WO2014077617A1 - 에틸렌과 알파-올레핀의 공중합체 및 그 제조방법 - Google Patents

에틸렌과 알파-올레핀의 공중합체 및 그 제조방법 Download PDF

Info

Publication number
WO2014077617A1
WO2014077617A1 PCT/KR2013/010392 KR2013010392W WO2014077617A1 WO 2014077617 A1 WO2014077617 A1 WO 2014077617A1 KR 2013010392 W KR2013010392 W KR 2013010392W WO 2014077617 A1 WO2014077617 A1 WO 2014077617A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
alpha
olefin
formula
copolymer
Prior art date
Application number
PCT/KR2013/010392
Other languages
English (en)
French (fr)
Inventor
엄재훈
문상덕
주진훈
배희선
홍사문
손병길
Original Assignee
대림산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대림산업 주식회사 filed Critical 대림산업 주식회사
Priority to US14/441,570 priority Critical patent/US9518138B2/en
Priority to EP13854625.4A priority patent/EP2921509A4/en
Priority to CN201380059915.3A priority patent/CN104797608B/zh
Publication of WO2014077617A1 publication Critical patent/WO2014077617A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/06Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/04Polyethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/10Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing aliphatic monomer having more than 4 carbon atoms

Definitions

  • the present invention relates to a copolymer of ethylene and an alpha-olefin and a method for preparing the same, and more particularly, to a liquid random copolymer of ethylene and an alpha-olefin useful as a synthetic lubricating oil having a high viscosity index and shear stability and a method of producing the same. It is about.
  • lubricating oil is composed of a base oil and additives for improving physical properties, and the lubricating oil is typically divided into mineral oil-based oil and synthetic oil.
  • the lubricating oil is typically divided into mineral oil-based oil and synthetic oil.
  • synthetic oil having excellent properties such as low temperature fluidity, thermal and oxidative stability, low evaporation loss at high temperature, high viscosity index, friction applicability, hydrolysis stability, and corrosion resistance instead of mineral oil oil. It is increasing.
  • synthetic lubricants is increasing in applications such as automobiles and aircrafts due to energy efficiency and environmental regulations.
  • lubricating oils such as engine oil, brake oil and lubricating grease are used.
  • lubricating oils such as two-stroke oil, four-stroke oil and gear oil are used as the engine oil.
  • lubricating oils such as turbine oil, piston engine oil, hydraulic oil and lubricating grease are used.
  • lubricating oils such as gas turbine oil, gear oil, bearing and circulating oil, compressor oil, hydraulic oil, metal working fluid, thermal shear and insulating oil, and lubricating grease are used.
  • the lubricants require a variety of properties depending on their respective applications.
  • Poly-alpha-olefin is mainly used as a synthetic lubricating oil used as automotive gear oils or engine oils, industrial lubricants or operating oils (US Patents 3780128, US Patents 4032591, See Japanese Patent Laid-Open No. 1-163136, etc.).
  • Such poly-alpha-olefins can be obtained by oligomerization of higher alpha-olefins in the presence of an acid catalyst, but there is a disadvantage in that the price of linear alpha olefin (LAO), which is a raw material, is expensive.
  • LAO linear alpha olefin
  • 1982-117595 discloses a method for producing a synthetic lubricant having excellent properties such as viscosity index, oxidation stability, shear stability and heat resistance by copolymerizing ethylene and alpha-olefin.
  • a catalyst composition composed of a titanium compound and an organoaluminum compound, generally known as a first generation catalyst, was used.
  • the said titanium compound catalyst has a big catalyst activity, the obtained copolymer has the characteristic of wide molecular weight distribution, and low irregularity. Therefore, high flash point products which are useful as lubricants, lubricant additives, fuel oil additives, etc.
  • U.S. Patent 5,767,331 also discloses a process for copolymerizing ethylene and alpha-olefins, in particular ethylene and propylene, using a vanadium-based catalyst composition consisting of a vanadium compound and an organoaluminum compound.
  • the copolymer obtained using the vanadium-based catalyst composition has a narrow molecular weight distribution and excellent uniformity, but generally has a very low polymerization activity and a large amount of catalyst sludge is produced, thus requiring a further chuck decatalyst process. .
  • This is a common problem with first generation catalysts such as Ziegler-Natta catalysts.
  • Japanese Patent Application Laid-Open No. 61-221207, Japanese Patent Application Laid-Open No. 7-121969, and the like use a catalyst system composed of a metallocene compound such as zirconocene and an organoaluminum oxy compound to give a high polymerization.
  • Japanese Patent No. 2796376 discloses a method for producing a copolymer with activity, and Japanese Patent No. 2796376 copolymerizes ethylene and alpha-olefin using a catalyst system composed of a specific metallocene catalyst and an organoaluminum oxy compound to prepare a synthetic lubricant. A method is disclosed.
  • the use of bis-indenyl metallocene catalysts has been attempted.
  • the bis-indenyl metallocene catalyst forms a more homogeneous (quasi-random) chain composition, but pure racemic bis-indenyl catalysts are difficult to manufacture, not only expensive but also pure catalysts are obtained, It is inevitable that some of the catalyst is converted to meso derivatives.
  • the catalyst since the steric hindrance increases in the metal center after the 2,1-insertion occurs, the catalyst also has a problem of lowering the molecular weight of the resulting polymer.
  • the catalyst increases only the reactivity of ethylene, and the random copolymer produced using the catalyst contains unsaturated double bonds, thereby lowering the thermal stability and durability of the synthetic lubricating oil. Therefore, when using the catalyst, there is a disadvantage in that a hydrogenation process for removing unsaturated double bonds using hydrogen is additionally performed. See also Angew. Chem. Int. Ed. 1998, Vol. 37, No. 7, p 922-925 (Leclerc and Waymouth) discloses the copolymerization of ethylene and propylene using metallocene compounds having cyclopentadiene ligands (Cp) and fluorene ligands (Flu).
  • Cp cyclopentadiene ligands
  • Flu fluorene ligands
  • the document discloses a zirconium metallocene catalyst comprising unsubstituted Cp, 3-methyl Cp, 3-tert-butyl Cp and 3,4-dimethyl Cp ligands, but the catalysts produce pseudo-random polymers. Only partially useful, there is a considerable degree of randomization in the polymers produced with the catalysts.
  • An object of the present invention is to provide a liquid random copolymer of ethylene and an alpha-olefin having a narrow molecular weight distribution and excellent uniformity.
  • Another object of the present invention is to provide a liquid random copolymer of ethylene and alpha-olefin, which is not only excellent in heat-resistant oxidative stability and shear stability but also has a high viscosity index such as low temperature viscosity and is useful as a synthetic lubricant.
  • Still another object of the present invention is to provide a method for producing a liquid random copolymer of ethylene and an alpha-olefin with high polymerization activity.
  • the present invention is reacted with (A) a crosslinked metallocene compound represented by the following formula (1), and (B) (i) an organoaluminum oxy compound and (ii) the crosslinked metallocene compound Ethylene and alpha-olefin liquid random air comprising the step of solution polymerizing ethylene and an alpha-olefin having 3 to 20 carbon atoms in the presence of a catalyst system comprising at least one compound selected from the group consisting of compounds forming ion pairs.
  • a catalyst system comprising at least one compound selected from the group consisting of compounds forming ion pairs.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 9, and R 12 are each independently a hydrogen atom, a hydrocarbon group, or a silicon-containing hydrocarbon group, and adjacent groups are connected to each other.
  • R 6 and R 11 are the same as each other, and are a hydrogen atom, a hydrocarbon group, or a silicon-containing hydrocarbon group, and
  • R 7 and R 10 are the same as each other, and are a hydrogen atom, a hydrocarbon group, or silicon.
  • R 6 and R 7 may be connected to a hydrocarbon having 2 to 3 carbon atoms to form a ring structure
  • R 11 and R 10 may be connected to a hydrocarbon having 2 to 3 carbon atoms to form a ring structure
  • R 6 , R 7 , R 10 and R 11 are not simultaneously hydrogen atoms
  • Y is a carbon atom or a silicon atom
  • R 13 and R 14 are each independently an aryl group
  • M is titanium (Ti), zirconium (Zr) or hafnium (Hf);
  • Each Q is independently a neutral ligand that can be coordinated with a halogen, a hydrocarbon group, an anion ligand or a lone pair of electrons;
  • j is an integer of 1-4.
  • the present invention comprises (1) 60 to 40 mol% of ethylene units and 40 to 60 mol% of alpha-olefin units having 3 to 20 carbon atoms, and (2) a number measured by gel permeation chromatography (GPC).
  • Average molecular weight (Mn) is 500 to 10,000
  • molecular weight distribution (Mw / Mn, Mw is weight average molecular weight) is 3 or less
  • Kinematic Viscosity at 100 ° C is 30 to 5,000
  • It provides a liquid random copolymer of ethylene and an alpha-olefin having a pour point of 30 to -45 ° C and (5) a bromine number of 0.1 or less.
  • the liquid random copolymer of ethylene and alpha-olefin according to the present invention has a narrow molecular weight distribution, excellent uniformity, excellent heat oxidation resistance and shear stability, high viscosity index such as low temperature viscosity, and synthetic lubricants.
  • a catalyst system composed of an ionic compound which reacts with a specific metallocene compound, an organoaluminum oxy compound and / or a metallocene compound to form an ion pair, High, low sludge production, as well as high polymerization activity not conventionally achieved, ethylene and alpha-olefin liquid random copolymers can be produced.
  • a single site catalyst system is used so that the alpha-olefin units are uniformly distributed in the copolymer chain.
  • the process for producing an ethylene and alpha-olefin liquid random copolymer according to the present invention comprises (A) a crosslinked metallocene compound represented by the following formula (1), and (B) (i) an organoaluminum oxy compound and (ii) the crosslinking. Solution polymerization of ethylene and an alpha-olefin having 3 to 20 carbon atoms in the presence of a catalyst system comprising at least one compound selected from the group consisting of compounds which react with metallocene compounds to form ion pairs. .
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 9, and R 12 are each independently a hydrogen atom, a hydrocarbon group, or a silicon-containing hydrocarbon group, and adjacent groups are connected to each other.
  • R 6 and R 11 are the same as each other, and are a hydrogen atom, a hydrocarbon group, or a silicon-containing hydrocarbon group, and
  • R 7 and R 10 are the same as each other, and are a hydrogen atom, a hydrocarbon group, or silicon.
  • R 6 and R 7 may be connected to a hydrocarbon having 2 to 3 carbon atoms to form a ring structure
  • R 11 and R 10 may be connected to a hydrocarbon having 2 to 3 carbon atoms to form a ring structure
  • Y is a carbon atom or a silicon atom
  • R 13 and R 14 are each independently an aryl group
  • M is titanium (Ti), zirconium (Zr) or hafnium (Hf), preferably Zr
  • Each Q is independently a neutral ligand that can be coordinated with a halogen, a hydrocarbon group, an anion ligand or a lone pair of electrons
  • j is an integer of 1-4.
  • the hydrocarbon group means a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, more preferably 4 to 10 carbon atoms, for example, an alkyl group, an aryl group, and the like, and an aryl group having 4 to 20 carbon atoms.
  • an aryl group having 6 to 15 carbon atoms examples of the silicon-containing hydrocarbon group may be an alkyl or aryl silyl group having 3 to 20 carbon atoms containing 1 to 4 silicon atoms, specifically, trimethyl Silyl group, Tert-butyldimethylsilyl group, triphenylsilyl group, and the like.
  • the cyclopentadienyl group may be a substituted or unsubstituted cyclopentadienyl group.
  • the metallocene compound represented by the formula (1) (i) at least one of the substituents (R 1 , R 2 , R 3 and R 4 ) bonded to the cyclopentadienyl group is preferably a hydrocarbon group, (ii ) It is more preferable that at least one of the substituents (R 1 , R 2 , R 3 and R 4 ) is a hydrocarbon group having 4 or more carbon atoms, and (iii) a substituent (R 2 or bonded at position 3 of the cyclopentadienyl group) Most preferably, R 3 ) is a hydrocarbon group having 4 or more carbon atoms (for example, n-butyl group).
  • R 1 , R 2 , R 3, and R 4 are substituents (that is, not hydrogen atoms)
  • the substituents may be the same or different, and at least one substituent is preferably a hydrocarbon group having 4 or more carbon atoms.
  • R 6 and R 11 substituted (bonded) with a fluorenyl group are the same as each other, and R 7 and R 10 are the same as each other, but R 6 , R 7 and R 10 And R 11 are not all hydrogen atoms.
  • R 6 and R 11 are both preferably non-hydrogen atoms, R 6, R 7, R 10 and R 11 are all or hydrogen atom is more desirable.
  • R 6 and R 11 bonded to the 2 and 7 positions of the fluorenyl group are hydrocarbon groups having the same carbon number of 1 to 20, preferably all tert-butyl groups, and R 7 and R 10 are also the same carbon number 1 As the hydrocarbon group of 20 to 20, all of them are preferably tert-butyl groups.
  • the main chain portion (coupling portion) Y which connects the cyclopentadienyl group and the fluorenyl group, is a structural crosslinking portion to impart steric rigidity to the crosslinked metallocene compound represented by the formula (1), and is composed of one carbon atom or silicon atom It is a pseudo covalent crosslinking part.
  • the crosslinking atom Y of the covalent crosslinking portion has the same or different two aryl groups (R 13 and R 14 ). Accordingly, the cyclopentadienyl group and fluorenyl group are connected by an aryl group-containing covalent crosslinking portion.
  • aryl group examples include phenyl groups, naphthyl groups, anthracenyl groups, and aryl groups in which one or more of these aromatic hydrogens (sp 2 -type hydrogen) are substituted with a substituent.
  • a substituent substituted by the said aryl group a C1-C20 hydrocarbon group, a C1-C20 silicon-containing group, a halogen atom, etc. can be illustrated, Preferably it is a phenyl group.
  • R 13 and R 14 are preferably the same from each other in terms of ease of manufacture.
  • Q is preferably a halogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • the halogen atom is fluorine, chlorine, bromine or iodine
  • the hydrocarbon group having 1 to 10 carbon atoms is methyl, ethyl, n-propyl, isopropyl, 2-methylpropyl, 1,1-dimethylpropyl, 2,2-dimethyl Propyl, 1,1-diethylpropyl, 1-ethyl-1-methylpropyl, 1,1,2,2-tetramethylpropyl, sec-butyl, tert-butyl, 1,1-dimethylbutyl, 1,1, 3-trimethylbutyl, neopentyl, cyclohexylmethyl, cyclohexyl, 1-methyl-1-cyclohexyl, etc. can be illustrated.
  • Q may be the same or different.
  • organoaluminum oxy compound (i) included in the catalyst system of the present invention conventional aluminoxanes may be used.
  • linear or cyclic aluminoxanes represented by the following Chemical Formulas 2 to 5 may be used.
  • organoaluminum oxy compound some organoaluminum compound may be mixed.
  • each R is independently a hydrocarbon group having 1 to 10 carbon atoms
  • each Rx is independently a hydrocarbon group having 2 to 20 carbon atoms
  • m and n are each independently 2 or more, preferably 3
  • the above is more preferably an integer of 10 to 70, and most preferably an integer of 10 to 50.
  • R c represents a hydrocarbon group having 1 to 10 carbon atoms
  • R d each independently represents a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 10 carbon atoms.
  • the organoaluminum oxy compound in which R is a methyl group (Me) is commonly referred to as 'methyl aluminoxane'. Since the methyl aluminoxane is easy to purchase and has a high polymerization activity, it is an active agent generally used for the polymerization of polyolefins, but it is difficult to dissolve in saturated hydrocarbons, so it is an environmentally undesirable aromatic hydrocarbon solution such as toluene and benzene. It is used as. Therefore, in recent years, as the aluminoxane dissolved in a saturated hydrocarbon, the methyl aluminoxane flexible body represented by the said Formula (4) has been developed and used.
  • the modified methylaluminoxane represented by Formula 4 is prepared using alkyl aluminum other than trimethylaluminum and trimethylaluminum, as disclosed in U.S. Patent 4960878, U.S. Patent 5041584, and the like.
  • aluminoxanes prepared using trimethylaluminum and triisobutylaluminum, and Rx is isobutyl group are commercially available under the trade names MMAO, TMAO, etc. in the form of a saturated hydrocarbon solution (Tosopinechem Co., Ltd., Tosso Research and Technology Report, Vol. 47, 55, (2003).
  • an 'ionic compound' As a compound (hereinafter, referred to as an 'ionic compound' if necessary) which reacts with the (ii) crosslinked metallocene compound included in the catalyst system of the present invention to form an ion pair, it is registered in Korea Patent 10-551147 Japanese Patent Laid-Open No. Hei 1-501950, Japanese Patent Laid-Open No. 1-502036, Japanese Patent Laid-Open No. 3-179005, Japanese Patent Laid-Open No. 3-179006, Japanese Patent Laid-Open No. 3-207703 Lewis acids, ionic compounds, borane compounds, carborane compounds and the like described in JP-A 3-207704 and U.S.
  • Patent 5321106 may be used, and heteropoly compounds, isopoly compounds and the like may be used, if necessary.
  • the ionic compounds disclosed in 2004-51676 can also be used.
  • the said ionic compound can be used individually or in mixture of 2 or more types.
  • the Lewis acid may be BR 3 (R is a fluorine, a substituted or unsubstituted C1-20 alkyl group (methyl group, etc.), a substituted or unsubstituted C6-20 aryl group (phenyl group, etc.), etc.)
  • the compound represented can be illustrated, for example, trifluoro boron, triphenyl boron, tris (4-fluorophenyl) boron, tris (3, 5- difluorophenyl) boron, tris (4-fluoro) Methylphenyl) boron, tris (pentafluorophenyl) boron, tris (p-tolyl) boron, etc. can be illustrated.
  • the said ionic compound Compared with an organoaluminum oxy compound, the said ionic compound has the advantage that it is economically advantageous because the usage amount is small and the amount of sludge production is small.
  • R e + is H + , a carbenium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptyltrienyl cation, a ferroceninium cation having a transition metal, and the like, and R f To R i are each independently an organic group, preferably a hydrocarbon group having 1 to 20 carbon atoms, more preferably an aryl group, for example, a pentafluorophenyl group.
  • a dimethylanilinium, a tris (methylphenyl) carbenium cation, a tris (dimethylphenyl) carbenium cation, etc. can be illustrated.
  • the catalyst system used for this invention can further contain the (C) organoaluminum compound as needed.
  • the (C) organoaluminum compound serves to activate the crosslinked metallocene compound, the organoaluminum oxy compound, the ionic compound and the like.
  • the organoaluminum represented by following formula (7), the complex alkyl compound of group 1 metal and aluminum represented by following formula (8), etc. can be used.
  • M 2 represents Li, Na or K
  • R a represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms.
  • organoaluminum compound represented by Chemical Formula 7 examples include trimethylaluminum, triisobutylaluminum, and the like, and these have an advantage of being easily available.
  • Specific examples of the complex alkyl compound of the Group 1 metal and aluminum represented by Formula 8 may include LiAl (C 2 H 5 ) 4 , LiAl (C 7 H 15 ) 4 .
  • a compound similar to the compound represented by Formula 7 may also be used, for example, through a nitrogen atom, such as (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2, or the like.
  • bonded can also be used.
  • the amount of the crosslinked metallocene compound represented by Formula (A) 1 is preferably 5 to 50% by weight based on the total catalyst composition.
  • the amount of the (B) (i) organoaluminum oxy compound is 50 to 500 equivalents based on the number of moles of the crosslinked metallocene compound, and (B) (ii) reacts with the crosslinked metallocene compound to form an ion pair.
  • the amount of the compound to be formed is 1 to 5 equivalents based on the number of moles of the crosslinked metallocene compound, and the amount of the (C) organoaluminum compound is preferably 5 to 100 equivalents based on the number of moles of the crosslinked metallocene compound. .
  • the amount of the metallocene compound (A) used is too small, the polymerization may not proceed to proceed and the copolymerization may proceed inadequately. If the amount of the metallocene compound is too small, the ethylene is not economically disadvantageous and economically disadvantageous without any special benefit.
  • the catalyst system used for this invention can have a structure of the following [1]-[4], for example.
  • the organoaluminum compound may be added in any order to the raw material monomer (ethylene and alpha-olefin mixture having 3 to 20 carbon atoms).
  • components (A), (B) and / or (C) are each added alone or in any order to a polymerization reactor filled with a raw material monomer, or components (A) and (B) as necessary.
  • / or two or more of (C) may be mixed in advance, and the mixed catalyst composition may be introduced into a polymerization reactor filled with a raw material monomer.
  • Liquid random copolymers of ethylene and alpha-olefins according to the present invention are prepared by solution polymerization of ethylene and alpha-olefins having 3 to 20 carbon atoms in the presence of the catalyst system.
  • C3-C20 alpha-olefin linear alpha-olefins, such as propylene, 1-butene, 1-pentene, 1-hexene, isobutylene, 3-methyl-1 butene, 4-methyl-1- Branched alpha-olefins, such as pentene, a mixture thereof, etc. can be used individually or in mixture
  • C3-C6 alpha-olefin can use 1 or more types, More preferably, propylene can be used.
  • the solution polymerization may be performed using an inert solvent such as propane, butane, pentane, hexane or the olefin monomer itself as a medium.
  • the polymerization temperature may vary depending on the reaction material, reaction conditions, etc., but is generally 80 to 150 ° C, preferably 90 to 120 ° C, and the polymerization pressure is atmospheric pressure to 500 kg / cm 2, preferably from atmospheric pressure to 50 kg / cm 2.
  • the polymerization can be carried out batchwise, semicontinuously or continuously, preferably continuously.
  • the polymerization temperature is too low, there is a fear that a high molecular weight copolymer is formed, and if too high, the catalytic activity may be reduced by thermal stability.
  • the liquid random copolymer of ethylene and alpha-olefin polymerized according to the present invention is a random copolymer which is liquid at room temperature, formed by copolymerization of ethylene and an alpha-olefin having 3 to 20 carbon atoms. Units are uniformly distributed.
  • the copolymers according to the invention are 40 to 60 mol%, preferably 45 to 55 mol%, of ethylene units derived from ethylene and 3 to 20 alpha-olefin units derived from C3-C20 alpha-olefins. 40 to 60 mol%, preferably 45 to 55 mol%.
  • the content of the ethylene unit when the content of the ethylene unit is less than 40 mol%, the content of propylene or the like may increase, so that a liquid copolymer may not be formed, and when the content of the ethylene unit exceeds 60 mol%, The content is excessively increased, so that the formation of a liquid copolymer may be difficult or may be unsuitable as a synthetic lubricant.
  • the copolymer according to the present invention has a number average molecular weight (Mn) of 500 to 10,000, preferably 800 to 6,000, and a molecular weight distribution (Mw / Mn, Mw is a weight average molecular weight) of 3 or less, preferably 2 or less. . If the number average molecular weight (Mn) is too small, the volatility is excessively increased, which is not suitable as a synthetic lubricating oil due to evaporation loss. If the number average molecular weight (Mn) is too large, the kinematic viscosity rises and becomes waxy or a solid copolymer is formed.
  • the number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) are values measured by gel permeation chromatography (GPC).
  • the copolymer according to the present invention has a kinematic viscosity at 100 ° C of 30 to 5,000, preferably 50 to 3,000, and a pour point of 30 to -45 ° C, preferably 20 to- It is 35 degreeC, and bromine number is 0.1 or less.
  • a kinematic viscosity at 100 ° C of 30 to 5,000, preferably 50 to 3,000, and a pour point of 30 to -45 ° C, preferably 20 to- It is 35 degreeC, and bromine number is 0.1 or less.
  • the kinematic viscosity is too small, there is a problem that can not be applied to a high viscosity lubrication product such as gear oil, turbine oil, etc., if too large, there is a problem that there is almost no fluidity and is not suitable as a lubricating oil.
  • the monomers are evenly distributed throughout the length of the copolymer molecule, the composition and molecular weight distribution is narrow, the uniformity is good, and the distribution of the double bonds is small, Particularly useful as synthetic lubricants requiring high viscosity index, low temperature viscosity, shear and thermal stability, durability, etc.
  • the number average molecular weight and molecular weight distribution were measured using GPC (VE2001, Viscotek).
  • GPC GPC measurements, a PLgel 5 ⁇ m Mixed-D column with an internal diameter of 7.5 mm and a length of 300 mm was used, the measurement temperature was 35 ° C., and tetrahydrofuran (THF, Burdick and Jackson, HPLC grade) was used.
  • the mobile phase was fed at a rate of 1 ml / min, sample concentration was 9.26 wt% and sample injection volume was about 100 ⁇ L.
  • Differential refractometers were used as detectors, and the peaks were separated by a data processor manufactured by Viscotek.
  • pour point The low temperature pour point was measured according to ASTM D 6749 using Tanaka Science MPC 102L (oil temperature: -40 ° C).
  • Flash point was measured by Cleveland Open Cup method according to ASTM D 92, bromine value was measured according to ASTM D1559, and the appearance of copolymer Was observed visually, and it was judged that there was no haze as being favorable.
  • Catalyst Solution Preparation In a glass flask filled with nitrogen, diphenylmethylene ⁇ 5- (3-n-butylcyclopentadienyl) ⁇ ⁇ 5- (2,7-di-tert-butylfluorenyl ) ⁇ Zirconium dichloride (Diphenylmethylene (3-n-butyl-cyclopentadienyl) (2,7-di-tert-butylfluorenyl) Zirconium dichloride) 0.15 mmol, Dimethlylanilium (tetrakis pentafluorophenyl) 120 ml of catalyst solution was prepared by mixing 0.2 mmol of Borate), 8 mmol of triisobutylaluminum, and toluene.
  • 460 g of ethylene-propylene copolymers were obtained in the same manner as in Example 1 except that the supply rate of hydrogen was changed to 0.65 g / hr.
  • the polymerization conditions of the copolymer are shown in Table 1, the physical properties of the obtained copolymer was analyzed, and the results are shown in Tables 3 and 4.
  • Catalyst Solution Preparation In a glass flask filled with nitrogen, diphenylmethylene ⁇ 5- (3-n-butylcyclopentadienyl) ⁇ ⁇ 5- (2,7-di-tert-butylfluorenyl 0.1 ml of zirconium dichloride and methylaluminoxane (MAO: Methylaluminoxane, albemarle, 10% toluene solution) were mixed to prepare a 120 ml catalyst solution.
  • MAO Methylaluminoxane, albemarle, 10% toluene solution
  • Catalyst Solution Preparation In a glass flask filled with nitrogen, 0.15 mmol of dimethylsilylbis (indenyl) zirconium dichloride, and methylaluminoxane (MAO, albemarle, 10% toluene solution) 120 ml of a catalyst solution was prepared.
  • MAO methylaluminoxane
  • Example 1 Example 2
  • Example 3 Example 4 Ethylene, g / hr 260 260 260 Propylene, g / hr 457 457 457 457 Hydrogen, g / hr 1.95 0.65 0.35 1.95 Hexane, g / hr 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
  • Example 5 Comparative Example 1 Comparative Example 2 Comparative Example 3 Ethylene, g / hr 260 260 260 260 Propylene, g / hr 457 457 457 457 457 Hydrogen, g / hr 0.65 0.35 1.95 0.65 0.35 Hexane, g / hr 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
  • the copolymers prepared in Examples 1 to 3 were superior in appearance to the copolymers of Examples 4 to 6, and the production of sludge was suppressed. Accordingly, the copolymers prepared according to the method of the present invention are not only excellent in product properties, but also require no additional process for removing sludge and are economically useful. In addition, the copolymers prepared in Examples 1 to 6, compared with the copolymers of Comparative Examples 1 to 3, there is an advantage that the bromine number (Bromine Number) is small.

Abstract

본 발명은 특정 메탈로센 촉매와 이온성화합물을 사용하여 높은 점도지수 및 전단 안정성을 가지는 합성 윤활유로서 유용한 에틸렌과 알파-올레핀의 액상 랜덤 공중합체 및 그 제조방법이 개시된다. 상기 에틸렌과 알파-올레핀의 액상 랜덤 공중합체는, (1) 에틸렌 단위 40 내지 60 몰% 및 탄소수 3 내지 20의 알파-올레핀 단위 60 내지 40 몰%로 이루어지고, (2) 겔투과크로마토그래피(GPC)에 의해 측정한 수평균 분자량(Mn)이 500 내지 10,000 이고, 분자량 분포(Mw/Mn, Mw는 중량평균 분자량)가 3 이하이며, (3) 100 ℃에서의 동점도(Kinematic Viscosity)가 30 내지 5,000 이며, (4) 유동점(Pour point)이 30 내지 -45 ℃ 이며, (5) 브롬수(Bromine Number)가 0.1 이하이다.

Description

에틸렌과 알파-올레핀의 공중합체 및 그 제조방법
본 발명은 에틸렌과 알파-올레핀의 공중합체 및 그 제조방법에 관한 것으로서, 더욱 상세하게는, 높은 점도지수 및 전단 안정성을 가지는 합성 윤활유로서 유용한 에틸렌과 알파-올레핀의 액상 랜덤 공중합체 및 그 제조방법에 관한 것이다.
일반적으로, 윤활유는 윤활기유(base oil)와 물성 향상을 위한 첨가제 (additive)로 이루어지며, 윤활기유는 대표적으로 광유(mineral oil)계 오일과 합성유로 구분된다. 최근 에너지 효율화 및 환경 오염에 대한 인식이 부각됨에 따라, 지속 가능성(sustainability), 즉, 장기간 사용할 수 있는 오일에 대한 수요가 증가되고 있다. 따라서, 산업계에서는, 광유계 오일을 대신하여, 저온 유동성, 열적 및 산화 안정성, 고온에서의 낮은 증발손실, 높은 점도지수, 마찰적용성, 가수분해 안정성, 내부식성 등의 특성이 우수한 합성유에 대한 수요가 증가하고 있다. 또한, 에너지 효율화 및 환경 규제 강화에 따라, 자동차, 항공기 등의 용도에서도, 합성 윤활유의 사용이 증가하고 있다.
자동차 분야에서는, 엔진오일, 브레이크유, 윤활 그리스 등의 윤활유가 사용되고, 특히 엔진오일로는 2행정 오일, 4행정 오일, 기어 오일 등의 윤활유가 사용되고 있다. 항공기 분야에서는, 터빈오일, 피스톤 엔진오일, 유압유, 윤활 그리스 등의 윤활유가 사용된다. 한편, 산업 분야에서는, 가스터빈오일, 기어오일, 베어링 및 순환 오일, 압축기 오일, 유압오일, 금속작업 유체, 열전단 및 절연 오일, 윤활그리스 등의 윤활유가 사용된다. 상기 윤활유들은 각각의 용도에 따라 다양한 특성을 필요로 한다. 근래에는, 내연기관의 고성능화 및 고출력화에 따라, 내연기관 부품의 내마모성, 내열성, 내 슬러지(sludge)성, 윤활유 소비특성, 연비성 등의 특성이 우수한 윤활유가 요구되고 있다. 특히, 내연기관의 내구성을 향상시키기 위하여, 윤활유의 증발손실 및 전단에 기인하는 윤활유의 저점도화를 방지할 필요가 있다. 또한, 연비를 향상시키기 위해서도, 윤활유의 저온 점도를 증가시킬 필요가 있다. 따라서, 그리스용 윤활유, 엔진오일, 기어오일, 작동오일 등에 있어서는, 긴 수명, 즉, 저증발성과 저온 점도가 우수한 윤활유가 필요하다.
자동차용 기어오일 또는 엔진오일, 산업용 윤활유 또는 작동오일 등으로 사용되는 합성 윤활유로는 폴리-알파-올레핀(poly-α-olefin: PAO)이 주로 사용되고 있다(미국특허 3780128호, 미국특허 4032591호, 일본 특개평 1-163136호 등 참조). 이러한 폴리-알파-올레핀은, 산 촉매의 존재 하에서, 고급 알파-올레핀을 올리고머화(oligomerization)하여 얻을 수 있으나, 원재료인 선형 알파 올레핀(Linear Alpha Olefin: LAO)의 가격이 비싸다는 단점이 있다. 한편, 일본 특허공개 1982-117595호에는, 에틸렌과 알파-올레핀을 공중합하여, 점도지수, 산화 안정성, 전단 안정성, 내열성 등의 특성이 우수한 합성 윤활유의 제조 방법이 개시되어 있다. 상기 에틸렌과 알파-올레핀의 공중합에 있어서는, 일반적으로 1세대 촉매로 알려진, 티타늄(Titanium) 화합물과 유기 알루미늄 화합물로 구성된 촉매 조성물이 사용되었다. 상기 티타늄 화합물 촉매는 촉매 활성이 크지만, 얻어진 공중합체의 분자량 분포가 넓고, 불규칙성이 낮은 특징을 가진다. 따라서, 윤활유, 윤활유 첨가제, 연료유 첨가제 등으로 유용한 고인화점의 제품이 얻어지기 어렵고, 고점도 제품의 경우, 가격이 비싸, 실용적이지 못한 단점이 있다. 또한, 미국 특허 5,767,331호에는 바나듐(vanadium) 화합물과 유기 알루미늄(aluminum) 화합물로 이루어진 바나듐계 촉매 조성물을 이용하여 에틸렌과 알파-올레핀, 특히, 에틸렌과 프로필렌을 공중합하는 방법이 개시되어 있다. 상기 바나듐계 촉매 조성물을 사용하여 얻은 공중합체는 분자량 분포가 좁고, 균일성이 우수하지만, 일반적으로 중합 활성이 매우 낮고, 다량의 촉매 슬러지가 생성되므로, 추가척인 탈촉매 공정이 필요한 단점이 있다. 이는 지글러-나타 촉매와 같은 1세대 촉매들의 공통된 문제점이다. 또한, 일본 특개소 61-221207호, 특공평 7-121969호 등에는, 지르코노센 등의 메탈로센(metallocene) 화합물과 유기 알루미늄 옥시(aluminum oxy) 화합물로 구성된 촉매 시스템을 이용하여, 높은 중합 활성으로 공중합체를 제조하는 방법이 개시되어 있고, 일본 특허 2796376호에는 특정 메탈로센 촉매와 유기 알루미늄 옥시 화합물로 이루어진 촉매 시스템을 이용하여, 에틸렌과 알파-올레핀을 공중합하여, 합성 윤활유를 제조하는 방법이 개시되어 있다.
이와 같은 지글러-나타 촉매 등의 1세대 촉매의 단점을 해소하기 위하여, 비스-인데닐 메탈로센 촉매의 사용이 시도되었다. 상기 비스-인데닐 메탈로센 촉매는 좀 더 균질한(유사-랜덤) 사슬 조성물을 형성하지만, 순수한 라세믹 비스-인데닐 촉매는 제조가 어려워, 고가일 뿐만 아니라, 순수한 촉매가 얻어지더라도, 촉매의 일부가 메소 유도체로 전환되는 것을 피할 수 없다. 또한, 상기 촉매는, 2,1-삽입이 일어난 후, 금속 중심에서 입체 장애가 증가하기 때문에, 생성되는 중합체의 분자량이 낮아지는 문제도 있다. 또한, 상기 촉매는, 에틸렌의 반응성만 증가시키고, 상기 촉매를 사용하여 생성된 랜덤 공중합체는 불포화 이중결합을 함유하므로, 합성 윤활유의 열안정성 및 내구성을 저하시킨다. 따라서, 상기 촉매를 사용할 경우, 수소를 이용하여, 불포화 이중결합을 제거하는 수첨 공정이 추가적으로 수행되어야 하는 단점이 있다. 또한, 문헌 Angew. Chem. Int. Ed. 1998, Vol. 37, No. 7, p 922-925 (Leclerc 및 Waymouth)에는, 시클로펜타디엔 리간드(Cp) 및 플루오렌 리간드(Flu)를 가진 메탈로센 화합물을 이용하여 에틸렌과 프로필렌을 공중합하는 방법이 개시되어 있다. 특히, 상기 문헌은 치환되지 않은 Cp, 3-메틸 Cp, 3-tert-부틸 Cp 및 3,4-디메틸 Cp 리간드를 포함하는 지르코늄 메탈로센 촉매를 개시하고 있지만, 상기 촉매는 유사-랜덤 중합체 제조에만 부분적으로 유용하며, 상기 촉매로 제조된 중합체에는 상당한 정도의 랜덤화가 존재한다.
이와 같이 메탈로센 촉매는 다양한 중합 공정에 유용하다는 것이 공지되어 있으나, 현재까지 에틸렌과 프로필렌이 번갈아 동일하게 반응하는 정도의 우수한 랜덤 특징을 가지는 올레핀 공중합체의 제조 방법은 알려져 있지 않다. 따라서, 랜덤 올레핀 공중합체의 개선된 제조 방법이 요구되고 있다. 또한, 근래에는, 환경 문제, 저연비화, 에너지 절약 등을 고려하여, 내구성, 저온점도(점도 지수) 특성, 내열 및 산화 안정성 등이 우수한 PAO 또는 에틸렌/프로필렌 공중합체 등의 합성 윤활유에 대한 수요가 증대하고 있다.
본 발명의 목적은, 분자량 분포가 좁고, 균일성이 우수한 에틸렌과 알파-올레핀의 액상 랜덤 공중합체를 제공하는 것이다.
본 발명의 다른 목적은, 내열 산화 안정성 및 전단 안정성이 우수할 뿐만 아니라, 저온 점도 등의 점도 지수가 높아, 합성 윤활유로서 유용한, 에틸렌과 알파-올레핀의 액상 랜덤 공중합체를 제공하는 것이다.
본 발명의 또 다른 목적은, 상기 에틸렌과 알파-올레핀의 액상 랜덤 공중합체를 높은 중합 활성으로 제조할 수 있는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, (A) 하기 화학식 1로 표시되는 가교 메탈로센 화합물, 및 (B) (i) 유기 알루미늄 옥시 화합물 및 (ii) 상기 가교 메탈로센 화합물과 반응하여 이온쌍을 형성하는 화합물로 이루어지는 군으로부터 선택되는 하나 이상의 화합물을 포함하는 촉매 시스템의 존재 하에서, 에틸렌과 탄소수 3 내지 20의 알파-올레핀을 용액 중합하는 단계를 포함하는 에틸렌과 알파-올레핀 액상 랜덤 공중합체의 제조 방법을 제공한다.
[화학식 1]
Figure PCTKR2013010392-appb-I000001
상기 화학식 1에서, R1, R2, R3, R4, R5, R8, R9 및 R12는 각각 독립적으로 수소 원자, 탄화수소기 또는 규소 함유 탄화수소기로서, 인접하는 기들이 서로 연결되어 고리 구조를 형성할 수 있고, R6 및 R11은 서로 동일한 것으로서, 수소 원자, 탄화수소기, 또는 규소 함유 탄화수소기이고, R7 및 R10은 서로 동일한 것으로서, 수소 원자, 탄화수소기, 또는 규소 함유 탄화수소기이며, R6 및 R7은 탄소수 2 내지 3의 탄화수소로 연결되어 고리 구조를 형성할 수 있고, R11 및 R10은 탄소수 2 내지 3의 탄화수소로 연결되어 고리 구조를 형성할 수 있으며, R6, R7, R10 및 R11은 동시에 수소 원자가 아니며; Y는 탄소 원자 또는 규소 원자이고; R13 및 R14는 각각 독립적으로 아릴(aryl)기이고; M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이며; Q는 각각 독립적으로 할로겐, 탄화수소기, 음이온 배위자 또는 고립 전자쌍으로 배위될 수 있는 중성 배위자이고; j는 1~4의 정수이다.
또한, 본 발명은, (1) 에틸렌 단위 60 내지 40 몰% 및 탄소수 3 내지 20의 알파-올레핀 단위 40 내지 60 몰%로 이루어지고, (2) 겔투과크로마토그래피(GPC)에 의해 측정한 수평균 분자량(Mn)이 500 내지 10,000 이고, 분자량 분포(Mw/Mn, Mw는 중량평균 분자량)가 3 이하이며, (3) 100 ℃에서의 동점도(Kinematic Viscosity)가 30 내지 5,000 이며, (4) 유동점(Pour point)이 30 내지 -45 ℃ 이며, (5) 브롬수(Bromine Number)가 0.1 이하인, 에틸렌과 알파-올레핀의 액상 랜덤 공중합체를 제공한다.
본 발명에 따른 에틸렌과 알파-올레핀의 액상 랜덤 공중합체는, 분자량 분포가 좁고, 균일성이 우수하고, 내열 산화 안정성 및 전단 안정성이 우수할 뿐만 아니라, 저온 점도 등의 점도 지수가 높아, 합성 윤활유로서 유용하다. 또한, 본 발명에 따른 중합 방법에 의하면, 특정 메탈로센 화합물과 유기 알루미늄 옥시 화합물 및/또는 메탈로센 화합물과 반응하여 이온쌍을 형성하는 이온성 화합물로 이루어진 촉매 시스템을 사용함으로써, 촉매 활성이 높고, 슬러지 생성이 적을 뿐만 아니라, 종래 달성하지 못한 높은 중합 활성으로, 에틸렌 및 알파-올레핀 액상 랜덤 공중합체를 제조할 수 있다.
이하, 본 발명을 상세히 설명한다.
본 발명에 따른 에틸렌과 알파-올레핀 액상 랜덤 공중합체의 제조 방법에 있어서는, 공중합체 사슬 중에, 알파-올레핀 단위가 균일하게 분포되도록, 싱글 사이트(single site) 촉매 시스템이 이용된다. 본 발명에 따른 에틸렌과 알파-올레핀 액상 랜덤 공중합체의 제조 방법은, (A) 하기 화학식 1로 표시되는 가교 메탈로센 화합물, 및 (B) (i) 유기 알루미늄 옥시 화합물 및 (ii) 상기 가교 메탈로센 화합물과 반응하여 이온쌍을 형성하는 화합물로 이루어지는 군으로부터 선택되는 하나 이상의 화합물을 포함하는 촉매 시스템의 존재 하에서, 에틸렌과 탄소수 3 내지 20의 알파-올레핀을, 용액 중합하는 단계를 포함한다.
화학식 1
Figure PCTKR2013010392-appb-C000001
상기 화학식 1에서, R1, R2, R3, R4, R5, R8, R9 및 R12는 각각 독립적으로 수소 원자, 탄화수소기 또는 규소 함유 탄화수소기로서, 인접하는 기들이 서로 연결되어 고리 구조를 형성할 수 있고, R6 및 R11은 서로 동일한 것으로서, 수소 원자, 탄화수소기, 또는 규소 함유 탄화수소기이며, R7 및 R10은 서로 동일한 것으로서, 수소 원자, 탄화수소기, 또는 규소 함유 탄화수소기이며, 필요에 따라, R6 및 R7은 탄소수 2 내지 3의 탄화수소로 연결되어 고리 구조를 형성할 수 있고, R11 및 R10은 탄소수 2 내지 3의 탄화수소로 연결되어 고리 구조를 형성할 수 있으며, R6, R7, R10 및 R11은 동시에 수소 원자가 아니며; Y는 탄소 원자 또는 규소 원자이고; R13 및 R14는 각각 독립적으로 아릴(aryl)기이고; M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고, 바람직하게는 Zr이며; Q는 각각 독립적으로 할로겐, 탄화수소기, 음이온 배위자 또는 고립 전자쌍으로 배위될 수 있는 중성 배위자이고; j는 1~4의 정수이다. 여기서, 상기 탄화수소기는 탄소수 1 내지 20, 바람직하게는 탄소수 1 내지 15, 더욱 바람직하게는 탄소수 4 내지 10의 탄화수소기, 예를 들면, 알킬기, 아릴기 등을 의미하고, 아릴기는 탄소수 4 내지 20, 바람직하게는 탄소수 6 내지 15의 아릴기를 의미하고, 상기 규소 함유 탄화수소기의 예로는 1 내지 4개의 규소 원자를 포함하는 탄소수 3 내지 20의 알킬 또는 아릴 실릴기를 예시할 수 있고, 구체적으로는, 트리메틸실릴기, Tert-부틸디메틸실릴기, 트리페닐실릴기 등을 예시할 수 있다.
상기 화학식 1로 표시되는 가교 메탈로센 화합물에 있어서, 시클로펜타디에닐기는 치환된 또는 비치환된 시클로펜타디에닐기일 수 있다. 상기 화학식 1로 표시되는 메탈로센 화합물에 있어서, (i) 시클로펜타디에닐기에 결합된 치환기(R1, R2, R3 및 R4)의 어느 하나 이상이 탄화수소기인 것이 바람직하고, (ii) 상기 치환기(R1, R2, R3 및 R4)의 어느 하나 이상이 탄소수 4 이상의 탄화수소기이면 더욱 바람직하며, (iii) 상기 시클로펜타디에닐기의 3 위치에 결합된 치환기(R2 또는 R3)가 탄소수 4 이상의 탄화수소기(예를 들면, n-부틸기)이면 가장 바람직하다. 상기 R1, R2, R3 및 R4의 둘 이상이 치환기인 경우(즉, 수소 원자가 아닌 경우)에는, 상기 치환기들은 동일하거나 다를 수 있으며, 적어도 하나의 치환기는 탄소수 4 이상의 탄화수소기인 것이 바람직하다. 상기 화학식 1로 표시되는 메탈로센 화합물에 있어서, 플루오레닐기에 치환(결합)된 R6 및 R11은 서로 동일하고, R7 및 R10도 서로 동일하지만, R6, R7, R10 및 R11이 모두 수소 원자는 아니다. 폴리-알파-올레핀의 고온 용액 중합에 있어서, 중합 활성을 향상시키기 위해서는, R6 및 R11이 모두 수소 원자가 아닌 것이 바람직하고, R6, R7, R10 및 R11 이 모두 수소 원자가 아니면 더욱 바람직하다. 예를 들면, 플루오레닐기의 2 및 7 위치에 결합된 R6 및 R11은 동일한 탄소수 1 내지 20의 탄화수소기로서, 바람직하게는 모두 tert-부틸기이고, R7 및 R10도 동일한 탄소수 1 내지 20의 탄화수소기로서, 바람직하게는 모두 tert-부틸기이다.
시클로펜타디에닐기와 플루오레닐기를 연결하는 주쇄부(결합부) Y는, 화학식 1로 표시되는 가교 메탈로센 화합물에 입체 강성을 부여하는 구조적 가교부로서, 하나의 탄소 원자 또는 규소 원자로 이루어진 2가의 공유결합 가교부이다. 상기 공유결합 가교부의 가교 원자 Y는 동일하거나 다른 2개의 아릴기(R13 및 R14)를 가진다. 따라서, 상기 시클로펜타디에닐기와 플루오레닐기는 아릴기 함유 공유 결합 가교부에 의하여 연결된다. 상기 아릴기로는 페닐기, 나프틸기, 안트라세닐기, 이들의 방향족 수소(sp2형 수소)의 하나 이상이 치환기로 치환된 아릴기 등을 예시할 수 있다. 상기 아릴기에 치환되는 치환기로는, 탄소수 1 내지 20의 탄화수소기, 탄소수 1 내지 20의 규소 함유기, 할로겐 원자 등을 예시할 수 있으며, 바람직하게는 페닐기이다. 상기 화학식 1로 표시되는 가교 메탈로센 화합물에 있어서, 제조의 용이성 측면에서, R13 및 R14는 서로 동일한 것이 바람직하다.
상기 화학식 1로 표시되는 가교 메탈로센 화합물에 있어서, Q는 할로겐 원자 또는 탄소수 1 내지 10의 탄화수소기인 것이 바람직하다. 상기 할로겐 원자는 불소, 염소, 브롬 또는 요오드이고, 상기 탄소수 1 내지 10의 탄화수소기로는 메틸, 에틸, n-프로필, 이소프로필, 2-메틸프로필, 1,1-디메틸프로필, 2,2-디메틸프로필, 1,1-디에틸프로필, 1-에틸-1-메틸프로필, 1,1,2,2-테트라메틸프로필, sec-부틸, tert-부틸, 1,1-디메틸부틸, 1,1,3-트리메틸부틸, 네오펜틸, 시클로헥실메틸, 시클로헥실, 1-메틸-1-시클로헥실 등을 예시할 수 있다. 또한, j 가 2 이상의 정수일 경우에는, Q는 동일하거나 다를 수 있다
본 발명의 촉매 시스템에 포함되는, 상기 (i) 유기 알루미늄 옥시 화합물로는 통상의 알루미녹산을 사용할 수 있으며, 예를 들면, 하기 화학식 2 내지 5로 표시되는 선형 또는 고리형 알루미녹산을 사용할 수 있다. 상기 유기 알루미늄 옥시 화합물 중에는, 약간의 유기 알루미늄 화합물이 혼입되어 있어도 무방하다
화학식 2
Figure PCTKR2013010392-appb-C000002
화학식 3
Figure PCTKR2013010392-appb-C000003
화학식 4
Figure PCTKR2013010392-appb-C000004
상기 화학식 2 내지 4에서, R은 각각 독립적으로 탄소수 1 내지 10 의 탄화수소기이고, Rx은 각각 독립적으로 탄소수 2 내지 20 의 탄화수소기이며, m 및 n은 각각 독립적으로, 2 이상, 바람직하게는 3 이상, 더욱 바람직하게는 10 내지 70의 정수, 가장 바람직하게는 10 내지 50의 정수를 나타낸다.
화학식 5
Figure PCTKR2013010392-appb-C000005
상기 화학식 5에 있어서, Rc는 탄소수 1 내지 10 의 탄화수소기고, Rd는 각각 독립적으로 수소 원자, 할로겐원자 또는 탄소수 1 내지 10 의 탄화수소기를 나타낸다.
상기 화학식 2 또는 3에 있어서, R이 메틸기(Me)인 유기 알루미늄 옥시 화합물을 통상 '메틸알루미녹산'이라 한다. 상기 메틸알루미녹산은 구입이 용이하고, 중합 활성이 높으므로, 폴리올레핀의 중합에 일반적으로 사용되는 활성체이지만, 포화 탄화수소에 용해되기 어려우므로, 환경적으로 바람직하지 못한 톨루엔, 벤젠 등의 방향족 탄화수소 용액으로서 사용되고 있다. 따라서, 최근에는, 포화 탄화수소에 용해되는 알루미녹산으로서, 상기 화학식 4로 표시되는 메틸알루미녹산 유연체가 개발되어 사용되고 있다. 상기 화학식 4로 표시되는 수식 메틸알루미녹산은, 미국특허 4960878호, 미국특허 5041584호 등에 개시된 바와 같이, 트리메틸알루미늄과 트리메틸알루미늄 이외의 알킬알루미늄을 사용하여 제조된다. 예를 들면, 트리메틸알루미늄과 트리이소부틸알루미늄을 사용하여 제조되며, Rx가 이소부틸기인 알루미녹산이, 포화 탄화수소 용액의 형태로, MMAO, TMAO 등의 상품명으로 시판되고 있다(토소파인켐사, 「토소 연구기술 보고」 제47권, 55, (2003) 참조).
본 발명의 촉매 시스템에 포함되는, 상기 (ii) 가교 메탈로센 화합물과 반응하여 이온쌍을 형성하는 화합물(이하, 필요에 따라, '이온성 화합물'라고 한다)로는, 국내 특허등록 10-551147호, 일본 공개특허 평1-501950호, 일본 공개특허 평1-502036호, 일본 공개특허 평3-179005호, 일본 공개특허 평3-179006호, 일본 공개특허 평3-207703호, 일본 공개특허 평3-207704호, 미국특허 5321106호 등에 기재된 루이스산, 이온성 화합물, 보란 화합물, 카르보란 화합물 등을 사용할 수 있고, 필요에 따라, 헤테로폴리 화합물, 이소폴리 화합물 등을 사용할 수도 있으며, 일본 공개특허 2004-51676호에 개시된 이온성 화합물을 사용할 수도 있다. 상기 이온성 화합물은 단독 또는 2종 이상 혼합하여 사용할 수 있다. 구체적으로, 상기 루이스산으로는 BR3 (R은 불소, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기(메틸기 등), 치환 또는 비치환된 탄소수 6 내지 20의 아릴기(페닐기 등) 등임)로 표시되는 화합물을 예시할 수 있고, 예를 들면 트리플루오로보론, 트리페닐보론, 트리스(4-플루오로페닐)보론, 트리스(3,5-디플루오로페닐)보론, 트리스(4-플루오로메틸페닐)보론, 트리스(펜타플루오로페닐)보론, 트리스(p-톨릴)보론 등을 예시할 수 있다. 상기 이온성 화합물은, 유기 알루미늄 옥시 화합물과 비교하여, 그 사용량이 작고, 슬러지의 생성량도 작으므로, 경제적으로 유리한 장점이 있다. 본 발명에 있어서, 상기 이온성 화합물로는 하기 화학식 6로 표시되는 화합물을 사용하는 것이 특히 바람직하다.
화학식 6
Figure PCTKR2013010392-appb-C000006
상기 화학식 6에서, Re+는 H+, 카르베늄(carbenium) 양이온, 옥소늄 양이온, 암모늄 양이온, 포스포늄 양이온, 시클로헵틸트리에닐 양이온, 전이금속을 갖는 페로세늄(ferroceniun) 양이온 등이고, Rf 내지 Ri 는 각각 독립적으로 유기기, 바람직하게는 탄소수 1 내지 20의 탄화수소기, 더욱 바람직하게는 아릴기, 예를 들면, 펜타플로오로페닐기이다. 상기 카르베늄 양이온으로는, 구체적으로는 디메틸아닐리늄, 트리스(메틸페닐)카르베늄 양이온, 트리스(디메틸페닐)카르베늄 양이온 등을 예시할 수 있다.
또한, 본 발명에 사용되는 촉매 시스템은, 필요에 따라, (C) 유기 알루미늄 화합물을 더욱 포함할 수 있다. 상기 (C) 유기 알루미늄 화합물은 상기 가교 메탈로센 화합물, 유기 알루미늄 옥시 화합물, 이온성 화합물 등을 활성화시키는 역할을 한다. 상기 (C) 유기 알루미늄 화합물로는, 바람직하게는, 하기 화학식 7로 표시되는 유기 알루미늄, 하기 화학식 8로 표시되는 제1족 금속과 알루미늄의 착알킬화합물 등을 사용할 수 있다.
[화학식 7]
Ra mAl(ORb)nHpXq
상기 화학식 7에서, Ra 및 Rb는 각각 독립적으로 탄소수 1 내지 15, 바람직하게는 탄소수 1 내지 4의 탄화수소기이고, X는 할로겐 원자이고, m은 0<m≤3, n은 0≤n<3, p는 0<p≤3, q는 0≤q<3 의 정수이고, m+n+p+q = 3 이다.
[화학식 8]
M2AlRa 4
상기 화학식 8에서, M2 는 Li, Na 또는 K를 나타내고, Ra 는 탄소수 1 내지 15, 바람직하게는 탄소수 1 내지 4의 탄화수소기를 나타낸다.
상기 화학식 7로 표시되는 유기 알루미늄 화합물로는 트리메틸알루미늄, 트리이소부틸알루미늄 등을 예시할 수 있고, 이들은 입수가 용이한 장점이 있다. 상기 화학식 8로 표시되는 제1족 금속과 알루미늄의 착알킬화합물의 구체적인 예로는 LiAl(C2H5)4, LiAl(C7H15)4 등을 예시할 수 있다. 또한, 상기 화학식 7로 표시되는 화합물과 유사한 화합물도 사용할 수도 있고, 예를 들어, (C2H5)2AlN(C2H5)Al(C2H5)2 등과 같이, 질소 원자를 통해 2 이상의 알루미늄 화합물이 결합한 유기 알루미늄 화합물을 사용할 수도 있다.
본 발명에 따른 에틸렌과 알파-올레핀 액상 랜덤 공중합체의 제조 방법에 있어서, 상기 (A) 화학식 1로 표시되는 가교 메탈로센 화합물의 사용량은 전체 촉매 조성물에 대하여 5 내지 50 중량%인 것이 바람직하다. 또한, 상기 (B) (i) 유기 알루미늄 옥시 화합물의 사용량은 상기 가교 메탈로센 화합물의 사용 몰수에 대하여 50 내지 500 당량이고, (B) (ii) 가교 메탈로센 화합물과 반응하여 이온쌍을 형성하는 화합물의 사용량은 가교 메탈로센 화합물의 사용 몰수에 대하여 1 내지 5 당량 이며, 상기 (C) 유기 알루미늄 화합물의 사용량은 가교 메탈로센 화합물의 사용 몰수에 대하여 5 내지 100 당량인 것이 바람직하다. 여기서, 상기 (A) 메탈로센 화합물의 사용량이 너무 작으면, 중합 개시가 진행되지 않아 공중합이 불충분하게 진행될 우려가 있고, 너무 크면, 특별한 이익이 없이, 경제적으로 불리하고, 높은 중합열로 에틸렌과 알파-올레핀의 반응성 차이에 의해 균질한(유사-랜덤) 사슬 조성물을 생성하지 못하며, 과량의 메탈 성분에 의해 공중합체의 투명도가 저하될 우려가 있다. 또한, 상기 (i) 유기 알루미늄 옥시 화합물 및/또는 (ii) 가교 메탈로센 화합물과 반응하여 이온쌍을 형성하는 화합물의 사용량이 너무 작으면, 반응성이 감소하여 수율이 저하될 우려가 있고, 너무 크면, 특별한 이익이 없이, 조촉매 가격 상승에 의해 경제적으로 불리하다. 또한, 상기 (C) 유기 알루미늄 화합물의 사용량이 너무 작으면, 반응성이 감소하여 수율이 저하될 우려가 있으며, 너무 크면, 단가의 상승으로 인한 경제성 문제와 함께 알루미늄 부산물에 의한 슬러지의 형성으로 분리가 곤란하게 될 우려가 있다.
본 발명에 사용되는 촉매 시스템은, 예를 들면, 하기 [1] 내지 [4]의 구성을 가질 수 있다.
[1] (A) 화학식 1로 표시되는 가교 메탈로센 화합물, 및 (B) (i) 유기 알루미늄 옥시 화합물
[2] (A) 화학식 1로 표시되는 가교 메탈로센 화합물, (B) (i) 유기 알루미늄 옥시 화합물, 및 (C) 유기 알루미늄 화합물
[3] (A) 화학식 1로 표시되는 가교 메탈로센 화합물, (B) (ii) 가교 메탈로센 화합물과 반응하여 이온쌍을 형성하는 화합물, 및 (C) 유기 알루미늄 화합물
[4] (A) 화학식 1로 표시되는 가교 메탈로센 화합물, 및 (B) (i) 유기 알루미늄 옥시 화합물과 (ii) 가교 메탈로센 화합물과 반응하여 이온쌍을 형성하는 화합물
상기 (A) 화학식 1로 표시되는 가교 메탈로센 화합물, (B) (i) 유기 알루미늄 옥시 화합물, (ii) 가교 메탈로센 화합물과 반응하여 이온쌍을 형성하는 화합물, 및/또는 (C) 유기 알루미늄 화합물은, 원료 단량체(에틸렌과 탄소수 3 내지 20의 알파-올레핀 혼합물)에 대하여, 임의의 순서로 투입될 수 있다. 예를 들면, 원료 단량체가 충진된 중합 반응기에, 성분 (A), (B) 및/또는 (C)가 각각 단독으로 임의의 순서로 투입하거나, 필요에 따라, 성분 (A), (B) 및/또는 (C)의 2개 이상을 미리 혼합하고, 혼합된 촉매 조성물을, 원료 단량체가 충진된 중합 반응기에 투입할 수도 있다.
본 발명에 따른 에틸렌과 알파-올레핀의 액상 랜덤 공중합체는, 상기 촉매 시스템의 존재 하에서, 에틸렌과 탄소수 3 내지 20의 알파-올레핀을 용액 중합하여 제조된다. 상기 탄소수 3 내지 20의 알파-올레핀으로는, 프로필렌, 1-부텐, 1-펜텐, 1-헥센 등의 직쇄상 알파-올레핀, 이소부틸렌, 3-메틸-1부텐, 4-메틸-1-펜텐 등의 분기쇄상 알파-올레핀, 이들의 혼합물 등을 단독 또는 혼합하여 사용할 수 있고, 바람직하게는 탄소수 3 내지 6의 알파-올레핀을 1종 이상, 더욱 바람직하게는 프로필렌을 사용할 수 있다. 상기 용액 중합은, 프로판, 부탄, 펜탄, 헥산 등의 비활성 용매 또는 올레핀 단량체 자체를 매질로 사용하여 수행될 수 있다. 본 발명에 따른 에틸렌과 알파-올레핀의 공중합에 있어서, 중합 온도는 반응 물질, 반응 조건 등에 따라 달라질 수 있으나, 일반적으로 80 내지 150 ℃, 바람직하게는 90 내지 120℃ 이고, 중합 압력은 대기압 내지 500 kg/㎠, 바람직하게는 대기압 내지 50 kg/㎠ 이다. 상기 중합은 배치식, 반연속식 또는 연속식으로 수행될 수 있으며, 바람직하게는 연속식으로 수행된다. 여기서, 상기 중합 온도가 너무 낮으면 고분자량의 공중합체가 형성될 우려가 있고, 너무 높으면 열안정성에 의해 촉매 활성이 감소될 우려가 있다.
본 발명에 따라 중합된 에틸렌과 알파-올레핀의 액상 랜덤 공중합체는, 에틸렌과 탄소수 3 내지 20의 알파-올레핀이 공중합되어 형성된, 상온에서 액상인 랜덤 공중합체로서, 공중합체 사슬 중에, 알파-올레핀 단위가 균일하게 분포되는 구조를 가진다. 본 발명에 따른 공중합체는, 에틸렌으로부터 유도된 에틸렌 단위 40 내지 60 몰%, 바람직하게는 45 내지 55 몰%, 및 탄소수 3 내지 20의 알파-올레핀으로부터 유도된 탄소수 3 내지 20의 알파-올레핀 단위 40 내지 60 몰%, 바람직하게는 45 내지 55 몰%로 이루어진다. 본 발명에 다른 공중합체에 있어서, 상기 에틸렌 단위의 함량이 40 몰% 미만인 경우, 프로필렌 등의 함량이 증가하여, 액상 공중합체가 형성되지 않을 우려가 있고, 60 몰%를 초과하는 경우, 에틸렌의 함량이 과도하게 증가하여, 액상 공중합체의 형성이 어렵거나, 합성 윤활유로서 부적합하게 될 우려가 있다.
본 발명에 따른 공중합체는, 수평균 분자량(Mn)이 500 내지 10,000, 바람직하게는 800 내지 6,000 이고, 분자량 분포(Mw/Mn, Mw는 중량평균 분자량)가 3 이하, 바람직하게는 2 이하이다. 상기 수평균 분자량(Mn)이 너무 작으면, 휘발성이 과도하게 증가하여, 증발 손실에 의해 합성 윤활유로서 적합하지 않으며, 너무 크면, 동점도가 상승하여, 왁시(waxy)하게 되거나, 고상 공중합체가 형성되어 저온 점도가 상승하고, 따라서, 합성 윤활유로서 부적합하게 될 우려가 있다. 또한, 상기 분자량 분포(Mw/Mn)가 너무 크면, 공중합체의 전단 안정성이 감소할 우려가 있다. 상기 수평균 분자량(Mn) 및 분자량 분포(Mw/Mn)는 겔투과크로마토그래피(GPC, Gel permeation chromatography)에 의해 측정된 값이다.
또한, 본 발명에 따른 공중합체는, 100 ℃에서의 동점도(Kinematic Viscosity)가 30 내지 5,000, 바람직하게는 50 내지 3,000 이며, 유동점(Pour point)이 30 내지 -45℃, 바람직하게는 20 내지 -35 ℃ 이며, 브롬수(Bromine Number)가 0.1 이하이다. 여기서, 상기 동점도가 너무 작으면, 기어오일, 터빈오일 등 고점도의 윤활 제품으로 적용할 수 없는 문제가 있고, 너무 크면, 유동성이 거의 없어 윤활유로서 적합하지 못한 문제가 있다. 상기 유동점이 너무 낮으면(-45℃ 이하), 중합이 용이하지 않고, 너무 크면, 저온에서의 유동성이 과도하게 저하되는 문제가 있다. 또한, 상기 브롬수가 0.1을 초과 하면, 공중합체에 잔류하는 불포화 이중 결합에 의해, 화학적 안정성이 저하되고 반응성이 높아, 이물질이 생성되기 쉽고, 윤활유의 색상이 변하는 황변 현상을 수반할 수 있다. 또한 공중합체의 열적 안정성, 산화 안정성, 내부식성 등이 감소하고, 기계적, 물리적 안정성이 저하되어, 장기간 사용 시 점도 저하로 인해, 윤활유로서의 기능을 수행할 수 없어, 윤활유로서의 수명이 저하된다.
본 발명에 따라 제조된 액상 에틸렌 및 알파-올레핀 공중합체는, 단량체들이 공중합체 분자의 길이 전체에 고르게 분포되어 있고, 조성 및 분자량 분포가 좁고, 균일성이 우수하며, 이중결합의 분포가 적어, 높은 점도지수, 저온 점도특성, 전단 및 열 안정성, 내구성 등을 필요로 하는 합성 윤활유로서 특히 유용하다
이하, 본 발명의 구체적인 실시예 및 비교예를 제시하지만, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다. 본 명세서에 있어서, 각종 물성의 측정법은 다음과 같다.
1. 에틸렌 함량 및 말단 불포화기 함량(Ethylene content and content of unsaturated group at molecular one ends) 측정
샘플 튜브에 테트라클로로에탄(tetrachloroethane-d4. Acros, 99.8 atom% D) 용매와 10 중량%의 에틸렌 및 알파-올레핀 공중합체를 넣고, Avance III 500 MHz, Bruker Biospin 핵자기 공명 장치를 사용하여, 펄스폭 45° 및 펄스 반복시간 10초의 조건에서, 1H-NMR 및 13C-NMR 분광 스펙트럼을 얻어, 공중합체 중의 에틸렌 함량 및 공중합체 말단의 불포화 결합의 양을 측정하였다. 1H-NMR은 상온에서 측정하였고, 13C-NMR은 50 ℃에서 측정하였다.
2. 수평균 분자량 및 분자량 분포(Average Molecular Weight/Molecular Weight Distribution) 측정
GPC (VE2001, Viscotek 제품)를 이용하여 수평균 분자량 및 분자량 분포를 측정하였다. GPC 측정에 있어서, 내부 직경 7.5 mm 및 길이 300 mm의 PLgel 5 μm Mixed-D 컬럼을 사용하였으며, 측정 온도는 35 ℃였고, 용매(이동상, mobile phase)로는 테트라히드로퓨란(THF, Burdick and Jackson, HPLC grade)을 사용하였다. 이동상은 1 ml/min의 속도로 공급되었고, 샘플 농도는 9.26 중량%, 샘플 주입량은 약 100 μL였다. 검출기로서 차등 굴절계(differential refractometer)가 사용되었으며, 피크들은 데이터 프로세서 OmniSEC 4.6 (data processor manufactured by Viscotek)으로 분리되었다.
3. 동점도/점도지수(Kinematic Viscosity/Viscosity Index) 측정
일본 라우다 PV15를 이용하여, ASTM D 445에 따라 100 ℃ 및 40 ℃에서의 공중합체의 동점도를 측정하였고, ASTM D2270에 따라 점도 지수를 측정하였다.
4. 유동점(Pour Point): 일본 타나카 사이언스 MPC 102L(오일 온도: -40℃)를 사용하여, ASTM D 6749에 따라 저온 유동점을 측정하였다.
5. 인화점(Flash Point), 브로값(Bromine Index) 및 외관(Appearance): ASTM D 92에 따라, Cleveland Open Cup 방법으로 인화점을 측정하였고, ASTM D1559에 따라 브롬값을 측정하였으며, 공중합체의 외관을 육안으로 관찰하여, 탁함이 없는 것을 양호한 것으로 판단하였다.
[실시예 1] 에틸렌과 알파-올레핀의 공중합체의 제조
A. 촉매 용액 조제: 질소로 충진된 유리 플라스크에, 디페닐메틸렌{η5-(3-n-부틸시클로펜타디에닐)}{η5-(2,7-디-tert-부틸플루오레닐)}지르코늄디클로라이드(Diphenylmethylene(3-n-butyl-cyclopentadienyl)(2,7-di-tert-butylfluoren yl)Zirconium dichloride) 0.15 mmol, 디메틸아닐리늄 테트라(펜타플로오로페닐)붕소(Dimethlylanilium (tetrakis pentafluorophenyl) Borate) 0.2 mmol, 트리이소부틸알루미늄 8 mmol, 및 톨루엔을 혼합하여, 120 ml의 촉매 용액을 제조하였다.
B. 중합: 질소로 충진된 스테인리스 오토클레이브(내용적: 1.1L)에 헥산 375 mL를 주입하고, 반응계의 온도를 70 ℃로 승온시킨 후, 단계 A에서 제조한 촉매 용액 15 mL를 첨가하였다. 다음으로, 에틸렌 260 g/hr, 액상 프로필렌 12.40 mL/min, 수소 1.95 g/hr, 헥산 30 mL/min, 및 촉매 용액 0.25 mL/min를 연속적으로 투입하고, 1630 rpm으로 교반하면서, 공중합을 개시하였다. 그 후, 촉매 투입량을 감소시켜, 최종적으로 0.07 mL/min의 촉매 용액을 연속적으로 투입하고, 온도 100℃, 압력 16 Bar 를 유지하면서 공중합체를 중합하였다. 중합된 공중합체 용액을 역압력조절기를 통해 연속적으로 배출하였고, 1M 수산화나트륨 수용액과 혼합시켜 실활시켰다.
C. 중합 후 처리: 공중합체 용액과 수산화나트륨 수용액의 혼합물로부터, 수산화나트륨 수용액을 제거하고, 공중합체 용액 중의 불순물을 증류수로 추출하여 제거하였다. 다음으로, 공중합체 용액을, 100 ℃ 및 감압 하에서 30 분간 농축하고, 230 ℃ 및 감압 하에서, 30 분간 건조하여, 에틸렌-프로필렌 공중합체 435 g을 얻었다. 공중합체의 중합 조건을 표 1에 나타내었으며, 얻어진 공중합체의 물성을 분석하여, 그 결과를 표 3 및 4에 나타내었다
[실시예 2] 에틸렌과 알파-올레핀의 공중합체의 제조
수소의 공급 속도를 0.65 g/hr으로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시하여, 에틸렌-프로필렌 공중합체 460 g을 얻었다. 공중합체의 중합 조건을 표 1에 나타내었으며, 얻어진 공중합체의 물성을 분석하여, 그 결과를 표 3 및 4에 나타내었다.
[실시예 3] 에틸렌과 알파-올레핀의 공중합체의 제조
수소의 공급 속도를 0.35 g/hr으로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시하여, 에틸렌-프로필렌 공중합체 470 g을 얻었다. 공중합체의 중합 조건을 표 1에 나타내었으며, 얻어진 공중합체의 물성을 분석하여, 그 결과를 표 3 및 4에 나타내었다.
[실시예 4] 에틸렌과 알파-올레핀의 공중합체의 제조
A. 촉매 용액 조제: 질소로 충진된 유리 플라스크에, 디페닐메틸렌{η5-(3-n-부틸시클로펜타디에닐)}{η5-(2,7-디-tert-부틸플루오레닐)}지르코늄디클로라이드 0.15 mmol, 및 메틸알루미녹산(MAO: Methylaluminoxane, albemarle社, 10% 톨루엔 용액)을 혼합하여, 120 ml의 촉매 용액을 제조하였다.
B. 중합: 질소로 충진된 스테인리스 오토클레이브(내용적: 1.1L)에 헥산 375 mL를 주입하고, 반응계의 온도를 70 ℃로 승온시킨 후, 단계 A에서 제조한 촉매 용액 15 mL를 첨가하였다. 다음으로, 에틸렌 260 g/hr, 액상 프로필렌 12.40 mL/min, 수소 1.95 g/hr, 헥산 30 mL/min, 및 촉매 용액 0.25 mL/min를 연속적으로 투입하고, 1630 rpm으로 교반하면서, 공중합을 개시하였다. 그 후, 촉매 투입량을 감소시켜, 최종적으로 0.07 mL/min의 촉매 용액을 연속적으로 투입하고, 온도 100℃, 압력 16 Bar 를 유지하면서 공중합체를 중합하였다. 중합된 공중합체 용액을 역압력조절기를 통해 연속적으로 배출하였고, 1M 수산화나트륨 수용액과 혼합시켜 실활시켰다.
C. 중합 후 처리: 공중합체 용액과 수산화나트륨 수용액의 혼합물로부터, 수산화나트륨 수용액을 제거하고, 공중합체 용액 중의 불순물을 증류수로 추출하여 제거하였다. 다음으로, 공중합체 용액을, 100 ℃ 및 감압 하에서 30 분간 농축하고, 230 ℃ 및 감압 하에서, 30 분간 건조하여, 에틸렌-프로필렌 공중합체 415 g을 얻었다. 공중합체의 중합 조건을 표 1에 나타내었으며, 얻어진 공중합체의 물성을 분석하여, 그 결과를 표 3 및 4에 나타내었다.
[실시예 5] 에틸렌과 알파-올레핀의 공중합체의 제조
수소의 공급 속도를 0.65 g/hr으로 변경한 것을 제외하고는, 비교예 1과 동일한 방법으로 실시하여, 에틸렌-프로필렌 공중합체 440 g을 얻었다. 공중합체의 중합 조건을 표 2에 나타내었으며, 얻어진 공중합체의 물성을 분석하여, 그 결과를 표 3 및 4에 나타내었다.
[실시예 6] 에틸렌과 알파-올레핀의 공중합체의 제조
수소의 공급 속도를 0.35 g/hr으로 변경한 것을 제외하고는, 비교예 1과 동일한 방법으로 실시하여, 에틸렌-프로필렌 공중합체 450 g을 얻었다. 공중합체의 중합 조건을 표 2에 나타내었으며, 얻어진 공중합체의 물성을 분석하여, 그 결과를 표 3 및 4에 나타내었다.
[비교예 1] 에틸렌과 알파-올레핀의 공중합체의 제조
A. 촉매 용액 조제: 질소로 충진된 유리 플라스크에, 디메틸실릴 비스(인데닐)지르코늄 디클로라이드(Dimethylsilylbis(indenyl)zirconium dichloride) 0.15 mmol, 및 메틸알루미녹산(MAO, albemarle社, 10% 톨루엔 용액)을 혼합하여, 120 ml의 촉매 용액을 제조하였다.
B. 중합: 질소로 충진된 스테인리스 오토클레이브(내용적: 1.1L)에 헥산 375 mL를 주입하고, 반응계의 온도를 70 ℃로 승온시킨 후, 단계 A에서 제조한 촉매 용액 15 mL를 첨가하였다. 다음으로, 에틸렌 260 g/hr, 액상 프로필렌 12.40 mL/min, 수소 1.95 g/hr, 헥산 30 mL/min, 및 촉매 용액 0.25 mL/min를 연속적으로 투입하고, 1630 rpm으로 교반하면서, 공중합을 개시하였다. 그 후, 촉매 투입량을 감소시켜, 최종적으로 0.07 mL/min의 촉매 용액을 연속적으로 투입하고, 온도 100℃, 압력 16 Bar 를 유지하면서 공중합체를 중합하였다. 중합된 공중합체 용액을 역압력조절기를 통해 연속적으로 배출하였고, 1M 수산화나트륨 수용액과 혼합시켜 실활시켰다.
C. 중합 후 처리: 공중합체 용액과 수산화나트륨 수용액의 혼합물로부터, 수산화나트륨 수용액을 제거하고, 공중합체 용액 중의 불순물을 증류수로 추출하여 제거하였다. 다음으로, 공중합체 용액을, 100 ℃ 및 감압 하에서 30 분간 농축하고, 230 ℃ 및 감압 하에서, 30 분간 건조하여, 에틸렌-프로필렌 공중합체 100 g을 얻었다. 공중합체의 중합 조건을 표 2에 나타내었으며, 얻어진 공중합체의 물성을 분석하여, 그 결과를 표 3 및 4에 나타내었다.
[비교예 2] 에틸렌과 알파-올레핀의 공중합체의 제조
수소의 공급 속도를 0.65 g/hr으로 변경한 것을 제외하고는, 비교예 4와 동일한 방법으로 실시하여, 에틸렌-프로필렌 공중합체 115 g을 얻었다. 공중합체의 중합 조건을 표 2에 나타내었으며, 얻어진 공중합체의 물성을 분석하여, 그 결과를 표 3 및 4에 나타내었다.
[비교예 3] 에틸렌과 알파-올레핀의 공중합체의 제조
수소의 공급 속도를 0.35 g/hr으로 변경한 것을 제외하고는, 비교예 4와 동일한 방법으로 실시하여, 에틸렌-프로필렌 공중합체 145 g을 얻었다. 공중합체의 중합 조건을 표 2에 나타내었으며, 얻어진 공중합체의 물성을 분석하여, 그 결과를 표 3 및 4에 나타내었다.
표 1
실시예 1 실시예 2 실시예 3 실시예 4
에틸렌, g/hr 260 260 260 260
프로필렌, g/hr 457 457 457 457
수소, g/hr 1.95 0.65 0.35 1.95
헥산, g/hr 30 30 30 30
촉매 디메틸실릴 비스(인데닐)지르코늄 디클로라이드(mg/hr) - - - -
디페닐메틸렌(3-n-부틸시클로펜타디에닐)(2,7-디-tert-부틸플루오레닐)지르코늄디클로라이드(mg/hr) 3.8 3.8 3.8 3.8
조촉매 메틸알루미녹산 (ml/hr) - - - 4.2
디메틸아닐리늄 테트라(펜타플로오로페닐)붕소 (g/hr) 5.6 5.6 5.6 -
온도 (℃) 100 100 100 100
압력 (psig) 16 16 16 16
표 2
실시예 5 실시예 6 비교예 1 비교예 2 비교예 3
에틸렌, g/hr 260 260 260 260 260
프로필렌, g/hr 457 457 457 457 457
수소, g/hr 0.65 0.35 1.95 0.65 0.35
헥산, g/hr 30 30 30 30 30
촉매 디메틸실릴 비스(인데닐)지르코늄 디클로라이드(mg/hr) - - 2.3 2.3 2.3
디페닐메틸렌(3-n-부틸시클로펜타디에닐)(2,7-디-tert-부틸플루오레닐)지르코늄디클로라이드(mg/hr) 3.8 3.8 - - -
조촉매 메틸알루미녹산 (ml/hr) 4.2 4.2 4.2 4.2 4.2
디메틸아닐리늄 테트라(펜타플로오로페닐)붕소 (g/hr) - - - - -
온도 (℃) 100 100 100 100 100
압력 (psig) 16 16 16 16 16
표 3
에틸렌(C2)함량 (mol%) Mn Mw/Mn 동점도(kinematicviscosity)at 100℃, cSt) 동점도(kinematicviscosity)at 40℃, cSt)
실시예 1 45.08 2080 1.82 140 1,900
실시예 2 45.07 3736 1.81 700 7,300
실시예 3 45.17 5385 1.88 2300 44,100
실시예 4 45.10 2135 1.82 145 2000
실시예 5 45.01 3694 1.83 750 8100
실시예 6 45.89 5985 1.89 2450 49500
비교예 1 45.05 2184 1.84 150 2200
비교예 2 45.77 3855 1.85 900 10500
비교예 3 45.97 5334 1.91 2500 50900
표 4
ViscosityIndex 유동점 (Pour point, ℃) 인화점(Flash Point, ℃) BromineNumber 외관 Appearance 슬러지생성
실시예 1 177 -30 247 < 0.1 Clear x
실시예 2 300 -15 280 < 0.1 Clear x
실시예 3 305 0.0 290 < 0.1 Clear x
실시예 4 177 -29.5 245 0.5 Haze
실시예 5 299 -12.5 284 0.4 Haze
실시예 6 304 0.0 301 0.3 Haze
비교예 1 173 -30.0 250 8.5 Haze
비교예 2 302 -10.0 285 7.1 Haze
비교예 3 304 2.0 298 2.3 Haze
표 3 및 4에 나타낸 바와 같이, 실시예 1 내지 3에서 제조된 공중합체는 실시예 4 내지 6의 공중합체와 비교하여, 외관이 우수하고, 슬러지의 생성이 억제된다. 따라서, 본 발명의 방법에 따라 제조된 공중합체는 제품 물성이 우수할 뿐만 아니라, 슬러지를 제거하기 위한 추가 공정이 불필요하여, 경제적으로 유용하다. 또한, 실시예 1 내지 6에서 제조된 공중합체는 비교예 1 내지 3의 공중합체와 비교하여, 브롬수(Bromine Number)가 작은 장점이 있다. 브롬수가 0.1을 초과하는 경우에는, 공중합체에 잔류하는 불포화 이중 결합에 의해, 화학적 안정성이 저하되어 반응성이 높아 이물질이 생성되기 쉽고, 윤활유의 색상이 변하는 황변 현상을 수반할 수 있다. 또한 공중합체의 열적 안정성, 산화 안정성, 내부식성 등이 감소하여, 기계적, 물리적 안정성이 떨어져 장기간 사용 시, 점도 저하로 인해 윤활유로서의 기능을 수행할 수 없어, 윤활유로서의 수명이 저하된다. 이를 보완하기 위하여, 종래에는 추가적인 수첨 공정을 수행하였으나, 본 발명에서는, 이러한 추가적인 공정없이, 열적 안정성, 산화 안정성, 내부식성 등이 우수하여 윤활유로서 유용한 공중합체를 제조하였다.

Claims (9)

  1. (A) 하기 화학식 1로 표시되는 가교 메탈로센 화합물, 및 (B) (i) 유기 알루미늄 옥시 화합물 및 (ii) 상기 가교 메탈로센 화합물과 반응하여 이온쌍을 형성하는 화합물로 이루어지는 군으로부터 선택되는 하나 이상의 화합물을 포함하는 촉매 시스템의 존재 하에서, 에틸렌과 탄소수 3 내지 20의 알파-올레핀을 용액 중합하는 단계를 포함하는 에틸렌과 알파-올레핀 액상 랜덤 공중합체의 제조 방법
    [화학식 1]
    Figure PCTKR2013010392-appb-I000002
    상기 화학식 1에서, R1, R2, R3, R4, R5, R8, R9 및 R12는 각각 독립적으로 수소 원자, 탄화수소기 또는 규소 함유 탄화수소기로서, 인접하는 기들이 서로 연결되어 고리 구조를 형성할 수 있고, R6 및 R11은 서로 동일한 것으로서, 수소 원자, 탄화수소기, 또는 규소 함유 탄화 수소기이며, R7 및 R10은 서로 동일한 것으로서, 수소 원자, 탄화수소기, 또는 규소 함유탄화수소기이며, R6 및 R7은 탄소수 2 내지 3의 탄화수소로 연결되어 고리 구조를 형성할 수 있고, R11 및 R10은 탄소수 2 내지 3의 탄화수소로 연결되어 고리 구조를 형성할 수 있으며, R6, R7, R10 및 R11은 동시에 수소 원자가 아니며; Y는 탄소 원자 또는 규소 원자이고; R13 및 R14는 각각 독립적으로 아릴(aryl)기이고; M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이며; Q는 각각 독립적으로 할로겐, 탄화수소기, 음이온 배위자 또는 고립 전자쌍으로 배위될 수 있는 중성 배위자이고; j는 1~4의 정수이다.
  2. 청구항 1에 있어서, 상기 화학식 1로 표시되는 메탈로센 화합물의 시클로펜타디에닐기에 결합된 치환기(R1, R2, R3 및 R4)의 어느 하나 이상이 탄소수 4 이상의 탄화수소기인 것인, 에틸렌과 알파-올레핀 액상 랜덤 공중합체의 제조 방법.
  3. 청구항 1에 있어서, 상기 R6 및 R11은 동일한 탄소수 1 내지 20의 탄화수소기인 것인, 에틸렌과 알파-올레핀 액상 랜덤 공중합체의 제조 방법.
  4. 청구항 1에 있어서, 상기 화학식 1로 표시되는 메탈로센 화합물의 시클로펜타디에닐기의 3 위치에 결합된 치환기(R2 또는 R3)가 n-부틸기인 것인, 에틸렌과 알파-올레핀 액상 랜덤 공중합체의 제조 방법.
  5. 청구항 1에 있어서, 상기 화학식 1로 표시되는 메탈로센 화합물의 플루오레닐기의 2 및 7 위치에 결합된 R6 및 R11은 모두 tert-부틸기인 것인, 에틸렌과 알파-올레핀 액상 랜덤 공중합체의 제조 방법.
  6. 청구항 1에 있어서, 상기 가교 메탈로센 화합물과 반응하여 이온쌍을 형성하는 화합물은 하기 화학식 6로 표시되는 화합물인 것인, 에틸렌과 알파-올레핀 액상 랜덤 공중합체의 제조 방법.
    [화학식 6]
    Figure PCTKR2013010392-appb-I000003
    상기 화학식 6에서, Re+는 H+, 카르베늄(carbenium) 양이온, 옥소늄 양이온, 암모늄 양이온, 포스포늄 양이온, 시클로헵틸트리에닐 양이온, 또는 전이금속을 갖는 페로세늄 양이온이고, Rf 내지 Ri 는 각각 독립적으로 탄소수 1 내지 20의 탄화수소기이다.
  7. 청구항 6에 있어서, 상기 카르베늄 양이온은 디메틸아닐리늄인 것인, 에틸렌과 알파-올레핀 액상 랜덤 공중합체의 제조 방법.
  8. 청구항 6에 있어서, 상기 촉매 시스템은, 트리메틸알루미늄 및 트리이소부틸알루미늄로 이루어진 군으로부터 선택되는 유기 알루미늄 화합물을 더욱 포함하는 것인, 에틸렌과 알파-올레핀 액상 랜덤 공중합체의 제조 방법.
  9. (1) 에틸렌 단위 40 내지 60 몰% 및 탄소수 3 내지 20의 알파-올레핀 단위 60 내지 40 몰%로 이루어지고, (2) 겔투과크로마토그래피(GPC)에 의해 측정한 수평균 분자량(Mn)이 500 내지 10,000 이고, 분자량 분포(Mw/Mn, Mw는 중량평균 분자량)가 3 이하이며, (3) 100 ℃에서의 동점도(Kinematic Viscosity)가 30 내지 5,000 이며, (4) 유동점(Pour point)이 30 내지 -45 ℃ 이며, (5) 브롬수(Bromine Number)가 0.1 이하인, 에틸렌과 알파-올레핀의 액상 랜덤 공중합체.
PCT/KR2013/010392 2012-11-19 2013-11-15 에틸렌과 알파-올레핀의 공중합체 및 그 제조방법 WO2014077617A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/441,570 US9518138B2 (en) 2012-11-19 2013-11-15 Copolymer of ethylene and alpha-olefin, and method for preparing same
EP13854625.4A EP2921509A4 (en) 2012-11-19 2013-11-15 COPOLYMER OF ETHYLENE AND ALPHA-OLEFINE AND METHOD FOR THE PRODUCTION THEREOF
CN201380059915.3A CN104797608B (zh) 2012-11-19 2013-11-15 乙烯和α‑烯烃的共聚物及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120130792A KR101394943B1 (ko) 2012-11-19 2012-11-19 에틸렌과 알파-올레핀의 공중합체 및 그 제조방법
KR10-2012-0130792 2012-11-19

Publications (1)

Publication Number Publication Date
WO2014077617A1 true WO2014077617A1 (ko) 2014-05-22

Family

ID=50731458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010392 WO2014077617A1 (ko) 2012-11-19 2013-11-15 에틸렌과 알파-올레핀의 공중합체 및 그 제조방법

Country Status (5)

Country Link
US (1) US9518138B2 (ko)
EP (1) EP2921509A4 (ko)
KR (1) KR101394943B1 (ko)
CN (1) CN104797608B (ko)
WO (1) WO2014077617A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146692A (zh) * 2015-01-26 2016-11-23 苏州亚培克生物科技有限公司 合成润滑油基础油用茂金属聚-α烯烃催化剂及其制备方法和应用
TWI586741B (zh) * 2012-04-12 2017-06-11 陶氏全球科技有限責任公司 聚烯烴摻合組成物及其所製成之物件
US20210347920A1 (en) * 2018-10-19 2021-11-11 Hanwha Solutions Corporation Catalyst for olefin polymerization
KR20220043899A (ko) * 2020-09-29 2022-04-05 주식회사 엘지화학 폴리에틸렌 및 이의 제조방법
WO2022071738A1 (ko) * 2020-09-29 2022-04-07 주식회사 엘지화학 폴리에틸렌 및 이의 제조방법
WO2022071735A1 (ko) * 2020-09-29 2022-04-07 주식회사 엘지화학 폴리에틸렌 조성물 및 그의 제조 방법
WO2022092704A1 (ko) * 2020-10-30 2022-05-05 주식회사 엘지화학 폴리에틸렌
KR20220058431A (ko) * 2020-10-30 2022-05-09 주식회사 엘지화학 폴리에틸렌
WO2022114902A1 (ko) * 2020-11-30 2022-06-02 주식회사 엘지화학 폴리에틸렌 및 그의 제조 방법

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175938A1 (en) * 2015-04-30 2016-11-03 Exxonmobil Chemical Patents Inc. System and process for halogenating olefinic-derived elastomers in the bulk phase
US10683376B2 (en) * 2017-11-07 2020-06-16 Nova Chemicals (International) S.A. Manufacturing ethylene interpolymer products at higher production rate
US20190135960A1 (en) * 2017-11-07 2019-05-09 Nova Chemicals (International) S.A. Process to manufacture ethylene interpolymer products
US10995166B2 (en) * 2017-11-07 2021-05-04 Nova Chemicals (International) S.A. Ethylene interpolymer products and films
KR102111865B1 (ko) * 2018-11-27 2020-05-18 대림산업 주식회사 균일한 구조를 가지는 폴리알파올레핀 및 이의 제조방법
KR102097232B1 (ko) * 2019-02-28 2020-04-06 대림산업 주식회사 기어유용 윤활유 조성물
KR102107930B1 (ko) 2019-02-28 2020-05-08 대림산업 주식회사 유압 작동유용 윤활유 조성물
EP3950899A4 (en) * 2019-03-26 2022-08-17 Mitsui Chemicals, Inc. LUBRICATING OIL COMPOSITION, AND METHOD OF MAKING THE SAME
US20220169948A1 (en) 2019-03-26 2022-06-02 Mitsui Chemicals, Inc. Lubricating oil composition for compressor oils and method for producing the same
EP3950898A4 (en) * 2019-03-26 2022-08-10 Mitsui Chemicals, Inc. COMPOSITION OF LUBRICANT OIL FOR AUTOMOTIVE TRANSMISSIONS AND METHOD OF PRODUCTION THEREOF
CN113574150A (zh) * 2019-03-26 2021-10-29 三井化学株式会社 汽车变速箱油用润滑油组合物及其制造方法
EP3950900A4 (en) 2019-03-26 2022-08-10 Mitsui Chemicals, Inc. COMPOSITION OF LUBRICATING OIL FOR INTERNAL COMBUSTION ENGINE, AND METHOD OF MAKING THE SAME
US20220169938A1 (en) * 2019-03-26 2022-06-02 Mitsui Chemicals, Inc. Lubrication oil composition and method for producing same
WO2020194545A1 (ja) 2019-03-26 2020-10-01 三井化学株式会社 作動油用潤滑油組成物およびその製造方法
US20220186134A1 (en) * 2019-03-26 2022-06-16 Mitsui Chemicals, Inc. Lubricating oil composition for internal combustion engines and method for producing the same
KR20210139407A (ko) 2019-03-26 2021-11-22 미쓰이 가가쿠 가부시키가이샤 그리스 조성물 및 그의 제조 방법
EP3950893A4 (en) * 2019-03-26 2022-08-17 Mitsui Chemicals, Inc. LUBRICANT OIL COMPOSITION FOR INDUSTRIAL GEARS AND METHOD OF PRODUCTION THEREOF
CN113366036B (zh) 2019-03-29 2023-10-24 三井化学株式会社 树脂组合物
CN110092856B (zh) * 2019-05-14 2021-10-22 香港中文大学(深圳) 液体共聚烯烃、制备方法及用途
CN110407965A (zh) * 2019-06-10 2019-11-05 河南省君恒实业集团生物科技有限公司 一种低碳烯烃一步法聚合制备pao的方法
KR102275019B1 (ko) * 2019-06-27 2021-07-08 디엘케미칼 주식회사 적은 단쇄분지를 갖는 알파올레핀 올리고머 및 이의 제조방법
CN112745415B (zh) * 2019-10-30 2022-09-09 中国石油化工股份有限公司 一种制备高粘度指数聚α-烯烃的方法
KR102627357B1 (ko) * 2020-09-29 2024-01-19 주식회사 엘지화학 폴리에틸렌 조성물 및 그의 제조 방법

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780128A (en) 1971-11-03 1973-12-18 Ethyl Corp Synthetic lubricants by oligomerization and hydrogenation
US4032591A (en) 1975-11-24 1977-06-28 Gulf Research & Development Company Preparation of alpha-olefin oligomer synthetic lubricant
JPS57117595A (en) 1981-01-13 1982-07-22 Mitsui Petrochem Ind Ltd Synthetic lubricating oil
JPS61221207A (ja) 1985-03-26 1986-10-01 Mitsui Petrochem Ind Ltd 液状α−オレフイン共重合体の製法
US4704491A (en) * 1985-03-26 1987-11-03 Mitsui Petrochemical Industries, Ltd. Liquid ethylene-alpha-olefin random copolymer, process for production thereof, and use thereof
JPH01163136A (ja) 1987-11-12 1989-06-27 Neste Oy ポリ‐α‐オレフイン型潤滑油の製造方法
JPH01501950A (ja) 1987-01-30 1989-07-06 エクソン・ケミカル・パテンツ・インク 触媒、これらの触媒の製法およびこれらの触媒を使用する重合プロセス
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
JPH03179006A (ja) 1989-10-10 1991-08-05 Fina Technol Inc シンジオタクチツク重合体の製造方法および製造用触媒
JPH03179005A (ja) 1989-10-10 1991-08-05 Fina Technol Inc メタロセン触媒
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
JPH03207704A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒
JPH03207703A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒の製造法
US5321106A (en) 1990-07-03 1994-06-14 The Dow Chemical Company Addition polymerization catalyst with oxidative activation
JPH07121969A (ja) 1993-10-22 1995-05-12 Funai Techno Syst Kk ディスク再生装置
US5767331A (en) 1981-01-13 1998-06-16 Mitsui Petrochemical Industries, Ltd. Ethylene/alpha-olefin copolymer
JP2796376B2 (ja) 1989-10-18 1998-09-10 出光興産株式会社 合成潤滑油の製造法
JP2004051676A (ja) 2002-07-16 2004-02-19 Mitsui Chemicals Inc エチレン系共重合体の製造方法
KR20040062422A (ko) * 2001-11-01 2004-07-07 미쯔이카가쿠 가부시기가이샤 윤활유용 첨가제 및 윤활유 조성물
KR100551147B1 (ko) 2002-10-30 2006-02-13 미쯔이가가꾸가부시끼가이샤 저분자량 올레핀 (공)중합체의 제조에 사용되는 중합 촉매
KR20060029274A (ko) * 2003-07-04 2006-04-05 토탈 페트로케미칼스 리서치 펠루이 랜덤 올레핀 공중합체
KR20080100439A (ko) * 2006-02-02 2008-11-18 셰브론 필립스 케미컬 컴퍼니 엘피 저급의 긴 사슬 가지화를 갖는 고분자를 제조하기 위한 중합 반응 촉매
KR20090035000A (ko) * 2006-07-25 2009-04-08 피나 테크놀러지, 인코포레이티드 플루오레닐 촉매 조성물과 올레핀 중합 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69229044T2 (de) * 1992-08-31 1999-10-07 Fina Research Verfahren zur Herstellung von flüssigen statistischen Copolymerisaten des Typs Ethylen
US6124513A (en) * 1997-06-20 2000-09-26 Pennzoil-Quaker State Company Ethylene-alpha-olefin polymers, processes and uses
US6225427B1 (en) * 1998-10-15 2001-05-01 Uniroyal Chemical Company, Inc. Olefin polymerization process employing metallocene catalyst provided by cocatalyst activation of a metallocene procatalyst
CN100390256C (zh) * 2004-11-26 2008-05-28 三井化学株式会社 合成润滑油和润滑油组合物
WO2006126610A1 (ja) * 2005-05-25 2006-11-30 Mitsui Chemicals, Inc. 遷移金属化合物、オレフィン重合用触媒およびオレフィン系重合体の製造方法
US7619047B2 (en) 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
US8378042B2 (en) * 2009-04-28 2013-02-19 Exxonmobil Chemical Patents Inc. Finishing process for amorphous polymers
CN102574937B (zh) 2010-04-30 2014-08-13 大林产业株式会社 α-烯烃的气相聚合
KR101331556B1 (ko) 2012-03-30 2013-11-20 대림산업 주식회사 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780128A (en) 1971-11-03 1973-12-18 Ethyl Corp Synthetic lubricants by oligomerization and hydrogenation
US4032591A (en) 1975-11-24 1977-06-28 Gulf Research & Development Company Preparation of alpha-olefin oligomer synthetic lubricant
US5767331A (en) 1981-01-13 1998-06-16 Mitsui Petrochemical Industries, Ltd. Ethylene/alpha-olefin copolymer
JPS57117595A (en) 1981-01-13 1982-07-22 Mitsui Petrochem Ind Ltd Synthetic lubricating oil
JPS61221207A (ja) 1985-03-26 1986-10-01 Mitsui Petrochem Ind Ltd 液状α−オレフイン共重合体の製法
US4704491A (en) * 1985-03-26 1987-11-03 Mitsui Petrochemical Industries, Ltd. Liquid ethylene-alpha-olefin random copolymer, process for production thereof, and use thereof
JPH01501950A (ja) 1987-01-30 1989-07-06 エクソン・ケミカル・パテンツ・インク 触媒、これらの触媒の製法およびこれらの触媒を使用する重合プロセス
JPH01163136A (ja) 1987-11-12 1989-06-27 Neste Oy ポリ‐α‐オレフイン型潤滑油の製造方法
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
JPH03179005A (ja) 1989-10-10 1991-08-05 Fina Technol Inc メタロセン触媒
JPH03179006A (ja) 1989-10-10 1991-08-05 Fina Technol Inc シンジオタクチツク重合体の製造方法および製造用触媒
JP2796376B2 (ja) 1989-10-18 1998-09-10 出光興産株式会社 合成潤滑油の製造法
JPH03207704A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒
JPH03207703A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒の製造法
US5321106A (en) 1990-07-03 1994-06-14 The Dow Chemical Company Addition polymerization catalyst with oxidative activation
JPH07121969A (ja) 1993-10-22 1995-05-12 Funai Techno Syst Kk ディスク再生装置
KR20040062422A (ko) * 2001-11-01 2004-07-07 미쯔이카가쿠 가부시기가이샤 윤활유용 첨가제 및 윤활유 조성물
JP2004051676A (ja) 2002-07-16 2004-02-19 Mitsui Chemicals Inc エチレン系共重合体の製造方法
KR100551147B1 (ko) 2002-10-30 2006-02-13 미쯔이가가꾸가부시끼가이샤 저분자량 올레핀 (공)중합체의 제조에 사용되는 중합 촉매
KR20060029274A (ko) * 2003-07-04 2006-04-05 토탈 페트로케미칼스 리서치 펠루이 랜덤 올레핀 공중합체
KR20080100439A (ko) * 2006-02-02 2008-11-18 셰브론 필립스 케미컬 컴퍼니 엘피 저급의 긴 사슬 가지화를 갖는 고분자를 제조하기 위한 중합 반응 촉매
KR20090035000A (ko) * 2006-07-25 2009-04-08 피나 테크놀러지, 인코포레이티드 플루오레닐 촉매 조성물과 올레핀 중합 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LECLERC; WAYMOUTH, ANGEW. CHEM. INT. ED., vol. 37, no. 7, 1998, pages 922 - 925
See also references of EP2921509A4
TOSOH RESEARCH & TECHNOLOGY REVIEW, vol. 47, no. 55, 2003

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI586741B (zh) * 2012-04-12 2017-06-11 陶氏全球科技有限責任公司 聚烯烴摻合組成物及其所製成之物件
CN106146692A (zh) * 2015-01-26 2016-11-23 苏州亚培克生物科技有限公司 合成润滑油基础油用茂金属聚-α烯烃催化剂及其制备方法和应用
US20210347920A1 (en) * 2018-10-19 2021-11-11 Hanwha Solutions Corporation Catalyst for olefin polymerization
US11859040B2 (en) * 2018-10-19 2024-01-02 Hanwha Solutions Corporation Catalyst for olefin polymerization
KR102601120B1 (ko) 2020-09-29 2023-11-10 주식회사 엘지화학 폴리에틸렌 및 이의 제조방법
KR20220043899A (ko) * 2020-09-29 2022-04-05 주식회사 엘지화학 폴리에틸렌 및 이의 제조방법
WO2022071738A1 (ko) * 2020-09-29 2022-04-07 주식회사 엘지화학 폴리에틸렌 및 이의 제조방법
WO2022071735A1 (ko) * 2020-09-29 2022-04-07 주식회사 엘지화학 폴리에틸렌 조성물 및 그의 제조 방법
WO2022092704A1 (ko) * 2020-10-30 2022-05-05 주식회사 엘지화학 폴리에틸렌
CN116096763A (zh) * 2020-10-30 2023-05-09 株式会社Lg化学 聚乙烯
KR102601121B1 (ko) 2020-10-30 2023-11-10 주식회사 엘지화학 폴리에틸렌
KR20220058431A (ko) * 2020-10-30 2022-05-09 주식회사 엘지화학 폴리에틸렌
WO2022114902A1 (ko) * 2020-11-30 2022-06-02 주식회사 엘지화학 폴리에틸렌 및 그의 제조 방법

Also Published As

Publication number Publication date
US9518138B2 (en) 2016-12-13
CN104797608B (zh) 2017-12-15
CN104797608A (zh) 2015-07-22
EP2921509A4 (en) 2016-07-20
KR101394943B1 (ko) 2014-05-14
US20150266985A1 (en) 2015-09-24
EP2921509A1 (en) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2014077617A1 (ko) 에틸렌과 알파-올레핀의 공중합체 및 그 제조방법
JP5166678B2 (ja) オレフィン重合体の製造方法
KR101673043B1 (ko) 메탈로센-ssa 촉매시스템을 이용한 알파 올레핀 올리고머화 및 윤활제 블렌드 제조를 위한 생성된 폴리알파올레핀의 용도
EP1453870B1 (en) Process for the oligomerisation of alpha olefin having low unsaturation, the resulting polymers and lubricants containing the same.
US6642169B2 (en) Polymerisation catalysts
US20180194872A1 (en) Aluminum Alkyls with Pendant Olefins for Polyolefin Reactions
JP2013028809A (ja) 合成潤滑油の製造方法
KR20040047800A (ko) 폴리-알파 올레핀의 합성 방법 및 그의 용도
EP0632066B2 (en) Elastomeric copolymers of ethylene with propylene and process for their preparation
KR20010049193A (ko) 비닐리덴 함유 폴리머 및 이의 용도
US6787619B2 (en) Process for the preparation of ethylene polymers
ITMI930943A1 (it) Copolimeri amorfi dell&#39;etilene con alfa-olefine e procedimento per la loro preparazione
CN111377790B (zh) 具有均匀结构的α烯烃低聚物及其制备方法
WO2014081703A2 (en) Process for the poloymerization of alpha olefins and non-conjugated dienes using a toluene free homogenous co-catalyst system with metallocene pro-catalysts
JP5739054B2 (ja) ビニル末端高級オレフィンコポリマーおよびその生成方法
WO2020194542A1 (ja) 潤滑油組成物およびその製造方法
KR20210052038A (ko) 에틸렌/알파-올레핀 공중합체 및 그 제조 방법
KR20240009451A (ko) 점도 개질제로서의 에틸렌-프로필렌 분지형 공중합체
KR20210141611A (ko) 윤활유 조성물 및 그의 제조 방법
KR20210139404A (ko) 내연 기관용 윤활유 조성물 및 그의 제조 방법
KR20210001847A (ko) 적은 단쇄분지를 갖는 알파올레핀 올리고머 및 이의 제조방법
US20220186134A1 (en) Lubricating oil composition for internal combustion engines and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14441570

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013854625

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE