WO2014080821A1 - 難燃剤及び難燃性樹脂組成物 - Google Patents

難燃剤及び難燃性樹脂組成物 Download PDF

Info

Publication number
WO2014080821A1
WO2014080821A1 PCT/JP2013/080686 JP2013080686W WO2014080821A1 WO 2014080821 A1 WO2014080821 A1 WO 2014080821A1 JP 2013080686 W JP2013080686 W JP 2013080686W WO 2014080821 A1 WO2014080821 A1 WO 2014080821A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
flame retardant
mass
acid
flame
Prior art date
Application number
PCT/JP2013/080686
Other languages
English (en)
French (fr)
Inventor
浩正 大北
泰之 村上
英雄 辻本
崇伸 大島
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Publication of WO2014080821A1 publication Critical patent/WO2014080821A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34928Salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen

Definitions

  • the present invention relates to a flame retardant and a flame retardant resin composition.
  • the resin is made flame-retardant by blending a flame retardant with a synthetic resin.
  • flame retardants for resins halogen flame retardants, metal hydroxide flame retardants such as magnesium hydroxide, antimony trioxide which is a flame retardant aid, and the like have been used.
  • the halogen-based flame retardant has an excellent flame retarding effect, there is a problem that harmful substances such as hydrogen halide gas and dioxins are generated during combustion.
  • the metal hydroxide is not added in a large amount, sufficient flame retardancy cannot be obtained, and as a result, there is a problem that the processability of the resin and the physical properties of the molded product are lowered.
  • antimony trioxide has a problem of toxicity.
  • Patent Document 1 what used red phosphorus (patent document 1), what used ammonium polyphosphate (patent document 2), what used condensed phosphate ester (patent document 3), and melamine cyanurate were used so far.
  • Patent Documents 4 and 5 have been proposed.
  • Patent Document 6 discloses a salt of piperazine and an inorganic phosphorus compound selected from the group consisting of piperazine phosphate, piperazine pyrophosphate, piperazine polyphosphate and a mixture of two or more thereof, melamine phosphate, melamine pyrophosphate, Disclosed is a flame retardant comprising melamine and a salt of an inorganic phosphorus compound selected from the group consisting of melamine polyphosphate and mixtures of two or more thereof.
  • the flame retarding effect of these flame retardants may be insufficient in practice, and a flame retardant imparting higher flame retardancy has been demanded.
  • Patent Document 7 discloses that a flame retardant composition composed of a salt of piperazine and an inorganic phosphoric acid and a salt of melamine and an inorganic phosphorus compound is blended with a silicone oil and a monoester compound derived from a higher aliphatic carboxylic acid. A flammable composition is disclosed.
  • Patent Document 8 discloses a flame retardant resin composition in which melamine pyrophosphate, piperazine pyrophosphate and silicon dioxide are blended with a resin.
  • the flame-retardant resin composition although the flame-retardant effect is improved, there is a problem in processing stability (such as generation of eyes).
  • the present invention is substantially free of harmfulness or low enough, exhibits excellent flame retardancy at an appropriate amount, is easy to handle, and has flame retardancy, physical properties, water resistance and processing stability. It aims at providing a conductive resin composition.
  • the first aspect of the present invention is: (A) 100 parts by mass of a reaction product of piperazine and one phosphorus compound selected from phosphoric acid, pyrophosphoric acid, and polyphosphoric acid; (B) 10 to 1000 parts by weight of a reaction product of melamine and a polyvalent acid selected from cyanuric acid, phosphoric acid, pyrophosphoric acid, and polyphosphoric acid; (C) 0.1 to 100 parts by mass of a reaction product of calcium or magnesium and silicic acid, At least one selected from the following (D) and (E): (D) 0.1 to 50 parts by weight of silicone oil; and (E) 0.1 to 50 parts by weight of a hydrocarbon lubricant, a fatty acid lubricant, an aliphatic amide lubricant and an ester lubricant. At least one selected from It relates to a flame retardant containing.
  • the second aspect of the present invention relates to a flame retardant resin composition containing 100 parts by mass of a synthetic resin and 2 to 250 parts by mass of the above flame retardant.
  • a flame retardant having excellent water resistance and improved dispersibility can be obtained.
  • a resin composition excellent in flame retardancy, physical properties, and water resistance can be obtained.
  • the flame-retardant resin composition excellent in process stability which can suppress generation
  • the component (A) in the present invention is a reaction product of piperazine and one phosphorus compound selected from phosphoric acid, pyrophosphoric acid and polyphosphoric acid.
  • the mixing ratio of piperazine and phosphorus compound is not particularly limited as long as the flame retardant effect is manifested, but the molar ratio of piperazine and phosphoric acid, pyrophosphoric acid, or polyphosphoric acid is The ratio is preferably 1: 1 to 1: 4, and more preferably 1: 2 to 1: 3.
  • component (A) examples include piperazine phosphate, piperazine pyrophosphate, piperazine polyphosphate, and a mixture containing two or more of these piperidine salts.
  • Component (B) is a reaction product of melamine and a polyvalent acid selected from cyanuric acid, phosphoric acid, pyrophosphoric acid, and polyphosphoric acid.
  • the mixing ratio of melamine and cyanuric acid is not particularly limited as long as the flame retardant effect is exhibited, but the molar ratio of melamine and cyanuric acid is The ratio is preferably 1: 1 to 1: 2, and more preferably 1: 1 to 1: 1.5.
  • the mixing ratio of melamine and phosphoric acid, pyrophosphoric acid, or polyphosphoric acid should be within a range where the flame retardant effect is manifested.
  • the molar ratio of melamine to phosphoric acid, pyrophosphoric acid, or polyphosphoric acid is preferably 1: 1 to 1: 4, more preferably 1: 2 to 1: 3.
  • component (B) examples include melamine cyanurate, melamine phosphate, melamine pyrophosphate, melamine polyphosphate, and a mixture containing two or more of these melamine salts.
  • Component (C) is a reaction product of calcium or magnesium and silicic acid. Specific examples include calcium silicate or magnesium silicate. Of these, calcium silicate is preferred.
  • the mixing ratio of calcium or magnesium and silicic acid is not particularly limited as long as the flame retardant effect is exhibited, but the molar ratio is preferably 1: 5 to 5: 1, more preferably 1: 3 to 3: 1. preferable.
  • -(A) component piperazine phosphate, piperazine pyrophosphate, or piperazine polyphosphate-(B) component: melamine cyanurate-(C) component: calcium silicate
  • Component (D) in the present invention is silicone oil.
  • a silicone oil having a kinematic viscosity at 25 ° C. of 5000 mm 2 / s or less is preferable and a silicone oil of 3000 mm 2 / s or less is more preferable because of good workability such as dispersibility in a resin.
  • Specific examples of preferable silicone oil include methyl hydrogen polysiloxane.
  • the component (E) in the present invention is at least one selected from the group consisting of hydrocarbon lubricants, fatty acid lubricants, aliphatic amide lubricants and ester lubricants.
  • hydrocarbon lubricant include polyethylene wax, paraffin wax, and montanic acid wax. Of these, polyethylene wax is preferred.
  • fatty acid lubricant include stearic acid and stearyl alcohol.
  • aliphatic amide-based lubricant include stearamide, ethylene bis stearamide, and the like.
  • the ester lubricant include stearic acid monoglyceride and stearyl stearate.
  • the flame retardant of the present invention may further contain a metal soap lubricant as an optional component.
  • a metal soap lubricant examples include calcium stearate and magnesium stearate.
  • the flame retardant of this invention contains (B) component 10-1000 mass parts and (C) component 0.1-100 mass parts with respect to 100 mass parts of (A) component.
  • the component (B) is preferably 20 to 500 parts by mass, more preferably 30 to 400 parts by mass with respect to 100 parts by mass of the component (A).
  • the component (C) is preferably 0.5 to 50 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the component (A).
  • the flame retardant of the present invention contains either (D) component or (E) component or both (D) component and (E) component. It is particularly preferable to contain both the component (D) and the component (E).
  • the components (D) and (E) mainly contribute to improving the water resistance of the flame retardant and suppressing the generation of eye stains during molding.
  • the flame retardant of the present invention contains the component (D), the amount thereof is 0.1 to 50 parts by weight, preferably 0.2 to 20 parts by weight, more preferably 0 with respect to 100 parts by weight of the component (A). 3 to 5 parts by mass.
  • the flame retardant of the present invention contains the component (E), the amount thereof is 0.1 to 50 parts by mass, preferably 0.2 to 20 parts by mass, more preferably 0 with respect to 100 parts by mass of the component (A). 3 to 5 parts by mass.
  • the flame retardant of the present invention contains both the (D) component and the (E) component, the amounts of the (D) component and the (E) component each independently include the same amount as described above. Good.
  • the flame retardant of the present invention may be a batch type flame retardant in which all of the above components are mixed in advance, or may be a divided type flame retardant such as two-part or three-part that is mixed at the time of use.
  • the method for preparing the flame retardant of the present invention is not particularly limited, and can be prepared by mixing or stirring after adding necessary components.
  • the mixing means is not particularly limited, and any known mixing means or stirring means can be used as long as it can be sufficiently mixed.
  • the flame retardant of the present invention when preparing the flame retardant of the present invention, first, a mixture of the components (A), (B), and (C) is prepared, and then the (A), (B), and (C It is preferable to add and mix the component (D) and / or the component (E) to the mixture of components. By adding in this order, it can be expected that the effect of improving water resistance and the effect of suppressing eye stains will increase.
  • the flame retardant resin composition of the present invention is a composition containing 100 parts by mass of a synthetic resin and 2 to 250 parts by mass of the flame retardant.
  • the synthetic resin is not particularly limited, but is an ⁇ -olefin polymer such as polypropylene, high density polyethylene, low density polyethylene, linear low density polyethylene, polybutene-1, poly-3-methylpentene, or ethylene-vinyl acetate.
  • ⁇ -olefin polymer such as polypropylene, high density polyethylene, low density polyethylene, linear low density polyethylene, polybutene-1, poly-3-methylpentene, or ethylene-vinyl acetate.
  • Copolymers polyolefins such as ethylene-propylene copolymers, and copolymers comprising two or more monomers constituting them; polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, chlorinated polypropylene, polyvinylidene fluoride, Rubber chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride-acrylic acid ester Polymer, vinyl chloride-maleic acid ester copolymer, Halogen-containing polymers such as vinyl chloride-cyclohexylmaleimide copolymer, petroleum resin, coumarone resin, polystyrene, polyvinyl acetate, acrylic resin, styrene and / or ⁇ -methylstyrene, and other monomers (eg
  • Polyvinyl resins linear polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as polyphenylene oxide, polycaprolactam and polyhexamethylene adipamide; polycarbonates, polycar Thermoplastic resins such as Nate / ABS resin, branched polycarbonate, polyacetal, polyphenylene sulfide, polyurethane, and fiber-based resin, and blends thereof, and heat such as phenol resin, urea resin, melamine resin, epoxy resin, and unsaturated polyester resin A curable resin is mentioned. Among these, a polyolefin resin is particularly preferable, and a polypropylene resin or a polyethylene resin is more preferable.
  • the amount of the flame retardant is 2 to 250 parts by mass with respect to 100 parts by mass of the synthetic resin.
  • the amount is preferably 10 to 150 parts by weight, more preferably 15 to 100 parts by weight with respect to 100 parts by weight of the synthetic resin.
  • the flame retardant resin composition of the present invention further contains additives such as phenolic antioxidants, phosphorus antioxidants, thioether antioxidants, ultraviolet absorbers, hindered amine light stabilizers, and the like as necessary. But you can. These additives can also stabilize the flame retardant resin composition.
  • the phenolic antioxidant is not particularly limited.
  • the phosphorus-based antioxidant is not particularly limited.
  • trisnonylphenyl phosphite tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio)- 5-methylphenyl] phosphite
  • tris (2,4-di-tert-butylphenyl) phosphite tridecyl phosphite
  • octyl diphenyl phosphite di (decyl) monophenyl phosphite
  • di (tridecyl) pentaerythritol di Phosphite di (nonylphenyl) pentaerythritol diphosphite
  • bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite bis (2,6-di-tert-butyl-4-methylphenyl) Pent
  • the thioether-based antioxidant is not particularly limited.
  • dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiodipropionate, pentaerythritol tetrakis ( 3-lauryl thiopropionate).
  • the flame retardant resin composition of the present invention contains the thioether-based antioxidant, 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass is used with respect to 100 parts by mass of the resin. .
  • the ultraviolet absorber is not particularly limited.
  • the hindered amine light stabilizer is not particularly limited.
  • the flame retardant resin composition of the present invention may further include a nucleating agent such as aluminum p-tert-butylbenzoate, an aromatic phosphate metal salt, dibenzylidene sorbitol, an antistatic agent, a metal, if necessary. Soaps, hydrotalcites, triazine ring-containing compounds, fillers, pigments, lubricants, foaming agents and the like may be included.
  • a nucleating agent such as aluminum p-tert-butylbenzoate, an aromatic phosphate metal salt, dibenzylidene sorbitol, an antistatic agent, a metal, if necessary.
  • Soaps, hydrotalcites, triazine ring-containing compounds, fillers, pigments, lubricants, foaming agents and the like may be included.
  • a molded body can be produced from the flame retardant resin composition of the present invention by a molding method such as ordinary injection molding.
  • the shape of the molded body is not limited, and examples thereof include a power plug, a connector, a sleeve, a box, a tape base material, a tube, a sheet, and a film.
  • injection molding is possible at a cylinder temperature of about 190 ° C. and a head temperature of about 190 ° C.
  • the injection molding apparatus can be molded by using an injection molding machine used for molding a normal PVC resin or the like.
  • ⁇ UL-94 test> The flame retardancy test was performed based on UL-94 (vertical combustion test method) in the UL standards. Keep the test piece 127mm long, 12.7mm wide and 1.6mm thick vertically, burn the fire of the burner at the lower end for 10 seconds, remove the flame, and let the time when the fire ignited the test piece disappears. It was measured. Next, at the same time when the fire was extinguished, the second flame contact was performed for 10 seconds, and the time until the fire was ignited was measured in the same manner as the first time. Moreover, it was also evaluated at the same time whether or not the cotton under the test piece was ignited by the fire type falling from the test piece.
  • ⁇ Oxygen index test (see JIS K7291)> A test piece having a length of 125 mm, a width of 6 mm, and a thickness of 3 mm was kept vertical, and a burner was ignited at the upper end. When the upper end burned in the form of a candle, the flame was removed and immediately the measurement of the burning time and burning length was started. The minimum oxygen concentration (LI: Limiting Oxygen Index) required for the combustion time to continue for 3 minutes or longer or for the combustion length after flame to continue for 50 mm or longer was determined.
  • LI Limiting Oxygen Index
  • the flame-retardant synthetic resin composition of the present invention was prepared by extrusion using a plastmill twin screw extruder at a screw rotation speed of 60 rpm, 170 ° C., and a discharge rate of 20 kg / hr.
  • the amount of eye mist generated at the time of preparation was collected, and the amount of eye mist generated per 10 minutes (mg / 10 minutes) was determined by measuring the mass thereof. It is judged that the processing stability is good for the case where the amount of eye stain is less than 20 mg / 10 minutes.
  • Example 1 ⁇ Preparation of flame retardant> Superimpose 50 parts by mass of piperazine pyrophosphate (component (A)), 17 parts by mass of melamine cyanurate (component (B): MC-2010N manufactured by Sakai Chemical Industry Co., Ltd.) and 1 part by mass of calcium silicate (component (C)) The mixture was placed in a mixer (manufactured by Kawada Seisakusho Co., Ltd .: SMG-300) and mixed by stirring at 800 rpm for 10 minutes.
  • a mixer manufactured by Kawada Seisakusho Co., Ltd .: SMG-300
  • methyl hydrogen polysiloxane component (D): manufactured by Shin-Etsu Chemical Co., Ltd., product name KF-99
  • component (D) manufactured by Shin-Etsu Chemical Co., Ltd., product name KF-99
  • component (E) manufactured by Yashara Chemical Co., Ltd.: Neowax ACL
  • component (E) manufactured by Yashara Chemical Co., Ltd .: Neowax ACL
  • ⁇ Creation of flame retardant synthetic resin composition 100 parts by mass of ethylene ethyl acrylate resin (NUC-6510 manufactured by Dow Chemical Company, grade for extrusion molding) and 1 part by mass of calcium stearate (SC-P manufactured by Sakai Chemical Industry Co., Ltd.) as a lubricant are mixed as described above.
  • the obtained flame retardant powder was mixed to prepare an ethylene ethyl acrylate resin composition.
  • the obtained ethylene ethyl acrylate resin composition was kneaded at 130 to 150 ° C. using a roll (8-inch electric heating roll manufactured by CONPON).
  • the obtained kneaded material was pelletized using a pulverizer (DAS-14 manufactured by Daiko Seiki Co., Ltd.). The pellets were injection molded at 190 ° C. to obtain test pieces having a thickness of 1.6 mm and 3.0 mm. Using the obtained test piece, a flame retardancy test based on the above procedure was performed. The results are shown
  • Example 2 Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 1 except that the amount of piperazine pyrophosphate was 34 parts by mass and the amount of melamine cyanurate was 33 parts by mass. The flame retardant test based on The results are shown in Table 1.
  • Example 3 Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 1 except that the amount of piperazine pyrophosphate was 17 parts by mass and the amount of melamine cyanurate was 50 parts by mass. The flame retardant test based on The results are shown in Table 1.
  • Example 4 A test piece having a thickness of 1.6 mm and 3.0 mm was prepared in the same manner as in Example 1 except that 50 parts by mass of piperazine polyphosphate was used instead of piperazine pyrophosphate, and flame retardancy in accordance with the above procedure. A test was conducted. The results are shown in Table 1.
  • Example 5 Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 1 except that 17 parts by mass of melamine polyphosphate (MPP-A manufactured by Sanwa Chemical Co., Ltd.) was used instead of melamine cyanurate. A flame retardant test was conducted according to the above procedure. The results are shown in Table 1.
  • Example 6 Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 1 except that 1 part by mass of magnesium silicate (PH talc manufactured by Takehara Chemical Industry Co., Ltd.) was used instead of calcium silicate. And the flame retardance test based on the said procedure was done. The results are shown in Table 1.
  • Example 7 Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 1 except that the amount of melamine cyanurate was 11 parts by mass and the amount of calcium silicate was 7 parts by mass. The flame retardant test based on The results are shown in Table 1.
  • Example 8 Except not adding polyethylene wax, the test piece of thickness 1.6mm and 3.0mm was created by the method similar to Example 1, and the flame retardance test based on the said procedure was done. The results are shown in Table 1.
  • Example 9 Except not adding methyl hydrogen polysiloxane, the test piece of thickness 1.6mm and 3.0mm was created by the method similar to Example 1, and the flame retardance test based on the said procedure was done. The results are shown in Table 1.
  • a flame retardant powder is obtained by mixing 67 parts by mass of piperazine pyrophosphate, 1 part by mass of calcium silicate, 0.5 parts by mass of methyl hydrogen polysiloxane, and 0.4 parts by mass of polyethylene wax with a super mixer. It was. Next, 100 parts by mass of ethylene ethyl acrylate resin (NUC-6510 manufactured by Dow Chemical Company, grade for extrusion molding), 1 part by mass of calcium stearate (SC-P manufactured by Sakai Chemical Industry Co., Ltd.) as a lubricant, An ethylene ethyl acrylate resin composition was prepared by mixing with a powder of a flame retardant. Thereafter, test pieces having thicknesses of 1.6 mm and 3.0 mm were obtained in the same manner as in Example 1. Using the obtained test piece, a flame retardancy test based on the above procedure was performed. The results are shown in Table 2.
  • Comparative Example 2 Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Comparative Example 1 except that 67 parts by mass of melamine cyanurate was used instead of 67 parts by mass of piperazine pyrophosphate, and the above procedure was followed. A flame retardancy test was conducted. The results are shown in Table 2.
  • Example 3 Except not adding calcium silicate, the test piece of thickness 1.6mm and 3.0mm was created by the method similar to Example 1, and the flame retardance test based on the said procedure was done. The results are shown in Table 2.
  • Example 4 A test piece having a thickness of 1.6 mm and 3.0 mm was prepared in the same manner as in Example 1 except that methylhydrogenpolysiloxane and polyethylene wax were not added, and a flame retardance test was performed in accordance with the above procedure. . The results are shown in Table 2.
  • Example 10 100 parts by mass of polyethylene resin (manufactured by Nippon Polyethylene Co., Ltd .: F30FG, film grade), 1 part by mass of calcium stearate (manufactured by Sakai Chemical Industry Co., Ltd .: SC-P) as a lubricant, and the flame retardant prepared in Example 1
  • the powder was mixed with a resin composition to prepare a resin composition.
  • the obtained resin composition was kneaded at 130 to 200 ° C. using a roll (manufactured by CONPON: 8-inch electric heating roll).
  • the obtained kneaded material was pelletized using a pulverizer (DAS-14 manufactured by Daiko Seiki Co., Ltd.).
  • the pellets were injection molded at 190 ° C. to obtain test pieces having a thickness of 1.6 mm and 3.0 mm. Using the obtained test piece, a flame retardancy test based on the above procedure was performed. The results are shown in Table 3.
  • Example 11 Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 10 except that 100 parts by mass of polypropylene resin (manufactured by Prime Polymer Co., Ltd .: F113A, film grade) was used instead of polyethylene resin. A flame retardancy test was conducted in accordance with the above procedure. The results are shown in Table 3.
  • Example 12 Prepared in Example 1 with 100 parts by mass of ABS resin (manufactured by Nippon A & L Co., Ltd .: UT-61, grade for injection molding), 1 part by mass of calcium stearate (manufactured by Sakai Chemical Industry Co., Ltd .: SC-P) as a lubricant
  • the resin composition was prepared by mixing with the flame retardant powder. Next, the mixture was kneaded at 180 to 250 ° C. using a twin-screw extruder (TEX44 ⁇ II manufactured by Nippon Steel Co., Ltd.) to prepare pellets. The pellets were injection molded at 190 ° C. to obtain test pieces having a thickness of 1.6 mm and 3.0 mm. Using the obtained test piece, a flame retardancy test based on the above procedure was performed. The results are shown in Table 3.
  • Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 10 except that 50 parts by mass of piperazine pyrophosphate and 67 parts by mass of piperazine pyrophosphate were used instead of 17 parts by mass of melamine cyanurate.
  • a flame retardant test was conducted according to the above procedure. The results are shown in Table 4.
  • Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 10 except that 50 parts by mass of piperazine pyrophosphate and 67 parts by mass of melamine cyanurate were used instead of 17 parts by mass of melamine cyanurate. And the flame retardance test based on the said procedure was done. The results are shown in Table 4.
  • Example 8 Except not including calcium silicate, test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 10, and a flame retardancy test in accordance with the above procedure was performed. The results are shown in Table 4.
  • Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 10 except that methyl hydrogen polysiloxane and polyethylene wax were not included, and a flame retardancy test in accordance with the above procedure was performed. The results are shown in Table 4.
  • Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 11, except that 50 parts by mass of piperazine pyrophosphate and 67 parts by mass of piperazine pyrophosphate were used instead of 17 parts by mass of melamine cyanurate. And the flame retardance test based on the said procedure was done. The results are shown in Table 4.
  • Example 11 A thickness of 1.6 mm and 3 mm in the same manner as in Example 11 except that 50 parts by mass of piperazine pyrophosphate and 67 parts by mass of melamine cyanurate are used instead of 17 parts by mass of melamine cyanurate and calcium silicate is not used. A test piece of 0.0 mm was prepared and a flame retardancy test was performed in accordance with the above procedure. The results are shown in Table 4.
  • Example 12 A test piece having a thickness of 1.6 mm and 3.0 mm was prepared in the same manner as in Example 11 except that calcium silicate was not included, and a flame retardance test in accordance with the above procedure was performed. The results are shown in Table 4.
  • Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 11 except that methyl hydrogen polysiloxane and polyethylene wax were not included, and a flame retardancy test in accordance with the above procedure was performed. The results are shown in Table 4.
  • Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 12 except that 50 parts by mass of piperazine pyrophosphate and 67 parts by mass of piperazine pyrophosphate were used instead of 17 parts by mass of melamine cyanurate. And the flame retardance test based on the said procedure was done. The results are shown in Table 4.
  • Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 12, except that 50 parts by mass of piperazine pyrophosphate and 67 parts by mass of melamine cyanurate were used instead of 17 parts by mass of melamine cyanurate. And the flame retardance test based on the said procedure was done. The results are shown in Table 4.
  • Example 16 Except not including calcium silicate, test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 12, and a flame retardance test was performed in accordance with the above procedure. The results are shown in Table 4.
  • Test pieces having a thickness of 1.6 mm and 3.0 mm were prepared in the same manner as in Example 12 except that methyl hydrogen polysiloxane and polyethylene wax were not included, and a flame retardancy test in accordance with the above procedure was performed. The results are shown in Table 4.
  • Example 13 50 parts by mass of ethylene ethyl acrylate resin (NUC-6510 manufactured by Dow Chemical Company, grade for extrusion molding), 50 parts by mass of polyethylene resin (manufactured by Nippon Polyethylene Co., Ltd .: F30FG film grade), and calcium stearate ( ⁇ )
  • a resin composition was prepared by mixing 1 part by mass of SC-P) manufactured by Chemical Industry Co., Ltd. and the flame retardant powder prepared in Example 1.
  • the obtained resin composition was kneaded at 130 to 200 ° C. using a roll (manufactured by CONPON: 8-inch electric heating roll).
  • the obtained kneaded material was pelletized using a pulverizer (DAS-14 manufactured by Daiko Seiki Co., Ltd.).
  • the pellet was injection molded at 190 ° C. to obtain a test piece having a thickness of 1 mm. Using the obtained test piece, a tensile property test based on the above procedure was performed. The results are shown in Table 5.
  • Example 14 A test piece having a thickness of 1 mm was prepared in the same manner as in Example 13 except that the amount of piperazine pyrophosphate was changed to 34 parts by mass and the amount of melamine cyanurate was changed to 33 parts by mass. A test was conducted. The results are shown in Table 5.
  • Example 15 A test piece having a thickness of 1 mm was prepared in the same manner as in Example 13 except that the amount of piperazine pyrophosphate was changed to 17 parts by mass and the amount of melamine cyanurate was changed to 50 parts by mass. A test was conducted. The results are shown in Table 5.
  • Example 18 A test piece having a thickness of 1 mm was prepared in the same manner as in Example 13 except that methyl hydrogen polysiloxane and polyethylene wax were not included, and a tensile property test in accordance with the above procedure was performed. The results are shown in Table 5.
  • ethylene ethyl acrylate resin NUC-6510 manufactured by Dow Chemical Company, grade for extrusion molding
  • polyethylene resin manufactured by Nippon Polyethylene Co., Ltd .: F30FG film grade
  • calcium stearate calcium stearate as a lubricant
  • An ethylene ethyl acrylate resin composition was prepared by mixing 1 part by mass (manufactured by Sakai Chemical Industry Co., Ltd .: SC-P) and the above flame retardant powder. Thereafter, a test piece having a thickness of 1 mm was obtained in the same manner as in Example 13. Using the obtained test piece, a tensile property test based on the above procedure was performed. The results are shown in Table 5.
  • Example 16 Superimpose 50 parts by mass of piperazine pyrophosphate (component (A)), 17 parts by mass of melamine cyanurate (component (B): MC-2010N manufactured by Sakai Chemical Industry Co., Ltd.) and 1 part by mass of calcium silicate (component (C)) The mixture was placed in a mixer (manufactured by Kawada Manufacturing Co., Ltd .: SMG-300) and stirred at 800 rpm for 10 minutes.
  • a mixer manufactured by Kawada Manufacturing Co., Ltd .: SMG-300
  • methyl hydrogen polysiloxane component (D): manufactured by Shin-Etsu Chemical Co., Ltd., product name KF-99
  • component (D) manufactured by Shin-Etsu Chemical Co., Ltd., product name KF-99
  • component (E) manufactured by Yashara Chemical Co., Ltd.: Neowax ACL
  • component (E) manufactured by Yashara Chemical Co., Ltd .: Neowax ACL
  • ethylene ethyl acrylate resin NUC-6510 manufactured by Dow Chemical Company, grade for extrusion molding
  • calcium stearate manufactured by Sakai Chemical Industry Co., Ltd .: SC-P
  • the resin composition was prepared by mixing with the flame retardant powder prepared as described above.
  • kneading was performed at 130 to 200 ° C. using a roll (manufactured by CONPON: 8-inch electric heating roll).
  • the obtained kneaded material was pelletized using a pulverizer (DAS-14 manufactured by Daiko Seiki Co., Ltd.).
  • DAS-14 manufactured by Daiko Seiki Co., Ltd.
  • test piece having a thickness of 1.6 mm.
  • a water resistance test based on the above procedure was performed using the obtained test piece.
  • the results are shown in Table 6.
  • the pellets were extruded using a plastmill twin screw extruder at a screw rotation speed of 60 rpm, 170 ° C., and a discharge rate of 20 kg / hr to prepare a molded body.
  • the eye cracks generated during molding were collected and evaluated for eye cracks (mg / 10 minutes).
  • Example 17 A water resistance test and an eye stain confirmation test were performed in the same manner as in Example 16 except that the amount of piperazine pyrophosphate was changed to 34 parts by mass and the amount of melamine cyanurate was changed to 33 parts by mass. The results are shown in Table 6.
  • Example 18 A water resistance test and an eye spot confirmation test were performed in the same manner as in Example 16 except that the amount of pyroperipheric acid piperazine was changed to 17 parts by mass and the amount of melamine cyanurate was changed to 50 parts by mass. The results are shown in Table 6.
  • Example 19 A water resistance test and an eye spot confirmation test were performed in the same manner as in Example 16 except that polyethylene wax was not included. The results are shown in Table 6.
  • Example 20 A water resistance test and an eye stain confirmation test were conducted in the same manner as in Example 16 except that methylhydrogenpolysiloxane was not included. The results are shown in Table 6.
  • This powder is mixed with 100 parts by mass of ethylene ethyl acrylate resin (NUC-6510 manufactured by Dow Chemical Co., Ltd., extrusion molding grade) and 1 part by mass of calcium stearate (manufactured by Sakai Chemical Industry Co., Ltd .: SC-P) as a lubricant.
  • a resin composition was prepared. Thereafter, a water resistance test and an eye stain confirmation test were performed in the same manner as in Example 16 in accordance with the above procedure. The results are shown in Table 6.
  • glycerin monostearate component (E): manufactured by Riken Vitamin Co., Ltd .: Riquemar S-100
  • component (E): manufactured by Riken Vitamin Co., Ltd .: Riquemar S-100 was added and stirred at 800 rpm for 20 minutes to obtain a flame retardant powder.
  • This powder is mixed with 100 parts by mass of ethylene ethyl acrylate resin (NUC-6510 manufactured by Dow Chemical Co., Ltd., extrusion molding grade) and 1 part by mass of calcium stearate (manufactured by Sakai Chemical Industry Co., Ltd .: SC-P) as a lubricant.
  • a resin composition was prepared. Thereafter, a water resistance test and an eye stain confirmation test were performed in the same manner as in Example 16 in accordance with the above procedure. The results are shown in Table 6.
  • the flame retardant of the present invention contains all the components (A) to (E), so that when blended in the resin composition, the flame retardant is more flame retardant than the conventional product without impairing the physical properties of the resin composition. It has been clarified that a resin composition having a high level of water resistance and water resistance and having a small amount of discoloration can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の目的は、有害性が実質的に無いか充分に低く、適量で優れた難燃性を発揮し、取扱いやすい難燃剤、および優れた難燃性、物性、耐水性、加工安定性を備える難燃性樹脂組成物を提供することにある。本発明の難燃剤は、所定量の以下の成分:(A)ピペラジンと、リン酸、ピロリン酸、及びポリリン酸から選択される1種のリン化合物との反応生成物と、(B)メラミンと、シアヌール酸、リン酸、ピロリン酸、及びポリリン酸から選択される多価酸との反応生成物と、(C)カルシウム又はマグネシウムと、ケイ酸との反応生成物と、下記(D)及び(E)から選択される少なくとも1種:(D)シリコーンオイル;及び(E)炭化水素系滑剤、脂肪酸系滑剤、脂肪族アマイド系滑剤及びエステル系滑剤からなる群から選択される少なくとも1種;を含有する。本発明の難燃性樹脂組成物は、該難燃剤及び合成樹脂を含有する。

Description

難燃剤及び難燃性樹脂組成物
本発明は、難燃剤及び難燃性樹脂組成物に関する。
従来、合成樹脂はその優れた化学的・物理的特性を活かして、種々の分野、例えば建築材、日用品、自動車部品、包装用資材、農業用資材、家電製品等において幅広く用いられている。但し合成樹脂の多くは可燃性であり、実用的に使用するために樹脂の難燃化は必須であった。
樹脂の難燃化は、従来、難燃剤を合成樹脂に配合することにより行われている。樹脂用難燃剤としては、一般にハロゲン系難燃剤や、水酸化マグネシウム等の金属水酸化物系難燃剤、難燃助剤である三酸化アンチモン等が用いられてきた。しかしながらハロゲン系難燃剤は、難燃化効果には優れるものの、燃焼時にハロゲン化水素ガスやダイオキシン類等の有害物質を発生するという問題があった。また金属水酸化物は、多量に配合しないと充分な難燃性が得られず、その結果樹脂の加工性や成型品の物性を低下させるという問題があった。また三酸化アンチモンは、その毒性が問題となっていた。
このような状況の下、従来の難燃剤の代替品として、いくつかの難燃剤が提案されてきた。例えばこれまでに、赤リンを使用したもの(特許文献1)、ポリリン酸アンモニウムを使用したもの(特許文献2)、縮合リン酸エステルを使用したもの(特許文献3)、メラミンシアヌレートを使用したもの(特許文献4、5)が提案されている。また特許文献6には、リン酸ピペラジン、ピロリン酸ピペラジン、ポリリン酸ピペラジンおよびこれらの2以上の混合物からなる群から選択される、ピペラジンと無機リン化合物の塩と、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、及びこれらの2以上の混合物からなる群から選択される、メラミンと無機リン化合物の塩とを含む難燃剤が開示されている。しかしながら、これらの難燃剤の難燃化効果では実用上不十分な場合があり、より高い難燃性を付与する難燃剤が求められていた。
また特許文献7には、ピペラジンと無機リン酸の塩と、メラミンと無機リン化合物の塩とからなる難燃剤組成物に、シリコーンオイルと、高級脂肪族カルボン酸由来のモノエステル化合物を配合した難燃性組成物が開示されている。
また、下記特許文献8には、樹脂に対して、メラミンピロホスフェート、ピロリン酸ピペラジン及び二酸化ケイ素を配合した難燃性樹脂組成物が開示されている。該難燃性樹脂組成物においては、難燃効果は向上したものの、加工安定性(目ヤニの発生など)には問題があった。
特開平06-102442号公報 特開2003-096247号公報 特開2006-016587号公報 特開2003-226798号公報 特開2000-178386号公報 特開2010-209239号公報 特開2009-120717号公報 米国特許第45899375号明細書
本発明は有害性が実質的に無いか充分に低く、適量で優れた難燃性を発揮し、取扱いやすい難燃剤、および優れた難燃性、物性、耐水性、加工安定性を備える難燃性樹脂組成物を提供することを目的とする。
本発明の第1の態様は、
(A)100質量部の、ピペラジンと、リン酸、ピロリン酸、及びポリリン酸から選択される1種のリン化合物との反応生成物と、
(B)10~1000質量部の、メラミンと、シアヌール酸、リン酸、ピロリン酸、及びポリリン酸から選択される多価酸との反応生成物と、
(C)0.1~100質量部の、カルシウム又はマグネシウムと、ケイ酸との反応生成物と、
下記(D)及び(E)から選択される少なくとも1種:
(D)0.1~50質量部のシリコーンオイル;及び
(E)0.1~50質量部の炭化水素系滑剤、脂肪酸系滑剤、脂肪族アマイド系滑剤及びエステル系滑剤からなる群から選択される少なくとも1種;
を含有する難燃剤に関する。
本発明の第2の態様は、100質量部の合成樹脂と、2~250質量部の上記難燃剤と
を含有する難燃性樹脂組成物に関する。
上記(A)~(C)の3成分を組み合わせた難燃剤を樹脂に配合することにより、少量でも高い難燃性を付与することができる。
さらに上記(A)~(C)の3成分に加えて上記難燃剤(D)成分と(E)成分を含有することで、耐水性に優れ、分散性が向上した難燃剤を得ることができる。この難燃剤を樹脂に配合することにより難燃性、物性、耐水性に優れた樹脂組成物を得ることができる。また成形加工時の目ヤニの発生を抑制することができる、加工安定性に優れた難燃性樹脂組成物を提供することができる。
以下、本発明を詳細に説明する。
(1)(A)成分について
本発明における(A)成分は、ピペラジンと、リン酸、ピロリン酸及びポリリン酸から選択される1種のリン化合物との反応生成物である。
ピペラジンとリン化合物の混合比((A)成分の組成比)は、難燃化効果が発現する範囲であれば特に制限されないが、ピペラジンと、リン酸、ピロリン酸、又はポリリン酸のモル比が1:1~1:4が好ましく、1:2~1:3がより好ましい。
(A)成分の具体例としては、リン酸ピペラジン、ピロリン酸ピペラジン、ポリリン酸ピペラジン、及びこれらのピペリジン塩を2種以上含む混合物などが挙げられる。
(2)(B)成分について
本発明における(B)成分は、メラミンと、シアヌール酸、リン酸、ピロリン酸、及びポリリン酸から選択される多価酸との反応生成物である。
(B)成分がメラミンとシアヌール酸の反応生成物の場合、メラミンとシアヌール酸の混合比は、難燃化効果が発現する範囲であれば特に制限されないが、メラミンと、シアヌール酸のモル比が1:1~1:2が好ましく、1:1~1:1.5がより好ましい。
(B)成分がメラミンとリン酸、ピロリン酸、又はポリリン酸の反応生成物の場合、メラミンと、リン酸、ピロリン酸、又はポリリン酸の混合比は、難燃化効果が発現する範囲であれば特に制限されないが、メラミンと、リン酸、ピロリン酸、又はポリリン酸のモル比が1:1~1:4が好ましく、1:2~1:3がより好ましい。
(B)成分の具体例としては、シアヌール酸メラミン、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、及びこれらのメラミン塩を2種以上含む混合物などが挙げられる。
(3)(C)成分について
本発明における(C)成分は、カルシウム又はマグネシウムと、ケイ酸との反応生成物である。具体例としては、ケイ酸カルシウム又はケイ酸マグネシウムが挙げられる。中でもケイ酸カルシウムが好ましい。
カルシウム又はマグネシウムと、ケイ酸の混合比は、難燃化効果が発現する範囲であれば特に制限されないが、モル比で1:5~5:1が好ましく、1:3~3:1がより好ましい。
上記(A)~(C)成分のうち、好ましい組み合わせとしては次のものが挙げられる。
・(A)成分:リン酸ピペラジン、ピロリン酸ピペラジン、又はポリリン酸ピペラジン
・(B)成分:メラミンシアヌレート
・(C)成分:ケイ酸カルシウム
(4)(D)成分について
本発明における(D)成分はシリコーンオイルである。中でも樹脂への分散性等の作業性が良いことから、25℃での動粘度が5000mm/s以下のシリコーンオイルが好ましく、3000mm/s以下のシリコーンオイルがより好ましい。好ましいシリコーンオイルの具体例としては、メチルハイドロジェンポリシロキサンが挙げられる。
(5)(E)成分について
本発明における(E)成分は、炭化水素系滑剤、脂肪酸系滑剤、脂肪族アマイド系滑剤及びエステル系滑剤からなる群から選択される少なくとも1種である。上記炭化水素系滑剤としては、ポリエチレンワックス、パラフィンワックス、モンタン酸ワックスが挙げられる。中でもポリエチレンワックスが好ましい。上記脂肪酸系滑剤としてはステアリン酸、ステアリルアルコールなどが挙げられる。上記脂肪族アマイド系滑剤としてはステアリン酸アミド、エチレンビスステアリン酸アミドなどが挙げられる。上記エステル系滑剤としてはステアリン酸モノグリセライドやステアリルステアレートなどが挙げられる。
本発明の難燃剤には、任意成分として、さらに金属石鹸系滑剤を含んでいてもよい。上記金属石鹸系滑剤としては、例えば、ステアリン酸カルシウムやステアリン酸マグネシウムなどが挙げられる。
・難燃剤について
本発明の難燃剤は、(A)成分100質量部に対し、(B)成分10~1000質量部と(C)成分0.1~100質量部とを含む。(B)成分は、(A)成分100質量部に対し、好ましくは、20~500質量部、より好ましくは30~400質量部である。また(C)成分は、(A)成分100質量部に対し、好ましくは、0.5~50質量部、より好ましくは1~20質量部である。
本発明の難燃剤は、上記(A)~(C)成分に加えて、(D)成分と(E)成分のうちいずれか、又は(D)成分と(E)成分の両方を含む。特に(D)成分と(E)成分の両方を含有するのが好ましい。(D)及び(E)成分は難燃剤の耐水性を向上させ、成形時の目ヤニの発生を抑制するのに主に寄与する。
本発明の難燃剤が(D)成分を含む場合、その量は、(A)成分100質量部に対し、0.1~50質量部、好ましくは0.2~20質量部、より好ましくは0.3~5質量部である。本発明の難燃剤が(E)成分を含む場合、その量は、(A)成分100質量部に対し、0.1~50質量部、好ましくは0.2~20質量部、より好ましくは0.3~5質量部である。本発明の難燃剤が(D)成分と(E)成分の両方を含む場合においても、(D)成分と(E)成分の量は、それぞれ独立に、上述した量と同様の量を含んでよい。
本発明の難燃剤は、上記成分を全て予め混合した一括型難燃剤でもよく、使用時に混合する2分割又は3分割等の分割型難燃剤でもよい。
本発明の難燃剤を調製する方法は特に限定されず、必要な成分を添加後、混合又は撹拌することにより調製することができる。混合手段としては特に限定されず、充分に混合できるものである限りどのような公知の混合手段や撹拌手段をも使用することができる。
特に限定されないが、本発明の難燃剤を調製する際には、まず(A)、(B)、及び(C)成分の混合物を調製した後に、その(A)、(B)、及び(C)成分の混合物に、(D)成分及び/又は(E)成分を添加し、混合するのが好ましい。この順で添加することにより、より耐水性を向上する効果や目ヤニを抑制する効果が高まることが期待できる。中でも、上記(D)及び(E)の両方の成分を含有する場合であって、まず(A)、(B)、及び(C)成分の混合物を調製し、次にその(A)、(B)、及び(C)成分の混合物に(D)成分を添加して混合し、さらに前記(E)成分を添加して混合することにより難燃剤を得るのが好ましい。このように調製した場合、他の添加順で調製した場合と比較して、最も高い耐水性向上効果や目ヤニの抑制効果が期待できる。
・難燃性樹脂組成物について
本発明の難燃性樹脂組成物は、100質量部の合成樹脂と、2~250質量部の上記難燃剤とを含有する組成物である。
上記合成樹脂としては、特に限定されないが、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、ポリブテン-1、ポリ-3-メチルペンテン等のα-オレフィン重合体、又はエチレン-酢酸ビニル共重合体、エチレン-プロピレン共重合体等のポリオレフィン、及びこれらを構成する2種以上のモノマーからなる共重合体;ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等の含ハロゲン重合体、石油樹脂、クマロン樹脂、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、スチレン及び/又はα-メチルスチレンと、他の単量体(例えば、無水マレイン酸、フェニルマレイミド、メタクリル酸メチル、ブタジエン、アクリロニトリル等)との共重合体(例えば、AS樹脂、ABS樹脂、MBS樹脂、耐熱ABS樹脂等)、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラールなどのポリビニル系樹脂、ポリエチレンテレフタレート及びポリブチレンテレフタレート等の直鎖ポリエステル、ポリフェニレンオキサイド、ポリカプロラクタム及びポリヘキサメチレンアジパミド等のポリアミド;ポリカーボネート、ポリカーボネート/ABS樹脂、分岐ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂等の熱可塑性樹脂及びこれらのブレンド物、並びにフェノール樹脂、ウレア樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂が挙げられる。中でもポリオレフィン樹脂が特に好ましく、ポリプロピレン樹脂又はポリエチレン樹脂がさらに好ましい。
上記難燃剤の量は、合成樹脂100質量部に対して、2~250質量部である。好ましくは、合成樹脂100質量部に対して、10~150質量部であり、より好ましくは15~100質量部である。
本発明の難燃性樹脂組成物は、必要に応じて、さらにフェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、紫外線吸収剤、ヒンダードアミン系光安定剤等の添加剤を含んでもよい。これらの添加剤により、難燃性樹脂組成物を安定化することもできる。
上記フェノール系酸化防止剤としては、特に限定されないが、例えば、2,6-ジ-tert-ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(6-tert-ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6―ジ-tert-ブチルフェノール)、2,2’-エチリデンビス(4-sec-ブチル-6-tert-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-tert-ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-tert-ブチル-4-メチル-6-(2-アクリロイルオキシ-3-tert-ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸メチル〕メタン、チオジエチレングリコールビス〔(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-tert-ブチル-4-メチル-6-(2-ヒドロキシ-3-tert-ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。本発明の難燃性樹脂組成物が上記フェノール系酸化防止剤を含む場合、樹脂100質量部に対して、0.001~10質量部、より好ましくは、0.01~5質量部が用いられる。
上記リン系酸化防止剤としては、特に限定されないが、例えば、トリスノニルフェニルホスファイト、トリス〔2-tert-ブチル-4-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-tert-ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-tert-ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-tert-ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ-tert-ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス-tert-ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ-tert-ブチルフェノールのホスファイト等が挙げられる。本発明の難燃性樹脂組成物が上記リン系酸化防止剤を含む場合、樹脂100質量部に対して、0.001~10質量部、より好ましくは、0.01~5質量部が用いられる。
上記チオエーテル系酸化防止剤としては、特に限定されないが、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、及びチオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類や、ペンタエリスリトール・テトラキス(3-ラウリルチオプロピオネート)等が挙げられる。本発明の難燃性樹脂組成物が上記チオエーテル系酸化防止剤を含む場合、樹脂100質量部に対して、0.001~10質量部、より好ましくは、0.01~5質量部が用いられる。
上記紫外線吸収剤としては、特に限定されないが、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-tert-オクチル-6-(ベンゾトリアゾリル)フェノール)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-カルボキシフェニル)ベンゾトリアゾール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類、フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート、2,4-ジ-tert-アミルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート類、2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類、エチル-α-シアノ-β,β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類、2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジ-tert-ブチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジ-tert-ブチルフェニル)-s-トリアジン等のトリアリールトリアジン類が挙げられる。本発明の難燃性樹脂組成物が上記紫外線吸収剤を含む場合、樹脂100質量部に対して、0.001~30質量部、より好ましくは、0.01~10質量部が用いられる。
上記ヒンダードアミン系光安定剤としては、特に限定されないが、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-tert-オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン等のヒンダードアミン化合物が挙げられる。本発明の難燃性樹脂組成物が上記ヒンダードアミン系光安定剤を含む場合、樹脂100質量部に対して、0.001~30質量部、より好ましくは、0.01~10質量部が用いられる。
また本発明の難燃性樹脂組成物は、さらに、必要に応じてp-tert-ブチル安息香酸アルミニウム、芳香族リン酸エステル金属塩、ジベンジリデンソルビトール類等の造核剤、帯電防止剤、金属石鹸、ハイドロタルサイト類、トリアジン環含有化合物、充填剤、顔料、滑剤、発泡剤等を含んでいてもよい。
本発明の難燃性樹脂組成物から、通常の射出成形等の成形方法により、成形体を製造することができる。上記成形体としては、その形状は制限されるものではなく、例えば、電源プラグ、コネクター、スリーブ、ボックス、テープ基材、チューブ、シート、フィルム等を挙げることができる。
また、上記の成形体として、例えば電線部品等の射出成形体を得る場合は、シリンダー温度190℃程度、ヘッド温度190℃程度で射出成形可能である。射出成形装置としては通常のPVC樹脂等の成形に用いられている射出成形機を用いることにより、成形可能である。
以下、実施例により本発明を詳細に示す。但し、本発明は以下の実施例により何ら制限されるものではない。なお、表1~6に示す配合量は、すべて質量部基準である。
<UL-94試験>
難燃性試験はUL規格の内、UL-94(垂直燃焼試験法)に基づいて行った。長さ127mm、幅12.7mm、厚さ1.6mmの試験片を垂直に保ち、下端にバーナーの火を10秒間接炎させた後、炎を取り除き、試験片に着火した火が消える時間を測定した。次に、火が消えると同時に2回目の接炎を10秒間行い、1回目と同様にして着火した火が消えるまでの時間を測定した。また、試験片から落下する火種により試験片の下の綿が着火するか否かについても同時に評価した。
1回目及び2回目の燃焼時間、綿着火の有無等から、UL-94規格に従って難燃性評価を行った。難燃性評価はV-0が最高であり、以下、V-1、V-2の順に難燃性は低下する。但し、V-0~V-2のランクの何れにも該当しないものは「燃焼」とする。
<酸素指数試験(JIS K7291参照)>
長さ125mm、幅6mm、厚さ3mmの試験片を垂直に保ち、上端にバーナーの火を着火した。上端がろうそくの炎状に燃えるとき、炎を取り去り、ただちに燃焼時間と燃焼長さの測定を開始した。燃焼時間が3分以上継続するか、あるいは着炎後の燃焼長さが50mm以上燃え続けるのに必要な最低の酸素濃度(L.O.I.:Limiting Oxygen Index)を求めた。
<引張物性試験(JIS K7113参照)>
JIS K7113に準じて、2号形試験片を使用し、引張伸び(%)を測定した。
<耐水性試験>
UL-94試験で作成した試験片を1日デシケーター中で乾燥し、質量を測定した。次に85℃の温水に試験片を1週間浸漬し、取り出した試験片を90℃の乾燥機で1晩乾燥した後に質量を測定した。温水への溶出分を以下の式で求め、耐水性の指標とした。
[(デシケーターから取出した後の質量)-(乾燥機から取出した後の質量)]/(デシケーターから取出した後の質量)×100
一般的に、この計算式から求められる値が10質量%を超えるものについては、耐水性が良くないと判断される。
<目ヤニ確認>
プラストミル2軸押出機を用い、スクリュー回転数60rpm、170℃、吐出量20kg/hrで押出して本発明の難燃性合成樹脂組成物を作成した。作成時に発生した目ヤニを採取し、その質量を測定する事により10分当たり発生した目ヤニ量(mg/10分)を求めることで目ヤニ量の評価を行った。目ヤニ量が20mg/10分より少ないものについては、加工安定性が良いと判断される。
[実施例1]
<難燃剤の調製>
ピロリン酸ピペラジン((A)成分)50質量部、メラミンシアヌレート((B)成分:堺化学工業株式会社製MC-2010N)17質量部、ケイ酸カルシウム((C)成分)1質量部をスーパーミキサー(株式会社川田製作所製:SMG-300)に入れ、800rpmで10分攪拌して混合した。得られた混合物に、次にメチルハイドロジェンポリシロキサン((D)成分:信越化学工業株式会社製、製品名KF-99)0.5質量部を添加して、温度160℃、800rpmで20分攪拌し混合した。次にポリエチレンワックス((E)成分:ヤスハラケミカル株式会社製:ネオワックスACL)0.4質量部を添加し、800rpmで20分間撹拌して混合することにより本発明の難燃剤の粉末を得た。
<難燃性合成樹脂組成物の作成>
エチレンエチルアクリレート樹脂(ダウ・ケミカル社製NUC-6510、押出成型用グレード)100質量部と、滑剤としてのステアリン酸カルシウム(堺化学工業株式会社製SC-P)1質量部と、上記で混合して得られた難燃剤の粉末とを混合してエチレンエチルアクリレート樹脂組成物を調製した。得られたエチレンエチルアクリレート樹脂組成物を、ロール(CONPON社製8インチ電熱ロール)を用いて130~150℃で混練した。得られた混練物を、粉砕機(ダイコー精機株式会社製DAS-14)を用いてペレット化した。該ペレットを使用して190℃で射出成形し、厚さ1.6mm及び3.0mmの試験片を得た。得られた試験片を用い、上記手順に準拠した難燃性試験を行った。その結果を表1に示した。
[実施例2]
ピロリン酸ピペラジンの量を34質量部に、メラミンシアヌレートの量を33質量部にした以外は実施例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表1に示した。
[実施例3]
ピロリン酸ピペラジンの量を17質量部に、メラミンシアヌレートの量を50質量部にした以外は実施例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表1に示した。
[実施例4]
ピロリン酸ピペラジンの代わりに、ポリリン酸ピペラジン50質量部を用いた以外は実施例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表1に示した。
[実施例5]
メラミンシアヌレートの代わりに、ポリリン酸メラミン(株式会社三和ケミカル製MPP-A)17質量部を用いた以外は実施例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表1に示した。
[実施例6]
ケイ酸カルシウムの代わりに、ケイ酸マグネシウム(竹原化学工業株式会社製PHタルク)1質量部を用いた以外は実施例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表1に示した。
[実施例7]
メラミンシアヌレートの量を11質量部に、ケイ酸カルシウムの量を7質量部にした以外は実施例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表1に示す。
[実施例8]
ポリエチレンワックスを添加しないこと以外は実施例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表1に示す。
[実施例9]
メチルハイドロジェンポリシロキサンを添加しないこと以外は実施例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表1に示す。
[比較例1]
ピロリン酸ピペラジン67質量部と、ケイ酸カルシウム1質量部と、メチルハイドロジェンポリシロキサン0.5質量部と、ポリエチレンワックス0.4質量部とを、スーパーミキサーで混合して難燃剤の粉末を得た。次にエチレンエチルアクリレート樹脂(ダウ・ケミカル社製NUC-6510、押出成型用グレード)100質量部と、滑剤としてのステアリン酸カルシウム(堺化学工業株式会社製SC-P)1質量部と、上記の難燃剤の粉末とを混合してエチレンエチルアクリレート樹脂組成物を調製した。以下、実施例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を得た。得られた試験片を用い、上記手順に準拠した難燃性試験を行った。その結果を表2に示す。
[比較例2]
ピロリン酸ピペラジン67質量部の代わりに、メラミンシアヌレート67質量部を用いた以外は比較例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表2に示す。
[比較例3]
ケイ酸カルシウムを添加しないこと以外は実施例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表2に示す。
[比較例4]
メチルハイドロジェンポリシロキサンとポリエチレンワックスを添加しないこと以外は実施例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表2に示す。
[比較例5]
ポリリン酸アンモニウム(株式会社三和ケミカル製MPP-A)67質量部と、メチルハイドロジェンポリシロキサン0.5質量部と、ポリエチレンワックス0.4質量部とを、スーパーミキサーで混合して難燃剤の粉末を得た。次にエチレンエチルアクリレート樹脂(ダウ・ケミカル社製NUC-6510、押出成型用グレード)100質量部と、滑剤としてのステアリン酸カルシウム(堺化学工業株式会社製SC-P)1質量部と、上記の難燃剤の粉末とを混合してエチレンエチルアクリレート樹脂組成物を調製した。
以下、実施例1と同様の方法で厚さ1.6mm及び3.0mmの試験片を得た。得られた試験片を用い、上記手順に準拠した難燃性試験を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
表1から分かるように、ピロリン酸ピペラジン、メラミンシアヌレート、およびケイ酸カルシウムの3種全てを含有し、さらにメチルハイドロジェンポリシロキサン及び/またはポリエチレンワックスで表面処理した難燃剤粉末を用いた樹脂組成物(実施例1~9)においては、いずれもUL-94試験における難燃性の評価が最高のV-0ランクであった。一方、表2のように、ピロリン酸ピペラジン、メラミンシアヌレート、及びケイ酸カルシウムのいずれかを欠く場合(比較例1~3)、メチルハイドロジェンポリシロキサン、ポリエチレンワックスを欠く場合(比較例4)、難燃性はV-1又はV-2ランクにとどまった。また難燃成分としてポリリン酸アンモニウムを用いた場合(比較例5)には、難燃性はV-2ランクにとどまり、またL.O.Iも29.5と低かった。
[実施例10]
ポリエチレン樹脂(日本ポリエチレン株式会社製:F30FG、フィルム用グレード)100質量部と、滑剤としてのステアリン酸カルシウム(堺化学工業株式会社製:SC-P)1質量部と、実施例1で調製した難燃剤の粉末とを混合して樹脂組成物を調製した。得られた樹脂組成物を、ロール(CONPON社製:8インチ電熱ロール)を用いて130~200℃で混練した。得られた混練物を、粉砕機(ダイコー精機株式会社製DAS-14)を用いてペレット化した。該ペレットを使用して190℃で射出成形し、厚さ1.6mm及び3.0mmの試験片を得た。得られた試験片を用い、上記手順に準拠した難燃性試験を行った。その結果を表3に示す。
[実施例11]
ポリエチレン樹脂の代わりにポリプロピレン樹脂(株式会社プライムポリマー製:F113A、フィルム用グレード)100質量部を用いる以外は実施例10と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表3に示す。
[実施例12]
ABS樹脂(日本エイアンドエル株式会社製:UT-61、射出成型用グレード)100質量部と、滑剤としてのステアリン酸カルシウム(堺化学工業株式会社製:SC-P)1質量部と、実施例1で調製した難燃剤の粉末とを混合して樹脂組成物を調製した。次に二軸押出機(株式会社日本製鋼所製TEX44αII)を用いて180~250℃で混練し、ペレットを作成した。該ペレットを使用して190℃で射出成形し、厚さ1.6mm及び3.0mmの試験片を得た。得られた試験片を用い、上記手順に準拠した難燃性試験を行った。その結果を表3に示す。
[比較例6]
ピロリン酸ピペラジン50質量部と、メラミンシアヌレート17質量部の代わりに、ピロリン酸ピペラジン67質量部を用いた以外は実施例10と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表4に示す。
[比較例7]
ピロリン酸ピペラジン50質量部と、メラミンシアヌレート17質量部の代わりにメラミンシアヌレート67質量部を用いた以外は実施例10と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表4に示す。
[比較例8]
ケイ酸カルシウムを含まない以外は実施例10と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表4に示す。
[比較例9]
メチルハイドロジェンポリシロキサンとポリエチレンワックスを含まない以外は実施例10と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表4に示す。
[比較例10]
ピロリン酸ピペラジン50質量部と、メラミンシアヌレート17質量部の代わりにピロリン酸ピペラジン67質量部を用いた以外は実施例11と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表4に示す。
[比較例11]
ピロリン酸ピペラジン50質量部と、メラミンシアヌレート17質量部の代わりにメラミンシアヌレート67質量部を用い、かつケイ酸カルシウムを用いない以外は実施例11と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表4に示す。
[比較例12]
ケイ酸カルシウムを含まない以外は実施例11と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表4に示す。
[比較例13]
メチルハイドロジェンポリシロキサンとポリエチレンワックスを含まない以外は実施例11と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表4に示す。
[比較例14]
ピロリン酸ピペラジン50質量部と、メラミンシアヌレート17質量部の代わりにピロリン酸ピペラジン67質量部を用いた以外は実施例12と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表4に示す。
[比較例15]
ピロリン酸ピペラジン50質量部と、メラミンシアヌレート17質量部の代わりにメラミンシアヌレート67質量部を用いた以外は実施例12と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表4に示す。
[比較例16]
ケイ酸カルシウムを含まない以外は実施例12と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表4に示す。
[比較例17]
メチルハイドロジェンポリシロキサンとポリエチレンワックスを含まない以外は実施例12と同様の方法で厚さ1.6mm及び3.0mmの試験片を作成し、上記手順に準拠した難燃性試験を行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
表3から分かるように、ピロリン酸ピペラジン、メラミンシアヌレート、およびケイ酸カルシウムの3種全てを含有する樹脂組成物(実施例10~12)においては、いずれもUL-94試験における難燃性の評価が最高のV-0ランクであった。一方、表4から分かるように、ピロリン酸ピペラジン、メラミンシアヌレート、ケイ酸カルシウム、メチルハイドロジェンポリシロキサンとポリエチレンワックスのいずれかを欠く場合(比較例6~17)、難燃性は高いものでもV-1ランクにとどまった。
[実施例13]
エチレンエチルアクリレート樹脂(ダウ・ケミカル社製NUC-6510、押出成型用グレード)50質量部と、ポリエチレン樹脂(日本ポリエチレン株式会社製:F30FG フィルム用グレード)50質量部と、滑剤としてのステアリン酸カルシウム(堺化学工業株式会社製:SC-P)1質量部と、実施例1で調製した難燃剤の粉末とを混合して樹脂組成物を調製した。得られた樹脂組成物を、ロール(CONPON社製:8インチ電熱ロール)を用いて130~200℃で混練した。得られた混練物を、粉砕機(ダイコー精機株式会社製DAS-14)を用いてペレット化した。該ペレットを使用して190℃で射出成形し、厚さ1mmの試験片を得た。得られた試験片を用い、上記手順に準拠した引張物性試験を行った。その結果を表5に示す。
[実施例14]
ピロリン酸ピペラジンの量を34質量部、メラミンシアヌレートの量を33質量部に変更した点以外は実施例13と同様の方法で厚さ1mmの試験片を作成し、上記手順に準拠した引張物性試験を行った。その結果を表5に示す。
[実施例15]
ピロリン酸ピペラジンの量を17質量部、メラミンシアヌレートの量を50質量部に変更した点以外は実施例13と同様の方法で厚さ1mmの試験片を作成し、上記手順に準拠した引張物性試験を行った。その結果を表5に示す。
[比較例18]
メチルハイドロジェンポリシロキサン及びポリエチレンワックスを含まない以外は実施例13と同様の方法で厚さ1mmの試験片を作成し、上記手順に準拠した引張物性試験を行った。その結果を表5に示す。
[比較例19]
水酸化マグネシウム(堺化学工業株式会社製MGZ-1)230質量部と、メチルハイドロジェンポリシロキサン0.5質量部と、ポリエチレンワックス0.4質量部とを、スーパーミキサーで混合して難燃剤の粉末を得た。次にエチレンエチルアクリレート樹脂(ダウ・ケミカル社製NUC-6510、押出成型用グレード)50質量部と、ポリエチレン樹脂(日本ポリエチレン株式会社製:F30FG フィルム用グレード)50質量部と、滑剤としてのステアリン酸カルシウム(堺化学工業株式会社製:SC-P)1質量部と、上記の難燃剤の粉末とを混合してエチレンエチルアクリレート樹脂組成物を調製した。以下、実施例13と同様の方法で厚さ1mmの試験片を得た。得られた試験片を用い、上記手順に準拠した引張物性試験を行った。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
表5から分かるように、難燃剤として水酸化マグネシウムのみを用いた場合には、伸び率が著しく劣り、実用的な物性を有していなかった。一方、本願発明の(A)~(E)成分を全て含む実施例13~15の組成物の成形体は600%を超える高い伸びを示した。
[実施例16]
ピロリン酸ピペラジン((A)成分)50質量部、メラミンシアヌレート((B)成分:堺化学工業株式会社製MC-2010N)17質量部、ケイ酸カルシウム((C)成分)1質量部をスーパーミキサー(株式会社川田製作所製:SMG-300)に入れ、800rpmで10分攪拌した。得られた混合物に、次にメチルハイドロジェンポリシロキサン((D)成分:信越化学工業株式会社製、製品名KF-99)0.5質量部を添加し、温度160℃、800rpmで20分攪拌して混合した。次にポリエチレンワックス((E)成分:ヤスハラケミカル株式会社製:ネオワックスACL)0.4質量部を添加し、800rpmで20分間撹拌して混合することにより本発明の難燃剤の粉末を得た。次にエチレンエチルアクリレート樹脂(ダウ・ケミカル社製NUC-6510、押出成型用グレード)100質量部と、滑剤としてのステアリン酸カルシウム(堺化学工業株式会社製:SC-P)1質量部と、上述の通り調製した難燃剤の粉末とを混合して樹脂組成物を調製した。次にロール(CONPON社製:8インチ電熱ロール)を用いて130~200℃で混練した。得られた混練物を、粉砕機(ダイコー精機株式会社製DAS-14)を用いてペレット化した。該ペレットを使用して190℃で射出成形し、厚さ1.6mmの試験片を得た。得られた試験片を用い、上記手順に準拠した耐水性試験を行った。その結果を表6に示す。また該ペレットを使用してプラストミル2軸押出機を用い、スクリュー回転数60rpm、170℃、吐出量20kg/hrで押出成形して成形体を作成した。成形時に発生した目ヤニを採取し目ヤニ評価(mg/10分)を行った。
[実施例17]
ピロリン酸ピペラジンの量を34質量部、メラミンシアヌレートの量を33質量部に変更した点以外は実施例16と同様の方法で上記手順に準拠した耐水性試験及び目ヤニ確認試験を行った。その結果を表6に示す。
[実施例18]
ピロリン酸ピペラジンの量を17質量部、メラミンシアヌレートの量を50質量部に変更した点以外は実施例16と同様の方法で上記手順に準拠した耐水性試験及び目ヤニ確認試験を行った。その結果を表6に示す。
[実施例19]
ポリエチレンワックスを含まない以外は実施例16と同様の方法で上記手順に準拠した耐水性試験及び目ヤニ確認試験を行った。その結果を表6に示す。
[実施例20]
メチルハイドロジェンポリシロキサンを含まない以外は実施例16と同様の方法で上記手順に準拠した耐水性試験及び目ヤニ確認試験を行った。その結果を表6に示す。
[比較例20]
ピロリン酸ピペラジン((A)成分)50質量部、メラミンシアヌレート((B)成分:堺化学工業株式会社製MC-2010N)17質量部、ケイ酸カルシウム((C)成分)1質量部をスーパーミキサー(株式会社川田製作所製:SMG-300)に入れ、800rpmで10分攪拌した。この粉末をエチレンエチルアクリレート樹脂(ダウ・ケミカル社製NUC-6510、押出成型用グレード)100質量部と、滑剤としてのステアリン酸カルシウム(堺化学工業株式会社製:SC-P)1質量部に混合し、樹脂組成物を調製した。それ以降は実施例16と同様の方法で上記手順に準拠した耐水性試験及び目ヤニ確認試験を行った。その結果を表6に示す。
[比較例21]
ピロリン酸ピペラジン((A)成分)50質量部、ポリリン酸メラミン((B)成分:株式会社三和ケミカル製MPP-A)17質量部をスーパーミキサー(株式会社川田製作所製:SMG-300)に入れ、800rpmで10分攪拌した。次にジメチルシリコーンオイル((D)成分:信越化学工業株式会社製、製品名KF-96)1.2質量部を温度160℃、800rpmで20分攪拌した。次にグリセリンモノステアレート((E)成分:理研ビタミン株式会社製:リケマールS-100)0.7質量部を添加し、800rpmで20分間撹拌し、難燃剤の粉末を得た。この粉末をエチレンエチルアクリレート樹脂(ダウ・ケミカル社製NUC-6510、押出成型用グレード)100質量部と、滑剤としてのステアリン酸カルシウム(堺化学工業株式会社製:SC-P)1質量部に混合し、樹脂組成物を調製した。それ以降は実施例16と同様の方法で上記手順に準拠した耐水性試験及び目ヤニ確認試験を行った。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
表6から分かるように、(A)~(C)成分をすべて含み、さらに(D)及び/または(E)成分を含有する場合は、耐水性、目ヤニ量ともに良好な結果を示した。一方、(C)成分を欠く場合又は(D)及び(E)成分の両方を欠く場合は耐水性、目ヤニ量の両方が劣っていた。
さらに、(D)成分又は(E)成分の一方を単独で含む場合と比べて、(D)と(E)の両方の成分を含むことにより高い耐水性と、目ヤニ量の抑制効果が発揮されることが示された。
以上の通り、本願発明の難燃性樹脂組成物から作成された成形体は、高い難燃性と、実用上十分な機械的物性(伸び)を有していることが分かった。このように、本願発明の難燃剤は、(A)~(E)成分を全て含有することにより、樹脂組成物に配合した場合、樹脂組成物の物性を損なうことなく、従来品よりも難燃性と耐水性が高く、目ヤニ量が少ない樹脂組成物を得られることが明らかとなった。

Claims (10)

  1. (A)100質量部の、ピペラジンと、リン酸、ピロリン酸、及びポリリン酸から選択される1種のリン化合物との反応生成物と、
    (B)10~1000質量部の、メラミンと、シアヌール酸、リン酸、ピロリン酸、及びポリリン酸から選択される多価酸との反応生成物と、
    (C)0.1~100質量部の、カルシウム又はマグネシウムと、ケイ酸との反応生成物と、
    下記(D)及び(E)から選択される少なくとも1種:
    (D)0.1~50質量部のシリコーンオイル;及び
    (E)0.1~50質量部の炭化水素系滑剤、脂肪酸系滑剤、脂肪族アマイド系滑剤及びエステル系滑剤からなる群から選択される少なくとも1種;
    を含有する難燃剤。
  2. 前記(D)及び(E)の両方の成分を含有する
    請求項1記載の難燃剤。
  3. 前記(A)、(B)、及び(C)成分の混合物に、前記(D)成分を添加して混合し、
    さらに前記(E)成分を添加して混合することにより得られる
    請求項1又は2に記載の難燃剤。
  4. 100質量部の合成樹脂と、
    2~250質量部の請求項1~3のいずれか一項に記載の難燃剤と
    を含有する難燃性樹脂組成物。
  5. 前記成分(C)が、ケイ酸カルシウムである請求項4記載の難燃性樹脂組成物。
  6. 前記成分(D)が、メチルハイドロジェンポリシロキサンである請求項4又は5記載の難燃性樹脂組成物。
  7. 前記成分(E)が、ポリエチレンワックスであることを特徴とする請求項4~6のいずれか1項に記載の難燃性樹脂組成物。
  8. 前記合成樹脂が、ポリオレフィン樹脂である請求項4~7のいずれか1項に記載の難燃性樹脂組成物。
  9. 前記ポリオレフィン樹脂が、ポリプロピレン樹脂である請求項8記載の難燃性樹脂組成物。
  10. 前記ポリオレフィン樹脂が、ポリエチレン樹脂である請求項8記載の難燃性樹脂組成物。
     
PCT/JP2013/080686 2012-11-21 2013-11-13 難燃剤及び難燃性樹脂組成物 WO2014080821A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012255581 2012-11-21
JP2012-255581 2012-11-21

Publications (1)

Publication Number Publication Date
WO2014080821A1 true WO2014080821A1 (ja) 2014-05-30

Family

ID=50776004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080686 WO2014080821A1 (ja) 2012-11-21 2013-11-13 難燃剤及び難燃性樹脂組成物

Country Status (2)

Country Link
TW (1) TW201420733A (ja)
WO (1) WO2014080821A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031351A (ja) * 2015-08-04 2017-02-09 株式会社Adeka 難燃性樹脂組成物
WO2019021671A1 (ja) * 2017-07-24 2019-01-31 株式会社Adeka 組成物及び難燃性樹脂組成物
WO2019054155A1 (ja) 2017-09-12 2019-03-21 株式会社Adeka 組成物及び難燃性樹脂組成物
WO2019117049A1 (ja) * 2017-12-14 2019-06-20 株式会社Adeka 組成物及び難燃性樹脂組成物
CN114773852A (zh) * 2022-05-05 2022-07-22 南通世源橡塑科技有限公司 用于两轮电动车仪表盘的硅橡胶材料组合物
WO2022215660A1 (ja) * 2021-04-08 2022-10-13 株式会社Adeka 機械物性付与剤組成物、樹脂組成物および成形品

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127743A (ja) * 1984-11-27 1986-06-16 Mitsubishi Chem Ind Ltd 難燃性樹脂組成物
JPS61225233A (ja) * 1985-03-29 1986-10-07 Plus Teku Kk 難燃性樹脂組成物
JPH09151268A (ja) * 1995-11-29 1997-06-10 Sekisui Chem Co Ltd 難燃性ポリオレフィン系樹脂発泡体
JPH11315173A (ja) * 1998-05-01 1999-11-16 Okura Ind Co Ltd 難燃性ポリオレフィン系樹脂組成物
WO2005080494A1 (ja) * 2004-02-24 2005-09-01 Adeka Corporation 流動性の改善された難燃剤組成物、難燃性樹脂組成物及びその成形品
JP2006291207A (ja) * 2005-04-08 2006-10-26 Clariant Produkte (Deutschland) Gmbh 安定化難燃剤
JP2008202010A (ja) * 2007-02-22 2008-09-04 Adeka Corp リン酸エステル系難燃剤の固体化方法
JP2009120717A (ja) * 2007-11-14 2009-06-04 Adeka Corp 加工性の改善された難燃剤組成物、難燃性合成樹脂組成物及びその成形品
JP2010209239A (ja) * 2009-03-11 2010-09-24 Adeka Corp 難燃性スチレン系樹脂組成物
JP2010534757A (ja) * 2007-07-28 2010-11-11 ケミスケ ファブリック ブデンヘイム ケージー ハロゲン不含の難燃剤

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127743A (ja) * 1984-11-27 1986-06-16 Mitsubishi Chem Ind Ltd 難燃性樹脂組成物
JPS61225233A (ja) * 1985-03-29 1986-10-07 Plus Teku Kk 難燃性樹脂組成物
JPH09151268A (ja) * 1995-11-29 1997-06-10 Sekisui Chem Co Ltd 難燃性ポリオレフィン系樹脂発泡体
JPH11315173A (ja) * 1998-05-01 1999-11-16 Okura Ind Co Ltd 難燃性ポリオレフィン系樹脂組成物
WO2005080494A1 (ja) * 2004-02-24 2005-09-01 Adeka Corporation 流動性の改善された難燃剤組成物、難燃性樹脂組成物及びその成形品
JP2006291207A (ja) * 2005-04-08 2006-10-26 Clariant Produkte (Deutschland) Gmbh 安定化難燃剤
JP2008202010A (ja) * 2007-02-22 2008-09-04 Adeka Corp リン酸エステル系難燃剤の固体化方法
JP2010534757A (ja) * 2007-07-28 2010-11-11 ケミスケ ファブリック ブデンヘイム ケージー ハロゲン不含の難燃剤
JP2009120717A (ja) * 2007-11-14 2009-06-04 Adeka Corp 加工性の改善された難燃剤組成物、難燃性合成樹脂組成物及びその成形品
JP2010209239A (ja) * 2009-03-11 2010-09-24 Adeka Corp 難燃性スチレン系樹脂組成物

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031351A (ja) * 2015-08-04 2017-02-09 株式会社Adeka 難燃性樹脂組成物
WO2019021671A1 (ja) * 2017-07-24 2019-01-31 株式会社Adeka 組成物及び難燃性樹脂組成物
CN110869447A (zh) * 2017-07-24 2020-03-06 株式会社艾迪科 组合物及阻燃性树脂组合物
JPWO2019021671A1 (ja) * 2017-07-24 2020-05-28 株式会社Adeka 組成物及び難燃性樹脂組成物
US11345858B2 (en) 2017-07-24 2022-05-31 Adeka Corporation Composition and flame-retardant resin composition
JP7158384B2 (ja) 2017-07-24 2022-10-21 株式会社Adeka 組成物及び難燃性樹脂組成物
WO2019054155A1 (ja) 2017-09-12 2019-03-21 株式会社Adeka 組成物及び難燃性樹脂組成物
WO2019117049A1 (ja) * 2017-12-14 2019-06-20 株式会社Adeka 組成物及び難燃性樹脂組成物
JPWO2019117049A1 (ja) * 2017-12-14 2020-12-17 株式会社Adeka 組成物及び難燃性樹脂組成物
WO2022215660A1 (ja) * 2021-04-08 2022-10-13 株式会社Adeka 機械物性付与剤組成物、樹脂組成物および成形品
CN114773852A (zh) * 2022-05-05 2022-07-22 南通世源橡塑科技有限公司 用于两轮电动车仪表盘的硅橡胶材料组合物

Also Published As

Publication number Publication date
TW201420733A (zh) 2014-06-01

Similar Documents

Publication Publication Date Title
WO2012161070A1 (ja) 難燃剤及び難燃性樹脂組成物
WO2014080821A1 (ja) 難燃剤及び難燃性樹脂組成物
JP4753498B2 (ja) 難燃性合成樹脂組成物
JP5462584B2 (ja) ガラス長繊維含有難燃性樹脂組成物及び成形品
JP5191125B2 (ja) シリコーンオイル被覆難燃剤、該難燃剤を用いた難燃性合成樹脂組成物及びその成形品
EP2933311B1 (en) Flame retardant composition and flame-retardant synthetic resin composition
JP5424444B2 (ja) 難燃性熱可塑性樹脂組成物
WO2013047618A1 (ja) 難燃性樹脂組成物及びこれを用いた電線
JP5969517B2 (ja) 樹脂添加剤マスターバッチ
JP2008208269A (ja) 難燃性樹脂組成物
CN108602995B (zh) 阻燃性聚烯烃系树脂组合物
JP4204342B2 (ja) 難燃性合成樹脂組成物
JP2011148936A (ja) 難燃性樹脂組成物
WO2009116339A1 (ja) 難燃性塩素含有樹脂組成物
CN111094515B (zh) 阻燃剂组合物、包含该阻燃剂组合物的阻燃性树脂组合物及该阻燃性树脂组合物的成形体
JPH10101944A (ja) 合成樹脂組成物
CN112805326A (zh) 农业用膜、农业用膜形成用树脂组合物及使用该农业用膜的植物的培育方法
JP4155645B2 (ja) 難燃性合成樹脂組成物
JP6283294B2 (ja) ポリオレフィン系難燃性樹脂組成物
JP5307980B2 (ja) ポリオレフィン樹脂組成物
JP2008202005A (ja) 樹脂組成物
JP4397096B2 (ja) 難燃性合成樹脂組成物
JP6392614B2 (ja) 樹脂組成物
JP5019765B2 (ja) 樹脂添加剤マスターバッチ
WO2022224809A1 (ja) 難燃剤組成物、難燃性樹脂組成物、およびその成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP