WO2022257041A1 - 固态胺co2吸附剂及其制备方法 - Google Patents
固态胺co2吸附剂及其制备方法 Download PDFInfo
- Publication number
- WO2022257041A1 WO2022257041A1 PCT/CN2021/099129 CN2021099129W WO2022257041A1 WO 2022257041 A1 WO2022257041 A1 WO 2022257041A1 CN 2021099129 W CN2021099129 W CN 2021099129W WO 2022257041 A1 WO2022257041 A1 WO 2022257041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- boehmite
- pseudo
- preparation
- sodium aluminate
- Prior art date
Links
- 150000001412 amines Chemical class 0.000 title claims abstract description 83
- 239000003463 adsorbent Substances 0.000 title claims abstract description 59
- 239000007787 solid Substances 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 34
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 claims abstract description 71
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000000843 powder Substances 0.000 claims abstract description 47
- 238000001354 calcination Methods 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 7
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims description 54
- 229910001388 sodium aluminate Inorganic materials 0.000 claims description 54
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 35
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 239000002244 precipitate Substances 0.000 claims description 30
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 27
- 239000000047 product Substances 0.000 claims description 21
- 239000002904 solvent Substances 0.000 claims description 19
- 238000003756 stirring Methods 0.000 claims description 19
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 16
- 229920002873 Polyethylenimine Polymers 0.000 claims description 15
- 239000000725 suspension Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 10
- 239000006185 dispersion Substances 0.000 claims description 9
- 238000010992 reflux Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 claims description 6
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 claims description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 6
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 3
- 238000009835 boiling Methods 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 claims description 3
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 claims description 3
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 104
- 238000001179 sorption measurement Methods 0.000 description 38
- 238000000034 method Methods 0.000 description 33
- 239000011148 porous material Substances 0.000 description 31
- 230000008569 process Effects 0.000 description 22
- 238000011069 regeneration method Methods 0.000 description 22
- 239000007789 gas Substances 0.000 description 21
- 239000012065 filter cake Substances 0.000 description 18
- 239000011159 matrix material Substances 0.000 description 12
- 230000008929 regeneration Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 238000003795 desorption Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000004821 distillation Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010533 azeotropic distillation Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 150000003141 primary amines Chemical group 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
- B01J20/08—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3021—Milling, crushing or grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/305—Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
- B01J20/3064—Addition of pore forming agents, e.g. pore inducing or porogenic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3214—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
Definitions
- This application relates to the technical field of CO2 gas adsorption and purification, in particular to a solid amine CO2 adsorbent and a preparation method thereof.
- CO 2 capture and storage (CCS) technology can avoid CO 2 emissions from industrial emission point sources and reduce the existing CO 2 in the atmosphere, which is an important part of achieving the goal of "carbon neutrality"; especially for cement, steel and The deep decarbonization of the chemical industry and other industries, the large-scale production of low-carbon hydrogen energy, the supply of low-carbon electricity, and the realization of negative emissions are of great significance.
- CCS technology lies in the development of CO 2 capture materials. Efficient and cheap CO 2 capture materials are the key to reducing the application cost of CCS technology.
- Solid amine materials have become the most promising CO capture technology because of their advantages such as high CO selectivity, low regeneration energy consumption, and wide application scenarios.
- the captured CO2 In order to achieve the purpose of emission reduction, the captured CO2 must be enriched into high-purity CO2 for storage or utilization, so the solid amine adsorbent needs to be desorbed and regenerated under the actual CO2 atmosphere.
- most of the current solid amine materials will produce severe urea chain compounds under actual regeneration conditions, resulting in severe chemical inactivation and a sharp drop in adsorption capacity. Therefore, the preparation of solid-state amine materials with high CO2 adsorption capacity, high cycle stability against urea chains, and low cost is still an urgent problem to be solved in this field.
- a kind of preparation method of solid amine CO sorbent comprising:
- the alumina powder is impregnated with an organic amine solution and dried to obtain the solid amine CO2 adsorbent.
- the pseudo-boehmite is obtained by adding H 2 O 2 solution dropwise to sodium aluminate solution, or introducing CO 2 into sodium aluminate solution, or making sodium aluminate solution and aluminum sulfate solution Prepared by mixing.
- the step of adding H2O2 solution dropwise in sodium aluminate solution to prepare the pseudo - boehmite comprises:
- reaction solution was left to stand for 30 minutes to obtain a product solution containing precipitates
- the molar ratio of sodium aluminate in the sodium aluminate solution to H 2 O 2 in the H 2 O 2 solution is 1:1 to 1:5.
- introducing CO in the sodium aluminate solution comprises:
- reaction solution At room temperature, passing a gas mixture containing 10 to 50 vol.% CO into a sodium aluminate solution with a concentration of 10 g/L to 100 g/L to obtain a reaction solution;
- the precipitate in the product liquid is filtered out, and the precipitate is washed to obtain the pseudo-boehmite.
- the step of preparing the pseudo-boehmite by mixing the sodium aluminate solution with aluminum sulfate comprises:
- the precipitate in the product liquid is filtered out, and the precipitate is washed to obtain the pseudo-boehmite.
- the step of expanding the pseudo-boehmite comprises:
- the organic alcohol includes one or more of ethanol, n-propanol, isopropanol, n-butanol, isobutanol and sec-butanol.
- the step of calcining the expanded pseudo-boehmite to obtain alumina powder includes:
- a step of grinding the alumina powder to obtain nano-alumina powder is also included.
- the organic amine solution includes an organic amine and a solvent
- the organic amine is one or more of polyethyleneimine, diethylenetriamine, tetraethylenepentamine and pentaethylenehexamine
- the solvent is one or more of methanol and ethanol.
- the mass ratio of the organic amine to the solvent in the organic amine solution is 1:10 to 1:100.
- the step of impregnating the alumina powder with an organic amine solution to obtain the solid amine CO2 adsorbent after drying includes:
- the solvent in the dispersion is removed to obtain the solid amine CO2 adsorbent.
- the step of removing the solvent in the dispersion includes evaporating the solvent at room temperature, and drying the residue in a vacuum drying oven at 60° C. to 80° C. for 3 h to 6 h.
- the present application also provides a solid amine CO 2 adsorbent, which is prepared by the above preparation method.
- the silicon-based solid amine CO2 adsorbent and preparation method provided by the application have the following advantages:
- the raw materials for preparing the macroporous alumina matrix come from a wide range of sources, the preparation process is simple, the reaction conditions are mild, the operation is easy to control, no complicated equipment is required, and it is suitable for industrial production;
- the matrix preparation process does not need to add any surfactants, template agents, and pore-enlarging agents.
- the organic solvent used in the azeotropic distillation process is a common organic alcohol, which is cheap, recyclable and reused, has little environmental pollution, and is economical. Advantage;
- the solid amine CO2 adsorbent prepared by the macroporous alumina matrix can load a high content of organic amine, the saturated loading capacity can reach more than 70%, and the CO2 adsorption capacity can reach more than 5 mmol/g;
- the high-performance CO2 adsorbent of the present application has extremely high CO2 adsorption capacity and excellent regeneration cycle stability under actual conditions, and the preparation process is simple, green, and low in price, it can be widely used in the fields of CO2 capture and biogas purification .
- Fig. 1 is the scanning electron micrograph of the macroporous nano-alumina synthesized in the embodiment 1 of the present application;
- Fig. 2 is the N of synthetic macroporous nano-alumina in the embodiment 1 of the application The adsorption curve figure;
- Fig. 3 is a graph of the long-term cycle stability of the solid amine CO2 adsorbent in Example 1 of the present application.
- the application provides a kind of solid amine CO
- the preparation method of adsorbent, described preparation method comprises:
- alumina powder with larger pore volume can be obtained after pore expansion and roasting of pseudo-boehmite, which can support high content of organic amine, thereby improving the solid amine CO 2 CO2 adsorption capacity of the adsorbent.
- CO2 and the primary amine functional groups in the active amine are easily converted into urea chain compounds at high temperature (greater than 130 ° C), so that CO2 cannot be removed from the adsorbent. desorption in the medium, resulting in deactivation of the solid amine adsorbent.
- the nano-alumina prepared by the present application has abundant Lewis acidic sites, and can undergo a cross-linking reaction with active amines to convert primary amine functional groups in active amines into swollen amine functional groups, thereby avoiding the formation of urea chain compounds.
- the solid amine CO2 adsorbent of the present application has urea chain resistance and high cycle stability, which can still maintain high CO2 adsorption capacity after multiple CO2 adsorption-regeneration cycles.
- step S1 the pseudo-boehmite can be prepared by various methods.
- pseudo-boehmite is prepared by adding dropwise H 2 O 2 solution in sodium aluminate solution.
- Sodium aluminate solution and H 2 O 2 solution can react at room temperature and generate pseudo-boehmite precipitate.
- Conditions to control the morphology, specific surface area and pore volume of the pseudo-boehmite and the subsequently prepared alumina powder are examples of the concentration of sodium aluminate solution, the concentration of H2O2 solution, the ratio of sodium aluminate solution to H2O2 solution, the dropping speed of H2O2 solution and the reaction time, etc.
- the concentration of sodium aluminate solution can be 20g/L to 200g/L, such as 50g/L to 190g/L, 50g/L to 180g/L L, 70g/L to 170g/L, such as 80g/L, 90g/L, 100g/L, 110g/L, 120g/L, 130g/L, 140g/L, 150g/L, 160g/L.
- the concentration of the H2O2 solution may be 5wt% to 20wt%, such as 6wt% to 18wt%, 7wt% to 16wt %, 8wt% to 14wt%, such as 9wt%, 10wt%, 11wt%, 12wt% and 13wt%.
- the molar ratio of sodium aluminate and H2O2 in the sodium aluminate solution and the H2O2 solution can be 1 :1 to 1:5, such as 1: 2 , 1:3 , and 1:4.
- the dropping time can be 10min to 60min.
- reaction solution can be left to stand for 10 to 60 minutes to form a product solution containing pseudo-boehmite precipitates.
- product liquid is filtered and washed to obtain pseudo-boehmite filter cake.
- Both the sodium aluminate solution and the H2O2 solution can be aqueous solutions.
- pseudo-boehmite was prepared by bubbling CO2 in a sodium aluminate solution.
- the gas containing CO2 can be passed into the sodium aluminate solution at room temperature to react and generate pseudo-boehmite precipitate.
- the oxidation of pseudoboehmite and subsequent preparation can be controlled by controlling the reaction conditions such as the concentration of sodium aluminate solution, the concentration of CO in the gas, the flow rate of gas containing CO , and the pH of the reaction solution.
- the morphology, specific surface area and pore volume of aluminum powder can be controlled by controlling the reaction conditions such as the concentration of sodium aluminate solution, the concentration of CO in the gas, the flow rate of gas containing CO , and the pH of the reaction solution.
- the concentration of sodium aluminate solution can be 10g/L to 100g/L, for example, 10g/L to 90g/L, 10g/L to 80g/L L, 15g/L to 65g/L, such as 10g/L, 20g/L, 25g/L, 30g/L, 50g/L, 70g/L, 90g/L, 100g/L.
- the concentration of CO in the gas containing CO can be 10 vol.% to 50 vol.%, such as 10 vol.% to 40 vol.%, 10 vol.% to 30 vol.%, such as 15 vol.%, 20 vol.%, and 25 vol. .%.
- the flow rate of gas containing CO 2 can be 600mL/min to 1000mL/min of CO 2 per liter of sodium aluminate solution, such as 700mL/min, 800mL/min, and 900mL/min.
- the pH of the final product solution may be between 9.5 and 9.8, such as 9.5, 9.6, 9.7, and 9.8.
- the product solution is filtered and washed to obtain a pseudo-boehmite filter cake.
- the sodium aluminate solution may be an aqueous solution.
- the gas containing CO2 does not contain other gases that can react with the sodium aluminate solution.
- pseudo-boehmite is prepared by mixing a sodium aluminate solution and an aluminum sulfate solution.
- Sodium aluminate solution and aluminum sulfate solution react and produce pseudo-boehmite precipitate.
- the reaction conditions such as controlling the concentration of sodium aluminate solution, the concentration of aluminum sulfate solution, the ratio of sodium aluminate solution to aluminum sulfate solution, reaction temperature, pH and reaction time can be used to control the pseudoboehmite.
- the morphology, specific surface area and pore volume of the alumina powder and the subsequently prepared alumina powder can be used to control the pseudoboehmite.
- the concentration of sodium aluminate solution can be 20g/L to 200g/L, such as 20g/L to 150g/L, 20g/L to 120g/L L, 20g/L to 80g/L, such as 20g/L, 30g/L, 40g/L, 50g/L, 60g/L, 70g/L, and 80g/L.
- the concentration of aluminum sulfate solution can be 20g/L to 200g/L, such as 20g/L to 150g/L, 20g/L to 100g/L, 20g/L to 50g/L, such as 20g/L, 25g/L, 30g /L, 35g/L, 40g/L, 45g/L, and 50g/L.
- the mass ratio of the sodium aluminate solution to the aluminum sulfate solution may be 1:3 to 3:1, such as 1:2 to 2:1, such as 1:2, 1:1, and 2:1.
- Sodium aluminate solution and aluminum sulfate solution can react under the condition of stirring.
- the reaction temperature of the sodium aluminate solution and the aluminum sulfate solution may be 25-90°C, such as 60°C, 70°C, and 80°C.
- the pH of the mixed solution of sodium aluminate solution and aluminum sulfate solution can be adjusted to 8.0-10.0, for example, adjusted to 8.0, 8.5, 9.0, 9.5, and 10.0, and then the temperature is raised for reaction.
- the reaction time of the sodium aluminate solution and the aluminum sulfate solution can be 2-5 hours.
- the sodium aluminate solution and the aluminum sulfate solution may both be aqueous solutions. After the reaction is completed, the product solution is filtered and washed to obtain a pseudo-boehmite filter cake.
- the method for expanding the pores of the pseudo-boehmite may include azeotropically expanding the pores of the pseudo-boehmite filter cake and an organic alcohol.
- the method for expanding pores of the pseudo-boehmite specifically includes:
- the organic alcohol includes but not limited to one or more of ethanol, n-propanol, isopropanol, n-butanol, isobutanol and sec-butanol.
- the mass ratio of the pseudo-boehmite filter cake to the organic alcohol may be 1:5 to 1:30, for example 1:5 to 1:20, 1:5 to 1:15.
- step S3 properties such as the morphology, specific surface area, and pore volume of the alumina powder can be controlled by controlling the firing conditions.
- the calcining temperature can be 400°C to 600°C.
- the firing time may be 4 hours to 8 hours.
- the heating rate can be 2-30°C/min.
- a step of grinding the alumina powder may be included to further reduce the particle size of the alumina powder.
- the alumina powder may be ground to below 200 mesh.
- the organic amine solution includes organic amine and a solvent.
- Organic amines include, but are not limited to, one or more of polyethyleneimine, diethylenetriamine, tetraethylenepentamine, and pentaethylenehexamine.
- the solvent can dissolve the organic amine and is volatile.
- the solvent includes but not limited to one or more of methanol, ethanol, acetone and butyl acetate.
- the organic amine load on the alumina powder and the uniformity of the organic amine on the alumina powder can be controlled by controlling the concentration of the organic amine solution.
- the mass ratio of organic amine to solvent in the organic amine solution can be 1:10 to 1:100, for example, 1:10 to 1:80, 1:10 to 1:60, 1:10 to 1:40.
- step S4 may include:
- the step of removing the solvent in the dispersion may include evaporating the solvent at room temperature, and drying the residue in a vacuum drying oven at 60°C to 80°C for 3h to 6h.
- the organic amine loading in the solid amine CO 2 adsorbent is 10-80%.
- the CO2 adsorption capacity and adsorption-desorption cycle performance of the silicon-based solid-state amine CO2 adsorbent can be measured.
- the step of measuring the CO 2 adsorption capacity includes: adsorbing the solid amine CO 2 adsorbent under the conditions of 30-110° C., 4-100 vol.% CO 2 , and 0-20 vol.% water vapor for 5-60 minutes, The CO2 adsorption was then measured.
- the regeneration process of the adsorbent is heating for 5-30 minutes under the conditions of 120-165° C., CO 2 flow, and 0-40 vol.% water vapor.
- adsorbent in the crucible of the thermal analyzer.
- the adsorbent is first degassed in pure Ar at 120°C for 30 minutes, and then cooled to 90°C.
- the flow rate is 50mL/min and the concentration is 95vol.
- the mixed gas of %CO 2 +5% water vapor was used for adsorption experiment.
- the adsorption process lasted for 30 minutes, then the gas flow was switched to 70vol.% CO 2 +30% water vapor, and regeneration was performed at 135°C for 10 minutes, and then the temperature was lowered to 90°C for new One adsorption-regeneration process, repeat the adsorption-regeneration process 50 times.
- adsorbent in the crucible of the thermal analyzer.
- the adsorbent is first degassed in pure Ar at 120°C for 30 minutes, and then cooled to 90°C.
- the flow rate is 50mL/min and the concentration is 40vol.
- the mixed gas of %CO 2 +5% water vapor +55vol.% CH 4 was used for adsorption experiment.
- the adsorption process lasted for 30 minutes, then the air flow was switched to 70vol.% CO 2 +30% water vapor, regenerated at 135°C for 10 minutes, and then Lower the temperature to 90°C for a new adsorption-regeneration process, and repeat the adsorption-regeneration process 50 times.
- adsorbent in the crucible of the thermal analyzer.
- the adsorbent is first degassed in pure Ar at 120°C for 30 minutes, and then cooled to 90°C.
- the flow rate is 50mL/min and the concentration is 40vol.
- the mixed gas of %CO 2 +5% water vapor +55vol.% CH 4 was used for adsorption experiment.
- the adsorption process lasted for 30 minutes, then the gas flow was switched to 95vol.% CO 2 +5% water vapor, regenerated at 165°C for 10 minutes, and then Lower the temperature to 90°C for a new adsorption-regeneration process, and repeat the adsorption-regeneration process 50 times.
- adsorbent in the crucible of the thermal analyzer.
- the adsorbent is first degassed in pure Ar at 120°C for 30 minutes, and then cooled to 90°C.
- the flow rate is 50mL/min, and the concentration is 4vol.
- the mixed gas of %CO 2 + 20% water vapor + 76vol.% N 2 was used for the adsorption experiment.
- the adsorption process lasted for 30 minutes, and then the gas flow was switched to 100vol.% CO 2 , regenerated at 165°C for 10 minutes, and then cooled to 90°C
- a new adsorption-regeneration process repeat the adsorption-regeneration process 50 times.
- adsorbent in the crucible of the thermal analyzer.
- the adsorbent is first degassed in pure Ar at 120°C for 30 minutes, and then cooled to 90°C.
- the flow rate is 50mL/min and the concentration is 40vol.
- the mixed gas of %CO 2 + 5% water vapor + 55vol.% CH 4 was used for the adsorption experiment.
- the adsorption process lasted for 30 minutes, and then the gas flow was switched to 100vol.% CO 2 , regenerated at 120°C for 10 minutes, and then cooled to 90°C.
- a new adsorption-regeneration process repeat the adsorption-regeneration process 50 times.
- adsorbent in the crucible of the thermal analyzer.
- the adsorbent is first degassed in pure Ar at 120°C for 30 minutes, and then cooled to 90°C.
- the flow rate is 50mL/min and the concentration is 40vol.
- the mixed gas of %CO 2 +5% water vapor +55vol.% CH 4 was used for adsorption experiment.
- the adsorption process lasted for 30 minutes, then the air flow was switched to 70vol.% CO 2 +30% water vapor, regenerated at 135°C for 10 minutes, and then Lower the temperature to 90°C for a new adsorption-regeneration process, and repeat the adsorption-regeneration process 50 times.
- the CO2 adsorption capacity and cycle stability of the prepared high-performance solid-state amine CO2 adsorbent are shown in Table 1 and Figures 2-3.
- the experimental results show that the saturated CO 2 adsorption capacity of the solid amine adsorbent can reach more than 5 mmol/g, and the cycle performance in the actual CO 2 regeneration atmosphere is excellent. After 50 cycles, it still maintains an adsorption capacity of 4.8 mmol/g or more. , only attenuates less than 5%.
- the present application also provides a solid amine CO 2 adsorbent, which is prepared by the above preparation method.
- the silicon-based solid amine CO2 adsorbent and preparation method provided by the application have the following advantages:
- the raw materials for preparing the macroporous nano-alumina matrix come from a wide range of sources, the preparation process is simple, the reaction conditions are mild, the operation is easy to control, no complicated equipment is required, and it is suitable for industrial production;
- the matrix preparation process does not need to add any surfactants, template agents, and pore-enlarging agents.
- the organic solvent used in the azeotropic distillation process is a common organic alcohol, which is cheap, recyclable and reused, has little environmental pollution, and is economical. Advantage;
- the solid amine CO2 adsorbent prepared by the macroporous nano-alumina matrix can load a high content of organic amine, the saturated loading capacity can reach more than 70%, and the CO2 adsorption capacity can reach more than 5 mmol/g;
- the high-performance CO2 adsorbent of the present application has extremely high CO2 adsorption capacity and excellent regeneration cycle stability under actual conditions, and the preparation process is simple, green, and low in price, it can be widely used in the fields of CO2 capture and biogas purification .
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
本申请涉及一种固态胺CO2吸附剂及其制备方法,所述制备方法包括:提供拟薄水铝石;对所述拟薄水铝石进行扩孔;将扩孔的拟薄水铝石进行焙烧,得到纳米氧化铝粉末;用有机胺溶液浸渍所述纳米氧化铝粉末,并进行干燥,得到所述固态胺CO2吸附剂。
Description
本申请涉及CO
2气体吸附净化技术领域,特别是涉及固态胺CO
2吸附剂及其制备方法。
为应对全球气候变暖导致的能源和环境危机,实现CO
2等温室气体的净零排放是控制全球升温低于1.5℃的重要举措。开展CO
2捕集和封存(CCS)技术能够从工业排放点源避免CO
2排放、减少大气中已有的CO
2,是实现“碳中和”目标的重要组成部分;特别对于水泥、钢铁和化工等行业的深度脱碳、低碳氢能的规模化生产、低碳电力供给、实现负排放等方面具有重要意义。CCS技术的核心在于CO
2捕集材料的开发,高效、廉价的CO
2捕集材料是降低CCS技术应用成本的关键。
固态胺材料因具有CO
2选择性高、再生能耗低、应用场景广等优点,成为目前最具发展前景的CO
2捕集技术。为了达到减排的目的,捕获得到的CO
2必须富集成高纯CO
2用于封存或利用,因此固态胺吸附剂需在实际CO
2气氛下解吸再生。然而目前固态胺材料在实际再生条件下大都会产生严重的尿素链化合物,导致严重的化学性失活,使得吸附能力急剧下降。因此,制备高CO
2吸附容量、抗尿素链的高循环稳定性且价格低廉的固态胺材料仍然是该领域内亟待解决的难题。
发明内容
基于此,有必要提供一种CO
2吸附容量高、抗尿素链性好且循环稳定性高的固态胺CO
2吸附剂。
一种固态胺CO
2吸附剂的制备方法,包括:
提供拟薄水铝石;
对所述拟薄水铝石进行扩孔;
将扩孔的拟薄水铝石进行焙烧,得到氧化铝粉末;
用有机胺溶液浸渍所述氧化铝粉末,并进行干燥,得到所述固态胺CO
2吸附剂。
在一个实施例中,所述拟薄水铝石采用在铝酸钠溶液中滴加H
2O
2溶液、或在铝酸钠溶液中通入CO
2、或使铝酸钠溶液与硫酸铝溶液混合制备而成。
在一个实施例中,在铝酸钠溶液中滴加H
2O
2溶液制备所述拟薄水铝石的步骤包括:
在室温下,将质量分数为5~20%的H
2O
2溶液滴加到浓度为20~200g/L的铝酸钠溶液中,滴加时间为10~60min,滴加完成后获得反应液;
将所述反应液静置30min,得到含有沉淀物的产液;以及
过滤出所述产液中的沉淀物,并对所述沉淀物进行洗涤,得到所述拟薄水铝石;
其中,所述铝酸钠溶液中的铝酸钠与所述H
2O
2溶液中的H
2O
2的摩尔比为1:1至1:5。
在一个实施例中,在铝酸钠溶液中通入CO
2制备所述拟薄水铝石的步骤包括:
在室温下,将含有10~50vol.%的CO
2的气体混合物通入浓度为10g/L~100g/L的铝酸钠溶液中,得到反应液;
持续通入所述气体混合物,直至所述反应液的pH下降到9.5-9.8,得到含有沉淀物的产液;以及
过滤出所述产液中的沉淀物,并对所述沉淀物进行洗涤,得到所述拟薄水铝石。
在一个实施例中,使铝酸钠溶液与硫酸铝混合制备所述拟薄水铝石的步骤包括:
将浓度为20~200g/L的铝酸钠溶液和浓度为20~200g/L的硫酸铝溶液按质量比1:1进行混合,得到反应液;
调节所述反应液的pH至8.0~10.0,并在25~80℃的温度下搅拌2-5小时,得到含有沉淀物的产液;
过滤出所述产液中的沉淀物,并对所述沉淀物进行洗涤,得到所述拟薄水铝石。
在一个实施例中,对所述拟薄水铝石进行扩孔的步骤包括:
将过滤出的洗涤后的所述沉淀物与有机醇按1:5至1:30的质量比混合,形成悬浮液;
将所述悬浮液的温度升高到水与有机醇的共沸点蒸发10~60min,再升温到有机醇的沸点回流30~90min,得到所述扩孔的拟薄水铝石。
在一个实施例中,所述有机醇包括乙醇、正丙醇、异丙醇、正丁醇、异丁醇和仲丁醇中的一种或者多种。
在一个实施例中,将扩孔的拟薄水铝石进行焙烧,得到氧化铝粉末的步骤包括:
在400~600℃的温度下焙烧所述扩孔的拟薄水铝石2~8小时,得到纳米氧化铝粉末。
在一个实施例中,在焙烧步骤之后,还包括对所述氧化铝粉末进行研磨以得到纳米氧化铝粉末的步骤。
在一个实施例中,所述有机胺溶液包括有机胺和溶剂,所述有机胺为聚乙烯亚胺、二乙烯三胺、四乙烯五胺和五乙撑六胺中的一种或多种,所述溶剂为甲醇和乙醇中的一种或多种。
在一个实施例中,所述有机胺溶液中有机胺与溶剂的质量比为1:10至1:100。
在一个实施例中,用有机胺溶液浸渍所述氧化铝粉末,干燥后得到所述固态胺CO
2吸附剂的步骤包括:
将所述氧化铝粉末分散在有机胺溶液中,得到分散液;以及
将所述分散液中的溶剂去除,从而获得所述固态胺CO
2吸附剂。
在一个实施例中,将所述分散液中的溶剂去除的步骤包括在室温下将所述溶剂蒸发掉,并且将剩余物在真空干燥箱中于60℃至80℃下干燥3h至6h。
本申请还提供一种固态胺CO
2吸附剂,其由上述制备方法制备而成。
本申请所提供的硅基固态胺CO
2吸附剂及其制备方法具有以下优点:
(1)制备大孔氧化铝基体的原料来源广泛,制备工艺简单、反应条件温和、操作容易控制、无需复杂设备,适合工业化生产;
(2)基体制备过程不需要添加任何表面活性剂、模板剂、扩孔剂,共沸蒸馏过程使用的有机溶剂是常见的有机醇,价格便宜,可回收重复使用,对环境污染小,具有经济优势;
(3)以大孔氧化铝基体制备得到的固态胺CO
2吸附剂能够负载高含量的有机胺,饱和负载量可达70%以上,CO
2吸附容量可达5mmol/g以上;
(4)制备得到的固态胺CO
2吸附剂具备优异的循环稳定性,在实际CO
2再生气氛下循环50次,其CO
2吸附容量依然维持在4.8mmol/g以上,衰减不到5%。
由于本申请的高性能CO
2吸附剂具备极高的CO
2吸附容量和优异的实际条件再生循环稳定性,且制备过程简单、绿色、价格低廉,可广泛应用于CO
2捕集和沼气纯化领域。
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1中合成的大孔纳米氧化铝的扫描电镜图;
图2是本申请实施例1中合成的大孔纳米氧化铝的N
2吸附曲线图;
图3是本申请实施例1中固态胺CO
2吸附剂的长期循环稳定性图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请提供一种固态胺CO
2吸附剂的制备方法,所述制备方法包括:
S1,提供拟薄水铝石;
S2,对所述拟薄水铝石进行扩孔;
S3,将扩孔的拟薄水铝石进行焙烧,得到氧化铝粉末;
S4,用有机胺溶液浸渍所述氧化铝粉末,并进行干燥,得到所述固态胺CO
2吸附剂。
在本申请中,对拟薄水铝石进行扩孔和焙烧后可获得孔体积较大的氧化铝粉末,孔体积较大的氧化铝粉末能够负载高含量的有机胺,从而提高了固态胺CO
2吸附剂的CO
2吸附容量。另外,现有的固态胺材料采用CO
2吹扫气进行再生时,CO
2与活性胺中的伯胺官能团在高温下(大于130℃)容易转化为尿素链化合物,使得CO
2不能从吸附剂中脱附,导致固态胺吸附剂失活。本申请制备的纳米氧化铝由于具有丰富的路易斯酸性位点,能与活性胺发生交联反应,将活性胺中的伯胺官能团转化为肿胺官能团,从而避免尿素链化合物的形成。本申请的固态胺CO
2吸附剂具有抗尿素链性能和高循环稳定性,其在多次CO
2吸附-再生循环后仍能够维持高的CO
2吸附容量。
在步骤S1中,所述拟薄水铝石可以通过多种方法进行制备。
在一个实施例中,通过在铝酸钠溶液中滴加H
2O
2溶液来制备拟薄水铝石。
铝酸钠溶液和H
2O
2溶液可以在室温下进行反应并生成拟薄水铝石沉淀。在该实施例中,可以通过控制铝酸钠溶液的浓度、H
2O
2溶液的浓度、铝酸钠溶液与H
2O
2溶液的比例、H
2O
2溶液的滴加速度和反应时间等反应条件,来控制拟薄水铝石和后续制备的氧化铝粉末的形貌、比表面积和孔体积等性质。
为了得到高比表面积和大孔体积的拟薄水铝石和氧化铝粉末,铝酸钠溶液的浓度可以为20g/L至200g/L,例如50g/L至190g/L,50g/L至180g/L,70g/L至170g/L,例如80g/L,90g/L,100g/L,110g/L,120g/L,130g/L,140g/L,150g/L,160g/L。H
2O
2溶液的浓度可以为5wt%至20wt%,例如6wt%至18wt%,7wt%至16wt%,8wt%至14wt%,例如9wt%,10wt%,11wt%,12wt%和13wt%。在滴加完成的反应液中,铝酸钠溶液和H
2O
2溶液中的铝酸钠和H
2O
2的摩尔比可以为1:1至1:5,例如1:2,1:3,和1:4。滴加时间可以为10min至60min。滴加完成后,可将反应液静置10min至60min,从而形成含有拟薄水铝石沉淀的产液。对所述产液进行过滤和洗涤,得到拟薄水铝石滤饼。铝酸钠溶液和H
2O
2溶液都可以为水溶液。
在另一个实施例中,通过在铝酸钠溶液中通入CO
2来制备拟薄水铝石。
可以在室温下将含有CO
2的气体通入铝酸钠溶液中进行反应并生成拟薄水铝石沉淀。在该实施例中,可以通过控制铝酸钠溶液的浓度、气体中CO
2的浓度、含有CO
2的气体的流量、反应液的pH等反应条件,来控制拟薄水铝石和后续制备的氧化铝粉末的形貌、比表面积和孔体积等性质。
为了得到高比表面积和大孔体积的拟薄水铝石和氧化铝粉末,铝酸钠溶液的浓度可以为10g/L~100g/L,例如10g/L至90g/L,10g/L至80g/L,15g/L至65g/L,例如10g/L,20g/L,25g/L,30g/L,50g/L,70g/L,90g/L,100g/L。含有CO
2的气体中的CO
2的浓度可以为10 vol.%至50vol.%,例如10vol.%至40vol.%,10vol.%至30vol.%,例如15vol.%,20vol.%,和25vol.%。含有CO
2的气体的流量可以为每升铝酸钠溶液通入600mL/min至1000mL/min的CO
2,例如700mL/min,800mL/min,和900mL/min。最终产液的pH可以为9.5至9.8,例如9.5,9.6,9.7,和9.8。反应完成后,对产液进行过滤和洗涤,得到拟薄水铝石滤饼。铝酸钠溶液可以为水溶液。含有CO
2的气体中不含其它能够与铝酸钠溶液发生反应的气体。
在又一个实施例中,通过混合铝酸钠溶液与硫酸铝溶液来制备拟薄水铝石。
铝酸钠溶液和硫酸铝溶液发生反应并生成拟薄水铝石沉淀。在该实施例中,可以通过控制铝酸钠溶液的浓度、硫酸铝溶液的浓度、铝酸钠溶液与硫酸铝溶液的比例、反应温度、pH和反应时间等反应条件,来控制拟薄水铝石和后续制备的氧化铝粉末的形貌、比表面积和孔体积等性质。
为了得到高比表面积和大孔体积的拟薄水铝石和氧化铝粉末,铝酸钠溶液的浓度可以为20g/L至200g/L,例如20g/L至150g/L,20g/L至120g/L,20g/L至80g/L,例如20g/L,30g/L,40g/L,50g/L,60g/L,70g/L,和80g/L。硫酸铝溶液的浓度可以为20g/L至200g/L,例如20g/L至150g/L,20g/L至100g/L,20g/L至50g/L,例如20g/L,25g/L,30g/L,35g/L,40g/L,45g/L,和50g/L。铝酸钠溶液与硫酸铝溶液的质量比可以为1:3至3:1,例如1:2至2:1,例如1:2,1:1,和2:1。铝酸钠溶液与硫酸铝溶液可以在搅拌的条件下进行反应。铝酸钠溶液与硫酸铝溶液的反应温度可以为25~90℃,例如60℃,70℃,和80℃。铝酸钠溶液与硫酸铝溶液的混合溶液的pH可以调节至8.0~10.0,例如调节至8.0,8.5,9.0,9.5,和10.0,再升温进行反应。铝酸钠溶液与硫酸铝溶液的反应时间可以为2-5小时。铝酸钠溶液与硫酸铝溶液可以都是水溶液。反应完成后,对产液进行过滤和洗涤,得到拟薄水铝石滤饼。
应当理解,其他方法也可以用于制备所述拟薄水铝石。
在步骤S2中,对所述拟薄水铝石进行扩孔的方法可以包括使所述拟薄水铝石滤饼与有机醇共沸扩孔。
在一个实施例中,对所述拟薄水铝石进行扩孔的方法具体包括:
S21,将拟薄水铝石滤饼与有机醇混合均匀,形成悬浊液;
S22,将悬浊液的温度升高到水与有机醇的共沸点蒸发10~60min,再升高到有机醇的沸点回流30~90min,得到扩孔的拟薄水铝石。
在步骤S21中,有机醇包括但不限于乙醇、正丙醇、异丙醇、正丁醇、异丁醇和仲丁醇中的一种或多种。拟薄水铝石滤饼与有机醇的质量比可以为1:5至1:30,例如1:5至1:20,1:5至1:15。
在步骤S3中,可以通过控制焙烧条件来控制氧化铝粉末的形貌、比表面积和孔体积等性 质。
为了得到高比表面积和大孔体积的氧化铝粉末,焙烧温度可以为400℃至600℃。焙烧时间可以为4小时至8小时。升温速率可以为2~30℃/min。
进一步地,在步骤S3之后,可以包括研磨氧化铝粉末的步骤,以进一步减小氧化铝粉末的粒径。在一实施例中,可以将氧化铝粉末研磨至200目以下。
在步骤S4中,有机胺溶液包括有机胺和溶剂。有机胺包括但不限于聚乙烯亚胺、二乙烯三胺、四乙烯五胺和五乙撑六胺中的一种或多种。所述溶剂可以溶解有机胺,并且易挥发。所述溶剂包括但不限于甲醇、乙醇、丙酮和醋酸丁酯中的一种或多种。
可以通过控制有机胺溶液的浓度来控制氧化铝粉末上的有机胺负载量和有机胺在氧化铝粉末上的均匀性。在一实施例中,为了得到有机胺负载量高且负载均匀的固态胺CO
2吸附剂,有机胺溶液中有机胺与溶剂的质量比可以为1:10至1:100,例如1:10至1:80,1:10至1:60,1:10至1:40。
在一实施例中,步骤S4可以包括:
S41,将所述氧化铝粉末分散在有机胺溶液中,得到分散液;以及
S42,将所述分散液中的溶剂去除,从而获得所述固态胺CO
2吸附剂。
将所述分散液中的溶剂去除的步骤可以包括在室温下将所述溶剂蒸发掉,并且将剩余物在真空干燥箱中于60℃至80℃下干燥3h至6h。
在一实施例中,固态胺CO
2吸附剂中有机胺负载量为10~80%。
在获得固态胺CO
2吸附剂之后,可以对硅基固态胺CO
2吸附剂的CO
2吸附量和吸附-脱附循环性能进行测量。在一个实施例中,CO
2吸附量测量的步骤包括:固态胺CO
2吸附剂在30~110℃、4~100vol.%CO
2、0~20vol.%水蒸气的条件下吸附5~60min,然后测量CO
2吸附量。在一个实施例中,吸附剂的再生过程为在120~165℃、CO
2气流、0~40vol.%水蒸气的条件下加热5~30min。
实施例1
(1)将13.0g铝酸钠溶解在装有80mL去离子水的烧杯中,并将烧杯置于搅拌器中不断搅拌,并在常温下逐滴加入150mL质量分数为12%的H
2O
2溶液,控制滴加速度使得滴加时间为30min,反应结束后静止30min,取出洗涤过滤,得到未干燥的滤饼。
(2)将滤饼与丁醇按质量比1:10混合捣碎成悬浊状,置于旋转蒸馏仪中先升温到93℃蒸发30min,再升温到117℃回流60min,停止加热;将共沸后的产物冷却、分离得到的沉淀物置于80℃的烘箱中干燥12h,得到扩孔拟薄水铝石。
(3)将扩孔拟薄水铝石置于500℃的马弗炉中焙烧5h,取出冷却,研磨成粒度为200目以下的粉末,即制备得到大孔体积的纳米氧化铝粉末。用N
2吸脱附法测得BET比表面为 397.9m
2/g,孔体积为2.60cm
3/g,平均孔径为22.5nm。
(4)将3.1g聚乙烯亚胺加入到30mL甲醇溶液中,搅拌溶解,使得聚乙烯亚胺均匀分散,加入1g制备的大孔纳米氧化铝基体,在25℃下搅拌蒸发5h,然后置于真空干燥箱中于60℃下干燥5h,制备得到固态胺CO
2吸附剂。
(5)将20mg吸附剂置于热分析仪中的坩埚中,吸附剂先在纯Ar、120℃条件下脱气30min,然后降温到90℃,通入流量为50mL/min、浓度为95vol.%CO
2+5%水蒸气的混合气体进行吸附实验,吸附过程为30min,然后将气流切换成70vol.%CO
2+30%水蒸气,在135℃下再生10min,然后降温到90℃进行新的一次吸附-再生过程,重复吸附-再生过程50次。
实施例2
(1)将13.0g铝酸钠溶解在装有80mL去离子水的烧杯中,并将烧杯置于搅拌器中不断搅拌,并在常温下逐滴加入150mL质量浓度为12%的H
2O
2溶液,控制滴加速度使得滴加时间为30min,反应结束后静止30min,取出洗涤过滤,得到未干燥的滤饼。
(2)将滤饼与丁醇按质量比1:10混合捣碎成悬浊状,置于旋转蒸馏仪中先升温到93℃蒸发30min,再升温到117℃回流60min,停止加热;将共沸后的产物,冷却、分离得到的沉淀物置于80℃的烘箱中干燥12h,得到扩孔拟薄水铝石;
(3)将扩孔拟薄水铝石置于500℃的马弗炉中焙烧5h,取出冷却,研磨成粒度为200目以下的粉末,即制备得到大孔体积的纳米氧化铝粉末。用N
2吸脱附法测得BET比表面为397.9m
2/g,孔体积为2.60cm
3/g,平均孔径为22.5nm。
(4)将2.0g聚乙烯亚胺加入到30mL甲醇溶液中,搅拌溶解,使得聚乙烯亚胺均匀分散,加入1g制备的大孔纳米氧化铝基体,在25℃下搅拌蒸发5h,然后置于真空干燥箱中于60℃下干燥5h,制备得到固态胺CO
2吸附剂。
(5)将20mg吸附剂置于热分析仪中的坩埚中,吸附剂先在纯Ar、120℃条件下脱气30min,然后降温到90℃,通入流量为50mL/min、浓度为40vol.%CO
2+5%水蒸气+55vol.%CH
4的混合气体进行吸附实验,吸附过程为30min,然后将气流切换成70vol.%CO
2+30%水蒸气,在135℃下再生10min,然后降温到90℃进行新的一次吸附-再生过程,重复吸附-再生过程50次。
实施例3
(1)将2%质量浓度的铝酸钠溶液置于反应釜中,通入浓度为15vol.%、流量为每升溶液800mL/min的CO
2,在25℃下充分反应3.5h,pH下降至9.8以下,取出洗涤、过滤,得到未干燥的滤饼。
(2)将滤饼与丁醇按质量比1:10混合捣碎成悬浊状,置于旋转蒸馏仪中先升温到93℃ 蒸发30min,再升温到117℃回流60min,停止加热;将共沸后的产物,冷却、分离得到的沉淀物置于80℃的烘箱中干燥12h,得到扩孔拟薄水铝石;
(3)将扩孔拟薄水铝石置于500℃的马弗炉中焙烧5h,取出冷却,研磨成粒度为200目以下的粉末,即制备得到大孔体积的纳米氧化铝粉末。用N
2吸脱附法测得BET比表面为359.3m
2/g,孔体积为1.62cm
3/g,平均孔径为14.6nm。
(4)将2.0g聚乙烯亚胺加入到30mL甲醇溶液中,搅拌溶解,使得聚乙烯亚胺均匀分散,加入1g制备的大孔纳米氧化铝基体,在25℃下搅拌蒸发5h,然后置于真空干燥箱中于60℃下干燥5h,制备得到固态胺CO
2吸附剂。
(5)将20mg吸附剂置于热分析仪中的坩埚中,吸附剂先在纯Ar、120℃条件下脱气30min,然后降温到90℃,通入流量为50mL/min、浓度为40vol.%CO
2+5%水蒸气+55vol.%CH
4的混合气体进行吸附实验,吸附过程为30min,然后将气流切换成95vol.%CO
2+5%水蒸气,在165℃下再生10min,然后降温到90℃进行新的一次吸附-再生过程,重复吸附-再生过程50次。
实施例4
(1)将2%质量浓度的铝酸钠溶液置于反应釜中,通入浓度为15vol.%、流量为每升溶800mL/min的CO
2,在25℃下充分反应3.5h,pH下降至9.8以下,取出洗涤、过滤,得到未干燥的滤饼。
(2)将滤饼与丁醇按质量比1:10混合捣碎成悬浊状,置于旋转蒸馏仪中先升温到93℃蒸发30min,再升温到117℃回流60min,停止加热;将共沸后的产物,冷却、分离得到的沉淀物置于80℃的烘箱中干燥12h,得到扩孔拟薄水铝石;
(3)将扩孔拟薄水铝石置于600℃的马弗炉中焙烧5h,取出冷却,研磨成粒度为200目以下的粉末,即制备得到大孔体积的纳米氧化铝粉末。用N
2吸脱附法测得BET比表面为300.6m
2/g,孔体积为1.54cm
3/g,平均孔径为16.7nm。
(4)将2.0g聚乙烯亚胺加入到30mL甲醇溶液中,搅拌溶解,使得聚乙烯亚胺均匀分散,加入1g制备的大孔纳米氧化铝基体,在25℃下搅拌蒸发5h,然后置于真空干燥箱中于60℃下干燥5h,制备得到固态胺CO
2吸附剂。
(5)将20mg吸附剂置于热分析仪中的坩埚中,吸附剂先在纯Ar、120℃条件下脱气30min,然后降温到90℃,通入流量为50mL/min、浓度为4vol.%CO
2+20%水蒸气+76vol.%N
2的混合气体进行吸附实验,吸附过程为30min,然后将气流切换成100vol.%CO
2,在165℃下再生10min,然后降温到90℃进行新的一次吸附-再生过程,重复吸附-再生过程50次。
实施例5
(1)将2%质量浓度的铝酸钠溶液置于反应釜中,通入浓度为15vol.%、流量为每升溶液800mL/min的CO
2,在25℃下充分反应3.5h,pH下降至9.8以下,取出洗涤、过滤,得到未干燥的滤饼。
(2)将滤饼与乙醇按质量比1:10混合捣碎成悬浊状,置于旋转蒸馏仪中先升温到78.37℃蒸发30min,再升温到78.4℃回流60min,停止加热;将共沸后的产物,冷却、分离得到的沉淀物置于80℃的烘箱中干燥12h,得到扩孔拟薄水铝石;
(3)将扩孔拟薄水铝石置于500℃的马弗炉中焙烧5h,取出冷却,研磨成粒度为200目以下的粉末,即制备得到大孔体积的纳米氧化铝粉末。用N
2吸脱附法测得BET比表面为361.3m
2/g,孔体积为1.49cm
3/g,平均孔径为12.7nm。
(4)将2.0g聚乙烯亚胺加入到30mL甲醇溶液中,搅拌溶解,使得聚乙烯亚胺均匀分散,加入1g制备的大孔纳米氧化铝基体,在25℃下搅拌蒸发5h,然后置于真空干燥箱中于60℃下干燥5h,制备得到固态胺CO
2吸附剂。
(5)将20mg吸附剂置于热分析仪中的坩埚中,吸附剂先在纯Ar、120℃条件下脱气30min,然后降温到90℃,通入流量为50mL/min、浓度为40vol.%CO
2+5%水蒸气+55vol.%CH
4的混合气体进行吸附实验,吸附过程为30min,然后将气流切换成100vol.%CO
2,在120℃下再生10min,然后降温到90℃进行新的一次吸附-再生过程,重复吸附-再生过程50次。
实施例6
(1)在25℃的温度下,分别取100mL浓度为50g/L的铝酸钠溶液和浓度为35g/L硫酸铝溶液置于两烧杯中,在搅拌过程中快速将两溶液混合,滴加氨水和硫酸调节pH至8.5,然后在80℃下搅拌老化3h,取出洗涤、过滤,得到未干燥的滤饼。
(2)将滤饼与丁醇按质量比1:10混合捣碎成悬浊状,置于旋转蒸馏仪中先升温到93℃蒸发30min,再升温到117℃回流60min,停止加热;将共沸后的产物,冷却、分离得到的沉淀物置于80℃的烘箱中干燥12h,得到扩孔拟薄水铝石;
(3)将扩孔拟薄水铝石置于500℃的马弗炉中焙烧5h,取出冷却,研磨成粒度为200目以下的粉末,即制备得到大孔体积的纳米氧化铝粉末。用N
2吸脱附法测得BET比表面为343.5m
2/g,孔体积为2.13cm
3/g,平均孔径为23.8nm。
(4)将2.0g聚乙烯亚胺加入到30mL甲醇溶液中,搅拌溶解,使得聚乙烯亚胺均匀分散,加入1g制备的大孔纳米氧化铝基体,在25℃下搅拌蒸发5h,然后置于真空干燥箱中于60℃下干燥5h,制备得到固态胺CO
2吸附剂。
(5)将20mg吸附剂置于热分析仪中的坩埚中,吸附剂先在纯Ar、120℃条件下脱气 30min,然后降温到90℃,通入流量为50mL/min、浓度为40vol.%CO
2+5%水蒸气+55vol.%CH
4的混合气体进行吸附实验,吸附过程为30min,然后将气流切换成70vol.%CO
2+30%水蒸气,在135℃下再生10min,然后降温到90℃进行新的一次吸附-再生过程,重复吸附-再生过程50次。
在上述各实施例中,制备的高性能固态胺CO
2吸附剂的CO
2吸附能力和循环稳定性如表1和图2-3所示。实验实测结果表明,固态胺吸附剂的饱和CO
2吸附量可达5mmol/g以上,在实际CO
2再生气氛下的循环性能优异,50次循环后其依然维持着4.8mmol/g以上的吸附量,仅衰减不到5%。
表1实施例1~6中吸附剂的CO
2吸附能力对比
本申请还提供一种固态胺CO
2吸附剂,其由上述制备方法制备而成。
本申请所提供的硅基固态胺CO
2吸附剂及其制备方法具有以下优点:
(1)制备大孔纳米氧化铝基体的原料来源广泛,制备工艺简单、反应条件温和、操作容易控制、无需复杂设备,适合工业化生产;
(2)基体制备过程不需要添加任何表面活性剂、模板剂、扩孔剂,共沸蒸馏过程使用的有机溶剂是常见的有机醇,价格便宜,可回收重复使用,对环境污染小,具有经济优势;
(3)以大孔纳米氧化铝基体制备得到的固态胺CO
2吸附剂能够负载高含量的有机胺,饱和负载量可达70%以上,CO
2吸附容量可达5mmol/g以上;
(4)制备得到的固态胺CO
2吸附剂具备优异的循环稳定性,在实际CO
2再生气氛下循环50次,其CO
2吸附容量依然维持在4.8mmol/g以上,衰减不到5%。
由于本申请的高性能CO
2吸附剂具备极高的CO
2吸附容量和优异的实际条件再生循环稳定性,且制备过程简单、绿色、价格低廉,可广泛应用于CO
2捕集和沼气纯化领域。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中 的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (14)
- 一种固态胺CO 2吸附剂的制备方法,其特征在于,所述制备方法包括:提供拟薄水铝石;对所述拟薄水铝石进行扩孔;将扩孔的拟薄水铝石进行焙烧,得到氧化铝粉末;用有机胺溶液浸渍所述氧化铝粉末,并进行干燥,得到所述固态胺CO 2吸附剂。
- 根据权利要求1所述的制备方法,其特征在于,所述拟薄水铝石采用在铝酸钠溶液中滴加H 2O 2溶液、或在铝酸钠溶液中通入CO 2、或使铝酸钠溶液与硫酸铝溶液混合制备而成。
- 根据权利要求2所述的制备方法,其特征在于,在铝酸钠溶液中滴加H 2O 2溶液制备所述拟薄水铝石的步骤包括:在室温下,将质量分数为5~20%的H 2O 2溶液滴加到浓度为20~200g/L的铝酸钠溶液中,滴加时间为10~60min,滴加完成后获得反应液;将所述反应液静置30min,得到含有沉淀物的产液;以及过滤出所述产液中的沉淀物,并对所述沉淀物进行洗涤,得到所述拟薄水铝石;其中,所述铝酸钠溶液中的铝酸钠与所述H 2O 2溶液中的H 2O 2的摩尔比为1:1至1:5。
- 根据权利要求2所述的制备方法,其特征在于,在铝酸钠溶液中通入CO 2制备所述拟薄水铝石的步骤包括:在室温下,将含有10~50vol.%的CO 2的气体混合物通入浓度为10g/L~100g/L的铝酸钠溶液中,得到反应液;持续通入所述气体混合物,直至所述反应液的pH下降到9.5-9.8,得到含有沉淀物的产液;以及过滤出所述产液中的沉淀物,并对所述沉淀物进行洗涤,得到所述拟薄水铝石。
- 根据权利要求2所述的制备方法,其特征在于,使铝酸钠溶液与硫酸铝混合制备所述拟薄水铝石的步骤包括:将浓度为20~200g/L的铝酸钠溶液和浓度为20~200g/L的硫酸铝溶液按质量比1:1进行混合,得到反应液;调节所述反应液的pH至8.0~10.0,并在25~80℃的温度下搅拌2-5小时,得到含有沉淀物的产液;过滤出所述产液中的沉淀物,并对所述沉淀物进行洗涤,得到所述拟薄水铝石。
- 根据权利要求3至5中任一项所述的制备方法,其特征在于,对所述拟薄水铝石进行扩孔的步骤包括:将过滤出的洗涤后的所述沉淀物与有机醇按1:5至1:30的质量比混合,形成悬浮液;将所述悬浮液的温度升高到水与有机醇的共沸点蒸发10~60min,再升温到有机醇的沸点回流30~90min,得到所述扩孔的拟薄水铝石。
- 根据权利要求6所述的制备方法,其特征在于,所述有机醇包括乙醇、正丙醇、异丙醇、正丁醇、异丁醇和仲丁醇中的一种或者多种。
- 根据权利要求1所述的制备方法,其特征在于,将扩孔的拟薄水铝石进行焙烧,得到氧化铝粉末的步骤包括:在400~600℃的温度下焙烧所述扩孔的拟薄水铝石2~8小时,得到所述氧化铝粉末。
- 根据权利要求1所述的制备方法,其特征在于,在焙烧步骤之后,还包括对所述氧化铝粉末进行研磨,以形成纳米氧化铝粉末的步骤。
- 根据权利要求1所述的制备方法,其特征在于,所述有机胺溶液包括有机胺和溶剂,所述有机胺为聚乙烯亚胺、二乙烯三胺、四乙烯五胺和五乙撑六胺中的一种或多种,所述溶剂为甲醇、乙醇、丙酮和醋酸丁酯的一种或多种。
- 根据权利要求1所述的制备方法,其特征在于,所述有机胺溶液中有机胺与溶剂的质量比为1:10至1:100。
- 根据权利要求9所述的制备方法,其特征在于,用有机胺溶液浸渍所述氧化铝粉末,干燥后得到所述固态胺CO 2吸附剂的步骤包括:将所述氧化铝粉末分散在所述有机胺溶液中,得到分散液;以及将所述分散液中的溶剂去除,从而获得所述固态胺CO 2吸附剂。
- 根据权利要求12所述的制备方法,其特征在于,将所述分散液中的溶剂去除的步骤包括:在室温下将所述溶剂蒸发掉,并且将剩余物在真空干燥箱中于60℃至80℃下干燥3h至6h。
- 一种固态胺CO 2吸附剂,其由权利要求1所述的制备方法制备而成。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/099129 WO2022257041A1 (zh) | 2021-06-09 | 2021-06-09 | 固态胺co2吸附剂及其制备方法 |
CN202180069387.4A CN116406314A (zh) | 2021-06-09 | 2021-06-09 | 固态胺co2吸附剂及其制备方法 |
US17/620,420 US20240033707A1 (en) | 2021-06-09 | 2021-06-09 | Solid amine adsorbent of co2 and method for preparing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/099129 WO2022257041A1 (zh) | 2021-06-09 | 2021-06-09 | 固态胺co2吸附剂及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022257041A1 true WO2022257041A1 (zh) | 2022-12-15 |
Family
ID=84424737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/099129 WO2022257041A1 (zh) | 2021-06-09 | 2021-06-09 | 固态胺co2吸附剂及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240033707A1 (zh) |
CN (1) | CN116406314A (zh) |
WO (1) | WO2022257041A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116371382A (zh) * | 2023-05-05 | 2023-07-04 | 黑鲸能源发展有限责任公司 | 一种dac吸附剂及其制备方法 |
CN116618002A (zh) * | 2023-05-04 | 2023-08-22 | 鲁西催化剂有限公司 | 一种氧化铝基吸附剂及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1250746A (zh) * | 1998-10-13 | 2000-04-19 | 中国石油化工集团公司 | 拟薄水铝石和γ-氧化铝的制备方法 |
CN103406092A (zh) * | 2013-08-28 | 2013-11-27 | 武汉理工大学 | 一种胺基功能化介孔γ-Al2O3吸附剂的制备方法 |
CN103521187A (zh) * | 2013-10-25 | 2014-01-22 | 武汉理工大学 | 常温下有机胺修饰介孔氧化铝co2吸附剂的制备方法 |
CN106890621A (zh) * | 2017-03-08 | 2017-06-27 | 淮北师范大学 | 有机胺功能化大孔容氧化铝co2吸附剂及其制备方法 |
US20200197905A1 (en) * | 2017-05-09 | 2020-06-25 | Kawasaki Jukogyo Kabushiki Kaisha | Carbon dioxide adsorbent and method for manufacturing same, as well as carbon dioxide separation system |
-
2021
- 2021-06-09 WO PCT/CN2021/099129 patent/WO2022257041A1/zh active Application Filing
- 2021-06-09 CN CN202180069387.4A patent/CN116406314A/zh active Pending
- 2021-06-09 US US17/620,420 patent/US20240033707A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1250746A (zh) * | 1998-10-13 | 2000-04-19 | 中国石油化工集团公司 | 拟薄水铝石和γ-氧化铝的制备方法 |
CN103406092A (zh) * | 2013-08-28 | 2013-11-27 | 武汉理工大学 | 一种胺基功能化介孔γ-Al2O3吸附剂的制备方法 |
CN103521187A (zh) * | 2013-10-25 | 2014-01-22 | 武汉理工大学 | 常温下有机胺修饰介孔氧化铝co2吸附剂的制备方法 |
CN106890621A (zh) * | 2017-03-08 | 2017-06-27 | 淮北师范大学 | 有机胺功能化大孔容氧化铝co2吸附剂及其制备方法 |
US20200197905A1 (en) * | 2017-05-09 | 2020-06-25 | Kawasaki Jukogyo Kabushiki Kaisha | Carbon dioxide adsorbent and method for manufacturing same, as well as carbon dioxide separation system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116618002A (zh) * | 2023-05-04 | 2023-08-22 | 鲁西催化剂有限公司 | 一种氧化铝基吸附剂及其制备方法 |
CN116371382A (zh) * | 2023-05-05 | 2023-07-04 | 黑鲸能源发展有限责任公司 | 一种dac吸附剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240033707A1 (en) | 2024-02-01 |
CN116406314A (zh) | 2023-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022257041A1 (zh) | 固态胺co2吸附剂及其制备方法 | |
CN108751189B (zh) | 高比表面积的铝基mof多孔碳材料的制备与应用 | |
CN109833847B (zh) | 一种镍氧化物改性的多孔氮化硼吸附剂及其制备方法 | |
CN105080490B (zh) | 一种铬镁双金属MOFs吸附剂MIL‑101(Cr,Mg)及其制备方法 | |
CN106115698B (zh) | 一种利用回收废炭制备含氮多孔炭的方法及其产品和应用 | |
CN115869932B (zh) | 一种uio-66衍生碳材料催化剂及其制备方法和在催化二氧化碳解吸中的应用 | |
CN114618503A (zh) | 一种高熵氧化物储氧材料及其制备方法和应用 | |
Zhang et al. | Preparation of metal organic frameworks MIL-101 (Cr) with acetic acid as mineralizer | |
CN108786786A (zh) | 一种光催化降解用纳米MoO3粉末的制备方法 | |
CN107930583B (zh) | 适于吸附降解二噁英的负载催化剂的高导热活性炭的制备 | |
CN114602425B (zh) | 一种以过氧化氢为二次激发对象的等离子体活性炭再生方法 | |
CN115228503A (zh) | 一种臭氧催化氧化水处理用氮化碳基铜材料的制备方法 | |
CN112142048A (zh) | 一种氧化镍/金属镍复合竹活性炭材料的制备方法及应用 | |
CN110697708A (zh) | 锂离子电容器用的氮掺杂多孔炭材料及其低温共融溶剂活化生物质废弃物高效的制备方法 | |
CN110420617A (zh) | 一种氨基改性水滑石吸附剂及其制备方法 | |
CN109692663A (zh) | 一种用于氨气回收利用的吸附剂及其制备方法 | |
CN112830490A (zh) | 一种吸附二氧化碳多孔活性碳材料及其制备方法 | |
WO2022088675A1 (zh) | 二氧化碳吸附剂及其制备方法、使用方法 | |
CN114749151B (zh) | 一种用于空气净化的甲醛吸附剂及其制备方法和应用 | |
WO2022257045A1 (zh) | 硅基固态胺co 2吸附剂及其制备方法 | |
CN116212828A (zh) | 一种用于染料吸附的NH2 - MIL - 101 (Fe) /粘胶复合多孔碳材料的制备方法 | |
CN115382513A (zh) | 一种适应中低浓度co2高效捕集的方法与流程 | |
CN114477173B (zh) | 一种用于甲烷吸附的石油焦基活性炭及其制备方法和应用 | |
CN114471455B (zh) | 一种吸附剂及其制备方法和应用 | |
JP2016160251A (ja) | カルシウム塩の製造方法及び炭素多孔体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 17620420 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21944551 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21944551 Country of ref document: EP Kind code of ref document: A1 |