置された駐車枠等、加速抑制制御の作動が好ましくない駐車枠へ自車両Vが進入する際に、自車両Vの運転性低下を抑制することが可能となる。
(6)本実施形態では、駐車枠確信度設定部36が、線La,Lbに対し、それぞれ、端点同士が幅WLの方向に沿って対向していると判断すると、駐車枠確信度をレベル3またはレベル4に設定する処理を行う(ステップS230参照)。しかしながら、駐車枠確信度をレベル3またはレベル4に設定する処理は、これに限定するものではない。すなわち、線Lの端点形状が、例えば、U字状(図4(g)~(k)、(m)、(n)を参照)である場合等、公道上に標示されていない形状であることを認識すると、駐車枠確信度をレベル3またはレベル4に設定してもよい。
(7)本実施形態では、駐車枠確信度設定部36の構成を、自車両Vの周囲の俯瞰画像(環境)と自車両Vの車速(走行状態)に基づいて、駐車枠確信度を設定する構成としたが、駐車枠確信度設定部36の構成は、これに限定するものではない。すなわち、自車両Vの構成が、例えば、運転者に対して駐車枠L0への操舵操作を支援する装置(駐車支援装置)を備える構成である場合、駐車支援装置がON状態であれば、駐車枠確信度のレベルが上がりやすくなる構成としてもよい。ここで、駐車枠確信度のレベルが上がりやすくなる構成とは、例えば、上述した設定移動距離を通常よりも短い距離に設定する等の構成である。
(8)本実施形態では、総合確信度に基づいて、加速抑制制御量および加速抑制制御開始タイミングを変化させ、加速指令値の低減度合いを変化させるが、これに限定するものではない。すなわち、総合確信度に応じて、加速抑制制御開始タイミングのみ、または、加速抑制制御量のみを変化させ、加速指令値の低減度合いを変化させてもよい。この場合、例えば、総合確信度が高いほど、加速抑制制御量の大きく設定し、加速抑制制御開始タイミングは変化させずに、加速指令値の低減度合いを高くしてもよい。
(9)本実施形態では、加速指令値を制御して、アクセルペダル32の踏込み量(加速操作量)に応じた自車両Vの加速を抑制したが、これに限定するものではない。すなわち、例えば、アクセルペダル32の踏込み量(加速操作量)に応じたスロットル開度を目標スロットル開度とし、さらに、上述した制動装置により制動力を発生させて、加速操作量に応じた自車両Vの加速を抑制してもよい。
(10)本実施形態では、駐車枠確信度を、最低値であるレベル0と、最低値よりも複数段階上のレベル(レベル1~4)として算出したが、駐車枠確信度の段階は、これに限定するものではない。すなわち、駐車枠確信度を、最低値であるレベル(例えば、「レベル0」)と、最低値よりも上のレベル(例えば、「レベル100」)との二段階のみとして算出してもよい。
(11)本実施形態では、駐車枠進入確信度を、最低値の「レベル0」、レベル0よりも高いレベルの「レベル低」、レベル低よりも高いレベルの「レベル高」として算出したが、駐車枠進入確信度の段階は、これに限定するものではない。すなわち、駐車枠進入確信度を、最低値であるレベル(例えば、「レベル0」)と、最低値よりも高いレベル(例えば、「レベル100」)との二段階のみとして算出してもよい。
(12)本実施形態では、総合確信度を、五段階のレベルのいずれかとして算出した駐車枠確信度と、三段階のレベルのいずれかとして算出した駐車枠進入確信度に応じて、四段階のレベル(「極低」、「低」、「高」、「極高」)のいずれかとして算出した。しかしながら、総合確信度の段階は、これに限定するものではない。すなわち、総合確信度を、最低値であるレベル(例えば、「レベル0」)と、最低値よりも高いレベル(例えば、「レベル100」)との二段階のみとして算出してもよい。
 この場合、例えば、駐車枠確信度及び駐車枠進入確信度を最低値であるレベルとして算出すると、総合確信度を、最低値であるレベルとして算出する。また、例えば、駐車枠確信度及び駐車枠進入確信度を最低値よりも高いレベルとして算出すると、総合確信度を、最低値よりも高いレベルとして算出する。
 また、本実施形態は、本発明の好適な具体例であり、技術的に好ましい種々の限定が付されているが、本発明の範囲は、上記の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られるものではない。また、上記の説明で用いる図面は、図示の便宜上、部材ないし部分の縦横の縮尺は実際のものとは異なる模式図である。また、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良、均等物等は本発明に含まれるものである。
 以上、本願が優先権を主張する日本国特許出願P2012-259190(2012年11月27日出願)の全内容は、ここに引用例として包含される。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明のことである。
 1  車両用加速抑制装置
 2  ブレーキ装置
 4  流体圧回路
 6  ブレーキコントローラ
 8  エンジン
 10 走行制御コントローラ
 10A 周囲環境認識情報演算部
 10B 自車両車速演算部
 10C 操舵角演算部
 10D 操舵角速度演算部
 10E シフトポジション演算部
 10F ブレーキペダル操作情報演算部
 10G アクセル操作量演算部
 10H アクセル操作速度演算部
 10I 加速抑制制御内容演算部
 10J 加速抑制指令値演算部
 10K 目標スロットル開度演算部
 12 エンジンコントローラ
 14 周囲環境認識センサ(前方カメラ14F、右側方カメラ14SR、左側方カメラ14SL、後方カメラ14R)
 16 車輪速センサ
 18 操舵角センサ
 20 シフトポジションセンサ
 22 ブレーキ操作検出センサ
 24 アクセル操作検出センサ
 26 ナビゲーション装置
 28 ステアリングホイール
 30 ブレーキペダル
 32 アクセルペダル
 34 加速抑制作動条件判断部
 36 駐車枠確信度設定部
 38 駐車枠進入確信度設定部
 40 総合確信度設定部
 42 加速抑制制御開始タイミング演算部
 44 加速抑制制御量演算部
 V  自車両
 W  車輪(右前輪WFR、左前輪WFL、右後輪WRR、左後輪WRL) 
 La,Lb 駐車枠線候補
 xLa,xLb 駐車枠線候補対応線
 CL 交差線
 SA1,SA2 探索領域

Claims (8)

  1.  運転者が加速を指示するために操作する加速操作子の加速操作量を検出する加速操作量検出部と、
     前記加速操作量検出部が検出した加速操作量に応じて、自車両に発生させる加速を制御する加速制御部と、
     自車両周囲の路面を含む領域を撮像する撮像部と、
     前記撮像部が撮像した撮像画像を俯瞰変換して俯瞰画像を取得する俯瞰画像取得部と、
     前記俯瞰画像取得部が取得した俯瞰画像から路面上に位置する線を駐車枠線の候補として抽出する駐車枠線候補抽出部と、
     前記駐車枠線候補抽出部が抽出した前記駐車枠線候補から駐車枠を検出する駐車枠検出部と、
     前記駐車枠検出部が検出した前記駐車枠に基づき、前記加速制御部が制御する前記加速を低減させる制御である加速抑制制御を実施する加速抑制制御部と、
     前記撮像部が撮像した自車両前方の撮像画像から前記駐車枠線候補抽出部が抽出した前記駐車枠線候補に対応する線である駐車枠線候補対応線を抽出する駐車枠線候補対応線抽出部と、
     前記駐車枠線候補対応線の長さが予め設定した駐車枠線長閾値を超える長さであると判定すると、該駐車枠線候補対応線に対応する前記駐車枠線候補を、前記駐車枠の検出候補から除外する枠線候補除外部と、を備えることを特徴とする車両用加速抑制装置。
  2.  前記駐車枠線候補対応線抽出部は、前記撮像画像内の前記駐車枠線候補に対応する線を前記駐車枠線候補対応線の一部とし、予め設定した、該駐車枠線候補対応線の一部の遠近方向遠方の端部から延長して伸びる該駐車枠線候補対応線の一部の幅以上の幅を有する画像領域である探索領域内から、前記駐車枠線候補対応線の残りの部分を抽出することを特徴とする請求項1に記載の車両用加速抑制装置。
  3.  前記枠線候補除外部は、前記駐車枠線候補対応線の一部の延長線が前記探索領域の途中から領域外へと出ていると判定すると、該駐車枠線候補対応線の一部に対応する前記俯瞰画像内の前記駐車枠線候補を、前記駐車枠の検出候補から除外することを特徴とする請求項2に記載の車両用加速抑制装置。
  4.  前記俯瞰画像から前記駐車枠線候補抽出部が抽出した前記駐車枠線候補の自車両から遠方側の端部を検出する端部検出部を更に備え、
     前記枠線候補除外部は、前記駐車枠線長閾値を超える長さであると判定した前記駐車枠線候補対応線に対応する前記駐車枠線候補について、前記端部検出部が前記俯瞰画像内に該駐車枠線候補の前記遠方側の端部を検出したと判定すると、該駐車枠線候補を前記駐車枠の検出候補として残すことを特徴とする請求項1乃至3のいずれか1項に記載の車両用加速抑制装置。
  5.  前記撮像画像から、予め設定した交差角度閾値以下の角度で前記駐車枠線候補対応線と交差する交差線を検出する交差線検出部を更に備え、
     前記枠線候補除外部は、前記交差線検出部の検出結果に基づき、前記駐車枠線長閾値を超える長さであると判定した前記駐車枠線候補対応線における、前記駐車枠線長閾値以下の長さ位置で交差し、且つ予め設定した交差線長閾値以上の長さを有する交差線を検出したと判定すると、該駐車枠線候補対応線に対応する前記駐車枠線候補を前記駐車枠の検出候補として残すことを特徴とする請求項1乃至4のいずれか1項に記載の車両用加速抑制装置。
  6.  前記駐車枠線候補抽出部は、前記俯瞰画像内の予め設定した輝度の閾値である第1輝度閾値以上の輝度を有するエッジ画素を検出し、該エッジ画素に基づき前記駐車枠線候補を抽出するようになっており、
     前記駐車枠線候補対応線抽出部は、前記撮像画像内の予め設定した輝度の閾値である前記第1輝度閾値よりも小さい第2輝度閾値以上の輝度を有するエッジ画素を検出し、該エッジ画素に基づき前記駐車枠線候補対応線を抽出するようになっていることを特徴とする請求項1乃至4のいずれか1項に記載の車両用加速抑制装置。
  7.  前記枠線候補除外部は、前記駐車枠線候補抽出部が抽出した前記駐車枠線候補のうち前記俯瞰画像内において隣り合う2本の線の組み合わせに対してのみ、前記駐車枠線候補を前記駐車枠の検出候補から除外する処理を実施することを特徴とする請求項1乃至6のいずれか1項に記載の車両用加速抑制装置。
  8.  運転者が操舵をするために操作する操舵操作子の操舵操作量を検出する操舵操作量検出部と、
     前記操舵操作量検出部が検出した前記操舵操作量に基づき、自車両の旋回動作を検出する旋回動作検出部と、を更に備え、
     前記枠線候補除外部は、前記旋回動作検出部の検出結果に基づき、自車両が予め設定した旋回条件を満たす旋回動作を行ったと判定すると、前記駐車枠線候補を前記駐車枠の検出候補から除外する処理を実施することを特徴とする請求項1乃至7のいずれか1項に記載の車両用加速抑制装置。
PCT/JP2013/006887 2012-11-27 2013-11-22 車両用加速抑制装置 WO2014083827A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13858256.4A EP2927077B1 (en) 2012-11-27 2013-11-22 Vehicular acceleration suppression device
CN201380060885.8A CN104812646B (zh) 2012-11-27 2013-11-22 车辆用加速抑制装置
US14/647,647 US9616885B2 (en) 2012-11-27 2013-11-22 Vehicular acceleration suppression device
JP2014549820A JP5846317B2 (ja) 2012-11-27 2013-11-22 車両用加速抑制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-259190 2012-11-27
JP2012259190 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014083827A1 true WO2014083827A1 (ja) 2014-06-05

Family

ID=50827488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006887 WO2014083827A1 (ja) 2012-11-27 2013-11-22 車両用加速抑制装置

Country Status (5)

Country Link
US (1) US9616885B2 (ja)
EP (1) EP2927077B1 (ja)
JP (1) JP5846317B2 (ja)
CN (1) CN104812646B (ja)
WO (1) WO2014083827A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106734A (ja) * 2012-11-27 2014-06-09 Clarion Co Ltd 画像処理装置、画像処理方法、および画像処理プログラム
JP2015098306A (ja) * 2013-11-20 2015-05-28 日産自動車株式会社 車両用加速抑制装置
JP2019177764A (ja) * 2018-03-30 2019-10-17 Necソリューションイノベータ株式会社 駐車スペース検出装置、駐車スペース検出方法、及び制御プログラム

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493070B2 (en) * 2012-11-27 2016-11-15 Nissan Motor Co., Ltd. Vehicle acceleration suppression device and vehicle acceleration suppression method
KR102267562B1 (ko) * 2015-04-16 2021-06-22 한국전자통신연구원 무인자동주차 기능 지원을 위한 장애물 및 주차구획 인식 장치 및 그 방법
DE102015209147A1 (de) * 2015-05-19 2016-11-24 Hella Kgaa Hueck & Co. Verfahren zur Parkflächenerkennung
MX2018004708A (es) 2015-10-22 2018-06-18 Nissan Motor Metodo y dispositivo de deteccion de linea del espacio de estacionamiento.
US11067996B2 (en) 2016-09-08 2021-07-20 Siemens Industry Software Inc. Event-driven region of interest management
US10317901B2 (en) 2016-09-08 2019-06-11 Mentor Graphics Development (Deutschland) Gmbh Low-level sensor fusion
US10678240B2 (en) * 2016-09-08 2020-06-09 Mentor Graphics Corporation Sensor modification based on an annotated environmental model
US10585409B2 (en) 2016-09-08 2020-03-10 Mentor Graphics Corporation Vehicle localization with map-matched sensor measurements
JP6610525B2 (ja) * 2016-12-15 2019-11-27 トヨタ自動車株式会社 走行支援装置
US10884409B2 (en) 2017-05-01 2021-01-05 Mentor Graphics (Deutschland) Gmbh Training of machine learning sensor data classification system
US10744941B2 (en) * 2017-10-12 2020-08-18 Magna Electronics Inc. Vehicle vision system with bird's eye view display
US11145146B2 (en) 2018-01-31 2021-10-12 Mentor Graphics (Deutschland) Gmbh Self-diagnosis of faults in an autonomous driving system
US10553044B2 (en) 2018-01-31 2020-02-04 Mentor Graphics Development (Deutschland) Gmbh Self-diagnosis of faults with a secondary system in an autonomous driving system
JP2020095624A (ja) 2018-12-14 2020-06-18 株式会社デンソーテン 画像処理装置、および画像処理方法
JP7141940B2 (ja) 2018-12-14 2022-09-26 株式会社デンソーテン 画像処理装置および画像処理方法
JP2020095631A (ja) 2018-12-14 2020-06-18 株式会社デンソーテン 画像処理装置および画像処理方法
JP2020095620A (ja) 2018-12-14 2020-06-18 株式会社デンソーテン 画像処理装置および画像処理方法
JP7359541B2 (ja) 2018-12-14 2023-10-11 株式会社デンソーテン 画像処理装置および画像処理方法
JP7252750B2 (ja) 2018-12-14 2023-04-05 株式会社デンソーテン 画像処理装置および画像処理方法
JP2020095623A (ja) 2018-12-14 2020-06-18 株式会社デンソーテン 画像処理装置および画像処理方法
JP7195131B2 (ja) 2018-12-14 2022-12-23 株式会社デンソーテン 画像処理装置および画像処理方法
JP7226986B2 (ja) 2018-12-14 2023-02-21 株式会社デンソーテン 画像処理装置および画像処理方法
JP7203586B2 (ja) * 2018-12-14 2023-01-13 株式会社デンソーテン 画像処理装置および画像処理方法
JP7236857B2 (ja) 2018-12-14 2023-03-10 株式会社デンソーテン 画像処理装置および画像処理方法
JP7203587B2 (ja) 2018-12-14 2023-01-13 株式会社デンソーテン 画像処理装置および画像処理方法
JP7229804B2 (ja) * 2019-02-14 2023-02-28 フォルシアクラリオン・エレクトロニクス株式会社 画像処理装置及び画像処理方法
JP7288793B2 (ja) * 2019-04-25 2023-06-08 フォルシアクラリオン・エレクトロニクス株式会社 画像処理装置及び画像処理方法
JP7482054B2 (ja) * 2020-02-27 2024-05-13 フォルシアクラリオン・エレクトロニクス株式会社 画像処理装置及び画像処理方法
US20230031425A1 (en) * 2021-08-02 2023-02-02 DUS Operating Inc, Methodology to estimate slot line direction for parking slot detection

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137001A (ja) 2001-11-06 2003-05-14 Denso Corp 乗物の安全装置及び乗物の安全運転方法をコンピュータに実現させるためのコンピュータプログラム
JP2009205191A (ja) * 2008-02-26 2009-09-10 Hitachi Ltd 駐車スペース認識装置
JP2010215170A (ja) * 2009-03-18 2010-09-30 Denso Corp 駐車結果表示システム
CN101920679A (zh) * 2009-06-09 2010-12-22 株式会社电装 停车辅助系统
JP2011030140A (ja) * 2009-07-29 2011-02-10 Hitachi Automotive Systems Ltd 外界認識装置
JP2012001081A (ja) * 2010-06-16 2012-01-05 Nissan Motor Co Ltd 駐車支援システム
JP2012080497A (ja) * 2010-10-06 2012-04-19 Suzuki Motor Corp 駐車枠検出装置及び駐車枠検出方法
WO2012144253A1 (ja) * 2011-04-21 2012-10-26 日産自動車株式会社 トルク制御装置及び非接触充電システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4156181B2 (ja) * 2000-07-12 2008-09-24 日産自動車株式会社 駐車支援装置
KR200299327Y1 (ko) * 2002-07-29 2003-01-03 정보문 주차브레이크 자동제어장치.
JP2005178626A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 車両の統合制御システム
JP2007176244A (ja) * 2005-12-27 2007-07-12 Aisin Seiki Co Ltd 駐車支援装置
JP5309442B2 (ja) * 2006-05-29 2013-10-09 アイシン・エィ・ダブリュ株式会社 駐車支援方法及び駐車支援装置
KR101143176B1 (ko) * 2006-09-14 2012-05-08 주식회사 만도 조감도를 이용한 주차구획 인식 방법, 장치 및 그를 이용한주차 보조 시스템
JP4899826B2 (ja) * 2006-11-28 2012-03-21 アイシン・エィ・ダブリュ株式会社 駐車支援方法及び駐車支援装置
JP4933962B2 (ja) * 2007-06-22 2012-05-16 富士重工業株式会社 分岐路進入判定装置
KR20090088210A (ko) * 2008-02-14 2009-08-19 주식회사 만도 두 개의 기준점을 이용한 목표주차위치 검출 방법과 장치및 그를 이용한 주차 보조 시스템
JP4661917B2 (ja) * 2008-07-25 2011-03-30 日産自動車株式会社 駐車支援装置および駐車支援方法
JP5309891B2 (ja) * 2008-10-27 2013-10-09 三菱自動車工業株式会社 駐車支援装置
JP5327630B2 (ja) * 2009-09-17 2013-10-30 スズキ株式会社 後方画像表示切替装置及び方法
DE102009048493A1 (de) * 2009-09-25 2011-04-07 Valeo Schalter Und Sensoren Gmbh Fahrerassistenzsystem für ein Fahrzeug, Fahrzeug mit einem Fahrerassistenzsystem und Verfahren zum Unterstützen eines Fahrers beim Führen eines Fahrzeugs
JP5440867B2 (ja) * 2010-06-18 2014-03-12 アイシン精機株式会社 駐車支援装置
JP5397329B2 (ja) * 2010-06-29 2014-01-22 トヨタ自動車株式会社 駐車支援装置
DE102011112577A1 (de) * 2011-09-08 2013-03-14 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung für ein Assistenzsystem in einem Fahrzeg zur Durchführung eines autonomen oder teilautonomen Fahrmanövers
DE102011112578A1 (de) * 2011-09-08 2013-03-14 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung für ein Assistenzsystem in einem Fahrzeug zur Durchführung eines autonomen oder teilautonomen Fahrmanövers

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137001A (ja) 2001-11-06 2003-05-14 Denso Corp 乗物の安全装置及び乗物の安全運転方法をコンピュータに実現させるためのコンピュータプログラム
JP2009205191A (ja) * 2008-02-26 2009-09-10 Hitachi Ltd 駐車スペース認識装置
JP2010215170A (ja) * 2009-03-18 2010-09-30 Denso Corp 駐車結果表示システム
CN101920679A (zh) * 2009-06-09 2010-12-22 株式会社电装 停车辅助系统
US20110006917A1 (en) * 2009-06-09 2011-01-13 Denso Corporation Parking aid system
JP2011016514A (ja) * 2009-06-09 2011-01-27 Denso Corp 駐車支援システム
JP2011030140A (ja) * 2009-07-29 2011-02-10 Hitachi Automotive Systems Ltd 外界認識装置
JP2012001081A (ja) * 2010-06-16 2012-01-05 Nissan Motor Co Ltd 駐車支援システム
JP2012080497A (ja) * 2010-10-06 2012-04-19 Suzuki Motor Corp 駐車枠検出装置及び駐車枠検出方法
WO2012144253A1 (ja) * 2011-04-21 2012-10-26 日産自動車株式会社 トルク制御装置及び非接触充電システム
JP2012228119A (ja) * 2011-04-21 2012-11-15 Nissan Motor Co Ltd トルク制御装置及び非接触充電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2927077A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106734A (ja) * 2012-11-27 2014-06-09 Clarion Co Ltd 画像処理装置、画像処理方法、および画像処理プログラム
JP2015098306A (ja) * 2013-11-20 2015-05-28 日産自動車株式会社 車両用加速抑制装置
JP2019177764A (ja) * 2018-03-30 2019-10-17 Necソリューションイノベータ株式会社 駐車スペース検出装置、駐車スペース検出方法、及び制御プログラム
JP7010539B2 (ja) 2018-03-30 2022-01-26 Necソリューションイノベータ株式会社 駐車スペース検出装置、駐車スペース検出方法、及び制御プログラム

Also Published As

Publication number Publication date
JPWO2014083827A1 (ja) 2017-01-05
US20160039409A1 (en) 2016-02-11
EP2927077A1 (en) 2015-10-07
CN104812646B (zh) 2016-08-17
US9616885B2 (en) 2017-04-11
JP5846317B2 (ja) 2016-01-20
CN104812646A (zh) 2015-07-29
EP2927077A4 (en) 2016-04-27
EP2927077B1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP5846317B2 (ja) 車両用加速抑制装置
JP5994865B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5915771B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5999195B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5915769B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5915770B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5991382B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP6136724B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP6155944B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP6007991B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP6031973B2 (ja) 車両用加速抑制装置
JP5846318B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5900648B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5892259B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5900647B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5900650B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549820

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14647647

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013858256

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013858256

Country of ref document: EP