WO2014082206A1 - 一种固态胺气体吸附材料的制备方法 - Google Patents

一种固态胺气体吸附材料的制备方法 Download PDF

Info

Publication number
WO2014082206A1
WO2014082206A1 PCT/CN2012/085356 CN2012085356W WO2014082206A1 WO 2014082206 A1 WO2014082206 A1 WO 2014082206A1 CN 2012085356 W CN2012085356 W CN 2012085356W WO 2014082206 A1 WO2014082206 A1 WO 2014082206A1
Authority
WO
WIPO (PCT)
Prior art keywords
amine
gas
solid
organic amine
silicate solution
Prior art date
Application number
PCT/CN2012/085356
Other languages
English (en)
French (fr)
Inventor
王宝冬
张中华
孙琦
Original Assignee
神华集团有限责任公司
北京低碳清洁能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神华集团有限责任公司, 北京低碳清洁能源研究所 filed Critical 神华集团有限责任公司
Priority to PCT/CN2012/085356 priority Critical patent/WO2014082206A1/zh
Priority to AU2012395691A priority patent/AU2012395691B2/en
Priority to US14/647,743 priority patent/US9649618B2/en
Priority to EP12889135.5A priority patent/EP2926896B1/en
Publication of WO2014082206A1 publication Critical patent/WO2014082206A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/291Gel sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • C01B33/154Preparation of hydrogels by acidic treatment of aqueous silicate solutions
    • C01B33/1546Preparation of hydrogels by acidic treatment of aqueous silicate solutions the first formed hydrosol being converted to a hydrogel by introduction into an organic medium immiscible or only partly miscible with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20415Tri- or polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4887Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the invention belongs to the field of preparation of adsorbing materials, and in particular, the invention relates to a method for preparing a solid amine gas adsorbing material, an adsorbing material prepared by the method and the use thereof.
  • the invention also relates to a method of preparing a solid amine gas adsorbent material from fly ash.
  • BACKGROUND OF THE INVENTION One drawback of industrial development and urbanization is the emission of exhaust gases. Exhaust gases typically contain toxic gases such as sulfur and nitrogen oxides (SO ⁇ P NOx), as well as carbon oxides such as carbon dioxide. The above exhaust gases are all acid gases.
  • the solid adsorption material carrying the amine functional group itself is a porous adsorption material, and the amine functional group at the end of the amine molecule can effectively capture the acid gas; when the adsorption material is in contact with the gas to be adsorbed, the synergy between physical adsorption and chemical adsorption is achieved. Its role has greatly improved its adsorption efficiency.
  • the combination of the amine and the carrier mainly includes a dipping method and a chemical bond grafting.
  • the preparation process by the impregnation method is simple, and it is easy to obtain a high content of amine, so the absorption capacity is high, but the amine and the carrier are not tightly combined, and the volatile loss is high at a higher temperature.
  • the absorbent prepared by the chemical bond grafting method, the amine group and the carrier are connected by chemical bonds, and the absorbent has high stability, but the chemical grafting preparation process is complicated and the grafting amount of the amine group is low, and the absorption capacity is generally smaller than that of the impregnated absorbent. .
  • porous supports such as silica, alumina, molecular sieves, and activated carbon.
  • organic amines In the selection of organic amines, MEA, PEI, DEA, TEPA, etc. are mainly used.
  • an organic amine of a suitable molecular size is required to match the pore size of the suitable solid support to the specific surface, so that the organic amine molecule can enter the inside of the pore as much as possible and uniformly load on the surface of the solid support.
  • ML Gray uses a fly ash as a carrier to load CPAHCL to synthesize a solid amine adsorbent using a dipping method, and its maximum adsorption capacity is only 1% by weight (C0 2 capture by amine-enriched fly ash carbon sorbents, ML Gray, Y.
  • the reason may be that, compared with the theoretical value, the organic amine distribution is not uniform enough, and the amine functional group at the end of the amine molecule is not uniformly on the solid surface and An effective carbon dioxide capture point is formed in the pore; or an amine functional group on the dendrimer and the surface of the solid support
  • the active site interactions affect the effective capture of carbon dioxide molecules.
  • the invention relates to a method for preparing a solid amine gas adsorbing material, which comprises a porous solid amine gas adsorbing material uniformly loaded with an organic amine in one step.
  • a certain amount of acid gas is introduced while introducing an organic amine molecule as a template in the silicate solution, not only the pore size of the 810 2 channel is uniform, but also the organic amine molecule can be uniformly and uniformly distributed on the surface of the Si0 2 .
  • the acid gas protects the -NH 2 group of the organic amine from the inactivation of the -NH 2 adhesion due to hydrogen bonding during material synthesis.
  • a method of preparing a solid amine gas adsorbent material comprising the steps of: 1) adding an organic amine to the silicate solution, while stirring, slowly introducing an acid gas into the solution until the pH of the solution is 9-11, thereby obtaining a < 2 sol or gel ;
  • SiO 2 sol or gel precipitate is filtered from the above solution, aged, dried and dehydrated to obtain a solid amine gas adsorbent.
  • the silicate solution has a concentration of from 5 to 50% by weight.
  • the silicate solution described in the above step (1) may be any soluble silicate solution known in the art, preferably a sodium silicate solution and/or a potassium silicate solution.
  • the silicate solution of the present invention can be obtained from a material containing silicon oxide.
  • the material containing silicon oxide is fly ash. That is, another aspect of the present invention provides a method of preparing a solid amine gas adsorbent material from fly ash, comprising the steps of:
  • the fly ash and the alkali solution of 10 to 30% by weight are alkali-melted at a ratio of solid to liquid of 1:1 to 1:5 at a temperature of 30 to 120 ° C. After reacting for 30 to 120 minutes, it was filtered to obtain a supernatant containing silicate.
  • the reaction is carried out at a temperature of from 80 to 100 °C.
  • the acid gas may be selected from the group consisting of carbon oxides, sulfur oxides, nitrogen oxides, and sulfur hydrides, and the acid gas may be selected from the group consisting of carbon dioxide, sulfur oxides, nitrogen oxides, and One or more of hydrogen sulfide; preferably, may be selected from carbon dioxide and/or hydrogen sulfide; from the viewpoint of cost, preferably carbon dioxide.
  • the alkali solution may be any strong alkali solution selected from one or more of an amino compound, an alkali metal hydride and a hydroxide; preferably sodium hydroxide and/or potassium hydroxide.
  • the organic amine may be selected from the group consisting of polyethyleneimine (PEI), tetraethylenepentamine (TEPA), ethylenediamine, butanediamine, hexamethylenediamine, and triaminoethylamine.
  • PI polyethyleneimine
  • TEPA tetraethylenepentamine
  • ethylenediamine butanediamine
  • hexamethylenediamine triaminoethylamine
  • triaminoethylamine One or more of acrylonitrile, cyanuric chloride, diisopropylethylamine and methyl acrylate.
  • the organic amine is polyethyleneimine (PEI) and/or tetraethylenepentamine (TEPA).
  • the organic amine loading of the adsorbent material is 10 to 60%;
  • the adsorbent material has an organic amine loading of 30 to 45%.
  • the acid gas may have a flow rate of 5 to 15 liters/min; preferably, it is aged at a temperature of 100 to 120 ° C, and dried and dehydrated.
  • a solid amine gas adsorbent material which is produced by the above process.
  • the adsorbent material has an organic amine loading of 10 to 60% by weight, preferably, a loading of 30 to 45% by weight. More preferably, the adsorbent-supported organic amine is polyethyleneimine (PEI) and/or tetraethylenepentamine (TEPA).
  • PEI polyethyleneimine
  • TEPA tetraethylenepentamine
  • the adsorbent material in the present invention is used for adsorbing and is selected from the group consisting of carbon oxides, sulfur oxides, nitrogen oxides, and sulfur hydrides, and the acid gas may be selected from the group consisting of carbon dioxide, sulfur oxides, nitrogen oxides, and hydrogen sulfide. One or more; preferably, may be selected from carbon dioxide and/or hydrogen sulfide.
  • the present invention has the following advantages:
  • the method of the present invention comprises one step of synthesizing a solid carrier having a porous high specific surface area supported by an organic amine as a solid amine gas adsorbing material, and the process is simple.
  • the amine molecule is introduced into the solution as a templating agent, the size of the Si0 2 channel is uniform during the passage of the acid gas (for example, (0 2 or ⁇ Si0 2 forms a sol gel precipitate)
  • the organic amine molecules are uniformly and uniformly distributed on the surface of Si0 2 , and C0 2 reacts with the -NH 2 of the organic amine to prevent the -NH 2 adhesion from being deactivated due to hydrogen bonding during material synthesis.
  • the silicate solution in the method of the invention can use fly ash as a raw material, as a by-product of the aluminum ash ash extraction process, the raw material price is low, and the waste is comprehensively utilized.
  • the organic amine is loaded on the surface and pores of the solid support and/or combined with its active site for improving the surface and pore structure and properties of the solid support, and increasing
  • the amine site, concentration, and/or activity of the gas is captured to improve the rate, ability, and/or performance of the adsorbent material to adsorb or trap the gas. Therefore, the adsorbent material has high stability and high selectivity, which not only increases the adsorption amount of the adsorbed gas, but also accelerates the adsorption rate, thereby obtaining a more stable and efficient adsorption performance of the adsorbent material.
  • Fig. 1 is a view showing the synthesis process of a solid amine gas adsorbing material prepared by using fly ash according to the present invention.
  • Fig. 2 is a graph showing the adsorption performance of a solid amine gas adsorbent prepared by an embodiment of the present invention and a solid amine gas adsorbent prepared by an impregnation method.
  • FIG 3 This figure embodiment PEI prepared in Example 2 (45%) - SiO 2 SEM photograph of the porous adsorbent can be seen that the high specific surface area and shape from the drawing, thereby improving the adsorption properties of C02.
  • the present invention will be further explained in detail below, but the following description of the embodiments is only intended to enable those of ordinary skill in the art to understand the present invention. Any form of restriction.
  • the properties of the above adsorbent materials and methods for their preparation are illustrated below by way of exemplary, non-limiting examples.
  • Example 1 Preparation of PEI (30%)-SiO 2 solid amine gas adsorbent material Step (1): Desilication of fly ash to prepare supernatant
  • the fly ash in this example is from a power plant of Shenhua Zhungeer, its chemistry
  • the ingredients are shown in Table 1 below.
  • Step (3) Aging and drying
  • the Si0 2 sol precipitate is filtered and aged at 110 ° C, dried and dehydrated to obtain a solid amine gas adsorbing material.
  • the osmotic material has a specific surface area of 9.85 m 2 /g, a pore volume of 0. 05 cmVg, and a pore diameter of 11.02 nm.
  • Example 2 Preparation of PEI (45%)-Si0 2 solid amine gas adsorbent material Step (1): Desilication of fly ash to prepare supernatant
  • the fly ash in this example is from a power plant of Shenhua Zhungeer, its chemistry
  • the ingredients are shown in Table 1 below. Table 1
  • Step (3) Aging and drying
  • the Si0 2 sol precipitate is filtered and aged at 112 ° C, dried and dehydrated to obtain a solid amine gas adsorbing material.
  • Step (3) Aging and drying
  • the Si0 2 sol precipitate is filtered and aged at 110 ° C, dried and dehydrated to obtain a solid amine gas adsorbing material.
  • Test Example 2 The organic amine loading capacity of the solid amine gas adsorbent prepared by the method of Example 2 of the present invention and the solid amine gas adsorbent synthesized by the conventional impregnation method was measured by a thermogravimetric analyzer by means of a thermogravimetric analyzer and (0 2 The amount of adsorption, the results are shown in Figure 2.
  • the preparation method of the solid amine gas adsorbent synthesized by the traditional impregnation method is as follows: The silica porous carrier model is impregnated into the ethanol solution of the organic amine PEI to adsorb or store the organic amine PEI ethanol solution. In the carrier capillary, the excess solution is removed, dried, calcined and activated.
  • the solid amine gas adsorbent synthesized by the conventional impregnation method has the highest (0 2 adsorption amount) when the PEI loading is 35 wt%. It is 74 mg/g of adsorbent material, and the solid amine gas adsorbent synthesized by the method of the invention can make the organic amine more uniformly dispersed onto the 810 2 carrier.
  • the loading of PEI is 45 wt%
  • the adsorption amount of C0 2 The highest, up to 122 mg / g of adsorbent material.
  • the terms and expressions used in this specification are used only as descriptive, non-limiting terms and expressions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明涉及一种固态胺气体吸附材料的制备方法,该方法一步合成了均匀负载有机胺的多孔的固态胺气体吸附材料。在所述方法中,由于在硅酸盐溶液中引入有机胺分子充当模板剂的同时通入一定量的酸性气体,不仅使SiO2孔道大小均匀,有机胺分子也能高效均匀分布在SiO2表面,而且,酸性气体对有机胺的-NH2基团起到保护作用,避免在材料合成过程中由于氢键作用而使-NH2粘连失活。在本发明中还涉及了从粉煤灰中获得硅酸盐溶液后制备固态胺气体吸附材料的方法。本发明的制备方法工艺简单、无需特殊设备,并且制得的固态胺气体吸附材料具有更稳定、更高效的气体吸附性能。

Description

一种固态胺气体吸附材料的制备方法 技术领域
本发明属于吸附材料制备领域, 具体地, 本发明涉及一种固态胺气体吸 附材料的制备方法、 采用该方法制备的吸附材料及其用途。 本发明还涉及一 种用粉煤灰制备固态胺气体吸附材料的方法。 背景技术 工业发展和都市化的一个弊端是废气的排放。 排放废气中通常包含硫和 氮氧化物(SO^P NOx)等有毒气体, 以及碳氧化物, 如二氧化碳。 上述排放废 气均为酸性气体。 通过固体吸附材料吸附上述酸性气体, 特别是固态胺吸附材料成为研究 的热点。 这些载有胺官能团的固体吸附材料本身为多孔吸附材料, 而胺分子 末端的胺官能团又能有效捕捉酸性气体; 当所述吸附材料与需要吸附的气体 接触时, 通过物理吸附与化学吸附的协同作用, 大大提高了其吸附效率。 在现有技术中, 胺与载体的结合方式主要有浸渍法及化学键嫁接。 浸渍 法制备过程简单, 且容易得到高含量胺, 因而吸收能力高, 但胺与载体结合 不够紧密, 在较高温度下易挥发损失。 化学键嫁接法制得的吸收剂, 胺基与 载体间通过化学键连接, 吸收剂稳定性高, 但是化学法嫁接制备过程较复杂 且胺基的嫁接量较低, 吸收能力一般小于浸渍制得的吸收剂。 在选择固体载体方面, 一些研究者在多孔载体、 例如氧化硅、 氧化铝、 分子筛、 活性炭上进行了实验。 在选择有机胺方面, 主要采用 MEA、 PEI、 DEA、 TEPA等。 在制备固态胺吸附材料过程中, 需要合适分子大小的有机胺与合适固体 载体的孔径与比表面相匹配, 使有机胺分子能够尽量进入孔道的内部并均匀 负载在固体载体表面。 M. L. Gray使用浸渍法利用粉煤灰为载体负载 CPAHCL合成固态胺吸附 材料, 其最大吸附能力仅为 l%wt% (C02 capture by amine-enriched fly ash carbon sorbents, M.L. Gray, Y. Soong, K.J. Champagne, John Baltrus, R.W. Stevens, Jr , P. Toochinda, S.S.C. Chuang, Separation and Purification Technology 35 (2004) 31-36 Steven Chuang使用浸渍法用 Beta-分子筛负载 TEPA合成固 态胺吸附材料, 其最大吸附能力为 9.13wt%( Oxide-Supported Tetraethylenepentamine for C02 Capture, James C. Fisher II, Jak Tanthana, and Steven S.C. Chuang, Environmental Progress & Sustainable Energy (Vol.28, No.4))。 上述文献中介绍的固体吸附材料的吸附效果并不理想, 其二氧化碳吸附 率最高为 10wt%左右。 原因可能是与理论值相比, 实际情况中, 有机胺分布 不够均匀, 胺分子末端的胺官能团未能均匀地在固体表面及孔道内形成有效 的二氧化碳捕捉点; 或者树状大分子上的胺官能团与固体载体表面上的活性 位点相互作用, 导致影响了对二氧化碳分子进行有效捕捉。 为解决现有技术中的问题, 即制备固态胺气体吸附材料工艺复杂、 需要 特殊设备或成本高昂, 现有的固态胺气体吸附材料选择性差、 不稳定或吸附 能力差, 本发明人提供了一种新的固态胺气体吸附材料的制备方法以及采用 该方法制备的固态胺气体吸附材料及其用途。 发明内容
本发明涉及一种固态胺气体吸附材料的制备方法, 该方法一步合成了均 匀负载有机胺的多孔的固态胺气体吸附材料。 在所述方法中, 由于在硅酸盐溶液中引入有机胺分子充当模板剂的同时 通入一定量的酸性气体, 不仅使 8102孔道大小均匀, 有机胺分子也能高效均 匀分布在 Si02表面, 而且, 酸性气体对有机胺的 -NH2基团起到保护作用, 避 免在材料合成过程中由于氢键作用而使 -NH2粘连失活。
根据本发明的一个方面, 提供了一种制备固态胺气体吸附材料的方法, 其包括以下步骤: 1 ) 在硅酸盐溶液中加入有机胺, 进行搅拌的同时, 在所述溶液中缓慢通 入酸性气体, 直至所述溶液的 pH值为 9~11时停止, 从而获得 &02溶胶或凝 胶;
2)从上述溶液中过滤所述 Si02溶胶或凝胶沉淀,并进行老化、干燥脱水, 从而获得固态胺气体吸附材料。
根据本发明的一个方面, 硅酸盐溶液浓度为 5~50 (重量) %。 上述步骤 (1 ) 中所述硅酸盐溶液可以是本技术领域中已知的任何可溶的 硅酸盐溶液, 优选地为硅酸钠溶液和 /或硅酸钾溶液。 本发明的硅酸盐溶液可由含有氧化硅的材料获得, 根据本发明的另一方 面, 这种含有氧化硅的材料为粉煤灰。 即本发明的另一方面为提供了一种用粉煤灰制备固态胺气体吸附材料的 方法, 其包括以下步骤:
1 )将粉煤灰与碱溶液进行碱熔融, 反应后过滤, 得到含有硅酸盐的上清 液;
2)在所述上清液中加入有机胺, 进行搅拌的同时, 在所述溶液中缓慢通 入酸性气体, 直至所述溶液的 pH值为 9~11时停止, 从而获得 &02溶胶或凝 胶;
3 )从上述溶液中过滤所述 Si02溶胶或凝胶沉淀,并进行老化、干燥脱水, 从而获得固态胺气体吸附材料。 优选地,上述步骤 1 )为 在 30~120°C温度下,将粉煤灰与 10~30 (重量)% 的碱溶液按固液重量比 1 : 1至 1 : 5的比例进行碱熔融, 反应 30~120分 钟后过滤, 得到含有硅酸盐的上清液。 优选地, 在上述制备方法的步骤 (1 ) 中, 在 80~100°C温度下反应。 在本发明的制备方法中, 所述酸性气体可选自于碳氧化物、 硫氧化物、 氮氧化物和硫氢化物, 所述酸性气体可选自于二氧化碳、 硫氧化物、 氮氧化 物和硫化氢中的一种或多种; 优选地, 可选自于二氧化碳和 /或硫化氢; 从获 得成本方面考虑, 优选地为二氧化碳。 在上述方法中, 所述碱溶液可以是任何强碱溶液, 选自氨基化合物、 碱 金属氢化物和氢氧化物中的一种或多种; 优选地为氢氧化钠和 /或氢氧化钾。 在前述的制备过程中, 优选地, 所述有机胺可选自聚乙烯亚胺 (PEI)、 四乙烯五胺(TEPA)、 乙二胺、 丁二胺、 己二胺、 三氨乙基胺、 丙烯腈、 三聚 氯氰、 二异丙基乙胺和丙烯酸甲酯中的一种或多种。 更优选地, 所述有机胺 为聚乙烯亚胺 (PEI) 和 /或四乙烯五胺 (TEPA)。 优选地, 其中, 所述以有机胺的质量与最终制得的所述固态胺气体吸附 材料的质量之比计 (下同), 所述吸附材料的有机胺负载量为 10~60%; 更优 选地, 所述吸附材料的有机胺负载量为 30~45%。 在上述方法中, 优选地, 所述酸性气体的流速可以为 5~15升 /分钟; 优选 地, 在 100~120°C温度下老化、 干燥脱水。 根据本发明的第三个方面, 提供了一种固态胺气体吸附材料, 其通过上 述的方法制备。而优选地,所述吸附材料的有机胺负载量为 10~60% (重量)%, 优选地, 其负载量为 30~45% (重量) %。 更优选地, 所述吸附材料负载的有 机胺为聚乙烯亚胺 (PEI) 和 /或四乙烯五胺 (TEPA)。 本发明中的吸附材料用于吸附选自于碳氧化物、 硫氧化物、 氮氧化物和 硫氢化物, 所述酸性气体可选自于二氧化碳、 硫氧化物、 氮氧化物和硫化氢 中的一种或多种; 优选地, 可选自于二氧化碳和 /或硫化氢。
与现有技术相比, 本发明具有以下优点:
1、 本发明的方法一步合成负载有机胺的多孔高比表面积的固体载体作为 固态胺气体吸附材料, 工艺简单。
2、 在本发明的方法中, 由于在溶液中引入胺分子充当模板剂, 因而在通 入酸性气体 (例如 ( 02或 ΝΟχ Si02形成溶胶凝胶沉淀的过程中 Si02孔道大 小均匀, 同时有机胺分子高效均匀分布在 Si02表面, 且 C02与有机胺的 -NH2 反应起到保护作用,避免在材料合成过程中由于氢键作用而使 -NH2粘连失活。 3、 本发明的方法中的硅酸盐溶液可采用粉煤灰为原料, 作为粉煤灰提铝 过程中的副产品, 原料价格低廉, 废物综合利用。
4、 在采用本发明所述方法制备的固态胺气体吸附材料中有机胺在固体载 体表面和孔道内加载和 /或与其活性位点相结合, 用于改善固体载体表面和孔 道结构和特性, 增加捕获气体的胺部位、 浓度和 /或活性, 以便改进吸附材料 吸附或捕获气体的速度、 能力和 /或性能。 因此, 所述吸附材料稳定、 选择性 高, 其既增加了对吸附气体的吸附量, 又加快了吸附速率, 从而可以使吸附 材料获得更稳定、 更高效的吸附性能。 附图说明
图 1显示了本发明用粉煤灰制备固态胺气体吸附材料的合成工艺图。 图 2显示了通过本发明一个实施例制备的固态胺气体吸附材料与采用浸 渍法制备的固态胺气体吸附材料的吸附性能对比图。
图 3 该图为实施例 2制备的 PEI(45%)-Si02的扫描电镜照片,从该图可以 看出吸附剂的多孔和高比表面积形态, 从而提高 C02的吸附性能。 具体实施方式 下文将进一步详细解释本发明, 但以下包括实施例的描述仅用于使本发 明所属技术领域的普通技术人员能够更加清楚地理解本发明的原理和精髓, 并不意味着对本发明进行任何形式的限制。 下面用示范性、 而非限制性的实施例说明上述吸附材料的性能及其制备 方法。 实施例
实施例 1: 制备 PEI(30%)-SiO2固态胺气体吸附材料 步骤 (1): 粉煤灰脱硅制备上清液 本实施例中的粉煤灰来自神华准格尔某电厂, 其化学成分见下表 1。 表 1 组成 Si02 A1203 CaO Fe203 MgO K20 Ti02 其他 wt% 39.15 52.41 1.02 2.16 0.32 0.42 1.31 3.21 在 90°C下, 将 40克上述粉煤灰溶于 400毫升 15 (重量) %的氢氧化钠 溶液中, 反应 90分钟, 过滤得到含有 6.72 (重量) %硅酸钠 (Na2Si03) 的上 清液。 由于 K20被包含在晶格中, 在此反应中不能被溶解, 该上清液中的溶 质基本为硅酸钠。 步骤 (2): 负载有机胺 取 100毫升步骤 (1)制备的上清液, 加入 2.4克纯度为 98 (重量) %的聚 乙烯亚胺 (ΡΕΙ), 进行搅拌的同时, 通入纯度为 99%的二氧化碳气体, 气体 流速 10升 /分钟, 当溶液 ρΗ=13左右出现白色的絮状 Si02溶胶沉淀, 继续通 入 C02, 当 pH=10时停止通入 C02。 步骤 (3): 老化及干燥
过滤 Si02溶胶沉淀并在 110°C下老化、 干燥脱水制得固态胺气体吸附材料一
PEI(30%)-SiO2, 其加入的有机胺的质量与最终制得的固体胺气体吸附材料的 总质量比约为 30% (见测试例 1 )。 该吸附材料的比表面积为 9. 85 m2 /g, 孔 体积为 0. 05 cmVg, 孔径为 11. 02 nm。
实施例 2: 制备 PEI(45%)-Si02固态胺气体吸附材料 步骤 (1): 粉煤灰脱硅制备上清液 本实施例中的粉煤灰来自神华准格尔某电厂, 其化学成分见下表 1。 表 1
Figure imgf000008_0001
在 90°C下, 将 100克上述粉煤灰溶于 400毫升 15 (重量) %的氢氧化钠 溶液中, 反应 90分钟, 过滤得到含有 16.8 (重量) %硅酸钠 (Na2Si03 ) 的上 清液。 由于 K20被包含在晶格中, 在此反应中不能被溶解, 该上清液中的溶 质基本为硅酸钠。
步骤 (2) : 负载有机胺 取 100毫升步骤 (1)制备的上清液, 加入 9 克纯度为 98%的聚乙烯亚胺 (ΡΕΙ) , 进行搅拌的同时, 通入纯度为 99%的二氧化碳气体, 气体流速 10升 /分钟, 当溶液 ρΗ=13左右出现白色的絮状 Si02溶胶沉淀, 继续通入 C02, 当 pH=10时停止通入 C02。 步骤 (3) : 老化及干燥
过滤 Si02溶胶沉淀并在 112°C下老化、 干燥脱水制得固态胺气体吸附材料一
PEI(45%)-Si02, 其加入的有机胺的质量与最终制得的固体胺气体吸附材料的 总质量比约为 45% (见测试例 1 )。 该吸附材料的比表面积为 15. 03m2 /g, 孔 体积为 0. 07cm3 /g, 孔径为 17. 78nm。 实施例 3: 制备 TEPA(30%)-SiO2吸附材料 步骤 (1) : 粉煤灰脱硅制备上清液 本实施例中的粉煤灰来自神华准格尔某电厂, 其化学成分见下表 1。 表 1
Figure imgf000009_0001
在 90°C下, 将 200克上述粉煤灰溶于 400毫升 15 (重量) %的氢氧化钠 溶液中, 反应 90分钟, 过滤得到含有 33.6 (重量) %硅酸钠 (Na2Si03 ) 的上 清液。 由于 K20被包含在晶格中, 在此反应中不能被溶解, 该上清液中的溶 质基本为硅酸钠。 步骤 (2) : 负载有机胺 取 100毫升步骤 (2)制备的上清液, 加入 12克纯度为 98%的四乙烯五胺 (ΤΕΡΑ) , 进行搅拌的同时, 通入纯度为 99%的二氧化碳气体, 气体流速 10 升 /分钟, 当溶液 ρΗ=13左右出现白色的絮状 Si02溶胶沉淀, 继续通入 C02, 当 pH=9时停止通入 C02。 步骤 (3) : 老化及干燥
过滤 Si02溶胶沉淀并在 110°C下老化、 干燥脱水制得固体胺气体吸附材料一
TEPA(30%)-SiO2, 其加入的有机胺的质量与最终制得的固体胺气体吸附材料 的总质量比为 30% (见测试例 1 )。 该吸附材料的比表面积为 8. 71m2 /g, 孔 体积为 0. 03cm3 /g, 孔径为 9. 36nm。
测试例 1 通过热重分析仪, 采用加热的方法测定在实施例 1〜3中制备的吸附材料 的有机胺负载量和 02吸附量, 并在进行 20次吸附 -脱附循环操作后, 观察 有机胺负载量和 ( 02吸附量的变化, 测试结果如下表 3所示。 其中, 有机胺负载量 =负载的有机胺的质量 /固态胺吸附材料的总质量; C02吸附量 (mg/g吸附材料) =吸附的 C02质量 (mg)/吸附材料总质量 (g)。 表 3 — d吸附 C02吸附 -脱附 20次后 co2吸附
有机胺 有机胺 C02吸附量 实施例 吸附材料 里
负载量 负载量 (mg/g吸附
(mg/g吸
(重量%) (重量%) 材料) 附材料) 实施例 PEI(30%)-SiO2
29.8 61 28.1 49
1 实施例 PEI(45%)-Si02
45.2 122 43.2 99
2 实施例 TEPA(30%)-Si
29.6 54 27.6 46
3 o2
测试例 2 通过热重分析仪, 采用加热的方法测定用本发明实施例 2 中的方法制备 的固态胺气体吸附材料和传统浸渍法合成的固态胺气体吸附材料的有机胺负 载量以及 ( 02吸附量, 结果见图 2。 传统浸渍法合成的固态胺气体吸附材料的制备方法如下: 将二氧化硅多 孔载体型号浸渍到有机胺 PEI的乙醇溶液中, 使有机胺 PEI乙醇溶液吸附或 贮存在载体毛细管中, 除去过剩的溶液, 再经干燥、 煅烧和活化。 如图 2所示, 经传统浸渍法合成的固态胺气体吸附材料当 PEI负载量为 35wt%时, 其最高 ( 02吸附量为 74 mg/g吸附材料, 而采用本发明所述方法合 成的固态胺气体吸附材料可以使有机胺更加均匀的分散到 8102载体上,当 PEI 的负载量为 45wt%时, C02吸附量最高, 可到达 122 mg /g吸附材料。 本说明书所用的术语和表述方式仅被用作描述性、 而非限制性的术语和 表述方式, 在使用这些术语和表述方式时无意将已表示和描述的特征或其组 成部分的任何等同物排斥在外。 尽管已表示和描述了本发明的几个实施方式, 但本发明不被限制为所描 述的实施方式。 相反, 本领域普通技术人员应当意识到在不脱离本发明原则 和实质的情况下可对这些实施方式进行任何变通和改进, 本发明的保护范围 由所附的权利要求及其等同物所确定。

Claims

权利要求书
1、 一种制备固态胺气体吸附材料的方法, 其包括以下步骤:
1 ) 在硅酸盐溶液中加入有机胺, 进行搅拌的同时, 在所述溶液中缓慢通 入酸性气体, 直至所述溶液的 pH值为 9~11时停止, 从而获得 &02溶胶或凝 胶; i02溶胶或凝胶沉淀,并进行老化、干燥脱水,
Figure imgf000012_0001
2、 根据权利要求 1所述的方法, 其中, 所述硅酸盐溶液为硅酸钠溶液 和 /或硅酸钾溶液。
3、 根据权利要求 1或 2所述的方法, 其中, 所述硅酸盐溶液的浓度为 5-50 (重量) %。
4、 根据权利要求 1-3之任一所述的方法, 其中, 所述硅酸盐溶液通过 碱熔融粉煤灰后进行过滤来制备。
5、 根据权利要求 4所述的方法, 其中, 所述碱选自氨基化合物、 碱金 属氢化物和氢氧化物中的一种或多种, 优选为氢氧化钠和 /或氢氧化钾。
6、 根据权利要求 4或 5所述的方法, 其中, 粉煤灰和 10~30 (重量)% 的碱溶液按固液重量比 1 : 1至 1 : 5的比例进行碱熔融。
7、 根据权利要求 4-6项之任一项所述的方法,其中,碱熔融反应 30~120 分钟。
8、 根据权利要求项 4-7 项之任一项所述的方法, 碱熔融反应在 30~120°C温度下, 优选在 80~100°C温度下进行。
9、 根据权利要求 1-8项之任一项所述的方法, 其中, 所述酸性气体选 自于碳氧化物、 硫氧化物、 氮氧化物和硫氢化物中的一种或多种,优选地, 所 述酸性气体为二氧化碳和 /或硫化氢。
10、 根据权利要求 1-9项之任一项所述的方法, 其中, 所述有机胺选自 聚乙烯亚胺(PEI)、 四乙烯五胺(TEPA)、 乙二胺、 丁二胺、 己二胺、 三氨乙 基胺、 丙烯腈、 三聚氯氰、 二异丙基乙胺和丙烯酸甲酯中的一种或多种, 优选 地, 所述有机胺为聚乙烯亚胺 (PEI) 和 /或四乙烯五胺 (TEPA)。
11、 根据权利要求 1-10项之任一项所述的方法,其中,所述有机胺的质 量与最终制得的所述固态胺气体吸附材料的质量之比为 10~60%, 优选地, 为 30~45%。
12、 根据权利要求 1-11项之任一项所述的方法, 其中,所述酸性气体的 流速为 5~15升 /分钟。
13、 根据权利要求 1-12项之任一项所述的方法, 其中, 在 100~120°C温 度下老化、 干燥脱水。
14、 一种固态胺气体吸附材料, 其特征在于: 通过根据权利要求 1-13 任一项所述的方法制备。
15、 根据权利要求 14所述的吸附材料, 所述吸附材料用于吸附酸性气 体, 优选地, 用于吸附碳氧化物、 硫氧化物、 氮氧化物和硫氢化物中的一种 或多种气体, 优选地, 用于吸附二氧化碳和 /或硫化氢。
PCT/CN2012/085356 2012-11-27 2012-11-27 一种固态胺气体吸附材料的制备方法 WO2014082206A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2012/085356 WO2014082206A1 (zh) 2012-11-27 2012-11-27 一种固态胺气体吸附材料的制备方法
AU2012395691A AU2012395691B2 (en) 2012-11-27 2012-11-27 Method for preparing solid amine gas adsorption material
US14/647,743 US9649618B2 (en) 2012-11-27 2012-11-27 Method for preparing solid amine gas adsorption material
EP12889135.5A EP2926896B1 (en) 2012-11-27 2012-11-27 Method for preparing solid amine gas adsorption material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085356 WO2014082206A1 (zh) 2012-11-27 2012-11-27 一种固态胺气体吸附材料的制备方法

Publications (1)

Publication Number Publication Date
WO2014082206A1 true WO2014082206A1 (zh) 2014-06-05

Family

ID=50827018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085356 WO2014082206A1 (zh) 2012-11-27 2012-11-27 一种固态胺气体吸附材料的制备方法

Country Status (4)

Country Link
US (1) US9649618B2 (zh)
EP (1) EP2926896B1 (zh)
AU (1) AU2012395691B2 (zh)
WO (1) WO2014082206A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016011032A1 (en) * 2014-07-15 2016-01-21 Research Triangle Institute Solid sorbent materials for acid-gas separation
CN108745272A (zh) * 2018-06-15 2018-11-06 福建工程学院 一种粉煤灰直接制备介微孔吸附材料的方法
CN113054236A (zh) * 2021-01-14 2021-06-29 江苏双登富朗特新能源有限公司 一种耐高温锂离子电池
CN113842885A (zh) * 2021-09-08 2021-12-28 中国科学院大连化学物理研究所 一种金属锚定有机胺co2吸附剂及其制备和应用
CN113877539A (zh) * 2021-09-08 2022-01-04 中国科学院大连化学物理研究所 一种co2固体吸附剂及其制备与应用
CN114713186A (zh) * 2022-03-17 2022-07-08 华南理工大学 一种用于co2吸附分离的改性分子筛及其制备方法与装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016154278A1 (en) 2015-03-23 2016-09-29 Basf Corporation Carbon dioxide sorbents for indoor air quality control
JP2019507674A (ja) 2016-02-12 2019-03-22 ビーエーエスエフ コーポレーション 大気質管理のための二酸化炭素吸着剤
US10683452B2 (en) 2017-09-11 2020-06-16 Saudi Arabian Oil Company Nanosilica dispersion for thermally insulating packer fluid
US11279865B2 (en) 2017-09-11 2022-03-22 Saudi Arabian Oil Company Well treatment fluid having an acidic nanoparticle based dispersion, an epoxy resin, and a polyamine
US10577526B2 (en) 2017-09-11 2020-03-03 Saudi Arabian Oil Company Loss circulation material composition having an acidic nanoparticle based dispersion and polyamine
US10233380B1 (en) 2017-09-11 2019-03-19 Saudi Arabian Oil Company Well treatment fluid having an acidic nanoparticle based dispersion and a polyamine
US10316238B2 (en) 2017-09-11 2019-06-11 Saudi Arabian Oil Company Nanosilica dispersion for thermally insulating packer fluid
CN110272053B (zh) * 2018-03-16 2021-05-11 国家能源投资集团有限责任公司 高纯水玻璃、低铁白炭黑以及超白玻璃原料的制备方法
CN113185827B (zh) * 2021-04-21 2022-09-30 湖南省林业科学院 一种含硅聚乙烯亚胺复合材料及其制备方法
CN113209951A (zh) * 2021-04-30 2021-08-06 上海交通大学 基于胺功能化硅溶胶的整体结构吸附剂、制备方法及应用
CN114522669A (zh) * 2022-04-12 2022-05-24 四川大学 整体式固体胺吸附剂及其制备方法
CN115318262B (zh) * 2022-08-25 2023-12-01 中国科学院过程工程研究所 一种胺功能化硅基吸附剂及其制备方法与应用
CN116440855B (zh) * 2023-06-16 2023-09-05 格林斯达(北京)环保科技股份有限公司 一种净化材料及其制备方法和应用
CN116618022A (zh) * 2023-07-26 2023-08-22 深碳科技(深圳)有限公司 一种固态胺吸附剂及其胺基改性方法
CN117427615A (zh) * 2023-12-01 2024-01-23 浙江大学 一种胺负载介孔炭及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101049935A (zh) * 2007-04-03 2007-10-10 平朔煤炭工业公司 一种利用粉煤灰生产二氧化硅和氧化铝的方法
CN101704525A (zh) * 2009-11-23 2010-05-12 中煤平朔煤业有限责任公司 一种高品质橡胶用白炭黑的制备方法
CN101804332A (zh) * 2010-03-13 2010-08-18 山西潞安矿业(集团)有限责任公司 用煤矸石、聚乙烯亚胺制备二氧化碳捕捉材料的方法
CN101909743A (zh) * 2007-11-08 2010-12-08 阿克伦大学 用于俘获二氧化碳的胺吸附剂及其制造和使用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1094798A (en) * 1965-05-04 1967-12-13 Grace W R & Co Process for the production of microspheroidal silica
JPS4943897A (zh) * 1972-08-31 1974-04-25
JPS63295413A (ja) * 1987-05-28 1988-12-01 Nippon Steel Corp ゲル状シリカの製造方法
US6274112B1 (en) * 1999-12-08 2001-08-14 E. I. Du Pont De Nemours And Company Continuous production of silica-based microgels
RU2389682C2 (ru) 2007-04-03 2010-05-20 Пингсхуо Индастриал ЛТД. Способ восстановления кремнезема и глинозема из летучей угольной золы

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101049935A (zh) * 2007-04-03 2007-10-10 平朔煤炭工业公司 一种利用粉煤灰生产二氧化硅和氧化铝的方法
CN101909743A (zh) * 2007-11-08 2010-12-08 阿克伦大学 用于俘获二氧化碳的胺吸附剂及其制造和使用方法
CN101704525A (zh) * 2009-11-23 2010-05-12 中煤平朔煤业有限责任公司 一种高品质橡胶用白炭黑的制备方法
CN101804332A (zh) * 2010-03-13 2010-08-18 山西潞安矿业(集团)有限责任公司 用煤矸石、聚乙烯亚胺制备二氧化碳捕捉材料的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FISHER II, JAMES C. ET AL.: "Oxide-Supported Tetraethylenepentamine for C02 Capture", ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, vol. 28, no. 4, 16 July 2009 (2009-07-16), pages 589 - 598, XP055252373 *
JAMES C. FISHER; JAK TANTHANA; STEVEN S. C. CHUANG: "Oxide-Supported Tetraethylenepentamine for C0 Capture", ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, vol. 28, no. 4, XP055252373, DOI: doi:10.1002/ep.10363
M. L. GRAY; Y. SOONG; K. J. CHAMPAGNE; JOHN BALTRUS; R. W. STEVENS, JR; P. TOOCHINDA; S. S. C. CHUANG, SEPARATION AND PURIFICATION TECHNOLOGY, vol. 35, 2004, pages 31 - 36
SHI, QINGYONG ET AL.: "Preparation of active Si02 from fly ash", CHEMICAL ENGEERING ( CHINA, vol. 38, no. 11, November 2010 (2010-11-01), pages 86 - 89, XP008179133 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016011032A1 (en) * 2014-07-15 2016-01-21 Research Triangle Institute Solid sorbent materials for acid-gas separation
CN108745272A (zh) * 2018-06-15 2018-11-06 福建工程学院 一种粉煤灰直接制备介微孔吸附材料的方法
CN113054236A (zh) * 2021-01-14 2021-06-29 江苏双登富朗特新能源有限公司 一种耐高温锂离子电池
CN113842885A (zh) * 2021-09-08 2021-12-28 中国科学院大连化学物理研究所 一种金属锚定有机胺co2吸附剂及其制备和应用
CN113877539A (zh) * 2021-09-08 2022-01-04 中国科学院大连化学物理研究所 一种co2固体吸附剂及其制备与应用
CN113842885B (zh) * 2021-09-08 2024-03-08 中国科学院大连化学物理研究所 一种金属锚定有机胺co2吸附剂及其制备和应用
CN113877539B (zh) * 2021-09-08 2024-03-12 中国科学院大连化学物理研究所 一种co2固体吸附剂及其制备与应用
CN114713186A (zh) * 2022-03-17 2022-07-08 华南理工大学 一种用于co2吸附分离的改性分子筛及其制备方法与装置
CN114713186B (zh) * 2022-03-17 2023-02-14 华南理工大学 一种用于co2吸附分离的改性分子筛及其制备方法与装置

Also Published As

Publication number Publication date
EP2926896A4 (en) 2016-08-10
US9649618B2 (en) 2017-05-16
US20150321167A1 (en) 2015-11-12
AU2012395691B2 (en) 2016-05-26
EP2926896B1 (en) 2020-02-12
EP2926896A1 (en) 2015-10-07
AU2012395691A1 (en) 2015-06-11

Similar Documents

Publication Publication Date Title
WO2014082206A1 (zh) 一种固态胺气体吸附材料的制备方法
CN106660010B (zh) 纳米结构化载体上改性胺的再生性吸附剂
CN103785349B (zh) 一种固态胺气体吸附材料的制备方法
CN107661748B (zh) 有机胺功能化大孔容二氧化硅co2吸附剂及其制备方法
CN104475060B (zh) 一种复合吸附剂及其制备方法与应用
EP2054151A1 (en) Nano-structure supported solid regenerative polyamine and polyamine polyol absorbents for the separation of carbon dioxide from gas mixtures including the air
CN107353412B (zh) 一种金属有机骨架材料的制备方法及应用
CN110841606A (zh) 一种捕集二氧化碳的复合材料及其制备方法与应用
CN106944018A (zh) 一种聚乙烯亚胺改性海泡石吸附剂及其制备方法和应用
CN104907045B (zh) 二氧化碳高效捕集材料
CN110548486A (zh) 一种co2吸附剂及其制备方法
CN114522669A (zh) 整体式固体胺吸附剂及其制备方法
CN114849653A (zh) 高效捕集二氧化碳的胺改性多孔分子筛及制备方法和应用
CN113842885A (zh) 一种金属锚定有机胺co2吸附剂及其制备和应用
US9155996B2 (en) Sorbents for carbon dioxide capture
CN104492370A (zh) 一种改性蒙脱石二氧化碳吸附材料及其制备方法
WO2021215265A1 (ja) 二酸化炭素吸収材、二酸化炭素吸収材の製造方法、二酸化炭素分離体および二酸化炭素分離回収装置
CN115318262A (zh) 一种胺功能化硅基吸附剂及其制备方法与应用
WO2022088675A1 (zh) 二氧化碳吸附剂及其制备方法、使用方法
CN109894098A (zh) 一种聚胺基多孔复合材料的制备方法
Kaya et al. CO2 capture using polyethyleneimine functionalized silica xerogels
KR20220120279A (ko) 구형 아민계 이산화탄소 흡착제의 원-폿 제조방법
CN114539307B (zh) 一种co2捕集材料、其合成方法以及碳捕集工艺
WO2022257045A1 (zh) 硅基固态胺co 2吸附剂及其制备方法
CN113042002A (zh) 一种co2有机胺吸附剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14647743

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012395691

Country of ref document: AU

Date of ref document: 20121127

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012889135

Country of ref document: EP