WO2014077379A1 - 基板処理装置及び基板搬送方法 - Google Patents

基板処理装置及び基板搬送方法 Download PDF

Info

Publication number
WO2014077379A1
WO2014077379A1 PCT/JP2013/080970 JP2013080970W WO2014077379A1 WO 2014077379 A1 WO2014077379 A1 WO 2014077379A1 JP 2013080970 W JP2013080970 W JP 2013080970W WO 2014077379 A1 WO2014077379 A1 WO 2014077379A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
chamber
loading
unloading port
opening
Prior art date
Application number
PCT/JP2013/080970
Other languages
English (en)
French (fr)
Inventor
真士 若林
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020157011874A priority Critical patent/KR101836589B1/ko
Priority to US14/441,520 priority patent/US9929030B2/en
Publication of WO2014077379A1 publication Critical patent/WO2014077379A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate transport method, and more particularly to a substrate transport technique in the substrate processing apparatus.
  • a plasma processing apparatus for performing plasma processing on a substrate such as a semiconductor wafer for example, a load port for mounting a FOUP, which is a container in which a plurality of semiconductor wafers are stored, and a process module for performing plasma processing on the semiconductor wafer
  • a loader module that carries the semiconductor wafer in and out of the hoop while being held in an atmospheric pressure atmosphere, and a semiconductor wafer that is carried in and out of the process module that is held in the vacuum pressure atmosphere.
  • a transfer module and a load lock module that is disposed between the loader module and the transfer module and can selectively switch between an atmospheric pressure atmosphere and a vacuum atmosphere.
  • a first wafer transfer device is disposed in a loader module
  • a second wafer transfer device is disposed in a transfer module
  • a semiconductor wafer is loaded by a load port, a process module, and the like by these wafer transfer devices. Is transported between.
  • a wafer transfer device a device that includes an extendable arm and is configured so that the entire device can rotate is known.
  • the rotation operation, the expansion / contraction operation of the expansion / contraction arm, the information on the presence / absence of the semiconductor wafer on the expansion / contraction arm, the information on the opening / closing operation of the gate valve between the modules are individually detected by the sensor and obtained.
  • the operation of the wafer transfer device is controlled based on the detected information.
  • the wafer transfer apparatus starts an operation of transferring the held semiconductor wafer toward the load lock module after the contraction operation of the extendable arm holding the semiconductor wafer taken out from the vacuum transfer chamber is completed. Further, the closing operation of the gate valve for isolating / communicating the vacuum transfer chamber from the transfer module is started after confirming the contraction operation of the extendable arm and the presence / absence information of the semiconductor wafer (for example, refer to Patent Document 1).
  • An object of the present invention is to provide a substrate processing apparatus and a substrate transport method capable of improving the throughput without increasing the operation speed of the driving device.
  • a chamber that accommodates a substrate, an opening / closing member that opens and closes a substrate loading / unloading port of the chamber, and a substrate detection sensor that detects a substrate that advances and retreats at the substrate loading / unloading port.
  • a plurality of substrate processing units for performing predetermined processing on the substrate in the chamber; and a rotation operation and / or a sliding operation for selectively accessing the plurality of substrate processing units, and the substrate to be accessed A transport device that performs an expansion / contraction operation for loading and unloading the substrate with respect to the chamber of the processing unit; and a control unit that controls operations of the substrate processing unit and the transport device, the control unit including the transport A substrate taken out from one chamber of the plurality of substrate processing units by an expansion / contraction operation of the apparatus passes through a substrate loading / unloading port of the one chamber, and the opening / closing member and the substrate
  • the substrate taken out from the one chamber is transported to another chamber among the plurality of substrate processing units, triggered by receiving from the substrate detection sensor a signal indicating that it has reached a position that does not interfere with the entrance / exit.
  • a substrate processing apparatus for causing the transfer device to start a rotation operation or a slide operation for the purpose.
  • control unit causes the transfer device to start the rotation operation or the slide operation in order to transfer the substrate taken out from the one chamber to the other chamber, and at the same time, carries the substrate into the one chamber. It is preferable to start the closing operation of the opening / closing member so as to close the outlet.
  • control unit causes the transport device to start the rotation operation or the slide operation in order to transport the substrate taken out from the one chamber to the other chamber, and at the same time, carries the substrate into the other chamber. It is preferable to start the opening / closing member so as to open the outlet.
  • the said control part detects the position shift of the board
  • a chamber that accommodates a substrate, an opening / closing member that opens and closes a substrate loading / unloading port of the chamber, and a substrate detection sensor that detects a substrate that advances and retreats at the substrate loading / unloading port.
  • the chamber includes at least one substrate processing unit for performing a predetermined process on the substrate in the chamber, and at least two arms configured to be capable of holding the substrate and independently extending and contracting.
  • a transfer device that performs a rotation operation and / or a lifting operation for loading and unloading a substrate with respect to the substrate, and a control unit that controls the operation of the transfer device, wherein the control unit is one of the at least two arms.
  • a substrate taken out from the chamber by one arm does not interfere with the opening / closing member and the substrate loading / unloading port by passing through the substrate loading / unloading port of the chamber.
  • a substrate processing apparatus is provided for causing the transfer apparatus to start.
  • the said control part detects the position shift of the board
  • a substrate processing chamber having a chamber for accommodating a substrate and performing a predetermined process on the substrate in the chamber, and a substrate processed in the substrate processing unit are externally provided.
  • a substrate storage chamber for storing the substrate in order to carry in the substrate and to carry out the substrate processed by the substrate processing unit, a chamber opening / closing member for opening and closing the substrate loading / unloading port of the chamber, A first opening / closing member that opens and closes a first substrate loading / unloading port, and a first transfer that performs a rotation operation and / or a sliding operation and an expansion / contraction operation for selectively accessing the substrate processing unit and the substrate storage chamber.
  • An apparatus a first substrate detection sensor that detects a substrate that is held by the first transfer device and advances and retreats at the first substrate loading / unloading port, and is held by the first transfer device and is stored in the chamber.
  • a second substrate detection sensor for detecting a substrate that advances and retreats at a plate loading / unloading port; and a controller that controls an opening / closing operation of the chamber opening / closing member and the first opening / closing member and an operation of the first transfer device,
  • the control unit includes the first opening / closing member and the first substrate loading / unloading port when a substrate taken out from the substrate housing unit by the first transfer device by an expansion / contraction operation passes through the first substrate loading / unloading port.
  • Rotation operation for transporting the substrate taken out from the substrate storage chamber to the first transport device to the chamber triggered by reception of a signal indicating that the position has reached a position where no interference occurs from the first substrate detection sensor
  • the slide operation is started, and the substrate taken out from the chamber by the first transfer device by the expansion / contraction operation passes through the substrate loading / unloading port of the chamber.
  • the chamber opening / closing member and a signal indicating that the chamber has reached a position not interfering with the substrate loading / unloading port are received from the second substrate detection sensor as a trigger and taken out from the chamber by the first transfer device.
  • a substrate processing apparatus for starting a rotation operation or a slide operation for transporting a substrate to the substrate storage chamber.
  • the control unit causes the first transfer device to start the rotation operation or the slide operation in order to transfer the substrate taken out from the substrate storage chamber to the chamber, and at the same time, the first of the substrate storage chamber.
  • the first opening / closing member starts closing operation so as to close one substrate loading / unloading port, and the rotation operation or slide is performed on the first transfer device to transfer the substrate taken out from the chamber to the substrate storage chamber. It is preferable to start the closing operation of the chamber opening / closing member so as to close the substrate loading / unloading port of the chamber simultaneously with the start of the operation.
  • the control unit causes the first transfer device to start the rotation operation or the slide operation for transferring the substrate taken out from the substrate storage chamber to the chamber, and at the same time, the substrate loading / unloading port of the chamber.
  • the chamber opening / closing member is started to open, and the first transfer device starts the rotation operation or the slide operation simultaneously to transfer the substrate taken out from the chamber to the substrate storage chamber. It is preferable that the opening operation of the first opening / closing member is started so as to open the first substrate loading / unloading port.
  • the said control part detects the position shift of the board
  • substrate It is preferable to control at least one of the expansion / contraction operation, the rotation operation, and the sliding operation of the first transport device so that the positional deviation is corrected when the positional deviation occurs.
  • a substrate processing chamber having a chamber for accommodating a substrate and performing a predetermined process on the substrate in the chamber, and a substrate processed in the substrate processing unit are externally provided.
  • a substrate housing chamber for housing the substrate for unloading the substrate and a substrate processed by the substrate processing unit, and a first opening / closing member for opening and closing the first substrate loading / unloading port of the substrate housing chamber
  • a rotation operation for carrying in and out of the substrate by the arm with respect to the chamber and the substrate storage chamber, or at least two arms configured to be capable of holding the substrate and independently extending and contracting; Operation of the first transport device that moves up and down, a first substrate detection sensor that detects a substrate that advances and retreats at the first substrate loading / unloading port by the first transport device, and operation of the first transport device
  • a control unit for controlling the first control unit, wherein the control unit is configured such that one of the at least two arms takes out the substrate from the substrate storage chamber and passes through the first substrate loading
  • One of the at least two arms triggered by receiving from the first substrate detection sensor a signal indicating that the first opening / closing member and a position not interfering with the first substrate loading / unloading port have been reached.
  • a substrate processing apparatus for causing the first transfer device to start a rotation operation or an elevating operation for carrying a substrate held by the arm into the substrate storage chamber.
  • control unit detects a displacement of a substrate transported by the first transport device based on a signal from the first substrate detection sensor, and the substrate is displaced.
  • the substrate storage chamber has a second substrate carry-in / out port, and a container mounting for mounting a substrate to be processed by the substrate processing unit and a container for storing a plurality of substrates processed by the substrate processing unit.
  • a second transfer device that performs a rotation operation and / or a sliding operation and an expansion / contraction operation for selectively accessing the container placed on the container placement portion and the substrate accommodation chamber, and the substrate accommodation
  • a second opening / closing member for opening / closing the second substrate loading / unloading port of the chamber; a third opening / closing member for opening / closing the substrate loading / unloading port of the container placed on the container mounting portion; and the second transfer device.
  • a third substrate detection sensor for detecting a substrate held by the second substrate loading / unloading port and a substrate loaded on the container placed on the container placing portion by the second transport device
  • a fourth substrate for detecting a substrate that advances and retreats at the exit
  • An output sensor and the control unit controls the opening / closing operation of the second opening / closing member and the third opening / closing member and the operation of the second transfer device, and the second transfer device accommodates the substrate.
  • the third substrate detection sensor outputs a signal indicating that the substrate taken out from the section has reached a position that does not interfere with the second opening / closing member and the second substrate loading / unloading port by passing through the second substrate loading / unloading port.
  • the second transfer device starts a rotation operation or a slide operation for transferring the substrate taken out from the substrate storage chamber to the container placed on the container placement portion, and When the substrate taken out from the container placed on the container placement unit by the second transfer device passes through the substrate loading / unloading port of the container, it interferes with the third opening / closing member and the substrate loading / unloading port of the container.
  • a rotation operation for transporting the substrate taken out from the container to the second transport device to the substrate storage chamber triggered by reception of a signal indicating that the position has reached the second position from the fourth substrate detection sensor, or It is preferable to start the slide operation.
  • a chamber that accommodates a substrate, an opening / closing member that opens and closes a substrate loading / unloading port of the chamber, and a substrate detection sensor that detects a substrate that advances and retreats at the substrate loading / unloading port.
  • a plurality of substrate processing units for performing predetermined processing on the substrate in the chamber; a rotation operation and / or a sliding operation for selectively accessing the plurality of substrate processing units; and the substrate processing of the access destination A substrate transport method in a substrate processing apparatus, comprising: a transport device that performs a telescopic operation for loading and unloading a substrate with respect to a chamber of the unit, wherein the transport device is configured to perform a telescopic operation among the plurality of substrate processing units.
  • the transport device is configured to transport a substrate taken out from the one chamber to another chamber of the plurality of substrate processing units.
  • a substrate transfer method for starting a rotation operation or a slide operation is provided.
  • a chamber for accommodating a substrate, an opening / closing member for opening and closing a substrate loading / unloading port of the chamber, and a substrate detection sensor for detecting a substrate moving forward and backward at the substrate loading / unloading port are provided.
  • the chamber includes at least one substrate processing unit for performing a predetermined process on the substrate in the chamber, and at least two arms configured to be capable of holding the substrate and independently extending and contracting.
  • a substrate transport method in a substrate processing apparatus comprising: a rotation device for carrying in and out a substrate by the arm and / or a transport device for raising and lowering the substrate, wherein one of the at least two arms
  • the transfer device carries the substrate held by another arm of the at least two arms into the chamber.
  • a substrate processing unit that performs a predetermined process on a substrate in a chamber that accommodates the substrate, a substrate to be processed by the substrate processing unit, A substrate storage chamber for storing the substrate to carry the substrate processed by the substrate processing unit to the outside, and a rotation operation and / or a sliding operation for selectively accessing the substrate processing unit and the substrate storage chamber;
  • a transfer device that performs expansion and contraction, a substrate storage chamber opening / closing member that opens and closes a substrate loading / unloading port of the substrate storage chamber, a chamber opening / closing member that opens and closes a substrate loading / unloading port of the chamber, and a substrate loading / unloading port of the substrate storage chamber
  • a substrate processing apparatus comprising: a first substrate detection sensor that detects a substrate that advances and retreats; and a second substrate detection sensor that detects a substrate that advances and retreats at a substrate carry-in / out port of the chamber.
  • the substrate transport method in the above wherein the substrate taken out from the substrate housing part by the transporting device expands and contracts passes through the substrate carry-in / out port of the substrate housing part, and the substrate housing chamber opening / closing member and the substrate of the substrate housing part Rotation operation for the transfer device to transfer the substrate taken out from the substrate storage chamber to the chamber, triggered by receiving from the first substrate detection sensor a signal indicating that it has reached a position that does not interfere with the loading / unloading port Alternatively, a slide operation is started, and the substrate taken out from the chamber by the transfer device is extended and contracted to pass through the substrate loading / unloading port of the chamber so that it does not interfere with the chamber opening / closing member and the substrate loading / unloading port of the chamber. Triggered by receiving a signal indicating arrival from the second substrate detection sensor Feeding device substrate transfer method for starting a rotating operation or sliding operation to transfer the substrate taken out from the chamber into the board housing chamber is provided.
  • a substrate processing unit that performs a predetermined process on a substrate in a chamber that accommodates the substrate, a substrate to be processed by the substrate processing unit, In order to carry out the substrate processed by the substrate processing unit to the outside, a substrate storage chamber for storing the substrate, an opening / closing member for opening / closing a substrate loading / unloading port of the substrate storage chamber, and the substrate can be held independently.
  • a transfer device having at least two arms configured to be capable of extending and contracting, and performing a rotation operation and / or a lifting operation for loading and unloading a substrate to and from the chamber and the substrate storage chamber; and A substrate transport method in a substrate processing apparatus comprising a substrate detection sensor for detecting a substrate that advances and retreats at a substrate carry-in / out port of a substrate storage chamber, wherein the control unit includes at least 2 One of the arms reaches the position where the substrate taken out from the substrate housing chamber does not interfere with the opening / closing member and the substrate loading / unloading port of the substrate housing chamber by passing through the substrate loading / unloading port of the substrate housing chamber.
  • the transfer device Triggered by receiving a signal indicating that the signal has been received from the substrate detection sensor, the transfer device is configured to carry a substrate held by another of the at least two arms into the substrate storage chamber.
  • a substrate transfer method for starting a rotation operation or a lifting operation is provided.
  • the present invention using the detection signal of the substrate by the substrate detection sensor as a trigger, the following rotation operation, slide operation, elevating operation and the like required for a driving device such as a transfer device and an opening / closing member provided in the substrate processing apparatus are performed. Operation starts. Therefore, the throughput of substrate processing can be improved without increasing the operation speed of the driving device. In addition, since the operating speed of the drive device is not increased, it is possible to avoid the occurrence of problems such as the occurrence of vibration, a decrease in accuracy, and an increase in dust generation.
  • FIG. 5 is a diagram schematically illustrating a first example showing a relationship between detection of a wafer W by a wafer detection sensor and a transfer operation of a SCARA robot in the plasma processing apparatus of FIG. 4.
  • a substrate processing apparatus a plasma processing apparatus for performing plasma processing on a semiconductor wafer (hereinafter referred to as “wafer”) is taken up.
  • FIG. 1 is a plan view schematically showing a configuration of a plasma processing apparatus 10 according to a first embodiment of the present invention. Operation control of the plasma processing apparatus 10 is performed by the control apparatus 50.
  • the plasma processing apparatus 10 includes three load ports 16 provided for mounting a FOUP, which is a carrier (not shown) that contains a predetermined number of wafers W having a diameter of 450 mm.
  • a loader module 14 for loading and unloading the wafer W with respect to the hoop is disposed adjacent to the load port 16, and an alignment mechanism 17 for aligning the wafer W is disposed adjacent to the loader module 14.
  • Two load lock chambers (load lock modules) 13 are arranged on the opposite side of the load port 16 across the loader module 14.
  • the interior of the loader module 14 is always in an atmospheric pressure atmosphere, and a wafer transfer device 18 is disposed in the loader module 14.
  • the wafer transfer device 18 transfers the wafer W between the hoop placed on the load port 16, the alignment mechanism 17, and the load lock chamber 13.
  • the load lock chamber 13 can be switched between a vacuum atmosphere and an atmospheric pressure atmosphere.
  • the interior of the load lock chamber 13 is an atmospheric pressure atmosphere when communicating with the loader module 14 and a vacuum atmosphere when communicating with the transfer module 11 described later.
  • the load lock chamber 13 includes a mounting table on which the wafer W is mounted and lifting pins that support and lift the wafer W. The lifting pins are located between the wafer transfer device 18 and a SCARA robot 15 described later. W is transferred, and the wafer W is also transferred to the mounting table.
  • a transfer module 11 having an octagonal shape in plan view is arranged on the opposite side of the load lock module 13 across the load lock chamber 13.
  • the transfer module 11 is radially arranged around the transfer module 11 and connected to the transfer module 11.
  • Five vacuum processing chambers (process modules) 12 are arranged.
  • the inside of the transfer module 11 is always kept at a predetermined degree of vacuum (depressurized state), and a SCARA robot 15 for transferring the wafer W is disposed.
  • the SCARA robot 15 includes a telescopic arm that holds the wafer W, and the entire SCARA robot 15 is configured to be rotatable. With such a configuration, the arm of the SCARA robot 15 can selectively access the two load lock chambers 13 and the five vacuum processing chambers 12.
  • the inside of the chamber constituting the vacuum processing chamber 12 is maintained at a predetermined degree of vacuum.
  • the wafer W is accommodated in the chamber, and the wafer W is subjected to predetermined plasma processing, for example, etching processing or ashing processing.
  • a gate valve 21 as an opening / closing member for communicating / isolating the inside of the hoop placed on the load port 16 and the loader module 14 is disposed. Also, on the loader module 14 side of the load port 16, adjacent to the gate valve 21, the advance / retreat of the wafer W at the wafer loading / unloading port of the hoop is detected (that is, the presence / absence of the wafer W transferred by the wafer transfer device 18). A wafer detection sensor 31 (which detects the position) is arranged. Similarly, on the loader module 14 side of the alignment mechanism 17, a wafer detection sensor 32 that detects the advance / retreat of the wafer W at the wafer loading / unloading position of the alignment mechanism 17 is disposed.
  • a gate valve 23 that opens and closes the wafer loading / unloading port on the load lock module 13 side of the load lock chamber 13 and the advance / retreat of the wafer W at the wafer loading / unloading port of the load lock chamber 13 are detected.
  • a wafer detection sensor 33 is disposed.
  • a gate valve 24 that opens and closes a wafer loading / unloading port on the transfer module 11 side of the load lock chamber 13 and a wafer on the wafer loading / unloading port of the load lock chamber 13 on the transfer module 11 side.
  • a wafer detection sensor 34 for detecting the advance / retreat of W is disposed.
  • a gate valve 25 that opens and closes the wafer loading / unloading port of the vacuum processing chamber 12 and a wafer detection sensor 35 that detects the advance / retreat of the wafer W at the wafer loading / unloading port of the vacuum processing chamber 12.
  • the gate valves 21 to 25 open and close as necessary when the wafer W is transferred. Details of the configuration and functions of the wafer detection sensors 31 to 35 will be described later with reference to FIGS. 2A and 2B.
  • plasma processing is performed on the wafer W in the following order.
  • Control of the wafer W in the plasma processing apparatus 10 and plasma processing control in the vacuum processing chamber 12 are executed by the control apparatus 50.
  • a microcomputer (CPU) included in the control device 50 executes a predetermined program to control operations of various drive devices constituting the plasma processing apparatus 10.
  • three of the five vacuum processing chambers 12 are etching processing chambers for performing plasma etching processing, and the remaining two chambers are ashing processing chambers for removing the etching mask formed on the wafer W by ashing.
  • etching processing chambers for performing plasma etching processing
  • ashing processing chambers for removing the etching mask formed on the wafer W by ashing.
  • a plurality of wafers W are processed at the same time.
  • processing of one wafer W will be described in time series.
  • the gate valve 21 provided at the load port 16 holds and opens the cover of the hoop, and the wafer transfer device 18 takes out the wafer W from the hoop and holds the held wafer.
  • W is carried into the alignment mechanism 17.
  • the wafer W aligned by the alignment mechanism 17 is carried into the load lock chamber 13 held in an atmospheric pressure atmosphere by the wafer transfer device 18.
  • the gate valve 24 is closed. After closing the gate valve 23 on the loader module 14 side of the load lock chamber 13, the load lock chamber 13 is depressurized to a predetermined degree of vacuum.
  • the gate valve 24 opens, the SCARA robot 15 unloads the wafer W from the load lock chamber 13, and holds the held wafer W in one of the vacuum processing chambers 12.
  • the wafer W is carried into one etching processing chamber, and the wafer W is subjected to etching processing in the etching processing chamber.
  • the wafer W that has been processed in the etching processing chamber is taken out of the etching processing chamber by the SCARA robot 15 and is loaded into one of the ashing processing chambers 12 in the vacuum processing chamber 12, and ashing is performed on the wafer W in the ashing processing chamber. Is given.
  • the wafer W that has been subjected to the ashing process is unloaded from the ashing process chamber by the SCARA robot 15 and loaded into the load lock chamber 13.
  • the gate valve 23 is closed.
  • a purge gas such as nitrogen gas is introduced into the load lock chamber 13 in order to close the gate valve 24 and bring the load lock chamber 13 to an atmospheric pressure atmosphere.
  • the wafer W mounted on the mounting table provided in the load lock chamber 13 is cooled to a predetermined temperature by heat exchange with the mounting table.
  • the gate valve 23 is opened, and the wafer transfer device 18 takes out the wafer W from the load lock chamber 13 and moves to a predetermined position of the hoop. Carry in. Thus, the processing for the wafer W in the plasma processing apparatus 10 is completed.
  • the configuration and functions of the wafer detection sensors 31 to 35 will be described with reference to FIGS. 2A and 2B. Thereafter, the functions of the wafer detection sensors 31 to 35 and the transfer control of the wafer W in the plasma processing apparatus 10 will be described. The relationship will be described with reference to FIG. Since the wafer detection sensors 31 to 35 have the same configuration and function, the wafer detection sensor 35 provided in the vicinity of the gate valve 25 in the vacuum processing chamber 12 is taken up in FIGS. 2A and 2B.
  • FIG. 2A is a diagram schematically showing the flow of processing based on the configuration of the wafer detection sensor 35 provided in the plasma processing apparatus 10 of FIG. 1 and the detection signal output from the wafer detection sensor 35.
  • FIG. 2A additionally shows a detection signal output from the wafer detection sensors 31 to 34 and a process flow based on the detection signal.
  • the wafer detection sensor 35 includes a pair of light emitting elements 35a and light receiving elements 35b.
  • the light emitting element 35a is, for example, a laser diode
  • the light receiving element 35b is, for example, a photodiode.
  • a laser beam (laser beam) is always emitted from the light emitting element 35a toward the light receiving element 35b. Therefore, when the wafer W exists between the light emitting element 35a and the light receiving element 35b as shown by the solid line, the laser light F from the light emitting element 35a does not reach the light receiving element 35b, and in this state, the OFF signal is sent from the light receiving element 35b. Is transmitted to the control device 50.
  • the light receiving element 35b receives the laser light G from the light emitting element 35a. In this state, the light receiving element 35b The ON signal is transmitted to the control device 50 from.
  • the ON signal / OFF signal may be set in reverse.
  • the control device 50 uses the ON signal / OFF signal received from the light receiving element 35b as a trigger to control the operation of the SCARA robot 15 (arm expansion / contraction operation and rotation operation of the entire robot) and the opening / closing operation of the gate valves 24 and 25. To do. Similarly, the control device 50 controls the operation of the SCARA robot 15 and the opening / closing operations of the gate valves 24 and 25 based on the detection signal of the wafer detection sensor 34, and based on the detection signals of the wafer detection sensors 31 to 33. The operation of the wafer transfer device 18 and the opening / closing operations of the gate valves 21 to 23 are controlled.
  • FIG. 2B is a diagram schematically showing a method of detecting the positional deviation of the wafer W by the wafer detection sensor 35 provided in the plasma processing apparatus 10 of FIG.
  • the wafer W is held by the arm (not shown) of the SCARA robot 15 and is moved from the broken line position to the solid line position.
  • the two wafer detection sensors 35 detect the entry (presence) of the wafer W
  • the two wafer detection sensors 35 Output signal simultaneously changes from the OFF signal to the ON signal.
  • the control device 50 can determine that the wafer W is not displaced due to such a change in the output signal.
  • one of the two wafer detection sensors 35 detects the entry (presence) of the wafer W and the other is detected.
  • the output signal from one of the two wafer detection sensors 35 changes from the OFF signal to the ON signal, and then the output signal from the other changes from the OFF signal to the ON signal.
  • the output signal from one of the two wafer detection sensors 35 changes from the OFF signal to the ON signal, and then the output signal from the other changes from the ON signal. Change to OFF signal.
  • the control device 50 detects the positional deviation of the wafer W based on the robot encoder value of the SCARA robot 15 when the OFF signal and the ON signal output from the wafer detection sensor 35 are switched. The detection of the positional deviation of the wafer W when the wafer W is loaded into and unloaded from the load lock chamber 13 is performed in the same manner. The controller 50 also adjusts the transfer position of the wafer W for the wafer transfer device 18 in the same manner.
  • FIG. 3 is a diagram schematically illustrating an example of the relationship between the detection of the wafer W by the wafer detection sensor 35 and the transfer operation of the SCARA robot 15 in the plasma processing apparatus 10 of FIG.
  • FIG. 3 only three of the five vacuum processing apparatuses 12 are shown as vacuum processing apparatuses 12A, 12B, and 12C.
  • the vacuum processing apparatuses 12A and 12B are etching processing apparatuses
  • the vacuum processing apparatus 12C is an ashing processing apparatus.
  • the movement of the wafer W (the movement of the SCARA robot 15) transferred from the vacuum processing apparatus 12A to the vacuum processing apparatus 12C is shown by the positions P1 to P4 that are the center positions of the wafer W and the locus (solid line). ing.
  • the gate valve 25 provided for the vacuum processing apparatus 12A is a gate valve 25A
  • the wafer detection sensor 35 is a wafer detection sensor 35 ⁇
  • the gate valve 25 provided for the vacuum processing apparatus 12C is a gate valve. 25C
  • the wafer detection sensor 35 is a wafer detection sensor 35 ⁇ .
  • the gate valves 25A and 25C of the vacuum processing apparatuses 12A and 12C are closed.
  • the control apparatus 50 opens the gate valve 25A of the vacuum processing apparatus 12A, extends the arm of the SCARA robot 15, and enters the inside of the vacuum processing apparatus 12A.
  • the wafer W after the etching process at the position P1 is held.
  • the control device 50 contracts the arm of the SCARA robot 15 and takes out the held wafer W from the vacuum processing chamber 12A.
  • the wafer detection sensor 35 ⁇ detects the movement of the wafer W.
  • the output signal from the wafer detection sensor 35 ⁇ changes from an OFF signal to an ON signal as the wafer W passes, and then changes from an ON signal to an OFF signal.
  • the control device 50 uses the change from the ON signal indicating that the wafer W has passed through the gate valve 25A to the position P2 to the OFF signal as a trigger (using the reception of the OFF signal as a trigger), and the rotation center of the SCARA robot 15 At the same time as the rotation operation centered on O is started, the closing operation of the gate valve 25A is started.
  • the position P2 of the wafer W is a position where the wafer W and the arm of the SCARA robot 15 do not interfere with the gate valve 25A.
  • the arm is moved during the rotational operation of the SCARA robot 15 for moving the wafer W from the position P2 to the position P3 without stopping the contraction operation of the SCARA robot 15 arm. It is stretched. By not suddenly stopping the contraction operation of the arm in this way, it is possible to prevent the wafer W being held from being subjected to an impact, and for example, it is possible to avoid the wafer W from being displaced. If no problem occurs even if the contraction operation of the arm of the SCARA robot 15 is stopped and the wafer W is transferred from the position P2 to the position P3 so as to draw an arc, the arm during the rotation operation of the SCARA robot 15 is not generated. The expansion / contraction operation is not always necessary.
  • the control device 50 extends the arm of the SCARA robot 15, transfers the wafer W from the position P3 to the position P4, and transfers it to the inside of the vacuum processing apparatus 12C.
  • the control device 50 causes the SCARA robot 15 to accurately transfer the wafer W to the position P4. Fine-tune the movement of Thereby, the processing of the wafer W can proceed smoothly.
  • the controller 50 can be configured to issue an alarm.
  • the wafer W transfer control according to the first embodiment is compared with the conventional transfer control.
  • the conventional transfer control as shown by a broken line in FIG. 3, after the contraction operation of the arm holding the wafer W at the position P1 is completed and the wafer W reaches the position P2a according to a preset sequence, the scalar control is performed. After the rotation operation of the robot 15 was started and the wafer W reached the position P3a, the arm of the SCARA robot 15 was extended and the wafer W was transferred to the position P4.
  • the time required for the wafer W to move between the positions P2 to P3 by the transfer control of the wafer W according to the first embodiment is This is equal to the time required for the wafer W to move between the positions P2a to P3a by the conventional transfer control. Therefore, when the wafer W is transferred to the positions P1 to P2 to P3 to P4 by the transfer control of the wafer W according to the first embodiment, the wafer W is moved to the positions P1 to P2a to P3a to P4 by the conventional transfer control. Compared with the case where the wafers are transferred in the above, the transfer time of the wafer W can be shortened by the time required for the transfer between the positions P2 to P2a and between the positions P3 to P3a.
  • the opening operation of the gate valve 25C is started when the wafer W reaches the position P3a. Therefore, even if the wafer W reaches the position P3a, the arm of the SCARA robot 15 is immediately It was not possible to extend the time, and some waiting time was required. However, in the transfer control of the wafer W according to the first embodiment, such a waiting time is unnecessary, so that the transfer time of the wafer W can be shortened and the throughput can be improved.
  • the transfer control of the wafer W according to the first embodiment does not increase the operation speed of the SCARA robot 15, so that the generation of vibration, the transfer accuracy is reduced, Problems such as dust generation will not occur.
  • the wafer detection sensors 31 to 35 also serve as a transfer center position correction sensor for the wafer W that has been conventionally provided, so that no cost increase occurs.
  • the transfer control of the wafer W according to the first embodiment is performed by the load lock chamber 13 and the vacuum processing chamber.
  • the present invention can be similarly applied to the transfer of the wafer W between the load port 16, the alignment mechanism 17, and the load lock chamber 13 to transfer the wafer W by the wafer transfer device 18.
  • the operations of the SCARA robot 15 and the gate valves 25A and 25C are controlled using the sensor signals of the wafer detection sensors 35 ⁇ and 35 ⁇ as a trigger.
  • the preparatory operation for the plasma processing in the vacuum processing chamber 12 may be performed using the sensor signal of the wafer detection sensor 34 as a trigger.
  • the gate valve 25 is provided on the transfer module 11 side with respect to the wafer loading / unloading port of the vacuum processing chamber 12, but the gate valve 25 may be provided in the vacuum processing chamber 12. Even in this case, the wafer detection sensor 35 is disposed on the loader module side with respect to the wafer loading / unloading port. Thereby, even when the transfer control of the wafer W according to the first embodiment is executed, the transfer that the wafer W interferes with the wafer loading / unloading port of the vacuum processing chamber 12 is not executed. .
  • FIG. 4 is a plan view schematically showing the configuration of another plasma processing apparatus 10A according to the second embodiment of the present invention.
  • the plasma processing apparatus 10A includes a loader module 14, a load port 16, and an alignment mechanism 17 similar to those of the plasma processing apparatus 10 according to the first embodiment, but the illustration thereof is omitted in FIG.
  • the plasma processing apparatus 10A according to the second embodiment is different from the plasma processing apparatus 10 according to the first embodiment in that the SCARA robot 40 arranged in the transfer module 11 is in the Y direction shown in FIG. It is slidable and rotatable in the direction of arrow R (right rotation / left rotation). Furthermore, the difference is that the SCARA robot 40 includes two articulated arms 40a and 40b for holding the wafer W, and two vacuum processing chambers 12 are arranged side by side in the Y direction at two locations. is there. In other respects, there is no substantial difference between the plasma processing apparatuses 10 and 10A. The arms 40a and 40b can be operated independently.
  • FIG. 5 is a diagram schematically showing a first example showing the relationship between the detection of the wafer W by the wafer detection sensor 35 and the transfer operation of the SCARA robot 40 in the plasma processing apparatus 10A of FIG.
  • FIG. 5 only two of the six vacuum processing apparatuses 12 arranged side by side in the Y direction are shown as the vacuum processing apparatuses 12A and 12B.
  • the vacuum processing apparatus 12A is an etching processing apparatus and the vacuum processing apparatus 12B is an ashing processing apparatus.
  • the movement of the wafer W (the movement of the SCARA robot 40) transferred from the vacuum processing apparatus 12 ⁇ / b> A to the vacuum processing apparatus 12 ⁇ / b> B under the control of the control apparatus 50 is the center position of the wafer W, as in FIG. 3. Positions P1 to P2 to P3 to P4 and their trajectories (solid lines) are shown, and movement of the wafer W by conventional transfer control is shown by broken lines (positions P1 to P2a to P3a to P4).
  • the gate valve 25 provided for the vacuum processing apparatus 12A is a gate valve 25A
  • the wafer detection sensor 35 is a wafer detection sensor 35 ⁇
  • the gate valve 25 provided for the vacuum processing apparatus 12B is a gate valve. 25B
  • the wafer detection sensor 35 is a wafer detection sensor 35 ⁇ .
  • the gate valve 25 ⁇ / b> A of the vacuum processing apparatus 12 ⁇ / b> A is opened, and one arm 40 a (or 40 b) of the SCARA robot 40 is at the position P ⁇ b> 1.
  • the wafer W is taken out from the vacuum processing chamber 12A.
  • the SCARA robot 40 starts sliding in the Y direction toward the vacuum processing chamber 12B, and at the same time, the gate valve The closing operation of 25A is started, and the opening operation of the gate valve 25B is also started.
  • the arm 40a of the SCARA robot 40 transfers the wafer W from the position P3 to the position P4, and the vacuum processing apparatus 12B. Carry in At this time, if it is determined from the signal from the wafer detection sensor 35 ⁇ that the wafer W is displaced, the SCARA robot 40 performs an operation for correcting this displacement.
  • the SCARA robot 40 performs an operation for correcting this displacement.
  • the SCARA robot 40 uses the signal from the wafer detection sensor 35 indicating that the plasma-processed wafer W has passed through the gate valve 25 as a trigger, and the SCARA robot 40 is the same vacuum processing chamber as the vacuum processing chamber 12 from which the plasma-processed wafer W was taken out. 12, an R-direction rotation operation necessary for loading the wafer W held by the arm 40 b is started, and after the rotation operation of a predetermined angle is completed, the arm 40 b loads the held wafer W into the vacuum processing chamber 12.
  • the two arms 40a and 40b are used to carry out and carry the wafer W into and from one vacuum processing chamber 12.
  • the SCARA robot 40 is rotated by using a signal from the wafer detection sensor 35 indicating that the wafer W has been unloaded from the vacuum processing chamber 12 as a trigger.
  • the SCARA robot 40 can be configured to be below or above the arm 40a (position overlapping in the plan view of FIG. 4) with the arm 40b holding the wafer W before plasma processing.
  • the unprocessed wafer W held by the arm 40b is loaded into the vacuum processing chamber 12.
  • the arm 40b can be lifted or lowered. This also makes it possible to transfer the wafer W in a shorter time than the conventional transfer method.
  • a similar transfer method can be used for the load lock chamber 13.
  • the operations of the SCARA robots 15 and 40 and the wafer transfer device 18 are controlled by detecting the wafer W by the wafer detection sensor 35.
  • the movement of the arm portion to be held may be detected by a sensor, and the operations of the SCARA robots 15 and 40 and the wafer transfer device 18 may be controlled based on the detection signal.
  • the plasma processing apparatus is taken up as the substrate processing apparatus
  • the present invention is not limited to this and may be a film forming apparatus, a cleaning apparatus, or the like.
  • the semiconductor wafer was taken up as a board
  • the present invention is also applied to a glass substrate processing apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 駆動装置の動作速度を速めることなく、スループットを向上させることが可能な基板処理装置を提供する。ウエハWを収容してプラズマ処理を施す真空処理室12A,12Cのそれぞれに、ウエハ搬入出口を開閉するゲートバルブ25A,25C、ウエハ搬入出口を進退するウエハWを検出するウエハ検出センサ35α,35γを設け、伸縮動作と回転動作を行うスカラロボット15によりウエハWを真空処理室12Aから真空処理室12CへウエハWを搬送する。このとき、ウエハWが真空処理室12Aのウエハ搬入出口を通過してゲートバルブ25A及びウエハ搬入出口と干渉しない位置に到達したことを示す信号をウエハ検出センサ35αが発信したことをトリガとして、スカラロボット15は真空処理室12Aから取り出したウエハWを真空処理室12Cへ搬送する回転動作を開始する。

Description

基板処理装置及び基板搬送方法
 本発明は、基板処理装置及び基板搬送方法に関し、特に、基板処理装置内での基板搬送技術に関する。
 半導体ウエハ等の基板にプラズマ処理を施すプラズマ処理装置として、例えば、複数枚の半導体ウエハが収容された容器であるフープ(FOUP)を載置するロードポートと半導体ウエハにプラズマ処理を施すプロセスモジュール(真空処理室)との間に、大気圧雰囲気に保持されてフープに対して半導体ウエハの搬入出を行うローダーモジュールと、真空圧雰囲気に保持されてプロセスモジュールに対して半導体ウエハの搬入出を行うトランスファモジュールと、ローダーモジュールとトランスファモジュールとの間に配置されて大気圧雰囲気と真空雰囲気とを選択的に切り替え可能なロードロックモジュールとを設けたものが知られている。このようなプラズマ処理装置では、ローダーモジュールに第1のウエハ搬送装置を配置し、トランスファモジュールに第2のウエハ搬送装置を配置して、これらのウエハ搬送装置により半導体ウエハをロードポートとプロセスモジュールとの間で搬送している。
 ウエハ搬送装置として伸縮アームを備え、装置全体が回転可能に構成されたものが知られている。このようなウエハ搬送装置では、回転動作、伸縮アームの伸縮動作や伸縮アーム上の半導体ウエハの有無に関する情報、各モジュール間でのゲートバルブの開閉動作の情報等をセンサで個別に検出し、得られた検出情報に基づいてウエハ搬送装置の動作を制御している。
 具体的には、ウエハ搬送装置は、真空搬送室から取り出した半導体ウエハを保持した伸縮アームの縮動作が完了した後に、保持した半導体ウエハをロードロックモジュールへ向けて搬送する動作を開始する。また、真空搬送室をトランスファモジュールから隔離/連通させるゲートバルブの閉動作は、伸縮アームの縮動作及び半導体ウエハの有無情報を確認した後に開始される(例えば、特許文献1参照)。
特開昭64−48443号公報
 上述したプラズマ処理装置においてウエハ搬送系のメカニカルスループットを向上させるためには、ゲートバルブの開閉動作時間やウエハ搬送装置の動作時間を短縮する必要がある。このような課題を解決するために、ゲートバルブやウエハ搬送装置の動作速度を速くするという対応が考えられるが、各種駆動装置の動作速度を速くすることには、振動の発生や精度の低下、発塵の増加等の問題の発生が伴うため、実現は容易ではない。
 本発明の目的は、駆動装置の動作速度を速めることなく、スループットを向上させることができる基板処理装置及び基板搬送方法を提供することにある。
 上記課題を解決するために、本発明によれば、基板を収容するチャンバと、前記チャンバの基板搬入出口を開閉する開閉部材と、前記基板搬入出口において進退する基板を検出する基板検出センサとを有し、前記チャンバ内において基板に所定の処理を施す複数の基板処理部と、前記複数の基板処理部に対して選択的にアクセスするための回転動作及び/又はスライド動作とアクセス先の前記基板処理部のチャンバに対して基板の搬入出を行うための伸縮動作とを行う搬送装置と、前記基板処理部及び前記搬送装置の動作を制御する制御部とを備え、前記制御部は、前記搬送装置が伸縮動作により前記複数の基板処理部のうちの1つのチャンバから取り出した基板が前記1つのチャンバの基板搬入出口を通過して前記開閉部材及び前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記基板検出センサから受信したことをトリガとして、前記1つのチャンバから取り出した基板を前記複数の基板処理部のうちの別のチャンバへ搬送するための回転動作又はスライド動作を前記搬送装置に開始させる基板処理装置が提供される。
 本発明において、前記制御部は、前記1つのチャンバから取り出した基板を前記別のチャンバへ搬送するために前記搬送装置に前記回転動作又はスライド動作を開始させると同時に、前記1つのチャンバの基板搬入出口を閉じるように前記開閉部材の閉動作を開始させることが好ましい。
 本発明において、前記制御部は、前記1つのチャンバから取り出した基板を前記別のチャンバへ搬送するために前記搬送装置に前記回転動作又はスライド動作を開始させると同時に、前記別のチャンバの基板搬入出口を開くように前記開閉部材の開動作を開始させることが好ましい。
 本発明において、前記制御部は、前記基板検出センサからの信号に基づいて前記搬送装置によって搬送される基板の位置ずれを検出し、前記基板に位置ずれが生じている場合に、その位置ずれを補正するように前記搬送装置の伸縮動作、回転動作及びスライド動作の少なくとも1つの動作を制御することが好ましい。
 上記課題を解決するために、本発明によれば、基板を収容するチャンバと、前記チャンバの基板搬入出口を開閉する開閉部材と、前記基板搬入出口において進退する基板を検出する基板検出センサとを有し、前記チャンバ内において基板に所定の処理を施す少なくとも1つの基板処理部と、前記基板を保持可能に且つ独立して伸縮動作可能に構成された少なくとも2本のアームを有し、前記チャンバに対する基板の搬入出を行うための回転動作及び/又は昇降動作を行う搬送装置と、前記搬送装置の動作を制御する制御部とを備え、前記制御部は、前記少なくとも2本のアームのうちの1本の前記アームが前記チャンバから取り出した基板が前記チャンバの基板搬入出口を通過することにより前記開閉部材及び前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記基板検出センサから受信したことをトリガとして、前記少なくとも2本のアームのうちの別のアームが保持した基板を前記チャンバに搬入するための回転動作又は昇降動作を前記搬送装置に開始させる基板処理装置が提供される。
 本発明において、前記制御部は、前記基板検出センサからの信号に基づいて前記搬送装置によって搬送される基板の位置ずれを検出し、前記基板に位置ずれが生じている場合に、その位置ずれを補正するように前記搬送装置の伸縮動作、回転動作及び昇降動作の少なくとも1つの動作を制御することが好ましい。
 上記課題を解決するために、本発明によれば、基板を収容するチャンバを有し、前記チャンバ内において基板に所定の処理を施す基板処理部と、前記基板処理部で処理される基板を外部から搬入するため及び前記基板処理部で処理された基板を外部に搬出するために前記基板を収容する基板収容室と、前記チャンバの基板搬入出口を開閉するチャンバ開閉部材と、前記基板収容室の第1の基板搬入出口を開閉する第1の開閉部材と、前記基板処理部及び前記基板収容室に選択的にアクセスするための回転動作及び/又はスライド動作と伸縮動作とを行う第1の搬送装置と、前記第1の搬送装置に保持されて前記第1の基板搬入出口において進退する基板を検出する第1の基板検出センサと、前記第1の搬送装置に保持されて前記チャンバの基板搬入出口において進退する基板を検出する第2の基板検出センサと、前記チャンバ開閉部材及び前記第1の開閉部材の開閉動作と前記第1の搬送装置の動作を制御する制御部とを備え、前記制御部は、前記第1の搬送装置が伸縮動作により前記基板収容部から取り出した基板が前記第1の基板搬入出口を通過することにより前記1の開閉部材及び前記第1の基板搬入出口と干渉しない位置に到達したことを示す信号を前記第1の基板検出センサから受信したことをトリガとして前記第1の搬送装置に前記基板収容室から取り出した基板を前記チャンバへ搬送するための回転動作又はスライド動作を開始させ、前記第1の搬送装置が伸縮動作により前記チャンバから取り出した基板が前記チャンバの前記基板搬入出口を通過することにより前記チャンバ開閉部材及び前記チャンバの前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記第2の基板検出センサから受信したことをトリガとして前記第1の搬送装置に前記チャンバから取り出した基板を前記基板収容室へ搬送するための回転動作又はスライド動作を開始させる基板処理装置が提供される。
 本発明において、前記制御部は、前記基板収容室から取り出した基板を前記チャンバに搬送するために前記第1の搬送装置に前記回転動作又はスライド動作を開始させると同時に前記基板収容室の前記第1の基板搬入出口を閉じるように前記第1の開閉部材の閉動作を開始させ、前記チャンバから取り出した基板を前記基板収容室に搬送するために前記第1の搬送装置に前記回転動作又はスライド動作を開始させると同時に前記チャンバの前記基板搬入出口を閉じるように前記チャンバ開閉部材の閉動作を開始させることが好ましい。
 本発明において、前記制御部は、前記基板収容室から取り出した基板を前記チャンバに搬送するために前記第1の搬送装置に前記回転動作又はスライド動作を開始させると同時に前記チャンバの前記基板搬入出口を開くように前記チャンバ開閉部材の開動作を開始させ、前記チャンバから取り出した基板を前記基板収容室に搬送するために前記第1の搬送装置に前記回転動作又はスライド動作を開始させると同時に前記第1の基板搬入出口を開くように前記第1の開閉部材の開動作を開始させることが好ましい。
 本発明において、前記制御部は、前記第1の基板検出センサ及び前記第2の基板検出センサからの信号に基づいて前記第1の搬送装置によって搬送される基板の位置ずれを検出し、前記基板に位置ずれが生じている場合にその位置ずれを補正するように前記第1の搬送装置の伸縮動作、回転動作及びスライド動作の少なくとも1つの動作を制御することが好ましい。
 上記課題を解決するために、本発明によれば、基板を収容するチャンバを有し、前記チャンバ内において基板に所定の処理を施す基板処理部と、前記基板処理部で処理される基板を外部から搬入するため及び前記基板処理部で処理された基板を外部に搬出するために前記基板を収容する基板収容室と、前記基板収容室の第1の基板搬入出口を開閉する第1の開閉部材と、前記基板を保持可能に且つ独立して伸縮動作可能に構成された少なくとも2本のアームを有し、前記チャンバ及び前記基板収容室に対する前記アームによる基板の搬入出を行うための回転動作又は昇降動作を行う第1の搬送装置と、前記第1の搬送装置により前記第1の基板搬入出口において進退する基板を検出する第1の基板検出センサと、前記第1の搬送装置の動作を制御する制御部とを備え、前記制御部は、前記少なくとも2本のアームのうちの1本のアームが前記基板収容室から取り出した基板が前記第1の基板搬入出口を通過することにより前記第1の開閉部材及び前記第1の基板搬入出口と干渉しない位置に到達したことを示す信号を前記第1の基板検出センサから受信したことをトリガとして、前記少なくとも2本のアームのうちの別の前記アームが保持した基板を前記基板収容室に搬入するための回転動作又は昇降動作を前記第1の搬送装置に開始させる基板処理装置が提供される。
 本発明において、前記制御部は、前記第1の基板検出センサからの信号に基づいて前記第1の搬送装置によって搬送される基板の位置ずれを検出し、前記基板に位置ずれが生じている場合に、その位置ずれを補正するように前記第1の搬送装置の伸縮動作、回転動作及び昇降動作の少なくとも1つの動作を制御することが好ましい。
 本発明において、前記基板収容室は第2の基板搬入出口を有し、前記基板処理部で処理される基板及び前記基板処理部で処理された基板を複数収容する容器を載置する容器載置部と、前記容器載置部に載置された容器及び前記基板収容室に選択的にアクセスするための回転動作及び/又はスライド動作と伸縮動作とを行う第2の搬送装置と、前記基板収容室の前記第2の基板搬入出口を開閉する第2の開閉部材と、前記容器載置部に載置された容器の基板搬入出口を開閉する第3の開閉部材と、前記第2の搬送装置に保持されて前記第2の基板搬入出口において進退する基板を検出する第3の基板検出センサと、前記第2の搬送装置に保持されて前記容器載置部に載置された容器の基板搬入出口において進退する基板を検出する第4の基板検出センサとを備え、前記制御部は、前記第2の開閉部材及び前記第3の開閉部材の開閉動作と前記第2の搬送装置の動作を制御し、前記第2の搬送装置により前記基板収容部から取り出した基板が前記第2の基板搬入出口を通過することにより前記2の開閉部材及び前記第2の基板搬入出口と干渉しない位置に到達したことを示す信号を前記第3の基板検出センサから受信したことをトリガとして前記第2の搬送装置に前記基板収容室から取り出した基板を前記容器載置部に載置された容器へ搬送するための回転動作又はスライド動作を開始させ、前記第2の搬送装置が前記容器載置部に載置された容器から取り出した基板が前記容器の前記基板搬入出口を通過することにより前記第3の開閉部材及び前記容器の前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記第4の基板検出センサから受信したことをトリガとして前記第2の搬送装置に前記容器から取り出した基板を前記基板収容室へ搬送するための回転動作又はスライド動作を開始させることが好ましい。
 上記課題を解決するために、本発明によれば、基板を収容するチャンバ、前記チャンバの基板搬入出口を開閉する開閉部材、及び、前記基板搬入出口において進退する基板を検出する基板検出センサを有し、前記チャンバ内において基板に所定の処理を施す複数の基板処理部と、前記複数の基板処理部に対して選択的にアクセスするための回転動作及び/又はスライド動作とアクセス先の前記基板処理部のチャンバに対して基板の搬入出を行うための伸縮動作とを行う搬送装置とを備える基板処理装置における基板搬送方法であって、前記搬送装置が伸縮動作により前記複数の基板処理部のうちの1つのチャンバから取り出した基板が前記チャンバの基板搬入出口を通過することにより前記開閉部材及び前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記基板検出センサが発信したことをトリガとして、前記搬送装置は、前記1つのチャンバから取り出した基板を前記複数の基板処理部のうちの別のチャンバへ搬送するための回転動作又はスライド動作を開始する基板搬送方法が提供される。
 上記課題を解決するために、本発明によれば、基板を収容するチャンバ、前記チャンバの基板搬入出口を開閉する開閉部材、及び、前記基板搬入出口において進退する基板を検出する基板検出センサとを有し、前記チャンバ内において基板に所定の処理を施す少なくとも1つの基板処理部と、前記基板を保持可能に且つ独立して伸縮動作可能に構成された少なくとも2本のアームを有し、前記チャンバに対する前記アームによる基板の搬入出を行うための回転動作及び/又は昇降動作を行う搬送装置とを備える基板処理装置における基板搬送方法であって、前記少なくとも2本のアームのうちの1本の前記アームが前記チャンバから取り出した基板が前記チャンバの基板搬入出口を通過することにより前記開閉部材及び前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記基板検出センサから受信したことをトリガとして、前記搬送装置は、前記少なくとも2本のアームのうちの別のアームが保持した基板を前記チャンバに搬入するための回転動作又は昇降動作を開始する基板搬送方法が提供される。
 上記課題を解決するために、本発明によれば、基板を収容したチャンバ内において基板に所定の処理を施す基板処理部と、前記基板処理部で処理される基板を外部から搬入するため及び前記基板処理部で処理された基板を外部に搬出するために前記基板を収容する基板収容室と、前記基板処理部及び前記基板収容室に選択的にアクセスするための回転動作及び/又はスライド動作と伸縮動作とを行う搬送装置と、前記基板収容室の基板搬入出口を開閉する基板収容室開閉部材と、前記チャンバの基板搬入出口を開閉するチャンバ開閉部材と、前記基板収容室の基板搬入出口において進退する基板を検出する第1の基板検出センサと、前記チャンバの基板搬入出口において進退する基板を検出する第2の基板検出センサとを備える基板処理装置における基板搬送方法であって、前記搬送装置が伸縮動作により前記基板収容部から取り出した基板が前記基板収容部の基板搬入出口を通過することにより前記基板収容室開閉部材及び前記基板収容部の基板搬入出口と干渉しない位置に到達したことを示す信号を前記第1の基板検出センサから受信したことをトリガとして前記搬送装置は前記基板収容室から取り出した基板を前記チャンバへ搬送するための回転動作又はスライド動作を開始し、前記搬送装置が伸縮動作により前記チャンバから取り出した基板が前記チャンバの前記基板搬入出口を通過することにより前記チャンバ開閉部材及び前記チャンバの前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記第2の基板検出センサから受信したことをトリガとして前記搬送装置は前記チャンバから取り出した基板を前記基板収容室へ搬送する回転動作又はスライド動作を開始する基板搬送方法が提供される。
 上記課題を解決するために、本発明によれば、基板を収容したチャンバ内において基板に所定の処理を施す基板処理部と、前記基板処理部で処理される基板を外部から搬入するため及び前記基板処理部で処理された基板を外部に搬出するために前記基板を収容する基板収容室と、前記基板収容室の基板搬入出口を開閉する開閉部材と、前記基板を保持可能に且つ独立して伸縮動作可能に構成された少なくとも2本のアームを有し、前記チャンバ及び前記基板収容室に対する基板の搬入出を行うための回転動作及び/又は昇降動作を行う搬送装置と、前記搬送装置により前記基板収容室の基板搬入出口において進退する基板を検出する基板検出センサとを備える基板処理装置における基板搬送方法であって、前記制御部は、前記少なくとも2本のアームのうちの1本のアームが前記基板収容室から取り出した基板が前記基板収容室の基板搬入出口を通過することにより前記開閉部材及び前記基板収容室の基板搬入出口と干渉しない位置に到達したことを示す信号を前記基板検出センサから受信したことをトリガとして、前記搬送装置は、前記少なくとも2本のアームのうちの別の前記アームが保持した基板を前記基板収容室に搬入するための回転動作又は昇降動作を開始する基板搬送方法が提供される。
 本発明によれば、基板検出センサによる基板の検出信号をトリガとして、基板処理装置に設けられた搬送装置や開閉部材等の駆動装置に要求される回転動作やスライド動作、昇降動作等の次の動作が開始される。そのため、駆動装置の動作速度を速めることなく、基板処理のスループットを向上させることができる。また、駆動装置の動作速度を速めることがないため、振動の発生や精度の低下、発塵の増加等の問題の発生を回避することができる。
本発明の実施の形態に係るプラズマ処理装置の構成を概略的に示す平面図である。 図1のプラズマ処理装置が備えるウエハ検出センサの構成とウエハ検出センサから出力される検出信号に基づく処理の流れを模式的に示す図である。 図1のプラズマ処理装置が備えるウエハ検出センサによるウエハの位置ずれ検知方法を模式的に示す図である。 図1のプラズマ処理装置におけるウエハ検出センサによるウエハの検出とスカラロボットの搬送動作との関係を示す一例を模式的に示す図である。 本発明の第2の実施の形態に係る別のプラズマ処理装置の構成を概略的に示す平面図である。 図4のプラズマ処理装置におけるウエハ検出センサによるウエハWの検出とスカラロボットの搬送動作との関係を示す第1の例を模式的に示す図である。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。ここでは、本発明に係る基板処理装置として、半導体ウエハ(以下「ウエハ」という)にプラズマ処理を施すプラズマ処理装置を取り上げることとする。
 図1は、本発明の第1の実施の形態に係るプラズマ処理装置10の構成を概略的に示す平面図である。プラズマ処理装置10の動作制御は制御装置50によって行われる。
 プラズマ処理装置10は、直径がφ450mmのウエハWを所定枚数収容した不図示のキャリアであるフープ(FOUP)を載置するために設けられた3つのロードポート16を備える。ロードポート16に隣接して、フープに対してウエハWの搬入出を行うためのローダーモジュール14が配置されており、ローダーモジュール14には、ウエハWの位置合わせを行う位置合わせ機構17が隣接配置されている。ローダーモジュール14を挟んでロードポート16の反対側には、2つのロードロック室(ロードロックモジュール)13が配置されている。
 ローダーモジュール14の内部は常に大気圧雰囲気にあり、ローダーモジュール14内にはウエハ搬送装置18が配置されている。ウエハ搬送装置18は、ロードポート16に載置されたフープ、位置合わせ機構17及びロードロック室13の間でウエハWを搬送する。
 ロードロック室13は、その内部を真空雰囲気と大気圧雰囲気とで切り換え可能に構成されている。ロードロック室13の内部は、ローダーモジュール14と連通する際には大気圧雰囲気とされ、後述のトランスファモジュール11と連通する際には真空雰囲気とされる。ロードロック室13は、ウエハWを載置する載置台と、ウエハWを支持して昇降する昇降ピンを備えており、昇降ピンは、ウエハ搬送装置18及び後述のスカラロボット15との間でウエハWの受け渡しを行い、また、載置台に対してもウエハWの受け渡しを行う。
 ロードロック室13を挟んで、ローダーモジュール14の反対側には、平面視八角形を呈するトランスファモジュール11が配置されており、トランスファモジュール11の周りには、放射状に配置されてトランスファモジュール11に接続される5つの真空処理室(プロセスモジュール)12が配置されている。
 トランスファモジュール11の内部は常に所定の真空度(減圧状態)に保たれており、ウエハWを搬送するスカラロボット15が配置されている。スカラロボット15は、ウエハWを保持する伸縮自在なアームを備え、スカラロボット15全体が回転自在に構成されている。このような構成により、スカラロボット15のアームは、2つのロードロック室13と5つの真空処理室12に対して、選択的にアクセスすることができる。真空処理室12を構成するチャンバの内部は所定の真空度に保たれており、ウエハWをチャンバ内部に収容して、ウエハWに所定のプラズマ処理、例えば、エッチング処理やアッシング処理等を施す。
 ロードポート16のローダーモジュール14側には、ロードポート16に載置されたフープの内部とローダーモジュール14とを連通/隔離するための開閉部材であるゲートバルブ21が配置されている。また、ロードポート16のローダーモジュール14側には、ゲートバルブ21に隣接して、フープのウエハ搬入出口におけるウエハWの進退を検出する(つまり、ウエハ搬送装置18により搬送されるウエハWの有無と位置を検出する)ウエハ検出センサ31が配置されている。同様に、位置合わせ機構17のローダーモジュール14側には、位置合わせ機構17のウエハ搬入出口におけるウエハWの進退を検出するウエハ検出センサ32が配置されている。
 また、ロードロック室13のローダーモジュール14側には、ロードロック室13のローダーモジュール14側のウエハ搬入出口を開閉するゲートバルブ23と、ロードロック室13のウエハ搬入出口におけるウエハWの進退を検出するウエハ検出センサ33が配置されている。また、ロードロック室13のトランスファモジュール11側には、ロードロック室13のトランスファモジュール11側のウエハ搬入出口を開閉するゲートバルブ24と、ロードロック室13のトランスファモジュール11側のウエハ搬入出口におけるウエハWの進退を検出するウエハ検出センサ34が配置されている。更に、真空処理室12のトランスファモジュール11側には、真空処理室12のウエハ搬入出口を開閉するゲートバルブ25と、真空処理室12のウエハ搬入出口におけるウエハWの進退を検出するウエハ検出センサ35が配置されている。
 ゲートバルブ21~25は、ウエハWの搬送時に必要に応じて開閉動作を行う。ウエハ検出センサ31~35の構成と機能の詳細については、図2A及び図2Bを参照して後述する。
 プラズマ処理装置10では、以下の順序で、ウエハWにプラズマ処理が施される。プラズマ処理装置10におけるウエハWの搬送制御や真空処理室12でのプラズマ処理制御は、制御装置50によって実行される。制御装置50が備えるマイコン(CPU)は、所定のプログラムを実行して、プラズマ処理装置10を構成する各種の駆動装置の動作を制御する。
 なお、ここでは、5つの真空処理室12のうちの3室はプラズマエッチング処理を行うエッチング処理室であり、残る2室はウエハW上に形成されたエッチングマスクをアッシングにより除去するアッシング処理室であるとする。また、ウエハ検出センサ31~35の機能とウエハWの搬送制御との関係については、図3を参照して後述することとして、以下のウエハWの処理についての説明では省略する。
 プラズマ処理装置10では、複数のウエハWが同時に処理されるが、ここでは1枚のウエハWの処理について、時系列に従って説明する。先ず、フープがロードポート16に載置されると、ロードポート16に設けられたゲートバルブ21がフープの蓋を保持して開き、ウエハ搬送装置18がフープからウエハWを取り出して、保持したウエハWを位置合わせ機構17に搬入する。位置合わせ機構17にて位置合わせされたウエハWは、ウエハ搬送装置18によって大気圧雰囲気に保持されたロードロック室13に搬入される。このとき、ゲートバルブ24は閉じられている。ロードロック室13のローダーモジュール14側のゲートバルブ23を閉じた後、ロードロック室13は所定の真空度に減圧される。
 ロードロック室13の内部が所定の真空度に到達すると、ゲートバルブ24が開き、スカラロボット15がロードロック室13からウエハWを搬出して、保持したウエハWを真空処理室12のうちの1つのエッチング処理室に搬入し、エッチング処理室においてウエハWにエッチング処理が施される。エッチング処理室での処理が終了したウエハWは、エッチング処理室からスカラロボット15によって取り出されて、真空処理室12のうちの1つのアッシング処理室へ搬入され、アッシング処理室においてウエハWにアッシング処理が施される。
 アッシング処理が終了したウエハWは、スカラロボット15によってアッシング処理室から搬出され、ロードロック室13に搬入される。このとき、ゲートバルブ23は閉じられている。ゲートバルブ24を閉じて、ロードロック室13を大気圧雰囲気にするために、ロードロック室13に窒素ガス等のパージガスが導入される。このとき、ロードロック室13に設けられた載置台に載置されたウエハWは、載置台との熱交換により所定温度まで冷却される。
 ロードロック室13内が大気圧雰囲気となり、且つ、ウエハWが所定温度まで下げられると、ゲートバルブ23が開いて、ウエハ搬送装置18がロードロック室13からウエハWを取り出し、フープの所定位置へ搬入する。こうして、プラズマ処理装置10でのウエハWに対する処理が終了する。
 次に、ウエハ検出センサ31~35の構成と機能について図2A及び図2Bを参照して説明し、その後に、ウエハ検出センサ31~35の機能とプラズマ処理装置10におけるウエハWの搬送制御との関係について図3を参照して説明する。なお、ウエハ検出センサ31~35はそれぞれ同じ構成及び機能を有するため、図2A及び図2Bでは、真空処理室12のゲートバルブ25の近傍に設けられるウエハ検出センサ35を取り上げることとする。
 図2Aは、図1のプラズマ処理装置10が備えるウエハ検出センサ35の構成とウエハ検出センサ35から出力される検出信号に基づく処理の流れを模式的に示す図である。なお、図2Aには、付記的に、ウエハ検出センサ31~34から出力される検出信号と、その検出信号に基づく処理の流れを示している。
 ウエハ検出センサ35は、一対の発光素子35aと受光素子35bで構成される。発光素子35aは、例えば、レーザダイオードであり、受光素子35bは、例えば、フォトダイオード等である。発光素子35aからは、常に、受光素子35bに向けてレーザ光(レーザビーム)が照射されている。そのため、発光素子35aと受光素子35bとの間に実線で示すようにウエハWが存在すると、発光素子35aからのレーザ光Fは受光素子35bへ届かず、この状態では受光素子35bからはOFF信号が制御装置50へ送信される。一方、発光素子35aと受光素子35bとの間に破線で示すようにウエハWが存在しない場合には、発光素子35aからのレーザ光Gを受光素子35bが受光し、この状態では、受光素子35bからはON信号が制御装置50へ送信される。なお、ON信号/OFF信号は逆に設定されていてもよい。
 よって、ウエハWが発光素子35aと受光素子35bとの間を通過する際に、受光素子35bから出力されるON信号/OFF信号が切り替わる。そこで、制御装置50は、受光素子35bから受信するON信号/OFF信号をトリガとして、スカラロボット15の動作(アームの伸縮動作やロボット全体の回転動作)とゲートバルブ24,25の開閉動作を制御する。同様に、制御装置50は、ウエハ検出センサ34の検出信号に基づいて、スカラロボット15の動作とゲートバルブ24,25の開閉動作を制御し、ウエハ検出センサ31~33の検出信号に基づいて、ウエハ搬送装置18の動作とゲートバルブ21~23の開閉動作を制御する。
 図2Bは、図1のプラズマ処理装置10が備えるウエハ検出センサ35によるウエハWの位置ずれ検知方法を模式的に示す図である。図2Bでは、ウエハWは、スカラロボット15のアーム(不図示)に保持されて、破線位置から実線位置へと移動しているものとする。このとき、ウエハWに位置ずれがない場合には、図2Bの左図に示されるように、2つのウエハ検出センサ35がウエハWの進入(存在)を検出すると、2つのウエハ検出センサ35からの出力信号が同時にOFF信号からON信号へ変わる。その後、ウエハWが2つのウエハ検出センサ35を通過すると、2つのウエハ検出センサ35からの出力信号が同時にON信号からOFF信号へ変わる。制御装置50は、このような出力信号の変化によって、ウエハWに位置ずれが生じていないと判断することができる。
 一方、図2Bの中図及び右図に示されるように、ウエハWに位置ずれが生じている場合、2つのウエハ検出センサ35のうちの一方がウエハWの進入(存在)を検出した後に他方がウエハWの進入を検出するため、2つのウエハ検出センサ35のうちの一方からの出力信号がOFF信号からON信号へ変わった後に、他方から出力信号がOFF信号からON信号へ変わる。同様に、ウエハWが2つのウエハ検出センサ35を通過したときには、2つのウエハ検出センサ35のうちの一方からの出力信号がOFF信号からON信号へ変わった後に、他方から出力信号がON信号からOFF信号へ変わる。
 制御装置50は、ウエハ検出センサ35から出力されるOFF信号とON信号が切り替わる際のスカラロボット15のロボットエンコーダ値に基づいて、ウエハWの位置ずれを検出する。ロードロック室13に対してウエハWを搬入出する際のウエハWの位置ずれの検出もこれと同様に行われる。また、制御装置50は、ウエハ搬送装置18についても、これと同様にして、ウエハWの搬送位置を調整する。
 図3は、図1のプラズマ処理装置10におけるウエハ検出センサ35によるウエハWの検出とスカラロボット15の搬送動作との関係を示す一例を模式的に示す図である。図3では、5つの真空処理装置12のうちの3つのみを真空処理装置12A,12B,12Cとして示している。ここで、真空処理装置12A,12Bはエッチング処理装置であり、真空処理装置12Cはアッシング処理装置であるとする。図3には、真空処理装置12Aから真空処理装置12Cへ搬送されるウエハWの動き(スカラロボット15の動き)を、ウエハWの中心位置である位置P1~P4とその軌跡(実線)で示している。また、真空処理装置12Aに対して設けられているゲートバルブ25をゲートバルブ25Aとし、ウエハ検出センサ35をウエハ検出センサ35αとし、真空処理装置12Cに対して設けられているゲートバルブ25をゲートバルブ25Cとし、ウエハ検出センサ35をウエハ検出センサ35γとする。
 真空処理装置12A,12Cのゲートバルブ25A,25Cはそれぞれ閉じられている。制御装置50は、真空処理装置12Aからエッチング処理の終了を示す信号を受信すると、真空処理装置12Aのゲートバルブ25Aを開き、スカラロボット15のアームを伸ばして真空処理装置12Aの内部に進入させ、位置P1にあるエッチング処理の終了したウエハWを保持させる。続いて、制御装置50は、スカラロボット15のアームを縮ませて、保持したウエハWを真空処理室12Aから取り出す。
 このとき、ウエハ検出センサ35αがウエハWの移動を検出する。ウエハ検出センサ35αからの出力信号は、ウエハWの通過に従ってOFF信号からON信号に変わった後に、ON信号からOFF信号へと変わる。制御装置50は、ウエハWがゲートバルブ25Aを通過して位置P2に到達したことを示すON信号からOFF信号への変化をトリガとして(OFF信号の受信をトリガとして)、スカラロボット15の回転中心Oを中心とした回転動作を開始すると同時に、ゲートバルブ25Aの閉動作を開始する。このとき、ゲートバルブ25Cの開動作をも開始することにより、トランスファモジュール11と真空処理室12Aとの間でのパーティクルの移動(拡散)等を抑制することができる。なお、ウエハWの位置P2は、ウエハW及びスカラロボット15のアームがゲートバルブ25Aと干渉することのない位置である。
 ここでは、ウエハWが位置P2に到達した時点でスカラロボット15のアームの縮動作を停止させることなく、ウエハWを位置P2から位置P3へ移動させるためのスカラロボット15の回転動作中にアームを伸縮させている。このようにアームの縮動作を急停止させないことにより、保持しているウエハWに衝撃を与えないようにすることができ、例えば、ウエハWにずれが生じること等を回避することができる。なお、スカラロボット15のアームの縮動作を停止させてウエハWを位置P2から位置P3へ円弧を描くように搬送させても何ら問題が生じない場合には、スカラロボット15の回転動作中のアームの伸縮動作は必ずしも必要ではない。
 ウエハWが位置P3に到達した時点で、既に、真空処理室12Cのゲートバルブ25Cは開いている。そのため、制御装置50は、スカラロボット15のアームを伸ばして、ウエハWを位置P3から位置P4へ搬送し、真空処理装置12Cの内部に受け渡す。このような一連のウエハWの搬送において、ウエハ検出センサ35α,35γによりウエハWの位置ずれが検出された場合、制御装置50は、ウエハWが正確に位置P4に搬送されるようにスカラロボット15の動きを微調整する。これにより、ウエハWの処理をスムーズに進行させることができる。なお、ウエハWの搬送の微調整ができない場合には、制御装置50が警報を出す構成とすることができる。
 第1の実施の形態に係る上述のウエハWの搬送制御を従来の搬送制御と比較する。従来の搬送制御では、図3に破線で示すように、予め設定されたシーケンスに従って、位置P1にあるウエハWを保持したアームの縮動作が終了してウエハWが位置P2aへ到達した後に、スカラロボット15の回転動作が開始され、ウエハWが位置P3aへ到達した後に、スカラロボット15のアームを伸張させて、ウエハWを位置P4へ搬送していた。
 ここで、スカラロボット15の回転動作の角度は一定であるため、第1の実施の形態に係るウエハWの搬送制御によりウエハWが位置P2~P3間を移動するために必要とする時間は、従来の搬送制御によりウエハWが位置P2a~P3a間を移動するために必要とする時間と等しい。したがって、第1の実施の形態に係るウエハWの搬送制御によりウエハWを位置P1~P2~P3~P4と搬送した場合には、従来の搬送制御によりウエハWを位置P1~P2a~P3a~P4で搬送した場合よりも、位置P2~P2a間及び位置P3~P3a間の搬送に要する時間が不要となる分だけ、ウエハWの搬送時間を短縮することができる。
 また、従来の搬送制御では、例えば、ウエハWが位置P3aに到達した時点で、ゲートバルブ25Cの開動作を開始していたため、ウエハWが位置P3aに到達してもすぐにスカラロボット15のアームを伸ばすことができずに、若干の待機時間が必要であった。しかし、第1の実施の形態に係るウエハWの搬送制御では、このような待機時間が不要になるため、ウエハWの搬送時間を短縮して、スループットを向上させることができる。
 更に、従来の搬送制御と比較して、第1の実施の形態に係るウエハWの搬送制御は、スカラロボット15の動作速度を速くしたわけではないので、振動の発生や搬送精度の低下、発塵の発生等の問題も発生することはない。なお、ウエハ検出センサ31~35は、従来から装備されているウエハWの搬送中心位置補正用センサを兼ねるため、コストアップも発生しない。
 上記説明では、ウエハWを真空処理室12間で搬送(移動)させた例を取り上げたが、第1の実施の形態に係る上述のウエハWの搬送制御は、ロードロック室13と真空処理室12との間でのウエハWの搬送にも同様に適用できることは言うまでもなく、ロードポート16、位置合わせ機構17及びロードロック室13の間でのウエハ搬送装置18によるウエハWの搬送にも同様に適用できる。また、第1の実施の形態に係る上述のウエハWの搬送制御では、ウエハ検出センサ35α,35γのセンサ信号をトリガとしてスカラロボット15とゲートバルブ25A,25Cの動作を制御するとしたが、これに限られず、例えば、ウエハ検出センサ34のセンサ信号をトリガとして、真空処理室12でのプラズマ処理の準備動作等を行うようにしてもよい。
 なお、上記説明では、真空処理室12のウエハ搬入出口に対してトランスファモジュール11側にゲートバルブ25を設けたが、ゲートバルブ25は真空処理室12内に設けてもよい。この場合でも、ウエハ検出センサ35は、ウエハ搬入出口に対して、ローダーモジュール側に配置する。これにより、第1の実施の形態に係る上述のウエハWの搬送制御を実行したときでも、ウエハWが真空処理室12のウエハ搬入出口と干渉してしまうような搬送が実行されることはない。
 次に、本発明の第2の実施の形態に係るプラズマ処理装置について説明する。図4は、本発明の第2の実施の形態に係る別のプラズマ処理装置10Aの構成を概略的に示す平面図である。なお、プラズマ処理装置10Aは、第1の実施の形態に係るプラズマ処理装置10と同様のローダーモジュール14、ロードポート16及び位置合わせ機構17を有するが、図4ではその図示を省略している。
 第2の実施の形態に係るプラズマ処理装置10Aが、第1の実施の形態に係るプラズマ処理装置10と異なる点は、トランスファモジュール11内に配置されたスカラロボット40が図4に示すY方向にスライド自在であり、且つ矢印R方向(右回転/左回転)に回転自在となっていることである。更に、異なる点は、スカラロボット40がウエハWを保持する2本の多関節アーム40a,40bを備えており、且つ2カ所において2つの真空処理室12がY方向に並べて配置されていることである。その他の点ではプラズマ処理装置10,10Aに実質的な相違はない。なお、アーム40a,40bはそれぞれ、独立して動作可能となっている。
 プラズマ処理装置10Aにおけるウエハ検出センサ35によるウエハWの検出とスカラロボット40の搬送動作との関係について、以下に説明する。図5は、図4のプラズマ処理装置10Aにおけるウエハ検出センサ35によるウエハWの検出とスカラロボット40の搬送動作との関係を示す第1の例を模式的に示す図である。図5では、6つの真空処理装置12のうち、Y方向に並べて配置された2つのみを真空処理装置12A,12Bとして示している。ここで、真空処理装置12Aはエッチング処理装置であり、真空処理装置12Bはアッシング処理装置であるとする。
 図5には、図3と同様に、制御装置50による制御によって真空処理装置12Aから真空処理装置12Bへ搬送されるウエハWの動き(スカラロボット40の動き)を、ウエハWの中心位置である位置P1~P2~P3~P4とその軌跡(実線)で示しており、従来の搬送制御によるウエハWの動きを破線(位置P1~P2a~P3a~P4)で示している。なお、真空処理装置12Aに対して設けられているゲートバルブ25をゲートバルブ25Aとし、ウエハ検出センサ35をウエハ検出センサ35αとし、真空処理装置12Bに対して設けられているゲートバルブ25をゲートバルブ25Bとし、ウエハ検出センサ35をウエハ検出センサ35βとする。
 図3を参照した説明と同様に、図5に示すウエハWの搬送処理では、真空処理装置12Aのゲートバルブ25Aが開き、スカラロボット40の一方のアーム40a(40bでもよい)が位置P1にあるウエハWを真空処理室12Aから取り出す。ウエハWがゲートバルブ25Aを通過して位置P2に到達したことを示すウエハ検出センサ35αからの信号をトリガとして、スカラロボット40が真空処理室12B側へのY方向スライド移動を開始すると同時にゲートバルブ25Aの閉動作が開始され、また、ゲートバルブ25Bの開動作も開始される。ウエハWが位置P3に到達した時点で、真空処理室12Bのゲートバルブ25Bは既に開いているため、スカラロボット40のアーム40aは、ウエハWを位置P3から位置P4へ搬送し、真空処理装置12Bの内部に搬入する。このとき、なお、ウエハ検出センサ35βからの信号からウエハWに位置ずれが生じていることが明らかになった場合には、スカラロボット40はこの位置ずれを補正する動作を行う。このようなウエハWの搬送方法を用いることにより、従来の搬送方法よりも短時間での搬送が可能となる。
 プラズマ処理装置10Aにおけるウエハ検出センサ35によるウエハWの検出とスカラロボット40の搬送動作との関係の第2の例では、1つの真空処理室12に対するウエハWの搬出と搬入とを2本のアーム40a,40bにより連続して行う。スカラロボット40のアーム40bは、プラズマ処理前のウエハWを保持しているものとする。この状態で、真空処理装置12のゲートバルブ25が開き、スカラロボット40の一方のアーム40aが真空処理室12Aからプラズマ処理済みのウエハWを取り出す。プラズマ処理済みのウエハWがゲートバルブ25を通過したことを示すウエハ検出センサ35からの信号をトリガとして、スカラロボット40は、プラズマ処理済みのウエハWを取り出した真空処理室12と同じ真空処理室12にアーム40bが保持したウエハWを搬入するために必要なR方向回転動作を開始し、所定角度の回転動作が終了した後に、アーム40bは保持したウエハWを真空処理室12に搬入する。
 このようなウエハWの搬送方法(搬入出方法)を用いることにより、シーケンスに従ってアーム40aのウエハ搬出動作が完全に終了した後にアーム40bによるウエハ搬入動作を行うという従来の搬送方法よりも、短時間での搬送が可能となる。なお、ロードロック室13に対しても、同様の搬送方法を用いることができる。
 上述のウエハ検出センサ35によるウエハWの検出とスカラロボット40の搬送動作との関係の第2の例では、1つの真空処理室12に対するウエハWの搬出と搬入とを2本のアーム40a,40bにより連続して行う際に、真空処理室12からウエハWが搬出されたことを示すウエハ検出センサ35の信号をトリガとしてスカラロボット40が回転動作を行うとした。これに対して、スカラロボット40を、アーム40bがプラズマ処理前のウエハWを保持した状態でアーム40aの下方又は上方(図4の平面視において重なる位置)にある構成とすることができる。
 この場合、真空処理室12からウエハWが搬出されたことを示すウエハ検出センサ35の信号をトリガとして、アーム40bが保持しているプラズマ処理前のウエハWを真空処理室12へ搬入するために、アーム40bの上昇動作又は下降動作を開始する構成とすることができる。これによっても、従来の搬送方法よりもウエハWを短時間で搬送することが可能になる。なお、ロードロック室13に対しても、同様の搬送方法を用いることができる。
 以上、本発明の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではない。例えば、上記説明では、ウエハ検出センサ35によりウエハWを検出することでスカラロボット15,40及びウエハ搬送装置18の動作を制御するとしたが、スカラロボット15,40及びウエハ搬送装置18においてウエハWを保持するアーム部分の動きをセンサで検出し、その検出信号に基づいて、スカラロボット15,40及びウエハ搬送装置18の動作を制御するようにしてもよい。
 また、基板処理装置としてプラズマ処理装置を取り上げたが、これに限定されるものではなく、成膜装置、洗浄装置等であってもよい。また、基板として半導体ウエハを取り上げたが、基板はこれに限定されず、例えば、液晶ディスプレイ等のフラットパネルディスプレイ(FPD)に用いられるガラス基板であってもよく、よって、本発明は、FPD用ガラス基板の処理装置にも適用される。
 本出願は、2012年11月14日に出願された日本出願第2012−250325号に基づく優先権を主張するものであり、当該日本出願に記載された全内容を本出願に援用する。
 10  プラズマ処理装置
 11  トランスファモジュール
 12  真空処理室
 13  ロードロック室
 14  ローダーモジュール
 15  スカラロボット
 16  ロードポート
 17  位置合わせ機構
 18  ウエハ搬送装置
 21~25  ゲートバルブ
 31~35  ウエハ検出センサ
 50  制御装置

Claims (17)

  1.  基板を収容するチャンバと、前記チャンバの基板搬入出口を開閉する開閉部材と、前記基板搬入出口において進退する基板を検出する基板検出センサとを有し、前記チャンバ内において基板に所定の処理を施す複数の基板処理部と、
     前記複数の基板処理部に対して選択的にアクセスするための回転動作及び/又はスライド動作とアクセス先の前記基板処理部のチャンバに対して基板の搬入出を行うための伸縮動作とを行う搬送装置と、
     前記基板処理部及び前記搬送装置の動作を制御する制御部とを備え、
     前記制御部は、前記搬送装置が伸縮動作により前記複数の基板処理部のうちの1つのチャンバから取り出した基板が前記1つのチャンバの基板搬入出口を通過して前記開閉部材及び前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記基板検出センサから受信したことをトリガとして、前記1つのチャンバから取り出した基板を前記複数の基板処理部のうちの別のチャンバへ搬送するための回転動作又はスライド動作を前記搬送装置に開始させることを特徴とする基板処理装置。
  2.  前記制御部は、前記1つのチャンバから取り出した基板を前記別のチャンバへ搬送するために前記搬送装置に前記回転動作又はスライド動作を開始させると同時に、前記1つのチャンバの基板搬入出口を閉じるように前記開閉部材の閉動作を開始させることを特徴とする請求項1記載の基板処理装置。
  3.  前記制御部は、前記1つのチャンバから取り出した基板を前記別のチャンバへ搬送するために前記搬送装置に前記回転動作又はスライド動作を開始させると同時に、前記別のチャンバの基板搬入出口を開くように前記開閉部材の開動作を開始させることを特徴とする請求項1又は2記載の基板処理装置。
  4.  前記制御部は、前記基板検出センサからの信号に基づいて前記搬送装置によって搬送される基板の位置ずれを検出し、前記基板に位置ずれが生じている場合に、その位置ずれを補正するように前記搬送装置の伸縮動作、回転動作及びスライド動作の少なくとも1つの動作を制御することを特徴とする請求項1乃至3のいずれか1項に記載の基板処理装置。
  5.  基板を収容するチャンバと、前記チャンバの基板搬入出口を開閉する開閉部材と、前記基板搬入出口において進退する基板を検出する基板検出センサとを有し、前記チャンバ内において基板に所定の処理を施す少なくとも1つの基板処理部と、
     前記基板を保持可能に且つ独立して伸縮動作可能に構成された少なくとも2本のアームを有し、前記チャンバに対する基板の搬入出を行うための回転動作及び/又は昇降動作を行う搬送装置と、
     前記搬送装置の動作を制御する制御部とを備え、
     前記制御部は、前記少なくとも2本のアームのうちの1本の前記アームが前記チャンバから取り出した基板が前記チャンバの基板搬入出口を通過することにより前記開閉部材及び前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記基板検出センサから受信したことをトリガとして、前記少なくとも2本のアームのうちの別のアームが保持した基板を前記チャンバに搬入するための回転動作又は昇降動作を前記搬送装置に開始させることを特徴とする基板処理装置。
  6.  前記制御部は、前記基板検出センサからの信号に基づいて前記搬送装置によって搬送される基板の位置ずれを検出し、前記基板に位置ずれが生じている場合に、その位置ずれを補正するように前記搬送装置の伸縮動作、回転動作及び昇降動作の少なくとも1つの動作を制御することを特徴とする請求項5記載の基板処理装置。
  7.  基板を収容するチャンバを有し、前記チャンバ内において基板に所定の処理を施す基板処理部と、
     前記基板処理部で処理される基板を外部から搬入するため及び前記基板処理部で処理された基板を外部に搬出するために前記基板を収容する基板収容室と、
     前記チャンバの基板搬入出口を開閉するチャンバ開閉部材と、
     前記基板収容室の第1の基板搬入出口を開閉する第1の開閉部材と、
     前記基板処理部及び前記基板収容室に選択的にアクセスするための回転動作及び/又はスライド動作と伸縮動作とを行う第1の搬送装置と、
     前記第1の搬送装置に保持されて前記第1の基板搬入出口において進退する基板を検出する第1の基板検出センサと、
     前記第1の搬送装置に保持されて前記チャンバの基板搬入出口において進退する基板を検出する第2の基板検出センサと、
     前記チャンバ開閉部材及び前記第1の開閉部材の開閉動作と前記第1の搬送装置の動作を制御する制御部とを備え、
     前記制御部は、前記第1の搬送装置が伸縮動作により前記基板収容部から取り出した基板が前記第1の基板搬入出口を通過することにより前記1の開閉部材及び前記第1の基板搬入出口と干渉しない位置に到達したことを示す信号を前記第1の基板検出センサから受信したことをトリガとして前記第1の搬送装置に前記基板収容室から取り出した基板を前記チャンバへ搬送するための回転動作又はスライド動作を開始させ、前記第1の搬送装置が伸縮動作により前記チャンバから取り出した基板が前記チャンバの前記基板搬入出口を通過することにより前記チャンバ開閉部材及び前記チャンバの前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記第2の基板検出センサから受信したことをトリガとして前記第1の搬送装置に前記チャンバから取り出した基板を前記基板収容室へ搬送するための回転動作又はスライド動作を開始させることを特徴とする基板処理装置。
  8.  前記制御部は、前記基板収容室から取り出した基板を前記チャンバに搬送するために前記第1の搬送装置に前記回転動作又はスライド動作を開始させると同時に前記基板収容室の前記第1の基板搬入出口を閉じるように前記第1の開閉部材の閉動作を開始させ、前記チャンバから取り出した基板を前記基板収容室に搬送するために前記第1の搬送装置に前記回転動作又はスライド動作を開始させると同時に前記チャンバの前記基板搬入出口を閉じるように前記チャンバ開閉部材の閉動作を開始させることを特徴とする請求項7記載の基板処理装置。
  9.  前記制御部は、前記基板収容室から取り出した基板を前記チャンバに搬送するために前記第1の搬送装置に前記回転動作又はスライド動作を開始させると同時に前記チャンバの前記基板搬入出口を開くように前記チャンバ開閉部材の開動作を開始させ、前記チャンバから取り出した基板を前記基板収容室に搬送するために前記第1の搬送装置に前記回転動作又はスライド動作を開始させると同時に前記第1の基板搬入出口を開くように前記第1の開閉部材の開動作を開始させることを特徴とする請求項7又は8記載の基板処理装置。
  10.  前記制御部は、前記第1の基板検出センサ及び前記第2の基板検出センサからの信号に基づいて前記第1の搬送装置によって搬送される基板の位置ずれを検出し、前記基板に位置ずれが生じている場合にその位置ずれを補正するように前記第1の搬送装置の伸縮動作、回転動作及びスライド動作の少なくとも1つの動作を制御することを特徴とする請求項7乃至9のいずれか1項に記載の基板処理装置。
  11.  基板を収容するチャンバを有し、前記チャンバ内において基板に所定の処理を施す基板処理部と、
     前記基板処理部で処理される基板を外部から搬入するため及び前記基板処理部で処理された基板を外部に搬出するために前記基板を収容する基板収容室と、
     前記基板収容室の第1の基板搬入出口を開閉する第1の開閉部材と、
     前記基板を保持可能に且つ独立して伸縮動作可能に構成された少なくとも2本のアームを有し、前記チャンバ及び前記基板収容室に対する前記アームによる基板の搬入出を行うための回転動作又は昇降動作を行う第1の搬送装置と、
     前記第1の搬送装置により前記第1の基板搬入出口において進退する基板を検出する第1の基板検出センサと、
     前記第1の搬送装置の動作を制御する制御部とを備え、
     前記制御部は、前記少なくとも2本のアームのうちの1本のアームが前記基板収容室から取り出した基板が前記第1の基板搬入出口を通過することにより前記第1の開閉部材及び前記第1の基板搬入出口と干渉しない位置に到達したことを示す信号を前記第1の基板検出センサから受信したことをトリガとして、前記少なくとも2本のアームのうちの別の前記アームが保持した基板を前記基板収容室に搬入するための回転動作又は昇降動作を前記第1の搬送装置に開始させることを特徴とする基板処理装置。
  12.  前記制御部は、前記第1の基板検出センサからの信号に基づいて前記第1の搬送装置によって搬送される基板の位置ずれを検出し、前記基板に位置ずれが生じている場合に、その位置ずれを補正するように前記第1の搬送装置の伸縮動作、回転動作及び昇降動作の少なくとも1つの動作を制御することを特徴とする請求項11記載の基板処理装置。
  13.  前記基板収容室は第2の基板搬入出口を有し、
     前記基板処理部で処理される基板及び前記基板処理部で処理された基板を複数収容する容器を載置する容器載置部と、
     前記容器載置部に載置された容器及び前記基板収容室に選択的にアクセスするための回転動作及び/又はスライド動作と伸縮動作とを行う第2の搬送装置と、
     前記基板収容室の前記第2の基板搬入出口を開閉する第2の開閉部材と、
     前記容器載置部に載置された容器の基板搬入出口を開閉する第3の開閉部材と、
     前記第2の搬送装置に保持されて前記第2の基板搬入出口において進退する基板を検出する第3の基板検出センサと、
     前記第2の搬送装置に保持されて前記容器載置部に載置された容器の基板搬入出口において進退する基板を検出する第4の基板検出センサとを備え、
     前記制御部は、前記第2の開閉部材及び前記第3の開閉部材の開閉動作と前記第2の搬送装置の動作を制御し、前記第2の搬送装置により前記基板収容部から取り出した基板が前記第2の基板搬入出口を通過することにより前記2の開閉部材及び前記第2の基板搬入出口と干渉しない位置に到達したことを示す信号を前記第3の基板検出センサから受信したことをトリガとして前記第2の搬送装置に前記基板収容室から取り出した基板を前記容器載置部に載置された容器へ搬送するための回転動作又はスライド動作を開始させ、前記第2の搬送装置が前記容器載置部に載置された容器から取り出した基板が前記容器の前記基板搬入出口を通過することにより前記第3の開閉部材及び前記容器の前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記第4の基板検出センサから受信したことをトリガとして前記第2の搬送装置に前記容器から取り出した基板を前記基板収容室へ搬送するための回転動作又はスライド動作を開始させることを特徴とする請求項7乃至12のいずれか1項に記載の基板処理装置。
  14.  基板を収容するチャンバ、前記チャンバの基板搬入出口を開閉する開閉部材、及び、前記基板搬入出口において進退する基板を検出する基板検出センサを有し、前記チャンバ内において基板に所定の処理を施す複数の基板処理部と、前記複数の基板処理部に対して選択的にアクセスするための回転動作及び/又はスライド動作とアクセス先の前記基板処理部のチャンバに対して基板の搬入出を行うための伸縮動作とを行う搬送装置とを備える基板処理装置における基板搬送方法であって、
     前記搬送装置が伸縮動作により前記複数の基板処理部のうちの1つのチャンバから取り出した基板が前記チャンバの基板搬入出口を通過することにより前記開閉部材及び前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記基板検出センサが発信したことをトリガとして、前記搬送装置は、前記1つのチャンバから取り出した基板を前記複数の基板処理部のうちの別のチャンバへ搬送するための回転動作又はスライド動作を開始することを特徴とする基板搬送方法。
  15.  基板を収容するチャンバ、前記チャンバの基板搬入出口を開閉する開閉部材、及び、前記基板搬入出口において進退する基板を検出する基板検出センサとを有し、前記チャンバ内において基板に所定の処理を施す少なくとも1つの基板処理部と、前記基板を保持可能に且つ独立して伸縮動作可能に構成された少なくとも2本のアームを有し、前記チャンバに対する前記アームによる基板の搬入出を行うための回転動作及び/又は昇降動作を行う搬送装置とを備える基板処理装置における基板搬送方法であって、
     前記少なくとも2本のアームのうちの1本の前記アームが前記チャンバから取り出した基板が前記チャンバの基板搬入出口を通過することにより前記開閉部材及び前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記基板検出センサから受信したことをトリガとして、前記搬送装置は、前記少なくとも2本のアームのうちの別のアームが保持した基板を前記チャンバに搬入するための回転動作又は昇降動作を開始することを特徴とする基板搬送方法。
  16.  基板を収容したチャンバ内において基板に所定の処理を施す基板処理部と、前記基板処理部で処理される基板を外部から搬入するため及び前記基板処理部で処理された基板を外部に搬出するために前記基板を収容する基板収容室と、前記基板処理部及び前記基板収容室に選択的にアクセスするための回転動作及び/又はスライド動作と伸縮動作とを行う搬送装置と、前記基板収容室の基板搬入出口を開閉する基板収容室開閉部材と、前記チャンバの基板搬入出口を開閉するチャンバ開閉部材と、前記基板収容室の基板搬入出口において進退する基板を検出する第1の基板検出センサと、前記チャンバの基板搬入出口において進退する基板を検出する第2の基板検出センサとを備える基板処理装置における基板搬送方法であって、
     前記搬送装置が伸縮動作により前記基板収容部から取り出した基板が前記基板収容部の基板搬入出口を通過することにより前記基板収容室開閉部材及び前記基板収容部の基板搬入出口と干渉しない位置に到達したことを示す信号を前記第1の基板検出センサから受信したことをトリガとして前記搬送装置は前記基板収容室から取り出した基板を前記チャンバへ搬送するための回転動作又はスライド動作を開始し、前記搬送装置が伸縮動作により前記チャンバから取り出した基板が前記チャンバの前記基板搬入出口を通過することにより前記チャンバ開閉部材及び前記チャンバの前記基板搬入出口と干渉しない位置に到達したことを示す信号を前記第2の基板検出センサから受信したことをトリガとして前記搬送装置は前記チャンバから取り出した基板を前記基板収容室へ搬送する回転動作又はスライド動作を開始することを特徴とする基板搬送方法。
  17.  基板を収容したチャンバ内において基板に所定の処理を施す基板処理部と、前記基板処理部で処理される基板を外部から搬入するため及び前記基板処理部で処理された基板を外部に搬出するために前記基板を収容する基板収容室と、前記基板収容室の基板搬入出口を開閉する開閉部材と、前記基板を保持可能に且つ独立して伸縮動作可能に構成された少なくとも2本のアームを有し、前記チャンバ及び前記基板収容室に対する基板の搬入出を行うための回転動作及び/又は昇降動作を行う搬送装置と、前記搬送装置により前記基板収容室の基板搬入出口において進退する基板を検出する基板検出センサとを備える基板処理装置における基板搬送方法であって、
     前記制御部は、前記少なくとも2本のアームのうちの1本のアームが前記基板収容室から取り出した基板が前記基板収容室の基板搬入出口を通過することにより前記開閉部材及び前記基板収容室の基板搬入出口と干渉しない位置に到達したことを示す信号を前記基板検出センサから受信したことをトリガとして、前記搬送装置は、前記少なくとも2本のアームのうちの別の前記アームが保持した基板を前記基板収容室に搬入するための回転動作又は昇降動作を開始することを特徴とする基板搬送方法。
PCT/JP2013/080970 2012-11-14 2013-11-12 基板処理装置及び基板搬送方法 WO2014077379A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157011874A KR101836589B1 (ko) 2012-11-14 2013-11-12 기판 처리 장치 및 기판 반송 방법
US14/441,520 US9929030B2 (en) 2012-11-14 2013-11-12 Substrate processing device and substrate transfer method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-250325 2012-11-14
JP2012250325A JP6063716B2 (ja) 2012-11-14 2012-11-14 基板処理装置及び基板搬送方法

Publications (1)

Publication Number Publication Date
WO2014077379A1 true WO2014077379A1 (ja) 2014-05-22

Family

ID=50731287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080970 WO2014077379A1 (ja) 2012-11-14 2013-11-12 基板処理装置及び基板搬送方法

Country Status (5)

Country Link
US (1) US9929030B2 (ja)
JP (1) JP6063716B2 (ja)
KR (1) KR101836589B1 (ja)
TW (1) TWI579953B (ja)
WO (1) WO2014077379A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9805960B2 (en) 2015-07-07 2017-10-31 Tokyo Electron Limited Substrate conveyance method
CN111755370A (zh) * 2019-03-29 2020-10-09 平田机工株式会社 装载端口

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157358A1 (ja) * 2013-03-28 2014-10-02 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び記録媒体
KR101866625B1 (ko) * 2014-09-03 2018-06-11 가부시키가이샤 알박 반송 장치 및 진공 장치
KR102073728B1 (ko) * 2014-11-26 2020-02-05 주식회사 원익아이피에스 기판 이송 장치 및 기판 이송 방법
KR101620545B1 (ko) * 2015-02-11 2016-05-13 국제엘렉트릭코리아 주식회사 기판 정렬 장치 및 게이트 밸브 그리고 그것을 갖는 클러스터 설비
CN106222626A (zh) * 2016-09-06 2016-12-14 中山瑞科新能源有限公司 一种高效率的进片与抽气装置
JP6670713B2 (ja) * 2016-09-20 2020-03-25 東京エレクトロン株式会社 基板処理装置及び基板搬送方法
US10903107B2 (en) * 2017-07-11 2021-01-26 Brooks Automation, Inc. Semiconductor process transport apparatus comprising an adapter pendant
JP7267215B2 (ja) * 2020-01-22 2023-05-01 東京エレクトロン株式会社 搬送装置、処理システム及び搬送方法
US20230054858A1 (en) * 2021-08-17 2023-02-23 Changxin Memory Technologies, Inc. Apparatus and method for transferring wafer, and apparatus for controlling transferring wafer
CN116259563B (zh) * 2022-12-25 2024-01-23 北京屹唐半导体科技股份有限公司 反应腔室及晶圆刻蚀装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064971A (ja) * 1996-07-15 1998-03-06 Applied Materials Inc ウェハの位置の誤り検出及び修正装置、及びその方法
JP2001110873A (ja) * 1999-10-06 2001-04-20 Tokyo Electron Ltd 処理装置
JP2001515655A (ja) * 1996-04-03 2001-09-18 コミツサリア タ レネルジー アトミーク 封鎖ボックスから対象物処理ユニットへの平坦対象物の封鎖的移送を行うための連結装置
JP2002043394A (ja) * 2000-07-19 2002-02-08 Tokyo Electron Ltd 位置ずれ検出装置及び処理システム
JP2009124078A (ja) * 2007-11-19 2009-06-04 Hitachi Kokusai Electric Inc 基板処理装置
JP2011514652A (ja) * 2007-07-17 2011-05-06 ブルックス オートメーション インコーポレイテッド チャンバ壁に一体化されたモータを伴う基板処理装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819167A (en) 1987-04-20 1989-04-04 Applied Materials, Inc. System and method for detecting the center of an integrated circuit wafer
US7880155B2 (en) 2006-06-15 2011-02-01 Brooks Automation, Inc. Substrate alignment apparatus comprising a controller to measure alignment during transport
JP5504641B2 (ja) 2009-02-13 2014-05-28 株式会社安川電機 基板搬送用ロボット及びそれを備えた基板搬送装置、半導体製造装置
WO2012064949A1 (en) 2010-11-10 2012-05-18 Brooks Automation, Inc. Dual arm robot
JP5940342B2 (ja) * 2011-07-15 2016-06-29 東京エレクトロン株式会社 基板搬送装置、基板処理システムおよび基板搬送方法、ならびに記憶媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515655A (ja) * 1996-04-03 2001-09-18 コミツサリア タ レネルジー アトミーク 封鎖ボックスから対象物処理ユニットへの平坦対象物の封鎖的移送を行うための連結装置
JPH1064971A (ja) * 1996-07-15 1998-03-06 Applied Materials Inc ウェハの位置の誤り検出及び修正装置、及びその方法
JP2001110873A (ja) * 1999-10-06 2001-04-20 Tokyo Electron Ltd 処理装置
JP2002043394A (ja) * 2000-07-19 2002-02-08 Tokyo Electron Ltd 位置ずれ検出装置及び処理システム
JP2011514652A (ja) * 2007-07-17 2011-05-06 ブルックス オートメーション インコーポレイテッド チャンバ壁に一体化されたモータを伴う基板処理装置
JP2009124078A (ja) * 2007-11-19 2009-06-04 Hitachi Kokusai Electric Inc 基板処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9805960B2 (en) 2015-07-07 2017-10-31 Tokyo Electron Limited Substrate conveyance method
CN111755370A (zh) * 2019-03-29 2020-10-09 平田机工株式会社 装载端口
CN111755370B (zh) * 2019-03-29 2023-05-30 平田机工株式会社 装载端口

Also Published As

Publication number Publication date
US20150303083A1 (en) 2015-10-22
KR101836589B1 (ko) 2018-03-08
JP6063716B2 (ja) 2017-01-18
KR20150084821A (ko) 2015-07-22
JP2014099494A (ja) 2014-05-29
US9929030B2 (en) 2018-03-27
TWI579953B (zh) 2017-04-21
TW201428879A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
JP6063716B2 (ja) 基板処理装置及び基板搬送方法
JP4697192B2 (ja) 位置ずれ検出装置及びこれを用いた処理システム
KR100802526B1 (ko) 진공처리방법 또는 진공처리장치
KR102507845B1 (ko) 웨이퍼를 스핀하는 프로세스 모듈의 스테이션에 대한 자동-캘리브레이션
US20210398838A1 (en) Storage module, substrate processing system, and method of transferring consumable member
JP2014179508A (ja) 基板処理装置及び基板処理方法
CN111613550B (zh) 负载锁定模块、基片处理装置和基片的输送方法
WO2004043653A1 (ja) 搬送機構の基準位置の補正装置および補正方法
KR20230018449A (ko) 웨이퍼 반송 장치 및 웨이퍼 반송 방법
US20220223447A1 (en) Substrate transfer apparatus, substrate transfer method, and substrate processing system
JP2005262367A (ja) 搬送ロボットの搬送ズレ確認方法及び処理装置
JP2010283334A (ja) 基板処理装置及び半導体装置の製造方法
JP6063776B2 (ja) 基板搬送経路の決定方法、基板搬送装置、基板処理装置及びプログラム
JP2002151568A (ja) 被処理体の処理システム及び搬送方法
KR20220090424A (ko) 기판 반송 장치, 기판 처리 시스템 및 기판 처리 방법
JP2012146721A (ja) 真空処理装置
JP2011138859A (ja) 真空処理装置、および半導体デバイスの製造方法。
TW202401639A (zh) 異常偵測方法及搬運裝置
JP6059934B2 (ja) 試料搬送装置のティーチング方法
JP2014130895A (ja) 基板処理装置及び基板搬送方法及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011874

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14441520

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855615

Country of ref document: EP

Kind code of ref document: A1