WO2014081074A1 - 강판의 스케일 두께 측정장치 - Google Patents

강판의 스케일 두께 측정장치 Download PDF

Info

Publication number
WO2014081074A1
WO2014081074A1 PCT/KR2012/011688 KR2012011688W WO2014081074A1 WO 2014081074 A1 WO2014081074 A1 WO 2014081074A1 KR 2012011688 W KR2012011688 W KR 2012011688W WO 2014081074 A1 WO2014081074 A1 WO 2014081074A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
measuring head
scale thickness
measuring
head
Prior art date
Application number
PCT/KR2012/011688
Other languages
English (en)
French (fr)
Inventor
홍재화
박부현
황보승
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201280077140.8A priority Critical patent/CN104781631B/zh
Priority to JP2015539487A priority patent/JP5986321B2/ja
Publication of WO2014081074A1 publication Critical patent/WO2014081074A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness

Definitions

  • the present invention relates to an apparatus capable of measuring the scale thickness of a steel sheet online.
  • the scale of the surface of the steel sheet formed at a high temperature serves to prevent the oxidation from proceeding to the inside of the steel sheet, but if the thickness of the scale becomes thick, there is a problem that the scale is mixed during the welding operation, causing welding defects. In addition, adhesion is poor, causing the scale to peel off, causing rust, such as problems in product quality.
  • the non-contact measurement method may be a laser ultrasonic method, a microwave or an X-ray diffraction method, but there is a problem that can not be applied to all the measurement accuracy is used in the manufacturing process.
  • the present invention provides an apparatus capable of accurately measuring the scale thickness of a steel sheet online.
  • the transfer device for moving a steel plate having a predetermined width; A frame disposed above the transfer apparatus; A plurality of sensing devices connected to the frame and descending at a time when the transfer device stops to measure scale thickness of the steel sheet; And a controller configured to calculate the scale thickness of the steel sheet based on the plurality of thickness values received from the sensing device.
  • the controller may receive information about the steel sheet in advance, and adjust the separation distance between the plurality of sensing devices according to the width of the steel sheet.
  • the sensing device is fixed to the body portion connected to the frame, the measuring head in contact with the steel plate, and the body portion to raise and lower the measuring head. It includes a drive unit.
  • the measuring head is rotatably coupled to the front and rear, left and right with respect to the drive unit.
  • the scale thickness measuring apparatus includes a damping structure coupled between the measuring head and the drive unit for maintaining a constant pressure applied to the steel sheet by the measuring head.
  • the damping structure includes a guide portion, and a sliding portion sliding to the guide portion, wherein the sliding portion is lowered after the measuring head is in contact with the steel sheet
  • the driving unit may be slid by the descending distance of the driving unit.
  • the maximum sliding distance of the sliding part may be greater than the maximum falling distance of the measuring head.
  • the measuring head includes a movement detecting sensor for detecting the operation of the transfer device
  • the control unit is the operation of the transfer device is detected by the movement detecting sensor
  • a control signal may be output to the driving unit to raise and lower the measuring head.
  • the measuring head comprises: a head housing; And a plurality of measuring sensors inserted into the head housing, the ends of which are exposed to the outside of the housing to contact the steel sheet.
  • the control unit may correct the scale measurement value according to the internal temperature received from the temperature sensor.
  • control unit may output a control signal to the driving unit to raise and lower the measuring head when the internal temperature measured by the temperature sensor exceeds a preset threshold. Can be.
  • a channel is formed on the outer wall of the housing, and the cooling gas may be circulated in the channel.
  • the control unit may apply an output signal to the emergency cylinder to elevate the body portion in an emergency.
  • the lifting height of the body portion by the emergency cylinder may be formed higher than the maximum falling height of the measurement header by the drive unit.
  • the scale thickness of the steel sheet or the thick plate can be quickly measured in the manufacturing process, so that the scale thickness of all the products produced can be quickly measured.
  • FIG. 1 is a conceptual diagram of a scale thickness measuring apparatus according to an embodiment of the present invention
  • FIG. 2 is a perspective view of a sensing device according to an embodiment of the present invention.
  • FIG. 3 is a modification of the sensing device according to FIG.
  • FIG. 5 is a partial cross-sectional view of the measurement header of the sensing device according to an embodiment of the present invention
  • FIG. 6 is a view showing a state in which the sensing device of the scale thickness measuring apparatus according to the present invention is seated on a non-flat surface steel plate,
  • FIG. 7 is a conceptual diagram illustrating an operation of a sensing device according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of a scale thickness measuring apparatus according to an embodiment of the present invention.
  • the terms "comprises” or “having” are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
  • FIG. 1 is a conceptual diagram of a scale thickness measuring apparatus according to an embodiment of the present invention.
  • the scale thickness measuring apparatus is connected to the transfer device 100 for moving a steel plate having a predetermined width, the frame 200 disposed above the transfer device 100, and the frame 200. And a plurality of sensing devices 300 for measuring the scale thickness of the steel sheet by descending at a time when the transfer apparatus 100 stops, and a plurality of thickness values received from the sensing device 300. And a control unit for calculating the scale thickness.
  • the conveying apparatus 100 has a predetermined width and length to convey the steel sheet in one direction.
  • the transfer device 100 may be a conveyor belt having an endless track, but in addition to the configuration that can transfer the steel plate in one direction by various structures may be applied. In general, the transfer apparatus 100 stops every predetermined period to form an identification mark on the steel sheet.
  • the frame 200 is a structure for arranging the sensing device 300 on the upper side of the transfer apparatus 100.
  • the frame 200 is formed in a bar shape and disposed on the upper side of the transfer apparatus 100. Therefore, the steel sheet A moved by the transfer apparatus 100 passes through the frame 200.
  • the sensing device 300 is attached to the frame 200 and is disposed above the transfer device 100 in the standby mode, and is lowered when switching to the measurement mode to detect the scale thickness of the steel sheet.
  • the sensing device 300 may be configured in plural and disposed at appropriate intervals according to the width of the steel sheet.
  • the sensing device 300 is fixed to the body part 310 connected to the frame 200, the measuring head 330 in contact with the steel plate A, and the body part 310 to raise and lower the measuring head 330. It includes a drive unit 320 to.
  • Body portion 310 is connected to the frame 200 and is configured to be movable in the width direction (y direction of Figure 1) of the steel sheet.
  • Body portion 310 may include a moving member (not shown) to move in the width direction, such a moving member may be composed of a rack gear (rack gear) and a motor. Therefore, since each sensing device 300 can move to an appropriate position according to the width of the steel sheet, even when the width of the steel sheet is changed, the scale thicknesses of the edges and the central portion of the steel sheet A can be effectively detected. Therefore, there is an advantage that the scale thickness can be accurately measured even if the type and width of the steel sheet changes.
  • the driving unit 320 is fixed to the body 310, and various structures for raising and lowering the measurement head 330 may be selected.
  • the measuring head 330 may be raised and lowered by using a hydraulic cylinder or by using a motor and a rack gear.
  • the measuring head 330 is spaced apart from the steel sheet A at predetermined intervals in the standby mode, and is lowered by the driving unit 320 in the measuring mode to contact the steel sheet A to measure the scale thickness of the steel sheet. Thereafter, when the measurement is completed, the transfer device 100 is lowered before being operated again to prevent scratches on the steel sheet by the measuring head 330.
  • This configuration allows the observer to measure the scale of the steel sheet on-line much more efficiently and accurately compared to the method of measuring the scale by directly attaching the portable scale measuring device to the steel sheet.
  • FIG. 2 is a perspective view of a sensing device according to an embodiment of the present invention
  • Figures 3 and 4 is a modification of the sensing device according to FIG.
  • a damping structure 340 is disposed between the measuring head 330 and the driving unit 320.
  • the damping structure 340 serves to adjust the pressing force applied to the steel sheet by the measuring head 330.
  • the damping structure 340 includes a guide part 342 and a sliding part 341 sliding to the guide part 342.
  • the sliding part 341 maintains the maximum separation distance from the guide part 342 by the load of the measuring head 330, and the measuring head 330 as shown in FIG. 3B.
  • the driving unit 320 is further lowered even after the contact with the steel plate is lowered, the pressing force applied to the steel plate can be adjusted by sliding the guide unit 342 by the lowering distance of the driving unit 320. Therefore, when the steel sheet is excessively pressurized by the measuring head 330, it is possible to prevent indentation in the steel sheet and deterioration in quality.
  • the guide part 342 may be coupled to the measuring head 330, and a long hole 342a may be formed in the lifting direction.
  • the sliding part 341 is connected to the end of the driving part 320 and the protruding pin 341a is provided. It is inserted into this long hole 342a, and moves along the long hole 342a in the raising and lowering direction of the measuring head 330.
  • the measuring head 330 may rotate back and forth in a state where the protruding pin 341a is inserted into the long hole 342a, the measuring head 330 may rotate back and forth with respect to the driving unit 320. Therefore, even if the steel sheet moves in the state in which the measuring head 330 is lowered, it is possible to prevent scratches on the steel sheet, and the steel sheet can be effectively brought into close contact with the steel sheet even when the steel sheet is not flat.
  • the sliding unit 341 is provided on the guide unit 342 in order to prevent the measuring head 330 from colliding with the steel sheet and applying an impact.
  • the maximum sliding distance (length of the long hole) to be slid is preferably designed to be larger than the maximum falling distance of the driving unit 320. This may be implemented by making the length of the long hole 342a longer than the maximum falling distance of the driving unit 320.
  • the sliding unit 341 is coupled to one side of the driving unit 320 and the guide unit 342 has been described as being coupled to one side of the measuring head 330, on the contrary, the sliding unit 341 of the measuring head 330 It may be coupled to one side and the guide portion 342 may be coupled to one side of the driving unit 320.
  • the damping structure can be variously modified as long as it can implement the above-described configuration.
  • the damping structure 350 is measured by forming a hole 352a in the guide part 352 and a ball 351a fitted in the hole 352a in the sliding part 351.
  • the head 330 may freely rotate back, front, left, and right with respect to the driving unit 320. Therefore, the pressing force may be adjusted by the damping structure 350 without the need for a separate rotating member, and at the same time, the measuring head 330 may be rotated, thereby reducing the number of parts.
  • the damping structure 360 is formed of a guide plate 361 coupled to the driving unit 320 and a sliding plate 362 connected to the measurement head 330, and formed on the upper portion of the sliding plate 362.
  • the protruding pin 362a formed may be configured to slide by being fixedly inserted into the hole of the guide plate 361.
  • an elastic member 362b such as a spring may be coupled to the protruding pin 362a to configure the measuring head 330 in close contact with the steel sheet.
  • the measuring head 330 is inserted into the head housing 331 and the head housing 331, and a plurality of measuring sensors 332 whose ends are exposed to the outside of the housing 331 to contact the steel sheet. ).
  • the head housing 331 has a space provided therein and is formed in a shape that can stand on a steel sheet.
  • a plurality of measurement sensors 332 are disposed in the internal space at uniform intervals, and the substrate 333 is coupled to the bottom of the housing 331 to seal the internal space.
  • the measurement sensor 332 is fixed to the substrate 333 and the tip is exposed to the outside.
  • the substrate 333 may be formed of the same material as that of the housing 331, and particularly, may be formed of a material having excellent heat shielding performance.
  • the measurement sensor 332 may be selected all of a variety of sensors that can measure the scale thickness of the steel sheet, a magnetic induction sensor capable of fast and accurate measurement even at a relatively high temperature may be selected.
  • the measuring sensor 332 is described as a magnetic induction sensor, but is not necessarily limited thereto.
  • a coil for magnetic induction is wound around the center of the soft magnetic core, and a detection coil is wound around the upper and lower portions thereof, and a plurality of sensors are disposed.
  • the magnetic induction sensor converts the scale thickness into a differential amplitude value of voltages induced by two detection coils centering on the soft magnetic core by applying a frequency of several kHz band.
  • An elastic member 337 such as a spring, is coupled between the exposed area of the measuring sensor 332 and the substrate 333 to provide sufficient adhesion when the end surface of the sensor is in close contact with the steel sheet.
  • the coupling member 336 that couples the substrate 333 and the housing 331 is formed of an elastic material, and an elastic pad 334 is disposed on an exposed surface of the substrate so that the head housing 331 contacts the steel sheet. Excessive pressure applied to the sensor 332 may be dispersed.
  • the temperature sensor 335 is mounted inside the housing 331.
  • a circuit board for oscillation, reception, and amplification is mounted in the housing 331, and a plurality of semiconductor devices are disposed in the circuit board. Therefore, the voltage is changed according to the temperature inside the head housing 331, thereby affecting the measured value. Therefore, the temperature sensor 335 measures the temperature at a predetermined time inside the head housing 331 and transmits the temperature to the controller or measures the temperature and transmits the temperature to the controller.
  • the outer wall of the housing 331 is formed as a double wall to form a channel 331a through which the refrigerant can circulate, thereby preventing a rapid temperature rise inside the housing.
  • the substrate 333 is connected to the channel 331a of the housing and is formed in the transverse direction of the sub-channel 333a, the through-nozzle connected between the sub-channel 333a of the substrate and the mounting position of the sensor 332 333b.
  • the measurement head 330 may include a movement sensor (not shown) in close contact with the steel plate.
  • the movement sensor is composed of a proximity sensor and the like detects when the steel plate moves in close contact with the measuring head and the steel sheet and transmits it to the controller.
  • FIG. 6 is a view showing a state in which a sensing device of the scale thickness measuring apparatus according to the present invention is seated on a non-flat surface steel sheet.
  • the second sensing device 300a disposed on the left side of the frame 200 is scaled compared to the first sensing device 300b disposed in the center. Even if the thickness of S is relatively thick, the above-mentioned damping structure is slid so that the same pressing force as the first sensing device 300b can be maintained.
  • the measuring head 330 may have a predetermined angle with respect to the driving unit 320 even when the steel plate A is a non-flat surface. It can be seen that it is in close contact with the steel sheet (A) by rotating to ( ⁇ ).
  • FIG. 7 is a conceptual diagram illustrating an operation of the sensing device 300 according to an embodiment of the present invention.
  • the output signal is applied to the driving unit 320 to lower the measuring head 330 to measure the scale of the steel sheet, and when the measurement is completed, the output signal is applied to the driving unit 320 again.
  • the measuring head 330 is raised and lowered.
  • an output signal may be applied to the body 310 to raise the body 310 from the frame 200.
  • the controller 400 may apply an output signal to the driver 320 to raise and lower the measuring head even when the measurement is not completed.
  • the scale thickness value may be corrected according to the temperature information received from the temperature sensor.
  • the controller 400 may include a memory unit 410 in which correlation data between temperature and measured values is stored, and correct the scale thickness value according to the received temperature.
  • an appropriate calibration curve may be selected according to the received steel grade information to correct the measured value.
  • the controller 400 may output the measured scale thickness to the display unit 500, and when the difference occurs from the value measured by the actual user offline, the controller 400 may store the measured scale thickness in the memory unit 410.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

본 발명은, 소정의 폭을 갖는 강판을 이동시키는 이송장치와, 상기 이송장치의 상측에 배치된 프레임과, 상기 프레임에 연결되고, 상기 이송장치가 정지하는 시간에 하강하여 상기 강판의 스케일 두께를 측정하는 복수 개의 센싱장치, 및 상기 센싱장치로부터 수신된 복수 개의 두께값에 의해 상기 강판의 스케일 두께를 산출하는 제어부를 포함하는 스케일 두께 측정장치를 개시한다.

Description

강판의 스케일 두께 측정장치
본 발명은 강판의 스케일 두께를 온라인으로 측정할 수 있는 장치에 관한 것이다.
고온에서 형성되는 강판 표면의 스케일은 강판 내부로 산화가 진행되지 못하도록 하는 역할을 하지만 스케일의 두께가 두꺼워지면 용접 작업시 스케일이 혼입되어 용접 불량을 일으키는 문제가 있다. 또한, 밀착력이 떨어져 스케일이 박리되어 녹이 발생하는 등 제품의 품질에 문제를 야기시킨다.
따라서, 강판이나 후판 제조 공장에서는 스케일의 두께를 줄이는 최적의 공정을 도출하여 제품을 생산하는 것이 중요하며, 일정 두께 이상의 스케일이 생성된 경우 이를 쇼트 브라스트 등으로 제거해야 하기 때문에 제조 공정 중에 스케일의 두께를 정확하게 측정하는 것이 중요한 이슈이다.
스케일의 두께를 측정하기 위해서는 시료를 채취하여 단면을 연마한 후 현미경으로 관측하는 방법이 있으나, 이러한 방법은 시간이 많이 소요되며 파괴적인 방법으로 제조 공정 중에는 측정이 불가능하다. 한편 자기 유도 방식의 측정 센서를 이용한 방법의 휴대용 측정기를 이용할 경우에도 시료를 채취하여 상온에서는 측정이 가능하나 제조 공정 라인에서는 측정이 불가능하다.
또한 비접촉식으로 측정하는 방법으로는 레이져 초음파 방식이나, 마이크로웨이브 또는 X 선 회절 방식이 있을 수 있으나, 측정 정도가 제조 공정에 활용하기에는 모두 떨어져 적용이 불가능한 문제가 있다.
본 발명은 강판의 스케일 두께를 온라인상으로 정확히 측정할 수 있는 장치를 제공한다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치는, 소정의 폭을 갖는 강판을 이동시키는 이송장치; 상기 이송장치의 상측에 배치된 프레임; 상기 프레임에 연결되고, 상기 이송장치가 정지하는 시간에 하강하여 상기 강판의 스케일 두께를 측정하는 복수 개의 센싱장치; 및 상기 센싱장치로부터 수신된 복수 개의 두께값에 의해 상기 강판의 스케일 두께를 산출하는 제어부;를 포함한다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 제어부는 상기 강판에 대한 정보를 미리 수신하고, 상기 강판의 폭에 따라 상기 복수 개의 센싱장치 간의 이격 거리를 조절할 수 있다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 센싱장치는, 상기 프레임에 연결되는 몸체부와, 상기 강판과 접촉되는 측정 헤드, 및 상기 몸체부에 고정되어 상기 측정 헤드를 승하강시키는 구동부를 포함한다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 측정 헤드는 상기 구동부에 대해 전후좌우로 회동 가능하게 결합된다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 측정 헤드와 상기 구동부 사이에 결합되어 상기 측정 헤드에 의해 상기 강판에 가해지는 가압력을 일정하게 유지하는 댐핑 구조체를 포함한다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 댐핑 구조체는 가이드부, 및 상기 가이드부에 슬라이딩되는 슬라이딩부를 포함하고, 상기 슬라이딩부는 상기 측정 헤드가 하강하여 상기 강판에 접촉된 이후부터 상기 구동부의 하강거리만큼 상기 가이드부에 슬라이딩될 수 있다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 슬라이딩부의 최대 슬라이딩 거리는 상기 측정 헤드의 최대 하강 거리보다 크게 형성될 수 있다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 측정 헤드는 상기 이송장치의 작동을 감지하는 이동감지센서를 포함하고, 상기 제어부는 상기 이동감지센서에 의해 상기 이송장치의 작동이 감지되면 상기 측정 헤드를 승강시키도록 상기 구동부에 제어신호를 출력할 수 있다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 측정 헤드는, 헤드 하우징; 및 상기 헤드 하우징에 삽입되고, 끝단이 상기 하우징의 외측으로 노출되어 상기 강판과 접촉하는 복수 개의 측정센서;를 포함한다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 헤드 하우징 내부에 배치되는 온도센서를 포함하고, 상기 제어부는 상기 온도센서로부터 수신된 내부온도에 따라 상기 스케일 측정값을 보정할 수 있다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 제어부는 상기 온도센서에 의해 측정된 내부온도가 미리 설정된 임계치를 초과하는 경우, 상기 측정 헤드를 승강시키도록 상기 구동부에 제어신호를 출력할 수 있다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 하우징의 외벽에는 채널이 형성되고, 상기 채널에는 냉각 가스가 순환될 수 있다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 몸체부와 프레임 사이에 배치되는 비상 실린더를 포함하고, 상기 제어부는 비상시 상기 몸체부를 승강시키도록 상기 비상 실린더에 출력신호를 인가할 수 있다.
본 발명의 일 실시예에 따른 스케일 두께 측정장치에서, 상기 비상 실린더에 의한 상기 몸체부의 승강 높이는 상기 구동부에 의한 상기 측정 헤더의 최대하강 높이보다 높게 형성될 수 있다.
본 발명에 따르면, 강판이나 후판의 스케일 두께를 제조 공정에서 신속하게 측정이 가능해져 생산되는 모든 제품의 스케일 두께를 신속하게 측정할 수 있다.
따라서, 스케일 두께에 미치는 공정 인자 도출에 이용이 가능할 뿐만 아니라, 스케일 두께가 두꺼운 제품만을 선별하여 쇼트 브라스트 등 후공정을 거치게 함으로써 공정 부하를 감소시키며 스케일의 두께가 균일하고 두껍지 않은 제품만을 선별하여 출하할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 스케일 두께 측정장치의 개념도이고,
도 2는 본 발명의 일 실시예에 따른 센싱장치의 사시도이고,
도 3은 도 2에 따른 센싱장치의 변형예이고,
도 4는 도 2에 따른 센싱장치의 또 다른 변형예이고,
도 5는 본 발명의 일 실시예에 따른 센싱장치의 측정 헤더 일부 단면도이고,
도 6은 본 발명에 따른 스케일 두께 측정장치의 센싱장치가 비평탄면의 강판에 안착된 상태를 보여주는 도면이고,
도 7은 본 발명의 일 실시예에 따른 센싱장치의 동작을 보여주는 개념도이고,
도 8은 본 발명의 일 실시예에 따른 스케일 두께 측정장치의 블록도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한 본 발명에서 첨부된 도면은 설명의 편의를 위하여 확대 또는 축소하여 도시된 것으로 이해되어야 한다.
이제 본 발명에 대하여 도면을 참고하여 상세하게 설명하고, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 스케일 두께 측정장치의 개념도이다.
본 발명에 따른 스케일 두께 측정장치는, 소정의 폭을 갖는 강판을 이동시키는 이송장치(100)와, 상기 이송장치(100)의 상측에 배치된 프레임(200)과, 상기 프레임(200)에 연결되고, 상기 이송장치(100)가 정지하는 시간에 하강하여 상기 강판의 스케일 두께를 측정하는 복수 개의 센싱장치(300), 및 상기 센싱장치(300)로부터 수신된 복수 개의 두께값에 의해 상기 강판의 스케일 두께를 산출하는 제어부를 포함한다.
이송장치(100)는 소정의 폭과 길이를 갖고 일방향으로 강판을 이송시킨다. 이러한 이송장치(100)는 무한궤도를 갖는 컨베이어 벨트일 수 있으나, 이외에도 다양한 구조에 의해 강판을 일방향으로 이송할 수 있는 구성이 모두 적용될 수 있다. 이송장치(100)는 일반적으로 강판에 식별표식 등을 형성하기 위하여 소정 주기마다 정지한다.
프레임(200)은 센싱장치(300)를 이송장치(100)의 상측에 배치하기 위한 구조물로서, 바(Bar) 형상으로 형성되어 이송장치(100)의 상측에 배치된다. 따라서, 이송장치(100)에 의해 이동되는 강판(A)는 프레임(200)을 통과하게 된다.
센싱장치(300)는 프레임(200)에 부착되어 대기모드에서는 이송장치(100)의 상측에 배치되고, 측정모드로 전환시 하강하여 강판의 스케일 두께를 검출한다. 센싱장치(300)는 복수 개로 구성될 수 있으며, 강판의 폭에 따라 적절한 간격으로 배치된다.
센싱장치(300)는 프레임(200)에 연결되는 몸체부(310)와, 강판(A)과 접촉되는 측정 헤드(330), 및 몸체부(310)에 고정되어 측정 헤드(330)를 승하강시키는 구동부(320)를 포함한다.
몸체부(310)는 프레임(200)에 연결되고 강판의 폭방향(도 1의 y 방향)으로 이동할 수 있도록 구성된다. 몸체부(310)는 폭방향으로 이동하기 위하여 이동부재(도시되지 않음)를 포함할 수 있으며, 이러한 이동부재는 랙기어(rack gear)와 모터로 구성될 수 있다. 따라서, 강판의 폭에 따라 각 센싱장치(300)가 적정한 위치로 이동할 수 있으므로 강판의 폭이 변경되는 경우에도 강판(A)의 가장자리와 중앙부의 스케일 두께를 유효하게 검출할 수 있다. 따라서, 강판의 종류 및 폭이 변화하여도 스케일 두께를 정확하게 측정할 수 있는 장점이 있다.
구동부(320)는 몸체부(310)에 고정되고, 측정 헤드(330)를 승하강시키기 위한 다양한 구조가 모두 선택될 수 있다. 예를 들면, 유압 실린더를 이용하거나, 모터와 랙기어 등을 이용하여 측정 헤드(330)를 승하강시킬 수 있다.
측정 헤드(330)는 대기모드에서는 강판(A)과 소정 간격으로 이격 배치되고, 측정모드에서는 구동부(320)에 의해 하강되어 강판(A)과 접촉됨으로써 강판의 스케일 두께를 측정한다. 이후, 측정이 완료되면 이송장치(100)가 다시 작동되기 전에 승강하여 측정 헤드(330)에 의해 강판에 흠집이 생기는 것을 방지한다.
이러한 구성에 의하여 종래 관측자가 휴대용 스케일 측정장치를 직접 강판에 대고 스케일을 측정하던 방법에 비해, 훨씬 효율적이고 정확하게 강판의 스케일을 온라인으로 측정할 수 있다.
도 2는 본 발명의 일 실시예에 따른 센싱장치의 사시도이고, 도 3와 도 4는 도 2에 따른 센싱장치의 변형예이다.
도 2를 참고하면, 본 발명에 따른 센싱장치는 측정 헤드(330)와 구동부(320) 사이에는 댐핑 구조체(340)가 배치된다. 이러한 댐핑 구조체(340)는 측정 헤드(330)에 의해 강판에 가해지는 가압력을 조절하는 역할을 수행한다. 구체적으로 댐핑 구조체(340)는 가이드부(342), 및 가이드부(342)에 슬라이딩되는 슬라이딩부(341)를 포함한다.
도 3의 (a)를 참고하면, 슬라이딩부(341)는 측정 헤드(330)의 하중에 의해 가이드부(342)와 최대 이격거리를 유지하다가, 도 3의 (b)와 같이 측정 헤드(330)가 하강되어 강판과 접촉된 이후에도 구동부(320)가 더 하강하는 경우 구동부(320)의 하강거리만큼 가이드부(342)에 슬라이딩됨으로써 강판에 가해지는 가압력을 조절할 수 있다. 따라서, 강판이 측정 헤드(330)에 의해 과도하게 가압됨으로써 강판에 압흔이 발생하여 품질이 저하되는 것을 방지할 수 있다.
구체적으로 가이드부(342)는 측정 헤드(330)과 결합되고 승하강 방향으로 장홀(342a)이 형성될 수 있으며, 슬라이딩부(341)는 구동부(320)의 끝단에 연결되고 돌출핀(341a)이 장홀(342a)에 삽입되어 장홀(342a)을 따라 측정 헤드(330)의 승하강 방향으로 이동한다.
이때, 돌출핀(341a)이 장홀(342a)에 삽입된 상태에서 전후로 회전할 수 있으므로 측정 헤드(330)가 구동부(320)에 대해 전후방으로 회동할 수 있다. 따라서, 측정 헤드(330)가 하강된 상태에서 강판이 움직여도 강판에 스크래치가 생기는 것이 방지되며, 하강시 강판이 평탄면이 아니여도 유효하게 강판과 밀착될 수 있다.
이때, 구동부(320)가 과도하게 측정 헤드(330)를 하강시키는 경우에도 측정 헤드(330)가 강판에 충돌하여 충격이 가해지는 것을 방지하기 위하여, 슬라이딩부(341)가 가이드부(342)에 슬라이딩되는 최대 슬라이딩 거리(장홀의 길이)는 구동부(320)의 최대 하강 거리보다 크게 설계되는 것이 바람직하다. 이는 장홀(342a)의 길이가 구동부(320)의 최대 하강거리보다 길게 형성됨으로써 구현될 수 있다.
이러한 구성에 의하여 구동부(320)가 고장 등의 이유로 최대로 측정 헤드(330)를 하강시켜도 강판에 가해지는 가압력은 측정 헤드(330)의 하중으로 유지되므로 강판의 불량이 방지된다.
이때, 슬라이딩부(341)는 구동부(320)의 일측에 결합되고 가이드부(342)는 측정 헤드(330)의 일측에 결합된 것으로 설명되었으나, 반대로 슬라이딩부(341)가 측정 헤드(330)의 일측에 결합되고 가이드부(342)가 구동부(320)의 일측에 결합될 수도 있다. 또한 댐핑 구조체는 전술한 구성을 구현할 수 있으면 다양하게 변형 가능하다.
예를 들면 도 3과 같이, 댐핑 구조체(350)는 가이드부(352)에는 홀(352a)이 형성되고, 슬라이딩부(351)에는 홀(352a)에 끼워진 볼(ball, 351a)이 형성됨으로써 측정 헤드(330)가 구동부(320)에 대해 전후좌우로 자유롭게 회동할 수 있다. 따라서, 별도의 회전 부재를 구비하지 않고도 댐핑 구조체(350)에 의해 가압력이 조절되는 동시에 측정 헤드(330)를 회전시키도록 구성할 수 있어 부품의 수가 줄어드는 장점이 있다.
또는, 도 4와 같이, 댐핑 구조체(360)는 구동부(320)에 결합된 가이드판(361)과 측정 헤드(330)에 연결된 슬라이딩판(362)으로 형성되고, 슬라이딩판(362)의 상부에 형성된 돌출핀(362a)이 가이드판(361)의 홀에 고정 삽입됨으로써 슬라이딩되도록 구성될 수도 있다. 이때 돌출핀(362a)에는 스프링과 같은 탄성부재(362b)가 결합되어 측정 헤드(330)를 강판에 밀착시키도록 구성될 수도 있다.
도 5를 참조하면, 측정 헤드(330)는 헤드 하우징(331)과, 헤드 하우징(331)에 삽입되고, 끝단이 상기 하우징(331)의 외측으로 노출되어 강판과 접촉하는 복수 개의 측정 센서(332)를 포함한다.
헤드 하우징(331)은 내부에 공간이 마련되고 강판에 기립할 수 있는 형상으로 형성된다. 내부 공간에는 균일한 간격으로 복수 개의 측정 센서(332)가 배치되고, 하우징(331)의 저면에는 기판(333)이 결합되어 내부 공간을 밀폐한다. 따라서, 측정 센서(332)는 기판(333)에 고정되고 끝단은 외부로 노출된다. 기판(333)은 하우징(331)과 동일한 재질로 형성될 수 있으며, 특히 열차단 성능이 우수한 재질로 이루어지는 것이 바람직하다.
측정 센서(332)는 강판의 스케일 두께를 측정할 수 있는 다양한 센서가 모두 선택될 수도 있으나, 비교적 고온에서도 신속하고 정확한 측정이 가능한 자기 유도 센서가 선택될 수 있다. 이하에서는 측정 센서(332)를 자기 유도 센서로 설명하나 반드시 이에 한정되는 것은 아니다.
자기 유도 센서(332)는 연자성 코아를 중심으로 중앙부에 자기 유도용 코일이 권취되고 그 상부와 하부에는 각각 검지 코일이 권취되어 복수 개의 센서가 배치된다. 이때, 각 센싱 장치에 배치되는 센서의 개수가 너무 적으면 스케일 두께값의 평균치를 제대로 나타내지 못하면서 측정위치에 따라 편차가 크게 되므로 각 측정 헤드(330)에는 약 5~10개 정도의 센서가 배치되는 것이 바람직하다. 자기 유도 센서는 수 kHz대의 주파수를 인가하여 연자성 코어를 중심으로 하는 두 검지코일에서 유도되는 전압을 차동 진폭한 값으로 스케일 두께를 환산한다.
측정센서(332)의 노출영역과 기판(333) 사이에는 스프링과 같은 탄성부재(337)가 결합되어 센서의 끝단면이 강판과 밀착시 충분한 밀착력을 제공할 수 있다. 또한, 기판(333)과 하우징(331)을 결합시키는 결합부재(336)가 탄성재질로 형성되고, 기판의 노출면에는 탄성패드(334)가 배치되어 헤드 하우징(331)이 강판에 접촉될 때 센서(332)에 가해지는 과도한 압력을 분산시킬 수 있다.
하우징(331)의 내부에는 온도센서(335)가 장착된다. 하우징(331) 내부에는 발진과 수신 및 증폭을 위한 회로기판이 장착되어 있고, 회로기판에는 다수의 반도체 소자가 배치된다. 따라서, 헤드 하우징(331) 내부의 온도에 따라 전압이 변동하게 되어 측정값에 영향을 미치게 된다. 따라서, 온도센서(335)는 헤드 하우징(331) 내부의 정해진 시간에 온도를 측정하여 제어부로 송신하거나 제어부로부터 검출신호를 받으면 온도를 측정하여 제어부로 송신한다.
강판은 상대적으로 고온이기 때문에 접촉시 하우징 내부 온도가 급격하게 상승하여 정확하게 측정할 수 없는 문제가 있다. 따라서, 하우징(331)의 외벽은 이중벽으로 형성되어 냉매가 순환할 수 있는 채널(331a)이 형성되어 냉매에 의해 하우징 내부의 급격한 온도 상승이 방지된다.
채널(331a)은 냉각 가스가 순환하도록 구성될 수도 있으나, 도 5와 같이 냉각 가스가 기판(333)으로 순환되어 각 측정센서(332) 사이로 배출되는 것이 좋다. 이 경우 냉각 가스에 의해 측정센서(332)에 과도한 열이 가해지는 것을 방지할 수 있으며, 측정센서(332)가 밀착되는 강판의 온도를 낮출 수 있어 정확한 센싱이 가능한 장점이 있다.
따라서, 기판(333)은 하우징의 채널(331a)과 연통되고 횡방향으로 형성된 서브채널(333a)과, 기판의 서브채널(333a)과 연결되고 센서(332)의 장착 위치 사이에 형성되는 관통노즐(333b)을 포함할 수 있다.
또한 측정 헤드(330)는 강판과 밀착되는 면에 이동감지센서(도시되지 않음)를 포함할 수 있다. 이러한 이동감지센서는 근접 센서 등으로 구성되어 측정 헤드와 강판이 밀착된 상태에서 강판이 이동하는 경우 이를 감지하여 제어부에 송신한다.
도 6은 본 발명에 따른 스케일 두께 측정장치의 센싱장치가 비평탄면의 강판에 안착된 상태를 보여주는 도면이다.
도 6을 참조하면, 프레임(200)에 3개의 센싱장치(300)가 배치된 경우, 중앙에 배치된 제1센싱장치(300b)에 비해 좌측 측면에 배치된 제2센싱장치(300a)는 스케일(S)의 두께가 상대적으로 두꺼워도 전술한 댐핑 구조체가 슬라이딩(d)됨으로써 제1센싱장치(300b)와 동일한 가압력을 유지할 수 있다.
또한, 제1센싱장치(300b)를 기준으로 우측에 배치된 제3센싱장치(300c)의 경우 강판(A)이 비평탄면인 경우에도 측정 헤드(330)가 구동부(320)에 대해 소정 각도(θ)로 회전하여 강판(A)에 밀착됨을 알 수 있다.
즉, 본 발명의 실시예에 따르면 폭방향으로 강판 두께가 상이하거나 비평탄면이여도 측정 헤드(330)가 일정한 가압력으로 밀착 배치되므로 정확하게 스케일 두께를 산출할 수 있다. 또한 폭방향으로 복수 개의 센싱장치(300)가 두께값을 측정하므로 더욱 정확한 스케일 두께를 측정할 수 있다. 그리고, 강판의 종류가 바뀌어 폭, 두께 등이 달라져도 용이하게 측정이 가능하다.
도 7은 본 발명의 일 실시예에 따른 센싱장치(300)의 동작을 보여주는 개념도이다.
도 7의 (a)를 참고하면, 측정 헤드(330)가 하강하여 강판의 스케일을 측정하기 위하고 측정이 완료되면 도 7의 (b)와 같이 구동부(320)가 측정 헤드(330)가 승강시킨다. 그러나, 구동부(320)가 비정상 상태여서 측정 헤드(330)를 승강시키지 못하는 비상시(예: 전원 오프)에는 측정 헤드(330)가 접촉된 상태에서 강판(A)이 이동하게 되어 강판의 표면이 불량해지는 문제가 있다.
따라서, 본 발명에서는 구동부(320)가 작동하지 않는 비상시에는 몸체부(310)에 설치된 비상 실린더(311)를 구동시켜 몸체부(310)를 프레임(200)으로부터 승강시킴으로써 측정 헤드(330)가 강판(A)으로부터 승강되도록 구성될 수 있다.
이때, 몸체부(310)가 프레임(200)으로부터 승강되는 거리는 구동부(320)에 의해 측정 헤드(330)가 하강되는 최대거리보다 큰 것이 바람직하다. 따라서, 구동부(320)의 비정상 운전으로 측정 헤드(330)가 최대하강거리까지 이동한 경우에도 몸체부(310)의 승강에 의해 강판(A)과 떨어질 수 있어 강판이 불량해지는 것을 방지할 수 있다.
도 8은 본 발명의 일 실시예에 따른 스케일 두께 측정장치의 블록도이다.
도 8을 참조하여 스케일 두께 측정 제어 시스템에 대해 설명하면, 먼저 제어부(400)는 시스템 서버(예를 들어, 전단계 공정의 제어부 또는 메인 서버)로부터 강판의 정보(길이, 폭, 강종 정보 등)를 수신한 후, 강판의 폭에 맞게 이격하도록 센싱장치(300)의 몸체부(310)에 출력신호를 인가한다.
이후, 이송장치(100)가 정지하면 구동부(320)에 출력신호를 인가하여 측정 헤드(330)를 하강시켜 강판의 스케일을 측정하고, 측정이 완료되면 다시 구동부(320)에 출력신호를 인가하여 측정 헤드(330)를 승강시킨다. 이때, 구동부(320)가 비정상 상태라 판단되면 몸체부(310)를 프레임(200)으로부터 상승시키도록 몸체부(310)에 출력신호를 인가할 수 있다. 또한, 온도센서(335)에 의해 측정된 온도가 임계치를 초과하는 경우에는 측정을 중지하고 측정 헤드를 승강시킬 수 있다. 또한, 제어부(400)는 이동감지센서에 의하여 강판이 이동하는 것으로 판단한 경우에는 측정이 완료되지 않은 상태라도 측정 헤드를 승강시키도록 구동부(320)에 출력신호를 인가할 수 있다.
이후, 제어부(400)는 다수의 측정 센서(332)로부터 송신된 측정 데이터를 취합하여 평균값으로 환산하여 강판의 스케일 두께를 산출한다. 이때, 측정 오차를 줄이기 위하여 송신된 데이터 중 가장 큰 값과 가장 작은 값을 제외한 나머지 데이터로 평균값을 산출할 수 있다.
이때, 온도 센서로부터 수신된 온도 정보에 따라 스케일 두께값을 보정할 수 있다. 구체적으로 제어부(400)는 온도와 측정값과의 상관 관계 데이터가 저장된 메모리부(410)를 포함하고 이를 이용하여 수신된 온도에 따라 스케일 두께값을 보정할 수 있다. 또한, 수신된 강종 정보에 따라 적합한 검량선을 선택하여 측정값을 보정할 수도 있다.
제어부(400)는 측정된 스케일 두께를 디스플레이부(500)에 출력하고, 실제 사용자가 오프라인에서 측정한 값과 차이가 발생한 경우에는 이를 메모리부(410)에 저장할 수 있다.
이상에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 쉽게 이해할 수 있을 것이다.

Claims (14)

  1. 소정의 폭을 갖는 강판을 이동시키는 이송장치;
    상기 이송장치의 상측에 배치된 프레임;
    상기 프레임에 연결되고, 상기 이송장치가 정지하는 시간에 하강하여 상기 강판의 스케일 두께를 측정하는 복수 개의 센싱장치; 및
    상기 센싱장치로부터 수신된 복수 개의 두께값에 의해 상기 강판의 스케일 두께를 산출하는 제어부;를 포함하는 스케일 두께 측정장치.
  2. 제1항에 있어서,
    상기 제어부는 상기 강판에 대한 정보를 미리 수신하고, 상기 강판의 폭에 따라 상기 복수 개의 센싱장치 간의 이격 거리를 조절하는 스케일 두께 측정장치.
  3. 제1항에 있어서,
    상기 센싱장치는, 상기 프레임에 연결되는 몸체부와, 상기 강판과 접촉되는 측정 헤드, 및 상기 몸체부에 고정되어 상기 측정 헤드를 승하강시키는 구동부를 포함하는 스케일 두께 측정장치.
  4. 제3항에 있어서,
    상기 측정 헤드는 상기 구동부에 대해 전후좌우로 회동 가능하게 결합된 스케일 두께 측정장치.
  5. 제3항에 있어서,
    상기 측정 헤드와 상기 구동부 사이에 결합되어 상기 측정 헤드에 의해 상기 강판에 가해지는 가압력을 일정하게 유지하는 댐핑 구조체를 포함하는 스케일 두께 측정장치.
  6. 제5항에 있어서,
    상기 댐핑 구조체는 가이드부, 및 상기 가이드부에 슬라이딩되는 슬라이딩부를 포함하고,
    상기 슬라이딩부는 상기 측정 헤드가 하강하여 상기 강판에 접촉된 이후부터 상기 구동부의 하강거리만큼 상기 가이드부에 슬라이딩되는 스케일 두께 측정장치.
  7. 제6항에 있어서,
    상기 슬라이딩부의 최대 슬라이딩 거리는 상기 측정 헤드의 최대 하강 거리보다 큰 스케일 두께 측정장치.
  8. 제3항에 있어서,
    상기 측정 헤드는 상기 이송장치의 작동을 감지하는 이동감지센서를 포함하고,
    상기 제어부는 상기 이동감지센서에 의해 상기 이송장치의 작동이 감지되면 상기 측정 헤드를 승강시키도록 상기 구동부에 제어신호를 출력하는 스케일 두께 측정장치.
  9. 제3항에 있어서,
    상기 측정 헤드는,
    헤드 하우징; 및
    상기 헤드 하우징에 삽입되고, 끝단이 상기 하우징의 외측으로 노출되어 상기 강판과 접촉하는 복수 개의 측정센서;를 포함하는 스케일 두께 측정장치.
  10. 제9항에 있어서,
    상기 헤드 하우징 내부에 배치되는 온도센서를 포함하고,
    상기 제어부는 상기 온도센서로부터 수신된 내부온도에 따라 상기 스케일 측정값을 보정하는 스케일 두께 측정장치.
  11. 제10항에 있어서,
    상기 제어부는 상기 온도센서에 의해 측정된 내부온도가 미리 설정된 임계치를 초과하는 경우, 상기 측정 헤드를 승강시키도록 상기 구동부에 제어신호를 출력하는 스케일 두께 측정장치.
  12. 제9항에 있어서,
    상기 하우징의 외벽에는 채널이 형성되고, 상기 채널에는 냉각 가스가 순환되는 스케일 두께 측정장치.
  13. 제3항에 있어서,
    상기 몸체부와 프레임 사이에 배치되는 비상 실린더를 포함하고,
    상기 제어부는 비상시 상기 몸체부를 승강시키도록 상기 비상 실린더에 출력신호를 인가하는 스케일 두께 측정장치.
  14. 제13항에 있어서,
    상기 비상 실린더에 의한 상기 몸체부의 승강 높이는 상기 구동부에 의한 상기 측정 헤더의 최대하강 높이보다 높은 스케일 두께 측정장치.
PCT/KR2012/011688 2012-11-23 2012-12-28 강판의 스케일 두께 측정장치 WO2014081074A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280077140.8A CN104781631B (zh) 2012-11-23 2012-12-28 钢板的氧化皮厚度测量装置
JP2015539487A JP5986321B2 (ja) 2012-11-23 2012-12-28 鋼板のスケール厚さ測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0133647 2012-11-23
KR1020120133647A KR101406992B1 (ko) 2012-11-23 2012-11-23 강판의 스케일 두께 측정장치

Publications (1)

Publication Number Publication Date
WO2014081074A1 true WO2014081074A1 (ko) 2014-05-30

Family

ID=50776236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011688 WO2014081074A1 (ko) 2012-11-23 2012-12-28 강판의 스케일 두께 측정장치

Country Status (4)

Country Link
JP (1) JP5986321B2 (ko)
KR (1) KR101406992B1 (ko)
CN (1) CN104781631B (ko)
WO (1) WO2014081074A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114964101A (zh) * 2022-07-28 2022-08-30 新恒汇电子股份有限公司 一种模块胶高自动测量设备及其测量方法
US11583464B2 (en) 2016-12-28 2023-02-21 Samsung Electronics Co., Ltd. Sensor device and walking assist device using the sensor device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636233B (zh) * 2014-12-12 2018-09-21 美商通用電機股份有限公司 用於測量物件厚度的方法及裝置
CN105970495B (zh) * 2016-06-24 2019-03-01 杰克缝纫机股份有限公司 一种布料传送装置及传送方法
CN107270824A (zh) * 2017-07-28 2017-10-20 杭州朝阳橡胶有限公司 一种钢丝帘布在线检测装置
KR102001987B1 (ko) * 2017-12-22 2019-07-19 주식회사 포스코 슬래브 형상 측정장치
CN109974604A (zh) * 2019-05-15 2019-07-05 南昌航空大学 一种基于线扫描摄像机的钢板氧化皮厚度在线测量装置及方法
KR102538589B1 (ko) * 2022-11-30 2023-05-31 주식회사 엔비컨스 필름 두께 측정장치
CN117249749B (zh) * 2023-11-16 2024-01-26 苏州博宏源机械制造有限公司 一种可调节的厚度自动检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254502A (ja) * 1995-03-16 1996-10-01 Kawasaki Steel Corp 鋼材のスケール性状測定方法及び装置
JPH10282020A (ja) * 1997-04-02 1998-10-23 Kawasaki Steel Corp 鋼板の酸化スケールの組成・厚さの測定方法とその装置
KR20000039378A (ko) * 1998-12-12 2000-07-05 이구택 고온강판 표면의 스케일 두께 측정방법
KR100428845B1 (ko) * 1999-08-20 2004-04-28 주식회사 포스코 포터블용 강판 표면의 스케일층 측정장치 및 방법
KR20100044386A (ko) * 2008-10-22 2010-04-30 대우조선해양 주식회사 강판의 두께 측정장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215911A (ja) * 1985-03-22 1986-09-25 Metoroole:Kk 変位検出タツチセンサ
JPH05164548A (ja) * 1991-12-11 1993-06-29 Sumitomo Metal Ind Ltd 急峻度測定方法
JP2000266527A (ja) * 1999-03-17 2000-09-29 Nisshin Steel Co Ltd 金属板の形状測定方法および装置
JP3840912B2 (ja) * 2001-04-16 2006-11-01 Jfeスチール株式会社 強磁性体の制御装置及び強磁性体の製造方法
JP2004223557A (ja) * 2003-01-22 2004-08-12 Toyota Motor Corp 重ね合わせ溶接時の板間隙間量計測方法及びその装置並びに溶接方法及び溶接装置
CN202002629U (zh) * 2010-12-27 2011-10-05 柯尼卡美能达商用科技(无锡)有限公司 厚度测量装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254502A (ja) * 1995-03-16 1996-10-01 Kawasaki Steel Corp 鋼材のスケール性状測定方法及び装置
JPH10282020A (ja) * 1997-04-02 1998-10-23 Kawasaki Steel Corp 鋼板の酸化スケールの組成・厚さの測定方法とその装置
KR20000039378A (ko) * 1998-12-12 2000-07-05 이구택 고온강판 표면의 스케일 두께 측정방법
KR100428845B1 (ko) * 1999-08-20 2004-04-28 주식회사 포스코 포터블용 강판 표면의 스케일층 측정장치 및 방법
KR20100044386A (ko) * 2008-10-22 2010-04-30 대우조선해양 주식회사 강판의 두께 측정장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11583464B2 (en) 2016-12-28 2023-02-21 Samsung Electronics Co., Ltd. Sensor device and walking assist device using the sensor device
CN114964101A (zh) * 2022-07-28 2022-08-30 新恒汇电子股份有限公司 一种模块胶高自动测量设备及其测量方法
CN114964101B (zh) * 2022-07-28 2023-01-10 新恒汇电子股份有限公司 一种模块胶高自动测量设备及其测量方法

Also Published As

Publication number Publication date
CN104781631A (zh) 2015-07-15
KR20140066890A (ko) 2014-06-03
JP2016500823A (ja) 2016-01-14
JP5986321B2 (ja) 2016-09-06
KR101406992B1 (ko) 2014-06-16
CN104781631B (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2014081074A1 (ko) 강판의 스케일 두께 측정장치
US9506840B2 (en) Marking device for use with a tire testing machine
TW552620B (en) Apparatus for measuring properties of probe card and its probing method
CN109013761B (zh) 一种带检测装置的拉直机
CN101398464A (zh) 电路图案检查装置
CN211234325U (zh) 平面度测量装置
WO2020179980A1 (ko) 웨이퍼 티칭 지그
CN216297165U (zh) 一种弹簧自动检测机
KR830002811B1 (ko) 스트랜드(Strand)안내부의 계측방법
US6369593B1 (en) Load board test fixture
CN116605646A (zh) 一种电芯移载控制系统
CN217191007U (zh) 铝板平面度快速检测装置
KR101585068B1 (ko) Fpd 셀 검사장치의 점등 유닛 블록 이동 제어방법
CN207832958U (zh) 一种pcb阻抗冲击测试仪
JPH11197744A (ja) 熱間金属材の厚み測定方法及びその測定装置
CN219003801U (zh) 自动检测装置和自动化流水线
JP4324726B2 (ja) 材料試験機
CN216956107U (zh) 一种磁感芯片测试设备
KR101272142B1 (ko) 대상체의 초과 부착물 검사장치
CN214583139U (zh) 段差检测装置
CN214516057U (zh) 一种硅片检测装置及硅片分选设备
CN219077666U (zh) 一种检测设备及生产系统
CN220893968U (zh) 一种电子标签耐弯曲测试机
CN113588014B (zh) 动力电池检测设备以及动力电池检测系统
JP3649114B2 (ja) コイル内径の検出方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539487

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888837

Country of ref document: EP

Kind code of ref document: A1