JP5915771B2 - 車両用加速抑制装置及び車両用加速抑制方法 - Google Patents

車両用加速抑制装置及び車両用加速抑制方法 Download PDF

Info

Publication number
JP5915771B2
JP5915771B2 JP2014549821A JP2014549821A JP5915771B2 JP 5915771 B2 JP5915771 B2 JP 5915771B2 JP 2014549821 A JP2014549821 A JP 2014549821A JP 2014549821 A JP2014549821 A JP 2014549821A JP 5915771 B2 JP5915771 B2 JP 5915771B2
Authority
JP
Japan
Prior art keywords
parking frame
acceleration
host vehicle
acceleration suppression
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014549821A
Other languages
English (en)
Other versions
JPWO2014083828A1 (ja
Inventor
明 森本
明 森本
修 深田
修 深田
早川 泰久
泰久 早川
大介 笈木
大介 笈木
田中 大介
大介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Application granted granted Critical
Publication of JP5915771B2 publication Critical patent/JP5915771B2/ja
Publication of JPWO2014083828A1 publication Critical patent/JPWO2014083828A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/12Limiting control by the driver depending on vehicle state, e.g. interlocking means for the control input for preventing unsafe operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0058Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator responsive to externally generated signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/586Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of parking space
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/302Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing combining image information with GPS information or vehicle data, e.g. vehicle speed, gyro, steering angle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/304Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using merged images, e.g. merging camera image with stored images
    • B60R2300/305Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using merged images, e.g. merging camera image with stored images merging camera image with lines or icons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/60Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective
    • B60R2300/607Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective from a bird's eye viewpoint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/806Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for aiding parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Description

本発明は、駐車の際の運転支援を行うために自車両の加速を抑制する技術に関する。
車両等の乗物に対し、その速度を制御する技術としては、例えば、特許文献1に記載されている安全装置がある。
特許文献1に記載されている安全装置では、ナビゲーション装置の地図データと、乗り物の現在位置を示す情報に基づき、乗物(自車両)の現在位置が道路(公道等)から外れた位置であることを検出する。これに加え、乗物の走行速度を増加させる方向のアクセル操作があり、さらに、乗物の走行速度が所定値よりも大きいと判断したときは、運転者によるアクセルの操作に拘わらず、スロットルを減速方向に制御する。
特開2003‐137001号公報
上述した特許文献1に記載の技術では、アクセルの誤操作が発生した場合であっても、運転者の意図しない乗物の加速を防止することを目的としているため、アクセルの操作が誤操作であるか否かの判断が課題となる。そして、特許文献1に記載の技術では、乗物が道路から外れた位置にある条件、及び所定値以上の走行速度が検出される状態のアクセル操作が行なわれた条件を、アクセルの誤操作が発生した可能性があると判定する条件としている。
しかしながら、上述した判定条件では、乗物が道路から駐車場へ進入すると、車速によってはスロットルの減速方向への制御が作動する。このため、駐車場内において、駐車枠の付近へ移動するまでの走行等における運転性を悪化させてしまうという問題が発生するおそれがある。
本発明は、上記のような問題点に着目してなされたもので、駐車時の運転性低下を抑制するとともに、アクセルの誤操作時における加速を抑制することが可能な、車両用加速抑制装置及び車両用加速抑制方法を提供することを目的とする。
上記課題を解決するために、本発明の一態様は、自車両の進行方向が前進であるか後退であるかを検出し、自車両周囲の環境に基づいて、自車両の進行方向に駐車枠が存在する確信の度合いを示す駐車枠確信度を算出する。そして、算出した駐車枠確信度が低いときは、算出した駐車枠確信度が高いときに比べて、加速の抑制度合いを低くする。
本発明の一態様によれば、駐車枠確信度が低い状態では、加速の抑制度合いを低くして運転性の低下を少なくすることが可能となり、駐車枠確信度が高い状態では、加速の抑制度合いを高くして自車両の加速抑制効果を高くすることが可能となる。
このため、駐車時の運転性低下を抑制するとともに、アクセルの誤操作時における加速を抑制することが可能となる。
本発明の第一実施形態の車両用加速抑制装置を備える車両の構成を示す概念図である。 本発明の第一実施形態の車両用加速抑制装置の概略構成を示すブロック図である。 加速抑制制御内容演算部の構成を示すブロック図である。 駐車枠確信度算出部が駐車枠確信度の算出対象とする駐車枠のパターンを示す図である。 加速抑制作動条件判断部が、加速抑制作動条件が成立するか否かを判断する処理を示すフローチャートである。 エッジ検出による駐車枠線の認識方法を模式的に説明する模式図である。 自車両と、駐車枠と、自車両と駐車枠との距離を説明する図である。 駐車枠確信度算出部が駐車枠確信度を算出する処理を示すフローチャートである。 駐車枠確信度算出部が行なう処理の内容を示す図である。 駐車枠確信度算出部が行なう処理の内容を示す図である。 駐車枠進入確信度算出部が駐車枠進入確信度を算出する処理を示すフローチャートである。 自車両の後輪予想軌跡と駐車枠とのずれ量を検出する処理の内容を示す図である。 総合確信度算出マップを示す図である。 加速抑制条件演算マップを示す図である。 加速抑制指令値演算部が行なう処理を示すフローチャートである。 目標スロットル開度演算部が行なう処理を示すフローチャートである。 本発明の第一実施形態の変形例を示す図である。 本発明の第一実施形態の変形例を示す図である。 本発明の第一実施形態の変形例を示す図である。 本発明の第一実施形態の変形例を示す図である。 本発明の第二実施形態で用いる総合確信度算出マップを示す図である。 後退時用の加速抑制条件演算マップを示す図である。 本発明の第二実施形態の変形例を示す図である。 本発明の第三実施形態で用いる総合確信度算出マップを示す図である。 本発明の第三実施形態の変形例を示す図である。 本発明の第四実施形態の加速抑制制御内容演算部で行なう処理に用いるマップである。
以下、本発明の実施形態について、図面を参照しつつ説明する。
(第一実施形態)
以下、本発明の第一実施形態(以下、本実施形態と記載する)について、図面を参照しつつ説明する。
(構成)
まず、図1を用いて、本実施形態の車両用加速抑制装置を備える車両の構成を説明する。
図1は、本実施形態の車両用加速抑制装置を備える車両の構成を示す概念図である。
図1中に示すように、自車両Vは、車輪W(右前輪WFR、左前輪WFL、右後輪WRR、左後輪WRL)と、ブレーキ装置2と、流体圧回路4と、ブレーキコントローラ6を備える。これに加え、自車両Vは、エンジン8と、エンジンコントローラ12を備える。
ブレーキ装置2は、例えば、ホイールシリンダを用いて形成し、各車輪Wにそれぞれ設ける。なお、ブレーキ装置2は、流体圧で制動力を付与する装置に限定するものではなく、電動ブレーキ装置等を用いて形成してもよい。
流体圧回路4は、各ブレーキ装置2に接続する配管を含む回路である。
ブレーキコントローラ6は、上位コントローラである走行制御コントローラ10から入力を受けた制動力指令値に基づき、各ブレーキ装置2で発生する制動力を、流体圧回路4を介して、制動力指令値に応じた値に制御する。すなわち、ブレーキコントローラ6は、減速制御装置を形成する。なお、走行制御コントローラ10に関する説明は、後述する。
したがって、ブレーキ装置2、流体圧回路4及びブレーキコントローラ6は、制動力を発生する制動装置を形成する。
エンジン8は、自車両Vの駆動源を形成する。
エンジンコントローラ12は、走行制御コントローラ10から入力を受けた目標スロットル開度信号(加速指令値)に基づき、エンジン8で発生するトルク(駆動力)を制御する。すなわち、エンジンコントローラ12は、加速制御装置を形成する。なお、目標スロットル開度信号に関する説明は、後述する。
したがって、エンジン8及びエンジンコントローラ12は、駆動力を発生する駆動装置を形成する。
なお、自車両Vの駆動源は、エンジン8に限定するものではなく、電動モータを用いて形成してもよい。また、自車両Vの駆動源は、エンジン8と電動モータを組み合わせて形成してもよい。
次に、図1を参照しつつ、図2を用いて、車両用加速抑制装置1の概略構成を説明する。
図2は、本実施形態の車両用加速抑制装置1の概略構成を示すブロック図である。
車両用加速抑制装置1は、図1及び図2中に示すように、周囲環境認識センサ14と、車輪速センサ16と、操舵角センサ18と、シフトポジションセンサ20と、ブレーキ操作検出センサ22と、アクセル操作検出センサ24を備える。これに加え、車両用加速抑制装置1は、ナビゲーション装置26と、走行制御コントローラ10を備える。
周囲環境認識センサ14は、自車両Vの周囲の画像を撮像し、撮像した各画像に基づき、複数の撮像方向に対応した個別の画像を含む情報信号(以降の説明では、「個別画像信号」と記載する場合がある)を生成する。そして、生成した個別画像信号を、走行制御コントローラ10へ出力する。
なお、本実施形態では、一例として、周囲環境認識センサ14を、前方カメラ14Fと、右側方カメラ14SRと、左側方カメラ14SLと、後方カメラ14Rを用いて形成した場合を説明する。ここで、前方カメラ14Fは、自車両Vの車両前後方向前方を撮像するカメラであり、右側方カメラ14SRは、自車両Vの右側方を撮像するカメラである。また、左側方カメラ14SLは、自車両Vの左側方を撮像するカメラであり、後方カメラ14Rは、自車両Vの車両前後方向後方を撮像するカメラである。
車輪速センサ16は、例えば、車輪速パルスを計測するロータリエンコーダ等のパルス発生器を用いて形成する。
また、車輪速センサ16は、各車輪Wの回転速度を検出し、この検出した回転速度を含む情報信号(以降の説明では、「車輪速信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
操舵角センサ18は、例えば、ステアリングホイール28を回転可能に支持するステアリングコラム(図示せず)に設ける。
また、操舵角センサ18は、操舵操作子であるステアリングホイール28の現在の回転角度(操舵操作量)である現在操舵角を検出する。そして、検出した現在操舵角を含む情報信号(以降の説明では、「現在操舵角信号」と記載する場合がある)を、走行制御コントローラ10に出力する。なお、操向輪の転舵角を含む情報信号を、操舵角を示す情報として検出してもよい。
なお、操舵操作子は、運転者が回転させるステアリングホイール28に限定するものではなく、例えば、運転者が手で傾ける操作を行なうレバーとしてもよい。この場合、中立位置からのレバーの傾斜角度を、現在操舵角信号に相当する情報信号として出力する。
シフトポジションセンサ20は、シフトノブやシフトレバー等、自車両Vのシフト位置(例えば、「P」、「D」、「R」等)を変更する部材の現在位置を検出する。そして、検出した現在位置を含む情報信号(以降の説明では、「シフト位置信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
ブレーキ操作検出センサ22は、制動力指示操作子であるブレーキペダル30に対し、その開度を検出する。そして、検出したブレーキペダル30の開度を含む情報信号(以降の説明では、「ブレーキ開度信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
ここで、制動力指示操作子は、自車両Vの運転者が操作可能であり、且つ開度の変化により自車両Vの制動力を指示する構成である。なお、制動力指示操作子は、運転者が足で踏込み操作を行なうブレーキペダル30に限定するものではなく、例えば、運転者が手で操作するレバーとしてもよい。
アクセル操作検出センサ24は、駆動力指示操作子であるアクセルペダル32に対し、その開度を検出する。そして、検出したアクセルペダル32の開度を含む情報信号(以降の説明では、「アクセル開度信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
ここで、駆動力指示操作子は、自車両Vの運転者が操作可能であり、且つ開度の変化により自車両Vの駆動力を指示する構成である。なお、駆動力指示操作子は、運転者が足で踏込み操作を行なうアクセルペダル32に限定するものではなく、例えば、運転者が手で操作するレバーとしてもよい。
ナビゲーション装置26は、GPS(Global Positioning System)受信機、地図データベースと、表示モニタ等を有する情報呈示装置を備え、経路探索及び経路案内等を行う装置である。
また、ナビゲーション装置26は、GPS受信機を用いて取得した自車両Vの現在位置と、地図データベースに格納された道路情報に基づいて、自車両Vが走行する道路の種別や幅員等の道路情報を取得することが可能である。
また、ナビゲーション装置26は、GPS受信機を用いて取得した自車両Vの現在位置を含む情報信号(以降の説明では、「自車位置信号」と記載する場合がある)を、走行制御コントローラ10に出力する。これに加え、ナビゲーション装置26は、自車両Vが走行する道路の種別や道路幅員等を含む情報信号(以降の説明では、「走行道路情報信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
情報呈示装置は、走行制御コントローラ10からの制御信号に応じて、警報その他の呈示を音声や画像によって出力する。また、情報呈示装置は、例えば、ブザー音や音声により運転者への情報提供を行うスピーカと、画像やテキストの表示により情報提供を行う表示ユニットを備える。また、表示ユニットは、例えば、ナビゲーション装置26の表示モニタを流用してもよい。
走行制御コントローラ10は、CPU(Central Processing Unit)と、ROM(Read Only Memory)及びRAM(Random Access Memory)等のCPU周辺部品から構成される電子制御ユニットである。
また、走行制御コントローラ10は、駐車のための運転支援処理を行う駐車運転支援部を備える。
走行制御コントローラ10の処理のうち駐車運転支援部は、機能的に、図2中に示すように、周囲環境認識情報演算部10A、自車両車速演算部10B、操舵角演算部10C、操舵角速度演算部10Dの処理を備える。これに加え、駐車運転支援部は、機能的に、シフトポジション演算部10E、ブレーキペダル操作情報演算部10F、アクセル操作量演算部10G、アクセル操作速度演算部10H、加速抑制制御内容演算部10Iの処理を備える。さらに、駐車運転支援部は、機能的に、加速抑制指令値演算部10J、目標スロットル開度演算部10Kの処理を備える。これらの機能は、一または二以上のプログラムで構成される。
周囲環境認識情報演算部10Aは、周囲環境認識センサ14から入力を受けた個別画像信号に基づき、自車両Vの上方から見た自車両Vの周囲の画像(俯瞰画像)を形成する。そして、形成した俯瞰画像を含む情報信号(以降の説明では、「俯瞰画像信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
ここで、俯瞰画像は、例えば、各カメラ(前方カメラ14F、右側方カメラ14SR、左側方カメラ14SL、後方カメラ14R)で撮像した画像を合成して形成する。また、俯瞰画像には、例えば、路面上に表示された駐車枠の線(以降の説明では、「駐車枠線」と記載する場合がある)等の道路標示を示す画像を含む。
自車両車速演算部10Bは、車輪速センサ16から入力を受けた車輪速信号に基づき、車輪Wの回転速度から自車両Vの速度(車速)を演算する。そして、演算した速度を含む情報信号(以降の説明では、「車速演算値信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
操舵角演算部10Cは、操舵角センサ18から入力を受けた現在操舵角信号に基づき、ステアリングホイール28の現在の回転角度から、ステアリングホイール28の中立位置からの操作量(回転角)を演算する。そして、演算した中立位置からの操作量を含む情報信号(以降の説明では、「操舵角信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
操舵角速度演算部10Dは、操舵角センサ18から入力を受けた現在操舵角信号が含む現在操舵角を微分処理することにより、ステアリングホイール28の操舵角速度を演算する。そして、演算した操舵角速度を含む情報信号(以降の説明では、「操舵角速度信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
シフトポジション演算部10Eは、シフトポジションセンサ20から入力を受けたシフト位置信号に基づき、現在のシフト位置を判定する。そして、演算した現在のシフト位置を含む情報信号(以降の説明では、「現在シフト位置信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
ブレーキペダル操作情報演算部10Fは、ブレーキ操作検出センサ22から入力を受けたブレーキ開度信号に基づき、踏込み量が「0」である状態を基準とした、ブレーキペダル30の踏込み量を演算する。そして、演算したブレーキペダル30の踏込み量を含む情報信号(以降の説明では、「制動側踏込み量信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
アクセル操作量演算部10Gは、アクセル操作検出センサ24から入力を受けたアクセル開度信号に基づき、踏込み量が「0」である状態を基準とした、アクセルペダル32の踏込み量を演算する。そして、演算したアクセルペダル32の踏込み量を含む情報信号(以降の説明では、「駆動側踏込み量信号」と記載する場合がある)を、加速抑制制御内容演算部10Iと、加速抑制指令値演算部10Jと、目標スロットル開度演算部10Kへ出力する。
アクセル操作速度演算部10Hは、アクセル操作検出センサ24から入力を受けたアクセル開度信号が含むアクセルペダル32の開度を微分処理することにより、アクセルペダル32の操作速度を演算する。そして、演算したアクセルペダル32の操作速度を含む情報信号(以降の説明では、「アクセル操作速度信号」と記載する場合がある)を、加速抑制指令値演算部10Jへ出力する。
加速抑制制御内容演算部10Iは、上述した各種の情報信号(俯瞰画像信号、車速演算値信号、操舵角信号、操舵角速度信号、現在シフト位置信号、制動側踏込み量信号、駆動側踏込み量信号、自車位置信号、走行道路情報信号)の入力を受ける。そして、入力を受けた各種の情報信号に基づいて、後述する加速抑制作動条件判断結果、加速抑制制御開始タイミング、加速抑制制御量を演算する。さらに、これらの演算したパラメータを含む情報信号を、加速抑制指令値演算部10Jへ出力する。
なお、加速抑制制御内容演算部10Iの詳細な構成と、加速抑制制御内容演算部10Iで行なう処理については、後述する。
加速抑制指令値演算部10Jは、上述した駆動側踏込み量信号及びアクセル操作速度信号の入力と、後述する加速抑制作動条件判断結果信号、加速抑制制御開始タイミング信号及び加速抑制制御量信号の入力を受ける。そして、アクセルペダル32の踏込み量(駆動力操作量)に応じた加速指令値を抑制するための指令値である加速抑制指令値を演算する。さらに、演算した加速抑制指令値を含む情報信号(以降の説明では、「加速抑制指令値信号」と記載する場合がある)を、目標スロットル開度演算部10Kへ出力する。
また、加速抑制指令値演算部10Jは、入力を受けた加速抑制作動条件判断結果信号の内容に応じて、通常の加速制御で用いる指令値である通常加速指令値を演算する。さらに、演算した通常加速指令値を含む情報信号(以降の説明では、「通常加速指令値信号」と記載する場合がある)を、目標スロットル開度演算部10Kへ出力する。
なお、加速抑制指令値演算部10Jで行なう処理については、後述する。
目標スロットル開度演算部10Kは、駆動側踏込み量信号と、加速抑制指令値信号または通常加速指令値信号の入力を受ける。そして、アクセルペダル32の踏込み量と、加速抑制指令値または通常加速指令値に基づいて、アクセルペダル32の踏込み量または加速抑制指令値に応じたスロットル開度である目標スロットル開度を演算する。さらに、演算した目標スロットル開度を含む情報信号(以降の説明では、「目標スロットル開度信号」と記載する場合がある)を、エンジンコントローラ12へ出力する。
また、目標スロットル開度演算部10Kは、加速抑制指令値が後述する加速抑制制御開始タイミング指令値を含む場合、後述する加速抑制制御開始タイミングに基づいて、目標スロットル開度信号をエンジンコントローラ12へ出力する。
なお、目標スロットル開度演算部10Kで行なう処理については、後述する。
(加速抑制制御内容演算部10Iの構成)
次に、図1及び図2を参照しつつ、図3及び図4を用いて、加速抑制制御内容演算部10Iの詳細な構成について説明する。
図3は、加速抑制制御内容演算部10Iの構成を示すブロック図である。
図3中に示すように、加速抑制制御内容演算部10Iは、加速抑制作動条件判断部34と、駐車枠確信度算出部36と、駐車枠進入確信度算出部38と、総合確信度算出部40を備える。これに加え、加速抑制制御内容演算部10Iは、加速抑制制御開始タイミング演算部42と、加速抑制制御量演算部44を備える。
加速抑制作動条件判断部34は、加速抑制制御を作動させる条件が成立するか否かを判断し、その判断結果を含む情報信号(以降の説明では、「加速抑制作動条件判断結果信号」と記載する場合がある)を、加速抑制指令値演算部10Jへ出力する。ここで、加速抑制制御とは、アクセルペダル32の踏込み量に応じて自車両Vを加速させる加速指令値を、抑制する制御である。
なお、加速抑制作動条件判断部34が加速抑制制御を作動させる条件が成立するか否かを判断する処理については、後述する。
駐車枠確信度算出部36は、自車両Vの進行方向に駐車枠が存在する確信の度合いを示す駐車枠確信度を算出する。そして、算出した駐車枠確信度を含む情報信号(以降の説明では、「駐車枠確信度信号」と記載する場合がある)を、総合確信度算出部40へ出力する。
ここで、駐車枠確信度算出部36は、俯瞰画像信号、車速演算値信号、現在シフト位置信号、自車位置信号及び走行道路情報信号が含む各種情報を参照して、駐車枠確信度を算出する。
また、駐車枠確信度算出部36が確信度の算出対象とする駐車枠には、例えば、図4中に示すように、複数のパターンがある。なお、図4は、駐車枠確信度算出部36が駐車枠確信度の算出対象とする駐車枠のパターンを示す図である。
なお、駐車枠確信度算出部36が駐車枠確信度を算出する処理については、後述する。
駐車枠進入確信度算出部38は、自車両Vが駐車枠へ進入する確信の度合いを示す駐車枠進入確信度を算出する。そして、算出した駐車枠進入確信度を含む情報信号(以降の説明では、「駐車枠進入確信度信号」と記載する場合がある)を、総合確信度算出部40へ出力する。
ここで、駐車枠進入確信度算出部38は、俯瞰画像信号、車速演算値信号、現在シフト位置信号及び操舵角信号が含む各種情報を参照して、駐車枠進入確信度を算出する。
なお、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する処理については、後述する。
総合確信度算出部40は、駐車枠確信度信号及び駐車枠進入確信度信号の入力を受け、駐車枠確信度と駐車枠進入確信度との総合的な確信の度合いを示す総合確信度を算出する。そして、算出した総合確信度を含む情報信号(以降の説明では、「総合確信度信号」と記載する場合がある)を、加速抑制制御開始タイミング演算部42及び加速抑制制御量演算部44へ出力する。
なお、総合確信度算出部40が総合確信度を算出する処理については、後述する。
加速抑制制御開始タイミング演算部42は、加速抑制制御を開始するタイミングである加速抑制制御開始タイミングを演算する。そして、演算した加速抑制制御開始タイミングを含む情報信号(以降の説明では、「加速抑制制御開始タイミング信号」と記載する場合がある)を、加速抑制指令値演算部10Jへ出力する。
ここで、加速抑制制御開始タイミング演算部42は、総合確信度信号、制動側踏込み量信号、車速演算値信号、現在シフト位置信号及び操舵角信号が含む各種情報を参照して、加速抑制制御開始タイミングを演算する。
なお、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算する処理については、後述する。
加速抑制制御量演算部44は、アクセルペダル32の踏込み量に応じた加速指令値を抑制するための制御量である加速抑制制御量を演算する。そして、演算した加速抑制制御量を含む情報信号(以降の説明では、「加速抑制制御量信号」と記載する場合がある)を、加速抑制指令値演算部10Jへ出力する。
ここで、加速抑制制御量演算部44は、総合確信度信号、制動側踏込み量信号、車速演算値信号、現在シフト位置信号及び操舵角信号が含む各種情報を参照して、加速抑制制御量を演算する。
なお、加速抑制制御量演算部44が加速抑制制御量を演算する処理については、後述する。
(加速抑制制御内容演算部10Iで行なう処理)
次に、図1から図4を参照しつつ、図5から図14を用いて、加速抑制制御内容演算部10Iで行なう処理について説明する。
・加速抑制作動条件判断部34が行なう処理
図1から図4を参照しつつ、図5及び図7を用いて、加速抑制作動条件判断部34が加速抑制制御を作動させる条件(以降の説明では、「加速抑制作動条件」と記載する場合がある)が成立するか否かを判断する処理について説明する。
図5は、加速抑制作動条件判断部34が、加速抑制作動条件が成立するか否かを判断する処理を示すフローチャートである。なお、加速抑制作動条件判断部34は、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
図5中に示すように、加速抑制作動条件判断部34が処理を開始(START)すると、まず、ステップS100において、自車両Vの周囲の画像を取得する処理(図中に示す「自車両周囲画像取得処理」)を行う。ステップS100において、自車両Vの周囲の画像を取得する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS102へ移行する。なお、自車両Vの周囲の画像は、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号が含む自車両Vの周囲の俯瞰画像を参照して取得する。
ステップS102では、ステップS100で取得した画像に基づいて、駐車枠の有無を判断する処理(図中に示す「駐車枠有無判断処理」)を行なう。
ここで、駐車枠の有無を判断する処理は、例えば、自車両Vを基準として予め設定した距離や領域(エリア)内に、駐車枠を特定する白線(駐車枠線)等が存在するか否かを判断して行なう。また、ステップS100で取得した画像中から駐車枠線を認識する処理としては、例えば、エッジ検出等、種々の公知の方式を用いる。
以下、図6を用いて、エッジ検出による駐車枠線の認識方法を説明する。
図6は、エッジ検出による駐車枠線の認識方法を模式的に説明する模式図である。
図6(a)中に示すように、駐車枠線Lm,Lnを検出する際には、撮像した画像を示す領域において、横方向への走査を行う。画像の走査の際には、例えば、撮像した画像を二値化処理した白黒画像等を用いる。なお、図6(a)は、撮像した画像を示す図である。
駐車枠線は、路面に比べて十分に明るい白色等で示されることから、路面に比べて輝度が高くなる。このため、図6(b)中に示すように、路面から駐車枠線に変化する境界部分では、輝度が急激に高くなるプラスエッジが検出される。なお、図6(b)は、左から右方向への走査を行った場合の画像中の画素の輝度変化を示すグラフであり、図6(c)は、図6(a)と同様、撮像した画像を示す図である。また、図6(b)中では、プラスエッジを符合「E」で示し、図6(c)中では、プラスエッジを符合「E」を付した太い実線で示す)
また、駐車枠線から路面に変化する境界部分では、輝度が急激に低くなるマイナスエッジが検出される。なお、図6(b)中では、マイナスエッジを符合「E」で示し、図6(c)中では、マイナスエッジを符合「E」を付した太い点線で示す)
そして、駐車枠線を認識する処理においては、走査方向に対して、プラスエッジ(E)、マイナスエッジ(E)の順で、隣接する一対のエッジを検出することにより、駐車枠線が存在すると判断する。
なお、駐車枠の有無を判断する処理としては、駐車枠確信度算出部36が駐車枠確信度を算出する際に行なう処理を用いてもよい。
ステップS102において、駐車枠が有る(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS104へ移行する。
一方、ステップS102において、駐車枠が無い(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS120へ移行する。
ステップS104では、自車両車速演算部10Bから入力を受けた車速演算値信号を参照して、自車両Vの車速を取得する処理(図中に示す「自車両車速情報取得処理」)を行う。ステップS104において、自車両Vの車速を取得する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS106へ移行する。
ステップS106では、ステップS104で取得した車速に基づいて、自車両Vの車速が、予め設定した閾値車速未満である条件が成立しているか否かを判断する処理(図中に示す「自車両車速条件判断処理」)を行う。
なお、本実施形態では、一例として、閾値車速を15[km/h]とした場合について説明する。また、閾値車速は、15[km/h]に限定するものではなく、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
ステップS106において、自車両Vの車速が閾値車速未満である条件が成立している(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS108へ移行する。
一方、ステップS106において、自車両Vの車速が閾値車速未満である条件が成立していない(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS120へ移行する。
ステップS108では、ブレーキペダル操作情報演算部10Fから入力を受けた制動側踏込み量信号を参照して、ブレーキペダル30の踏込み量(操作量)の情報を取得する処理(図中に示す「ブレーキペダル操作量情報取得処理」)を行う。ステップS108において、ブレーキペダル30の踏込み量(操作量)の情報を取得する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS110へ移行する。
ステップS110では、ステップS108で取得したブレーキペダル30の踏込み量に基づいて、ブレーキペダル30が操作されているか否かを判断する処理(図中に示す「ブレーキペダル操作判断処理」)を行う。
ステップS110において、ブレーキペダル30が操作されていない(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS112へ移行する。
一方、ステップS110において、ブレーキペダル30が操作されている(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS120へ移行する。
ステップS112では、アクセル操作量演算部10Gから入力を受けた駆動側踏込み量信号を参照して、アクセルペダル32の踏込み量(操作量)の情報を取得する処理(図中に示す「アクセルペダル操作量情報取得処理」)を行う。ステップS112において、アクセルペダル32の踏込み量(操作量)の情報を取得する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS114へ移行する。
ステップS114では、アクセルペダル32の踏込み量(操作量)が、予め設定した閾値アクセル操作量以上である条件が成立しているか否かを判断する処理(図中に示す「アクセルペダル操作判断処理」)を行う。ここで、ステップS114の処理は、ステップS112で取得したアクセルペダル32の踏込み量に基づいて行なう。
なお、本実施形態では、一例として、閾値アクセル操作量を、アクセルペダル32の開度の3[%]に相当する操作量に設定した場合について説明する。また、閾値アクセル操作量は、アクセルペダル32の開度の3[%]に相当する操作量に限定するものではなく、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。
ステップS114において、アクセルペダル32の踏込み量(操作量)が閾値アクセル操作量以上である条件が成立している(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS116へ移行する。
一方、ステップS114において、アクセルペダル32の踏込み量(操作量)が閾値アクセル操作量以上である条件が成立していない(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS120へ移行する。
ステップS116では、自車両Vが駐車枠へ進入するか否かを判断するための情報を取得する処理(図中に示す「駐車枠進入判断情報取得処理」)を行う。ここで、本実施形態では、一例として、ステアリングホイール28の操舵角と、自車両Vと駐車枠とのなす角度と、自車両Vと駐車枠との距離に基づいて、自車両Vが駐車枠へ進入するか否かを判断する場合を説明する。ステップS116において、自車両Vが駐車枠へ進入するか否かを判断するための情報を取得する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS118へ移行する。
ここで、ステップS116で行なう処理の具体例を説明する。
ステップS116では、操舵角演算部10Cから入力を受けた操舵角信号を参照して、ステアリングホイール28の回転角(操舵角)を取得する。これに加え、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号が含む自車両Vの周囲の俯瞰画像に基づき、自車両Vと駐車枠L0とのなす角度αと、自車両Vと駐車枠L0との距離Dを取得する。
ここで、角度αは、例えば、図7中に示すように、直線Xと、枠線L1及び駐車枠L0側の線との交角の絶対値とする。なお、図7は、自車両Vと、駐車枠L0と、自車両Vと駐車枠L0との距離Dを説明する図である。
また、直線Xは、自車両Vの中心を通る自車両Vの前後方向の直線(進行方向に延びる直線)であり、枠線L1は、駐車枠L0に駐車が完了した際に自車両Vの前後方向と平行または略平行になる駐車枠L0部分の枠線である。また、駐車枠L0側の線とは、L1の延長線からなる駐車枠L0側の線である。
また、距離Dは、例えば、図7中に示すように、自車両Vの前端面の中心点PFと駐車枠L0の入り口L2の中心点PPとの距離とする。ただし、距離Dは、自車両Vの前端面が駐車枠L0の入り口L2を通過した後は、負の値とする。なお、距離Dは、自車両Vの前端面が駐車枠L0の入り口L2を通過した後は、ゼロに設定してもよい。
ここで、距離Dを特定するための自車両V側の位置は、中心点PFに限定するものではなく、例えば、自車両Vに予め設定した位置と、入り口L2の予め設定した位置としてもよい。この場合、距離Dは、自車両Vに予め設定した位置と、入り口L2の予め設定した位置との距離とする。
以上説明したように、ステップS116では、自車両Vが駐車枠L0へ進入するか否かを判断するための情報として、操舵角、自車両Vと駐車枠L0の角度α、自車両Vと駐車枠L0の距離Dを取得する。
ステップS118では、ステップS116で取得した情報に基づいて、自車両Vが駐車枠へ進入するか否かを判断する処理(図中に示す「駐車枠進入判断処理」)を行う。
ステップS118において、自車両Vが駐車枠へ進入しない(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS120へ移行する。
一方、ステップS118において、自車両Vが駐車枠へ進入する(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行なう処理は、ステップS122へ移行する。
ここで、ステップS118で行なう処理の具体例を説明する。
ステップS118では、例えば、以下に示す三つの条件(A1〜A3)を全て満足した場合に、自車両Vが駐車枠へ進入すると判断する。
条件A1.ステップS116で検出した操舵角が予め設定した設定舵角値(例えば、45[deg])以上の値となってから経過した時間が、予め設定した設定時間(例えば、20[sec])以内である。
条件A2.自車両Vと駐車枠L0の角度αが、予め設定した設定角度(例えば、40[deg])以下である。
条件A3.自車両Vと駐車枠L0の距離Dが、予め設定した設定距離(例えば、3[m])以下である。
なお、自車両Vが駐車枠へ進入するか否かを判断する処理としては、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する際に行なう処理を用いてもよい。
また、自車両Vが駐車枠へ進入するか否かの判断に用いる処理は、上記のように複数の条件を用いた処理に限定するものではなく、上述した三つの条件のうち一つ以上の条件で判断する処理を用いてもよい。また、自車両Vの車速を用いて、自車両Vが駐車枠へ進入するか否かを判断する処理を用いてもよい。
ステップS120では、加速抑制作動条件判断結果信号を、加速抑制制御作動条件が成立しない判断結果を含む情報信号として生成する処理(図中に示す「加速抑制作動条件非成立」)を行う。ステップS120において、加速抑制制御作動条件が成立しない判断結果を含む加速抑制作動条件判断結果信号を生成する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS124へ移行する。
ステップS122では、加速抑制作動条件判断結果信号を、加速抑制制御作動条件が成立する判断結果を含む情報信号として生成する処理(図中に示す「加速抑制作動条件成立」)を行う。ステップS122において、加速抑制制御作動条件が成立する判断結果を含む加速抑制作動条件判断結果信号を生成する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS124へ移行する。
ステップS124では、ステップS120またはステップS122で生成した加速抑制作動条件判断結果信号を、加速抑制指令値演算部10Jへ出力する処理(図中に示す「加速抑制作動条件判断結果出力」)を行う。ステップS124において、加速抑制作動条件判断結果信号を加速抑制指令値演算部10Jへ出力する処理を行うと、加速抑制作動条件判断部34が行なう処理は、ステップS100の処理へ復帰(RETURN)する。
・駐車枠確信度算出部36が行なう処理
図1から図7を参照しつつ、図8から図10を用いて、駐車枠確信度算出部36が駐車枠確信度を算出する処理について説明する。
図8は、駐車枠確信度算出部36が駐車枠確信度を算出する処理を示すフローチャートである。なお、駐車枠確信度算出部36は、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
図8中に示すように、駐車枠確信度算出部36が処理を開始(START)すると、まず、ステップS200において、駐車枠確信度のレベルを最低値(レベル0)として算出(設定)する処理(図中に示す「レベル0」)を行う。ステップS200において、駐車枠確信度をレベル0として算出する処理を行うと、駐車枠確信度算出部36が行なう処理は、ステップS202へ移行する。
ステップS202では、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号が含む自車両Vの周囲の俯瞰画像を取得する処理(図中に示す「周囲画像取得」)を行う。ステップS202において、自車両Vの周囲の俯瞰画像を取得する処理を行うと、駐車枠確信度算出部36が行なう処理は、ステップS204へ移行する。
ステップS204では、ステップS202で取得した俯瞰画像から、駐車枠確信度を算出するために用いる判定要素を抽出する処理(図中に示す「判定要素抽出」)を行う。ステップS204において、俯瞰画像から判定要素を抽出する処理を行うと、駐車枠確信度算出部36が行なう処理は、ステップS206へ移行する。
ここで、判定要素とは、駐車枠線等、路面上に標示されている線(白線等)であり、その状態が、例えば、以下に示す三つの条件(B1〜B3)を全て満足した場合に、その線を、判定要素として抽出する。
条件B1.路面上に標示されている線に破断部分がある場合、その破断部分が、標示されていた線がかすれている部分(例えば、線よりも明瞭度が低く、且つ路面よりも明瞭度が高い部分)である。
条件B2.路面上に標示されている線の幅が、予め設定した設定幅(例えば、10[cm])以上である。なお、設定幅は、10[cm]に限定するものではなく、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
条件B3.路面上に標示されている線の長さが、予め設定した設定標示線長さ(例えば、2.5[m])以上である。なお、設定標示線長さは、2.5[m]に限定するものではなく、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
ステップS206では、ステップS204で抽出した判定要素が、駐車枠線を形成する線の条件に適合しているか否かを判断する処理(図中に示す「駐車枠条件適合?」)を行う。
ステップS206において、ステップS204で抽出した判定要素が、駐車枠線を形成する線の条件に適合していない(図中に示す「No」)と判断した場合、駐車枠確信度算出部36が行なう処理は、ステップS200へ移行する。
一方、ステップS206において、ステップS204で抽出した判定要素が、駐車枠線を形成する線の条件に適合している(図中に示す「Yes」)と判断した場合、駐車枠確信度算出部36が行なう処理は、ステップS208へ移行する。なお、ステップS206で行なう処理は、例えば、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号を参照して行なう。
ここで、図9を用いて、ステップS206で行なう処理の具体例を説明する。なお、図9は、駐車枠確信度算出部36が行なう処理の内容を示す図である。また、図9中には、俯瞰画像のうち前方カメラ14Fで撮像した画像を示す領域を、符号「PE」と示す。
ステップS206では、まず、ステップS204で抽出した判定要素である路面上に標示されている線から、同一画面上に表示されている隣接した二本の線を一つの組として特定(以降の説明では、「ペアリング」と記載する場合がある)する。なお、同一画面上に三本以上の線が表示されている場合は、三本以上の線に対し、それぞれ、隣接した二本の線により、二つ以上の組を特定する。
次に、ペアリングした二本の線に対し、例えば、以下に示す四つの条件(C1〜C4)を全て満足した場合に、ステップS204で抽出した判定要素が、駐車枠線を形成する線の条件に適合していると判断する。
条件C1.図9(a)中に示すように、ペアリングした二本の線(図中では、符合「La」、符合「Lb」で示す)間の幅WLが、予め設定した設定ペアリング幅(例えば、2.5[m])以下である。なお、設定ペアリング幅は、2.5[m]に限定するものではなく、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
条件C2.図9(b)中に示すように、線Laと線Lbとのなす角度(平行度合い)が、予め設定した設定角度(例えば、3[°])以内である。なお、設定角度は、3[°]に限定するものではなく、例えば、周囲環境認識センサ14の認識能力等に応じて変更してもよい。
なお、図9(b)中には、基準線(領域PEの垂直方向に延在する線)を、符合「CLc」を付した点線で示し、線Laの中心軸線を、符合「CLa」を付した破線で示し、線Lbの中心軸線を、符合「CLb」を付した破線で示す。また、基準線CLcに対する中心軸線CLaの傾斜角を符号「θa」で示し、基準線CLcに対する中心軸線CLbの傾斜角を符号「θb」で示す。
したがって、|θa−θb|≦3[°]の条件式が成立すると、条件C2を満足することとなる。
条件C3.図9(c)中に示すように、線Laの自車両V側の端部(図中では、下方側の端部)と線Lbの自車両V側の端部を結ぶ直線と、自車両Vに近い側の線Lとのなす角度θが、予め設定した設定ずれ角度(例えば、45[°])以上である。なお、設定ずれ角度は、45[°]に限定するものではなく、例えば、周囲環境認識センサ14の認識能力等に応じて変更してもよい。
条件C4.図9(d)中に示すように、線Laの幅W0と線Lbの幅W1との差の絶対値(|W0−W1|)が、予め設定した設定線幅(例えば、10[cm])以下である。なお、設定線幅は、10[cm]に限定するものではなく、例えば、周囲環境認識センサ14の認識能力等に応じて変更してもよい。
なお、上述した四つの条件(C1〜C4)を満足するか否かを判定する処理では、線La,Lbのうち少なくとも一方の長さが、例えば、2[m]程度で途切れている場合、さらに、2[m]程度の仮想線を延長した4[m]程度の線として、処理を継続する。
ステップS208では、ステップS206の処理を開始してから自車両Vの移動距離が予め設定した設定移動距離となるまでに、ステップS206の処理が連続して照合するか否かを判断する処理(図中に示す「連続照合適合?」)を行う。なお、設定移動距離は、自車両Vの諸元に応じて、例えば、1〜2.5[m]の範囲内に設定する。また、ステップS208で行なう処理は、例えば、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号と、自車両車速演算部10Bから入力を受けた車速演算値信号を参照して行なう。
ステップS208において、ステップS206の処理が連続して照合していない(図中に示す「No」)と判断した場合、駐車枠確信度算出部36が行なう処理は、ステップS210へ移行する。
一方、ステップS208において、ステップS206の処理が連続して照合している(図中に示す「Yes」)と判断した場合、駐車枠確信度算出部36が行なう処理は、ステップS212へ移行する。
ここで、ステップS208で行なう処理では、例えば、図10中に示すように、ステップS206の処理が照合された状態と、ステップS206の処理が照合されない状態に応じて、自車両Vの移動距離を仮想的に演算する。なお、図10は、駐車枠確信度算出部36が行なう処理の内容を示す図である。また、図10中には、「照合状態」と記載した領域において、ステップS206の処理が照合された状態を「ON」と示し、ステップS206の処理が照合されない状態を「OFF」と示す。また、図10中には、仮想的に演算した自車両Vの移動距離を、「仮想走行距離」と示す。
図10中に示すように、ステップS206の処理が照合された状態が「ON」であると、仮想走行距離が増加する。一方、ステップS206の処理が照合された状態が「OFF」であると、仮想走行距離が減少する。
なお、本実施形態では、一例として、仮想走行距離が増加する際の傾き(増加ゲイン)を、仮想走行距離が減少する際の傾き(減少ゲイン)よりも大きく設定した場合について説明する。すなわち、「照合状態」が「ON」である状態と「OFF」である状態が同時間であれば、仮想走行距離は増加することとなる。
そして、仮想走行距離が初期値(図中では、「0[m]」と示す)に戻ることなく、設定移動距離に達すると、ステップS206の処理が連続して照合していると判断する。
ステップS210では、駐車枠確信度のレベルを最低値(レベル0)よりも一段階上のレベル(レベル1)として算出する処理(図中に示す「レベル1」)を行う。ステップS210において、駐車枠確信度をレベル1として算出する処理を行うと、駐車枠確信度算出部36が行なう処理は終了(END)する。
ステップS212では、ステップS206の処理が連続して照合している線La,Lbに対し、それぞれ、自車両Vを基準として同じ側に位置する端点(近い側の端点、または、遠い側の端点)を検出する。そして、同じ側に位置する端点同士が、幅WLの方向に沿って対向しているか否かを判断する処理(図中に示す「遠近端点対向適合?」)を行う。なお、ステップS212で行なう処理は、例えば、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号と、自車両車速演算部10Bから入力を受けた車速演算値信号を参照して行なう。
ステップS212において、同じ側に位置する端点同士が、幅WLの方向に沿って対向していない(図中に示す「No」)と判断した場合、駐車枠確信度算出部36が行なう処理は、ステップS214へ移行する。
一方、ステップS212において、同じ側に位置する端点同士が、幅WLの方向に沿って対向している(図中に示す「Yes」)と判断した場合、駐車枠確信度算出部36が行なう処理は、ステップS216へ移行する。
ステップS214では、駐車枠確信度のレベルを最低値(レベル0)よりも二段階上のレベル(レベル2)として算出する処理(図中に示す「レベル2」)を行う。ステップS214において、駐車枠確信度をレベル2として算出する処理を行うと、駐車枠確信度算出部36が行なう処理は終了(END)する。
ステップS216では、ステップS212の処理において、同じ側に位置する端点同士が幅WLの方向に沿って対向していると判断した線La,Lbに対し、さらに、他方の側に位置する端点を検出する。すなわち、ステップS212の処理において、線La,Lbに対して近い側(一方の側)の端点を検出した場合、ステップS216では、線La,Lbに対して遠い側(他方の側)の端点を検出する。そして、他方の側に位置する端点同士が、幅WLの方向に沿って対向しているか否かを判断する処理(図中に示す「両端端点対向適合?」)を行う。なお、ステップS216で行なう処理は、例えば、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号と、自車両車速演算部10Bから入力を受けた車速演算値信号を参照して行なう。
なお、線La,Lbの端点を検出する際には、例えば、図4(a)中に示す線の端点のような直線の端点と、図4(g)中に示す線の上端点のようなU字状の端点と、図4(o)中に示す二重線と横線との交点を、全て、一本の直線の端点として処理する。同様に、図4(h)中に示す線の上端点のような二重線の端点と、図4(m)中に示す線の上端点のようなU字状の曲線に空隙部が形成されている端点も、全て、一本の直線の端点として処理する。
また、線La,Lbの端点を検出する際には、例えば、図4(n)中に示す上下方向に延在する傾斜した二重線と、左右方向に延在する一本の直線との交点は、端点として処理(認識)しない。これは、端点を検出する際には、撮像した画像を示す領域において、横方向への走査を行うことにより端点を検出するためである。また、例えば、図4(p)中に白枠の四角形で示す領域は、柱等の路上物体を示しているため、この物体の端点も検出しない。
ステップS216において、他方の側に位置する端点同士が、幅WLの方向に沿って対向していない(図中に示す「No」)と判断した場合、駐車枠確信度算出部36が行なう処理は、ステップS218へ移行する。
一方、ステップS216において、他方の側に位置する端点同士が、幅WLの方向に沿って対向している(図中に示す「Yes」)と判断した場合、駐車枠確信度算出部36が行なう処理は、ステップS220へ移行する。
ステップS218では、駐車枠確信度のレベルを最低値(レベル0)よりも三段階上のレベル(レベル3)として算出する処理(図中に示す「レベル3」)を行う。ステップS218において、駐車枠確信度をレベル3として算出する処理を行うと、駐車枠確信度算出部36が行なう処理は終了(END)する。
ステップS220では、駐車枠確信度のレベルを最低値(レベル0)よりも四段階上のレベル(レベル4)として算出する処理(図中に示す「レベル4」)を行う。ステップS220において、駐車枠確信度をレベル4として算出する処理を行うと、駐車枠確信度算出部36が行なう処理は終了(END)する。
したがって、駐車枠確信度をレベル3として算出する処理では、図4中に示す駐車枠のうち、(d),(e),(j),(k)のパターンに対し、駐車枠確信度を算出することとなる。また、駐車枠確信度をレベル4として算出する処理では、図4中に示す駐車枠のうち、(d),(e),(j),(k)を除くパターンに対し、駐車枠確信度を算出することとなる。
なお、駐車枠確信度は、特に、公道上に標示されている可能性の高い駐車枠である、図4(a)に示すパターンを特定した場合、または、図4(a)に示すパターン以外の駐車枠を特定できない場合は、駐車枠の幅に応じて、以下のようにして制限してもよい。
具体的には、例えば、駐車枠の幅が2.6[m]以下であれば、駐車枠確信度は当初算出したレベルを保持するが、駐車枠の幅が2.6[m]を超えている場合には、駐車枠確信度がレベル3以上として算出されないように制限する。これにより、公道上に標示されている両側破線が駐車枠線として検出されにくい構成とする。
・駐車枠進入確信度算出部38が行なう処理
図1から図10を参照しつつ、図11及び図12を用いて、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する処理について説明する。
図11は、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する処理を示すフローチャートである。なお、駐車枠進入確信度算出部38は、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
図11中に示すように、駐車枠進入確信度算出部38が処理を開始(START)すると、まず、ステップS300において、自車両Vの後輪予想軌跡と駐車枠とのずれ量を検出する処理(図中に示す「ずれ量検出」)を行う。ステップS300において、自車両Vの後輪予想軌跡と駐車枠とのずれ量を検出する処理を行うと、駐車枠進入確信度算出部38が行なう処理は、ステップS302へ移行する。なお、本実施形態では、一例として、ステップS300で検出するずれ量の単位を[cm]とした場合について説明する。また、本実施形態では、一例として、駐車枠の幅を2.5[m]とした場合について説明する。
ここで、ステップS300で行なう処理では、例えば、図12中に示すように、自車両Vの後輪予想軌跡TRを算出し、算出した後輪予想軌跡TRと駐車枠L0の入り口L2との交点TPを算出する。さらに、駐車枠L0の左側枠線L1lと交点TPとの距離Lflと、駐車枠L0の右側枠線L1rと交点TPとの距離Lfrを算出し、距離Lflと距離Lfrを比較する。そして、距離Lflと距離Lfrのうち長い方の距離を、自車両Vの後輪予想軌跡TRと駐車枠L0とのずれ量として検出する。なお、図12は、自車両Vの後輪予想軌跡TRと駐車枠L0とのずれ量を検出する処理の内容を示す図である。
また、自車両Vの後輪予想軌跡TRを算出する際には、自車両Vのうち、右後輪WRRと左後輪WRLとの車幅方向における中心点PRを、自車両Vの基準点として設定する。そして、俯瞰画像のうち前方カメラ14F及び左側方カメラ14SLで撮像した画像と、自車両Vの車速と、ステアリングホイール28の回転角(操舵角)を用いて、中心点PRの仮想移動経路を演算し、後輪予想軌跡TRを算出する。
ステップS302では、例えば、俯瞰画像のうち前方カメラ14Fで撮像した画像を用いて、直線Xと駐車枠L0の長さ方向(例えば、奥行き方向)との平行度を検出する処理(図中に示す「平行度検出」)を行う。ステップS302において、直線Xと駐車枠L0の長さ方向との平行度を検出する処理を行うと、駐車枠進入確信度算出部38が行なう処理は、ステップS304へ移行する。
ここで、ステップS302で検出する平行度は、図12中に示すように、駐車枠L0の中心線Yと直線Xとのなす角度θapとして検出する。
なお、ステップS302では、自車両Vが後退しながら駐車枠L0へ移動する場合、例えば、俯瞰画像のうち後方カメラ14Rで撮像した画像を用いて、直線Xと駐車枠L0の長さ方向との平行度を検出する処理を行う。ここで、自車両Vの移動方向(前進、後退)は、例えば、現在シフト位置信号を参照して検出する。
ステップS304では、自車両Vの車速と、ステアリングホイール28の回転角(操舵角)を用いて、自車両Vの旋回半径を演算する処理(図中に示す「旋回半径演算」)を行う。ステップS304において、自車両Vの旋回半径を演算する処理を行うと、駐車枠進入確信度算出部38が行なう処理は、ステップS306へ移行する。
ステップS306では、ステップS302で検出した平行度(θap)が、予め設定した平行度閾値(例えば、15[°])未満であるか否かを判断する処理(図中に示す「平行度<平行度閾値?」)を行う。
ステップS306において、ステップS302で検出した平行度(θap)が平行度閾値以上である(図中に示す「No」)と判断した場合、駐車枠進入確信度算出部38が行なう処理は、ステップS308へ移行する。
一方、ステップS306において、ステップS302で検出した平行度(θap)が平行度閾値未満である(図中に示す「Yes」)と判断した場合、駐車枠進入確信度算出部38が行なう処理は、ステップS310へ移行する。
ステップS308では、ステップS304で検出した旋回半径が、予め設定した旋回半径閾値(例えば、100[R])以上であるか否かを判断する処理(図中に示す「旋回半径≧旋回半径閾値?」)を行う。
ステップS308において、ステップS304で検出した旋回半径が旋回半径閾値未満である(図中に示す「No」)と判断した場合、駐車枠進入確信度算出部38が行なう処理は、ステップS312へ移行する。
一方、ステップS308において、ステップS304で検出した旋回半径が旋回半径閾値以上である(図中に示す「Yes」)と判断した場合、駐車枠進入確信度算出部38が行なう処理は、ステップS310へ移行する。
ステップS310では、ステップS300で検出したずれ量が、予め設定した第一閾値(例えば、75[cm])以上であるか否かを判断する処理(図中に示す「ずれ量≧第一閾値?」)を行う。なお、第一閾値は、75[cm]に限定するものではなく、例えば、自車両Vの諸元に応じて変更してもよい。
ステップS310において、ステップS300で検出したずれ量が第一閾値以上である(図中に示す「Yes」)と判断した場合、駐車枠進入確信度算出部38が行なう処理は、ステップS314へ移行する。
一方、ステップS310において、ステップS300で検出したずれ量が第一閾値未満である(図中に示す「No」)と判断した場合、駐車枠進入確信度算出部38が行なう処理は、ステップS316へ移行する。
ステップS312では、ステップS300で検出したずれ量が、予め設定した第二閾値(例えば、150[cm])以上であるか否かを判断する処理(図中に示す「ずれ量≧第二閾値?」)を行う。ここで、第二閾値は、上述した第一閾値よりも大きな値とする。なお、第二閾値は、150[cm]に限定するものではなく、例えば、自車両Vの諸元に応じて変更してもよい。
ステップS312において、ステップS300で検出したずれ量が第二閾値以上である(図中に示す「Yes」)と判断した場合、駐車枠進入確信度算出部38が行なう処理は、ステップS318へ移行する。
一方、ステップS312において、ステップS300で検出したずれ量が第二閾値未満である(図中に示す「No」)と判断した場合、駐車枠進入確信度算出部38が行なう処理は、ステップS314へ移行する。
ステップS314では、駐車枠進入確信度を低いレベルとして算出(設定)する処理(図中に示す「進入確信度=レベル低」)を行う。ステップS314において、駐車枠進入確信度を低いレベルとして算出する処理を行うと、駐車枠進入確信度算出部38が行なう処理は終了(END)する。
ステップS316では、駐車枠進入確信度を高いレベルとして算出する処理(図中に示す「進入確信度=レベル高」)を行う。ステップS316において、駐車枠進入確信度を高いレベルとして算出する処理を行うと、駐車枠進入確信度算出部38が行なう処理は終了(END)する。
ステップS318では、駐車枠進入確信度のレベルを最低値(レベル0)として算出する処理(図中に示す「進入確信度=レベル0」)を行う。ステップS318において、駐車枠進入確信度をレベル0として算出する処理を行うと、駐車枠進入確信度算出部38が行なう処理は終了(END)する。
以上説明したように、駐車枠進入確信度算出部38は、駐車枠進入確信度を、最低値の「レベル0」、レベル0よりも高いレベルの「レベル低」、レベル低よりも高いレベルの「レベル高」のうち、いずれかのレベルとして算出する処理を行う。
なお、自車両Vの構成が、例えば、運転者に対して駐車枠L0への操舵操作を支援する装置(駐車支援装置)を備える構成である場合、駐車支援装置がON状態であれば、駐車枠進入確信度のレベルが上がりやすくなる構成としてもよい。
ここで、駐車支援装置としては、例えば、駐車を行うために、周囲の状況を俯瞰画像等でモニタ表示する装置や、駐車を行うための進路をガイドするために、画面上で目標とする駐車位置を設定する装置がある。これらの装置は、周囲の状況を俯瞰画像等でモニタ表示するために画面を切り替えるスイッチや、画面上で目標とする駐車位置を設定するための画面切り替えスイッチを操作して使用する。そして、これらのスイッチを操作すると、駐車支援装置がON状態となる構成とする。
駐車枠進入確信度のレベルが上がりやすくなる構成の具体例としては、ステップS318の処理で駐車枠進入確信度を「レベル0」として算出した場合であっても、駐車支援装置がON状態である場合には、駐車枠進入確信度を「レベル低」に補正する構成である。また、例えば、ステップS314の処理で駐車枠進入確信度を「レベル低」として算出した場合であっても、駐車支援装置がON状態である場合には、駐車枠進入確信度を「レベル高」に補正する構成である。なお、駐車枠進入確信度のレベルが上がりやすくなる構成としては、例えば、実際の駐車枠への進入状況に因らず、駐車枠進入確信度を予め設定したレベル(例えば、「レベル高」)として算出する構成としてもよい。
・総合確信度算出部40が行なう処理
図1から図12を参照しつつ、図13を用いて、総合確信度算出部40が総合確信度を算出する処理について説明する。
総合確信度算出部40は、駐車枠確信度信号及び駐車枠進入確信度信号の入力を受け、駐車枠確信度信号が含む駐車枠確信度と、駐車枠進入確信度信号が含む駐車枠進入確信度を、図13中に示す総合確信度算出マップに適合させる。そして、駐車枠確信度と駐車枠進入確信度に基づき、総合確信度を算出する。
なお、図13は、総合確信度算出マップを示す図である。また、図13中では、駐車枠確信度を「枠確信度」と示し、駐車枠進入確信度を「進入確信度」と示す。また、図13中に示す総合確信度算出マップは、自車両Vの前進走行時に用いるマップである。
総合確信度算出部40が総合確信度を算出する処理の一例として、駐車枠確信度が「レベル3」であり、駐車枠進入確信度が「レベル高」である場合では、図13中に示すように、総合確信度を「高」として算出する。
なお、本実施形態では、一例として、総合確信度算出部40が、総合確信度を算出する処理を行うと、算出した総合確信度を、イグニッションスイッチをオフ状態としてもデータが消去されない記憶部に記憶する処理を行う場合について説明する。ここで、イグニッションスイッチをオフ状態としてもデータが消去されない記憶部とは、例えば、ROM等である。
したがって、本実施形態では、自車両Vの駐車完了後にイグニッションスイッチをオフ状態とし、自車両Vの再発進時にイグニッションスイッチをオン状態とした時点では、直前に算出した総合確信度が記憶されている。このため、自車両Vの再発進時にイグニッションスイッチをオン状態とした時点から、直前に算出した総合確信度に基づく制御を開始することが可能となる。
・加速抑制制御開始タイミング演算部42が行なう処理
図1から図13を参照しつつ、図14を用いて、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算する処理について説明する。
加速抑制制御開始タイミング演算部42は、総合確信度信号の入力を受け、総合確信度信号が含む総合確信度を、図14中に示す加速抑制条件演算マップに適合させる。そして、総合確信度に基づき、加速抑制制御開始タイミングを演算する。
なお、図14は、加速抑制条件演算マップを示す図である。また、図14中では、「加速抑制条件」の欄において、加速抑制制御開始タイミングを「抑制制御開始タイミング(アクセル開度)」と示す。
加速抑制制御開始タイミング演算部42が行なう処理の一例として、総合確信度が「高」である場合では、図14中に示すように、加速抑制制御開始タイミングを、アクセルペダル32の開度が増加して「50%」に達したタイミングに設定する。なお、アクセルペダル32の開度は、アクセルペダル32を最大値まで踏み込んだ(操作した)状態を100%として設定する。
なお、図14中に示す加速抑制制御開始タイミングは、一例であり、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
・加速抑制制御量演算部44が行なう処理
図1から図14を参照して、加速抑制制御量演算部44が加速抑制制御量を演算する処理について説明する。
加速抑制制御量演算部44は、総合確信度信号の入力を受け、総合確信度信号が含む総合確信度を、図14中に示す加速抑制条件演算マップに適合させる。そして、総合確信度に基づき、加速抑制制御量を演算する。なお、図14中では、「加速抑制条件」の欄において、加速抑制制御量を「抑制量」と示す。
加速抑制制御量演算部44が行なう処理の一例として、総合確信度が「高」である場合では、図14中に示すように、加速抑制制御量を、実際のアクセルペダル32の開度に対して、「中」レベルのスロットル開度に抑制される制御量に設定する。なお、本実施形態では、一例として、「中」レベルのスロットル開度を、実際のアクセルペダル32の開度が25%に抑制されるスロットル開度とする。同様に、「小」レベルのスロットル開度を、実際のアクセルペダル32の開度が50%に抑制されるスロットル開度とし、「大」レベルのスロットル開度を、実際のアクセルペダル32の開度が10%に抑制されるスロットル開度とする。
なお、図14中に示す加速抑制制御量は、一例であり、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
また、加速抑制制御量演算部44は、総合確信度を加速抑制条件演算マップに適合させ、警告音を出力する制御の有無を設定する。なお、警告音を出力する場合、例えば、ナビゲーション装置26が備える表示モニタに、加速抑制制御を作動させている内容の文字情報や記号・発光等の視覚情報を表示してもよい。
(加速抑制指令値演算部10Jで行なう処理)
次に、図1から図14を参照しつつ、図15を用いて、加速抑制指令値演算部10Jで行なう処理について説明する。
図15は、加速抑制指令値演算部10Jが行なう処理を示すフローチャートである。なお、加速抑制指令値演算部10Jは、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
図15中に示すように、加速抑制指令値演算部10Jが処理を開始(START)すると、まず、ステップS400において、加速抑制制御内容演算部10Iから入力を受けた加速抑制作動条件判断結果信号を参照する。そして、加速抑制作動条件判断結果を取得する処理(図中に示す「加速抑制作動条件判断結果取得処理」)を行う。ステップS400において、加速抑制作動条件判断結果を取得する処理を行うと、加速抑制指令値演算部10Jが行なう処理は、ステップS402へ移行する。
ステップS402では、ステップS400において取得した加速抑制作動条件判断結果に加え、加速抑制指令値を演算するための情報を取得する処理(図中に示す「加速抑制指令値演算情報取得処理」)を行う。ステップS402において、加速抑制指令値を演算するための情報を取得する処理を行うと、加速抑制指令値演算部10Jが行なう処理は、ステップS404へ移行する。
なお、加速抑制指令値を演算するための情報とは、例えば、上述した加速抑制制御開始タイミング信号、加速抑制制御量信号、駆動側踏込み量信号、アクセル操作速度信号が含む情報である。
ステップS404では、ステップS400で取得した加速抑制作動条件判断結果が、加速抑制制御作動条件が成立する判断結果か否かを判断する処理(図中に示す「加速抑制制御作動条件成立?」)を行う。
ステップS404において、加速抑制制御作動条件が成立する判断結果である(図中に示す「Yes」)と判断した場合、加速抑制指令値演算部10Jが行なう処理は、ステップS406へ移行する。
一方、ステップS404において、加速抑制制御作動条件が成立しない判断結果である(図中に示す「No」)と判断した場合、加速抑制指令値演算部10Jが行なう処理は、ステップS408へ移行する。
ステップS406では、ステップS402で取得した加速抑制指令値を演算するための情報に基づき、加速抑制制御を行うための加速指令値である加速抑制指令値を演算する処理(図中に示す「加速抑制制御用指令値演算」)を行う。ステップS406において、加速抑制指令値を演算する処理を行うと、加速抑制指令値演算部10Jが行なう処理は、ステップS410に移行する。
ここで、加速抑制指令値を演算する処理では、駆動側踏込み量信号が含むアクセルペダル32の踏込み量と、加速抑制制御量信号が含む加速抑制制御量を参照する。そして、スロットル開度を、実際のアクセルペダル32の開度に対して加速抑制制御量に応じた抑制度合い(図14参照)とする加速抑制制御量指令値を演算する。
さらに、加速抑制指令値を演算する処理では、駆動側踏込み量信号が含むアクセルペダル32の踏込み量と、加速抑制制御開始タイミング信号が含む加速抑制制御開始タイミングを参照する。そして、加速抑制制御開始タイミングを、実際のアクセルペダル32の開度に応じたタイミング(図14参照)とする加速抑制制御開始タイミング指令値を演算する。
そして、加速抑制指令値を演算する処理では、上記のように演算した加速抑制制御量指令値及び加速抑制制御開始タイミング指令値を含む指令値を、加速抑制指令値として演算する。
ステップS408では、加速抑制制御を行なわない駆動力制御、すなわち、通常の加速制御で用いる加速指令値である通常加速指令値を演算する処理(図中に示す「通常加速制御用指令値演算」)を行う。ステップS408において、通常加速指令値を演算する処理を行うと、加速抑制指令値演算部10Jが行なう処理は、ステップS412に移行する。
ここで、通常加速指令値を演算する処理では、駆動側踏込み量信号が含むアクセルペダル32の踏込み量に基づいてスロットル開度を演算する指令値を、通常加速指令値として演算する。
ステップS410では、ステップS406で演算した加速抑制指令値を含む加速抑制指令値信号を、目標スロットル開度演算部10Kに出力する処理(図中に示す「加速抑制指令値出力」)を行う。ステップS410において、加速抑制指令値信号を出力する処理を行うと、加速抑制指令値演算部10Jが行なう処理は終了(END)する。
ステップS412では、ステップS408で演算した通常加速指令値を含む通常加速指令値信号を、目標スロットル開度演算部10Kに出力する処理(図中に示す「通常加速指令値出力」)を行う。ステップS412において、通常加速指令値信号を出力する処理を行うと、加速抑制指令値演算部10Jが行なう処理は終了(END)する。
(目標スロットル開度演算部10Kで行なう処理)
次に、図1から図15を参照しつつ、図16を用いて、目標スロットル開度演算部10Kで行なう処理について説明する。
図16は、目標スロットル開度演算部10Kが行なう処理を示すフローチャートである。なお、目標スロットル開度演算部10Kは、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
図16中に示すように、目標スロットル開度演算部10Kが処理を開始(START)すると、まず、ステップS500において、アクセル操作量演算部10Gから入力を受けた駆動側踏込み量信号を参照する。そして、駆動側踏込み量信号が含むアクセルペダル32の踏込み量(操作量)を取得する処理(図中に示す「アクセル操作量取得処理」)を行う。ステップS500において、アクセルペダル32の踏込み量(操作量)を取得する処理を行うと、目標スロットル開度演算部10Kが行なう処理は、ステップS502へ移行する。
ステップS502では、加速抑制指令値演算部10Jから入力を受けた情報信号に基づき、加速抑制指令値(ステップS406参照)または通常加速指令値(ステップS408参照)を取得する処理(図中に示す「指令値取得処理」)を行う。ステップS502において、加速抑制指令値または通常加速指令値を取得する処理を行うと、目標スロットル開度演算部10Kが行なう処理は、ステップS504へ移行する。
ステップS504では、ステップS500で取得したアクセルペダル32の踏込み量と、ステップS502で取得した指令値に基づき、目標スロットル開度の演算(図中に示す「目標スロットル開度演算」)を行う。ステップS504において、目標スロットル開度を演算すると、目標スロットル開度演算部10Kが行なう処理は、ステップS506へ移行する。
ここで、ステップS504では、ステップS502で取得した指令値が通常加速指令値である場合(加速抑制作動条件が非成立である場合)は、アクセルペダル32の踏込み量に応じたスロットル開度を、目標スロットル開度として演算する。
一方、ステップS502で取得した指令値が加速抑制指令値である場合(加速抑制作動条件が成立している場合)は、加速抑制制御量指令値に応じたスロットル開度を、目標スロットル開度として演算する。
目標スロットル開度は、例えば、以下の式(1)を用いて演算する。
θ*=θ1−Δθ … (1)
上式(1)中では、目標スロットル開度を「θ*」で示し、アクセルペダル32の踏込み量に応じたスロットル開度を「θ1」で示し、加速抑制制御量を「Δθ」で示す。
ステップS506では、ステップS504で演算した目標スロットル開度θ*を含む目標スロットル開度信号を、エンジンコントローラ12に出力(図中に示す「目標スロットル開度出力」)する。ステップS506において、目標スロットル開度信号をエンジンコントローラ12に出力する処理を行うと、目標スロットル開度演算部10Kが行なう処理は終了(END)する。
ここで、ステップS506では、ステップS502で取得した指令値が加速抑制指令値である場合は、アクセルペダル32の開度(踏み込み量)が加速抑制制御開始タイミングに応じた開度に達したタイミングで、目標スロットル開度信号を出力する。
(動作)
次に、図1から図16を参照して、本実施形態の車両用加速抑制装置1を用いて行なう動作の一例を説明する。
以下に記載する動作の一例では、駐車場内を走行する自車両Vが、運転者の選択した駐車枠L0に進入する例を説明する。
駐車場内を走行する自車両Vの車速が、閾値車速である15[km/h]以上の状態では、加速抑制制御作動条件が成立しないため、自車両Vには加速抑制制御が作動することなく、運転者の加速意図を反映した通常の加速制御を行なう。
車速が閾値車速未満となり、駐車枠L0を検出し、さらに、ブレーキペダル30が操作されておらず、アクセルペダル32の踏込み量が閾値アクセル操作量以上であると、自車両Vが駐車枠L0へ進入するか否かの判断を行う。
また、自車両Vの走行中には、駐車枠確信度算出部36が駐車枠確信度を算出し、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する。そして、総合確信度算出部40が、駐車枠確信度及び駐車枠進入確信度に基づく総合確信度を算出する。
さらに、自車両Vの走行中には、総合確信度算出部40が算出した総合確信度に基づき、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算し、加速抑制制御量演算部44が加速抑制制御量を演算する。
そして、自車両Vが駐車枠L0へ進入すると判断し、加速抑制制御作動条件が成立すると判断すると、加速抑制指令値演算部10Jが、加速抑制指令値信号を目標スロットル開度演算部10Kへ出力する。さらに、目標スロットル開度演算部10Kが、目標スロットル開度信号をエンジンコントローラ12へ出力する。
このため、加速抑制制御作動条件が成立した状態で、運転者がアクセルペダル32を操作すると、アクセルペダル32の踏み込み量に応じたスロットル開度を、加速抑制制御量指令値に応じた開度に抑制する。これに加え、アクセルペダル32の踏み込み量に応じたスロットル開度を抑制する開始タイミングを、加速抑制制御開始タイミング指令値に応じたタイミングとする。
したがって、自車両Vが駐車枠L0内で駐車に適した位置に近づいた状態等、制動操作が適切な運転操作である状況で、誤操作等によりアクセルペダル32が操作された場合であっても、総合確信度に応じてスロットル開度を抑制することが可能となる。すなわち、総合確信度が低い状態では、加速抑制量(スロットル開度の抑制度合い)が小さいため、運転性の低下を少なくすることが可能となり、総合確信度が高い状態では、加速抑制量が大きいため、自車両Vの加速抑制効果を高くすることが可能となる。
以上説明したように、本実施形態では、駐車時において、駐車枠L0への進入を行なう前には駐車場内における運転性低下を抑制することが可能であるとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
また、本実施形態では、総合確信度が高いほど、加速抑制制御量を大きくすることにより、自車両Vの加速を抑制して、安全性を向上させる。また、総合確信度が低いほど、加速抑制制御開始タイミングを遅くして、運転性の低下を抑制する。これにより、以下に示す状況下において、安全性の向上と運転性低下の抑制が可能となる。
例えば、路上において、走行路の脇に縦列駐車用の駐車枠L0が標示されている付近に待機している自車両Vを発進させる状況では、ある程度の加速を許容する必要がある。
また、以下に示す状況下においても、ある程度の加速を許容する必要がある。これは、自車両Vを駐車させる駐車枠L0の両脇(左右の駐車枠)に他車両が存在し、その向かい側(各駐車枠から離れた側)に多少のスペースに自車両Vを前側から進入させる。その後、自車両Vを駐車させる駐車枠L0に自車両Vを後側から進入させて駐車を行う状況である。
これらの状況に対し、総合確信度に基づいて加速抑制制御開始タイミングと加速抑制制御量を制御することにより、自車両Vの加速を抑制して、安全性を向上させることが可能となる。これに加え、自車両Vの加速を許容して、運転性低下を抑制することが可能となる。
また、本実施形態では、駐車枠確信度が低い場合、駐車枠確信度が高い場合よりも、加速抑制制御量を小さく演算する。これにより、以下に示すように、自車両Vの現在位置が公道上ではない位置(例えば、駐車場内)である状況下において、運転性低下の抑制が可能となる。
自車両Vの現在位置が公道上ではない位置である状況下において、例えば、周囲環境認識センサ14で撮像した画像内に線を検出しているが、検出した線を駐車枠線と特定できない場合、駐車枠確信度を低いレベルとして算出する。なお、検出した線を駐車枠線と特定できない場合とは、例えば、周囲環境認識センサ14で撮像した画像内に一本の線を検出し、その端部は検出しているが、検出した一本の線の手前側(自車両Vに近い側)には、線を検出していない場合である。
また、例えば、周囲環境認識センサ14で撮像した画像内に検出した線が、エッジ(縁)がぼやけている線や、かすれて不明瞭である線である場合は、自車両Vの現在位置が公道上ではない位置であると判定し、さらに、駐車枠確信度を低いレベルとして算出する。これは、公道上に標示されている線は、公的機関等により定期的なメンテナンスが行なわれる場合が多いため、エッジがぼやけている状態や、かすれて不明瞭な状態である期間が短いと推定可能であるためである。
なお、上述した加速抑制指令値演算部10J、目標スロットル開度演算部10Kは、加速制御部に対応する。
また、上述した周囲環境認識情報演算部10Aは、周囲環境認識部に対応する。
また、上述した自車両車速演算部10B、操舵角演算部10C、操舵角速度演算部10D、ブレーキペダル操作情報演算部10F、アクセル操作量演算部10G、アクセル操作速度演算部10Hは、自車両走行状態検出部に対応する。
また、上述した加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kは、加速抑制部に対応する。
また、上述したスロットル開度は、加速指令値に対応する。
また、上述したナビゲーション装置26は、自車両現在位置検出部及び自車両走行路種別検出部に対応する。
また、上述したように、本実施形態の車両用加速抑制装置1の動作で実施する車両用加速抑制方法は、駐車枠確信度が低いときは、駐車枠確信度が高いときに比べて、アクセルペダル32の操作量に応じた加速指令値を低い抑制度合いで抑制する方法である。ここで、駐車枠確信度は、自車両Vの進行方向に駐車枠L0が存在する確信の度合いを示し、自車両V周囲の環境に基づいて算出する。
また、上述したように、本実施形態の車両用加速抑制装置1の動作で実施する車両用加速抑制方法は、総合確信度が低いときは、総合確信度が高いときに比べて、アクセルペダル32の操作量に応じた加速指令値を低い抑制度合いで抑制する方法である。ここで、総合確信度は、駐車枠確信度と駐車枠進入確信度との総合的な確信の度合いを示す。また、駐車枠進入確信度は、自車両Vが駐車枠L0へ進入する確信の度合いを示す。
(第一実施形態の効果)
本実施形態であれば、以下に記載する効果を奏することが可能となる。
(1)駐車枠確信度算出部36が、自車両Vの周囲の俯瞰画像(環境)と自車両Vの車速(走行状態)に基づいて、駐車枠確信度を算出する。これに加え、駐車枠確信度算出部36が算出した駐車枠確信度が低いときは、駐車枠確信度が高いときに比べて、加速指令値の抑制度合いを低くする。すなわち、駐車枠確信度算出部36が算出した駐車枠確信度が高いときは、駐車枠確信度が低いときに比べて、加速指令値の抑制度合いを高くする。
このため、駐車枠確信度が低い状態では、加速指令値の抑制度合いを低くして運転性の低下を少なくすることが可能となり、駐車枠確信度が高い状態では、加速指令値の抑制度合いを高くして自車両Vの加速抑制効果を高くすることが可能となる。
その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(2)駐車枠進入確信度算出部38が、自車両Vの周囲の俯瞰画像(環境)と、自車両Vの車速及びステアリングホイール28の回転角(走行状態)に基づいて、駐車枠進入確信度を算出する。これに加え、総合確信度算出部40が、駐車枠確信度算出部36が算出した駐車枠確信度及び駐車枠進入確信度算出部38が算出した駐車枠進入確信度に基づいて、総合確信度を算出する。さらに、総合確信度算出部40が算出した総合確信度が低いときは、総合確信度が高いときに比べて、加速指令値の抑制度合いを低くする。
このため、自車両Vの進行方向に駐車枠L0が存在する確信の度合いに加え、自車両Vが駐車枠L0へ進入する確信の度合いに応じて、加速指令値の抑制度合いを制御することが可能となる。
その結果、上述した効果(1)に加え、さらに、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(3)加速抑制制御開始タイミング演算部42と、加速抑制指令値演算部10Jと、目標スロットル開度演算部10Kが、加速抑制制御開始タイミングを遅れさせて、加速指令値の抑制度合いを低くする。
その結果、アクセルペダル32の踏み込み量に応じたスロットル開度を抑制する開始タイミングを制御して、加速指令値の抑制度合いを制御することが可能となる。
(4)加速抑制制御量演算部44と、加速抑制指令値演算部10Jと、目標スロットル開度演算部10Kが、加速抑制制御量を減少させて、加速指令値の抑制度合いを低くする。
その結果、アクセルペダル32の踏み込み量に応じたスロットル開度の抑制量を制御して、加速指令値の抑制度合いを制御することが可能となる。
(5)本実施形態の車両用加速抑制方法では、自車両Vの周囲の俯瞰画像(環境)と自車両Vの車速(走行状態)に基づいて、駐車枠確信度を算出する。これに加え、自車両Vの駐車枠L0への進入を検出すると、駐車枠確信度が低いときは、駐車枠確信度が高いときに比べて、加速指令値を低い抑制度合いで抑制する。
このため、駐車枠確信度が低い状態では、加速指令値の抑制度合いを低くして運転性の低下を少なくすることが可能となり、駐車枠確信度が高い状態では、加速指令値の抑制度合いを高くして自車両Vの加速抑制効果を高くすることが可能となる。
その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(6)本実施形態の車両用加速抑制方法では、自車両Vの周囲の俯瞰画像(環境)と自車両Vの車速(走行状態)に基づいて、駐車枠進入確信度を算出する。これに加え、算出した駐車枠確信度及び駐車枠進入確信度に基づいて、総合確信度を算出し、総合確信度が低いときは、総合確信度が高いときに比べて、加速指令値を低い抑制度合いで抑制する。
このため、自車両Vの進行方向に駐車枠L0が存在する確信の度合いに加え、自車両Vが駐車枠L0へ進入する確信の度合いに応じて、加速指令値の抑制度合いを制御することが可能となる。
その結果、上述した効果(5)に加え、さらに、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(変形例)
(1)本実施形態では、総合確信度算出部40が算出した総合確信度に基づいて、加速抑制制御開始タイミングと加速抑制制御量を演算したが、これに限定するものではない。すなわち、駐車枠確信度算出部36が算出した駐車枠確信度のみに基づいて、加速抑制制御開始タイミングと加速抑制制御量を演算してもよい。この場合、加速抑制制御開始タイミングと加速抑制制御量は、駐車枠確信度を、例えば、図17中に示す加速抑制条件演算マップに適合させて演算する。なお、図17は、本実施形態の変形例を示す図である。
(2)本実施形態では、駐車枠確信度算出部36の構成を、自車両Vの周囲の俯瞰画像(環境)と自車両Vの車速(走行状態)に基づいて、駐車枠確信度を算出する構成としたが、駐車枠確信度算出部36の構成は、これに限定するものではない。すなわち、駐車枠確信度算出部36の構成を、自車両Vの周囲の俯瞰画像と車速に加え、さらに、自車位置信号が含む自車両Vの現在位置と、走行道路情報信号が含む自車両Vが走行する道路の種別(道路種別)を用いて、駐車枠確信度を算出する構成としてもよい。
この場合、例えば、自車位置信号及び走行道路情報信号が含む情報に基づき、自車両Vの現在位置が公道上であることを検出すると、自車両Vの周囲に駐車枠L0が存在しないと判断し、駐車枠確信度を「レベル0」として算出する。
これにより、例えば、公道上で道路端に配置された駐車枠等、加速抑制制御の作動が好ましくない駐車枠へ自車両Vが進入する際に、自車両Vの運転性低下を抑制することが可能となる。
(3)本実施形態では、駐車枠確信度算出部36が、線La,Lbに対し、それぞれ、端点同士が幅WLの方向に沿って対向していると判断すると、駐車枠確信度をレベル3またはレベル4として算出する処理を行う(ステップS212参照)。しかしながら、駐車枠確信度をレベル3またはレベル4として算出する処理は、これに限定するものではない。すなわち、線Lの端点形状が、例えば、U字状(図4(g)〜(k)、(m)、(n)を参照)である場合等、公道上に標示されていない形状であることを認識すると、駐車枠確信度をレベル3またはレベル4として算出してもよい。
(4)本実施形態では、駐車枠確信度算出部36の構成を、自車両Vの周囲の俯瞰画像(環境)と自車両Vの車速(走行状態)に基づいて、駐車枠確信度を算出する構成としたが、駐車枠確信度算出部36の構成は、これに限定するものではない。すなわち、自車両Vの構成が、例えば、運転者に対して駐車枠L0への操舵操作を支援する装置(駐車支援装置)を備える構成である場合、駐車支援装置がON状態であれば、駐車枠確信度のレベルが上がりやすくなる構成としてもよい。ここで、駐車枠確信度のレベルが上がりやすくなる構成とは、例えば、上述した設定移動距離を通常よりも短い距離に設定する等の構成である。
また、駐車支援装置としては、例えば、駐車を行うために、周囲の状況を俯瞰画像等でモニタ表示する装置や、駐車を行うための進路をガイドするために、画面上で目標とする駐車位置を設定する装置がある。これらの装置は、周囲の状況を俯瞰画像等でモニタ表示するために画面を切り替えるスイッチや、画面上で目標とする駐車位置を設定するための画面切り替えスイッチを操作して使用する。そして、これらのスイッチが操作されて駐車支援装置がON状態となると、駐車枠の検知を行われやすくして、駐車枠確信度のレベルが上がりやすくなる構成としてもよい。
ここで、駐車枠の検知を行われやすくする方法としては、例えば、上述したステップS206の条件C1〜C4が成立しやすいように設定値を補正する方法がある。また、この方法以外にも、例えば、ステップS206において、連続照合状態が設定移動距離に達したと判断する際に用いる設定移動距離を短く設定する方法がある。また、例えば、ステップS212にて、「レベル3」または「レベル4」と判定する際の端点の条件、例えば、端点の個数が初期設定より少ない個数であってもよい設定する方法がある。
なお、駐車枠の検知を行われやすくする方法としては、例えば、実際の駐車枠の検知状況に因らず、駐車枠確信度を予め設定したレベル(例えば、「レベル4」)として検知されているとする方法を用いてもよい。
(5)本実施形態では、総合確信度に基づいて、加速抑制制御量及び加速抑制制御開始タイミングを変化させ、加速指令値の抑制度合いを変化させるが、これに限定するものではない。すなわち、総合確信度に応じて、加速抑制制御開始タイミングのみ、または、加速抑制制御量のみを変化させ、加速指令値の抑制度合いを変化させてもよい。この場合、例えば、総合確信度が高いほど、加速抑制制御量を大きく設定し、加速抑制制御開始タイミングは変化させずに、加速指令値の抑制度合いを高くしてもよい。
(6)本実施形態では、駐車枠確信度のレベルを算出する際に検出した枠線の本数に因らず、算出した駐車枠確信度及び駐車枠進入確信度に基づいて、総合確信度を算出したが、これに限定するものではない。すなわち、例えば、上述した条件Bを満足した際に検出した線Lの本数に応じて、総合確信度を算出してもよい。
この場合、例えば、算出した駐車枠確信度及び駐車枠進入確信度に加え、条件Bを満足した際に検出した線Lの本数を、図18中に示す総合確信度算出マップに適合させる。そして、駐車枠確信度及び駐車枠進入確信度と、条件Bを満足した際に検出した線Lの種類に基づき、総合確信度を算出する。なお、図18は、本実施形態の変形例で用いる総合確信度算出マップを示す図である。また、図18中では、図13中と同様、駐車枠確信度を「枠確信度」と示し、駐車枠進入確信度を「進入確信度」と示す。
上記の場合では、図18中に示すように、駐車枠進入確信度が「レベル低」であり、駐車枠確信度を「レベル1」として算出した場合と「レベル2〜4」として算出した場合において、条件Bを満足した際に検出した線Lの種類に応じて、総合確信度を算出する。
具体的には、駐車枠進入確信度が「レベル低」であり、駐車枠確信度を「レベル1」として算出した場合、条件Bを満足した際に検出した線Lの種類が単線である場合には、「レベル0」の場合と同様、加速抑制制御を行なわない総合確信度として算出する。また、駐車枠進入確信度が「レベル低」であり、駐車枠確信度を「レベル1」として算出した場合、条件Bを満足した際に検出した線Lの種類が二重線である場合には、総合確信度を「極低」として算出する。
また、駐車枠進入確信度が「レベル低」であり、駐車枠確信度を「レベル2〜4」として算出した場合、条件Bを満足した際に検出した線Lの種類が単線である場合には、総合確信度を「極低」として算出する。また、駐車枠進入確信度が「レベル低」であり、駐車枠確信度を「レベル2〜4」として算出した場合、条件Bを満足した際に検出した線Lの種類が二重線である場合には、総合確信度を「極高」として算出する。
ここで、図18中に示す総合確信度算出マップを用いて総合確信度を算出した場合、例えば、算出した総合確信度を、図19中に示す加速抑制条件演算マップに適合させて、加速抑制制御開始タイミングを演算する。なお、図19は、本実施形態の変形例で用いる加速抑制条件演算マップを示す図である。また、図19中では、図14中と同様、「加速抑制条件」の欄において、加速抑制制御開始タイミングを「抑制制御開始タイミング(アクセル開度)」と示す。
図19中に示す加速抑制条件演算マップを用いて、加速抑制制御開始タイミングを演算する際には、総合確信度が「極低」である場合、加速抑制制御開始タイミングを、アクセルペダル32の開度が増加して「80%」に達した時点で時間の計測を開始する。これに加え、アクセルペダル32の開度が「80%」以上となっている計測時間が「0.25[sec]」に達した時点を、加速抑制制御開始タイミングとして設定する。すなわち、総合確信度が「極低」である場合には、アクセルペダル32の開度が「80%」以上となっている計測時間が「0.25[sec]」に達した時点から、加速抑制制御を開始する。
また、総合確信度が「極低」である場合の加速抑制制御量は、「小」レベルのスロットル開度に抑制される制御量に設定する。なお、図19中では、図14中と同様、「加速抑制条件」の欄において、加速抑制制御量を「抑制量」と示す。
一方、総合確信度が「極高」である場合、加速抑制制御開始タイミングを、アクセルペダル32の開度が増加して「50%」に達した時点で時間の計測を開始する。これに加え、アクセルペダル32の開度が「50%」以上となっている計測時間が「0.65[sec]」に達した時点を、加速抑制制御開始タイミングとして設定する。すなわち、総合確信度が「極高」である場合には、アクセルペダル32の開度が「50%」以上となっている計測時間が「0.65[sec]」に達した時点から、加速抑制制御を開始する。
また、総合確信度が「極高」である場合の加速抑制制御量は、「大」レベルのスロットル開度に抑制される制御量に設定する。
ここで、図19中に示す加速抑制条件演算マップを用いて、加速抑制制御開始タイミングを演算した場合の動作例を説明する。
図19中に示す加速抑制条件演算マップを用いた場合、総合確信度に基づく加速抑制制御開始タイミングと保持時間との関係は、図20中に示す関係となる。なお、図20は、加速抑制制御開始タイミングと保持時間との関係を示す図である。また、図20中では、加速抑制制御開始タイミングを、横軸に「アクセル開度[%]」と示し、保持時間を、縦軸に「保持時間[sec]」と示す。
図20中に示すように、総合確信度を「極低」として算出した場合、アクセル開度が「80%」以上となっている計測時間が「0.25[sec]」に達した時点PLを、加速抑制制御開始タイミングとして設定する。また、総合確信度を「極高」として算出した場合、アクセル開度が「50%」以上となっている計測時間が「0.65[sec]」に達した時点PHを、加速抑制制御開始タイミングとして設定する。なお、図20中では、加速抑制制御開始タイミングの設定基準となる制御閾値を連続的に示す線を、実線で示す。
しかしながら、自車両Vの走行中に周囲環境認識センサ14で撮像した画像が変化した場合には、条件Bを満足した際に検出した線Lの種類が変化する場合がある。
ここで、例えば、駐車枠確信度を「レベル2〜4」として算出した状況で、条件Bを満足した際に検出した線Lの種類が単線から二重線に変化した場合を考える。
この場合、条件Bを満足した際に検出した線Lの種類が単線から二重線に変化した時点で、総合確信度が「極低」から「極高」に変化する。
条件Bを満足した際に検出した線Lの種類が単線であった時点では、図20中に示す時点PLを、加速抑制制御開始タイミングとして設定しており、アクセル開度が80%に達するまでは、保持時間の計測を開始しない。
しかしながら、総合確信度が「極低」から「極高」に変化すると、既にアクセル開度が50%に達していても、総合確信度が「極低」から「極高」に変化した時点から保持時間の計測を開始することとなる。そして、図20中において、計測時間とアクセル開度との関係が制御閾値を連続的に示す線と重なった時点SPから、加速抑制制御を開始することとなる。なお、図20中には、時間の経過に応じたアクセル開度の変化を、破線で示す。
したがって、総合確信度が「極低」から「極高」に変化すると、総合確信度が当初から「極高」として算出されていた場合と比較して、加速抑制制御を開始する時間が遅れることとなる。
このため、例えば、タワーパーキング等、複数の駐車枠が配列された構成の駐車場を走行する自車両Vが、下層階の駐車場から上層階の駐車場へ移動する際に登り勾配の坂を走行する状況において、運転性低下を抑制することが可能となる。これは、例えば、登り勾配の坂を走行する前に直進走行から旋回走行に移行して車速が低下し、条件Bを満足した際に検出した線Lの種類が単線から二重線に変化して、総合確信度が「極低」から「極高」に変化する状況に適用される。
この状況では、登り勾配の坂を走行する前に直進走行から旋回走行に移行して車速が低下し、総合確信度が「極低」から「極高」に変化しても、総合確信度が当初から「極高」として算出されていた場合と比較して、加速抑制制御を開始する時間が遅れることとなる。これにより、総合確信度が当初から「極高」として算出されていた場合よりも、加速抑制制御が開始されるタイミングを遅らせて、駐車枠確信度が「レベル0」として算出される可能性が高い、登り勾配の坂を走行する時点を、加速抑制制御が開始された時点とする。
次に、例えば、駐車枠確信度を「レベル2〜4」として算出した状況で、条件Bを満足した際に検出した線Lの種類が単線であり、さらに、駐車枠進入確信度が「レベル低」から「レベル高」に変化した場合を考える。
この場合、駐車枠進入確信度が「レベル低」から「レベル高」に変化した時点で、総合確信度が「極低」から「極高」に変化する。そして、条件Bを満足した際に検出した線Lの種類が単線から二重線に変化した場合と同様、総合確信度が当初から「極高」として算出されていた場合と比較して、加速抑制制御を開始する時間が遅れることとなる。
このため、例えば、交差点を左折した自車両Vが、左折後に、既に駐車している車両である他車両を追い越してから、道路端に配置された駐車枠に進入して駐車する状況において、運転性低下を抑制することが可能となる。これは、例えば、交差点を左折した自車両Vが、他車両を右側から追い越した後、道路端へ向けて左側へ移動する際に、駐車枠進入確信度が「レベル低」から「レベル高」に変化して、総合確信度が「極低」から「極高」に変化する状況に適用される。
この状況では、交差点を左折して低下した車速を増加させる際に、総合確信度が「極低」から「極高」に変化しても、総合確信度が当初から「極高」として算出されていた場合と比較して、加速抑制制御を開始する時間が遅れることとなる。これにより、総合確信度が当初から「極高」として算出されていた場合よりも、加速抑制制御が開始されるタイミングを遅らせて、公道上で減速する可能性が高い、走行中に駐車を開始する時点を、加速抑制制御が開始された時点とする。
(7)本実施形態では、加速指令値を制御して、アクセルペダル32の踏込み量(駆動力操作量)に応じた自車両Vの加速を抑制したが、これに限定するものではない。すなわち、例えば、アクセルペダル32の踏込み量(駆動力操作量)に応じたスロットル開度を目標スロットル開度とし、さらに、上述した制動装置により制動力を発生させて、駆動力操作量に応じた自車両Vの加速を抑制してもよい。
(8)本実施形態では、駐車枠確信度を、最低値であるレベル0と、最低値よりも複数段階上のレベル(レベル1〜4)として算出したが、駐車枠確信度の段階は、これに限定するものではない。すなわち、駐車枠確信度を、最低値であるレベル(例えば、「レベル0」)と、最低値よりも上のレベル(例えば、「レベル100」)との二段階のみとして算出してもよい。
(9)本実施形態では、駐車枠進入確信度を、最低値の「レベル0」、レベル0よりも高いレベルの「レベル低」、レベル低よりも高いレベルの「レベル高」として算出したが、駐車枠進入確信度の段階は、これに限定するものではない。すなわち、駐車枠進入確信度を、最低値であるレベル(例えば、「レベル0」)と、最低値よりも高いレベル(例えば、「レベル100」)との二段階のみとして算出してもよい。
(10)本実施形態では、総合確信度を、五段階のレベルのいずれかとして算出した駐車枠確信度と、三段階のレベルのいずれかとして算出した駐車枠進入確信度に応じて、四段階のレベル(「極低」、「低」、「高」、「極高」)のいずれかとして算出した。しかしながら、総合確信度の段階は、これに限定するものではない。すなわち、総合確信度を、最低値であるレベル(例えば、「レベル0」)と、最低値よりも高いレベル(例えば、「レベル100」)との二段階のみとして算出してもよい。
この場合、例えば、駐車枠確信度及び駐車枠進入確信度を最低値であるレベルとして算出すると、総合確信度を、最低値であるレベルとして算出する。また、例えば、駐車枠確信度及び駐車枠進入確信度を最低値よりも高いレベルとして算出すると、総合確信度を、最低値よりも高いレベルとして算出する。
(第二実施形態)
以下、本発明の第二実施形態(以下、「本実施形態」と記載する)について、図面を参照しつつ説明する。
(構成)
まず、図1から図20を参照しつつ、図21及び図22を用いて、本実施形態の車両用加速抑制装置1の構成を説明する。
本実施形態の車両用加速抑制装置1は、加速抑制制御内容演算部10Iで行なう処理を除き、上述した第一実施形態と同様であるため、加速抑制制御内容演算部10Iで行なう処理以外については、その説明を省略する場合がある。
また、本実施形態の車両用加速抑制装置1は、加速抑制制御内容演算部10Iで行なう処理のうち、加速抑制作動条件判断部34と駐車枠進入確信度算出部38が行なう処理以外の処理が、上述した第一実施形態と異なる。このため、以降の説明では、上述した第一実施形態と同様の処理については、記載を省略する場合がある。
本実施形態の駐車枠確信度算出部36は、上述したステップS208の処理において、まず、自車両Vの進行方向が前進であるか後退であるかを判定し、その判定結果に応じて、設定移動距離を設定する。そして、自車両Vの進行方向に応じて設定した設定移動距離に基づき、ステップS206の処理を開始してから自車両Vの移動距離が設定移動距離となるまでに、ステップS206の処理が連続して照合するか否かを判断する処理を行う。
ここで、自車両Vの進行方向に応じて設定移動距離を設定する処理は、例えば、シフトポジション演算部10Eから入力を受けた現在シフト位置信号を参照して行なう。
また、本実施形態では、一例として、自車両Vの進行方向が前進であると判定すると、設定移動距離を2.5[m]に設定し、自車両Vの進行方向が後退であると判定すると、設定移動距離を1[m]に設定する場合について説明する。
なお、上記の設定移動距離は、一例であり、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
したがって、本実施形態では、ステップS208の処理において、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルが「レベル1」として算出されにくくなる。
また、本実施形態の駐車枠確信度算出部36は、上述したステップS212の処理において、まず、自車両Vの進行方向が前進であるか後退であるかを判定する。
そして、自車両Vの進行方向が前進である場合は、上述した第一実施形態と同様、同じ側に位置する端点同士が、幅WLの方向に沿って対向していると判断した場合、駐車枠確信度算出部36が行なう処理をステップS216へ移行させる。
一方、自車両Vの進行方向が後退である場合は、線La,Lbのうち一方の端点形状が、例えば、U字状(図4(g)〜(k)、(m)、(n)を参照)であることを認識すると、駐車枠確信度算出部36が行なう処理をステップS216へ移行させる。すなわち、自車両Vの進行方向が後退である場合は、線La,Lbのうち一方の端点形状が、公道上に標示されていない形状であることを認識すると、駐車枠確信度算出部36が行なう処理をステップS216へ移行させる。
したがって、本実施形態では、ステップS212の処理において、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルが「レベル3」として算出されにくくなる。
すなわち、本実施形態では、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルが上がりにくくなる。このため、本実施形態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
また、本実施形態の総合確信度算出部40は、駐車枠確信度信号及び駐車枠進入確信度信号の入力を受け、駐車枠確信度信号が含む駐車枠確信度と、駐車枠進入確信度信号が含む駐車枠進入確信度を、図21中に示す総合確信度算出マップに適合させる。そして、駐車枠確信度と駐車枠進入確信度に基づき、総合確信度を算出する。
なお、図21は、本実施形態で用いる総合確信度算出マップを示す図である。また、図21中では、図13中と同様、駐車枠確信度を「枠確信度」と示し、駐車枠進入確信度を「進入確信度」と示す。
ここで、本実施形態の総合確信度算出部40が用いる総合確信度算出マップは、上述した第一実施形態の総合確信度算出部40が用いる総合確信度算出マップと異なり、自車両Vの進行方向の判定結果に応じて、総合確信度のレベルを変更する。なお、図21中では、自車両Vの進行方向が前進であると判定した場合の総合確信度を、「進入確信度」欄において、「前進時レベル低」及び「前進時レベル高」と示す。これに加え、図21中では、自車両Vの進行方向が後退であると判定した場合の総合確信度を、「進入確信度」欄において、「後退時レベル低」及び「後退時レベル高」と示す。
また、本実施形態の総合確信度算出部40は、図21中に示すように、自車両Vの進行方向が後退であると判定した場合の総合確信度を、自車両Vの進行方向が前進であると判定した場合の総合確信度以上のレベルとして算出する。
本実施形態の総合確信度算出部40が総合確信度を算出する処理の一例として、駐車枠確信度が「レベル2」であり、駐車枠進入確信度が「前進時レベル高」である場合では、図21中に示すように、総合確信度を「低」として算出する。一方、駐車枠確信度が「レベル2」であり、駐車枠進入確信度が「後退時レベル高」である場合では、図21中に示すように、総合確信度を「高」として算出する。
また、本実施形態の総合確信度算出部40が総合確信度を算出する処理の一例として、自車両Vの進行方向が前進であっても、既に駐車中とみなし、後退時と同様の算出を行うことで、前進の際に駐車枠確信度のレベルを上がりやすくする処理を行ってもよい。この処理は、自車両Vの前進中に駐車枠確信度が「レベル1」として算出された後に自車両Vが後退し、所定の距離(例えば、2.5[m])以内を後退中に、再度、前進した場合に適用する。
以上説明したように、本実施形態では、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、総合確信度のレベルが上がりにくくなる。このため、本実施形態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
また、本実施形態の加速抑制制御開始タイミング演算部42は、自車両Vの進行方向が後退であると判定した場合、総合確信度信号が含む総合確信度を、図22中に示す後退時用の加速抑制条件演算マップに適合させる。そして、総合確信度に基づき、加速抑制制御開始タイミングを演算する。
なお、図22は、後退時用の加速抑制条件演算マップを示す図である。また、図22中では、図14中と同様、「加速抑制条件」の欄において、加速抑制制御開始タイミングを「抑制制御開始タイミング(アクセル開度)」と示す。
ここで、本実施形態の加速抑制制御開始タイミング演算部42が用いる後退時用の加速抑制条件演算マップでは、上述した第一実施形態の加速抑制条件演算マップと比較して、総合確信度に対する加速抑制制御開始タイミングを早めに設定する。したがって、本実施形態の加速抑制制御開始タイミング演算部42が用いる後退時用の加速抑制条件演算マップでは、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
本実施形態の加速抑制制御開始タイミング演算部42が行なう処理の一例として、総合確信度が「低」である場合では、図22中に示すように、加速抑制制御開始タイミングを、アクセルペダル32の開度が増加して「50%」に達したタイミングに設定する。なお、図22中に示す加速抑制制御開始タイミングは、一例であり、図14中に示す加速抑制制御開始タイミングと同様、自車両Vの諸元等に応じて変更してもよい。
また、本実施形態の加速抑制制御量演算部44は、自車両Vの進行方向が後退であると判定した場合、総合確信度信号が含む総合確信度を、図22中に示す後退時用の加速抑制条件演算マップに適合させる。そして、総合確信度に基づき、加速抑制制御量を演算する。なお、図22中では、図14中と同様、「加速抑制条件」の欄において、加速抑制制御量を「抑制量」と示す。
ここで、本実施形態の加速抑制制御量演算部44が用いる後退時用の加速抑制条件演算マップでは、上述した第一実施形態の加速抑制条件演算マップと比較して、総合確信度に対する加速抑制制御量を大きめに設定する。したがって、本実施形態の加速抑制制御量演算部44が用いる後退時用の加速抑制条件演算マップでは、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
本実施形態の加速抑制制御量演算部44が行なう処理の一例として、総合確信度が「極低」である場合では、図22中に示すように、加速抑制制御量を、実際のアクセルペダル32の開度に対して、「中」レベルのスロットル開度に抑制される制御量に設定する。なお、図22中に示す加速抑制制御量は、一例であり、図14中に示す加速抑制制御量と同様、自車両Vの諸元等に応じて変更してもよい。
以上説明したように、本実施形態では、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、加速抑制制御開始タイミングを早めに設定するとともに、加速抑制制御量を大きめに設定する。このため、本実施形態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
(動作)
次に、図1から図22を参照して、本実施形態の車両用加速抑制装置1を用いて行なう動作の一例を説明する。なお、上述した第一実施形態と同様の動作等については、説明を省略する場合がある。
以下に記載する動作の一例では、上述した第一実施形態と同様、駐車場内を走行する自車両Vが、運転者の選択した駐車枠L0に進入する例を説明する。
自車両Vの走行中には、駐車枠確信度算出部36が駐車枠確信度を算出し、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する。そして、総合確信度算出部40が、駐車枠確信度及び駐車枠進入確信度に基づく総合確信度を算出する。
さらに、自車両Vの走行中には、総合確信度算出部40が算出した総合確信度に基づき、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算し、加速抑制制御量演算部44が加速抑制制御量を演算する。
そして、自車両Vが駐車枠L0へ進入すると判断し、加速抑制制御作動条件が成立すると判断すると、加速抑制指令値演算部10Jが、加速抑制指令値信号を目標スロットル開度演算部10Kへ出力する。さらに、目標スロットル開度演算部10Kが、目標スロットル開度信号をエンジンコントローラ12へ出力する。
ここで、本実施形態では、駐車枠確信度算出部36が駐車枠確信度を算出する処理において、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルを上がりにくくしている。
このため、加速抑制制御作動条件が成立した状態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
また、本実施形態では、総合確信度算出部40が総合確信度を算出する処理において、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルを上がりにくくしている。
このため、加速抑制制御作動条件が成立した状態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
また、本実施形態では、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算する処理において、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルを上がりにくくしている。
このため、加速抑制制御作動条件が成立した状態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
また、本実施形態では、加速抑制制御量演算部44が加速抑制制御量を演算する処理において、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルを上がりにくくしている。
このため、加速抑制制御作動条件が成立した状態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
なお、上述したシフトポジションセンサ20及びシフトポジション演算部10Eは、自車両進行方向検出部に対応する。
また、上述したように、本実施形態の車両用加速抑制方法は、自車両Vの進行方向が前進である場合は、後退である場合に比べて、アクセルペダル32の操作量に応じた加速指令値を低い抑制度合いで抑制する方法である。
(第二実施形態の効果)
以下、本実施形態の効果を記載する。
本実施形態では、上述した第一実施形態の効果に加え、さらに、以下に記載する効果を奏することが可能となる。
(1)シフトポジションセンサ20及びシフトポジション演算部10Eにより、自車両の走行状態を検出する。これに加え、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kが、自車両Vの進行方向が前進である場合は、後退である場合に比べて、加速指令値の抑制度合いを低くする。すなわち、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kは、自車両Vの進行方向が後退である場合は、前進である場合に比べて、加速指令値の抑制度合いを高くする。
このため、自車両Vの進行方向が、運転者が進行方向を視認しやすい前進である場合には、前進時よりも運転者が進行方向を視認しにくい後退である場合よりも、加速指令値の抑制度合いを低くして、運転性の低下を少なくすることが可能となる。さらに、自車両Vの進行方向が、前進時よりも運転者が進行方向を視認しにくい後退である場合には、運転者が進行方向を視認しやすい前進である場合よりも、加速指令値の抑制度合いを高くして、自車両Vの加速抑制効果を高くすることが可能となる。
その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(2)本実施形態の車両用加速抑制方法では、自車両Vの進行方向を検出し、自車両Vの進行方向が前進である場合は、後退である場合に比べて、加速指令値を低い抑制度合いで抑制する。
このため、自車両Vの進行方向が、運転者が進行方向を視認しやすい前進である場合には、前進時よりも運転者が進行方向を視認しにくい後退である場合よりも、加速指令値の抑制度合いを低くして、運転性の低下を少なくすることが可能となる。さらに、自車両Vの進行方向が、前進時よりも運転者が進行方向を視認しにくい後退である場合には、運転者が進行方向を視認しやすい前進である場合よりも、加速指令値の抑制度合いを高くして、自車両Vの加速抑制効果を高くすることが可能となる。
その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(変形例)
(1)本実施形態では、自車両Vの進行方向が前進である場合には、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルを上がりにくくして、加速指令値の抑制度合いが低くなる構成としているが、これに限定するものではない。すなわち、例えば、平行度閾値、旋回半径閾値、第一閾値及び第二閾値のうち少なくとも一つの設定を変更して、自車両Vの進行方向が前進である場合には、自車両Vの進行方向が後退である場合よりも、駐車枠進入確信度のレベルを上がりにくくしてもよい。これにより、自車両Vの進行方向が前進である場合には、自車両Vの進行方向が後退である場合よりも、駐車枠進入確信度のレベルを上がりにくくして、加速指令値の抑制度合いが低くなる構成としてもよい。
(2)本実施形態では、自車両Vの進行方向が前進である場合には、自車両Vの進行方向が後退である場合よりも設定移動距離を長く設定して、駐車枠確信度のレベルを上がりにくくしたが、これに限定するものではない。すなわち、例えば、上述した四つの条件(C1〜C4)を満足するか否かを判定する処理において、線Laが途切れている場合、自車両Vの進行方向が前進である場合には、2[m]程度の仮想線を延長した4[m]程度の線として処理を継続する。これに対し、自車両Vの進行方向が後退である場合には、3[m]程度の仮想線を延長した5[m]程度の線として処理を継続する。これにより、自車両Vの進行方向が前進である場合には、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルを上がりにくくしてもよい。
(3)本実施形態では、上述したシフトポジションセンサ20及びシフトポジション演算部10Eを用いて、自車両Vの進行方向を検出したが、これに限定するものではない。すなわち、例えば、自車両Vに、車体の前後方向(車両前後方向)への加速度を検出する前後加速度センサを備え、前後加速度センサが検出した加速度に基づいて、自車両Vの進行方向を検出してもよい。
(4)本実施形態では、総合確信度算出部40が算出した総合確信度に基づいて、加速抑制制御開始タイミングと加速抑制制御量を演算したが、これに限定するものではない。すなわち、駐車枠確信度算出部36が算出した駐車枠確信度と、自車両Vの進行方向が前進であるか後退であるかに基づき、加速抑制制御開始タイミングと加速抑制制御量を演算してもよい。この場合、加速抑制制御開始タイミングと加速抑制制御量は、駐車枠確信度を、例えば、図23中に示す加速抑制条件演算マップに適合させて演算する。なお、図23は、本実施形態の変形例を示す図である。
(5)本実施形態では、自車両Vの進行方向が前進である場合は、自車両Vの進行方向が後退である場合に比べて、自車両Vの加速の抑制度合いを低くするが、加速の抑制度合いの制御は、これに限定するものではない。すなわち、自車両Vの進行方向が後退である場合に、自車両Vの進行方向が前進である場合に比べて、自車両Vの加速の抑制度合いを低くしてもよい。
(第三実施形態)
以下、本発明の第三実施形態(以下、「本実施形態」と記載する)について、図面を参照しつつ説明する。
(構成)
まず、図1から図23を参照しつつ、図24を用いて、本実施形態の車両用加速抑制装置1の構成を説明する。
本実施形態の車両用加速抑制装置1は、加速抑制制御内容演算部10Iで行なう処理を除き、上述した第一実施形態と同様であるため、加速抑制制御内容演算部10Iで行なう処理以外については、その説明を省略する場合がある。
また、本実施形態の車両用加速抑制装置1は、加速抑制制御内容演算部10Iで行なう処理のうち、駐車枠確信度算出部36と総合確信度算出部40が行なう処理以外の処理は、上述した第一実施形態と同様であるため、その説明を省略する。
本実施形態の駐車枠確信度算出部36は、上述したステップS208の処理において、まず、操舵角信号の入力を受け、自車両Vの走行状態が旋回状態であるか否かを判断し、その判断結果に応じて、設定移動距離を設定する。そして、自車両Vの走行状態が旋回状態であるか否かに応じて設定した設定移動距離に基づき、ステップS206の処理を開始してから自車両Vの移動距離が設定移動距離となるまでに、ステップS206の処理が連続して照合するか否かを判断する処理を行う。
ここで、自車両Vの走行状態が旋回状態であるか否かを判断する処理としては、例えば、操舵角信号が含む、ステアリングホイール28の中立位置からの操作量(回転角)を参照する。さらに、参照した回転角が、予め設定した旋回状態判断用閾値(例えば、90[°])を超えているか否かを判定する。そして、参照した回転角が旋回状態判断用閾値を超えている場合、自車両Vが旋回状態であると判断する。
なお、旋回状態判断用閾値は、90[°]に限定するものではなく、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
ここで、自車両Vの走行状態が旋回状態であるか否かに応じて設定移動距離を設定する処理は、例えば、操舵角演算部10Cから入力を受けた操舵角信号を参照して行なう。
また、本実施形態では、一例として、自車両Vの走行状態が旋回状態ではないと判断すると、設定移動距離を2.5[m]に設定し、自車両Vの走行状態が旋回状態であると判断すると、設定移動距離を1[m]に設定する場合について説明する。
なお、上記の設定移動距離は、一例であり、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
したがって、本実施形態では、ステップS208の処理において、自車両Vの走行状態が旋回状態である場合、自車両Vの走行状態が旋回状態ではない場合よりも、駐車枠確信度のレベルが「レベル1」として算出されにくくなる。
また、本実施形態の総合確信度算出部40は、例えば、上述した駐車枠確信度算出部36と同様の処理を行い、自車両Vの走行状態が旋回状態であるか否かを判断する処理を行う。
また、本実施形態の総合確信度算出部40は、駐車枠確信度信号及び駐車枠進入確信度信号の入力を受け、駐車枠確信度信号が含む駐車枠確信度と、駐車枠進入確信度信号が含む駐車枠進入確信度を、図24中に示す総合確信度算出マップに適合させる。そして、駐車枠確信度と駐車枠進入確信度に基づき、総合確信度を算出する。
なお、図24は、本実施形態で用いる総合確信度算出マップを示す図である。また、図24中では、図13中と同様、駐車枠確信度を「枠確信度」と示し、駐車枠進入確信度を「進入確信度」と示す。
ここで、本実施形態の総合確信度算出部40が用いる総合確信度算出マップは、上述した第一実施形態の総合確信度算出部40が用いる総合確信度算出マップと異なり、自車両Vが旋回状態であるか否かの判断結果に応じて、総合確信度のレベルを変更する。なお、図24中では、自車両Vが旋回状態ではないと判断した場合の総合確信度を、「進入確信度」欄において、「非旋回状態時レベル低」及び「非旋回状態時レベル高」と示す。これに加え、図24中では、自車両Vが旋回状態であると判断した場合の総合確信度を、「進入確信度」欄において、「旋回状態時レベル低」及び「旋回状態時レベル高」と示す。
また、本実施形態の総合確信度算出部40は、図24中に示すように、自車両Vが旋回状態であると判断した場合の総合確信度を、自車両Vが旋回状態ではないと判断した場合の総合確信度以上のレベルとして算出する。
本実施形態の総合確信度算出部40が総合確信度を算出する処理の一例として、駐車枠確信度が「レベル2」であり、駐車枠進入確信度が「非旋回状態時レベル高」である場合では、図24中に示すように、総合確信度を「低」として算出する。一方、駐車枠確信度が「レベル2」であり、駐車枠進入確信度が「旋回状態時レベル高」である場合では、図24中に示すように、総合確信度を「高」として算出する。
したがって、本実施形態では、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、総合確信度が高いレベルとして算出されやすくなる。これにより、本実施形態では、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、加速指令値の抑制度合いが高くなる。
(動作)
次に、図1から図24を参照して、本実施形態の車両用加速抑制装置1を用いて行なう動作の一例を説明する。なお、上述した第一実施形態と同様の動作等については、説明を省略する場合がある。
以下に記載する動作の一例では、上述した第一実施形態と同様、駐車場内を走行する自車両Vが、運転者の選択した駐車枠L0に進入する例を説明する。
自車両Vの走行中には、駐車枠確信度算出部36が駐車枠確信度を算出し、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する。そして、総合確信度算出部40が、駐車枠確信度及び駐車枠進入確信度に基づく総合確信度を算出する。
さらに、自車両Vの走行中には、総合確信度算出部40が算出した総合確信度に基づき、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算し、加速抑制制御量演算部44が加速抑制制御量を演算する。
そして、自車両Vが駐車枠L0へ進入すると判断し、加速抑制制御作動条件が成立すると判断すると、加速抑制指令値演算部10Jが、加速抑制指令値信号を目標スロットル開度演算部10Kへ出力する。さらに、目標スロットル開度演算部10Kが、目標スロットル開度信号をエンジンコントローラ12へ出力する。
ここで、本実施形態では、総合確信度算出部40が総合確信度を算出する処理において、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、総合確信度を高いレベルとして算出されやすくしている。
このため、加速抑制制御作動条件が成立した状態では、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、加速指令値の抑制度合いが高くなる。
なお、上述した操舵角センサ18及び操舵角演算部10Cは、自車両旋回状態検出部に対応する。
また、上述したように、本実施形態の車両用加速抑制方法は、自車両Vの旋回状態を検出しない場合、自車両Vの旋回状態を検出した場合に比べて、アクセルペダル32の操作量に応じた加速指令値を低い抑制度合いで抑制する方法である。
(第三実施形態の効果)
以下、本実施形態の効果を記載する。
本実施形態では、上述した第一実施形態の効果に加え、さらに、以下に記載する効果を奏することが可能となる。
(1)操舵角センサ18及び操舵角演算部10Cにより、自車両Vが旋回状態であるか否かを検出する。これに加え、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kが、自車両Vが旋回状態ではない場合、自車両Vが旋回状態である場合に比べて、加速指令値の抑制度合いを低くする。すなわち、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kは、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合に比べて、加速指令値の抑制度合いを高くする。
このため、自車両Vの走行状態が、運転者が加速を意図する場合が多い直進である場合には、直進時よりも運転者が加速を意図する場合が少ない旋回である場合よりも、加速指令値の抑制度合いを低くして、運転性の低下を少なくすることが可能となる。さらに、自車両Vの走行状態が、直進時よりも運転者が加速を意図する場合が少ない旋回である場合には、運転者が加速を意図する場合が多い直進時よりも、加速指令値の抑制度合いを高くして、自車両Vの加速抑制効果を高くすることが可能となる。
その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(2)本実施形態の車両用加速抑制方法では、自車両Vが旋回状態であるか否かを検出し、自車両Vの旋回状態を検出しない場合、自車両Vの旋回状態を検出した場合に比べて、加速指令値を低い抑制度合いで抑制する。
このため、自車両Vの走行状態が、運転者が加速を意図する場合が多い直進である場合には、直進時よりも運転者が加速を意図する場合が少ない旋回である場合よりも、加速指令値の抑制度合いを低くして、運転性の低下を少なくすることが可能となる。さらに、自車両Vの走行状態が、直進時よりも運転者が加速を意図する場合が少ない旋回である場合には、運転者が加速を意図する場合が多い直進時よりも、加速指令値の抑制度合いを高くして、自車両Vの加速抑制効果を高くすることが可能となる。
その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(変形例)
(1)本実施形態では、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、総合確信度を高いレベルとして算出されやすくして、加速指令値の抑制度合いが高くなる構成としているが、これに限定するものではない。すなわち、例えば、加速抑制制御開始タイミングや加速抑制制御量を変化させて、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、加速指令値の抑制度合いを高くする構成としてもよい。また、例えば、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、駐車枠確信度や駐車枠進入確信度を高いレベルとして算出されやすくして、加速指令値の抑制度合いが高くなる構成としてもよい。
(2)本実施形態では、旋回状態判断用閾値を、ステアリングホイール28の回転角に対応する値(例えば、90[°])に設定したが、旋回状態判断用閾値は、これに限定するものではない。すなわち、自車両Vの構成を、自車両Vのヨーレートを検出するヨーレートセンサを備えた構成とし、旋回状態判断用閾値を、自車両Vのヨーレートに対応する値(例えば、100[R])に設定してもよい。また、自車両Vの構成を、転舵輪(例えば、右前輪WFR及び左前輪WFL)の転舵角を検出する転舵角センサを備えた構成とし、旋回状態判断用閾値を、転舵輪の転舵角に対応する値(例えば、6[°])に設定してもよい。
(3)本実施形態では、総合確信度算出部40が算出した総合確信度に基づいて、加速抑制制御開始タイミングと加速抑制制御量を演算したが、これに限定するものではない。すなわち、駐車枠確信度算出部36が算出した駐車枠確信度と、自車両Vが旋回状態であるか否かの判断に基づき、加速抑制制御開始タイミングと加速抑制制御量を演算してもよい。この場合、加速抑制制御開始タイミングと加速抑制制御量は、駐車枠確信度を、例えば、図25中に示す加速抑制条件演算マップに適合させて演算する。なお、図25は、本実施形態の変形例を示す図である。
また、図25中に示す加速抑制条件演算マップを用いた状態で、自車両Vの走行状態が旋回状態である場合には、例えば、図22中に示すものと同様の加速抑制条件演算マップを用いて、加速抑制制御開始タイミングと加速抑制制御量を演算してもよい。
(第四実施形態)
以下、本発明の第四実施形態(以下、「本実施形態」と記載する)について、図面を参照しつつ説明する。
(構成)
まず、図1から図25を参照しつつ、図26を用いて、本実施形態の車両用加速抑制装置1の構成を説明する。
本実施形態の車両用加速抑制装置1は、加速抑制制御内容演算部10Iで行なう処理を除き、上述した第一実施形態と同様であるため、加速抑制制御内容演算部10Iで行なう処理以外については、その説明を省略する場合がある。
また、本実施形態の車両用加速抑制装置1は、加速抑制制御内容演算部10Iで行なう処理のうち、加速抑制作動条件判断部34と総合確信度算出部40が行なう処理以外の処理は、上述した第一実施形態と同様であるため、その説明を省略する。
本実施形態の加速抑制作動条件判断部34は、上述したステップS106の処理において、自車両Vの車速が、予め設定した複数の閾値車速領域のうち、いずれの領域に適合するかを判定する処理を行う。そして、ステップS106の処理を行うと、本実施形態の加速抑制作動条件判断部34が行なう処理は、ステップS108へ移行する。
なお、本実施形態では、一例として、図26中に示すように、複数の閾値車速領域として、四つの領域を設定した場合について説明する。また、図26は、本実施形態の加速抑制制御内容演算部10Iで行なう処理に用いるマップであり、車速と制御内容との関連を示すマップである。
ここで、四つの閾値車速領域は、0[km/h]の第一車速領域、0[km/h]以上15[km/h]以下の第二車速領域、15[km/h]を超え20[km/h]以下の第三車速領域、20[km/h]を超える第四車速領域である。
次に、本実施形態の加速抑制作動条件判断部34は、上述したステップS118の処理において、ステップS106で判定した自車両Vの車速が適合する閾値車速領域に基づき、自車両Vが駐車枠へ進入すると判断する条件を変更する。なお、図26中では、自車両Vが駐車枠へ進入すると判断する条件を、加速抑制制御を開始するか否かの条件とし、「制御内容」欄に「制御開始」として示す。
自車両Vが駐車枠へ進入すると判断する条件を変更する処理の具体例としては、自車両Vの車速が第一車速領域または第二車速領域である場合、上述した条件Aの設定値を、上述した第一実施形態と同様の値とする処理を行う。ここで、条件Aの設定値とは、上述した設定舵角値、設定時間、設定角度、設定距離のうち、少なくとも一つである。なお、図26中では、条件(A1〜A3)の設定値を第一実施形態と同様の値とする状態を、符合「○」で示す。
一方、自車両Vの車速が第三車速領域または第四車速領域である場合、条件Aの設定値を、第一実施形態よりも、自車両Vが駐車枠へ進入すると判断されにくい値に変更する。これは、例えば、条件A1における設定時間を、第一実施形態よりも長い時間に変更する等の処理によって行なう。なお、図26中では、条件Aの設定値を第一実施形態よりも自車両Vが駐車枠へ進入すると判断されにくい値に変更する状態を、「制御開始条件を規制」と示す。
また、本実施形態の加速抑制作動条件判断部34は、加速抑制制御が作動している状態では、ステップS106で判定した自車両Vの車速が適合する閾値車速領域に基づき、作動中の加速抑制制御を継続させる条件を変更する。なお、図26中では、作動中の加速抑制制御を継続させる条件を、「制御内容」欄に「制御継続」として示す。
作動中の加速抑制制御を継続させる条件を変更する処理の具体例としては、自車両Vの車速が第四車速領域以外である場合、作動中の加速抑制制御を継続させる処理を行う。なお、図26中では、作動中の加速抑制制御を継続させる状態を、符合「○」で示す。
一方、自車両Vの車速が第四車速領域である場合、例えば、条件Aの設定値を、第一実施形態よりも、自車両Vが駐車枠へ進入すると判断されにくい値に変更して、作動中の加速抑制制御を終了させやすくする処理を行う。なお、図26中では、作動中の加速抑制制御を終了させやすくする状態を、「制御終了条件を緩和」と示す。
また、本実施形態の総合確信度算出部40は、車速演算値信号の入力を受け、加速抑制作動条件判断部34で行なう処理と同様、自車両Vの車速がいずれの閾値車速領域に適合するかを判定する処理を行う。なお、総合確信度算出部40で行なう、自車両Vの車速がいずれの閾値車速領域に適合するかを判定する処理では、加速抑制作動条件判断部34で行なった処理結果を用いてもよい。
そして、本実施形態の総合確信度算出部40は、駐車枠確信度と駐車枠進入確信度に基づいて総合確信度を算出し、さらに、自車両Vの車速が適合する閾値車速領域に基づき、総合確信度のレベルを変更する処理を行う。なお、図26中では、総合確信度のレベルを変更する処理を、「制御内容」欄に「確信度」として示す。
総合確信度のレベルを変更する処理の具体例としては、自車両Vの車速が第一車速領域または第二車速領域である場合、駐車枠確信度と駐車枠進入確信度に基づいて算出した総合確信度のレベルを保持する処理を行う。なお、図26中では、駐車枠確信度と駐車枠進入確信度に基づいて算出した総合確信度のレベルを保持する状態を、符合「‐」で示す。
一方、自車両Vの車速が第三車速領域である場合、加速抑制制御が作動中であれば、駐車枠確信度と駐車枠進入確信度に基づいて算出した総合確信度のレベルを保持する処理を行う。なお、図26中では、加速抑制制御の作動中に総合確信度のレベルを保持する状態を、「制御中は確信度を保持」と示す。
また、自車両Vの車速が第三車速領域である場合、加速抑制制御が作動していない状態であれば、駐車枠確信度と駐車枠進入確信度に基づいて算出した総合確信度のレベルを下げる(例えば、一段階下げる)処理を行う。なお、図26中では、加速抑制制御が作動していない状態で総合確信度のレベルを下げる状態を、「制御中以外は確信度のレベルを下げる」と示す。
また、自車両Vの車速が第四車速領域である場合、加速抑制制御が作動しているか否かに関わらず、駐車枠確信度と駐車枠進入確信度に基づいて算出した総合確信度のレベルを下げる(例えば、一段階下げる)処理を行う。なお、図26中では、加速抑制制御が作動しているか否かに関わらず総合確信度のレベルを下げる状態を、「一律に確信度のレベルを下げる」と示す。
したがって、本実施形態では、自車両Vの車速が高いほど、総合確信度が低いレベルとして算出されやすくなる。これにより、本実施形態では、自車両Vの車速が低いほど、加速指令値を高い抑制度合いで抑制する。
(動作)
次に、図1から図26を参照して、本実施形態の車両用加速抑制装置1を用いて行なう動作の一例を説明する。なお、上述した第一実施形態と同様の動作等については、説明を省略する場合がある。
以下に記載する動作の一例では、上述した第一実施形態と同様、駐車場内を走行する自車両Vが、運転者の選択した駐車枠L0に進入する例を説明する。
自車両Vの走行中には、駐車枠確信度算出部36が駐車枠確信度を算出し、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する。そして、総合確信度算出部40が、駐車枠確信度及び駐車枠進入確信度に基づく総合確信度を算出する。
さらに、自車両Vの走行中には、総合確信度算出部40が算出した総合確信度に基づき、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算し、加速抑制制御量演算部44が加速抑制制御量を演算する。
そして、自車両Vが駐車枠L0へ進入すると判断し、加速抑制制御作動条件が成立すると判断すると、加速抑制指令値演算部10Jが、加速抑制指令値信号を目標スロットル開度演算部10Kへ出力する。さらに、目標スロットル開度演算部10Kが、目標スロットル開度信号をエンジンコントローラ12へ出力する。
ここで、本実施形態では、総合確信度算出部40が総合確信度を算出する処理において、自車両Vの車速が高いほど、総合確信度を低いレベルとして算出されやすくしている。
このため、加速抑制制御作動条件が成立した状態では、自車両Vの車速が低いほど、加速指令値を高い抑制度合いで抑制する。
なお、上述した車輪速センサ16及び自車両車速演算部10Bは、車速検出部に対応する。
また、上述したように、本実施形態の車両用加速抑制方法は、自車両Vの車速が高いほど、アクセルペダル32の操作量に応じた加速指令値を低い抑制度合いで抑制する方法である。
(第四実施形態の効果)
以下、本実施形態の効果を記載する。
本実施形態では、上述した第一実施形態の効果に加え、さらに、以下に記載する効果を奏することが可能となる。
(1)車輪速センサ16及び自車両車速演算部10Bにより、自車両Vの車速を検出する。これに加え、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kが、自車両Vの車速が高いほど、加速指令値を低い抑制度合いで抑制する。すなわち、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kは、自車両Vの車速が低いほど、加速指令値を高い抑制度合いで抑制する。
このため、自車両Vの車速が高く、運転者が自車両Vの駐車を意図していない可能性が高い場合には、自車両Vの車速が低く、運転者が自車両Vの駐車を意図している可能性が高い場合よりも、加速指令値の抑制度合いを低くする。これにより、運転性の低下を少なくすることが可能となる。さらに、自車両Vの車速が低く、運転者が自車両Vの駐車を意図している可能性が高い場合には、自車両Vの車速が高く、運転者が自車両Vの駐車を意図していない可能性が高い場合よりも、加速指令値の抑制度合いを高くする。これにより、自車両Vの加速抑制効果を高くすることが可能となる。
その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(2)本実施形態の車両用加速抑制方法では、自車両Vの車速が高いほど、加速指令値を低い抑制度合いで抑制する。
このため、自車両Vの車速が高く、運転者が自車両Vの駐車を意図していない可能性が高い場合には、自車両Vの車速が低く、運転者が自車両Vの駐車を意図している可能性が高い場合よりも、加速指令値の抑制度合いを低くする。これにより、運転性の低下を少なくすることが可能となる。さらに、自車両Vの車速が低く、運転者が自車両Vの駐車を意図している可能性が高い場合には、自車両Vの車速が高く、運転者が自車両Vの駐車を意図していない可能性が高い場合よりも、加速指令値の抑制度合いを高くする。これにより、自車両Vの加速抑制効果を高くすることが可能となる。
その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(変形例)
(1)本実施形態では、自車両Vの車速が高いほど、総合確信度を低いレベルとして算出されやすくして、加速指令値の抑制度合いが低くなる構成としているが、これに限定するものではない。すなわち、例えば、加速抑制制御開始タイミングや加速抑制制御量を変化させて、自車両Vの車速が高いほど、加速指令値の抑制度合いを低くする構成としてもよい。また、例えば、自車両Vの車速が高いほど、駐車枠確信度や駐車枠進入確信度を低いレベルとして算出されやすくして、加速指令値の抑制度合いが低くなる構成としてもよい。
(2)本実施形態では、複数の閾値車速領域として四つの領域を設定したが、これに限定するものではなく、複数の閾値車速領域としては、二つの領域、三つの領域、または、五つ以上の領域を設定してもよい。また、各閾値車速領域の設定速度は、上述した速度に限定するものではなく、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて設定・変更してもよい。
以上、本願が優先権を主張する日本国特許出願2012−259207(2012年11月27日出願)の全内容は、参照により本開示の一部をなす。
ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
1 車両用加速抑制装置
2 ブレーキ装置
4 流体圧回路
6 ブレーキコントローラ
8 エンジン
10 走行制御コントローラ
10A 周囲環境認識情報演算部
10B 自車両車速演算部
10C 操舵角演算部
10D 操舵角速度演算部
10E シフトポジション演算部
10F ブレーキペダル操作情報演算部
10G アクセル操作量演算部
10H アクセル操作速度演算部
10I 加速抑制制御内容演算部
10J 加速抑制指令値演算部
10K 目標スロットル開度演算部
12 エンジンコントローラ
14 周囲環境認識センサ(前方カメラ14F、右側方カメラ14SR、左側方カメラ14SL、後方カメラ14R)
16 車輪速センサ
18 操舵角センサ
20 シフトポジションセンサ
22 ブレーキ操作検出センサ
24 アクセル操作検出センサ
26 ナビゲーション装置
28 ステアリングホイール
30 ブレーキペダル
32 アクセルペダル
34 加速抑制作動条件判断部
36 駐車枠確信度算出部
38 駐車枠進入確信度算出部
40 総合確信度算出部
42 加速抑制制御開始タイミング演算部
44 加速抑制制御量演算部
V 自車両
W 車輪(右前輪WFR、左前輪WFL、右後輪WRR、左後輪WRL)

Claims (7)

  1. 運転者が操作して駆動力を指示する駆動力指示操作子の操作量に応じた自車両の加速を抑制することで、前記駆動力を抑制制御する車両用加速抑制装置であって、
    前記駆動力指示操作子の操作量である駆動力操作量を検出する駆動力操作量検出部と、
    前記駆動力操作量検出部が検出した駆動力操作量に応じて、前記自車両の加速を制御する加速制御部と、
    前記自車両に設けた周囲環境認識センサの検出情報に基づいて自車両周囲の環境を認識する周囲環境認識部と、
    前記自車両の進行方向が前進であるか後退であるかを検出する自車両進行方向検出部と、
    前記周囲環境認識部が認識した環境に基づいて、前記自車両の進行方向に駐車枠が存在する確信の度合いを示す駐車枠確信度を算出する駐車枠確信度算出部と、
    前記駐車枠確信度算出部が算出した駐車枠確信度と、前記自車両進行方向検出部が検出した進行方向と、に基づいて、前記加速制御部が制御する加速を抑制する加速抑制部と、を備え、
    前記加速抑制部は、前記駐車枠確信度算出部が算出した駐車枠確信度が低いときは、前記算出した駐車枠確信度が高いときに比べて、前記加速の抑制度合いを低くすることを特徴とする車両用加速抑制装置。
  2. 前記自車両の走行状態を検出する自車両走行状態検出部と、
    前記周囲環境認識部が認識した環境と、前記自車両走行状態検出部が検出した走行状態と、に基づいて、前記自車両が前記駐車枠へ進入する確信の度合いを示す駐車枠進入確信度を算出する駐車枠進入確信度算出部と、
    前記駐車枠確信度算出部が算出した駐車枠確信度及び前記駐車枠進入確信度算出部が算出した駐車枠進入確信度に基づいて、前記駐車枠確信度と前記駐車枠進入確信度との総合的な確信の度合いを示す総合確信度を算出する総合確信度算出部と、を備え、
    前記加速抑制部は、前記総合確信度算出部が算出した総合確信度が低いときは、算出した総合確信度が高いときに比べて、前記加速の抑制度合いを低くすることを特徴とする請求項1に記載した車両用加速抑制装置。
  3. 前記自車両の現在位置を検出する自車両現在位置検出部と、
    前記自車両が走行する道路の道路種別を検出する自車両走行路種別検出部と、を備え、
    前記駐車枠確信度算出部は、前記自車両現在位置検出部が検出した現在位置と、前記自車両走行路種別検出部が検出した道路種別と、を用いて、前記駐車枠確信度を算出することを特徴とする請求項1または請求項2に記載した車両用加速抑制装置。
  4. 前記加速抑制部は、前記加速制御部が制御する加速の抑制を開始するタイミングである加速抑制制御開始タイミングを遅れさせて、前記加速の抑制度合いを低くすることを特徴とする請求項1から請求項3のうちいずれか1項に記載した車両用加速抑制装置。
  5. 前記加速抑制部は、前記加速制御部が制御する加速を抑制するための制御量である加速抑制制御量を減少させて、前記加速の抑制度合いを低くすることを特徴とする請求項1から請求項4のうちいずれか1項に記載した車両用加速抑制装置。
  6. 運転者が操作して駆動力を指示する駆動力指示操作子の操作量に応じた自車両の加速を抑制することで、前記駆動力を抑制制御する車両用加速抑制方法であって、
    前記駆動力指示操作子の操作量である駆動力操作量と、前記自車両の進行方向が前進であるか後退であるかと、を検出し、
    前記自車両周囲の環境を認識し、
    前記認識した環境に基づいて前記自車両の進行方向に駐車枠が存在する確信の度合いを示す駐車枠確信度を算出し、
    前記算出した駐車枠確信度が低いときは、前記算出した駐車枠確信度が高いときに比べて、前記加速の抑制度合いを低くすることを特徴とする車両用加速抑制方法。
  7. 前記自車両の走行状態を検出し、
    前記認識した環境及び検出した走行状態に基づいて、前記自車両が前記駐車枠へ進入する確信の度合いを示す駐車枠進入確信度を算出し、
    前記算出した駐車枠確信度及び駐車枠進入確信度に基づいて、前記駐車枠確信度と前記駐車枠進入確信度との総合的な確信の度合いを示す総合確信度を算出し、
    前記算出した総合確信度が低いときは、算出した総合確信度が高いときに比べて、前記加速を低い抑制度合いで抑制することを特徴とする請求項6に記載した車両用加速抑制方法。
JP2014549821A 2012-11-27 2013-11-22 車両用加速抑制装置及び車両用加速抑制方法 Active JP5915771B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012259207 2012-11-27
JP2012259207 2012-11-27
PCT/JP2013/006888 WO2014083828A1 (ja) 2012-11-27 2013-11-22 車両用加速抑制装置及び車両用加速抑制方法

Publications (2)

Publication Number Publication Date
JP5915771B2 true JP5915771B2 (ja) 2016-05-11
JPWO2014083828A1 JPWO2014083828A1 (ja) 2017-01-05

Family

ID=50827489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014549821A Active JP5915771B2 (ja) 2012-11-27 2013-11-22 車両用加速抑制装置及び車両用加速抑制方法

Country Status (5)

Country Link
US (1) US9399400B2 (ja)
EP (1) EP2927079B1 (ja)
JP (1) JP5915771B2 (ja)
CN (1) CN104781122B (ja)
WO (1) WO2014083828A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104797477B (zh) * 2012-11-27 2017-04-05 日产自动车株式会社 车辆用加速抑制装置以及车辆用加速抑制方法
WO2014083826A1 (ja) * 2012-11-27 2014-06-05 日産自動車株式会社 車両用加速抑制装置及び車両用加速抑制方法
WO2014083823A1 (ja) * 2012-11-27 2014-06-05 日産自動車株式会社 車両用加速抑制装置及び車両用加速抑制方法
DE102013114563A1 (de) * 2013-12-19 2015-06-25 Valeo Schalter Und Sensoren Gmbh Verfahren zum Durchführen eines Einparkvorgangs eines Kraftfahrzeugs in eine Querparklücke, Parkassistenzsystem und Kraftfahrzeug
US10632977B2 (en) * 2014-10-03 2020-04-28 Ford Global Technologies, Llc Vehicular post-impact forward movement mitigation
JP2017030569A (ja) * 2015-07-31 2017-02-09 アイシン精機株式会社 駐車支援装置
JP6439233B2 (ja) * 2017-03-31 2018-12-19 マツダ株式会社 車両用画像表示装置及び画像処理方法
KR101964919B1 (ko) * 2017-05-26 2019-08-13 주식회사 만도 주차 제어 장치 및 그 방법
JP6638699B2 (ja) * 2017-05-30 2020-01-29 トヨタ自動車株式会社 誤操作判定装置
JP6919349B2 (ja) * 2017-06-09 2021-08-18 株式会社アイシン 走行支援システム
GB2570908B (en) * 2018-02-09 2020-07-15 Ford Global Tech Llc A method of operating a vehicle
JP7185408B2 (ja) * 2018-03-02 2022-12-07 本田技研工業株式会社 車両制御装置
CN108545069B (zh) * 2018-03-30 2020-03-10 北京图森未来科技有限公司 一种车辆停车控制方法及装置
JP2019206206A (ja) * 2018-05-28 2019-12-05 トヨタ自動車株式会社 駆動力制御装置
JP7229804B2 (ja) * 2019-02-14 2023-02-28 フォルシアクラリオン・エレクトロニクス株式会社 画像処理装置及び画像処理方法
JP7200736B2 (ja) * 2019-02-20 2023-01-10 トヨタ自動車株式会社 駆動力制御装置
JP7296768B2 (ja) * 2019-04-22 2023-06-23 フォルシアクラリオン・エレクトロニクス株式会社 画像処理装置及び画像処理方法
JP7448403B2 (ja) * 2020-03-31 2024-03-12 本田技研工業株式会社 駐車枠認識システム、及び、駐車枠認識システムを備えた駐車支援システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272913A (ja) * 1997-01-29 1998-10-13 Toyota Motor Corp 車両の制御装置
JP2005178626A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 車両の統合制御システム
JP2008285083A (ja) * 2007-05-18 2008-11-27 Toyota Motor Corp 駐車支援装置
JP2009071659A (ja) * 2007-09-14 2009-04-02 Alpine Electronics Inc 駐車支援装置
JP2010183234A (ja) * 2009-02-04 2010-08-19 Panasonic Corp 描画装置
JP2010195118A (ja) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd 駐車支援装置及び駐車支援方法
JP2011066657A (ja) * 2009-09-17 2011-03-31 Suzuki Motor Corp 後方画像表示切替装置及び方法
JP2012136206A (ja) * 2010-12-28 2012-07-19 Fujitsu Ten Ltd 駐車制御システム、及び、駐車制御方法
JP2012228119A (ja) * 2011-04-21 2012-11-15 Nissan Motor Co Ltd トルク制御装置及び非接触充電システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255389A (ja) * 1991-02-26 1994-09-13 Mitsubishi Electric Corp 車両の走行制御装置
JP3508665B2 (ja) * 1999-12-24 2004-03-22 株式会社豊田自動織機 操舵支援装置
JP4108314B2 (ja) * 2001-10-31 2008-06-25 トヨタ自動車株式会社 車両用周辺監視装置
JP3883049B2 (ja) 2001-11-06 2007-02-21 株式会社デンソー 乗物の安全装置及び乗物の安全運転方法をコンピュータに実現させるためのコンピュータプログラム
JP4427953B2 (ja) * 2003-01-29 2010-03-10 株式会社豊田自動織機 駐車支援装置
JP3883529B2 (ja) * 2003-08-28 2007-02-21 アイシン精機株式会社 車両後退支援装置
JP2005196326A (ja) * 2004-01-05 2005-07-21 Honda Motor Co Ltd 走行制限信号送信装置および走行制限装置
JP4466200B2 (ja) * 2004-04-19 2010-05-26 株式会社豊田自動織機 駐車支援装置
JP4574378B2 (ja) * 2005-02-09 2010-11-04 本田技研工業株式会社 車両の駐車支援システム
JP4835109B2 (ja) * 2005-10-31 2011-12-14 アイシン精機株式会社 駐車目標位置設定装置
JP5472026B2 (ja) * 2010-06-29 2014-04-16 トヨタ自動車株式会社 駐車支援装置
JP5830846B2 (ja) 2010-10-20 2015-12-09 富士通株式会社 車載装置、車両および制御方法
JP5218532B2 (ja) * 2010-12-01 2013-06-26 株式会社日本自動車部品総合研究所 運転支援装置および運転支援システム
JP5657410B2 (ja) * 2011-02-04 2015-01-21 本田技研工業株式会社 車両の走行制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272913A (ja) * 1997-01-29 1998-10-13 Toyota Motor Corp 車両の制御装置
JP2005178626A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 車両の統合制御システム
JP2008285083A (ja) * 2007-05-18 2008-11-27 Toyota Motor Corp 駐車支援装置
JP2009071659A (ja) * 2007-09-14 2009-04-02 Alpine Electronics Inc 駐車支援装置
JP2010183234A (ja) * 2009-02-04 2010-08-19 Panasonic Corp 描画装置
JP2010195118A (ja) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd 駐車支援装置及び駐車支援方法
JP2011066657A (ja) * 2009-09-17 2011-03-31 Suzuki Motor Corp 後方画像表示切替装置及び方法
JP2012136206A (ja) * 2010-12-28 2012-07-19 Fujitsu Ten Ltd 駐車制御システム、及び、駐車制御方法
JP2012228119A (ja) * 2011-04-21 2012-11-15 Nissan Motor Co Ltd トルク制御装置及び非接触充電システム

Also Published As

Publication number Publication date
EP2927079A4 (en) 2016-06-08
CN104781122A (zh) 2015-07-15
EP2927079B1 (en) 2018-01-31
CN104781122B (zh) 2017-04-12
WO2014083828A1 (ja) 2014-06-05
JPWO2014083828A1 (ja) 2017-01-05
US9399400B2 (en) 2016-07-26
EP2927079A1 (en) 2015-10-07
US20150291031A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
JP5915771B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5999195B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5915769B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5915770B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5994865B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5991382B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
WO2014083827A1 (ja) 車両用加速抑制装置
JP6007991B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP6155944B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP6136724B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5892259B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5900648B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP2014104855A (ja) 車両用加速抑制装置
JP5846318B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5892260B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5900647B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5900650B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R151 Written notification of patent or utility model registration

Ref document number: 5915771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151