WO2014077324A1 - ポリグリコール酸樹脂組成物 - Google Patents

ポリグリコール酸樹脂組成物 Download PDF

Info

Publication number
WO2014077324A1
WO2014077324A1 PCT/JP2013/080804 JP2013080804W WO2014077324A1 WO 2014077324 A1 WO2014077324 A1 WO 2014077324A1 JP 2013080804 W JP2013080804 W JP 2013080804W WO 2014077324 A1 WO2014077324 A1 WO 2014077324A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polyglycolic acid
acid resin
resin composition
Prior art date
Application number
PCT/JP2013/080804
Other languages
English (en)
French (fr)
Inventor
一利 小高
剛史 諏訪
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2014547035A priority Critical patent/JPWO2014077324A1/ja
Priority to CN201380059722.8A priority patent/CN104797655A/zh
Priority to US14/443,237 priority patent/US20150344668A1/en
Publication of WO2014077324A1 publication Critical patent/WO2014077324A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable

Definitions

  • the present invention relates to a polyglycolic acid resin composition, and more specifically, a polyglycolic acid resin composition containing a crystal nucleating agent composed of a carboxylic acid derivative, a polyglycolic acid resin molded product obtained from the resin composition, and the The present invention relates to a laminate including a layer made of a resin molded body.
  • polyglycolic acid resin has biocompatibility, is easily hydrolyzed, has a high gas barrier property, and has excellent mechanical properties. Therefore, it can be used alone or in combination with other resins to form sheets, films, packaging containers, bottles, medical It is expected to be used as a part for sewing sutures and molding materials.
  • the polyglycolic acid resin has a low crystallization rate, there is a drawback that when the resin is not sufficiently crystallized, it is softened at a temperature equal to or higher than the glass transition point (Tg).
  • heat treatment at a predetermined temperature in the mold during injection molding improves the crystallinity of the polyglycolic acid resin, but the crystallization speed is slow, so the molding cycle performance is poor and the productivity is low. There is a problem. Furthermore, when crystallization is performed only with a polyglycolic acid resin, spherulites with a size equal to or greater than the wavelength of the light that causes light scattering grow, which impairs the appearance (opacity) and mechanical properties of the molded product. Cause.
  • Patent Document 1 graphite, hydroxyapatite, high melting point amide compound, etc.
  • the crystallization speed is higher than that of the polyglycolic acid resin to which a crystal nucleating agent suitable for promoting crystallization of the polyglycolic acid resin is added, and higher moldability and heat resistance can be improved.
  • the present inventors have promoted crystallization of polyglycolic acid resin by adding a specific carboxylic acid derivative as a crystal nucleating agent to polyglycolic acid resin. Found that is possible.
  • this invention relates to the polyglycolic acid resin composition containing the crystal nucleating agent which consists of a polyglycolic acid resin and the carboxylic acid derivative represented by Formula [1] as a 1st viewpoint.
  • B 1 -L 1 -AL 2 -B 2 [1] In the formula, A represents an alkylene group having 1 to 6 carbon atoms which may have a substituent, or a divalent aromatic group having 6 to 10 carbon atoms which may have a substituent.
  • B 1 and B 2 each independently represent a cycloalkyl group having 3 to 6 carbon atoms which may have a substituent, or 6 to 10 carbon atoms which may have a substituent.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the polyglycolic acid resin according to the first aspect wherein at least one of L 1 and L 2 is —C ( ⁇ O) NR 1 — (wherein R 1 represents the same meaning as described above). Relates to the composition.
  • the present invention relates to the polyglycolic acid resin composition according to the first aspect, wherein L 1 and L 2 are —C ( ⁇ O) NR 1 — (wherein R 1 represents the same meaning as described above).
  • the present invention relates to the polyglycolic acid resin composition of any one of the first to third aspects, wherein A is a divalent organic group represented by the formula [2] or the formula [3]. .
  • R 2 and R 3 are each independently an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 7 carbon atoms, an alkoxycarbonyl group having 2 to 7 carbon atoms, an amino group, carbon Represents an acylamino group having 1 to 6 atoms, a hydroxy group, or an alkoxy group having 1 to 6 carbon atoms, and m represents an integer of 0 to 10 (when m is 2 or more, each R 2 may be the same) N may represent an integer of 0 to 4 (when n is 2 or more, R 3 may be the same or different).
  • the present invention relates to the polyglycolic acid resin composition according to the fourth aspect, wherein A is a cyclohexane-1,4-diyl group.
  • the present invention relates to the polyglycolic acid resin composition according to the fourth aspect, wherein A is a p-phenylene group.
  • the present invention relates to a resin composition.
  • R 4 to R 19 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 7 carbon atoms, an alkoxycarbonyl group having 2 to 7 carbon atoms, amino Group, an acylamino group having 1 to 6 carbon atoms, a hydroxy group, or an alkoxy group having 1 to 6 carbon atoms.
  • B 1 and B 2 are a cyclohexyl group or a monovalent organic group represented by the formula [6].
  • the polyglycol according to any one of the first to eighth aspects wherein the content of the crystal nucleating agent is 0.001 to 10 parts by mass with respect to 100 parts by mass of the polyglycolic acid resin.
  • the present invention relates to an acid resin composition.
  • a 10th viewpoint it is related with the polyglycolic acid resin molded object formed by crystallizing any one polyglycolic acid resin composition in a 1st viewpoint thru
  • an 11th viewpoint it is related with the laminated body which comprises the layer which consists of a polyglycolic acid resin molding of a 10th viewpoint.
  • the crystallization promoting effect of the polyglycolic acid resin is improved, and as a result, molding processability and heat resistance are improved.
  • the polyglycolic acid (hereinafter also referred to as “PGA”) resin composition of the present invention includes a PGA resin and a crystal nucleating agent composed of a carboxylic acid derivative.
  • PGA resin As the PGA resin used in the present invention, the formula [7] — [O—CH 2 —C ( ⁇ O)] — [7] A glycolic acid homopolymer consisting only of a glycolic acid repeating unit represented by the formula (hereinafter also referred to as PGA homopolymer, including a ring-opened polymer of glycolide which is a bimolecular cyclic ester of glycolic acid), and the glycolic acid repeating unit And a polyglycolic acid copolymer containing units (hereinafter also referred to as PGA copolymer). Such PGA resin may be used individually by 1 type, or may use 2 or more types together.
  • the comonomers used together with the glycolic acid monomer in producing the PGA copolymer include lactides such as dilactide (also known as 1,4-dioxane-2,5-dione); ⁇ -propiolactone, ⁇ -butyrolactone , ⁇ -pivalolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -valerolactone, ⁇ -caprolactone, and other lactones; cyclic such as trimethylene carbonate (also known as 1,3-dioxane-2-one) Carbonates; cyclic esters such as ethylene oxalate (also known as 1,4-dioxane-2,3-dione); cyclic ether esters such as 1,4-dioxane-2-one; Cyclic ethers; cyclic amides such as ⁇ -caprolactam; lactic acid, 3-hydroxypropanoic acid, 3-hydro Hydr
  • Examples of the catalyst used when the PGA resin is produced by ring-opening polymerization of glycolide include, for example, tin compounds such as tin halide and tin organic carboxylate; titanium compounds such as alkoxy titanate; aluminum compounds such as alkoxyaluminum Zirconium compounds such as zirconium acetylacetone; and known ring-opening polymerization catalysts such as antimony compounds such as antimony halide and antimony oxide.
  • the PGA resin can be produced by a conventionally known polymerization method.
  • the polymerization temperature is preferably 120 to 300 ° C., more preferably 130 to 250 ° C., particularly preferably 140 to 240 ° C., and 150 to 230. C is most preferred.
  • the polymerization time of the PGA resin is preferably 2 minutes to 50 hours, more preferably 3 minutes to 30 hours, and particularly preferably 5 minutes to 20 hours. By setting the polymerization time to 2 minutes or longer, the polymerization can be sufficiently advanced, and by setting the polymerization time to 50 hours or less, a resin without coloring can be obtained.
  • the content of the glycolic acid repeating unit represented by the formula [7] is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, 100% by mass is particularly preferred.
  • effects as a PGA resin such as biodegradability, hydrolyzability, gas barrier properties, mechanical strength, and heat resistance can be further obtained.
  • the weight average molecular weight Mw of the PGA resin is preferably 30,000 to 800,000, more preferably 50,000 to 500,000. By setting the weight average molecular weight Mw to 30,000 or more, sufficient mechanical strength of the PGA resin molded product can be obtained, and by setting the weight average molecular weight Mw to 800,000 or less, melt extrusion or injection molding can be performed more easily.
  • the weight average molecular weight Mw is a polymethyl methacrylate conversion value measured by gel permeation chromatography (GPC).
  • the melt viscosity (temperature: 270 ° C., shear rate: 122 sec ⁇ 1 ) of the PGA resin is preferably 50 to 3,000 Pa ⁇ s, more preferably 100 to 2,000 Pa ⁇ s, and more preferably 100 to 1,000 Pa. -S is preferable.
  • the melt viscosity is preferably 50 to 3,000 Pa ⁇ s, more preferably 100 to 2,000 Pa ⁇ s, and more preferably 100 to 1,000 Pa. -S is preferable.
  • the PGA resin used in the present invention may be a blend polymer with other resin mainly composed of PGA homopolymer or PGA copolymer.
  • the other resin include biodegradable resins other than the PGA resin described later, general-purpose thermoplastic resins, and general-purpose thermoplastic engineering plastics.
  • biodegradable resins other than the above PGA resins include PLA (polylactic acid), PHB (poly-3-hydroxybutyric acid), and PHBH (copolymer of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid).
  • PLA polylactic acid
  • PHB poly-3-hydroxybutyric acid
  • PHBH copolymer of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid.
  • Polyhydroxyalkanoic acid Polycaprolactone, Polybutylene succinate, Polybutylene succinate / adipate, Polybutylene succinate / carbonate, Polyethylene succinate, Polyethylene succinate / adipate and other polyester resins; Polyvinyl alcohol; Modification Starch; cellulose acetate; chitin; chitosan; lignin and the like.
  • thermoplastic resin examples include PE (polyethylene), polyethylene copolymer, PP (polypropylene), polypropylene copolymer, PB (polybutylene), EVA (ethylene-vinyl acetate copolymer), and EEA (ethylene-ethyl acrylate).
  • PE polyethylene
  • PP polypropylene
  • PB polybutylene
  • EVA ethylene-vinyl acetate copolymer
  • EEA ethylene-ethyl acrylate
  • Copolymers polyolefin resins such as poly (4-methyl-1-pentene); PS (polystyrene), HIPS (high impact polystyrene), AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene-styrene) Polystyrene resins such as copolymers); polyvinyl chloride resins; polyurethane resins; phenol resins; epoxy resins; amino resins;
  • Examples of the general-purpose engineering plastics include polyamide resins; polyimide resins; polycarbonate resins; polyphenylene ether resins; modified polyphenylene ether resins; polyester resins such as PET (polyethylene terephthalate) and PBT (polybutylene terephthalate); polyacetal resins; A polyphenylene sulfide resin;
  • Crystal nucleating agent comprising carboxylic acid derivative The crystal nucleating agent used in the present invention comprises a carboxylic acid derivative represented by the formula [1].
  • L 1 and L 2 are each independently —C ( ⁇ O) NR 1 — (wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R 1 is preferably a hydrogen atom.) Or —C ( ⁇ O) O—, wherein at least one of L 1 and L 2 is preferably —C ( ⁇ O) NR 1 —, More preferably, —C ( ⁇ O) NR 1 —.
  • the alkyl group having 1 to 6 carbon atoms represented by R 1 includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • the side of —C ( ⁇ O) NR 1 — and —C ( ⁇ O) O— bonded to A may be the C ( ⁇ O) side, the NR 1 side, or the O side. Absent.
  • A represents an alkylene group having 1 to 6 carbon atoms which may have a substituent, or a divalent group having 6 to 10 carbon atoms which may have a substituent.
  • A represents an aromatic group, and A is preferably a divalent organic group represented by the formula [2] or [3], and more preferably a cyclohexane-1,4-diyl group or a p-phenylene group.
  • the alkylene group having 1 to 6 carbon atoms represented by A includes a methylene group, an ethylene group, a trimethylene group, a methylethylene group, a tetramethylene group, a 1-methyltrimethylene group, a pentamethylene group, 2,2- Chain or branched alkylene groups such as dimethyltrimethylene group and hexamethylene group; cyclopropane-1,2-diyl group, cyclobutane-1,2-diyl group, cyclobutane-1,3-diyl group, cyclopentane- Cyclic alkylene groups such as 1,2-diyl group, cyclopentane-1,3-diyl group, cyclohexane-1,2-diyl group, cyclohexane-1,3-diyl group, cyclohexane-1,4-diyl group, etc.
  • a cyclic alkylene group is preferable.
  • the divalent aromatic group having 6 to 10 carbon atoms represented by A include a phenylene group of o-phenylene group, m-phenylene group and p-phenylene group; naphthalene-1,4-diyl group, naphthalene-1, And naphthalenediyl group such as 5-diyl group and naphthalene-2,6-diyl group.
  • a phenylene group is preferable.
  • Examples of the substituent that the alkylene group having 1 to 6 carbon atoms and the divalent aromatic group having 6 to 10 carbon atoms may have include an alkyl group having 1 to 6 carbon atoms and a carbon atom. And an acyl group having 2 to 7 carbon atoms, an alkoxycarbonyl group having 2 to 7 carbon atoms, an amino group, an acylamino group having 1 to 6 carbon atoms, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, and the like. Specifically, the same groups as those exemplified for R 2 and R 3 described later can be used.
  • R 2 and R 3 are each independently an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 7 carbon atoms, or an alkoxy group having 2 to 7 carbon atoms.
  • a carbonyl group, an amino group, an acylamino group having 1 to 6 carbon atoms, a hydroxy group, or an alkoxy group having 1 to 6 carbon atoms is represented.
  • examples of the alkyl group having 1 to 6 carbon atoms represented by R 2 and R 3 include the same groups as those exemplified for R 1 described above.
  • Examples of the acyl group having 2 to 7 carbon atoms represented by R 2 and R 3 include a group in which a carbonyl group is bonded to an alkyl group having 1 to 6 carbon atoms, that is, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, Examples include pentanoyl group, 2-methylbutanoyl group, 3-methylbutanoyl group, pivaloyl group, n-hexanoyl group, 4-methylpentanoyl group, 3,3-dimethylbutanoyl group, heptanoyl group, cyclohexanecarbonyl group, etc.
  • the alkoxycarbonyl group having 2 to 7 carbon atoms represented by R 2 and R 3 is a group in which a carbonyl group is bonded to an alkoxy group having 1 to 6 carbon atoms, that is, a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxy group.
  • Carbonyl group isopropoxycarbonyl group, n-butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, n-pentyloxycarbonyl group, isopentyloxycarbonyl group, neopentyloxycarbonyl group, Examples thereof include an n-hexyloxycarbonyl group and a cyclohexyloxycarbonyl group.
  • Examples of the acylamino group having 1 to 6 carbon atoms represented by R 2 and R 3 include an acetamide group, a propionamide group, a butyramide group, an isobutyramide group, a pentanamide group, a 2-methylbutanamide group, and a 3-methylbutanamide group. And pivalamide group, n-hexaneamide group, 4-methylpentanamide group, 3,3-dimethylbutanamide group, heptaneamide group, cyclohexanecarboxamide group and the like.
  • Examples of the alkoxy group having 1 to 6 carbon atoms represented by R 2 and R 3 include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group. Group, n-pentyloxy group, isopentyloxy group, neopentyloxy group, n-hexyloxy group, cyclohexyloxy group and the like.
  • n represents an integer of 0 to 4, and 0 is preferable as n.
  • R 3 may be the same or different.
  • B 1 and B 2 are each independently a cycloalkyl group having 3 to 6 carbon atoms which may have a substituent, or carbon which may have a substituent.
  • An aromatic group having 6 to 10 atoms is represented, and as B 1 and B 2 , a monovalent organic group represented by the formula [4] or the formula [5] is preferable, and a cyclohexyl group or a formula [6] is particularly preferable.
  • a 4-acetylphenyl group in which R 17 is an acetyl group is more preferable.
  • examples of the cycloalkyl group having 3 to 6 carbon atoms represented by B 1 and B 2 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • examples of the aromatic group having 6 to 10 carbon atoms represented by B 1 and B 2 include a phenyl group and a naphthyl group.
  • Examples of the substituent that the cycloalkyl group having 3 to 6 carbon atoms and the aromatic group having 6 to 10 carbon atoms may have include an alkyl group having 1 to 6 carbon atoms and 2 carbon atoms.
  • an acyl group having 2 to 7 carbon atoms an alkoxycarbonyl group having 2 to 7 carbon atoms, an amino group, an acylamino group having 1 to 6 carbon atoms, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, and the like.
  • an acyl group having 2 to 7 carbon atoms an alkoxycarbonyl group having 2 to 7 carbon atoms, an amino group, an acylamino group having 1 to 6 carbon atoms, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, and the like.
  • R 4 to R 19 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 7 carbon atoms, or 2 to 2 carbon atoms.
  • 7 represents an alkoxycarbonyl group, an amino group, an acylamino group having 1 to 6 carbon atoms, a hydroxy group, or an alkoxy group having 1 to 6 carbon atoms.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include the same groups as those exemplified above for R 2 and R 3 .
  • B 1 and B 2 examples include cyclohexyl group, methylcyclohexyl group, tert-butylcyclohexyl group, acetylcyclohexyl group, methoxycarbonylcyclohexyl group, ethoxycarbonylcyclohexyl group, aminocyclohexyl group, acetamidocyclohexyl group, hydroxycyclohexyl group.
  • the production method of the carboxylic acid derivative represented by the formula [1] is not particularly limited, but a carboxylic acid or an activated form thereof (acid halide, acid anhydride, acid azide, active ester, etc.), an amine or an alcohol Can be easily obtained by amidation or esterification by a conventionally known method.
  • a carboxylic acid or an activated form thereof acid halide, acid anhydride, acid azide, active ester, etc.
  • an amine or an alcohol Can be easily obtained by amidation or esterification by a conventionally known method.
  • L 1 and L 2 are —C ( ⁇ O) NR 1 —, that is, a carboxylic acid derivative that forms an amide bond
  • the method shown in Formula [8] or Formula [9] is mentioned. Can do.
  • A, B 1 , B 2 and R 1 represent the same meaning as described above.
  • X is not particularly limited as long as it is a group capable of forming an amide bond, but is not limited to hydroxy group; alkoxy group such as methoxy group and ethoxy group; halogen atom such as chlorine atom and bromine atom; acyloxy group such as acetoxy group; Azide group; 2,5-dioxopyrrolidin-1-yloxy group and the like.
  • A, B 1 and B 2 represent the same meaning as described above.
  • X is not particularly limited as long as it is a group capable of forming an ester bond, but is hydroxy group; alkoxy group such as methoxy group and ethoxy group; halogen atom such as chlorine atom and bromine atom; acyloxy group such as acetoxy group; Azide group; 2,5-dioxopyrrolidin-1-yloxy group and the like.
  • carboxylic acid derivatives in which L 1 and L 2 are different from each other can also be obtained.
  • carboxylic acid derivative represented by these formula [1] can also use a commercial item, when it is marketed. [Other additives]
  • the PGA resin composition of the present invention can be blended with known inorganic fillers as long as the effects of the present invention are not impaired.
  • the inorganic filler include glass fiber, carbon fiber, talc, mica, silica, kaolin, clay, wollastonite, glass beads, glass flake, potassium titanate, calcium carbonate, magnesium sulfate, titanium oxide and the like.
  • the shape of these inorganic fillers may be any of fiber, granule, plate, needle, sphere, and powder. These inorganic fillers can be used within 300 parts by mass with respect to 100 parts by mass of the PGA resin.
  • the PGA resin composition of the present invention may contain a known flame retardant as long as the effects of the present invention are not impaired.
  • the flame retardant include halogen flame retardants such as bromine and chlorine; antimony flame retardants such as antimony trioxide and antimony pentoxide; inorganic flame retardants such as aluminum hydroxide, magnesium hydroxide and silicone compounds.
  • Phosphorus flame retardants such as red phosphorus, phosphate esters, ammonium polyphosphate, phosphazene, etc .; melamine, melam, melem, melon, melamine cyanurate, melamine phosphate, melamine pyrophosphate, melamine polyphosphate, melamine / melam polyphosphate
  • Melamine flame retardants such as melem double salt, melamine alkylphosphonate, melamine phenylphosphonate, melamine sulfate and melam methanesulfonate; fluororesins such as PTFE. These flame retardants can be used within 200 parts by mass with respect to 100 parts by mass of the PGA resin.
  • additives generally added as necessary for example, end-capping agents, hydrolysis inhibitors, heat stabilizers, Light stabilizers, heat ray absorbers, UV absorbers, antioxidants, impact modifiers, plasticizers, compatibilizers, silane-based, titanium-based, aluminum-based coupling agents, foaming agents, antistatic agents, release agents Molding agents, lubricants, antibacterial and antifungal agents, pigments, dyes, fragrances, other various fillers, other crystal nucleating agents, and other thermoplastic resins may be appropriately blended.
  • end-capping agents for example, end-capping agents, hydrolysis inhibitors, heat stabilizers, Light stabilizers, heat ray absorbers, UV absorbers, antioxidants, impact modifiers, plasticizers, compatibilizers, silane-based, titanium-based, aluminum-based coupling agents, foaming agents, antistatic agents, release agents Molding agents, lubricants, antibacterial and antifungal agents, pigments, dyes, fragrances, other various fillers, other crystal nucleating agents, and other thermoplastic
  • the PGA resin composition of the present invention can be produced by mixing the PGA resin and a crystal nucleating agent comprising the carboxylic acid derivative.
  • a method of mixing the crystal nucleating agent for example, a method of mixing the crystal nucleating agent into a composition containing PGA resin or PGA resin and other additives before molding, PGA resin or PGA resin during molding And a method of mixing a crystal nucleating agent with a composition containing the other additives (for example, side feed).
  • a PGA resin composition by mixing a crystal nucleating agent in a monomer such as glycolic acid.
  • the PGA resin composition of the present invention preferably has a cooling crystallization temperature (temperature at which the resin crystallizes in the process of cooling the molten resin composition) Tcc of 145 ° C. or higher, and 160 ° C. or higher. Some are more preferable, and those at 170 ° C. or higher are particularly preferable.
  • the PGA resin molded article of the present invention includes a crystal nucleating agent composed of the crystallized PGA resin and the carboxylic acid derivative.
  • a spherulite diameter of the PGA resin molding of this invention 30 micrometers or less are preferable and 20 micrometers or less are more preferable.
  • a PGA resin molded body having a smoother surface can be obtained.
  • Such a PGA resin molding can be obtained, for example, by using the PGA resin composition of the present invention and crystallizing the PGA resin contained therein.
  • the method for crystallizing the PGA resin is not particularly limited.
  • the PGA resin composition may be cooled after being heated to the crystallization temperature or higher. Further, in the above process, the PGA resin composition is heated to the melting point or higher, and then rapidly cooled to form an amorphous molded body, which can be crystallized by heating. Since the spherulite diameter of the PGA resin molding of the present invention is small and uniform, it has excellent gas barrier properties, mechanical strength, and heat resistance.
  • PGA resin has been proposed for use in carbonated beverage bottles and the like by taking advantage of its characteristics (high gas barrier property).
  • injection blow molding is a method in which a test tube bottomed parison (preform) is injection-molded by injection molding, and this parison is blow-molded in a supercooled state or above the glass transition point. It is divided into methods (hot parison method, cold parison method).
  • the temperature is adjusted to a temperature below the melting point and blow-molded without solidifying.
  • the crystallization of the bottle occurs when the resin is cooled from the molten state, and the higher the crystallization occurs on the higher temperature side, the faster the crystallization of the resin and the higher the performance of the crystal nucleating agent.
  • the cooling crystallization temperature Tcc is an index.
  • the crystallization of the bottle occurs when the resin is heated to a temperature higher than the glass transition point, and the crystallization of the resin is faster and the performance of the crystal nucleating agent is superior as crystallization occurs at a lower temperature side.
  • the temperature rise crystallization temperature (temperature at which the resin crystallizes in the process of raising the temperature of the resin composition in an amorphous state below the glass transition temperature) is an index.
  • the PGA resin composition of the present invention can be suitably molded by any injection blow molding.
  • the laminate of the present invention comprises a layer composed of the PGA resin molded body of the present invention, comprising two or more layers, the layer composed of the PGA resin molded product, and another layer adjacent thereto.
  • the layer composed of the PGA resin molded product There is no particular limitation as long as it does.
  • other layers adjacent to the layer made of the PGA resin molded product include a layer made of a thermoplastic resin, a layer made of paper, a layer made of an adhesive, and the like.
  • thermoplastic resin examples include PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PEN (polyethylene naphthalate), PBN (polybutylene naphthalate), polybutylene succinate, polyethylene succinate / adipate, Polyester resins such as PLA (polylactic acid), poly 3-hydroxybutyrate, polycaprolactone; PE (polyethylene), PP (polypropylene), ethylene-propylene copolymer, EVOH (ethylene-vinyl alcohol copolymer), EVA ( Polyolefin resins such as ethylene-vinyl acetate copolymer) and EEA (ethylene-ethyl acrylate copolymer); PS (polystyrene), styrene-butadiene copolymer, ABS (acrylonitrile-butadiene-styrene) Polymer), polystyrene resins such as MS (methyl methacrylate-styren
  • thermoplastic resins may be used alone or in combination of two or more.
  • a polyester resin is preferable, and at least one of a diol component and a dicarboxylic acid component is an aromatic polyester resin.
  • aromatic polyester resins obtained from aromatic dicarboxylic acids are particularly preferable.
  • the composition ratio of the layer made of the PGA resin molded body is preferably 1 to 10% on a mass basis (approximately equal to the thickness basis).
  • a sufficient gas barrier property of the laminate can be obtained.
  • a tremendous stress is not required at the time of blow molding, and also the transparency of the laminate can be maintained.
  • the laminate of the present invention include multilayer containers and multilayer sheets, and molded containers such as multilayer hollow containers.
  • Examples of such a laminate include those formed by coextrusion molding, co-injection molding, and the like, and those formed by coextrusion blow molding, co-injection blow molding, and the like.
  • the present invention will be described more specifically with reference to examples.
  • the present invention is not limited to the following examples.
  • the apparatus and conditions used for analyzing the physical properties of the sample are as follows.
  • the obtained slurry was filtered under reduced pressure, washed with a water-methanol mixed solution (mass ratio 7: 3), and dried to obtain the desired product (compound A) as a white powder.
  • the obtained target product had a 5% weight loss temperature (Td 5% ) of 285.8 ° C. and a melting point of 346.5 ° C.
  • Synthesis Example 11 Production of N 1 , N 3 -bis (4-acetylphenyl) isophthalamide 1.47 g (11 mmol) of aniline was added to 4-aminoacetophenone [manufactured by Tokyo Chemical Industry Co., Ltd.] and terephthaloyl chloride was added.
  • the white powdery target product (Compound K) was obtained in the same manner as in Synthesis Example 1 except that the content was changed to 1.00 g (4.9 mmol) of isophthaloyl chloride [manufactured by Tokyo Chemical Industry Co., Ltd.].
  • the obtained target product had a 5% weight loss temperature (Td 5% ) of 341.4 ° C. and a melting point of 285.8 ° C.
  • Synthesis Example 12 Production of N 1 , N 5 -diphenylnaphthalene-1,5-dicarboxamide
  • the amount of aniline charged was 0.81 g (8.7 mmol), and the amount of triethylamine was 0.80 g (7.9 mmol).
  • the same procedure as in Synthesis Example 1 was repeated except that terephthaloyl chloride was changed to 1.00 g (4.0 mmol) of naphthalene-1,5-dicarbonyl dichloride (manufactured by Tokyo Chemical Industry Co., Ltd.).
  • a powdery target product (Compound L) was obtained.
  • the obtained target product had a 5% weight loss temperature (Td 5% ) of 360.8 ° C and a melting point of 350.4 ° C.
  • Synthesis Example 13 Production of N 1 , N 6 -diphenyladipamide The amount of aniline charged to 1.12 g (12 mmol), the amount of triethylamine charged to 1.10 g (11 mmol), and terephthaloyl chloride to adip A white powder of interest (Compound M) was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 1.00 g (5.5 mmol) of ludichloride [manufactured by Tokyo Chemical Industry Co., Ltd.]. The obtained target product had a 5% weight loss temperature (Td 5% ) of 313.1 ° C. and a melting point of 243.9 ° C.
  • Td 5% 5% weight loss temperature
  • PGA resin [Kuredu (registered trademark) manufactured by Kureha Co., Ltd.] was heated and melted with a hot press at 270 ° C., and then rapidly cooled with ice water. This resin was dried under reduced pressure at room temperature for 6 hours to obtain a film-like amorphous PGA resin.
  • Synthesis Example 1 was performed as a crystal nucleating agent in a solution in which 100 parts by mass of this amorphous PGA resin was dissolved in 3,000 parts by mass of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIPA).
  • Example 3 The operation and evaluation were conducted in the same manner as in Example 1 except that hydroxyapatite [Nano-SHAp MHS-00405, average particle size: 40 nm, manufactured by Softela Co., Ltd.] was used as the crystal nucleating agent. The results are also shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】 ポリグリコール酸樹脂の結晶化促進に好適な結晶核剤を添加した、ポリグリコール酸樹脂に比べて結晶化速度が速く、より高い成型加工性及び耐熱性の向上が可能なポリグリコール酸樹脂組成物を提供すること。 【解決手段】 ポリグリコール酸樹脂、及びB1-L1-A-L2-B2で表されるカルボン酸誘導体からなる結晶核剤を含む、ポリグリコール酸樹脂組成物。 {式中、Aは置換基を有していてもよい炭素原子数1乃至6のアルキレン基又は置換基を有していてもよい炭素原子数6乃至10の二価の芳香族基を表し、B1及びB2はそれぞれ独立して、置換基を有していてもよい炭素原子数3乃至6のシクロアルキル基又は置換基を有していてもよい炭素原子数6乃至10の芳香族基を表し、L1及びL2はそれぞれ独立して、-C(=O)NR1-(式中、R1は水素原子又は炭素原子数1乃至6のアルキル基を表す。)又は-C(=O)O-を表す。}

Description

ポリグリコール酸樹脂組成物
 本発明は、ポリグリコール酸樹脂組成物に関し、さらに詳述すると、カルボン酸誘導体からなる結晶核剤を含むポリグリコール酸樹脂組成物、該樹脂組成物から得られるポリグリコール酸樹脂成形体、及び該樹脂成形体からなる層を具備する積層体に関する。
 自然環境保護の観点から、自然環境中で生分解可能な脂肪族ポリエステルに関する研究が精力的に行われている。中でもポリグリコール酸樹脂は、生体適合性を有し、易加水分解性、高ガスバリア性、機械特性に優れているため、単独または他樹脂との複合化によってシート、フィルム、包装容器、ボトル、医療用縫合糸などの部品や成型材料として利用が期待されている。
 しかしながら、ポリグリコール酸樹脂は結晶化速度が遅いため、十分に結晶化していない場合、ガラス転移点(Tg)以上の温度で軟化するといった欠点がある。また、射出成型時の金型内で所定の温度にて熱処理(アニール)することでポリグリコール酸樹脂の結晶化度は向上するが、結晶化速度が遅いため、成型サイクル性が悪く、生産性に課題がある。さらに、ポリグリコール酸樹脂のみで結晶化を行った場合、光の散乱原因となる光の波長と同等以上の大きさの球晶が成長するため、成形品の外観(不透明)や機械特性を損ねる原因となる。
 これらの課題を解決するために、ポリグリコール酸樹脂に結晶核剤を添加する方法が検討されている。結晶核剤は、結晶性高分子の1次結晶核となり、結晶成長を促進し、球晶サイズの微細化及び結晶化促進の働きをする。
 これまで、ポリグリコール酸樹脂の結晶核剤としては、炭素系フィラー、タルク、カオリン、硫酸バリウム、芳香族カルボン酸金属塩など(特許文献1)や、黒鉛、ヒドロキシアパタイト、高融点アミド化合物など(特許文献2)が開示されている。
特開2008-260902号公報 国際公開第2011/024653号パンフレット
 前述のように、ポリグリコール酸樹脂の結晶化速度を高めるために様々な結晶核剤が提案されているが、近年、ポリグリコール酸樹脂のより高い成型加工性及び耐熱性の向上を実現させるために、さらに有効な結晶核剤が望まれている。
 従って、本発明は、ポリグリコール酸樹脂の結晶化促進に好適な結晶核剤を添加した、ポリグリコール酸樹脂に比べて結晶化速度が速く、より高い成型加工性及び耐熱性の向上が可能なポリグリコール酸樹脂組成物、このポリグリコール酸樹脂組成物を結晶化して得られるポリグリコール酸樹脂成形体、及びこのポリグリコール酸樹脂成形体からなる層を具備する積層体を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、ポリグリコール酸樹脂に結晶核剤として特定のカルボン酸誘導体を添加することにより、ポリグリコール酸樹脂の結晶化を促進することが可能であることを見出した。
 すなわち、本発明は、第1観点として、ポリグリコール酸樹脂、及び式[1]で表されるカルボン酸誘導体からなる結晶核剤を含む、ポリグリコール酸樹脂組成物に関する。
 B1-L1-A-L2-B2 [1]
{式中、Aは、置換基を有していてもよい炭素原子数1乃至6のアルキレン基、又は置換基を有していてもよい炭素原子数6乃至10の二価の芳香族基を表し、B1及びB2はそれぞれ独立して、置換基を有していてもよい炭素原子数3乃至6のシクロアルキル基、又は置換基を有していてもよい炭素原子数6乃至10の芳香族基を表し、L1及びL2はそれぞれ独立して、-C(=O)NR1-(式中、R1は、水素原子又は炭素原子数1乃至6のアルキル基を表す。)又は-C(=O)O-を表す。}
 第2観点として、前記L1及びL2の少なくとも一方が-C(=O)NR1-(式中、R1は前記と同じ意味を表す。)である、第1観点のポリグリコール酸樹脂組成物に関する。
 第3観点として、前記L1及びL2が-C(=O)NR1-(式中、R1は前記と同じ意味を表す。)である、第1観点のポリグリコール酸樹脂組成物に関する。
 第4観点として、前記Aが、式[2]又は式[3]で表される二価の有機基である、第1観点乃至第3観点のうち何れか一つのポリグリコール酸樹脂組成物に関する。
Figure JPOXMLDOC01-appb-C000004
{式中、R2及びR3はそれぞれ独立して、炭素原子数1乃至6のアルキル基、炭素原子数2乃至7のアシル基、炭素原子数2乃至7のアルコキシカルボニル基、アミノ基、炭素原子数1乃至6のアシルアミノ基、ヒドロキシ基、又は炭素原子数1乃至6のアルコキシ基を表し、mは0乃至10の整数を表し(mが2以上のときR2はそれぞれ同じであっても異なっていてもよい)、nは0乃至4の整数を表す(nが2以上のときR3はそれぞれ同じであっても異なっていてもよい)。}
 第5観点として、前記Aがシクロヘキサン-1,4-ジイル基である、第4観点のポリグリコール酸樹脂組成物に関する。
 第6観点として、前記Aがp-フェニレン基である、第4観点のポリグリコール酸樹脂組成物に関する。
 第7観点として、前記B1及びB2が、式[4]又は式[5]で表される一価の有機基である、第1観点乃至第6観点のうち何れか一つのポリグリコール酸樹脂組成物に関する。
Figure JPOXMLDOC01-appb-C000005
(式中、R4乃至R19はそれぞれ独立して、水素原子、炭素原子数1乃至6のアルキル基、炭素原子数2乃至7のアシル基、炭素原子数2乃至7のアルコキシカルボニル基、アミノ基、炭素原子数1乃至6のアシルアミノ基、ヒドロキシ基、又は炭素原子数1乃至6のアルコキシ基を表す。)
 第8観点として、前記B1及びB2が、シクロヘキシル基、又は式[6]で表される一価の有機基である、第7観点のポリグリコール酸樹脂組成物に関する。
Figure JPOXMLDOC01-appb-C000006
(式中、R17は前記と同じ意味を表す。)
 第9観点として、前記結晶核剤の含有量が、前記ポリグリコール酸樹脂100質量部に対して0.001~10質量部である、第1観点乃至第8観点のうち何れか一つのポリグリコール酸樹脂組成物に関する。
 第10観点として、第1観点乃至第9観点のうち何れか一つのポリグリコール酸樹脂組成物を結晶化してなる、ポリグリコール酸樹脂成形体に関する。
 第11観点として、第10観点のポリグリコール酸樹脂成形体からなる層を具備する積層体に関する。
 本発明のポリグリコール酸樹脂組成物は、特定のカルボン酸誘導体を結晶核剤として用いることにより、ポリグリコール酸樹脂の結晶化促進効果が向上されたものとなり、ひいては、成形加工性、耐熱性に優れたポリグリコール酸樹脂組成物、このポリグリコール酸樹脂組成物を結晶化して得られるポリグリコール酸樹脂成形体、及びこのポリグリコール酸樹脂成形体からなる層を具備する積層体を提供することができる。
 以下、本発明についてさらに詳しく説明する。
<ポリグリコール酸樹脂組成物>
 本発明のポリグリコール酸(以下、PGAともいう。)樹脂組成物は、PGA樹脂、及びカルボン酸誘導体からなる結晶核剤、を含みて構成される。
[PGA樹脂]
 本発明に用いられるPGA樹脂としては、式[7]
 -[O-CH2-C(=O)]- [7]
で表されるグリコール酸繰り返し単位のみからなるグリコール酸のホモポリマー(以下、PGAホモポリマーともいう。グリコール酸の2分子間環状エステルであるグリコリドの開環重合体を含む。)、前記グリコール酸繰り返し単位を含むポリグリコール酸コポリマー(以下、PGAコポリマーともいう。)等が挙げられる。このようなPGA樹脂は、1種を単独で使用しても2種以上を併用してもよい。
 前記PGAコポリマーを製造する際に、グリコール酸モノマーとともに使用されるコモノマーとしては、ジラクチド(別名:1,4-ジオキサン-2,5-ジオン)等のラクチド類;β-プロピオラクトン、β-ブチロラクトン、β-ピバロラクトン、γ-ブチロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等のラクトン類;トリメチレンカーボネート(別名:1,3-ジオキサン-2-オン)等の環状カーボネート類;シュウ酸エチレン(別名:1,4-ジオキサン-2,3-ジオン)等の環状エステル類;1,4-ジオキサン-2-オン等の環状エーテルエステル類;1,3-ジオキサン等の環状エーテル類;ε-カプロラクタム等の環状アミド類;乳酸、3-ヒドロキシプロパン酸、3-ヒドロキシブタン酸、4-ヒドロキシブタン酸、6-ヒドロキシカプロン酸等のヒドロキシカルボン酸類又はそのアルキルエステル類;エチレングリコール、1,4-ブタンジオール等の脂肪族ジオール類と、コハク酸、アジピン酸等の脂肪族ジカルボン酸類又はそのアルキルエステル類との実質的に等モルの混合物などを挙げることができる。これらのコモノマーは、1種を単独で使用しても2種以上を併用してもよい。これらのコモノマーのうち、耐熱性の観点からヒドロキシカルボン酸類が好ましい。
 また、前記PGA樹脂をグリコリドの開環重合によって製造する場合に使用する触媒としては、例えば、ハロゲン化スズ、有機カルボン酸スズ等のスズ化合物;アルコキシチタネート等のチタン化合物;アルコキシアルミニウム等のアルミニウム化合物;ジルコニウムアセチルアセトン等のジルコニウム化合物;ハロゲン化アンチモン、酸化アンチモン等のアンチモン化合物などの公知の開環重合触媒が挙げられる。
 前記PGA樹脂は、従来公知の重合方法により製造することができるが、その重合温度としては、120~300℃が好ましく、130~250℃がより好ましく、140~240℃が特に好ましく、150~230℃が最も好ましい。重合温度を120℃以上とすることで重合を十分に進行させることができ、300℃以下とすることで生成した樹脂の熱分解をより抑制することができる。
 また、前記PGA樹脂の重合時間としては、2分間~50時間が好ましく、3分間~30時間がより好ましく、5分間~20時間が特に好ましい。重合時間を2分間以上とすることで重合を十分に進行させることができ、また50時間以下とすることでより着色のない樹脂を得ることができる。
 本発明に用いるPGA樹脂において、前記式[7]で表されるグリコール酸繰り返し単位の含有量としては、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、100質量%が特に好ましい。グリコール酸繰り返し単位の含有量を70質量%以上とすることで、生分解性、加水分解性、ガスバリア性、機械的強度、耐熱性といったPGA樹脂としての効果をより得ることができる。
 前記PGA樹脂の重量平均分子量Mwとしては、30,000~800,000が好ましく、50,000~500,000がより好ましい。重量平均分子量Mwを30,000以上とすることでPGA樹脂成形体の十分な機械的強度が得られ、また800,000以下とすることでより容易に溶融押出や射出成形をすることができる。なお、前記重量平均分子量Mwは、ゲルパーミエーションクロマトグラフィ(GPC)により測定したポリメタクリル酸メチル換算値である。
 また、前記PGA樹脂の溶融粘度(温度:270℃、剪断速度:122sec-1)としては、50~3,000Pa・sが好ましく、100~2,000Pa・sがより好ましく、100~1,000Pa・sが好ましい。溶融粘度を50Pa・s以上とすることでPGA樹脂成形体の十分な機械的強度が得られ、また3,000Pa・s以下とすることでより容易に溶融押出や射出成形をすることができる。
 また、本発明に用いられるPGA樹脂としては、PGAホモポリマー又はPGAコポリマーを主体とした、他樹脂とのブレンドポリマーであってもよい。他樹脂とは、後述するPGA樹脂以外の生分解性樹脂、汎用の熱可塑性樹脂、汎用の熱可塑性エンジニアリングプラスチック等が挙げられる。
 上述のPGA樹脂以外の生分解性樹脂としては、例えば、PLA(ポリ乳酸)、PHB(ポリ-3-ヒドロキシ酪酸)、PHBH(3-ヒドロキシ酪酸と3-ヒドロキシヘキサン酸の共重合体)等のポリヒドロキシアルカン酸;ポリカプロラクトン、ポリブチレンスクシネート、ポリブチレンスクシネート/アジペート、ポリブチレンスクシネート/カーボネート、ポリエチレンスクシネート、ポリエチレンスクシネート/アジペート等のポリエステル樹脂;ポリビニルアルコール;変性でんぷん;酢酸セルロース;キチン;キトサン;リグニンなどが挙げられる。
 前記汎用の熱可塑性樹脂としては、例えば、PE(ポリエチレン)、ポリエチレンコポリマー、PP(ポリプロピレン)、ポリプロピレンコポリマー、PB(ポリブチレン)、EVA(エチレン-酢酸ビニル共重合体)、EEA(エチレン-アクリル酸エチル共重合体)、ポリ(4-メチル-1-ペンテン)等のポリオレフィン樹脂;PS(ポリスチレン)、HIPS(高衝撃性ポリスチレン)、AS(アクリロニトリル-スチレン共重合体)、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)等のポリスチレン系樹脂;ポリ塩化ビニル樹脂;ポリウレタン樹脂;フェノール樹脂;エポキシ樹脂;アミノ樹脂;不飽和ポリエステル樹脂などが挙げられる。
 前記汎用のエンジニアリングプラスチックとしては、例えば、ポリアミド樹脂;ポリイミド樹脂;ポリカーボネート樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)等のポリエステル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンスルフィド樹脂などが挙げられる。
[カルボン酸誘導体からなる結晶核剤]
 本発明に用いられる結晶核剤は、式[1]で表されるカルボン酸誘導体からなる。
 B1-L1-A-L2-B2 [1]
 式[1]において、L1及びL2はそれぞれ独立して、-C(=O)NR1-(式中、R1は、水素原子又は炭素原子数1乃至6のアルキル基を表すが、R1としては、水素原子が好ましい。)又は-C(=O)O-を表すが、L1及びL2の少なくとも一方が-C(=O)NR1-であることが好ましく、双方が-C(=O)NR1-であることがより好ましい。
 ここで、R1が表す炭素原子数1乃至6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロヘキシル基等が挙げられる。
 また、-C(=O)NR1-及び-C(=O)O-のAと結合する側は、C(=O)側であっても、NR1側又はO側であっても構わない。すなわち、例えば、L1が-C(=O)NR1-である場合、B1-C(=O)NR1-A-L2-B2及びB1-NR1C(=O)-A-L2-B2の双方が本発明のカルボン酸誘導体に含まれ、L1が-C(=O)O-である場合、B1-C(=O)O-A-L2-B2及びB1-OC(=O)-A-L2-B2の双方が本発明のカルボン酸誘導体に含まれる。
 また、式[1]において、Aは、置換基を有していてもよい炭素原子数1乃至6のアルキレン基、又は置換基を有していてもよい炭素原子数6乃至10の二価の芳香族基を表すが、Aとしては、式[2]又は式[3]で表される二価の有機基が好ましく、特にシクロヘキサン-1,4-ジイル基又はp-フェニレン基がより好ましい。
 ここで、Aが表す炭素原子数1乃至6のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、ペンタメチレン基、2,2-ジメチルトリメチレン基、ヘキサメチレン基等の鎖状又は分枝状アルキレン基;シクロプロパン-1,2-ジイル基、シクロブタン-1,2-ジイル基、シクロブタン-1,3-ジイル基、シクロペンタン-1,2-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,2-ジイル基、シクロヘキサン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基等の環状アルキレン基などが挙げられる。その中でも、環状アルキレン基が好ましい。
 Aが表す炭素原子数6乃至10の二価の芳香族基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基のフェニレン基;ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基等のナフタレンジイル基などが挙げられる。その中でも、フェニレン基が好ましい。
 また、上記炭素原子数1乃至6のアルキレン基及び炭素原子数6乃至10の二価の芳香族基が有していてもよい置換基としては、炭素原子数1乃至6のアルキル基、炭素原子数2乃至7のアシル基、炭素原子数2乃至7のアルコキシカルボニル基、アミノ基、炭素原子数1乃至6のアシルアミノ基、ヒドロキシ基、炭素原子数1乃至6のアルコキシ基等が挙げられ、具体的には、後述のR2及びR3で例示した基と同様のものが挙げられる。
Figure JPOXMLDOC01-appb-C000007
 式[2]及び式[3]において、R2及びR3はそれぞれ独立して、炭素原子数1乃至6のアルキル基、炭素原子数2乃至7のアシル基、炭素原子数2乃至7のアルコキシカルボニル基、アミノ基、炭素原子数1乃至6のアシルアミノ基、ヒドロキシ基、又は炭素原子数1乃至6のアルコキシ基を表す。
 ここで、R2及びR3が表す炭素原子数1乃至6のアルキル基としては、前述のR1で例示した基と同様のものが挙げられる。
 R2及びR3が表す炭素原子数2乃至7のアシル基としては、炭素原子数1乃至6のアルキル基にカルボニル基が結合した基、すなわち、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ペンタノイル基、2-メチルブタノイル基、3-メチルブタノイル基、ピバロイル基、n-ヘキサノイル基、4-メチルペンタノイル基、3,3-ジメチルブタノイル基、ヘプタノイル基、シクロヘキサンカルボニル基等が挙げられる。
 R2及びR3が表す炭素原子数2乃至7のアルコキシカルボニル基としては、炭素原子数1乃至6のアルコキシ基にカルボニル基が結合した基、すなわち、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、n-ペンチルオキシカルボニル基、イソペンチルオキシカルボニル基、ネオペンチルオキシカルボニル基、n-ヘキシルオキシカルボニル基、シクロヘキシルオキシカルボニル基等が挙げられる。
 R2及びR3が表す炭素原子数1乃至6のアシルアミノ基としては、アセトアミド基、プロピオンアミド基、ブチルアミド基、イソブチルアミド基、ペンタンアミド基、2-メチルブタンアミド基、3-メチルブタンアミド基、ピバルアミド基、n-ヘキサンアミド基、4-メチルペンタンアミド基、3,3-ジメチルブタンアミド基、ヘプタンアミド基、シクロヘキサンカルボキサミド基等が挙げられる。
 R2及びR3が表す炭素原子数1乃至6のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基等が挙げられる。
 また、式[2]において、mは0乃至10の整数を表すが、mとしては、0が好ましい。なお、mが2以上のときR2はそれぞれ同じであっても異なっていてもよい。
 また、式[3]において、nは0乃至4の整数を表すが、nとしては、0が好ましい。なお、nが2以上のときR3はそれぞれ同じであっても異なっていてもよい。
 また、式[1]において、B1及びB2はそれぞれ独立して、置換基を有していてもよい炭素原子数3乃至6のシクロアルキル基、又は置換基を有していてもよい炭素原子数6乃至10の芳香族基を表すが、B1及びB2としては、式[4]又は式[5]で表される一価の有機基が好ましく、特にシクロヘキシル基又は式[6]で表される基、特にR17がアセチル基の4-アセチルフェニル基がより好ましい。
 ここで、B1及びB2が表す炭素原子数3乃至6のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。
 B1及びB2が表す炭素原子数6乃至10の芳香族基としては、フェニル基、ナフチル基等が挙げられる。
 また、上記炭素原子数3乃至6のシクロアルキル基及び炭素原子数6乃至10の芳香族基が有していてもよい置換基としては、炭素原子数1乃至6のアルキル基、炭素原子数2乃至7のアシル基、炭素原子数2乃至7のアルコキシカルボニル基、アミノ基、炭素原子数1乃至6のアシルアミノ基、ヒドロキシ基、炭素原子数1乃至6のアルコキシ基等が挙げられ、具体的には、前述のR2及びR3で例示した基と同様のものが挙げられる。
Figure JPOXMLDOC01-appb-C000008
 式[4]乃至式[6]において、R4乃至R19はそれぞれ独立して、水素原子、炭素原子数1乃至6のアルキル基、炭素原子数2乃至7のアシル基、炭素原子数2乃至7のアルコキシカルボニル基、アミノ基、炭素原子数1乃至6のアシルアミノ基、ヒドロキシ基、又は炭素原子数1乃至6のアルコキシ基を表す。
 ここで、R4乃至R19が表す炭素原子数1乃至6のアルキル基、炭素原子数2乃至7のアシル基、炭素原子数2乃至7のアルコキシカルボニル基、炭素原子数1乃至6のアシルアミノ基及び炭素原子数1乃至6のアルコキシ基としては、前述のR2及びR3で例示した基と同様のものが挙げられる。
 このようなB1及びB2としては、例えば、シクロヘキシル基、メチルシクロヘキシル基、tert-ブチルシクロヘキシル基、アセチルシクロヘキシル基、メトキシカルボニルシクロヘキシル基、エトキシカルボニルシクロヘキシル基、アミノシクロヘキシル基、アセトアミドシクロヘキシル基、ヒドロキシシクロヘキシル基、メトキシシクロヘキシル基、エトキシシクロヘキシル基、tert-ブトキシシクロヘキシル基、フェニル基、トリル基、ジメチルフェニル基、tert-ブチルフェニル基、アセチルフェニル基、プロピオニルフェニル基、メトキシカルボニルフェニル基、エトキシカルボニルフェニル基、アミノフェニル基、アセトアミドフェニル基、プロピオンアミドフェニル基、ヒドロキシフェニル基、メトキシフェニル基、エトキシフェニル基、tert-ブトキシフェニル基等が挙げられる。
 式[1]で表されるカルボン酸誘導体は、その製造方法は特に制限されないが、カルボン酸又はその活性化体(酸ハロゲン化物、酸無水物、酸アジド、活性エステル等)と、アミン又はアルコールとを、従来公知の方法によってアミド化又はエステル化することにより、容易に得ることができる。
 具体的には、例えば、L1及びL2が-C(=O)NR1-、すなわちアミド結合となるカルボン酸誘導体の場合、式[8]又は式[9]に示した方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000009
 式[8]及び式[9]において、A、B1、B2及びR1は前記と同じ意味を表す。また、Xとしては、アミド結合を生成できる基であれば特に制限されないが、ヒドロキシ基;メトキシ基、エトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子;アセトキシ基等のアシルオキシ基;アジド基;2,5-ジオキソピロリジン-1-イルオキシ基などが挙げられる。なお、B1及びB2が異なる基となる場合には、一方を先に反応させた後に他方を反応させてもよいし、双方を同時に反応させてもよい。
 また、例えば、L1及びL2が-C(=O)O-、すなわちエステル結合となるカルボン酸誘導体の場合、式[10]又は式[11]に示した方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000010
 式[10]及び式[11]において、A、B1及びB2は前記と同じ意味を表す。また、Xとしては、エステル結合を生成できる基であれば特に制限されないが、ヒドロキシ基;メトキシ基、エトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子;アセトキシ基等のアシルオキシ基;アジド基;2,5-ジオキソピロリジン-1-イルオキシ基などが挙げられる。なお、B1及びB2が異なる基となる場合には、一方を先に反応させた後に他方を反応させてもよいし、双方を同時に反応させてもよい。
 また、同様にして、L1及びL2が互いに異なるカルボン酸誘導体も得ることができる。
 なお、これらの式[1]で表されるカルボン酸誘導体は、市販されている場合には、市販品を使用することもできる。
[その他の添加剤]
 本発明のPGA樹脂組成物には、本発明の効果を損なわない限り、公知の無機充填剤を配合することもできる。無機充填剤としては、例えば、ガラス繊維、炭素繊維、タルク、マイカ、シリカ、カオリン、クレー、ウオラストナイト、ガラスビーズ、ガラスフレーク、チタン酸カリウム、炭酸カルシウム、硫酸マグネシウム、酸化チタン等が挙げられる。これらの無機充填剤の形状は、繊維状、粒状、板状、針状、球状、粉末の何れでもよい。これらの無機充填剤は、PGA樹脂100質量部に対して、300質量部以内で使用できる。
 本発明のPGA樹脂組成物には、本発明の効果を損なわない限り、公知の難燃剤を配合することもできる。難燃剤としては、例えば、臭素系や塩素系等のハロゲン系難燃剤;三酸化アンチモン、五酸化アンチモン等のアンチモン系難燃剤;水酸化アルミニウム、水酸化マグネシウム、シリコーン系化合物等の無機系難燃剤;赤リン、リン酸エステル類、ポリリン酸アンモニウム、フォスファゼン等のリン系難燃剤;メラミン、メラム、メレム、メロン、メラミンシアヌレート、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラミン・メラム・メレム複塩、アルキルホスホン酸メラミン、フェニルホスホン酸メラミン、硫酸メラミン、メタンスルホン酸メラム等のメラミン系難燃剤;PTFE等のフッ素樹脂などが挙げられる。これらの難燃剤は、PGA樹脂100質量部に対して、200質量部以内で使用できる。
 さらに、本発明のPGA樹脂組成物には、本発明の効果を損なわない限り、必要に応じて一般的に添加される添加剤、例えば、末端封止剤、加水分解抑制剤、熱安定剤、光安定剤、熱線吸収剤、紫外線吸収剤、酸化防止剤、衝撃改良剤、可塑剤、相溶化剤、シラン系、チタン系、アルミニウム系等の各種カップリング剤、発泡剤、帯電防止剤、離型剤、滑剤、抗菌抗カビ剤、顔料、染料、香料、その他の各種充填剤、その他の結晶核剤などや、他の熱可塑性樹脂などを適宜配合してもよい。
[ポリグリコール酸樹脂組成物の製造方法]
 本発明のPGA樹脂組成物は、前記PGA樹脂と前記カルボン酸誘導体からなる結晶核剤とを、混合することによって製造することができる。結晶核剤の混合方法としては特に制限はなく、例えば、成形前にPGA樹脂又はPGA樹脂と他の添加剤とを含有する組成物に結晶核剤を混合する方法、成形時にPGA樹脂又はPGA樹脂と他の添加剤とを含有する組成物に結晶核剤を混合する方法(例えば、サイドフィード)等が挙げられる。また、PGA樹脂を合成する際に、グリコール酸等のモノマー中に結晶核剤を混合してPGA樹脂組成物を製造することも可能である。
 本発明のPGA樹脂組成物としては、降温結晶化温度(溶融状態の樹脂組成物を冷却していく過程で樹脂が結晶化する温度)Tccが145℃以上であるものが好ましく、160℃以上であるものがより好ましく、170℃以上であるものが特に好ましい。
<ポリグリコール酸樹脂成形体>
 本発明のPGA樹脂成形体は、結晶化した前記PGA樹脂、及び前記カルボン酸誘導体からなる結晶核剤を含みて構成される。また、本発明のPGA樹脂成形体の球晶径としては、30μm以下が好ましく、20μm以下がより好ましい。球晶径を30μm以下とすることで、表面がより平滑なPGA樹脂成形体を得ることができる。
 このようなPGA樹脂成形体は、例えば、本発明のPGA樹脂組成物を使用し、これに含まれるPGA樹脂を結晶化させることによって得ることができる。PGA樹脂を結晶化させる方法としては特に制限はなく、例えば、PGA樹脂組成物を所定の形状に成形する過程において、前記PGA樹脂組成物を結晶化温度以上に加熱した後、冷却すればよい。また、上記過程において、前記PGA樹脂組成物を融点以上に加熱した後、急冷して非晶質のまま成形体とし、これを加熱することでも結晶化させることができる。
 本発明のPGA樹脂成形体は、その球晶径が小さくまた揃っているため、優れたガスバリア性、機械的強度及び耐熱性を有するものとなる。
 本発明のPGA樹脂組成物を成形する場合、一般の射出成形、ブロー成形、真空成形、圧縮成形等の慣用の成形法を使用することによって、各種成形品を容易に製造することができる。
 また、PGA樹脂は、その特徴(高ガスバリア性)を活かし炭酸飲料ボトルなどへの利用が提案されている。このボトルの代表的な成形法としては、インジェクションブローがある。
 インジェクションブロー成形とは、射出成形によって試験管状の有底パリソン(プリフォーム)を射出成形し、このパリソンを過冷却状態又はガラス転移点以上でブロー成形するものであり、詳細にはさらに2つの成型方式(ホットパリソン方式、コールドパリソン方式)に区分される。
 ホットパリソン方式は、パリソンの射出成形後、固化しない状態で、融点以下の温度で調温し、ブロー成形する。このとき、ボトルの結晶化は樹脂が溶融状態から冷却されたときに起こり、より高温側で結晶化が起こるほど樹脂の結晶化が速く、結晶核剤の性能が高いことを示す。DSC測定では降温結晶化温度Tccが指標となる。
 一方、コールドパリソン方式は、パリソンの射出成形後、パリソンを一旦冷却固化した後、ガラス転移点以上に再加熱し、調温後、ブロー成形する。このとき、ボトルの結晶化は樹脂がガラス転移点以上の温度に加熱されたときに起こり、より低温側で結晶化が起こるほど樹脂の結晶化が早く、結晶核剤の性能が優れていることを示す。DSC測定では昇温結晶化温度(ガラス転移点未満の非晶状態の樹脂組成物を昇温していく過程で樹脂が結晶化する温度)Tchが指標となる。
 本発明のPGA樹脂組成物は、何れのインジェクションブロー成形であっても好適に成形可能である。
<積層体>
 本発明の積層体は、本発明のPGA樹脂成形体からなる層を具備するものであり、2層以上であって、前記PGA樹脂成形物からなる層と、それに隣接する他の層とを具備するものであれば特に制限はない。前記PGA樹脂成形物からなる層に隣接する他の層としては、熱可塑性樹脂からなる層、紙からなる層、接着剤からなる層等が挙げられる。
 前記熱可塑性樹脂としては、例えば、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PBN(ポリブチレンナフタレート)、ポリブチレンスクシネート、ポリエチレンスクシネート/アジペート、PLA(ポリ乳酸)、ポリ3-ヒドロキシブチレート、ポリカプロラクトン等のポリエステル樹脂;PE(ポリエチレン)、PP(ポリプロピレン)、エチレン-プロピレン共重合体、EVOH(エチレン-ビニルアルコール共重合体)、EVA(エチレン-酢酸ビニル共重合体)、EEA(エチレン-アクリル酸エチル共重合体)等のポリオレフィン樹脂;PS(ポリスチレン)、スチレン-ブタジエン共重合体、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)、MS(メタクリル酸メチル-スチレン共重合体)等のポリスチレン系樹脂;ポリカーボネート樹脂;ポリ塩化ビニル樹脂;ポリ塩化ビニリデン樹脂;6-ナイロン、6,6-ナイロン等のポリアミド樹脂;ポリイミド樹脂;PMMA(ポリメタクリル酸メチル)等の(メタ)アクリル樹脂;ポリフェニレンスルフィド樹脂等のスルフィド樹脂;ポリウレタン樹脂などが挙げられる。これらの熱可塑性樹脂は、1種を単独で使用しても2種以上を併用してもよい。
 中でも、用途に応じた所望の透明性及びガスバリア性をともに満足する積層体が得られるという観点から、ポリエステル樹脂が好ましく、ジオール成分及びジカルボン酸成分の少なくとも一方が芳香族化合物である芳香族ポリエステル樹脂がより好ましく、芳香族ジカルボン酸から得られた芳香族ポリエステル樹脂が特に好ましい。
 このような積層体において、前記PGA樹脂成形体からなる層の構成割合としては、質量基準(厚さ基準にほぼ等しい)で1~10%が好ましい。PGA樹脂成形体からなる層の構成割合を1質量%以上とすることで、積層体の十分なガスバリア性を得ることができる。また、10質量%以下とすることで、ブロー成形時に多大な応力を必要とせず、さらに積層体の透明性を維持することができる。
 本発明の積層体の具体的な態様としては、多層フィルムや多層シートの他、多層中空容器等の成形容器などが挙げられる。このような積層体としては、共押出成形、共射出成形等により成形したもの、共押出ブロー成形、共射出ブロー成形等により延伸成形したものなどが挙げられる。
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、実施例において、試料の物性の分析に用いた装置及び条件は、以下の通りである。
(1)5%重量減少温度(Td5%)、融点測定
 装置:(株)リガク製 Thermo plus TG8120
 測定条件:空気雰囲気下
 昇温速度:10℃/分(25~500℃)
(2)示差走査熱量測定(DSC)
 装置:(株)パーキンエルマージャパン製 Diamond DSC
[合成例1]N1,N4-ジフェニルテレフタルアミドの製造
 撹拌機、温度計、滴下ロート及びコンデンサを備え付けた反応フラスコに、アニリン[東京化成工業(株)製]1.01g(11mmol)、トリエチルアミン[東京化成工業(株)製]1.00g(9.9mmol)及びN,N-ジメチルアセトアミド18.1g(アニリン及びトリエチルアミンの合計質量に対し9倍量)を仕込み、撹拌しながら氷浴にて冷却した。この溶液に、テレフタロイルクロリド[東京化成工業(株)製]1.00g(4.9mmol)をN,N-ジメチルアセトアミド9.0g(テレフタロイルクロリドの質量に対し9倍量)に溶解させた溶液をゆっくり滴下し、3時間撹拌した。反応混合物を水-メタノール混合溶液(質量比7:3)210g(使用したN,N-ジメチルアセトアミドの総質量に対し7.5倍量)に滴下し、生成物をスラリー状態で沈殿させた。得られたスラリーを減圧ろ過し、水-メタノール混合溶液(質量比7:3)で洗浄後、乾燥することで白色粉末の目的物(化合物A)を得た。
 得られた目的物の5%重量減少温度(Td5%)は285.8℃、融点は346.5℃であった。
[合成例2]N1,N4-ジ-p-トリルテレフタルアミドの製造
 アニリンを4-メチルアニリン[東京化成工業(株)製]1.16g(11mmol)に変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物B)を得た。
 得られた目的物の5%重量減少温度(Td5%)は349.1℃、融点は353.7℃であった。
[合成例3]N1,N4-ビス(4-tert-ブチルフェニル)テレフタルアミドの製造
 アニリンを4-tert-ブチルアニリン[東京化成工業(株)製]1.62g(11mmol)に変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物C)を得た。
 得られた目的物の5%重量減少温度(Td5%)は354.6℃、融点は304.4℃であった。
[合成例4]N1,N4-ビス(2-アセチルフェニル)テレフタルアミドの製造
 アニリンを2-アミノアセトフェノン[東京化成工業(株)製]1.47g(11mmol)に変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物D)を得た。
 得られた目的物の5%重量減少温度(Td5%)は261.3℃、融点は313.1℃であった。
[合成例5]N1,N4-ビス(3-アセチルフェニル)テレフタルアミドの製造
 アニリンを3-アミノアセトフェノン[東京化成工業(株)製]1.47g(11mmol)に変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物E)を得た。
 得られた目的物の5%重量減少温度(Td5%)は359.7℃、融点は310.0℃であった。
[合成例6]N1,N4-ビス(4-アセチルフェニル)テレフタルアミドの製造
 アニリンを4-アミノアセトフェノン[東京化成工業(株)製]1.47g(11mmol)に変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物F)を得た。
 得られた目的物の5%重量減少温度(Td5%)は337.6℃、融点は364.0℃であった。
[合成例7]N1,N4-ビス(4-アセトアミドフェニル)テレフタルアミドの製造
 アニリンを4-アミノアセトアニリド[東京化成工業(株)製]1.63g(11mmol)に変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物G)を得た。
 得られた目的物の5%重量減少温度(Td5%)は442.9℃、融点は観測されなかった。
[合成例8]N1,N4-ビス(4-ヒドロキシフェニル)テレフタルアミドの製造
 アニリンを4-アミノフェノール[東京化成工業(株)製]1.18g(11mmol)に変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物H)を得た。
 得られた目的物の5%重量減少温度(Td5%)は390.3℃、融点は399.4℃であった。
[合成例9]N1,N4-ビス(4-メトキシフェニル)テレフタルアミドの製造
 アニリンを4-メトキシアニリン[東京化成工業(株)製]1.34g(11mmol)に変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物I)を得た。
 得られた目的物の5%重量減少温度(Td5%)は353.0℃、融点は351.3℃であった。
[合成例10]N1,N4-ジシクロヘキシルテレフタルアミドの製造
 アニリンをシクロヘキシルアミン[東京化成工業(株)製]1.08g(11mmol)に変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物J)を得た。
 得られた目的物の5%重量減少温度(Td5%)は303.6℃、融点は345.1℃であった。
[合成例11]N1,N3-ビス(4-アセチルフェニル)イソフタルアミドの製造
 アニリンを4-アミノアセトフェノン[東京化成工業(株)製]1.47g(11mmol)に、テレフタロイルクロリドをイソフタロイルクロリド[東京化成工業(株)製]1.00g(4.9mmol)に、それぞれ変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物K)を得た。
 得られた目的物の5%重量減少温度(Td5%)は341.4℃、融点は285.8℃であった。
[合成例12]N1,N5-ジフェニルナフタレン-1,5-ジカルボキサミドの製造
 アニリンの仕込量を0.81g(8.7mmol)に、トリエチルアミンの仕込量を0.80g(7.9mmol)に、テレフタロイルクロリドをナフタレン-1,5-ジカルボニルジクロリド[東京化成工業(株)製]1.00g(4.0mmol)に、それぞれ変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物L)を得た。
 得られた目的物の5%重量減少温度(Td5%)は360.8℃、融点は350.4℃であった。
[合成例13]N1,N6-ジフェニルアジプアミドの製造
 アニリンの仕込量を1.12g(12mmol)に、トリエチルアミンの仕込量を1.10g(11mmol)に、テレフタロイルクロリドをアジポイルジクロリド[東京化成工業(株)製]1.00g(5.5mmol)に、それぞれ変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物M)を得た。
 得られた目的物の5%重量減少温度(Td5%)は313.1℃、融点は243.9℃であった。
[合成例14]N,N’-(1,4-フェニレン)ジベンズアミドの製造
 アニリンを1,4-フェニレンジアミン[東京化成工業(株)製]0.42g(3.6mmol)に、トリエチルアミンの仕込量を0.72g(7.1mmol)に、テレフタロイルクロリドをベンゾイルクロリド[東京化成工業(株)製]1.00g(7.1mmol)に、それぞれ変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物N)を得た。
 得られた目的物の5%重量減少温度(Td5%)は325.2℃、融点は343.9℃であった。
[合成例15]N,N’-(シクロヘキサン-1,4-ジイル)ジベンズアミドの製造
 アニリンをトランス-1,4-シクロヘキサンジアミン[東京化成工業(株)製]0.42g(3.6mmol)に、トリエチルアミンの仕込量を0.72g(7.1mmol)に、テレフタロイルクロリドをベンゾイルクロリド[東京化成工業(株)製]1.00g(7.1mmol)に、それぞれ変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物O)を得た。
 得られた目的物の5%重量減少温度(Td5%)は329.1℃、融点は346.0℃であった。
[合成例16]N,N’-(シクロヘキサン-1,4-ジイル)ジシクロヘキサンカルボキサミドの製造
 アニリンをトランス-1,4-シクロヘキサンジアミン[東京化成工業(株)製]0.39g(3.4mmol)に、トリエチルアミンの仕込量を0.69g(6.8mmol)に、テレフタロイルクロリドをシクロヘキサンカルボニルクロリド[東京化成工業(株)製]1.00g(6.8mmol)に、それぞれ変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物P)を得た。
 得られた目的物の5%重量減少温度(Td5%)は316.4℃、融点は292.6℃であった。
[合成例17]N1,N3,N5-トリフェニルベンゼン-1,3,5-トリカルボキサミドの製造
 アニリンの仕込量を1.16g(12mmol)に、トリエチルアミンの仕込量を1.14g(11mmol)に、テレフタロイルクロリドをベンゼン-1,3,5-トリカルボニルトリクロリド[Volant Fine Chemical社製]1.00g(3.8mmol)に、それぞれ変更した以外は合成例1と同様に操作し、白色粉末の目的物(化合物Q)を得た。
 得られた目的物の5%重量減少温度(Td5%)は349.7℃、融点は315.3℃であった。
[実施例1乃至16]
 PGA樹脂[(株)クレハ製 Kuredux(登録商標)]を270℃のホットプレスにて加熱し溶融させた後、氷水で急冷した。この樹脂を、室温で6時間減圧乾燥し、フィルム状の非晶質PGA樹脂を得た。
 この非晶質PGA樹脂100質量部を1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(HFIPA)3,000質量部に溶解させた溶液に、結晶核剤として合成例1乃至16で得られた化合物A乃至P1質量部を加え、室温(およそ25℃)で30分間撹拌し、均一な分散液を得た。該分散液のHFIPAをエバポレーターで留去し、結晶核剤を含むPGA樹脂組成物を得た。
 得られたPGA樹脂組成物から約1mgを切り出し、DSCを用いて降温結晶化温度Tccを評価した。評価は、100℃/分の昇温速度で270℃まで昇温、2分間保持した後、20℃/分の冷却速度で冷却する際に観測されるPGA樹脂の結晶化に由来する発熱ピーク頂点の温度をTccとして測定した。Tccの値が大きいほど同一条件での結晶化速度が速く、結晶核剤として優れた効果を有することを表す。結果を表1に併せて示す。
[比較例1]
 結晶核剤を添加しなかった以外は実施例1と同様に操作、評価した。結果を表1に併せて示す。
[比較例2]
 結晶核剤として合成例17で得られた化合物Qを使用した以外は実施例1と同様に操作、評価した。結果を表1に併せて示す。
[比較例3]
 結晶核剤としてヒドロキシアパタイト[(株)ソフセラ製 nano-SHAp MHS-00405、平均粒径40nm]を使用した以外は実施例1と同様に操作、評価した。結果を表1に併せて示す。
Figure JPOXMLDOC01-appb-T000011
 表1の結果より、結晶核剤として特定のカルボン酸誘導体を用いたもの(実施例1乃至16)は、結晶核剤を加えないもの(比較例1)、その他のカルボン酸誘導体を用いたもの(比較例2)、従来使用されているヒドロキシアパタイトを用いたもの(比較例3)と比較して高いTccを示し、結晶化促進効果を有することが確認された。すなわち、PGA樹脂に結晶核剤として特定のカルボン酸誘導体を添加することにより、PGA樹脂の結晶化速度を高め、耐熱性、成形加工性に優れたPGA樹脂組成物を提供することが可能となった。

Claims (11)

  1. ポリグリコール酸樹脂、及び式[1]で表されるカルボン酸誘導体からなる結晶核剤を含む、ポリグリコール酸樹脂組成物。
     B1-L1-A-L2-B2 [1]
    {式中、Aは、置換基を有していてもよい炭素原子数1乃至6のアルキレン基、又は置換基を有していてもよい炭素原子数6乃至10の二価の芳香族基を表し、B1及びB2はそれぞれ独立して、置換基を有していてもよい炭素原子数3乃至6のシクロアルキル基、又は置換基を有していてもよい炭素原子数6乃至10の芳香族基を表し、L1及びL2はそれぞれ独立して、-C(=O)NR1-(式中、R1は、水素原子又は炭素原子数1乃至6のアルキル基を表す。)又は-C(=O)O-を表す。}
  2. 前記L1及びL2の少なくとも一方が-C(=O)NR1-(式中、R1は前記と同じ意味を表す。)である、請求項1に記載のポリグリコール酸樹脂組成物。
  3. 前記L1及びL2が-C(=O)NR1-(式中、R1は前記と同じ意味を表す。)である、請求項1に記載のポリグリコール酸樹脂組成物。
  4. 前記Aが、式[2]又は式[3]で表される二価の有機基である、請求項1乃至請求項3のうち何れか一項に記載のポリグリコール酸樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    {式中、R2及びR3はそれぞれ独立して、炭素原子数1乃至6のアルキル基、炭素原子数2乃至7のアシル基、炭素原子数2乃至7のアルコキシカルボニル基、アミノ基、炭素原子数1乃至6のアシルアミノ基、ヒドロキシ基、又は炭素原子数1乃至6のアルコキシ基を表し、mは0乃至10の整数を表し(mが2以上のときR2はそれぞれ同じであっても異なっていてもよい)、nは0乃至4の整数を表す(nが2以上のときR3はそれぞれ同じであっても異なっていてもよい)。}
  5. 前記Aがシクロヘキサン-1,4-ジイル基である、請求項4に記載のポリグリコール酸樹脂組成物。
  6. 前記Aがp-フェニレン基である、請求項4に記載のポリグリコール酸樹脂組成物。
  7. 前記B1及びB2が、式[4]又は式[5]で表される一価の有機基である、請求項1乃至請求項6のうち何れか一項に記載のポリグリコール酸樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R4乃至R19はそれぞれ独立して、水素原子、炭素原子数1乃至6のアルキル基、炭素原子数2乃至7のアシル基、炭素原子数2乃至7のアルコキシカルボニル基、アミノ基、炭素原子数1乃至6のアシルアミノ基、ヒドロキシ基、又は炭素原子数1乃至6のアルコキシ基を表す。)
  8. 前記B1及びB2が、シクロヘキシル基、又は式[6]で表される一価の有機基である、請求項7に記載のポリグリコール酸樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R17は前記と同じ意味を表す。)
  9. 前記結晶核剤の含有量が、前記ポリグリコール酸樹脂100質量部に対して0.001~10質量部である、請求項1乃至請求項8のうち何れか一項に記載のポリグリコール酸樹脂組成物。
  10. 請求項1乃至請求項9のうち何れか一項に記載のポリグリコール酸樹脂組成物を結晶化してなる、ポリグリコール酸樹脂成形体。
  11. 請求項10に記載のポリグリコール酸樹脂成形体からなる層を具備する積層体。
PCT/JP2013/080804 2012-11-16 2013-11-14 ポリグリコール酸樹脂組成物 WO2014077324A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014547035A JPWO2014077324A1 (ja) 2012-11-16 2013-11-14 ポリグリコール酸樹脂組成物
CN201380059722.8A CN104797655A (zh) 2012-11-16 2013-11-14 聚乙醇酸树脂组合物
US14/443,237 US20150344668A1 (en) 2012-11-16 2013-11-14 Polyglycolic acid resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012251829 2012-11-16
JP2012-251829 2012-11-16

Publications (1)

Publication Number Publication Date
WO2014077324A1 true WO2014077324A1 (ja) 2014-05-22

Family

ID=50731233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080804 WO2014077324A1 (ja) 2012-11-16 2013-11-14 ポリグリコール酸樹脂組成物

Country Status (4)

Country Link
US (1) US20150344668A1 (ja)
JP (1) JPWO2014077324A1 (ja)
CN (1) CN104797655A (ja)
WO (1) WO2014077324A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316877A (zh) * 2015-06-18 2017-01-11 中国石油化工股份有限公司 一种二环己基对苯二甲酰胺的制备方法
WO2017110699A1 (ja) * 2015-12-25 2017-06-29 日産化学工業株式会社 カルボン酸誘導体を含むポリアミド樹脂組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110016216B (zh) * 2019-04-28 2021-08-27 睿泊(中国)环保科技有限公司 一种可全降解的聚乙醇酸复合包装材料及其制备方法
CN112759907A (zh) * 2020-12-24 2021-05-07 海南赛高新材料有限公司 一种具有较长保质期的改性pga材料及其制备方法
CN112724623A (zh) * 2020-12-24 2021-04-30 海南赛高新材料有限公司 一种高耐热型改性pga材料及其制备方法
CN114773673B (zh) * 2022-04-26 2023-07-18 华南理工大学 一种酰胺类β晶型成核剂及其应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861145A (ja) * 1981-10-07 1983-04-12 Asahi Chem Ind Co Ltd 熱安定化組成物
JPS5883048A (ja) * 1981-11-13 1983-05-18 Asahi Chem Ind Co Ltd ポリエステル樹脂組成物
JPS5893718A (ja) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd 共重合ポリエステル
JPS5893753A (ja) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd エステル樹脂組成物
JPS5893752A (ja) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd エステル系樹脂組成物
JPS5893754A (ja) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd 樹脂組成物
JPS5961146A (ja) * 1982-09-30 1984-04-07 Toshiba Corp 半導体装置の製造方法
JPS59193955A (ja) * 1983-04-20 1984-11-02 Asahi Chem Ind Co Ltd 成形用樹脂組成物
JPH037247A (ja) * 1981-08-06 1991-01-14 Ethicon Inc フエニレンビス―オキシアセテートおよびその製造方法
JP2004292625A (ja) * 2003-03-26 2004-10-21 Toray Ind Inc 成形体およびその製造方法
JP2008542232A (ja) * 2005-05-25 2008-11-27 ビーエーエスエフ ソシエタス・ヨーロピア ベンゾイル置換セリンアミド
JP2009079188A (ja) * 2007-09-27 2009-04-16 Dic Corp ポリ乳酸樹脂組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3671547B2 (ja) * 1996-09-13 2005-07-13 新日本理化株式会社 ポリ乳酸系樹脂組成物
CN1320044C (zh) * 2003-04-25 2007-06-06 株式会社艾迪科 聚乳酸类树脂组合物、成型品及其制备方法
EP2647668B1 (en) * 2010-12-02 2019-08-14 Adeka Corporation Polyester resin composition and molded body of same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037247A (ja) * 1981-08-06 1991-01-14 Ethicon Inc フエニレンビス―オキシアセテートおよびその製造方法
JPS5861145A (ja) * 1981-10-07 1983-04-12 Asahi Chem Ind Co Ltd 熱安定化組成物
JPS5883048A (ja) * 1981-11-13 1983-05-18 Asahi Chem Ind Co Ltd ポリエステル樹脂組成物
JPS5893718A (ja) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd 共重合ポリエステル
JPS5893753A (ja) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd エステル樹脂組成物
JPS5893752A (ja) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd エステル系樹脂組成物
JPS5893754A (ja) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd 樹脂組成物
JPS5961146A (ja) * 1982-09-30 1984-04-07 Toshiba Corp 半導体装置の製造方法
JPS59193955A (ja) * 1983-04-20 1984-11-02 Asahi Chem Ind Co Ltd 成形用樹脂組成物
JP2004292625A (ja) * 2003-03-26 2004-10-21 Toray Ind Inc 成形体およびその製造方法
JP2008542232A (ja) * 2005-05-25 2008-11-27 ビーエーエスエフ ソシエタス・ヨーロピア ベンゾイル置換セリンアミド
JP2009079188A (ja) * 2007-09-27 2009-04-16 Dic Corp ポリ乳酸樹脂組成物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316877A (zh) * 2015-06-18 2017-01-11 中国石油化工股份有限公司 一种二环己基对苯二甲酰胺的制备方法
CN106316877B (zh) * 2015-06-18 2018-04-10 中国石油化工股份有限公司 一种二环己基对苯二甲酰胺的制备方法
WO2017110699A1 (ja) * 2015-12-25 2017-06-29 日産化学工業株式会社 カルボン酸誘導体を含むポリアミド樹脂組成物
JPWO2017110699A1 (ja) * 2015-12-25 2018-10-18 日産化学株式会社 カルボン酸誘導体を含むポリアミド樹脂組成物

Also Published As

Publication number Publication date
CN104797655A (zh) 2015-07-22
JPWO2014077324A1 (ja) 2017-01-05
US20150344668A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
US7825212B2 (en) Polylactic acid resin and composition and molded article of the same
WO2014077324A1 (ja) ポリグリコール酸樹脂組成物
EP2050788B1 (en) Thermoplastic resin composition and molded body thereof
TW200540223A (en) Polylactic acid resin composition
US8455579B2 (en) Method for promoting crystallization of biodegradable resin composition
US20040054051A1 (en) Polylactic acid composite material and molded body
CN100447200C (zh) 聚乳酸树脂组合物、其制备方法及其模制品
WO2013047766A1 (ja) ポリ(3-ヒドロキシアルカノエート)樹脂組成物
JP4487305B2 (ja) ポリ乳酸樹脂組成物及びその成形体
US10899720B2 (en) Polyester resin composition containing amino-triazine derivative
JP6849953B2 (ja) カルボン酸誘導体を含むポリアミド樹脂組成物
JP5429959B2 (ja) ポリ乳酸樹脂組成物の調製方法、ポリ乳酸樹脂成形体の製造方法及びポリ乳酸樹脂成形体
JP6908892B2 (ja) フェニルホスホン酸化合物の金属塩を含むポリアミド樹脂組成物
JP6761206B2 (ja) ポリグリコール酸樹脂組成物
JP2008037939A (ja) 乳酸系樹脂組成物
JP5270822B2 (ja) 熱可塑性樹脂組成物
JP2008037941A (ja) 熱可塑性樹脂組成物
JP7090523B2 (ja) 樹脂組成物及び成形体
JP2010001413A (ja) ポリ乳酸樹脂組成物及びそれを成形してなる成形体
WO2016047602A1 (ja) アミノトリアジン誘導体及びカルボン酸アミドを含むポリエステル樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014547035

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14443237

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13855348

Country of ref document: EP

Kind code of ref document: A1