WO2022257045A1 - 硅基固态胺co 2吸附剂及其制备方法 - Google Patents

硅基固态胺co 2吸附剂及其制备方法 Download PDF

Info

Publication number
WO2022257045A1
WO2022257045A1 PCT/CN2021/099178 CN2021099178W WO2022257045A1 WO 2022257045 A1 WO2022257045 A1 WO 2022257045A1 CN 2021099178 W CN2021099178 W CN 2021099178W WO 2022257045 A1 WO2022257045 A1 WO 2022257045A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
preparation
solution
silicate
precipitate
Prior art date
Application number
PCT/CN2021/099178
Other languages
English (en)
French (fr)
Inventor
张作泰
李春艳
颜枫
沈雪华
曲凡
Original Assignee
深碳科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深碳科技(深圳)有限公司 filed Critical 深碳科技(深圳)有限公司
Priority to US17/620,286 priority Critical patent/US20240123423A1/en
Priority to PCT/CN2021/099178 priority patent/WO2022257045A1/zh
Publication of WO2022257045A1 publication Critical patent/WO2022257045A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/36Azeotropic distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • This application relates to the technical field of CO2 gas adsorption and purification, in particular to a silicon-based solid amine CO2 adsorbent and a preparation method thereof.
  • CCS carbon dioxide capture technology
  • Solid amine adsorbents are composed of carriers and organic amines.
  • Common carriers include zeolites, MOFs, resins, carbon nanotubes, silicon-based supports, and aluminum-based supports.
  • the specific surface area of currently commonly used silicon-based supports is about 100-400 m 2 /g, and the pore volume is about 1.0-2.0 cm 3 /g, which greatly limits the application of silicon-based supports in modification, adsorption and separation. Since the pore volume of the carrier silicon is less than 2.0 cm 3 /g, the loading capacity of the organic amine is generally lower than 50%, which makes it difficult to further increase the CO 2 adsorption capacity of the silicon-based solid amine.
  • a preparation method of silicon-based solid amine CO2adsorbent comprising:
  • the silicon source liquid being a silicate solution or a liquid organosilicate, the silicate solution comprising water and a first silicate dissolved in water;
  • a silicon-based carrier which is a second silicate powder or silicon dioxide powder
  • the silicon-based support is impregnated with an organic amine solution and dried to obtain a silicon-based solid amine CO2 adsorbent.
  • the silicon source liquid is the silicate solution
  • the first silicate is Na 2 SiO 3 or K 2 SiO 3 .
  • the concentration of the first silicate in the silicate solution is 5 g/L to 100 g/L.
  • the precipitating agent is gas containing CO 2 or Ca(OH) 2 solution.
  • the concentration of CO 2 in the gas containing CO 2 is 15 vol.% to 40 vol.%, and the flow rate of the gas containing CO 2 is 400 mL/min to 2000 mL/min per liter of silicate solution. min.
  • the concentration of the Ca(OH) 2 solution is 0.05mol/L to 1mol/L.
  • the silicon source liquid is the liquid organosilicate, and the liquid organosilicate is at least one of ethyl orthosilicate and methyl orthosilicate.
  • the precipitating agent is a mixed solution of n-butyraldehyde, cetyltrimethylammonium bromide and ammonia water.
  • the preparation method of the mixed solution comprises:
  • the ratio of n-butyraldehyde, cetyltrimethylammonium bromide, water and ammoniacal liquor in the mixed solution is (5ml-20ml):(0.5g-10g):(10ml-150ml): (5ml-100ml), the mass fraction of ammonia water is 25% to 28%.
  • the volume ratio of the mixed liquid to the liquid organosilicate is 5:1 to 20:1.
  • the temperature of the reaction between the silicon source liquid and the precipitating agent is 25°C to 80°C.
  • the organic alcohol is one or more of ethanol, propanol, n-butanol and isobutanol.
  • the calcination temperature is 400°C to 600°C.
  • the organic amine solution includes an organic solvent and an organic amine dissolved in the organic solvent, and the organic amine is polyethyleneimine, diethylenetriamine, tetraethylenepentamine, pentaethylenehexa at least one of amines, and the organic solvent is at least one of methanol, ethanol and acetone.
  • the concentration of the organic amine in the organic amine solution is 4 g/L to 200 g/L, and the ratio of the silicon-based carrier to the organic amine solution is 10 g/L to 100 g/L.
  • a silicon-based solid amine CO2 adsorbent is prepared by the above-mentioned preparation method.
  • the preparation method of the silicon-based solid amine CO2 adsorbent provided by the application has the following advantages:
  • the pore volume and specific surface of the prepared silicon-based carrier are greater than 800m 2 /g and 3.5cm 3 /g respectively, breaking through the technical bottle in terms of pore volume improvement of silicon-based materials;
  • Figure 1 is the CO2 first adsorption curve of the solid amine CO2 adsorbent of Example 6.
  • the application provides a method for preparing a silicon-based solid amine CO2 adsorbent, comprising:
  • the silicon source liquid is a silicate solution or a liquid organic silicate, and the silicate solution includes water and a first silicate dissolved in water;
  • the silicon source liquid may be a silicate solution
  • the silicate solution may be an aqueous solution of a first silicate.
  • the first silicate may be a water-soluble silicate, such as Na 2 SiO 3 or K 2 SiO 3 .
  • the mass concentration of the first silicate in the silicate solution may be 5 to 100 g/L.
  • the silicon source liquid may also be a liquid organosilicate, such as at least one of ethyl orthosilicate and methyl orthosilicate.
  • step S2 the precipitating agent is used for a precipitation reaction with the first silicate or liquid organosilicate, so that the silicate radicals in the first silicate or liquid organosilicate form a precipitate.
  • the precipitating agent can be a gas containing CO2 or a Ca(OH) 2 solution, and the precipitate can be a second silicate that is insoluble in water.
  • the precipitation reaction occurs by passing a CO2 -containing gas through the silicate solution.
  • the CO 2 concentration in the CO 2 containing gas may be 15 to 40 vol.%.
  • the flow rate of gas containing CO2 can be 400-2000mL/min per liter of silicate solution.
  • the precipitation reaction occurs by adding the Ca (OH) solution dropwise to the silicate solution or directly mixing with the silicate solution.
  • the preparation method of the Ca(OH) 2 solution is as follows: 0.005mol-0.2mol Ca(OH) 2 is added to 100-200mL water, fully stirred and mixed to obtain a Ca(OH) 2 solution.
  • the Ca (OH) solution is added at a rate of 10-50mL/min.
  • the precipitation agent can be a mixed solution of n-butyraldehyde, cetyltrimethylammonium bromide (CTAB) and ammonia water, and the precipitate can be silicic acid.
  • CTAB cetyltrimethylammonium bromide
  • the preparation method of the mixed solution comprises: uniformly mixing n-butyraldehyde, cetyltrimethylammonium bromide and water to obtain a premixed solution; and mixing ammonia water with the premixed solution Uniformly, the mixed solution is obtained.
  • the precipitation reaction occurs by adding the liquid organosilicate dropwise to the mixture, or directly mixing with the mixture.
  • the dropping rate of the liquid organosilicate is 10-50 mL/min.
  • the preparation method of the mixed solution is: add 5-200mL n-butyraldehyde and 0.5-10g CTAB into 10-150mL deionized water, stir at room temperature for 30min, and the stirring speed is 400-1000r/min , after dispersing and mixing n-butyraldehyde and CTAB for 30 minutes, quickly add 5-100 mL of NH 4 OH with a mass fraction of 25-28%, and stir at room temperature for 1 hour at a stirring rate of 400-1000 r/min to obtain the mixed liquid.
  • liquid organosilicate in one embodiment, 2-50 mL of liquid organosilicate can be added to the above mixture to cause a precipitation reaction.
  • the reaction temperature of the precipitation reaction may be 25 to 80°C.
  • the reaction time may be 0.1 hour to 48 hours.
  • the precipitation reaction can take place with stirring.
  • the stirring rate may be 400 to 1000 r/min.
  • step S3 the precipitate can be filtered out from the product solution and washed with deionized water to obtain a filter cake of the precipitate.
  • the precipitate filter cake may not be dried, but directly mixed with an organic alcohol in step S4 and subjected to azeotropic distillation to obtain a dehydrated precipitate.
  • the organic alcohol may be at least one of ethanol, propanol, n-butanol and isobutanol.
  • the precipitate filter cake is uniformly dispersed in 50-200 mL of organic alcohol to form a dispersion liquid, and then the dispersion liquid is transferred to a rotary distillation apparatus for azeotropic distillation. Specifically, the temperature of the dispersion is first brought to the azeotropic point of water and the organic alcohol and distilled for 0.5 to 2 hours, and then distilled at the boiling point of the organic alcohol for 0.5 to 2 hours.
  • the distillation product can be isolated and dried to obtain a dehydrated precipitate.
  • the distillation product is centrifuged in a centrifuge at a speed of 8000 r/min for 5 minutes, and dried at 60-100° C. for 12 hours to obtain a dehydrated precipitate.
  • step S5 the dehydrated precipitate can be calcined at 400-600° C. for 4 to 8 hours in a muffle furnace to obtain the second silicate (such as nano-calcium silicate) or silicon.
  • the second silicate such as nano-calcium silicate
  • the organic amine solution includes an organic solvent and organic amine dissolved in the organic solvent.
  • the organic amine may be at least one of polyethyleneimine, diethylenetriamine, tetraethylenepentamine, and pentaethylenehexamine, and the organic solvent may be at least one of methanol, ethanol and acetone.
  • the concentration of the organic amine in the organic amine solution is 4g/L to 200g/L, such as 20g/L to 180g/L, 50g/L to 180g/L, 100g/L to 180g/L.
  • the ratio of the silicon-based carrier to the organic amine solution may be 10 g/L to 100 g/L, such as 20 g/L to 80 g/L, such as 20 g/L to 40 g/L.
  • the silicon-based support can be impregnated with the organic amine solution by dispersing the silicon-based support in the organic amine solution.
  • the silicon-based solid-state amine CO2 adsorbent can be obtained by directly drying the organic amine solution dispersed with the silicon-based support.
  • the CO2 adsorption capacity and adsorption - desorption cycle performance of the silicon-based solid-state amine CO2 adsorbent can be measured.
  • the silicon-based solid amine CO2 adsorbent is adsorbed under the condition of 15-100vol.% CO2 gas flow, 30-110 °C; and then regenerated at 90-140 °C in pure Ar gas flow, And 10 cycles of adsorption-desorption experiments were carried out.
  • the silicon-based carriers in Examples 1 to 6 all have larger specific surface areas and pore volumes, and the specific surface area of the silicon-based carrier in Example 6 is as high as 964.8m 2 /g , the pore volume is as high as 3.57cm 3 /g, much larger than the specific surface area and pore volume of the existing silicon-based supports.
  • the CO2 saturated adsorption capacity of the silicon-based solid amine CO2 adsorbent formed by this silicon-based carrier can reach more than 336 mg/g, and it is regenerated under the condition of pure Ar gas flow. After 10 cycles, its adsorption capacity only decays Less than 7%, it has excellent adsorption-regeneration cycle performance.
  • the present application also provides a silicon-based solid amine CO 2 adsorbent, which is prepared by the above preparation method.
  • the silicon-based solid amine CO2 adsorbent and preparation method provided by the application have the following advantages:
  • the pore volume and specific surface of the prepared silicon-based carrier are greater than 800m 2 /g and 3.5cm 3 /g respectively, breaking through the technical bottle in terms of pore volume improvement of silicon-based materials;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Silicon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种硅基固态胺CO 2吸附剂及其制备方法,包括:提供硅源液体,所述硅源液体是硅酸盐溶液或者液体有机硅酸酯,所述硅酸盐溶液包括水和溶解于水中的第一硅酸盐;将所述硅源液体与沉淀剂混合并发生沉淀反应,生成含有沉淀物的产液,所述沉淀物是第二硅酸盐或硅酸;过滤并用水洗涤所述沉淀物;将过滤后未干燥的所述沉淀物与有机醇混合并进行共沸蒸馏,得到脱水的沉淀物;将脱水的沉淀物进行煅烧,得到硅基载体,所述硅基载体为第二硅酸盐的粉末或二氧化硅粉末;以及用有机胺溶液浸渍所述硅基载体,并且进行干燥,得到硅基固态胺CO 2吸附剂。

Description

硅基固态胺CO 2吸附剂及其制备方法 技术领域
本申请涉及CO 2气体吸附净化技术领域,特别是涉及硅基固态胺CO 2吸附剂及其制备方法。
背景技术
随着经济发展和社会进步,化石燃料成为了人类最主要的能源。人类在使用化石燃料的同时,排放了大量的温室气体CO 2到大气环境中,这导致全球CO 2浓度急剧上升,造成了全球变暖,冰川融化海平面上升等对人类生存环境不可逆的危害。为了应对温室气体对人类生存带来的威胁,各国在巴黎协定上承诺到2050年将全球气候变暖控制在2℃以下。
然而,化石燃料作为一种储备量大的廉价能源,在短期内仍然是社会经济发展中最主要的初级能源,因此,二氧化碳捕集技术(CCS)被迫切需要。同时,CCS也是目前公认的唯一能够在该领域实现大规模减排的技术手段。目前工业上应用最多CO 2捕集技术的是液氨吸附技术,因为其吸附效果好,选择性高。然而液氨的易挥发,易腐蚀设备且不可循环等缺点给设备和操作成本都带来了极大挑战。
近年来,固态胺吸附剂由于其选择性高、吸附性能好、容易再生而受到广泛关注。固态胺吸附剂由载体和有机胺组成,常见的载体包括沸石、MOF、树脂、碳纳米管、硅基载体和铝基载体等。其中,当前常用的硅基载体的比表面积约为100~400m 2/g,孔体积约为1.0~2.0cm 3/g,这大大限制了硅基载体在改性、吸附和分离方面的应用。由于载体硅的孔体积<2.0cm 3/g,有机胺的负载量普遍低于50%,从而使得硅基固态胺的CO 2吸附量也难以进一步提高。
发明内容
基于此,有必要提供一种载体孔体积大、CO 2吸附容量高的硅基固态胺CO 2吸附剂。
一种硅基固态胺CO 2吸附剂的制备方法,包括:
提供硅源液体,所述硅源液体是硅酸盐溶液或者液体有机硅酸酯,所述硅酸盐溶液包括水和溶解于水中的第一硅酸盐;
将所述硅源液体与沉淀剂混合并发生沉淀反应,生成含有沉淀物的产液,所述沉淀物是第二硅酸盐或硅酸;
过滤并用水洗涤所述沉淀物;
将过滤后未干燥的所述沉淀物与有机醇混合并进行共沸蒸馏,得到脱水的沉淀物;
将脱水的沉淀物进行煅烧,得到硅基载体,所述硅基载体为第二硅酸盐的粉末或二氧化 硅粉末;以及
用有机胺溶液浸渍所述硅基载体,并且进行干燥,得到硅基固态胺CO 2吸附剂。
在一个实施例中,所述硅源液体是所述硅酸盐溶液,所述第一硅酸盐是Na 2SiO 3或者K 2SiO 3
在一个实施例中,所述硅酸盐溶液中的所述第一硅酸盐的浓度为5g/L至100g/L。
在一个实施例中,所述沉淀剂为含有CO 2的气体或者Ca(OH) 2溶液。
在一个实施例中,所述含有CO 2的气体中的CO 2的浓度为15vol.%至40vol.%,所述含有CO 2的气体的流量为每升硅酸盐溶液400mL/min至2000mL/min。
在一个实施例中,所述Ca(OH) 2溶液的浓度为0.05mol/L至1mol/L。
在一个实施例中,所述硅源液体是所述液体有机硅酸酯,所述液体有机硅酸酯是正硅酸乙酯和正硅酸甲酯中的至少一种。
在一个实施例中,所述沉淀剂是正丁醛、十六烷基三甲基溴化铵和氨水的混合液。
在一个实施例中,所述混合液的制备方法包括:
将正丁醛、十六烷基三甲基溴化铵和水混合均匀,得到预混合液;以及
将氨水与所述预混合液混合均匀,得到所述混合液。
在一个实施例中,所述混合液中正丁醛、十六烷基三甲基溴化铵、水和氨水的比例为(5ml-20ml):(0.5g-10g):(10ml-150ml):(5ml-100ml),氨水的质量分数为25%至28%。
在一个实施例中,所述混合液与所述液体有机硅酸酯的体积比为5:1至20:1。
在一个实施例中,所述硅源液体与所述沉淀剂的反应温度为25℃至80℃。
在一个实施例中,所述有机醇是乙醇、丙醇、正丁醇和异丁醇中的一种或多种。
在一个实施例中,所述煅烧的温度为400℃至600℃。
在一个实施例中,所述有机胺溶液包括有机溶剂和溶解在所述有机溶剂中的有机胺,所述有机胺是聚乙烯亚胺、二乙烯三胺、四乙烯五胺、五乙撑六胺中的至少一种,所述有机溶剂是甲醇、乙醇和丙酮中的至少一种。
在一个实施例中,所述有机胺溶液中所述有机胺的浓度为4g/L至200g/L,硅基载体与有机胺溶液的比例为10g/L至100g/L。
一种硅基固态胺CO 2吸附剂,其上述制备方法制备而成。
本申请所提供的硅基固态胺CO 2吸附剂的制备方法具有以下优点:
(1)制备过程中仅添加少量的表面活性剂或者不添加任何表面活性剂,不添加模板剂和扩孔剂,共沸蒸馏过程使用的是有机醇,价格便宜,可回收重复使用,对环境污染小,具有经济优势;
(2)操作过程简单,反应条件温和、操作容易控制、不需要任何复杂设备,具备极强的 市场竞争力,适合工业化生产;
(3)所制备的硅基载体孔体积和比表面分别大于800m 2/g、3.5cm 3/g,突破了硅基材料孔体积提升上的技术瓶;以及
(4)合成的固态胺CO 2吸附剂的CO 2饱和吸附能力达到336mg/g,且在纯Ar气流条件下进行再生,经10次循环后,其吸附量仅衰减不到7%,具有优异的吸附-再生循环性能。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例6的固态胺CO 2吸附剂的CO 2首次吸附曲线。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请提供一种硅基固态胺CO 2吸附剂的制备方法,包括:
S1,提供硅源液体,所述硅源液体是硅酸盐溶液或者液体有机硅酸酯,所述硅酸盐溶液包括水和溶解于水中的第一硅酸盐;
S2,将所述硅源液体与沉淀剂混合并发生沉淀反应,生成含有沉淀物的产液,所述沉淀物是第二硅酸盐或硅酸;
S3,过滤并用水洗涤所述沉淀物;
S4,将过滤后未干燥的所述沉淀物与有机醇混合并进行共沸蒸馏,得到脱水的沉淀物;
S5,将脱水的沉淀物进行煅烧,得到硅基载体,所述硅基载体为第二硅酸盐的粉末或二氧化硅粉末;以及
S6,用有机胺溶液浸渍所述硅基载体,并且进行干燥,得到硅基固态胺CO 2吸附剂。
在步骤S1中,所述硅源液体可以是硅酸盐溶液,所述硅酸盐溶液可以是第一硅酸盐的水溶液。所述第一硅酸盐可以是可溶于水的硅酸盐,例如Na 2SiO 3或者K 2SiO 3。所述硅酸盐溶液中的第一硅酸盐的质量浓度可以为5至100g/L。
所述硅源液体也可以是液体有机硅酸酯,例如正硅酸乙酯和正硅酸甲酯中的至少一种。
在步骤S2中,所述沉淀剂用于与第一硅酸盐或者液体有机硅酸酯发生沉淀反应,从而使 第一硅酸盐或者液体有机硅酸酯中的硅酸根形成沉淀物。
当与第一硅酸盐发生沉淀反应时,沉淀剂可以为含有CO 2的气体或者Ca(OH) 2溶液,沉淀物可以为不溶于水的第二硅酸盐。
在一个实施例中,通过将含有CO 2的气体通入硅酸盐溶液中来发生沉淀反应。含有CO 2的气体中的CO 2的浓度可以为15至40vol.%。含有CO 2的气体的流量可以为每升硅酸盐溶液400-2000mL/min。由此,可以获得比表面积大和孔体积大的沉淀物和硅基载体。
在一个实施例中,通过将Ca(OH) 2溶液滴加到硅酸盐溶液中或直接与硅酸盐溶液混合来发生沉淀反应。在一个实施例中,Ca(OH) 2溶液的配制方法为:将0.005mol-0.2mol Ca(OH) 2加入到100-200mL水中,充分搅拌混匀,得到Ca(OH) 2溶液。在一个实施例中,Ca(OH) 2溶液的滴加速度为10-50mL/min。
当与液体有机硅酸酯发生沉淀反应时,沉淀剂可以为正丁醛、十六烷基三甲基溴化铵(CTAB)和氨水的混合液,沉淀物可以为硅酸。
在一个实施例中,所述混合液的制备方法包括:将正丁醛、十六烷基三甲基溴化铵和水混合均匀,得到预混合液;以及将氨水与所述预混合液混合均匀,得到所述混合液。
在一个实施例中,通过将液体有机硅酸酯滴加到所述混合液中,或者与所述混合液直接混合,来发生沉淀反应。在一个实施例中,液体有机硅酸酯的滴加速度为10-50mL/min。
在一个实施例中,所述混合液的配制方法为:将5-200mL正丁醛和0.5-10g CTAB加入到10-150mL去离子水中,在室温下搅拌30min,搅拌速率为400-1000r/min,待正丁醛和CTAB分散混合30min后,快速加入5-100mL质量分数为25~28%的NH 4OH,在室温下搅拌1h,搅拌速率为400-1000r/min,即制得所述混合液。
在一个实施例中,可以将2-50mL的液体有机硅酸酯加入到上述混合液中,以发生沉淀反应。
在一个实施例中,所述沉淀反应的反应温度可以为25至80℃。反应时间可以为0.1小时至48小时。可以在搅拌的情况下发生所述沉淀反应。搅拌速率可以为400至1000r/min。
在步骤S3中,可以将沉淀物从产液中过滤出来,并用去离子水洗涤,从而得到沉淀物滤饼。
该沉淀物滤饼可以不进行干燥,而是直接在步骤S4中与有机醇混合并进行共沸蒸馏,以得到脱水的沉淀物。
所述有机醇可以为乙醇、丙醇、正丁醇和异丁醇中的至少一种。
在一个实施例中,将沉淀物滤饼均匀分散在50-200mL有机醇中形成分散液,然后将所述分散液转移到旋转蒸馏仪上进行共沸蒸馏。具体地,首先使分散液的温度达到水和有机醇的共沸点并蒸馏0.5小时至2小时,然后在有机醇的沸点下蒸馏0.5小时至2小时。
在蒸馏后,可以将蒸馏产物分离并干燥,从而得到脱水的沉淀物。在一个实施例中,将蒸馏产物置于离心机中以8000r/min的转速离心5min,并在60-100℃干燥12h,来得到脱水的沉淀物。
在步骤S5中,可以将脱水的沉淀物马弗炉中在400-600℃下煅烧4至8小时,从而得到用作硅基载体的第二硅酸盐(例如纳米硅酸钙)或二氧化硅。
在步骤S6中,有机胺溶液包括有机溶剂和溶解在所述有机溶剂中的有机胺。所述有机胺可以是聚乙烯亚胺、二乙烯三胺、四乙烯五胺、五乙撑六胺中的至少一种,所述有机溶剂可以是甲醇、乙醇和丙酮中的至少一种。
所述有机胺溶液中所述有机胺的浓度为4g/L至200g/L,例如20g/L至180g/L,50g/L至180g/L,100g/L至180g/L。硅基载体与有机胺溶液的比例可以为10g/L至100g/L,例如20g/L至80g/L,例如20g/L至40g/L。由此,可以获得有机胺负载量高的硅基固态胺CO 2吸附剂,同时有机胺可以均匀分布在硅基载体上。
可以通过将硅基载体分散在有机胺溶液中,来用有机胺溶液浸渍硅基载体。可以通过直接干燥分散有硅基载体的有机胺溶液,来获得硅基固态胺CO 2吸附剂。
在获得硅基固态胺CO 2吸附剂之后,可以对硅基固态胺CO 2吸附剂的CO 2吸附量和吸附-脱附循环性能进行测量。在一个实施例中,通过将硅基固态胺CO 2吸附剂在15~100vol.%CO 2气流、30~110℃的条件下进行吸附;随后在纯Ar气流中于90-140℃下再生,并进行10次循环吸附-脱附实验。
实施例1
(1)将质量浓度为40g/L的Na 2SiO 3溶液置于设计有通气孔的密闭反应釜中,反应釜加热至80℃,通入浓度为15vol.%、流量为每升Na 2SiO 3溶液中400mL/min的CO 2进行沉淀反应;15min后,停止通气,将产液取出;
(2)将产液中的沉淀物过滤出来,采用去离子水洗涤多次;将滤饼均匀分散在100mL丁醇中,随后转移到连接了循环冷凝水的旋转蒸馏仪上进行共沸蒸馏。先在温度达到93℃(水和正丁醇的共沸点)蒸馏1h,然后在117℃(正丁醇的沸点)蒸馏1h;
(3)待共沸蒸馏后的样品降温至室温,置于离心机中以8000r/min的转速离心5min,分离收集的样品在100℃下干燥12h,在500℃煅烧4h,冷却后收集得到大孔容的纳米二氧化硅。
(4)2.2g聚乙烯亚胺(PEI)加入到25mL甲醇溶解分散,然后加入1g纳米二氧化硅粉末,以400r/min的转速充分搅拌,待甲醇蒸发后置于真空干燥箱中60℃下干燥5h,即制备得到纳米硅基固态胺CO 2吸附剂。
(5)将得到纳米硅基固态胺CO 2吸附剂在100vol.%CO 2气流、90℃的条件下进行吸 附;随后在纯Ar气流中于120℃下再生,并进行10次循环吸附-脱附实验。
实施例2
(1)将质量浓度为60g/L的Na 2SiO 3溶液置于设计有通气孔的密闭反应釜中,反应釜加热至50℃,通入浓度为15vol.%、流量为每升Na 2SiO 3溶液中600mL/min的CO 2进行沉淀反应;10min后,停止通气,将产液取出;
(2)将产液中的沉淀物过滤出来,采用去离子水洗涤多次;将滤饼均匀分散在100mL丁醇中,随后转移到连接了循环冷凝水的旋转蒸馏仪上进行共沸蒸馏。先在温度达到93℃(水和正丁醇的共沸点)蒸馏1h,然后在117℃(正丁醇的沸点)蒸馏1h;
(3)待共沸蒸馏后的样品降温至室温,置于离心机中以8000r/min的转速离心5min,分离收集的样品在100℃下干燥12h,在500℃煅烧6h,冷却后收集得到大孔容的纳米二氧化硅。
(4)2.2g聚乙烯亚胺(PEI)加入到25mL甲醇溶解分散,然后加入1g纳米二氧化硅粉末,以400r/min的转速充分搅拌,待甲醇蒸发后置于真空干燥箱中60℃下干燥5h,即制备得到纳米硅基固态胺CO 2吸附剂。
(5)将得到纳米硅基固态胺CO 2吸附剂在40vol.%CO 2气流、75℃的条件下进行吸附;随后在纯Ar气流中于100℃下再生,并进行10次循环吸附-脱附实验。
实施例3
(1)将摩尔浓度为6.6g/L的Na 2SiO 3溶液以25mL/min的滴加速度滴加入0.08mol/L的Ca(OH) 2溶液中,以500r/min的搅拌速度反应16h。
(2)将沉淀物过滤出来,采用去离子水作为洗涤液,洗涤多次;将滤饼均匀分散在100mL丁醇中,随后转移到连接了循环冷凝水的旋转蒸馏仪上进行共沸蒸馏。先在温度达到93℃(水和正丁醇回流的共沸点)蒸馏1h,然后在117℃(正丁醇的沸点)蒸馏1h;
(3)待共沸蒸馏后的样品降温至室温,置于离心机中以8000r/min的转速离心5min,分离收集的样品在80℃下干燥12h,随后在500℃高温煅烧4h,冷却后收集得到纳米硅酸钙。
(4)2.2g聚乙烯亚胺(PEI)加入到25mL甲醇溶解分散,然后加入1g纳米硅酸钙粉末,以400r/min的转速充分搅拌,待甲醇蒸发后置于真空干燥箱中60℃下干燥5h,即制备得到纳米硅基固态胺CO 2吸附剂。
(5)将得到纳米硅基固态胺CO 2吸附剂在100vol.%CO 2气流、90℃的条件下进行吸附;随后在纯Ar气流中于120℃下再生,并进行10次循环吸附-脱附实验。
实施例4
(1)将摩尔浓度为15g/L的Na 2SiO 3溶液以25mL/min的滴加速度滴加入0.2mol/L的Ca(OH) 2溶液中,以500r/min的搅拌速度反应20h。
(2)将沉淀物过滤,采用去离子水作为洗涤液,洗涤多次;将滤饼均匀分散在100mL丁醇中,随后转移到连接了循环冷凝水的旋转蒸馏仪上进行共沸蒸馏。先在温度达到93℃(水和正丁醇的共沸点)蒸馏1h,然后在117℃(正丁醇的沸点)蒸馏2h;
(3)待共沸蒸馏后的样品降温至室温,置于离心机中以8000r/min的转速离心5min,分离收集的样品在100℃下干燥12h,随后在500℃高温煅烧6h,冷却后收集得到纳米硅酸钙。
(4)1.56g聚乙烯亚胺(PEI)加入到25mL甲醇溶解分散,然后加入1g纳米硅酸钙粉末,以400r/min的转速充分搅拌,待甲醇蒸发后置于真空干燥箱中60℃下干燥5h,即制备得到纳米硅基固态胺CO 2吸附剂。
(5)将得到纳米硅基固态胺CO 2吸附剂在40vol.%CO 2气流、60℃的条件下进行吸附;随后在纯Ar气流中于110℃下再生,并进行10次循环吸附-脱附实验。
实施例5
(1)将15mL正丁醛和0.64CTAB加入到12mL去离子水中,室温(25℃)下搅拌30min,搅拌速率为400r/min。待正丁醛和CTAB分散混合30min后,快速加入6mL质量分数为25~28%的NH 4OH,室温(25℃)下搅拌1h,搅拌速率为400r/min。
(2)待NH 4OH分散混合1h后,加入2.8mL TEOS,室温(25℃)下搅拌24h,搅拌速率为500r/min。
(3)水解合成的硅酸沉淀用去离子水洗涤多次,去除多余的丁醛;真空泵抽滤形成滤饼,去除样品中绝大部分的H 2O。将收集得到的滤饼与150mL正丁醇混合,置于磁力搅拌器上充分搅拌,均匀分散后转移到连接了循环冷凝水的旋转蒸馏仪上进行共沸蒸馏。先在温度达到93℃(水和正丁醇的共沸点)蒸馏0.5h,然后117℃(正丁醇的沸点)蒸馏1h。
(4)冷却后,混合物用离心机以8000r/min的转速离心5min,分离收集的样品在100℃下干燥12h,随后在550℃高温煅烧6h,冷却后收集得到多孔纳米二氧化硅。
(5)4.5g聚乙烯亚胺(PEI)加入到25mL甲醇溶解分散,然后加入1g纳米二氧化硅粉末,以400r/min的转速充分搅拌,待甲醇蒸发后置于真空干燥箱中60℃下干燥5h,即制备得到纳米硅基固态胺CO 2吸附剂。
(6)将得到纳米硅基固态胺CO 2吸附剂在40vol.%CO 2气流、60℃的条件下进行吸附;随后在纯Ar气流中于100℃下再生,并进行10次循环吸附-脱附实验。
实施例6
(1)将150mL正丁醛和6.4CTAB加入到120mL去离子水中,室温(25℃)下搅拌30min,搅拌速率为600r/min。待正丁醛和CTAB分散混合30min后,快速加入60mL质量分数为25~28%的NH 4OH,室温(25℃)下搅拌1h,搅拌速率为600r/min。
(2)待NH 4OH分散混合1h后,加入28mL TEOS,室温(25℃)下搅拌48h,搅拌速率为1000r/min。
(3)水解合成的硅酸沉淀用去离子水洗涤多次,去除多余的丁醛;真空泵抽滤形成滤饼,去除样品中绝大部分的H 2O。将收集得到的滤饼分成两批,分别与150mL正丁醇混合,置于磁力搅拌器上充分搅拌,均匀分散后转移到连接了循环冷凝水的旋转蒸馏仪上进行共沸蒸馏。先在温度达到93℃(水和正丁醇的共沸点)蒸馏1h,然后117℃(正丁醇的沸点)蒸馏1h。
(4)冷却后,混合物用离心机以8000r/min的转速离心5min,分离收集的样品在100℃下干燥12h,随后在550℃高温煅烧6h,冷却后收集得到多孔纳米二氧化硅。
(5)4.5g四乙烯五胺(TEPA)加入到25mL甲醇溶解分散,然后加入1g纳米二氧化硅粉末,以400r/min的转速充分搅拌,待甲醇蒸发后置于真空干燥箱中60℃下干燥5h,即制备得到纳米硅基固态胺CO 2吸附剂。
(6)将得到纳米硅基固态胺CO 2吸附剂在100vol.%CO 2气流、90℃的条件下进行吸附;随后在纯Ar气流中于120℃下再生,并进行10次循环吸附-脱附实验。
对实施例产物分析:
参阅表1和图1,经测量,实施例1至实施例6中的硅基载体都具有较大的比表面积和孔体积,其中实施例6的硅基载体的比表面积高达964.8m 2/g,孔体积高达3.57cm 3/g,远大于现有的硅基载体的比表面积和孔体积。由这种硅基载体形成的硅基固态胺CO 2吸附剂的CO 2饱和吸附量可达336mg/g以上,且在纯Ar气流条件下进行再生,经10次循环后,其吸附量仅衰减不到7%,具有优异的吸附-再生循环性能。
表1硅基载体样品的孔隙度参数
Figure PCTCN2021099178-appb-000001
Figure PCTCN2021099178-appb-000002
表2固态胺CO 2吸附剂的CO 2吸附参数
Figure PCTCN2021099178-appb-000003
本申请还提供一种硅基固态胺CO 2吸附剂,其由上述制备方法制备而成。
本申请所提供的硅基固态胺CO 2吸附剂及其制备方法具有以下优点:
(1)制备过程中仅添加少量的表面活性剂或者不添加任何表面活性剂,不添加模板剂和扩孔剂,共沸蒸馏过程使用的是有机醇,价格便宜,可回收重复使用,对环境污染小,具有经济优势;
(2)操作过程简单,反应条件温和、操作容易控制、不需要任何复杂设备,具备极强的市场竞争力,适合工业化生产;
(3)所制备的硅基载体孔体积和比表面分别大于800m 2/g、3.5cm 3/g,突破了硅基材料孔体积提升上的技术瓶;
(4)合成的固态胺CO 2吸附剂的CO 2饱和吸附能力达到336mg/g,且在纯Ar气流条件下进行再生,经10次循环后,其吸附量仅衰减不到7%,具有优异的吸附-再生循环性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不 脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种硅基固态胺CO 2吸附剂的制备方法,包括:
    提供硅源液体,所述硅源液体是硅酸盐溶液或者液体有机硅酸酯,所述硅酸盐溶液包括水和溶解于水中的第一硅酸盐;
    将所述硅源液体与沉淀剂混合并发生沉淀反应,生成含有沉淀物的产液,所述沉淀物是第二硅酸盐或硅酸;
    过滤并用水洗涤所述沉淀物;
    将过滤后未干燥的所述沉淀物与有机醇混合并进行共沸蒸馏,得到脱水的沉淀物;
    将脱水的沉淀物进行煅烧,得到硅基载体,所述硅基载体为第二硅酸盐的粉末或二氧化硅粉末;以及
    用有机胺溶液浸渍所述硅基载体,并且进行干燥,得到硅基固态胺CO 2吸附剂。
  2. 根据权利要求1所述的制备方法,其特征在于,所述硅源液体是所述硅酸盐溶液,所述第一硅酸盐是Na 2SiO 3或者K 2SiO 3
  3. 根据权利要求2所述的制备方法,其特征在于,所述硅酸盐溶液中的所述第一硅酸盐的浓度为5g/L至100g/L。
  4. 根据权利要求2所述的制备方法,其特征在于,所述沉淀剂为含有CO 2的气体或者Ca(OH) 2溶液。
  5. 根据权利要求4所述的制备方法,其特征在于,所述含有CO 2的气体中的CO 2的浓度为15vol.%至40vol.%,所述含有CO 2的气体的流量为每升硅酸盐溶液400mL/min至2000mL/min。
  6. 根据权利要求4所述的制备方法,其特征在于,所述Ca(OH) 2溶液的浓度为0.05mol/L至1mol/L。
  7. 根据权利要求1所述的制备方法,其特征在于,所述硅源液体是所述液体有机硅酸酯,所述液体有机硅酸酯是正硅酸乙酯和正硅酸甲酯中的至少一种。
  8. 根据权利要求7所述的制备方法,其特征在于,所述沉淀剂是正丁醛、十六烷基三甲基溴化铵和氨水的混合液。
  9. 根据权利要求8所述的制备方法,其特征在于,所述混合液的制备方法包括:
    将正丁醛、十六烷基三甲基溴化铵和水混合均匀,得到预混合液;以及
    将氨水与所述预混合液混合均匀,得到所述混合液。
  10. 根据权利要求9所述的制备方法,其特征在于,所述混合液中正丁醛、十六烷基三甲基溴化铵、水和氨水的比例为(5ml-20ml):(0.5g-10g):(10ml-150ml):(5ml-100ml),氨水 的质量分数为25%至28%。
  11. 根据权利要求10所述的制备方法,其特征在于,所述混合液与所述液体有机硅酸酯的体积比为5:1至20:1。
  12. 根据权利要求1所述的制备方法,其特征在于,所述硅源液体与所述沉淀剂的反应温度为25℃至80℃。
  13. 根据权利要求1所述的制备方法,其特征在于,所述有机醇是乙醇、丙醇、正丁醇和异丁醇中的一种或多种。
  14. 根据权利要求1所述的制备方法,其特征在于,所述煅烧的温度为400℃至600℃。
  15. 根据权利要求1所述的制备方法,其特征在于,所述有机胺溶液包括有机溶剂和溶解在所述有机溶剂中的有机胺,所述有机胺是聚乙烯亚胺、二乙烯三胺、四乙烯五胺、五乙撑六胺中的至少一种,所述有机溶剂是甲醇、乙醇和丙酮中的至少一种。
  16. 根据权利要求1所述的制备方法,其特征在于,所述有机胺溶液中所述有机胺的浓度为4g/L至200g/L,硅基载体与有机胺溶液的比例为10g/L至100g/L。
  17. 一种硅基固态胺CO 2吸附剂,其由权利要求1所述的制备方法制备而成。
PCT/CN2021/099178 2021-06-09 2021-06-09 硅基固态胺co 2吸附剂及其制备方法 WO2022257045A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/620,286 US20240123423A1 (en) 2021-06-09 2021-06-09 Silicon-based solid amine sorbent for co2 and making method thereof
PCT/CN2021/099178 WO2022257045A1 (zh) 2021-06-09 2021-06-09 硅基固态胺co 2吸附剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/099178 WO2022257045A1 (zh) 2021-06-09 2021-06-09 硅基固态胺co 2吸附剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2022257045A1 true WO2022257045A1 (zh) 2022-12-15

Family

ID=84424738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099178 WO2022257045A1 (zh) 2021-06-09 2021-06-09 硅基固态胺co 2吸附剂及其制备方法

Country Status (2)

Country Link
US (1) US20240123423A1 (zh)
WO (1) WO2022257045A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888632A (zh) * 2023-01-03 2023-04-04 中国科学院苏州纳米技术与纳米仿生研究所 二氧化硅气凝胶固液复合co2吸附剂、制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785349A (zh) * 2012-11-02 2014-05-14 北京低碳清洁能源研究所 一种固态胺气体吸附材料的制备方法
US20180050322A1 (en) * 2015-03-23 2018-02-22 Basf Corporation Carbon dioxide sorbents for indoor air quality control
US10065174B1 (en) * 2015-09-28 2018-09-04 U.S. Department Of Energy Pelletized immobilized amine sorbent for CO2 capture
CN109569517A (zh) * 2017-09-28 2019-04-05 中国石油化工股份有限公司 一种固体胺吸附剂的制备方法
CN111298763A (zh) * 2020-03-03 2020-06-19 山东建筑大学 一种改性硅胶co2吸附剂及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846337B2 (en) * 2009-02-17 2010-12-07 Agilent Technologies, Inc. Superficially porous particles and methods of making and using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785349A (zh) * 2012-11-02 2014-05-14 北京低碳清洁能源研究所 一种固态胺气体吸附材料的制备方法
US20180050322A1 (en) * 2015-03-23 2018-02-22 Basf Corporation Carbon dioxide sorbents for indoor air quality control
US10065174B1 (en) * 2015-09-28 2018-09-04 U.S. Department Of Energy Pelletized immobilized amine sorbent for CO2 capture
CN109569517A (zh) * 2017-09-28 2019-04-05 中国石油化工股份有限公司 一种固体胺吸附剂的制备方法
CN111298763A (zh) * 2020-03-03 2020-06-19 山东建筑大学 一种改性硅胶co2吸附剂及其制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888632A (zh) * 2023-01-03 2023-04-04 中国科学院苏州纳米技术与纳米仿生研究所 二氧化硅气凝胶固液复合co2吸附剂、制备方法与应用

Also Published As

Publication number Publication date
US20240123423A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
Yan et al. Remarkable CO 2/CH 4 selectivity and CO 2 adsorption capacity exhibited by polyamine-decorated metal–organic framework adsorbents
CN111266089B (zh) 一种金属有机框架复合材料及其制备方法与应用
Li et al. Fabrication of a new MgO/C sorbent for CO 2 capture at elevated temperature
CN106699817B (zh) 一种金属有机框架材料的制备方法及其应用
CN104907045B (zh) 二氧化碳高效捕集材料
CN105080490B (zh) 一种铬镁双金属MOFs吸附剂MIL‑101(Cr,Mg)及其制备方法
WO2014082206A1 (zh) 一种固态胺气体吸附材料的制备方法
Zeng et al. High-performance CO 2 capture on amine-functionalized hierarchically porous silica nanoparticles prepared by a simple template-free method
WO2022257045A1 (zh) 硅基固态胺co 2吸附剂及其制备方法
CN105771907A (zh) 一种MOFs双配体吸附材料Fe-btc(dobdc)及其制备方法
CN105617978B (zh) 室温吸附CO2的负载型MgO/γ-Al2O3吸附剂的制备方法
JP2015044175A (ja) シロキサン除去剤およびそれを用いたシロキサン除去フィルタ
WO2022257041A1 (zh) 固态胺co2吸附剂及其制备方法
CN113277520B (zh) 二氧化硅介孔材料及其制备方法和应用
CN115445575A (zh) 一种固体胺吸附剂及其制备方法和一种二氧化碳吸附和再生方法
KR101659284B1 (ko) 메조 기공 실리카를 이용한 수분 흡착 조성물과 그 제조방법
CN104549161B (zh) 一种含铁金属有机骨架材料的制备方法及其应用
WO2022088675A1 (zh) 二氧化碳吸附剂及其制备方法、使用方法
CN105536689B (zh) 一种负载型脱砷剂及其制备方法
JP2017039633A (ja) 二酸化炭素吸着性を有する水酸化ジルコニウムメソ多孔体、その製造方法及び該水酸化ジルコニウムメソ多孔体からなる二酸化炭素吸着剤
JP6578704B2 (ja) 多孔性配位高分子
Gao et al. Construction of a polyoxometalate-based magnetic composite MOF for the effective adsorption of cationic dyes
JP6264859B2 (ja) シロキサン除去剤およびそれを用いたシロキサン除去フィルタ
ZHANG et al. Study on the carbon capture performance of highly selective PEI@ MOF-808 adsorbent in humid flue gas
CN112915966A (zh) 一种聚苯胺基活性炭的制备方法及其应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17620286

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944555

Country of ref document: EP

Kind code of ref document: A1