WO2014077323A1 - 光学活性イソプレゴールおよび光学活性メントールの製造方法 - Google Patents

光学活性イソプレゴールおよび光学活性メントールの製造方法 Download PDF

Info

Publication number
WO2014077323A1
WO2014077323A1 PCT/JP2013/080803 JP2013080803W WO2014077323A1 WO 2014077323 A1 WO2014077323 A1 WO 2014077323A1 JP 2013080803 W JP2013080803 W JP 2013080803W WO 2014077323 A1 WO2014077323 A1 WO 2014077323A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
optically active
isopulegol
substituent
Prior art date
Application number
PCT/JP2013/080803
Other languages
English (en)
French (fr)
Inventor
央徳 伊藤
容嗣 堀
松田 洋幸
松村 和彦
崇司 松本
Original Assignee
高砂香料工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高砂香料工業株式会社 filed Critical 高砂香料工業株式会社
Priority to US14/442,873 priority Critical patent/US20150329452A1/en
Priority to JP2014547034A priority patent/JPWO2014077323A1/ja
Priority to EP13854981.1A priority patent/EP2921228A1/en
Publication of WO2014077323A1 publication Critical patent/WO2014077323A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/172Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with the obtention of a fully saturated alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/56Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by isomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic
    • C07C35/08Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic containing a six-membered rings
    • C07C35/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic containing a six-membered rings with unsaturation only outside the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/511Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups
    • C07C45/512Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups the singly bound functional group being a free hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/52Isomerisation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • B01J2531/0266Axially chiral or atropisomeric ligands, e.g. bulky biaryls such as donor-substituted binaphthalenes, e.g. "BINAP" or "BINOL"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/06Alkylated phenols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds

Definitions

  • the present invention particularly relates to a method for producing isopulegol and menthol in a short process which is economically advantageous.
  • it relates to a process for producing optically active isopulegol and optically active menthol.
  • (E) -3,7-dimethyl-2,6-octadien-1-ol (hereinafter referred to as geraniol) or (Z) -3,7-dimethyl-2,6-octadiene-1 -Optically active citronellal is obtained by asymmetric isomerization of all (hereinafter referred to as nerol), and the obtained optically active citronellal is closed using an aluminum catalyst to obtain optically active isopulegol.
  • the present invention relates to a method for producing optically active menthol by purifying the obtained optically active isopulegol without purification or by crystallization to increase the purity.
  • Menthol is one of the most important fragrance substances with a cooling sensation, most of which is still mainly sourced from natural products.
  • the production of natural menthol is easily affected by the weather of the year, and the supply is unstable, so it is necessary to rely in part on synthetic products.
  • l-menthol ((1R, 2S, 5R) -menthol) on an industrial scale, it is necessary to maximize the economics and efficiency of the synthesis method. Therefore, in particular, the synthesis of inexpensive and high-purity l-menthol from inexpensive achiral raw materials has been an issue.
  • L-Menthol can be synthesized according to two policies.
  • a menthol steric mixture obtained by hydrogenation of thymol is esterified and then optically resolved (by crystallization or enzymatic resolution) (Patent Documents 1 and 2).
  • Patent Document 3 a method for asymmetric synthesis of l-menthol in which asymmetric hydrogenation of piperitenone is performed is disclosed.
  • a) citral (a mixture of geranial and neral) is subjected to precision distillation to obtain geranial or neral, b) asymmetric hydrogenation of geranial or neral to obtain optically active citronellal, and c) the obtained optically active citronellal
  • a mixture containing optically active isopulegol taking out the optically active isopulegol from the obtained mixture, and d) hydrogenating this to obtain optically active menthol, thereby obtaining geranial, neral or geranial and neral
  • Patent Document 5 A method for producing optically active menthol from a mixture of these is disclosed (Patent Document 5).
  • optically active citronellal is obtained by asymmetric hydrogenation of at least one of geranial and neral, and b) the obtained optically active citronellal is closed with an acidic catalyst to obtain a mixture containing optically active isopulegol.
  • a method of producing optically active menthol from at least one of geranial and neral by removing the optically active isopulegol from the obtained mixture and then c) hydrogenating it to produce optically active menthol. Patent Document 6).
  • isopulegol which is usually produced by cyclization of citronellal oxo-ene reaction in the presence of a Lewis acid catalyst. And a mixture of isopulegol, iso-isopulegol, neo-isopulegol and neoiso-isopulegol.
  • a method for obtaining an important isopulegol with high selectivity a method of cyclizing citronellal with an aluminum catalyst is disclosed (Patent Documents 7 to 12).
  • Non-Patent Documents 2 to 5 As a method for asymmetric isomerization of allyl alcohol to form an optically active aldehyde, a method using a transition metal complex is known. However, these methods have low catalytic activity, and the optical purity of the obtained optically active aldehyde is not sufficiently satisfactory (Non-Patent Documents 2 to 5).
  • Non-Patent Documents 6 to 17 a method using a transition metal complex such as rhodium or ruthenium is known. However, these methods have high substrate specificity and cannot be said to be general-purpose methods. (Non-Patent Documents 6 to 17).
  • Non-patent Document 18 a catalytic reaction that was highly general for producing optically active aldehydes, and that can be produced with high selectivity and high yield was found (Non-patent Document 18).
  • Non-Patent Document 1 in the method for producing l-menthol using myrcene as a raw material, an expensive homogeneous rhodium complex is used as a catalyst for isomerizing diethylgeranylamine into a corresponding optically active enamine in a long process. .
  • the object of the present invention is to reduce the discharge of waste that pollutes the environment to the utmost by performing all the steps in a catalytic reaction step in a short manufacturing process, and also high energy efficiency and saving manufacturing costs. It is to provide a method for producing optically active isopulegol and optically active menthol.
  • the present inventors have a) asymmetric isomerization of geraniol and / or nerol using an asymmetric metal catalyst, and corresponding optical activity with very high optical purity.
  • citronellal can be obtained
  • b) ring closure of the obtained optically active citronellal by using a specific aluminum catalyst to obtain an optically active isopulegol of very high purity n-selectivity, or optically active isopulegol
  • high-purity optically active isopulegol is obtained by deep crystallization
  • c) a method for hydrogenating these to obtain optically active menthol that is, a method for producing optically active menthol from geraniol and / or nerol in a short process.
  • the present invention has been completed. That is, the present invention includes the following inventions.
  • the aluminum catalyst is a hydroxy compound represented by the following general formula (5) or a hydroxy compound represented by the following general formula (6), an alkylaluminum compound represented by the following general formula (7), At least one aluminum selected from a hydridoaluminum compound represented by the formula (8), a chain aluminoxane represented by the following general formula (9), and a cyclic aluminoxane represented by the following general formula (10)
  • R 1 and R 5 are each independently an aryl group having 6 to 15 carbon atoms which may have a substituent, or 4 to 4 carbon atoms which may have a substituent.
  • 15 a heteroaryl group or a cyclic alkyl group having 3 to 15 carbon atoms which may have a substituent;
  • R 2 , R 3 and R 4 each independently represent a hydrogen atom, 1 to An alkyl group having 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an aryl group having 6 to 15 carbon atoms which may have a substituent, a perfluoroalkyl group having 1 to 4 carbon atoms, and an aralkyl having 7 to 12 carbon atoms.
  • R 6 , R 9 , R 10 and R 13 each independently have an aryl group having 6 to 15 carbon atoms and a substituent which may have a substituent.
  • R 7 , R 8 , R 11 and R 12 are each independently A hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an aryl group having 6 to 15 carbon atoms which may have a substituent, and a perfluoroalkyl group having 1 to 4 carbon atoms ,
  • A represents (i) a single bond, (ii) a linear, branched or cyclic alkylene group having 1 to 25 carbon atoms which may have one or more of a substituent and an unsaturated bond, and (iii) substituted.
  • R 14 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent. Or an aryl group having 6 to 10 carbon atoms which may have a substituent.
  • AlH k Lg 3-k (7)
  • Al is aluminum, and Lg may have a branched or straight chain alkyl group having 1 to 8 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, or a substituent.
  • a good aralkyl group having 7 to 12 carbon atoms, and k is an integer of 0 to 3.
  • MAlH 4 (8) In formula (8), Al is aluminum and M is lithium, sodium or potassium.
  • Al is aluminum
  • R 17 may have a branched or straight chain alkyl group having 1 to 8 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, or a substituent.
  • a good aralkyl group having 7 to 12 carbon atoms, and a plurality of R 17 may be the same or different, and l is an integer of 0 to 40.
  • Al is aluminum, and R 18 may have a branched or straight chain alkyl group having 1 to 8 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, or a substituent.
  • a good aralkyl group having 7 to 12 carbon atoms; j is an integer of 0 to 40.
  • R 1a is an aryl group having 6 to 15 carbon atoms which may have a substituent, or a heteroaryl group having 4 to 15 carbon atoms which may have a substituent.
  • R 5a is an optionally substituted cyclic alkyl group having 5 to 15 carbon atoms, and R 2 , R 3 and R 4 are each independently a hydrogen atom, 1 to 8 carbon atoms.
  • R 6a and R 10a are each independently an aryl group having 6 to 15 carbon atoms which may have a substituent, or an optionally substituted carbon.
  • a heteroaryl group having 4 to 15 carbon atoms, R 9a and R 13a are optionally substituted cyclic alkyl groups having 5 to 15 carbon atoms, and R 7 , R 8 , R 11, and R 12.
  • A represents (i) a single bond, (ii) a linear, branched or cyclic alkylene group having 1 to 25 carbon atoms which may have one or more of a substituent and an unsaturated bond, and (iii) substituted.
  • R 14 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent. Or an aryl group having 6 to 10 carbon atoms which may have a substituent.
  • At least one compound selected from the group comprising aldehydes other than citronellal, acid anhydrides, ketones, acid halides, epoxy compounds and vinyl ethers [5] The method for producing an optically active isopulegol according to any one of the above [1] to [4], wherein the ruthenium catalyst is a ruthenium compound represented by the following general formula (11).
  • L is an optically active phosphine ligand
  • W is a hydrogen atom, a halogen atom, an acyloxy group, an aryl group, a diene or an anion
  • U is a hydrogen atom, a halogen atom, an acyloxy group, an aryl.
  • a method for producing optically active menthol comprising a step of obtaining optically active isopulegol by the method according to any one of [1] to [6] above, and a step of hydrogenating the obtained optically active isopulegol.
  • the manufacturing method of the optically active menthol including the following processes.
  • A-1) Optically active citronellal is obtained by asymmetric isomerization of geraniol or nerol.
  • B-1) Optically active isopulegol is obtained by ring-closing reaction of optically active citronellal with an acidic catalyst.
  • the manufacturing method of the optically active menthol including the following processes.
  • A-2) Optically active citronellal is obtained by asymmetric isomerization of geraniol or nerol.
  • B-2) Optically active isopulegol is obtained by a ring-closing reaction of optically active citronellal with an acidic catalyst.
  • D-2) Optically active isopulegol is recrystallized by deep cooling to obtain isopulegol of higher purity.
  • the optically active isopulegol obtained in step D-2 is hydrogenated to obtain optically active menthol.
  • the manufacturing method of the optically active menthol including the following processes.
  • A-3) d-citronellal is obtained by asymmetric isomerization of geraniol or nerol.
  • B-3) l-Isopulegol is obtained by ring-closing reaction of d-citronellal with an acidic catalyst.
  • the manufacturing method of the optically active menthol including the following processes.
  • A-4) A d-citronellal is obtained by asymmetric isomerization of geraniol or nerol.
  • B-4) l-Isopulegol is obtained by ring-closing reaction of d-citronellal with an acidic catalyst.
  • E-4) The l-isopulegol obtained in Step D-4 is hydrogenated to obtain l-menthol.
  • optically active citronellal is obtained by asymmetric isomerization of geraniol and / or nerol as the first step, but optical activity with high optical purity is obtained by using a specific ruthenium catalyst.
  • Citronellal can be manufactured.
  • the asymmetric isomerization reaction in the production method of the present invention is obtained by asymmetric hydrogenation of geraniol and / or nerol to obtain citronellol, and then oxidize the citronellal. Since there is no need to obtain, the process can be shortened.
  • the optically active isopulegol can be produced with high selectivity from the four isomers by ring-closing the optically active citronellal obtained in the first step with an aluminum catalyst.
  • optically active isopulegol can be produced with higher chemical purity and optical purity by deeply crystallization of the optically active isopulegol obtained in the second step at low temperature.
  • optically active menthol can be produced by hydrogenating the optically active isopulegol obtained in the second step or the optically active isopulegol obtained in the third step using a hydrogenation catalyst. it can.
  • optically active menthol can be produced from the raw material in the shortest process as a method for producing chemically active optically active menthol.
  • Citronellal obtained by asymmetric isomerization of geraniol or nerol has a very high chemical purity and optical purity, and the citronellal is subjected to ring closure with a highly selective ring-closing catalyst so that high purity can be obtained without performing crystallization operation.
  • l-Isopulegol is obtained.
  • all of the manufacturing processes other than the cryogenic crystallization are processes using a catalyst, and there are few wastes that pollute the environment, and manufacturing costs can be saved.
  • FIG. 1 is a diagram showing a 1 H-NMR spectrum of a solid obtained by reacting 2-cyclohexyl-6-phenylphenol with triethylaluminum in Example 5.
  • FIG. 2 is an enlarged view of the low magnetic field side of the 1 H-NMR spectrum shown in FIG.
  • FIG. 3 is a diagram showing a 1 H-NMR spectrum of 2-cyclohexyl-6-phenylphenol (CPP).
  • FIG. 4 is an enlarged view of the low magnetic field of the 1 H-NMR spectrum shown in FIG.
  • % by weight and parts by weight are synonymous with “% by mass” and “parts by mass”, respectively.
  • the method for producing optically active menthol according to the present invention is carried out by the method shown in Scheme 1.
  • * in the chemical structure represents an asymmetric carbon.
  • Step A shown in Scheme 1 consists of producing optically active citronellal by asymmetric isomerization of at least one of geraniol and nerol using an asymmetric isomerization catalyst.
  • Step A of Scheme 1 The asymmetric isomerization catalyst will be described.
  • a ruthenium catalyst that is an asymmetric isomerization catalyst a complex composed of ruthenium and a ligand is preferably used, and the ligand is preferably an asymmetric ligand. It may be an optically active substance.
  • the asymmetric ligand used in the production of the ruthenium complex which is an asymmetric isomerization catalyst is an optically active compound having an optically active site and can be used as an asymmetric ligand.
  • the chiral ligand for example, Catalytic Asymmetric Synthesis (Wiley-VCH, 2000), Handbook of Enantioselective Catalysis with Transition Metal Complex (VCH, 1993), ASYMMETRIC CATALYSIS IN ORGANIC SYNTHESIS (John Wiley & Sons Inc. (1994 )), Asymmetric ligands described in International Publication No. 2005/070875 and the like.
  • examples of the asymmetric ligand used in the present invention include a monodentate ligand, a bidentate ligand, a tridentate ligand, and a tetradentate ligand.
  • examples thereof include optically active phosphine compounds, optically active amine compounds, optically active alcohol compounds, optically active sulfur compounds, and optically active carbene compounds.
  • an optically active phosphine compound is used.
  • optically active phosphine compound examples include an optically active bidentate phosphine ligand represented by the following general formula (12).
  • each of R 19 to R 22 independently represents an aromatic group which may have a substituent or a cycloalkyl group having 3 to 10 carbon atoms, or R 19 and R 20 , R 21 and R 22 may each form a heterocyclic ring together with a phosphorus atom adjacent to each other;
  • R 23 and R 24 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 represents an alkoxy group, a di (C 1-5 alkyl) amino group, a 5- to 8-membered cyclic amino group or a halogen atom;
  • R 25 represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms A group, a di (C 1-5 alkyl) amino group, a 5- to 8-membered cyclic amino group or a halogen atom; and
  • R 23 and R 24 , R 24 and R 25 are bonded to each other to form condensed benzen
  • R 19 to R 22 each independently represents an optionally substituted aromatic group or a cyclic alkyl group having 3 to 10 carbon atoms, or R 19 and R 20 , R 21 and R 22 may form a heterocyclic ring together with the phosphorus atoms adjacent to each other.
  • the aromatic group which may have a substituent, includes a hydrocarbon aromatic group such as phenyl group, naphthyl group, phenanthryl group; pyrrolyl group, pyridyl group, pyrazyl group, quinolyl group, isoquinolyl group And heteroaromatic groups such as an imidazolyl group.
  • substituents include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group.
  • neopentyl group hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group and other alkyl groups having 1 to 12 carbon atoms; methoxy group, ethoxy group, n-propoxy group, isopropoxy group A lower alkoxy group having 1 to 4 carbon atoms such as n-butoxy group, isobutoxy group, sec-butoxy group and tert-butoxy group; aryl groups such as phenyl group, ⁇ -naphthyl group, ⁇ -naphthyl group and fananthryl group Benzyl group, ⁇ -phenylethyl group, ⁇ -phenylethyl group, ⁇ -phenylpropyl group, ⁇ -phenylpropyl group, ⁇ - Aralkyl groups having 7 to 13 carbon atoms such as an phenylpropyl group
  • a tri-substituted organosilyl group such as an aralkylsilyl group having 7 to 19 carbon atoms; a halogen atom such as fluorine, chlorine, bromine or iodine; a nitro group.
  • cycloalkyl group having 3 to 10 carbon atoms which may have a substituent include a cyclopentyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, and cyclodecyl group. And octahydronaphthyl group.
  • substituents include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, C1-C12 alkyl groups such as isopentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group; methoxy group, ethoxy group, n-propoxy group, isopropoxy group Group, lower alkoxy group having 1 to 4 carbon atoms such as n-butoxy group, isobutoxy group, sec-butoxy group and tert-butoxy group; aryl such as phenyl group, ⁇ -naphthyl group, ⁇ -naphthyl group and fan
  • Tri-C1-C6 alkylsilyl group dimethylcumylsilyl group, etc.
  • Silyl group tribenzylsilyl group, tri-p-xylylsilyl group And tri-substituted organosilyl groups such as aralkylsilyl groups having 7 to 19 carbon atoms; halogen atoms such as fluorine, chlorine, bromine and iodine; nitro groups and the like.
  • heterocyclic ring in the case where R 19 and R 20 , R 21 and R 22 each form a heterocyclic ring with adjacent phosphorus atoms include phosphole, tetrahydrophosphole, phosphorinan and the like.
  • the heterocyclic ring may have 1 to 4 functional groups inert to the reaction of the present invention as substituents.
  • substituents include an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen atom.
  • R 23 and R 24 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a di (1 to 5 alkyl) amino group, 5 It is a ⁇ 8-membered cyclic amino group or a halogen atom.
  • alkyl group having 1 to 5 carbon atoms represented by R 23 and R 24 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl. Group, tert-butyl group, pentyl group and the like.
  • alkoxy group having 1 to 5 carbon atoms represented by R 23 and R 24 include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec- A butoxy group, a tert-butoxy group, a pentoxy group and the like can be mentioned.
  • di (C 1-5 alkyl) amino group represented by R 23 and R 24 include a dimethylamino group, a diethylamino group, a di-n-propylamino group, a diisopropylamine group, and di-n-butyl.
  • examples include an amino group, diisobutylamino group, disec-butylamino group, ditert-butylamino group, dipentylamino group and the like.
  • Specific examples of the 5- to 8-membered cyclic amino group represented by R 23 and R 24 include a pyrrolidino group and a piperidino group.
  • halogen atom represented by R 23 and R 24 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 23 and R 24 are a hydrogen atom; 1 to 4 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, trifluoromethyl group and the like.
  • Alkoxy groups alkoxy groups such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, tert-butoxy group; dimethylamino group, dialkylamino group of diethylamino group; pyrrolidino group, piperidino group, etc. And a 5- to 8-membered cyclic amino group.
  • Particularly preferred R 23 and R 24 include a hydrogen atom and a methoxy group.
  • R 25 represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a di (1 to 5 alkyl) amino group, a 5 to 8 membered cyclic amino group, or a halogen atom. Is an atom.
  • alkyl group having 1 to 5 carbon atoms represented by R 25 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert. -A butyl group, a pentyl group, etc. are mentioned.
  • alkoxy group having 1 to 5 carbon atoms represented by R 25 include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, Examples thereof include a tert-butoxy group and a pentoxy group.
  • di (C 1-5 alkyl) amino group represented by R 25 examples include a dimethylamino group, a diethylamino group, a di-n-propylamino group, a diisopropylamino group, a di-n-butylamino group, Examples thereof include a diisobutylamino group, a disec-butylamino group, a ditert-butylamino group, and a dipentylamino group.
  • Specific examples of the 5- to 8-membered cyclic amino group represented by R 25 include a pyrrolidino group and a piperidino group.
  • halogen atom represented by R 25 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • preferred R 25 is an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, or a trifluoromethyl group; a methoxy group Alkoxy groups such as ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group and tert-butoxy group; dialkylamino groups such as dimethylamino group and diethylamino group; 5- to 8-members such as pyrrolidino group and piperidino group And the like, and the like.
  • Particularly preferred R 25 includes a methyl group and a methoxy group.
  • R 23 and R 24 , R 24 and R 25 are bonded to each other to form a condensed benzene ring, a condensed substituted benzene ring, a trimethylene group, a tetramethylene group, a pentamethylene group, a methylenedioxy group, ethylene.
  • a dioxy group or a trimethylenedioxy group may be formed.
  • R 24 and R 25 are bonded to form a condensed benzene ring, a condensed substituted benzene ring, a trimethylene group, a tetramethylene group, a pentamethylene group, a methylenedioxy group, an ethylenedioxy group, or a trimethylenedioxy group. Those formed are preferred.
  • R 24 and R 25 are preferably bonded to form a condensed benzene ring, a condensed substituted benzene ring, a tetramethylene group, a methylenedioxy group, a methylenedioxy group, or an ethylenedioxy group.
  • the condensed benzene ring, condensed substituted benzene ring, trimethylene group, tetramethylene group, pentamethylene group, methylenedioxy group, ethylenedioxy group or trimethylenedioxy group have functional groups that are inert to the asymmetric synthesis reaction.
  • the group may have 0 to 4 groups as a substituent.
  • examples of the substituent include alkyl having 1 to 4 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and tert-butyl.
  • optically active bidentate phosphine ligands preferably used are described in, for example, Japanese Patent Application Laid-Open No. 61-63690 and Japanese Patent Application Laid-Open No. 62-265293.
  • Tertiary phosphine specific examples being 2,2′-bis (diphenylphosphino) -1,1′-binaphthyl (BINAP), 2,2′-bis (di (p-tolylphosphino) -1,1 '-Binaphthyl [p-Tol-BINAP], 2,2'-bis (di (3,5-xylyl) phosphino) -1,1'-binaphthyl (DM-BINAP) 2,2'-bisdi (3,5 -Di-tert-butylphenyl) phosphino) -1,1'-binaphthyl (T-Bu-2-BINAP), 2,2'-bisbis (diphen
  • the optically active bidentate phosphine ligand preferably used is, for example, a tertiary phosphine described in Japanese Patent Laid-Open No. 4-139140. The following can be mentioned.
  • the optically active bidentate phosphine ligand preferably used is, for example, a tertiary phosphine described in Japanese Patent Application Laid-Open No. 11-269185.
  • optically active bidentate phosphine ligands can be exemplified as those corresponding to the general formula (12). That is, 2,2′-dimethyl-6,6′-bis (diphenylphosphino) -1,1′-biphenyl (BIPHEMP), 2,2′-dimethyl-6,6′-bis (di-p-tolylphosphino) -1,1′-biphenyl (p-Tol-BIPHEMP), 2,2′-dimethyl-6,6′-bis (di3,5-xylylphosphino) -1,1′-biphenyl (DM-BIPHEMP) ), 2,2′-dimethyl-6,6′-bis (di-4-methoxy-3,5-dimethylphenylphosphino) -1,1′-biphenyl (DMM-BIPHEMP), 2,2′
  • an asymmetric isomerization reaction is performed with a ruthenium complex containing the above-described ligand and ruthenium.
  • the optically active ruthenium complex in this asymmetric isomerization reaction is represented, for example, by the following general formula (11). The preferred compounds are mentioned.
  • L is an optically active phosphine ligand
  • W is a hydrogen atom, halogen atom, acyloxy group, aryl group, diene or anion
  • U is a hydrogen atom, halogen atom, acyloxy group, aryl.
  • Z is an anion, an amine or an optically active nitrogen-containing compound
  • m, n and r are each independently an integer of 1 to 5
  • p, q and s are each independently an integer of 0 to 5
  • p + q + s is 1 or more.
  • examples of the ligand represented by L include the optically active bidentate phosphine ligand represented by the general formula (12) described above.
  • W is a hydrogen atom, a halogen atom, an acyloxy group, an aryl group, a diene, or an anion.
  • a halogen atom represented by W of General formula (11) a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned, for example.
  • the acyloxy group represented by W in the general formula (11) include a formyloxy group, an acetoxy group, a propionyloxy group, a butyloxy group, and a benzoyloxy group.
  • Examples of the aryl group represented by W in the general formula (11) include an aromatic monocyclic group such as a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, an indenyl group, a mesityl group, and a dibenzyl group, and a polycyclic group. Is mentioned.
  • Examples of the diene represented by W in the general formula (11) include butadiene, cyclooctadiene (cod), norbornadiene (nod), and the like.
  • Examples of the anion represented by W in the general formula (11) include nitrate ion, nitrite ion, sulfate ion, sulfite ion, sulfonate ion (methanesulfonate ion, benzenesulfonate ion, p-toluenesulfonate ion).
  • U is a hydrogen atom, a halogen atom, an acyloxy group, an aryl group, a diene, an anion, or a ligand other than L.
  • the halogen atom represented by U in the general formula (11) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the acyloxy group represented by U in the general formula (11) include a formyloxy group, an acetoxy group, a propionyloxy group, a butyloxy group, and a benzoyloxy group.
  • Examples of the aryl group represented by U in the general formula (11) include an aromatic monocyclic group such as a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, an indenyl group, a mesityl group, and a dibenzyl group, and a polycyclic group. Is mentioned.
  • Examples of the diene represented by U in the general formula (11) include butadiene, cyclooctadiene (cod), norbornadiene (nod), and the like.
  • Examples of the anion represented by U in the general formula (11) include nitrate ion, nitrite ion, sulfate ion, sulfite ion, sulfonate ion (methanesulfonate ion, benzenesulfonate ion, p-toluenesulfonate ion).
  • Examples of ligands other than L represented by U in the general formula (11) include N, N-dimethylformamide (DMF), acetone, chloroform, nitriles (acetonitrile, benzonitrile, etc.), cyanides (methyl).
  • DMF N-dimethylformamide
  • acetone acetone
  • chloroform acetone
  • nitriles acetonitrile, benzonitrile, etc.
  • cyanides methyl
  • Z is an anion, an amine, or an optically active nitrogen-containing compound.
  • anion represented by Z in the general formula (11) include nitrate ion, nitrite ion, sulfate ion, sulfite ion, sulfonate ion (methanesulfonate ion, benzenesulfonate ion, p-toluenesulfonate ion).
  • Examples of the amine represented by Z in the general formula (11) include aliphatic amines such as methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, s-butylamine, tert-butylamine, cyclohexylamine; aniline , Aromatic amines such as dimethylaniline; nitrogen-containing aromatic heterocycles such as pyridine (py) and dimethylaminopyridine, nitrogen-containing aliphatic heterocycles such as pyrrolidine and piperazine; ethylenediamine (en), propylenediamine, Examples include diamines such as triethylenediamine, tetramethylethylenediamine (TMEDA), bipyridine (bpy), phenanthroline (phen), sulfur compounds (dimethyl sulfide, diethyl sulfide, dipropyl sulfide, dibutyl sulfide, etc.), etc. It can be
  • optically active nitrogen-containing compound represented by Z in the general formula (11) examples include an optically active diamine compound represented by the following general formula (13).
  • R 26 , R 27 , R 32 , and R 33 are each independently a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aryl group, an araaryl group, a urethane group, or a sulfonyl group.
  • R 28 , R 29 , R 30 and R 31 each independently represents a hydrogen atom, an alkyl group, an aromatic monocyclic or polycyclic group, a saturated or unsaturated hydrocarbon group, or a cyclic alkyl group, The carbon atom to which 28 , R 29 , R 30 and R 31 are attached is an asymmetric center.
  • optically active diamine compound represented by the general formula (13) examples include optically active 1,2-diphenylethylenediamine, 1,2-cyclohexanediamine, 1,2-cycloheptanediamine, 2,3-dimethylbutanediamine, -Methyl-2,2-diphenylethylenediamine, 1-isobutyl-2,2-diphenylethylenediamine, 1-isopropyl-2,2-diphenylethylenediamine, 1-methyl-2,2-di (p-methoxyphenyl) ethylenediamine, 1 -Isobutyl-2,2-di (p-methoxyphenyl) ethylenediamine, 1-isopropyl-2,2-di (p-methoxyphenyl) ethylenediamine, 1-benzyl-2,2-di (p-methoxyphenyl) ethylenediamine, 1-methyl-2,2-dinaphthyl ethyl Diamine, 1-isobutyl-2,2-dinaphthy
  • optically active diamine compound used in the present invention examples include, for example, Japanese Patent Laid-Open No. 8-225466, Japanese Patent Laid-Open No. 11-189600, Japanese Patent Laid-Open No. 2001-58999, Japanese Patent Laid-Open No.
  • ruthenium complex represented by the general formula (11) include the following. That is, the compound represented by the following is mentioned.
  • W is a chlorine atom, bromine atom or iodine atom
  • Z is a trialkylamine
  • W is chlorine An atom, a bromine atom or an iodine atom
  • Z is a pyridyl group or a ring-substituted pyridyl group
  • W is an acyloxy group
  • W is a chlorine atom, bromine atom or iodine atom
  • Z is dimethylformamide or dimethylacetamide
  • cod is 1,5-cyclooctadiene
  • nbd is norbornadiene
  • Ph is a phenyl group
  • Ac is an acetyl group
  • acac is acetylacetonate
  • dmf is Dimethylformamide
  • en is ethylenediamine
  • DPEN is 1,2-diphenylethylenediamine
  • DAIPEN is 1,1-di (p-methoxyphenyl) -2-isopropylethylenediamine
  • MAE is methylaminoethylamine
  • EAE is ethylaminoethylamine
  • MAPE Is 2-methylamino-1-phenylethylamine
  • EAPE is 2-ethylamino-1-phenylethylamine
  • Ruthenium complex As a method for producing a ruthenium complex, for example, according to the literature (J. Chem. Soc., Chem. Commun., 922, 1985), [(1,5-cyclooctadiene) Dichlororuthenium] ([Ru (cod) Cl 2 ] n ) and an optically active bidentate phosphine ligand can be prepared by heating to reflux in an organic solvent in the presence of a trialkylamine.
  • ruthenium complex examples include the following. Ru (OAc) 2 (L), Ru (OCOCF 3 ) 2 (L), Ru 2 Cl 4 (L) 2 NEt 3 , [RuCl 2 (L) (dmf) n ], RuHCl (L), RuHBr (L ), RuHI (L), [ ⁇ RuCl (L) ⁇ 2 ( ⁇ -Cl) 3 ] [Me 2 NH 2 ], [ ⁇ RuBr (L) ⁇ 2 ( ⁇ -Br) 3 ] [Me 2 NH 2 ] , [ ⁇ RuI (L) ⁇ 2 ( ⁇ -I) 3 ] [Me 2 NH 2 ], [ ⁇ RuCl (L) ⁇ 2 ( ⁇ -Cl) 3 ] [Me 2 NH 2 ], [ ⁇ RuBr (L ) ⁇ 2 ( ⁇ -Br) 3 ] [Me 2 NH 2 ], [ ⁇ RuBr (L ) ⁇ 2 ( ⁇ -Br) 3 ] [Me 2 NH 2 ], [ ⁇ RuB
  • a more preferred catalyst in the asymmetric isomerization reaction of the present invention is a complex containing ruthenium and an optically active bidentate phosphine ligand.
  • Ru 2 Cl 4 (L) 2 NEt 3 [RuCl 2 (L) (dmf) n ], [ ⁇ RuCl (L) ⁇ 2 ( ⁇ -Cl) 3 ] [Me 2 NH 2 ], [ ⁇ RuBr (L ) ⁇ 2 ( ⁇ -Br) 3 ] [Me 2 NH 2 ], [ ⁇ RuI (L) ⁇ 2 ( ⁇ -I) 3 ] [Me 2 NH 2 ], [ ⁇ RuCl (L) ⁇ 2 ( ⁇ Cl) 3 ] [Me 2 NH 2 ], [ ⁇ RuBr (L) ⁇ 2 ( ⁇ -Br) 3 ] [Me 2 NH 2 ], [ ⁇ RuBr (L) ⁇ 2 ( ⁇ -Br) 3 ] [Me 2 NH 2 ], [ ⁇ RuBr (L) ⁇ 2 ( ⁇ -
  • the base used by this invention uses the salt represented, for example by General formula (14).
  • M'X (14) (In formula (14), M ′ represents a metal of Li, Na or K, and X represents a halogen atom of Cl, Br or I.)
  • metal salts such as LiCl, LiBr, LiI, NaCl, NaBr, NaI, KCl, KBr, and KI are preferable.
  • ammonium salts such as (Bn) Et 3 NCl, (Bn) Et 3 NBr, (Bn) Et 3 NI can be selected, and BuPh 3 PCl, BuPh 3 PBr, BuPh 3 PI, (C 6 H 13 ) Ph.
  • Phosphonium salts such as 3 PBr and BrPPh 3 (CH 2 ) 4 PPh 3 Br can be selected to obtain high selectivity (Bn: benzyl group, Et: ethyl group, Ph: phenyl group, Bu: butyl group. ).
  • optically active bidentate phosphine ligand used in the present invention exists in (S) -form and (R) -form, if one is selected according to the absolute configuration of the target optically active citronellal Good. That is, when geraniol is used as a substrate, for example, when Tol-BINAP is used as a ligand, (S) -form Tol-BINAP is used to obtain (R) -form Citronellal, (S The (R) -form Tol-BINAP may be used to obtain the citronellal form.
  • (S) -form citronellal is obtained using (S) -form citronellal
  • (R) -form citronellal is obtained using (R) -form citronellal.
  • Tol-BINAP may be used.
  • an optically active nitrogen compound is used in combination with the optically active bidentate phosphine ligand. Since the optically active nitrogen compound exists in (S) -form and (R) -form, any one may be selected according to the absolute configuration of the target optically active citronellal.
  • the amount of the transition metal-optically active phosphine complex used is preferably about 100 to 1 / 50,000 moles with respect to geraniol (1a) or nerol (1b).
  • the amount of the base to be added is 0.5 to 100 equivalents, preferably 2 to 40 equivalents, relative to the transition metal-optically active phosphine complex.
  • Any suitable reaction solvent can be used as long as it can solubilize the asymmetric isomerization raw material (1) and the catalyst system.
  • aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents such as pentane and hexane; halogen-containing hydrocarbon solvents such as methylene chloride; diethyl ether, diisopropyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, 1,3- Ether solvents such as dioxolane; alcohol solvents such as methanol, ethanol, 2-propanol, butanol and benzyl alcohol; organic solvents containing heteroatoms such as acetonitrile, DMF and DMSO can be used.
  • An alcohol solvent is preferably used.
  • the amount of solvent is determined by the solubility and economics of the reaction substrate. For example, depending on the substrate, it can be carried out from a low concentration of 1% or less to a solvent-free state, but it is preferably used in a volume of 0.1 to 5.0.
  • the reaction temperature can be 0 to 150 ° C., but a range of 100 to 70 ° C. is more preferable.
  • the reaction is completed within a few minutes to 30 hours. After completion of the reaction, the desired optically active citronellal can be isolated by carrying out ordinary post-treatment.
  • reaction mode in the present invention can be carried out either batchwise or continuously.
  • Step B shown in Scheme 1 of the present invention is achieved by producing an optically active isopulegol by ring-closing the optically active citronellal obtained in Step A.
  • Step B in Scheme 1 As the citronellal ring closure catalyst, an aluminum catalyst is preferably used. This aluminum catalyst is obtained by reacting an aluminum compound with a phenol ligand.
  • the aluminum compound used for producing the aluminum catalyst includes an alkylaluminum compound represented by the general formula (7), a hydridoaluminum compound represented by the general formula (8), and a chain represented by the general formula (9). It is preferable to be selected from at least one aluminum compound selected from the cyclic aluminoxanes and cyclic aluminoxanes represented by the general formula (10).
  • Al is aluminum, and Lg may have a branched or straight chain alkyl group having 1 to 8 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, or a substituent.
  • MAlH 4 (8) (In formula (8), Al is aluminum and M is lithium, sodium or potassium.)
  • Al is aluminum
  • R 17 may have a branched or straight chain alkyl group having 1 to 8 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, or a substituent.
  • a good aralkyl group having 7 to 12 carbon atoms, and a plurality of R 17 may be the same or different, and l is an integer of 0 to 40.
  • Al is aluminum, and R 18 may have a branched or straight chain alkyl group having 1 to 8 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, or a substituent.
  • Examples of the branched or straight chain alkyl group having 1 to 8 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl. Group, pentyl group, hexyl group, heptyl group, octyl group and the like.
  • Examples of the cyclic alkyl group having 5 to 8 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the aralkyl group having 7 to 12 carbon atoms which may have a substituent include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, an ⁇ -naphthylmethyl group, and a ⁇ -naphthylmethyl group. Can be mentioned.
  • Examples of the substituent include 1 carbon atom such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group and hexyl group.
  • L and j are each an integer of 0 to 40, preferably an integer of 2 to 30.
  • the aluminum compounds represented by the general formulas (9) and (10) are compounds also called aluminoxanes.
  • aluminoxanes methylaluminoxane, ethylaluminoxane, isobutylaluminoxane and methylisobutylaluminoxane are preferable, and methylaluminoxane is particularly preferable.
  • the above aluminoxanes can be used in combination within a group and between groups. And said aluminoxane can be prepared on well-known various conditions.
  • the phenol ligand used for producing the aluminum catalyst is a hydroxy compound (phenol ligand) represented by the general formula (5) and / or a hydroxy compound represented by the general formula (6) (bis ( Preference is given to at least one phenol ligand selected from diarylphenol) ligands).
  • R 1 and R 5 are each independently an aryl group having 6 to 15 carbon atoms which may have a substituent, or 4 to 4 carbon atoms which may have a substituent.
  • 15 a heteroaryl group or a cyclic alkyl group having 3 to 15 carbon atoms which may have a substituent;
  • R 2 , R 3 and R 4 each independently represent a hydrogen atom, 1 to An alkyl group having 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an aryl group having 6 to 15 carbon atoms which may have a substituent, a perfluoroalkyl group having 1 to 4 carbon atoms, and an aralkyl having 7 to 12 carbon atoms.
  • R 6 , R 9 , R 10 and R 13 each independently have an aryl group having 6 to 15 carbon atoms and a substituent which may have a substituent.
  • R 7 , R 8 , R 11 and R 12 are each independently A hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an aryl group having 6 to 15 carbon atoms which may have a substituent, and a perfluoroalkyl group having 1 to 4 carbon atoms ,
  • R 14 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, or an aralkyl having 7 to 12 carbon atoms which may have a substituent. Group or an aryl group having 6 to 10 carbon atoms which may have a substituent.
  • Examples of the aryl group having 6 to 15 carbon atoms represented by R 6 to R 13 include a phenyl group, an ⁇ -naphthyl group, a ⁇ -naphthyl group, and the like.
  • the aryl group having 6 to 15 carbon atoms may have a substituent described later.
  • Examples of the heteroaryl group having 4 to 15 carbon atoms represented by R 6 , R 9 , R 10 and R 13 include a furyl group, a thienyl group, a pyronyl group, a benzofuryl group, an azobenzofuryl group, a benzothienyl group, and an indolyl group. , Isoindolyl group, carbazoyl group, pyridyl group, quinolyl group, isoquinolyl group, pyrazyl group, ferrocenyl group and the like.
  • the heteroaryl group having 4 to 15 carbon atoms may have a substituent described later.
  • Examples of the cyclic alkyl group having 3 to 15 carbon atoms represented by R 6 , R 9 , R 10 and R 13 include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclodecyl group, a cyclododecyl group, Examples thereof include a norbornyl group and a tricyclo [6.2.1.0 2,7 ] -4-undecyl group.
  • the cyclic alkyl group having 3 to 15 carbon atoms may have a substituent described later.
  • Examples of the alkyl group having 1 to 8 carbon atoms represented by R 7 , R 8 , R 11 and R 12 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples include sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, and octyl group.
  • Examples of the alkoxy group having 1 to 8 carbon atoms represented by R 7 , R 8 , R 11 and R 12 include a methoxy group, an ethoxy group, an n-propoxyl group, an isopropoxy group, an n-butoxy group, an isobutoxy group, Examples include sec-butoxy group, tert-butoxy group, pentoxy group, hexoxy group, heptoxy group, octoxy group and the like.
  • Examples of the perfluoroalkyl group having 1 to 4 carbon atoms represented by R 7 , R 8 , R 11 and R 12 include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, and a nonafluorobutyl group. Is done.
  • Examples of the aralkyl group having 7 to 12 carbon atoms represented by R 7 , R 8 , R 11 and R 12 include benzyl group, 1-phenylethyl group, 2-phenylethyl group, ⁇ -naphthylmethyl group and ⁇ -A naphthylmethyl group and the like are exemplified.
  • the aralkyl group having 7 to 12 carbon atoms may have a substituent described later.
  • Examples of the halogen atom represented by R 7 , R 8 , R 11 and R 12 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Examples of the organosilyl group represented by R 7 , R 8 , R 11 and R 12 include a tri-substituted silyl group.
  • the tri-substituted substituent includes three substituents selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 18 carbon atoms, and an aralkylsilyl group having 7 to 19 carbon atoms, and these are the same as each other. Or different.
  • examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an isopropyl group, a 2,3-dimethyl-2-butyl group, a hexyl group, and a tert-butyl group.
  • Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group.
  • Examples of the aralkyl group having 7 to 19 carbon atoms include a benzyl group and a p-xylyl group.
  • organosilyl group represented by R 7 , R 8 , R 11 and R 12 examples include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, dimethylisopropylsilyl group, diethylisopropylsilyl group, dimethyl (2,3 -Dimethyl-2-butyl) silyl group, tert-butyldimethylsilyl group, dimethylhexylsilyl group and other tri-C1-C6 alkylsilyl groups, dimethylcumylsilyl group and other di-C1-C6 groups Alkyl-C6-C18 arylsilyl group, tert-butyldiphenylsilyl group, di-C6-C18 aryl-C1-C6 alkylsilyl group, triphenylsilyl group, etc.
  • Tri-aryl group having 6 to 18 carbon atoms, tribenzyl group Birds such as Le group and tri -p- Kishirirushiriru groups - such as trisubstituted silyl groups such as aralkyl silyl group having a carbon number of 7 to 19 is illustrated.
  • Examples of the dialkylamino group having 1 to 4 carbon atoms represented by R 7 , R 8 , R 11 and R 12 include a dimethylamino group, a diethylamino group, a dipropylamino group, a diisopropylamino group and a dibutylamino group. Illustrated.
  • Examples of the thioalkoxy group having 1 to 4 carbon atoms represented by R 7 , R 8 , R 11 and R 12 include, for example, methylthio group, ethylthio group, n-propylthio group, isopropylthio group, n-butylthio group, isobutyl Examples include a thio group, a sec-butylthio group, and a tert-butylthio group.
  • Examples of the polymer chain represented by R 7 , R 8 , R 11 and R 12 include a 6,6-nylon chain, a vinyl polymer chain and a styrene polymer chain.
  • examples of the substituent in R 6 to R 13 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and a pentyl group, Or an alkyl group having 1 to 6 carbon atoms such as hexyl group; a cyclic alkyl group having 5 to 12 carbon atoms such as cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group; trifluoromethyl group, pentafluoroethyl group, hepta C1-C4 perfluoroalkyl group such as fluoropropyl group and nonafluorobutyl group; methoxy group, ethoxy group, n-propoxyl group, isopropoxy group, n-butoxy
  • R 7 or R 8 and / or R 11 or R 12 may be combined with the structural element A to form a cyclic aromatic or non-aromatic ring.
  • the bis (diarylphenol) ligand represented by the general formula (6) used according to the present invention has a tricyclic basic structure such as an anthracene basic structure having the formula (X) or a basic structure of the type (Y). Have.
  • R 6 , R 7 , R 9 , R 10 , R 12 and R 13 are as defined above.
  • a in the general formula (6) is a linear, branched or cyclic group having 1 to 25 carbon atoms which may have one or more of (i) a single bond, (ii) a substituent and an unsaturated bond.
  • R 14 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent. Or an aryl group having 6 to 10 carbon atoms which may have a substituent.
  • Examples of (ii) a linear, branched or cyclic alkylene group having 1 to 25 carbon atoms represented by A include, for example, a methylene group, an ethylene group, an isopropyl group, an n-butylene group, an isobutylene group, and a sec-butylene group. , Tert-butylene group, dodecylene group, undecylene group, cyclopentylene group, cyclohexylene group, cycloheptylene group, cyclooctylene group, cyclodecylene group, cyclododecylene group, norbornylene group, tricyclo [6.2.1.0 2,7 -4-undecylene group.
  • the linear, branched or cyclic alkylene group having 1 to 25 carbon atoms may have one or more of a substituent and an unsaturated bond.
  • substituents include the same substituents as those exemplified as the substituent in R 6 to R 13 .
  • Examples of (iii) an arylene group having 6 to 15 carbon atoms represented by A include a phenylene group, a naphthylene group, and an anthracenylene group.
  • the arylene group having 6 to 15 carbon atoms may have one or more of a substituent and an unsaturated bond.
  • Examples of the substituent include the same substituents as those exemplified as the substituent in R 6 to R 13 .
  • Examples of (iv) a heteroarylene group having 2 to 15 carbon atoms represented by A include, for example, a furylene group, a thienylene group, a pyronylene group, a benzofurylene group, an azobenzofurylene group, a benzothienylene group, an indolenylene group, Examples include a rylene group, a carbazoylene group, a pyridylene group, a quinolylene group, an isoquinolylene group, a pyrazylene group, and a ferrocenylene group.
  • the heteroarylene group having 2 to 15 carbon atoms may have one or more of a substituent and an unsaturated bond. Examples of the substituent include the same substituents as those exemplified as the substituent in R 6 to R 13 .
  • V —O—, —S—, —N (R 14 ) —, —S (O) —, —C (O) —, —S (O) 2 —, —P (R represented by A 14 ) —, — (R 14 ) P (O) — and —Si (R 15 R 16 ) — may be functional groups or heteroelements.
  • R 14 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, an aralkyl group having 7 to 12 carbon atoms which may have a substituent, and It is one or more groups among the aryl groups having 6 to 10 carbon atoms which may have a substituent.
  • substituents include the same substituents as those exemplified as the substituent in R 6 to R 13 .
  • A —O—, —S—, —S (O) —, —S (O) 2 — or —Si (R 15 R 16 ) — is preferable.
  • R 14 to R 16 may have an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, an aralkyl group having 7 to 12 carbon atoms which may have a substituent, and a substituent.
  • Examples of the aryl group having 6 to 10 carbon atoms include the same groups as those exemplified in the phenol ligands represented by the general formulas (5) and (6).
  • A Specific examples represented by A include the following structures. Each wavy line indicates a binding site for the remainder of each ligand structure as within the scope of this disclosure.
  • the structures 1 to 44 represented above may have a substituent, and the substituent is a carbon in the phenol ligand represented by the general formulas (5) and (6). Examples thereof include the same substituents as those exemplified for the aryl group of formulas 6 to 15.
  • the phenol ligand of the general formula (5) is described in, for example, Japanese Patent Application Laid-Open No. 2002-212121 (Patent Document 8) [incorporated herein by reference. ].
  • the bis (diarylphenol) s of the general formula (6) are described in, for example, Japanese Patent Publication No. 2008-538101 (Patent Document 9) [incorporated herein by reference. ].
  • a preferred phenol ligand in the present invention is selected from a phenol ligand represented by the following general formula (5-a) and a bis (diarylphenol) ligand represented by the following general formula (6-a). It is a kind of phenol ligand.
  • R 1a is an aryl group having 6 to 15 carbon atoms which may have a substituent, or a heteroaryl group having 4 to 15 carbon atoms which may have a substituent;
  • R 5a is an optionally substituted cyclic alkyl group having 5 to 15 carbon atoms;
  • R 2 , R 3 and R 4 are each independently a hydrogen atom or an alkyl having 1 to 8 carbon atoms; Group, an alkoxy group having 1 to 8 carbon atoms, an aryl group having 6 to 15 carbon atoms which may have a substituent, a perfluoroalkyl group having 1 to 4 carbon atoms, an aralkyl group having 7 to 12 carbon atoms, a halogen An atom, an organosilyl group, a dialkylamino group having 1 to 4 carbon atoms, a thioalkoxy group having 1 to 4 carbon atoms, a nitro group, and a polymer chain.
  • R 6a and R 10a are each independently an aryl group having 6 to 15 carbon atoms which may have a substituent, or an optionally substituted carbon.
  • R 9a and R 13a are optionally substituted cyclic alkyl groups having 5 to 15 carbon atoms; R 7 , R 8 , R 11 and R 12.
  • A represents (i) a single bond, (ii) a linear, branched or cyclic alkylene group having 1 to 25 carbon atoms which may have one or more of a substituent and an unsaturated bond, and (iii) substituted.
  • R 14 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 to 8 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms which may have a substituent. Or an aryl group having 6 to 10 carbon atoms which may have a substituent. )
  • preferred phenol ligands represented by the general formula (5) include, for example, 2,6-diphenylphenol, 2,6-di (4-fluorophenyl) phenol, 2,6-di (3 , 4-Difluorophenyl) phenol, 2,6-di (3,4,5-trifluorophenyl) phenol, 2,6-diphenyl-4-methylphenol, 2,6-diphenyl-3,5-dimethylphenol 2,6-di (2-methylphenyl) -3,5-dimethylphenol, 2,6-di (2-isopropylphenyl) -3,5-dimethylphenol, 2,6-di ( ⁇ -naphthyl)- 3,5-dimethylphenol, 3-phenyl-1,1′-binaphthyl-2-ol, 3- (4-fluorophenyl) -1,1′-binaphthyl-2-ol and 1,3-dipheny 2-naphthol, 3,3
  • phenol ligand (2-cycloalkyl-6-arylphenol) represented by the general formula (5-a) include the following structures.
  • preferred examples of the bis (diarylphenol) ligand represented by the general formula (6) include, for example, the following structure and bis (2-cycloalkyl-6-arylphenols (general formula ( 6-a)), etc. (wherein A is as defined above).
  • Examples of the bis (diarylphenol) ligand represented by the formula (6-a) preferred in the present invention include the following structures. (Wherein A is as defined above)
  • Each of the phenol ligands represented by the general formulas (5), (5-a), (6), and (6-a) can be synthesized by a known synthesis method and is a generally available compound.
  • 2-cyclohexyl-6-phenylphenol which is one of the ligands of the aluminum catalyst of the present invention, is a precursor of 2,6-diphenylphenol that has been conventionally used.
  • an acidic catalyst Moreover, it can be manufactured at a low cost (Japanese Unexamined Patent Publication No. 2009-269868).
  • the aluminum catalyst of the present invention includes at least one selected from the aluminum compounds represented by the general formulas (7), (8), (9) and (10), and the general formulas (5) and (5). It can be obtained by reacting at least one selected from the phenol ligands represented by -a), (6) and (6-a).
  • the phenol ligand is reacted with the aluminum compound at a ratio of preferably 1.0 to 5 equivalents, more preferably 1.4 to 3.5 equivalents (aluminum atom: compound molar ratio). Is preferred.
  • the reaction can be performed in an inert gas atmosphere or in the presence of an inert solvent.
  • an inert gas it is preferable to use, for example, nitrogen, argon, or other rare gases.
  • the inert solvent include aliphatic hydrocarbons (such as hexane, heptane and octane), alicyclic hydrocarbons (such as cyclohexane and methylcyclohexane), aromatic hydrocarbons (such as benzene, toluene and xylene), ether (diethyl).
  • ether diisopropyl ether, dimethoxyethane, methyl tert-butyl ether, tetrahydrofuran, dioxane and dioxolane), halogenated hydrocarbons (dichloromethane, dichloroethane and chlorobenzene) and the like.
  • organic solvents such as toluene and heptane are preferred. These solvents are preferably dried in advance or an anhydrous solvent.
  • the amount (L) of the solvent used is preferably 1 to 10,000 times the capacity [L / kg], more preferably 20 to 400 times the capacity [L / kg] with respect to the phenol ligand (kg). It is a range.
  • the polymerization degree of the aluminoxane represented by the general formulas (9) and (10) is preferably 2 or more.
  • the reaction temperature is preferably in the range of about ⁇ 60 to 100 ° C., more preferably in the range of about ⁇ 30 to 50 ° C., and particularly preferably in the range of about ⁇ 10 to 30 ° C. While maintaining the above temperature, the aluminum catalyst can be produced smoothly by reacting preferably for about 0.25 to 30 hours, more preferably for about 0.5 to 10 hours.
  • the aluminum catalyst according to the present invention has an excellent effect as a catalyst in performing an intramolecular reaction, particularly an intramolecular cyclization reaction.
  • the aluminum catalyst according to the present invention can be used as a catalyst in carrying out a reaction in which an optically active citronellal is cyclized to synthesize optically active isopulegol.
  • optically active isopulegol is obtained by ring-closing reaction of optically active citronellal in the presence of the aforementioned catalyst.
  • the optically active citronellal which is a raw material compound, is produced by the process A.
  • the amount of the aluminum catalyst used in the ring-closing reaction of the optically active citronellal in the step B is preferably in the range of about 0.05 to 10 mol%, and in the range of about 0.1 to 3 mol% with respect to the citronellal. More preferably.
  • the aluminum catalyst used in the ring-closing reaction of the optically active citronellal in the present invention is at least selected from aluminum compounds represented by the general formulas (7), (8), (9) and (10) in the reaction system in advance.
  • a method of charging an optically active citronellal, or b) an aluminum catalyst prepared by mixing at least one selected from the aluminum compound and at least one selected from the phenol ligand in advance during the ring-closing reaction An equivalent result can be obtained by either of the optically active citronellal and the method of charging each independently.
  • the temperature of the ring-closing reaction of the optically active citronellal is preferably in the range of about -60 to 60 ° C, more preferably in the range of about -30 to 40 ° C, and about -20 to 20 ° C. It is particularly preferred.
  • the optically active isopulegol represented by the formula (3) can be produced smoothly by reacting for preferably about 0.25 to 30 hours, more preferably about 0.5 to 20 hours while maintaining the above temperature. .
  • the ring-closing reaction of the optically active citronellal in the present invention is carried out in an inert gas atmosphere such as nitrogen gas or argon gas in the presence of an inert solvent under a solvent-free condition so that the ring-closing reaction proceeds smoothly. Is preferred.
  • the solvent used is not particularly limited as long as it does not significantly inhibit this reaction, and examples thereof include aliphatic hydrocarbons (hexane, heptane, octane, etc.), alicyclic hydrocarbons (cyclohexane and methyl).
  • Cyclohexane aromatic hydrocarbons (such as benzene, toluene and xylene), ethers (such as diethyl ether, diisopropyl ether, dimethoxyethane, methyl tert-butyl ether, tetrahydrofuran, dioxane and dioxolane) or halogenated hydrocarbons (dichloromethane, dichloroethane and Chlorobenzene) and the like.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • ethers such as diethyl ether, diisopropyl ether, dimethoxyethane, methyl tert-butyl ether, tetrahydrofuran, dioxane and dioxolane
  • halogenated hydrocarbons dichloromethane, dichloroethane and Chlorobenzene
  • an organic solvent such as toluene or
  • the amount of these solvents used is preferably about 0 to 20 times the volume of optical citronellal, and more preferably 0.5 to 7 times the amount.
  • additives include, for example, mineral acids (hydrochloric acid and sulfuric acid, etc.), organic acids and ester compounds thereof (formic acid, acetic acid, pyruvic acid, propionic acid, citronellic acid, geranilic acid, neryl acid, etc.
  • Aryl esters aldehydes other than citronellal (chloral, acetaldehyde, p-bromobenzaldehyde, ethyl glyoxylate, etc.), organic acid anhydrides (acetic anhydride, propionic anhydride, decanoic anhydride, maleic anhydride, citronellic anhydride, anhydrous) Succinic acid and pivaloic anhydride), ketones (perfluoroacetone, 1,1,1-trifluoroacetone, etc.), acid halides (acetic acid chloride, propionic acid chloride, decanoic acid chloride, etc.), vinyl ethers (methyl vinyl ether, ethyl vinyl) Ete Etc.), or an epoxy compound (alpha-pinene oxide, isobutylene oxide, etc. isopulegol oxide) can be exemplified.
  • organic acid anhydrides acetic anhydride, propionic anhydride, decanoic an
  • the additive acid and its ester compound, aldehydes other than citronellal, organic acid anhydrides, ketones, acid halides, vinyl ethers and epoxy compounds can be added to the catalyst layer or citronellal layer after the aluminum catalyst is prepared.
  • the citronellal ring-closure reaction can be carried out.
  • the purification of the optically active isopulegol obtained by the step B of Scheme 1 can be obtained simply by a treatment by distillation, or the highly active optically active isopulegol can be obtained by the cryogenic crystallization of the step D of Scheme 1. .
  • All ligands of organoaluminum compounds can be reused as catalysts again by recovering after deactivation of the catalyst.
  • the residue after the distillation treatment is treated as it is or with an acid or alkali to remove impurities including aluminum, followed by crystallization, distillation, etc., so that the hydroxy compound becomes a phenol ligand.
  • citronellal is further added to continuously perform the ring-closing reaction. It can be carried out. Alternatively, it can be removed by filtration after completion of the ring closure reaction and used as it is in the next ring closure reaction.
  • the deactivated catalyst can be added to the reaction solution and used for the next ring closure reaction.
  • Step D shown in Scheme 1 of the present invention is achieved by crystallizing the optically active isopulegol obtained in Step B at a low temperature (deep cooling crystallization). Thereby, it becomes possible to produce optically active isopulegol with higher chemical purity and optical purity.
  • Step D Cryogenic crystallization of optically active isopulegol> Cryogenic crystallization of optically active isopulegol is described in, for example, Japanese Patent No. 3241542 [incorporated herein by reference. ].
  • an optically active isopulegol having both chemical purity and optical purity of 99.7% or more can be obtained. .
  • the temperature of the crystallization of optically active isopulegol is preferably in the range of about ⁇ 60 to ⁇ 20 ° C., particularly preferably in the range of about ⁇ 50 to ⁇ 25 ° C. While gradually lowering the temperature, crystals of optically active isopulegol having both chemical purity and optical purity of 99.7% or more are precipitated, stirred and aged. In order to accelerate the precipitation of crystals, a small amount of crystals of optically active isopulegol having both chemical purity and optical purity of 99.7% or more can be added.
  • the crystallization time is preferably about 1 to 30 hours, more preferably about 10 to 20 hours. Then, the high purity optically active isopulegol represented by the process D of the scheme 1 can be manufactured by filtering the precipitated high purity isopulegol with a centrifuge.
  • aliphatic hydrocarbons hexane, heptane, octane, petroleum ether, etc.
  • alicyclic hydrocarbons cyclohexane, methylcyclohexane, etc.
  • aromatic hydrocarbons Benzene, toluene, xylene, etc.
  • ether diethyl ether, diisopropyl ether, dimethoxyethane, methyl tert-butyl ether, tetrahydrofuran, dioxane, dioxane, etc.
  • alcohol methanol, ethanol, isopropanol, etc.
  • ketone acetone, methyl ethyl ketone, etc.
  • organic solvents such as heptane, petroleum ether, and acetone are preferable. These solvents are preferably dried beforehand or anhydrous solvents.
  • the amount of these solvents used (L) is preferably about 0.5 to 5 times the volume [L / kg], preferably 1 to 3 times the volume [L / kg] of isopulegol (kg). It is more preferable.
  • high-purity optically active isopulegol which is odorless and has only a refreshing sensation
  • high purity optically active isopulegol having only odorless and refreshing feeling can be produced by simple distillation after deep cooling.
  • Step C and Step E shown in Scheme 1 of the present invention are achieved by producing optically active menthol by hydrogenating the optically active isopulegol obtained in Step B or Step D using a catalyst.
  • Step C and Step E Hydrogenation reaction of optically active isopulegol>
  • the method for hydrogenating the carbon-carbon double bond portion of the optically active isopulegol can be performed by a usual method. That is, an optically active menthol can be produced by charging a hydrogenating catalyst such as Raney nickel or Pd / C into an autoclave and hydrogenating the optically active isopulegol with no solvent or in the presence of a solvent under hydrogen pressure.
  • the hydrogenation temperature of the optically active isopulegol is preferably in the range of about 0 to 80 ° C, particularly preferably in the range of about 20 to 60 ° C.
  • the reaction time is preferably about 1 to 30 hours, more preferably about 3 to 15 hours.
  • the optically active menthol can be produced by filtering and distilling the optically active menthol.
  • aliphatic hydrocarbons hexane, heptane, octane, petroleum ether, etc.
  • alicyclic hydrocarbons cyclohexane, methylcyclohexane, etc.
  • aromatic hydrocarbons Benzene, toluene, xylene, etc.
  • ether diethyl ether, diisopropyl ether, dimethoxyethane, methyl tert-butyl ether, tetrahydrofuran, dioxane, dioxane, etc.
  • alcohol methanol, ethanol, isopropanol, etc.
  • ketone acetone, methyl ethyl ketone, etc.
  • organic solvents such as heptane, petroleum ether, and acetone are preferable. These solvents are preferably dried beforehand or anhydrous solvents.
  • the amount of these solvents used (L) is preferably about 0 to 5 times the volume [L / kg], and 0 to 3 times the volume [L / kg] of the optically active menthol (kg). It is more preferable.
  • Example 2 Asymmetric isomerization of nerol Using nerol as a raw material, except that the catalyst used in Example 1, the molar ratio of substrate to catalyst, reaction temperature, and reaction time were changed as shown in Table 1. The reaction was carried out in the same manner as in Example 1. The yield of (S) -citronellal was GC yield 83%. In the same manner as in Example 1, after completion of the reaction, the solvent was concentrated under reduced pressure, and the residue was measured by gas chromatography. The optical purity is 99% e.e. e. Met.
  • Example 3 Asymmetric isomerization of geraniol
  • Example 4 Preparation of Aluminum Catalyst and Synthesis of l-Isopulegol 3.61 g (14.7 mmol) of 2,6-diphenylphenol was placed in a 1 L reaction flask, purged with nitrogen, and toluene stirred while stirring in a nitrogen atmosphere. 96 mL, and then 4.54 mL (4.54 mmol) of a 1.0 mol / L toluene solution of triethylaluminum were added.
  • Example 5 Preparation of aluminum catalyst and synthesis of l-isopulegol 0.34 g (1.36 mmol, manufactured by Sanko Co., Ltd., Japan) 269868 synthesized in accordance with the method described in Japanese Patent No. 269868 (hereinafter the same), and after nitrogen substitution, 4.9 mL of toluene, 0.39 mL (0.389 mmol) of triethylaluminum / toluene solution (1.0 mol / L) were added. After sequential addition and stirring at room temperature for 2 hours, the solvent was distilled off to obtain 0.40 g of a colorless to pale orange amorphous yellow solid.
  • FIG. 5 Preparation of aluminum catalyst and synthesis of l-isopulegol 0.34 g (1.36 mmol, manufactured by Sanko Co., Ltd., Japan) 269868 synthesized in accordance with the method described in Japanese Patent No. 269868 (hereinafter the same), and after nitrogen substitution, 4.9 mL of
  • FIG. 1 shows a 1 H-NMR spectrum obtained by drying the obtained solid by concentration under reduced pressure
  • FIG. 2 shows an enlarged view of the low magnetic field side
  • FIG. 3 shows the 1 H-NMR spectrum of 2-cyclohexyl-6-phenylphenol
  • FIG. 4 shows an enlarged view of the low magnetic field side.
  • the resulting catalyst solution was cooled to ⁇ 15 to ⁇ 10 ° C., d-citronellal 2.00 g (13 mmol) was added dropwise, and the mixture was stirred at 0 to 5 ° C. for 1 hour. After completion of the reaction, 2 mL of water was added and the organic layer was analyzed by gas chromatography. As a result, the substrate conversion rate was 99.8%, the l-isopulegol selectivity was 86.3%, and 1-isopulegol and other isomers The ratio was 99.6: 0.4.
  • Examples 7 to 12 Synthesis of l-isopulegol with an aluminum catalyst
  • Table 1 shows the results of using various phenols as hydroxy compounds.
  • the reaction conditions were phenols in a 50 mL Schlenk tube, 1.7 mmol for Examples 7 to 11 and 0.87 mmol for Example 12, and after substitution with nitrogen, a total of 3 mL of toluene as a solvent, triethylaluminum / toluene solution 0.58 mL (0.58 mmol) was sequentially added and stirred at room temperature for 2 hours to obtain a catalyst solution. After cooling the catalyst solution to ⁇ 10 ° C., 3.0 g (19 mmol) of d-citronellal was added dropwise and stirred for 1 hour.
  • the conversion rate indicates the conversion rate of citronellal
  • the isopulegol selectivity indicates the selectivity of the reacted citronellal to isopulegol
  • the n-isopulegol selectivity indicates the selectivity of n-isopulegol in the produced isopulegol
  • ester selection indicates the selectivity of citronellal to the dimerized ester (citronellyl citronellate), respectively.
  • Examples 13 to 18 Synthesis of l-isopulegol using an aluminum catalyst 269 mg (1.1 mmol) of 2-cyclohexyl-6-phenylphenol was placed in a 50 mL Schlenk tube and purged with nitrogen, followed by 4.7 mL of toluene, triethylaluminum / toluene 0.3 mL (0.32 mmol) of a solution (1.0 mol / L) was sequentially added, and the mixture was stirred at room temperature for 2 hours to obtain a catalyst solution.
  • the conversion rate indicates the conversion rate of citronellal
  • the isopulegol selectivity indicates the selectivity of the reacted citronellal to isopulegol
  • the n-isopulegol selectivity indicates the selectivity of n-isopulegol in the produced isopulegol
  • ester selection The rate represents the selectivity of citronellal to the dimerized ester (citronellyl citronellate), respectively.
  • Example 19 Synthesis of 1-Isopulegol and Ligand Recycle 10.14 g (40.2 mmol) of 2-cyclohexyl-6-phenylphenol was placed in a 1 L reaction flask, purged with nitrogen, and then stirred under a nitrogen atmosphere. While adding 87 mL of toluene, 13.0 mL (13.0 mmol) of a triethylaluminum / 1.0 mol / L toluene solution was then added.
  • Example 20 Synthesis of l-isopulegol 3.51 g (14.7 mmol) of 2-cyclohexyl-6-phenylphenol was placed in a 1 L reaction flask, purged with nitrogen, and then 96 mL of toluene with stirring in a nitrogen atmosphere, 4.54 mL (4.54 mmol) of a triethylaluminum / 1.0 mol / L toluene solution was added.
  • the ratio of ln-isopulegol to other isomers was 99.7: 0.3.
  • simple distillation 57 to 61 ° C., 0.053 to 0.067 kPa
  • the purity was 97.6%
  • the ratio of ln-isopulegol to other isomers was 99.7: 0.3. This reaction was performed twice.
  • the conversion rate indicates the conversion rate of citronellal
  • the isopulegol selectivity indicates the selectivity of reacted citronellal to isopulegol
  • the n-isopulegol selectivity indicates the selectivity of n-isopulegol in the produced isopulegol.
  • the ester selectivity represents the selectivity of citronellal to the dimerized ester (citronellyl citronellate), respectively.
  • Example 21 Hydrogenation reaction of high-purity l-isopulegol, synthesis of high-purity l-menthol
  • 100.0 g (0.65 mol) of l-isopulegol obtained in Example 20 was added in a nitrogen atmosphere.
  • Raney nickel (0.4 g) was added and hydrogenation was performed at a hydrogen pressure of 2.5 MPa at 70 ° C. for 10 hours.
  • the reaction solution was filtered and distilled (bp 212 ° C.) to obtain 94.0 g (0.60 mol, 99% ee) of 1-menthol.
  • the optically active citronellal used in the present invention can be produced by asymmetric isomerization of geraniol and / or nerol using an optically active ruthenium catalyst.
  • the citronellal ring-closure reaction catalyst used in the present invention can simply cyclize citronellal and optically active citronellal simply by mixing an alkylaluminum compound and a specific alcohol, and has high n-selectivity isopulegol and optical Active isopulegol can be produced.
  • optically active isopulegol is subjected to deep crystallization to hydrogenate the optically active isopulegol of high purity or the optically active isopulegol that does not undergo cold crystallization using a commonly used carbon-carbon double bond hydrogenation catalyst, Optically active menthol can be produced.
  • the optically active menthol production method of the present invention is composed of very short steps, and all the steps are composed of catalytic reaction steps. Therefore, this manufacturing method has less waste that pollutes the environment and can save manufacturing costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 環境を汚染する廃棄物が少なく、製造経費も節約できる、光学活性イソプレゴールおよび光学活性メントールの製造方法を提供することを目的とする。特定の光学活性ルテニウム触媒を用いてゲラニオール及び/又はネロールを不斉異性化することにより光学活性シトロネラールを得て、アルキルアルミニウム化合物と特定のヒドロキシ化合物とを混合したアルミニウム触媒を用いて光学活性シトロネラールの選択的閉環反応をすることにより、高収率・高選択的に光学活性イソプレゴールを得ることが可能となる。

Description

光学活性イソプレゴールおよび光学活性メントールの製造方法
 本発明は、特に、経済的に有利な、短い工程でイソプレゴールおよびメントールを製造する方法に関する。特に光学活性イソプレゴールおよび光学活性メントールを製造する方法に関する。具体的には、(E)-3,7-ジメチル-2,6-オクタジエン-1-オール(以下、ゲラニオールと表記する)又は(Z)-3,7-ジメチル-2,6-オクタジエン-1-オール(以下、ネロールと表記する)を不斉異性化することにより、光学活性シトロネラールを得、得られた光学活性シトロネラールを、アルミニウム触媒を用いて閉環して光学活性イソプレゴールを得る。さらに得られた光学活性イソプレゴールを精製することなく、又は晶析することにより純度を高めた後水素化することにより、光学活性メントールを製造する方法に関する。
 メントールは最も重要な冷感作用のある香料物質の一つであり、その大部分は依然として主に天然物から供給されている。しかしながら天然メントールの生産量はその年の天候に左右されやすく、供給量が不安定であるため、一部を合成品に頼る必要がある。l-メントール((1R,2S,5R)-メントール)を工業規模で製造するためには、合成法の経済性や効率を最大限に高める必要性がある。そのため、特に、安価なアキラル原料からの安価でかつ高純度なl-メントールの合成が課題となっている。
 l-メントールは、2つの方針に沿って合成することができる。一方では、たとえばチモールの水素化により得られるメントールの立体混合物を、エステル化した後に光学分割すること(結晶化または酵素的分割による)により製造されている(特許文献1、2)。
 他方では、S.Akutagawaは、触媒としてロジウム-BINAP(BINAP=2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル)を用いるアリルアミンからエナミンへの不斉異性化反応を鍵ステップとしたl-メントールの合成について記載している(非特許文献1)。
 重要な段階としてピペリテノンの不斉水素化をおこなうl-メントールの不斉合成の方法が開示されている(特許文献3)。
 また、a)ゲラニオール、ネロール又はゲラニオールとネロールの混合物を不斉水素化して光学活性シトロネロールを得て、b)得られた光学活性シトロネロールを酸化して光学活性シトロネラールを得て、c)得られた光学活性シトロネラールを閉環して光学活性イソプレゴールを含有する混合物を得て、得られた混合物から光学活性イソプレゴールを取り出した後、d)これを水素化して光学活性メントールを得る方法による、ゲラニオール、ネロール又はゲラニオールとネロールの混合物から光学活性メントールを製造する方法が開示されている(特許文献4)。
 さらに、a)シトラール(ゲラニアールとネラールの混合物)を精密蒸留してゲラニアールまたはネラールを得て、b)ゲラニアールまたはネラールを不斉水素化して光学活性シトロネラールを得て、c)得られた光学活性シトロネラールを閉環して光学活性イソプレゴールを含有する混合物を得て、得られた混合物から光学活性イソプレゴールを取り出した後、d)これを水素化して光学活性メントールを得る方法による、ゲラニアール、ネラール又はゲラニアールとネラールの混合物から光学活性メントールを製造する方法が開示されている(特許文献5)。
 そして、a)ゲラニアール及びネラールのうち少なくとも一方の不斉水素化により、光学活性シトロネラールを得て、b)得られた光学活性シトロネラールを酸性触媒により閉環して光学活性イソプレゴールを含有する混合物を得て、得られた混合物から光学活性イソプレゴールを取り出した後、c)これを水素化して光学活性メントールを製造する方法による、ゲラニアール及びネラールのうち少なくとも一方から光学活性メントールを製造する方法が開示されている(特許文献6)。
 また、ラセミ体及び光学活性なメントールを合成するための重要な中間体がイソプレゴールであり、これは通常シトロネラールのオキソ-エン反応をルイス酸触媒の存在下で閉環することにより製造され、通常4種類のジアステレオマー、すなわちイソプレゴール、イソ-イソプレゴール、ネオ-イソプレゴール及びネオイソ-イソプレゴールの混合物として得られる。この中で重要なイソプレゴールを高選択的に得る方法は、アルミニウム触媒でシトロネラールを閉環する方法が開示されている(特許文献7~12)。
 イソプレゴール及びメントールを合成するための原料である光学活性のシトロネラールをゲラニオール又はネロールから合成するための手段としては、ゲラニオール及びネロールを含むアリルアルコールの不斉異性化反応を利用する方法がある。
 従来より、アリルアルコールを不斉異性化して光学活性アルデヒドとする方法としては、遷移金属錯体を用いた方法が知られている。しかしながら、これらの方法は、触媒活性が低く、得られた光学活性アルデヒドの光学純度も十分に満足できるものではなかった(非特許文献2~5)。
 さらにロジウム、ルテニウム等の遷移金属錯体をもちいた方法が知られている。しかしながら、これらの方法は、基質特異性が高く、汎用的な方法であるとはいえなかった。(非特許文献6~17)。
 最近、光学活性アルデヒドを製造するための一般性の高い、しかも高選択的、高収率で製造できる、触媒反応が見出された(非特許文献18)。
欧州特許第0743295号明細書 欧州特許第0563611号明細書 米国特許第6342644号明細書 日本国特表2008-521763号公報 国際公開第2009/068444号 国際公開第2012/074075号 日本国特開2002-212121号公報 日本国特表2008-538101号公報 国際公開第2009/144906号 国際公開第2010/071227号 国際公開第2010/071231号 日本国特開2011-246366号公報
Topics in Catalysis 4 (1997) P271-274 J.Organomet.Chem.,2002,650,1~24 Chem.Rev.,2003,103,27~51 Modern Rhodium-Catalyzed Organic Reactions(Ed.:P.A.Evans),Wiley-VCH,Weinheim,2005,79~91頁 Chem.Lett.,2011,40,341~344 J.Am.Chem.Soc.,2000,122,9870~9871 J.Org.Chem.,2001,66,8177~8186 Gazz.Chim.Ital.,1976,106,1131-1134 Pure Appl.Chem.,1985,57,1845~1854 Helv.Chim.Acta,2001,84,230-242 Tetrahedron Lett.,2006,47,5021~5024 Angew.Chem.Int.Ed.,2009,48,5143~5147 Chem.Commun.,2010,46,445~447 Chem.Eur.J.,2010,16,12736~12745 Angew.Chem.Int.Ed.,2011,50,2354~2358 Synthesis,2008,2547~2550 Chem.Eur.J.,2011,17,11143~11145 Angew.Chem.Int.Ed.,2013,52,7500~7504
 しかしながら、天然メントールは天候による影響が大きく、安定供給に問題がある。特許文献1、2に関し、ラセミ体メントールを、光学分割することにおいては、l-メントールの含有量は少なく、残りのl-メントール以外の7種類の異性体からl-メントールを取り出す工程は複雑である。また非特許文献1に関し、ミルセンを原料とするl-メントールの製造方法においては、工程が長く、ジエチルゲラニルアミンを対応する光学活性エナミンに異性化する触媒に高価な均一系のロジウム錯体を使用する。特許文献3の不斉合成方法においては、原料のピペリテノンが入手しにくいこと、ロジウム錯体、ルテニウム錯体のような高価な均一系の錯体を使用し、水素化反応の圧力は高いこと等が懸念される。
 特許文献4に記載される光学活性メントールを製造する方法は、実際にはゲラニオールとネロールを精密蒸留によって分離しなければならず、l-メントール製造に必要な原料の、d-シトロネロール((R)-シトロネロール)を得るためにはゲラニオールとネロールそれぞれを不斉水素化する高価な均一系触媒は別々に調製しなければならなくなり工程数が増える。
 特許文献5に記載される光学活性メントールを得る方法においては、ゲラニアール、ネラール又はゲラニアールとネラールの混合物から、精密蒸留して高純度のネラール又はゲラニアールを取り出さなければならない。その後、l-メントール製造に必要な原料のd-シトロネラール((R)-シトロネラール)を得るためには、ネラールとゲラニアールそれぞれを不斉水素化するためのキラリティーの異なる高価なロジウム触媒を、別々に調製しなければならないため、工程数が増加する。さらに、高い水素圧で不斉水素化を行わなければならないという問題がある。
 特許文献6に記載される光学活性メントールを得る方法においては、原料としてシトラールを使用しており、a)の不斉水素化工程で水素を使用している(特許文献6)。
 以上のように、どの方法においても効率的、経済的かつ安全に製造を行う上では問題点が存在し、さらに簡便で効率的な光学活性メントールの製造方法が求められていた。
 本発明の目的は、短い製造工程で、すべての工程を触媒反応の工程で行うことで、環境を汚染する廃棄物の排出を極限まで減少させ、また、エネルギー効率も高く、製造経費も節約できる、光学活性イソプレゴールおよび光学活性メントールの製造方法を提供することである。
 本発明者等は上記課題を解決するために鋭意検討を行った結果、a)不斉金属触媒を用いて、ゲラニオール及び/又はネロールを不斉異性化し、対応する非常に高い光学純度の光学活性シトロネラールが得られることを見いだし、b)得られた光学活性シトロネラールを特定のアルミニウム触媒を用いることにより閉環し、非常に高い純度のn-選択性の光学活性イソプレゴールを得て、あるいは光学活性イソプレゴールをさらに深冷晶析することによって高純度光学活性イソプレゴールを得て、c)これらを水素化して光学活性メントールを得る方法、つまりゲラニオール及び/又はネロールから短い工程で光学活性メントールを製造する方法を見出し、本発明を完成するに至った。すなわち本発明は以下の各発明を包含する。
〔1〕
 下記一般式(1)で表される化合物を、ルテニウム触媒と塩基の存在下に不斉異性化することにより、下記一般式(2)で表される光学活性体シトロネラールを得る工程、前記一般式(2)で表される光学活性体シトロネラールを、アルミニウム触媒の存在下、選択的に閉環させる工程を含む、下記一般式(3)で表される光学活性イソプレゴールの製造方法であって、
 前記アルミニウム触媒は、下記一般式(5)で表されるヒドロキシ化合物、又は、下記一般式(6)で表されるヒドロキシ化合物を、下記一般式(7)で表されるアルキルアルミニウム化合物、下記一般式(8)で表されるヒドリドアルミニウム化合物、下記一般式(9)で表される鎖状アルミノキサン類、及び下記一般式(10)で表される環状アルミノキサン類、から選ばれる少なくとも1種のアルミニウム化合物と反応させて得られるものである、光学活性イソプレゴールの製造方法。
Figure JPOXMLDOC01-appb-C000010
(式(1)中、波線は二重結合の(E)体及び/又は(Z)体であることを示す。)
 式(2)及び(3)中、*は、不斉炭素原子を示す。)
Figure JPOXMLDOC01-appb-C000011
(式(5)中、R及びRは、各々独立して、置換基を有していてもよい炭素数6乃至15のアリール基、置換基を有していてもよい炭素数4乃至15のヘテロアリール基、又は置換基を有していてもよい炭素数3乃至15の環状アルキル基であり;R、R、Rは、各々独立して、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数1乃至4のパーフロロアルキル基、炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、炭素数1乃至4のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基、ポリマー鎖である。)
Figure JPOXMLDOC01-appb-C000012
(式(6)中、R、R、R10及びR13は、各々独立して、置換基を有していてもよい炭素数6乃至15のアリール基、置換基を有していてもよい炭素数4乃至15のヘテロアリール基、置換基を有していてもよい炭素数3乃至15の環状アルキル基であり;R、R、R11及びR12は、各々独立して、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数1乃至4のパーフロロアルキル基、炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、炭素数1乃至4のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基、又はポリマー鎖である。
 Aは、(i)単結合、(ii)置換基及び不飽和結合のうち1以上を有してもよい炭素数1乃至25の直鎖状、分岐状又は環状のアルキレン基、(iii)置換基を有してもよい炭素数6~15のアリーレン基、(iv)置換基を有してもよい炭素数2~15のヘテロアリーレン基、あるいは(v)-O-、-S-、-N(R14)-、-S(O)-、-C(O)-、-S(O)-、-P(R14)-、-(R14)P(O)-及び-Si(R1516)-の群から選択される官能基またはヘテロ元素である。ここで、R14~R16は、それぞれ独立して、炭素数1乃至6のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有してもよい炭素数7~12のアラルキル基、又は置換基を有してもよい炭素数6~10のアリール基である。)
 AlH(Lg)3-k   (7)
(式(7)中、Alはアルミニウムであり、Lgは炭素数1乃至8の分岐状もしくは直鎖状のアルキル基、炭素数5乃至8の環状アルキル基、または置換基を有していてもよい炭素数7乃至12のアラルキル基であり、kは0乃至3の整数である。)
 MAlH   (8)
(式(8)中、Alはアルミニウムであり、Mはリチウム、ナトリウム又はカリウムである。)
Figure JPOXMLDOC01-appb-C000013
(式(9)中、Alはアルミニウムであり、R17は炭素数1乃至8の分岐状もしくは直鎖状のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有していてもよい炭素数7乃至12のアラルキル基であり、複数のR17はそれぞれ同一であっても異なっていてもよく、lは0~40の整数である。)
Figure JPOXMLDOC01-appb-C000014
(式(10)中、Alはアルミニウムであり、R18は炭素数1乃至8の分岐状若しくは直鎖状のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有していてもよい炭素数7乃至12のアラルキル基であり;jは0~40の整数である。)
〔2〕
 前記一般式(5)で表されるヒドロキシ化合物が、下記一般式(5-a)で表されるヒドロキシ化合物である上記〔1〕記載の光学活性イソプレゴールの製造方法。
Figure JPOXMLDOC01-appb-C000015
(式(5-a)中、R1aは、置換基を有していてもよい炭素数6乃至15のアリール基、置換基を有していてもよい炭素数4乃至15のヘテロアリール基であり、R5aは、置換基を有していてもよい炭素数5乃至15の環状アルキル基であり、R、R、Rは、各々独立して、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数1乃至4のパーフロロアルキル基、炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、炭素数1乃至4のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基、又はポリマー鎖である。)
〔3〕
 前記一般式(6)で表されるヒドロキシ化合物が、下記一般式(6-a)で表されるヒドロキシ化合物である上記〔1〕記載の光学活性イソプレゴールの製造方法。
Figure JPOXMLDOC01-appb-C000016
(式(6-a)中、R6a及びR10aは、各々独立して、置換基を有していてもよい炭素数6乃至15のアリール基、又は置換基を有していてもよい炭素数4乃至15のヘテロアリール基であり、R9a及びR13aは、置換基を有していてもよい炭素数5乃至15の環状アルキル基であり、R、R、R11及びR12は、各々独立して、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数1乃至4のパーフロロアルキル基、炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、炭素数1乃至4のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基、又はポリマー鎖である。
 Aは、(i)単結合、(ii)置換基及び不飽和結合のうち1以上を有してもよい炭素数1乃至25の直鎖状、分岐状又は環状のアルキレン基、(iii)置換基を有してもよい炭素数6~15のアリーレン基、(iv)置換基を有してもよい炭素数2~15のヘテロアリーレン基、あるいは(v)-O-、-S-、-N(R14)-、-S(O)-、-C(O)-、-S(O)-、-P(R14)-、-(R14)P(O)-及び-Si(R1516)-の群から選択される官能基またはヘテロ元素である。ここで、R14~R16は、それぞれ独立して、炭素数1乃至6のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有してもよい炭素数7~12のアラルキル基、又は置換基を有してもよい炭素数6~10のアリール基である。)
〔4〕
 前記閉環反応を、下記I及びIIのうち少なくとも一方の化合物の存在下で行う上記〔1〕乃至〔3〕のいずれか1に記載の光学活性イソプレゴールの製造方法。
I.少なくとも1種の酸
II.シトロネラール以外のアルデヒド、酸無水物、ケトン、酸ハライド、エポキシ化合物及びビニルエーテルを含む郡から選択される少なくとも1種の化合物
〔5〕
 前記ルテニウム触媒が、下記一般式(11)で表されるルテニウム化合物である、上記〔1〕乃至〔4〕のいずれか1に記載の光学活性イソプレゴールの製造方法。
[Ru     (11)
(式中、Lは、光学活性ホスフィン配位子であり、Wは、水素原子、ハロゲン原子、アシルオキシ基、アリール基、ジエン又はアニオンであり、Uは、水素原子、ハロゲン原子、アシルオキシ基、アリール基、ジエン、アニオン又はL以外の配位子であり、Zは、アニオン、アミン又は光学活性含窒素化合物であり、m、n及びrは各々独立して1~5の整数であり、p、q及びsは各々独立して0~5の整数であり、p+q+sは1以上である。)
〔6〕
 前記塩基が、アルカリ金属又はアルカリ土類金属の塩若しくは四級アンモニウム塩である上記〔1〕乃至〔5〕のいずれか1に記載の光学活性イソプレゴールの製造方法。
〔7〕
 上記〔1〕乃至〔6〕のいずれか1に記載の方法により光学活性イソプレゴールを得る工程、及び得られた光学活性イソプレゴールに水素添加する工程を含む光学活性メントールの製造方法。
〔8〕
 以下の工程を含む光学活性メントールの製造方法。
A-1)ゲラニオール又はネロールの不斉異性化により光学活性シトロネラールを得る。
B-1)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
C-1)光学活性イソプレゴールを水素化し光学活性メントールを得る。
〔9〕
 以下の工程を含む光学活性メントールの製造方法。
A-2)ゲラニオール又はネロールの不斉異性化により光学活性シトロネラールを得る。
B-2)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
D-2)光学活性イソプレゴールを深冷によって再結晶を行いさらに高い純度のイソプレゴールを得る。
E-2)工程D-2で得た光学活性イソプレゴールを水素化し光学活性メントールを得る。
〔10〕
 以下の工程を含む光学活性メントールの製造方法。
A-3)ゲラニオール又はネロールの不斉異性化によりd-シトロネラールを得る。
B-3)酸性触媒によるd-シトロネラールの閉環反応によってl-イソプレゴールを得る。
C-3)l-イソプレゴールを水素化しl-メントールを得る。
〔11〕
 以下の工程を含む光学活性メントールの製造方法。
A-4)ゲラニオール又はネロールの不斉異性化によりd-シトロネラールを得る。
B-4)酸性触媒によるd-シトロネラールの閉環反応によってl-イソプレゴールを得る。
D-4)l-イソプレゴールを深冷によって再結晶を行いさらに高い純度の1-イソプレゴールを得る。
E-4)工程D-4で得たl-イソプレゴールを水素化しl-メントールを得る。
 本発明の製造方法では、第一段階の工程としてゲラニオール及び/又はネロールを不斉異性化することにより、光学活性シトロネラールを得るが、特定のルテニウム触媒を使用することにより、高い光学純度で光学活性シトロネラールを製造することができる。
 本発明の製造方法における不斉異性化反応は、以前開示されている報告(特許文献4)のように、ゲラニオール及び/又はネロールを不斉水素化し、シトロネロールを得た後酸化することによりシトロネラールを得る必要はなくなるため、工程の短縮化が可能である。
 第二段階の工程として、第一段階の工程で得られた光学活性シトロネラールをアルミニウム触媒で閉環することにより、光学活性イソプレゴールを4種類の異性体の中から高選択的に製造することができる。
 第三段階の任意の工程として、第二段階の工程で得られた光学活性イソプレゴールを低温で深冷晶析することによって、さらに高い化学純度、光学純度で光学活性イソプレゴールを製造することができる。
 第四段階の工程として、第二段階の工程で得られた光学活性イソプレゴール又は第三段階で得られた光学活性イソプレゴールを水素化触媒を用いて水素化することにより光学活性メントールを製造することができる。
 その結果、化学合成される光学活性メントール製造方法としては、原料から最短の工程で光学活性メントールが製造できる。また、ゲラニオール又はネロールの不斉異性化によって得られるシトロネラールは非常に化学純度及び光学純度が高く、そのシトロネラールを高選択的な閉環触媒により閉環を行うことによって晶析操作を行わずに高純度のl-イソプレゴールが得られる。さらに、深冷晶析以外の製造工程のすべてが触媒を用いた工程であり、環境を汚染する廃棄物が少なく、製造経費も節約できる。
図1は、実施例5において2-シクロヘキシル-6-フェニルフェノールとトリエチルアルミニウムを反応させて得られた固体のH-NMRスペクトルを示す図である。 図2は、図1で示すH-NMRスペクトルの低磁場側を拡大した図である。 図3は、2-シクロヘキシル-6-フェニルフェノール(CPP)のH-NMRスペクトルを示す図である。 図4は、図3で示すH-NMRスペクトルの低磁場を拡大した図である。
 以下、本発明について詳細に説明する。
 本願において“重量%”及び“重量部”は、それぞれ“質量%”及び“質量部”と同義である。
 本発明である光学活性メントールの製造方法はScheme1に示した方法で行われる。本明細書において、化学構造中の*は不斉炭素を表わす。
Figure JPOXMLDOC01-appb-C000017
<工程A>
 スキーム1に示した工程Aはゲラニオール及びネロールのうち少なくとも一方を、不斉異性化触媒を用いて不斉異性化することにより、光学活性シトロネラールを製造することにより成り立つ。
Figure JPOXMLDOC01-appb-C000018
<工程A:不斉異性化触媒>
(ルテニウム触媒)
 スキーム1の工程A:不斉異性化触媒について説明する。不斉異性化触媒であるルテニウム触媒としてはルテニウムと配位子からなる錯体が好ましく用いられ、配位子が不斉配位子であることが望ましいが、配位子以外の他の構成成分が光学活性体であってもよい。
 不斉異性化触媒であるルテニウム錯体製造に用いられる不斉配位子は、光学活性部位を有し、光学活性な化合物であって、不斉配位子として使用可能なものであれば何れも挙げられる。前記不斉配位子としては、例えば、Catalytic Asymmetric Synthesis (Wiley-VCH, 2000)、Handbook of Enantioselective Catalysis with Transition Metal Complex (VCH,1993)、ASYMMETRIC CATALYSIS IN ORGANIC SYNTHESIS (John Wiley & Sons Inc.(1994))、国際公開第2005/070875号等に記載されている不斉配位子が挙げられる。
 より具体的に説明すると、本発明で用いられる不斉配位子は、例えば、単座配位子、二座配位子、三座配位子、四座配位子等が挙げられる。例えば、光学活性ホスフィン化合物、光学活性アミン化合物、光学活性アルコール化合物、光学活性硫黄化合物、光学活性カルベン化合物等が挙げられる。好ましくは、光学活性ホスフィン化合物が挙げられる。
 光学活性ホスフィン化合物としては、次の一般式(12)で表される光学活性二座ホスフィン配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000019
[式(12)中、式中、R19~R22は各々独立に置換基を有していてもよい芳香族基又は炭素数3~10のシクロアルキル基を示すか、あるいはR19とR20、R21とR22は各々互いに隣接するリン原子と共に複素環を形成していてもよく; R23及びR24は各々独立に水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、ジ(炭素数1~5アルキル)アミノ基、5~8員の環状アミノ基又はハロゲン原子を示し;R25は炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、ジ(炭素数1~5アルキル)アミノ基、5~8員の環状アミノ基又はハロゲン原子を示し; また、R23とR24、R24とR25は各々互いに結合して、縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよい)]
 この一般式(12)において、R19~R22は各々独立に置換基を有していてもよい芳香族基又は炭素数3~10の環状アルキル基を示すか、あるいはR19とR20、R21とR22は互いに隣接するリン原子と共に複素環を形成していてもよい。
 置換基を有していてもよい芳香族基において、芳香族基としては、フェニル基、ナフチル基、フェナンスリル基等の炭化水素系芳香族基; ピロリル基、ピリジル基、ピラジル基、キノリル基、イソキノリル基、イミダゾリル基等の複素系芳香族基等が挙げられる。
 ここで置換基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の炭素数1~12のアルキル基;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の炭素数1~4の低級アルコキシ基;フェニル基、α-ナフチル基、β-ナフチル基、ファナンスリル基等のアリール基;ベンジル基、α-フェニルエチル基、β-フェニルエチル基、α-フェニルプロピル基、β-フェニルプロピル基、γ-フェニルプロピル基、ナフチルメチル基等の炭素数7乃至13のアラルキル基;トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、ジメチル(2,3-ジメチ-2-ブチル)シリル基、tert-ブチルジメチルシリル基、ジメチルヘキシルシリル基等のトリ-炭素数1~6アルキルシリル基、ジメチルクミルシリル基等のジ-炭素数1~6アルキル-炭素数6~18アリールシリル基、tert-ブチルジフェニルシリル基、ジフェニルメチルシリル基等のジ-炭素数6~18アリール-炭素数1~6アルキルシリル基、トリフェニルシリル基等のトリ-炭素数6~18アリールシリル基、トリベンジルシリル基、トリ-p-キシリルシリル基等のトリ-炭素数7~19アラルキルシリル基等のトリ置換オルガノシリル基;フッ素、塩素、臭素、ヨウ素等のハロゲン原子;ニトロ基等が挙げられる。
 置換基を有していてもよい炭素数3~10のシクロアルキル基において、具体例としては、シクロペンチル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、オクタヒドロナフチル基等が挙げられる。
 ここで、置換基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の炭素数1~12のアルキル基;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の炭素数1~4の低級アルコキシ基;フェニル基、α-ナフチル基、β-ナフチル基、ファナンスリル基等のアリール基; ベンジル基、α-フェニルエチル基、β-フェニルエチル基、α-フェニルプロピル基、β-フェニルプロピル基、γ-フェニルプロピル基、ナフチルメチル基等の炭素数7乃至13のアラアルキル基;トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、ジメチル(2,3-ジメチル-2-ブチル)シリル基、tert-ブチルジメチルシリル基、ジメチルヘキシルシリル基等のトリ-炭素数1~6アルキルシリル基、ジメチルクミルシリル基等のジ-炭素数1~6アルキル-炭素数6~18アリールシリル基、tert-ブチルジフェニルシリル基、ジフェニルメチルシリル基等のジ-炭素数6~18アリール-炭素数1~6アルキルシリル基、トリフェニルシリル基等のトリ-炭素数6~18アリールシリル基、トリベンジルシリル基、トリ-p-キシリルシリル基等のトリ-炭素数7~19アラルキルシリル基等のトリ置換オルガノシリル基;フッ素、塩素、臭素、ヨウ素等のハロゲン原子;ニトロ基等が挙げられる。
 R19とR20、R21とR22が各々互いに隣接するリン原子と共に複素環を形成した場合の複素環の具体例としては、ホスホール、テトラヒドロホスホール、ホスホリナン等が挙げられる。当該複素環には、本発明の反応に不活性な官能基を置換基として1~4個有していてもよい。置換基としては、例えば、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ハロゲン原子等が挙げられる。
 一般式(12)において、R23及びR24は各々独立に水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、ジ(炭素数1~5アルキル)アミノ基、5~8員の環状アミノ基又はハロゲン原子である。
 R23及びR24で表される炭素数1~5のアルキル基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基等が挙げられる。
 R23及びR24で表される炭素数1~5のアルコキシ基の具体例としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペントキシ基等が挙げられる。
 R23及びR24で表されるジ(炭素数1~5アルキル)アミノ基の具体例としては、ジメチルアミノ基、ジエチルアミノ基、ジn-プロピルアミノ基、ジイソプロルアミノ基、ジn-ブチルアミノ基、ジイソブチルアミノ基、ジsec-ブチルアミノ基、ジtert-ブチルアミノ基、ジペンチルアミノ基等が挙げられる。
 R23及びR24で表される5~8員の環状アミノ基の具体例としては、ピロリジノ基、ピペリジノ基等が挙げられる。
 R23及びR24で表されるハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 これらの中で、好ましいR23及びR24としては、水素原子; メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、トリフルオロメチル基等の炭素数1~4のアルキル基;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、tert-ブトキシ基等のアルコキシ基;ジメチルアミノ基、ジエチルアミノ基のジアルキルアミノ基;ピロリジノ基、ピペリジノ基等の5~8員の環状アミノ基等が挙げられる。
 特に好ましいR23及びR24としては、水素原子、メトキシ基が挙げられる。
 一般式(12)において、R25は炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、ジ(炭素数1~5アルキル)アミノ基、5~8員の環状アミノ基又はハロゲン原子である。
 R25で表される炭素数1~5のアルキル基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基等が挙げられる。
 R25で表される炭素数1~5のアルコキシ基の具体例としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペントキシ基等が挙げられる。
 R25で表されるジ(炭素数1~5アルキル)アミノ基の具体例としては、ジメチルアミノ基、ジエチルアミノ基、ジn-プロピルアミノ基、ジイソプロルアミノ基、ジn-ブチルアミノ基、ジイソブチルアミノ基、ジsec-ブチルアミノ基、ジtert-ブチルアミノ基、ジペンチルアミノ基等が挙げられる。
 R25で表される5~8員の環状アミノ基の具体例としては、ピロリジノ基、ピペリジノ基等が挙げられる。
 R25で表されるハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 これらの中で、好ましいR25としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、トリフルオロメチル基等の炭素数1~4のアルキル基;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、tert-ブトキシ基等のアルコキシ基;ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミノ基;ピロリジノ基、ピペリジノ基等の5~8員の環状アミノ基等が挙げられる。
 特に好ましいR25としては、メチル基、メトキシ基が挙げられる。
 一般式(12)において、R23とR24、R24とR25は各々互いに結合して縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成してもよい。これらの中で、R24とR25が結合して縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基を形成したものが好ましい。特に、R24とR25が結合して、縮合ベンゼン環、縮合置換ベンゼン環、テトラメチレン基、メチレンジオキシ基、メチレンジオキシ基又はエチレンジオキシ基を形成したものが好ましい。
 また、前記縮合ベンゼン環、縮合置換ベンゼン環、トリメチレン基、テトラメチレン基、ペンタメチレン基、メチレンジオキシ基、エチレンジオキシ基又はトリメチレンジオキシ基には、不斉合成反応に不活性な官能基を置換基として、好ましくは0~4個の範囲で有していてもよい。ここで、置換基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等の炭素数1~4のアルキル基;水酸基;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の炭素数1~4のアルコキシ基;フッ素、塩素、臭素、ヨウ素等のハロゲン原子等が挙げられる。
 この一般式(12)において、好ましく用いられる光学活性二座ホスフィン配位子としては、例えば、日本国特開昭61-63690号公報、日本国特開昭62-265293号公報に記載されている第3級ホスフィンで、具体例としては、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP)、2,2’-ビス(ジ(p-トリルホスフィノ)-1,1’-ビナフチル〔p-Tol-BINAP〕、2,2’-ビス(ジ(3,5-キシリル)ホスフィノ)-1,1’-ビナフチル(DM-BINAP)2,2’-ビスジ(3,5-ジ-tert-ブチルフェニル)ホスフィノ)-1,1’-ビナフチル(T-Bu-2-BINAP)、2,2’-ビス[ジ(4-メトキシ-3,5-ジメチルフェニル)ホスフィノ]-1,1’-ビナフチル(DMM-BINAP)、2,2’-ビス(ジシクロヘキシルホスフィノ)-1,1’-ビナフチル(Cy-BINAP)、2,2’-ビス(ジシクロペンチルホスフィノ)-1,1’-ビナフチル(Cp-BINAP)を挙げることができる。
 更に、この一般式(12)において、好ましく用いられる光学活性二座ホスフィン配位子としては、例えば、日本国特開平4-139140号公報に記載されている第3級ホスフィンで、具体例としては、次のものを挙げることができる。すなわち、2,2’-ビス(ジフェニルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロビナフチル(H-BINAP)、2,2’-ビス(ジ-p-トリルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロビナフチル(p-Tol-H-BINAP)、2,2’-ビス(ジ-(3,5-キシリル)ホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロビナフチル(DM-H-BINAP)、2,2’-ビス(ジ-(4-メトキシ-3,5-ジメチルフェニル)ホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロビナフチル(DMM-H-BINAP)。
 更にまた、この一般式(12)において、好ましく用いられる光学活性二座ホスフィン配位子としては、例えば、日本国特開平11-269185号公報に記載されている第3級ホスフィンで、具体例としては、次のものを挙げることができる。すなわち、((5,6),(5’,6’)-ビス(メチレンジオキシ)ビフェニル-2,2’-ジイル)ビス(ジフェニルホスフィン)(SEGPHOS)、((5,6),(5’,6’)-ビス(メチレンジオキシ)ビフェニル-2,2’-ジイル)ビス(ジp-トリルホスフィン)(p-Tol-SEGPHOS)、((5,6),(5’,6’)-ビス(メチレンジオキシ)ビフェニル-2,2’-ジイル)ビス(ジ-3,5-キシリルホスフィン)(DM-SEGPHOS)、((5,6),(5’,6’)-ビス(メチレンジオキシ)ビフェニル-2,2’-ジイル)ビス(ジ4-メトキシ-3,5-ジメチルフェニルホスフィン)(DMM-SEGPHOS)、((5,6),(5’,6’)-ビス(メチレンジオキシ)ビフェニル-2,2’-ジイル)ビス(ジ4-メトキシ-3,5-ジ-tert-ブチルフェニルホスフィン)(DTBM-SEGPHOS)、((5,6),(5’,6’)-ビス(メチレンジオキシ)ビフェニル-2,2’-ジイル)ビス(ジシクロヘキシルホスフィン)(Cy-SEGPHOS)。
 以上の光学活性二座ホスフィン配位子以外に、一般式(12)に該当するものとして、次の光学活性二座ホスフィン配位子を挙げることができる。すなわち、2,2’-ジメチル-6,6’-ビス(ジフェニルホスフィノ)-1,1’-ビフェニル(BIPHEMP)、2,2’-ジメチル-6,6’-ビス(ジp-トリルホスフィノ)-1,1’-ビフェニル(p-Tol-BIPHEMP)、2,2’-ジメチル-6,6’-ビス(ジ3,5-キシリルホスフィノ)-1,1’-ビフェニル(DM-BIPHEMP)、2,2’-ジメチル-6,6’-ビス(ジ4-メトキシ-3,5-ジメチルフェニルホスフィノ)-1,1’-ビフェニル(DMM-BIPHEMP)、2,2’-ジメチル-6,6’-ビス(ジ4-t-ブトキシ-3,5-ジメチルフェニルホスフィノ)-1,1’-ビフェニル(DTBM-BIPHEMP)2,2’-ジメチル-6,6’-ビス(ジシクロヘキシルホスフィノ)-1,1’-ビフェニル(Cy-BIPHEMP)、2,2’-ジメトキシ-6,6’-ビス(ジフェニルホスフィノ)-1,1’-ビフェニル(MeO-BIPHEMP)、2,2’-ジメトキシ-6,6’-ビス(ジp-トリルホスフィノ)-1,1’-ビフェニル(p-Tol-MeO-BIPHEMP)、2,2’-ジメトキシ-6,6’-ビス(ジ3,5-キシリルホスフィノ)-1,1’-ビフェニル(DM-MeOBIPHEMP)、2,2’-ジメトキシ-6,6’-ビス(ジ4-メトキシ-3,5-ジメチルフェニルホスフィノ)-1,1’-ビフェニル(DMM-MeO-BIPHEMP)、2,2’-ジメトキシ-6,6’-ビス(ジ4-t-ブトキシ-3,5-ジメチルフェニルホスフィノ)-1,1’-ビフェニル(DTBM-MeO-BIPHEMP)、2,2’-ジメトキシ-6,6’-ビス(ジシクロヘキシルホスフィノ)-1,1’-ビフェニル(Cy-MeO-BIPHEMP)、2,2’-ジメチル-3,3’-ジクロロ-4,4’-ジメチル-6,6’-ビス(ジp-トリルホスフィノ)-1,1’-ビフェニル(p-Tol-CM-BIPHEMP)、2,2’-ジメチル-3,3’-ジクロロ-4,4’-ジメチル-6,6’-ビス(ジ3,5-キシリルホスフィノ)-1,1’-ビフェニル(DM-CM-BIPHEMP)、2,2’-ジメチル-3,3’-ジクロロ-4,4’-ジメチル-6,6’-ビス(ジ4-メトキ-3,5-ジメチルフェニルホスフィノ)-1,1’-ビフェニル(DMM-CM-BIPHEMP)。
 本発明では、上記した配位子とルテニウムとを含むルテニウム錯体で不斉異性化反応を行うが、この不斉異性化反応における光学活性ルテニウム錯体としては、例えば、下記一般式(11)で表される化合物が好ましいのものとして挙げられる。
[Ru     (11)
(式中、Lは、光学活性ホスフィン配位子であり;Wは、水素原子、ハロゲン原子、アシルオキシ基、アリール基、ジエン又はアニオンであり;Uは、水素原子、ハロゲン原子、アシルオキシ基、アリール基、ジエン、アニオン又はL以外の配位子であり;Zは、アニオン、アミン又は光学活性含窒素化合物であり;m、n及びrは各々独立して1~5の整数であり、p、q及びsは各々独立して0~5の整数であり、p+q+sは1以上である。)
 一般式(11)において、Lで表される配位子としては、上述した一般式(12)で表される光学活性二座ホスフィン配位子が挙げられる。
 一般式(11)において、Wは、水素原子、ハロゲン原子、アシルオキシ基、アリール基、ジエン又はアニオンである。
 一般式(11)のWで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 一般式(11)のWで表されるアシルオキシ基としては、例えば、フォルミルオキシ基、アセトキシ基、プロピオニルオキシ基、ブチルオキシ基、ベンゾイルオキシ基等が挙げられる。
 一般式(11)のWで表されるアリール基としては、例えば、フェニル基、ナフチル基、アントラニル基、フェナントリル基、インデニル基、メシチル基、ジベンジル基等の芳香族単環、多環式基等が挙げられる。
 一般式(11)のWで表されるジエンとしては、例えば、ブタジエン、シクロオクタジエン(cod)、ノルボルナジエン(nod)等が挙げられる。
 一般式(11)のWで表されるアニオンとしては、例えば、硝酸イオン、亜硝酸イオン、硫酸イオン、亜硫酸イオン、スルホン酸イオン(メタンスルホン酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオン、カンフルスルホン酸イオン、トリフルオロメタンスルホン酸イオンなど)、スルファミン酸イオン、炭酸イオン、水酸化物イオン、カルボン酸イオン(ギ酸イオン、酢酸イオン、プロピオン酸イオン、グルコン酸イオン、オレイン酸イオン、シュウ酸イオン、安息香酸イオン、フタル酸イオン、トリフルオロ酢酸イオンなど)、硫化物イオン、チオシアン酸イオン、リン酸イオン、ピロリン酸イオン、酸化物イオン、リン化物イオン、塩素酸イオン、過塩素酸イオン、ヨウ素酸イオン、ヘキサフルオロケイ酸イオン、シアン化物イオン、ホウ酸イオン、メタホウ酸イオン、ホウフッ化物イオン等が挙げられる。
 一般式(11)において、Uは、水素原子、ハロゲン原子、アシルオキシ基、アリール基、ジエン、アニオン又はL以外の配位子である。
 一般式(11)のUで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 一般式(11)のUで表されるアシルオキシ基としては、例えば、フォルミルオキシ基、アセトキシ基、プロピオニルオキシ基、ブチルオキシ基、ベンゾイルオキシ基等が挙げられる。
 一般式(11)のUで表されるアリール基としては、例えば、フェニル基、ナフチル基、アントラニル基、フェナントリル基、インデニル基、メシチル基、ジベンジル基等の芳香族単環、多環式基等が挙げられる。
 一般式(11)のUで表されるジエンとしては、例えば、ブタジエン、シクロオクタジエン(cod)、ノルボルナジエン(nod)等が挙げられる。
 一般式(11)のUで表されるアニオンとしては、例えば、硝酸イオン、亜硝酸イオン、硫酸イオン、亜硫酸イオン、スルホン酸イオン(メタンスルホン酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオン、カンフルスルホン酸イオン、トリフルオロメタンスルホン酸イオンなど)、スルファミン酸イオン、炭酸イオン、水酸化物イオン、カルボン酸イオン(ギ酸イオン、酢酸イオン、プロピオン酸イオン、グルコン酸イオン、オレイン酸イオン、シュウ酸イオン、安息香酸イオン、フタル酸イオン、トリフルオロ酢酸イオンなど)、硫化物イオン、チオシアン酸イオン、リン酸イオン、ピロリン酸イオン、酸化物イオン、リン化物イオン、塩素酸イオン、過塩素酸イオン、ヨウ素酸イオン、ヘキサフルオロケイ酸イオン、シアン化物イオン、ホウ酸イオン、メタホウ酸イオン、ホウフッ化物イオン等が挙げられる。
 一般式(11)のUで表されるL以外の配位子としては、例えば、N,N-ジメチルホルムアミド(DMF)、アセトン、クロロホルム、ニトリル類(アセトニトリル、ベンゾニトリル等)、シアニド類(メチルイソシアニド、フェニルイソシアニド等)、芳香族化合物(ベンゼン、p-シメン、1,3,5-トリメチルベンゼン(メシチレン)、ヘキサメチルベンゼン等)、オレフィン類(エチレン、プロピレン、シクロオクレン等)、リン化合物(トリフェニルホスフィン、トリトリルホスフィン、トリメチルホスフィン、トリエチルホスフィン、メチルジフェニルホスフィン、ジメチルフェニルホスフィン、ジフェニルホスフィノメタン(dppm)、ジフェニルホスフィノエタン(dppe)、ジフェニルホスフィノプロパン(dppp)、ジフェニルホスフィノブタン(dppb)、ジフェニルホスフィノフェロセン(dppf)等のホスファン化合物、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト等のホスファイト化合物等)、アミン化合物(アンモニア;メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、s-ブチルアミン、tert-ブチルアミン、シクロヘキシルアミン等の脂肪族アミン類;アニリン、ジメチルアニリン等の芳香族アミン類;ピリジン(py)、ジメチルアミノピリジン、等の含窒素芳香族複素環類、ピロリジン、ピペラジン等の含窒素脂肪族複素環類;エチレンジアミン(en)、プロピレンジアミン、トリエチレンジアミン、テトラメチルエチレンジアミン(TMEDA)、ビピリジン(bpy)、フェナントロリン(phen)等のジアミン類)、硫黄化合物(ジメチルスルフィド、ジエチルスルフィド、ジプロピルスルフィド、ジブチルスルフィド等)等が挙げられる。
 一般式(11)において、Zは、アニオン、アミン又は光学活性含窒素化合物である。
 一般式(11)のZで表されるアニオンとしては、例えば、硝酸イオン、亜硝酸イオン、硫酸イオン、亜硫酸イオン、スルホン酸イオン(メタンスルホン酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオン、カンフルスルホン酸イオン、トリフルオロメタンスルホン酸イオンなど)、スルファミン酸イオン、炭酸イオン、水酸化物イオン、カルボン酸イオン(ギ酸イオン、酢酸イオン、プロピオン酸イオン、グルコン酸イオン、オレイン酸イオン、シュウ酸イオン、安息香酸イオン、フタル酸イオン、トリフルオロ酢酸イオンなど)、硫化物イオン、チオシアン酸イオン、リン酸イオン、ピロリン酸イオン、酸化物イオン、リン化物イオン、塩素酸イオン、過塩素酸イオン、ヨウ素酸イオン、ヘキサフルオロケイ酸イオン、シアン化物イオン、ホウ酸イオン、メタホウ酸イオン、ホウフッ化物イオン等が挙げられる。
 一般式(11)のZで表されるアミンとしては、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、s-ブチルアミン、tert-ブチルアミン、シクロヘキシルアミン等の脂肪族アミン類;アニリン、ジメチルアニリン等の芳香族アミン類;ピリジン(py)、ジメチルアミノピリジン、等の含窒素芳香族複素環類、ピロリジン、ピペラジン等の含窒素脂肪族複素環類;エチレンジアミン(en)、プロピレンジアミン、トリエチレンジアミン、テトラメチルエチレンジアミン(TMEDA)、ビピリジン(bpy)、フェナントロリン(phen)等のジアミン類)、硫黄化合物(ジメチルスルフィド、ジエチルスルフィド、ジプロピルスルフィド、ジブチルスルフィド等)等を挙げることができる。
 一般式(11)のZで表される光学活性含窒素化合物としては、次の一般式(13)で表わされる光学活性ジアミン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000020
(式(13)中、R26、R27、R32、R33は各々独立して、水素原子、飽和もしくは不飽和炭化水素基、アリール基、アラアリール基、ウレタン基、又はスルフォニル基等であり、R28、R29、R30、R31は各々独立に、水素原子、アルキル基、芳香族単環もしくは多環式基、飽和もしくは不飽和炭化水素基、又は環状アルキル基等を示し、R28、R29、R30、R31が結合する炭素原子は不斉中心である。)
 一般式(13)で表わされる光学活性ジアミン化合物としては、例えば光学活性な1,2-ジフェニルエチレンジアミン、1,2-シクロヘキサンジアミン、1,2-シクロヘプタンジアミン、2,3-ジメチルブタンジアミン、1-メチル-2,2-ジフェニルエチレンジアミン、1-イソブチル-2,2-ジフェニルエチレンジアミン、1-イソブロピル-2,2-ジフェニルエチレンジアミン、1-メチル-2,2-ジ(p-メトキシフェニル)エチレンジアミン、1-イソブチル-2,2-ジ(p-メトキシフェニル)エチレンジアミン、1-イソプロピル-2,2-ジ(p-メトキシフェニル)エチレンジアミン、1-ベンジル-2,2-ジ(p-メトキシフェニル)エチレンジアミン、1-メチル-2,2-ジナフチルエチレンジアミン、1-イソブチル-2,2-ジナフチルエチレンジアミン、1-イソプロピル-2,2-ジナフチルエチレンジアミン、2-メチルアミノ-1-フェニルエチルアミン、2-エチルアミノ-1-フェニルエチルアミン、2-n-プロピルアミノ-1-フェニルエチルアミン、2-i-プロピルアミノ-1-フェニルエチルアミン、2-n-ブチルアミノ-1-フェニルエチルアミン、2-tert-ブチルアミノ-1-フェニルエチルアミン、2-シクロヘキシルアミノ-1-フェニルエチルアミン、2-ベンジルアミノ-1-フェニルエチルアミン、2-ジメチルアミノ-1-フェニルエチルアミン、2-ジエチルアミノ-1-フェニルエチルアミン、2-ジn-プロピルアミノ-1-フェニルエチルアミン、2-ジi-プロピルアミノ-1-フェニルエチルアミン、2-ジn-ブチルアミノ-1-フェニルエチルアミン、2-ジtert-ブチルアミノ-1-フェニルエチルアミン、2-ピロリジニル-1-フェニルエチルアミン、2-ピペリジオ-1-フェニルエチルアミンなどを例示することができる。
 更に、本発明で用いられる光学活性ジアミン化合物としては、例えば、日本国特開平8-225466号公報、日本国特開平11-189600号公報、日本国特開2001-58999号公報、日本国特開2002-284790号公報、日本国特開2005-68113号公報、国際公開第2002/055477号、国際公開第2004/007506号などに記載されている光学活性ジアミン化合物を例示することができる
 一般式(11)で表されるルテニウム錯体の好ましいものとして、次のものが挙げられる。すなわち、下記で表される化合物が挙げられる。
(i)Wは塩素原子、臭素原子又はヨウ素原子であり、Zはトリアルキルアミンであり、m=p=s=1、n=r=2、q=0を示し、(ii)Wは塩素原子、臭素原子又はヨウ素原子であり、Zはピリジル基又は環置換ピリジル基であり、m=n=r=s=1、p=2、q=0を示し、(iii)Wはアシルオキシ基であり、m=n=r=1、p=2、q=s=0を示し、(iv)Wは塩素原子、臭素原子又はヨウ素原子であり、Zはジメチルホルムアミド又はジメチルアセトアミドであり、m=n=r=1、p=2、q=0、sは0~4の整数を示し、(v)Wは塩素原子、臭素原子又はヨウ素原子であり、Uは塩素原子、臭素原子又はヨウ素原子であり、Zはジアルキルアンモニウムイオンであり、m=n=p=2、q=3、r=s=1を示し、(vi)Wは塩素原子、臭素原子又はヨウ素原子であり、Uは中性配位子である芳香族化合物又はオレフィンであり、Zは塩素原子、臭素原子、ヨウ素原子、I、BF、ClO、OTf、PF、SbF又はBPhであり、m=n=p=q=r=s=1を示し、(vii)ZはBF、ClO、OTf、PF、SbF又はBPhであり、m=n=r=1、p=q=0、s=2を示し、(viii)W及びUは同一であっても異なっていてもよく、水素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシル基又は他のアニオン基であり、Zはジアミン化合物であり、m=n=p=q=r=s=1を示し、(ix)Wは水素原子であり、Uは塩素原子、臭素原子又はヨウ素原子であり、m=p=q=r=1、n=2、s=0を示し、(x)Wは水素原子であり、ZはBF、ClO、OTf、PF、SbF又はBPhであり、m=n=p=r=s=1、q=0を示し、(xi)Wは塩素原子、臭素原子又はヨウ素原子であり、Uは一価ホスフィン配位子であり、Zは塩素原子、臭素原子又はヨウ素原子であり、m=n=p=q=1、r=z=2を示し、(xii)W及びUは同一又は異なって、塩素原子、臭素原子又はヨウ素原子であり、m=n=p=q=r=1、s=0を示す。
 ルテニウムホスフィン錯体(11)の製造方法としては特に制限されないが、例えば次に示す方法あるいはこれに準ずる方法を用いて製造することができる。なお、以下に示す遷移金属ホスフィン錯体の式中において、codは1,5-シクロオクタジエンを、nbdはノルボルナジエンを、Phはフェニル基を、Acはアセチル基を、acacはアセチルアセトナート、dmfはジメチルホルムアミド、enはエチレンジアミン、DPENは1,2-ジフェニルエチレンジアミン、DAIPENは1,1-ジ(p-メトキシフェニル)-2-イソプロピルエチレンジアミン、MAEは、メチルアミノエチルアミン、EAEは、エチルアミノエチルアミン、MAPEは、2-メチルアミノ-1-フェニルエチルアミン、EAPEは、2-エチルアミノ-1-フェニルエチルアミン、DMAPEは、2-ジメチルアミノ-1-フェニルエチルアミン、DEAPEは、2-ジエチルアミノ-1-フェニルエチルアミン、DBAEは、ジn-ブチルアミノエチルアミン、DBAPEは、2-ジn-ブチルアミノ-1-フェニルエチルアミンをそれぞれ示す。
 ルテニウム錯体:ルテニウム錯体を製造する方法としては、例えば、文献(J.Chem.Soc.,Chem.Commun.、922頁、1985年)に記載に準じて、[(1,5-シクロオクタジエン)ジクロルルテニウム]([Ru(cod)Cl)と光学活性二座ホスフィン配位子をトリアルキルアミンの存在下に有機溶媒中で加熱還流することで調製できる。また、特開平11-269185号公報に記載の方法に準じて、ビス[ジクロル(ベンゼン)ルテニウム]([Ru(benzene)Cl) と光学活性二座ホスフィン配位子をジアルキルアミン存在下に有機溶媒中で加熱還流することにより、調製できる。
 また、文献(J.Chem.Soc.、Chem.Commun.、1208頁、1989年)に記載の方法に準じて、ビス[ジヨード(パラ-シメン)ルテニウム]([Ru(p-cymene)I)と光学活性二座ホスフィン配位子とを有機溶媒中で加熱撹拌することにより調製することができる。更に、日本国特開平11-189600号公報に記載の方法に準じて、文献(J.Chem.Soc.、Chem.Commun.、992頁、1985年)の方法に従い得られるRuCl(L)NEtとジアミン化合物とを有機溶媒中で反応せしめて合成することができる。
 ルテニウム錯体の具体例として、例えば、以下のものを挙げることができる。
 Ru(OAc)(L)、Ru(OCOCF(L)、RuCl(L)NEt、[RuCl(L)(dmf)]、RuHCl(L)、RuHBr(L)、RuHI(L)、[{RuCl(L)}(μ-Cl)][MeNH]、[{RuBr(L)}(μ-Br)][MeNH]、[{RuI(L)}(μ-I)][MeNH]、[{RuCl(L)}(μ-Cl)][MeNH]、[{RuBr(L)}(μ-Br)][MeNH]、[{RuBr(L)}(μ-I)][MeNH]、[RuCl[PPh](L)](μ-Cl)、[RuBr[PPh](L)](μ-Br)、[RuI[PPh](L)](μ-I)、RuCl(L)、RuBr(L)、RuI(L)、[RuCl(L)](dmf)、RuCl(L)(pyridine)、RuBr(L)(pyridine)、RuI(L)(pyridine)、RuCl(L)(2,2’-dipyridine)、RuBr(L)(2,2’-dipyridine)、RuI(L)(2,2’-dipyridine)、[RuCl(benzene)(L)]Cl、[RuBr(benzene)(L)]Br、[RuI(benzene)(L)]I、[RuCl(p-cymene)(L)]Cl、[RuBr(p-cymene)(L)]Br、[RuI(p-cymene)(L)]I、[RuI(p-cymene)(L)]I、[Ru(L)](OTf)、[Ru(L)](BF、[Ru(L)](ClO、[Ru(L)](SbF、[Ru(L)](PF、[Ru(L)](BPh、[RuCl(L)](en)、[RuBr(L)](en)、[RuI(L)](en)、[RuH(L)](en)、[RuCl(L)](DPEN)、[RuBr(L)](DPEN)、[RuI(L)](DPEN)、[RuH(L)](DPEN)、[RuCl(L)](DAIPEN)、[RuBr(L)](DAIPEN)、[RuI(L)](DAIPEN)、[RuH(L)](DAIPEN)、[RuCl(L)](MAE)、[RuBr(L)](MAE)、[RuI(L)](MAE)、[RuH(L)](MAE)、[RuCl(L)](EAE)、[RuBr(L)](EAE)、[RuI(L)](EAE)、[RuH(L)](EAE)、[RuCl(L)](MAPE)、[RuBr(L)](MAPE)、[RuI(L)](MAPE)、[RuH(L)](MAPE)、[RuCl(L)](DMAPE)、[RuBr(L)](DMAPE)、[RuI(L)](DMAPE)、[RuH(L)](DMAPE)、[RuCl(L)](DBAE)、[RuBr(L)](DBAE)、[RuI(L)](DBAE)、[RuH(L)](DBAE)、[RuCl(L)](DBAPE)、[RuBr(L)](DBAPE)、[RuI(L)](DBAPE)、[RuH(L)](DBAPE)等を挙げることができる。
 本発明の不斉異性化反応におけるより好ましい触媒は、ルテニウムと光学活性二座ホスフィン配位子を含有する錯体である。最も好ましくは、
 RuCl(L)NEt、[RuCl(L)(dmf)]、[{RuCl(L)}(μ-Cl)][MeNH]、[{RuBr(L)}(μ-Br)][MeNH]、[{RuI(L)}(μ-I)][MeNH]、[{RuCl(L)}(μ-Cl)][MeNH]、[{RuBr(L)}(μ-Br)][MeNH]、[{RuBr(L)}(μ-I)][MeNH]、[RuCl(benzene)(L)]Cl、[RuBr(benzene)(L)]Br、[RuI(benzene)(L)]I、[RuCl(p-cymene)(L)]Cl、[RuBr(p-cymene)(L)]Br、[RuI(p-cymene)(L)]I、[RuI(p-cymene)(L)]I、[RuCl(L)](MAE)、[RuBr(L)](MAE)、[RuI(L)](MAE)、[RuH(L)](MAE)、[RuCl(L)](EAE)、[RuBr(L)](EAE)、[RuI(L)](EAE)、[RuH(L)](EAE)、[RuCl(L)](MAPE)、[RuBr(L)](MAPE)、[RuI(L)](MAPE)、[RuH(L)](MAPE)、[RuCl(L)](DMAPE)、[RuBr(L)](DMAPE)、[RuI(L)](DMAPE)、[RuH(L)](DMAPE)、[RuCl(L)](DBAE)、[RuBr(L)](DBAE)、[RuI(L)](DBAE)、[RuH(L)](DBAE)、[RuCl(L)](DBAPE)、[RuBr(L)](DBAPE)、[RuI(L)](DBAPE)、[RuH(L)](DBAPE)等を挙げることができる。
 また、本発明で用いられる塩基は、例えば、一般式(14)で表される塩を使用することが好ましい。
 M’X     (14)
(式(14)中、M’は、Li、Na又はKの金属を示し、Xは、Cl、Br又はIのハロゲン原子を示す。)
 具体的には、例えば、LiCl、LiBr、LiI、NaCl、NaBr、NaI、KCl、KBr、KI等の金属塩を使用するものが好ましい。更には、(Bn)EtNCl、(Bn)EtNBr、(Bn)EtNI等のアンモニウム塩が選択でき、BuPhPCl、BuPhPBr、BuPhPI、(C13)PhPBr、BrPPh(CHPPhBr等のホスホニウム塩等が選択でき高い選択性が得られる(Bn:ベンジル基、Et:エチル基、Ph:フェニル基、Bu:ブチル基を示す。)。
 本発明で使用される光学活性二座ホスフィン配位子は、(S)-体及び(R)-体が存在するので、目的とする光学活性シトロネラールの絶対配置に応じていずれかを選択すればよい。すなわち、基質として、ゲラニオールを用いた場合、例えば、配位子としてTol-BINAPを用いたとき、(R)-体のシトロネラールを得るには(S)-体のTol-BINAPを用い、(S)-体のシトロネラールを得るには(R)-体のTol-BINAPを用いればよい。一方、基質としてネロールを用いた場合、(S)-体のシトロネラールを得るには(S)-体のTol-BINAPを用い、(R)-体のシトロネラールを得るには(R)-体のTol-BINAPを用いればよい。
 さらに、本発明では光学活性二座ホスフィン配位子と合わせて光学活性窒素化合物とを使用する。光学活性窒素化合物は、(S)-体及び(R)-体が存在するので、目的とする光学活性シトロネラールの絶対配置に応じていずれかを選択すればよい。
 なお、遷移金属-光学活性ホスフィン錯体の使用量は、ゲラニオール(1a)又はネロール(1b)に対して約100~50000分の1モルであることが好ましい。
 また、添加する塩基の量は、遷移金属-光学活性ホスフィン錯体に対し、0.5~100当量、好ましくは、2~40当量であることが好ましい。
 反応溶媒としては、不斉異性化原料(1)及び触媒系を可溶化するものであれば適宜なものを用いることができる。例えば、トルエン、キシレン等の芳香族炭化水素溶媒、ペンタン、ヘキサン等の脂肪族炭化水素溶媒;塩化メチレン、等のハロゲン含有炭化水素溶媒;ジエチルエーテル、ジイソプロピルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、1,3-ジオキソラン等のエーテル系溶媒;メタノール、エタノール、2-プロパノール、ブタノール、ベンジルアルコール等のアルコール系溶媒;アセトニトリル、DMFやDMSO等ヘテロ原子を含む有機溶媒を用いることができる。好ましくはアルコール系溶媒が用いられる。溶媒の量は、反応基質の溶解度及び経済性により判断される。例えば、基質によっては1%以下の低濃度から無溶媒に近い状態で行うことができるが、0.1~5.0容量で用いるのが好ましい。
 反応温度については、0~150℃で行うことができるが、100~70℃の範囲がより好ましい。また、反応時間は、数分~30時間で反応は完結する。反応終了後は、通常の後処理を行うことにより、目的とする光学活性シトロネラールを単離することができる。
 反応終了後は通常の後処理を行うことにより、必要に応じて蒸留やカラムクロマトグラフィー等の方法を用いて、目的物を単離することができる。また、本発明における反応形式は、バッチ式においても連続的においても実施することができる。
<工程B>
 本発明のスキーム1に示した工程Bは、工程Aで得られた光学活性シトロネラールを閉環することにより、光学活性イソプレゴールを製造することにより成り立つ。
Figure JPOXMLDOC01-appb-C000021
<工程B:光学活性シトロネラールの閉環触媒>
(アルミニウム触媒)
 スキーム1の工程B:シトロネラール閉環触媒としては、アルミニウム触媒を用いることが好ましい。このアルミニウム触媒は、アルミニウム化合物とフェノール配位子とを反応させて得られる。
 アルミニウム触媒を製造するために使用されるアルミニウム化合物は、一般式(7)で表されるアルキルアルミニウム化合物、一般式(8)で表されるヒドリドアルミニウム化合物、一般式(9)で表される鎖状アルミノキサン類、及び、一般式(10)で表される環状アルミノキサン類から選ばれる少なくとも一種のアルミニウム化合物から選ばれることが好ましい。
 AlH(Lg)3-k   (7)
(式(7)中、Alはアルミニウムであり、Lgは炭素数1乃至8の分岐状もしくは直鎖状のアルキル基、炭素数5乃至8の環状アルキル基、または置換基を有していてもよい炭素数7乃至12のアラルキル基であり、kは0又は1乃至3の整数である。)
 MAlH   (8)
(式(8)中、Alはアルミニウムであり、Mはリチウム、ナトリウム又はカリウムである。)
Figure JPOXMLDOC01-appb-C000022
(式(9)中、Alはアルミニウムであり、R17は炭素数1乃至8の分岐状もしくは直鎖状のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有していてもよい炭素数7乃至12のアラルキル基であり、複数のR17はそれぞれ同一であっても異なっていてもよく、lは0~40の整数である。)
Figure JPOXMLDOC01-appb-C000023
(式(10)中、Alはアルミニウムであり、R18は炭素数1乃至8の分岐状もしくは直鎖状のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有していてもよい炭素数7乃至12のアラルキル基であり;jは0~40の整数である。)
 上記、一般式(7)、(9)、(10)で表されるアルミニウム化合物における各置換基は以下の例として挙げられる。
 炭素数1乃至8の分岐状もしくは直鎖状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基及びオクチル基等が挙げられる。
 炭素数5乃至8の環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基等が挙げられる。
 置換基を有していてもよい炭素数7乃至12のアラルキル基としては、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、α-ナフチルメチル基及びβ-ナフチルメチル基等が挙げられる。
 前記置換基としては、例えば、メチル基、エチル基、n-プルピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基及びヘキシル基などの炭素数1乃至6のアルキル基;シクロペンチル基、シクロヘキシル基及びシクロヘプチル基などの炭素数5乃至8の脂環式基;トリフロロメチル基、ペンタフロロエチル基、ヘプタフロロプロピル基及びノナフロロブチル基などの炭素数1乃至4のパーフロロアルキル基;メトキシ基、エトキシ基、n-プロポキシル基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基及びtert-ブトキシ基などの炭素数1乃至4のアルコキシ基;フッ素原子、塩素原子、臭素原子及びヨウ素原子などのハロゲン原子;ベンジル基、フェニルエチル基及びナフチルメチル基などの炭素数7乃至12のアラルキル基;トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、ジメチル(2,3-ジメチル-2-ブチル)シリル基、tert-ブチルジメチルシリル基及びジメチルヘキシルシリル基などのトリ-炭素数1乃至6アルキルシリル基;ジメチルアミノ基、ジエチルアミノ基及びジブチルアミノ基などの炭素数2乃至8のジアルキルアミノ基等が挙げられる。
 また、l及びjはそれぞれ、0~40の整数、好ましくは2~30の整数である。
 一般式(9)及び(10)で表されるアルミニウム化合物は、アルミノキサンとも称される化合物である。アルミノキサンの中では、メチルアルミノキサン、エチルアルミノキサン、イソブチルアルミノキサン及びメチルイソブチルアルミノキサンが好ましく、メチルアルミノキサンが特に好ましい。上記のアルミノキサンは、各群内および各群間で複数種併用することも可能である。そして、上記のアルミノキサンは公知の様々な条件下に調製することが出来る。
 アルミニウム触媒を製造するために使用されるフェノール配位子は、一般式(5)で表されるヒドロキシ化合物(フェノール配位子)及び/又は一般式(6)で表されるヒドロキシ化合物(ビス(ジアリールフェノール)配位子)から選ばれる少なくとも一種のフェノール配位子が好ましい。
Figure JPOXMLDOC01-appb-C000024
(式(5)中、R及びRは、各々独立して、置換基を有していてもよい炭素数6乃至15のアリール基、置換基を有していてもよい炭素数4乃至15のヘテロアリール基、又は置換基を有していてもよい炭素数3乃至15の環状アルキル基であり;R、R、Rは、各々独立して、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数1乃至4のパーフロロアルキル基、炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、炭素数1乃至4のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基、ポリマー鎖である。)
Figure JPOXMLDOC01-appb-C000025
(式(6)中、R、R、R10及びR13は、各々独立して、置換基を有していてもよい炭素数6乃至15のアリール基、置換基を有していてもよい炭素数4乃至15のヘテロアリール基、置換基を有していてもよい炭素数3乃至15の環状アルキル基であり;R、R、R11及びR12は、各々独立して、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数1乃至4のパーフロロアルキル基、炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、炭素数1乃至4のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基、ポリマー鎖であり;Aは、(i)単結合、(ii)置換基及び不飽和結合のうち1以上を有してもよい炭素数1乃至25の直鎖状、分岐状又は環状のアルキレン基、(iii)置換基を有してもよい炭素数6~15のアリーレン基、(iv)置換基を有してもよい炭素数2~15のヘテロアリーレン基、あるいは(v)-O-、-S-、-N(R14)-、-S(O)-、-C(O)-、-S(O)-、-P(R14)-、-(R14)P(O)-及び-Si(R1516)-の群から選択される官能基またはヘテロ元素である。ここで、R14~R16は、それぞれ独立して、炭素数1乃至6のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有してもよい炭素数7~12のアラルキル基、又は置換基を有してもよい炭素数6~10のアリール基である。)
 上記、一般式(5)又は(6)で表されるフェノール配位子における特定の各官能基は以下の例として挙げられる。
 R~R13で表される炭素数6乃至15のアリール基としては、例えば、フェニル基、α-ナフチル基及びβ-ナフチル基などが例示される。炭素数6乃至15のアリール基は後述する置換基を有してもよい。
 R、R、R10及びR13で表される炭素数4乃至15のヘテロアリール基としては、例えば、フリル基、チエニル基、ピロニル基、ベンゾフリル基、イゾベンゾフリル基、ベンゾチエニル基、インドリル基、イソインドリル基、カルバゾイル基、ピリジル基、キノリル基、イソキノリル基、ピラジル基及びフェロセニル基などが例示される。炭素数4乃至15のヘテロアリール基は後述する置換基を有してもよい。
 R、R、R10及びR13で表される炭素数3乃至15の環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、シクロドデシル基、ノルボルニル基、トリシクロ[6.2.1.02,7]-4-ウンデシル基などが例示される。炭素数3乃至15の環状アルキル基は後述する置換基を有してもよい。
 R、R、R11及びR12で表される炭素数1乃至8のアルキル基としては、例えば、メチル基、エチル基、n-プルピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基及びオクチル基などが例示される。
 R、R、R11及びR12で表される炭素数1乃至8のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシル基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペントキシ基、ヘキソキシ基、ヘプトキシ基及びオクトキシ基などが例示される。
 R、R、R11及びR12で表される炭素数1乃至4のパーフロロアルキル基としては、例えば、トリフロロメチル基、ペンタフロロエチル基、ヘプタフロロプロピル基及びノナフロロブチル基などが例示される。
 R、R、R11及びR12で表される炭素数7乃至12のアラルキル基としては、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、α-ナフチルメチル基及びβ-ナフチルメチル基などが例示される。炭素数7乃至12のアラルキル基は後述する置換基を有してもよい。
 R、R、R11及びR12で表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子などが例示される。
 R、R、R11及びR12で表されるオルガノシリル基としては、トリ置換シリル基が例示される。該トリ置換の置換基としては、炭素数1乃至6のアルキル基、炭素数6~18のアリール基及び炭素数7~19のアラルキルシリル基から選ばれる3つの置換基であり、これらは互いに同一であっても異なっていてもよい。
 ここで、炭素数1乃至6のアルキル基としては、例えば、メチル基、エチル基、イソプロピル基、2,3-ジメチル-2-ブチル基、ヘキシル基及びtert-ブチル基が挙げられる。炭素数6~18のアリール基としては、例えば、フェニル基及びナフチル基が挙げられる。炭素数7~19のアラルキル基としては、例えば、ベンジル基及びp-キシリル基が挙げられる。
 R、R、R11及びR12で表されるオルガノシリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、ジメチル(2,3-ジメチル-2-ブチル)シリル基、tert-ブチルジメチルシリル基及びジメチルヘキシルシリル基などのトリ-炭素数1乃至6のアルキルシリル基、ジメチルクミルシリル基などのジ-炭素数1乃至6のアルキル-炭素数6乃至18のアリールシリル基、tert-ブチルジフェニルシリル基及びジフェニルメチルシリル基などのジ-炭素数6乃至18のアリール-炭素数1乃至6のアルキルシリル基、トリフェニルシリル基などのトリ-炭素数6~18のアリールシリル基、トリベンジルシリル基及びトリ-p-キシリルシリル基などのトリ-炭素数7~19のアラルキルシリル基等のトリ置換シリル基などが例示される。
 R、R、R11及びR12で表される炭素数1乃至4のジアルキルアミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基及びジブチルアミノ基などが例示される。
 R、R、R11及びR12で表される炭素数1乃至4のチオアルコキシ基としては、例えば、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基及びtert-ブチルチオ基などが例示される。
 R、R、R11及びR12で表されるポリマー鎖としては、例えば、6,6-ナイロン鎖、ビニルポリマー鎖及びスチレンポリマー鎖などが例示される。
 ここでR~R13における置換基としては、例えば、メチル基、エチル基、n-プルピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基及びペンチル基、又はヘキシル基などの炭素数1乃至6のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基などの炭素数5乃至12の環状アルキル基;トリフロロメチル基、ペンタフロロエチル基、ヘプタフロロプロピル基及びノナフロロブチル基などの炭素数1乃至4のパーフロロアルキル基;メトキシ基、エトキシ基、n-プロポキシル基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基及びtert-ブトキシ基などの炭素数1乃至4のアルコキシ基;フッ素原子、塩素原子、臭素原子及びヨウ素原子などのハロゲン原子;ベンジル基、フェニルエチル基及びナフチルメチル基などの炭素数7乃至12のアラルキル基;トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、ジメチル(2,3-ジメチル-2-ブチル)シリル基、tert-ブチルジメチルシリル基及びジメチルヘキシルシリル基などのトリ-炭素数1乃至6アルキルシリル基;ジメチルアミノ基、ジエチルアミノ基及びジブチルアミノ基などの炭素数2乃至8のジアルキルアミノ基等が例示され、さらに6,6-ナイロン鎖、ビニルポリマー鎖及びスチレンポリマー鎖などのポリマー鎖が例示される。
 一般式(6)において、R又はR及び/又はR11又はR12は、構造エレメントAと一緒になって環状芳香族または非芳香族環を形成していてもよい。この場合、本発明に従って使用される一般式(6)で表されるビス(ジアリールフェノール)リガンドは三環式基本構造、例えば式(X)を有するアントラセン基本構造またはタイプ(Y)の基本構造を有する。
Figure JPOXMLDOC01-appb-C000026
(式(X)、(Y)中、R,R,R,R10,R12及びR13は、前記と同義である。)
 適当ならば、基本構造中にヘテロ原子を有するものを含めたこれらの三環式基本構造の更なる構造修飾は当業者に公知であり、本発明に従って使用され得るビス(ジアリールフェノール)リガンドのグループに属する。
 一般式(6)中のAは、(i)単結合、(ii)置換基及び不飽和結合のうち1以上を有してもよい炭素数1乃至25の直鎖状、分岐状又は環状のアルキレン基、(iii)置換基を有してもよい炭素数6~15のアリーレン基、(iv)置換基を有してもよい炭素数2~15のヘテロアリーレン基、あるいは(v)-O-、-S-、-N(R14)-、-S(O)-、-C(O)-、-S(O)-、-P(R14)-、-(R14)P(O)-及び-Si(R1516)-の群から選択される官能基またはヘテロ元素である。ここで、R14~R16は、それぞれ独立して、炭素数1乃至6のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有してもよい炭素数7~12のアラルキル基、又は置換基を有してもよい炭素数6~10のアリール基である。
 Aで表される(ii)炭素数1乃至25の直鎖状、分岐状もしくは環状のアルキレン基としては、例えばメチレン基、エチレン基、イソプロピル基、n-ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、ドデシレン基、ウンデシレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基、シクロオクチレン基、シクロデシレン基、シクロドデシレン基、ノルボルニレン基、トリシクロ[6.2.1.02,7]-4-ウンデシレン基が挙げられる。
 炭素数1乃至25の直鎖状、分岐状又は環状のアルキレン基は置換基及び不飽和結合のうち1以上を有してもよい。置換基としては前記R~R13における置換基で例示されたものと同様の置換基が挙げられる。
 Aで表される(iii)炭素数6~15のアリーレン基の例としては、例えば、フェニレン基、ナフチレン基及びアントラセニレン基などを挙げることができる。
 炭素数6~15のアリーレン基は置換基及び不飽和結合のうち1以上を有してもよい。置換基としては前記R~R13における置換基で例示されたものと同様の置換基が挙げられる。
 Aで表される(iv)炭素数2~15のヘテロアリーレン基の例としては、例えば、フリレン基、チエニレン基、ピロニレン基、ベンゾフリレン基、イゾベンゾフリレン基、ベンゾチエニレン基、インドリレン基、イソインドリレン基、カルバゾイレン基、ピリジレン基、キノリレン基、イソキノリレン基、ピラジレン基及びフェロセニレン基などが例示される。
 炭素数2~15のヘテロアリーレン基は置換基及び不飽和結合のうち1以上を有してもよい。置換基としては前記R~R13における置換基で例示されたものと同様の置換基が挙げられる。
 Aで表される(v)-O-、-S-、-N(R14)-、-S(O)-、-C(O)-、-S(O)-、-P(R14)-、-(R14)P(O)-及び-Si(R1516)-の群から選択される官能基またはヘテロ元素であってもよい。ここで、R14~R16は、それぞれ独立して炭素数1乃至6のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有してもよい炭素数7乃至12のアラルキル基及び置換基を有してもよい炭素数6乃至10のアリール基のうち1以上の基である。置換基としては前記R~R13における置換基で例示されたものと同様の置換基が挙げられる。ここで、Aとしては、-O-、-S-、-S(O)-、-S(O)-又は-Si(R1516)-が好ましい。
 R14~R16における炭素数1乃至6のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有してもよい炭素数7乃至12のアラルキル基及び置換基を有してもよい炭素数6乃至10のアリール基としては、前記した一般式(5)、(6)で表されるフェノール配位子において例示されたものと同様の基が挙げられる。
 Aが表す具体例としては、例えば以下のような構造が挙げられる。波線は各々本明細書開示の範囲内のように各配位子構造の残りに対する結合部位を示す。
Figure JPOXMLDOC01-appb-C000027
 上記で表されている構造1乃至44は、置換基を有していてもよく、ここで置換基としては、前記した一般式(5)、(6)で表されるフェノール配位子における炭素数6乃至15のアリール基で例示されたものと同様の置換基が挙げられる。
 一般式(5)のフェノール配位子は、例えば、日本国特開2002-212121号公報(特許文献8)に記載にされている[参照により、本明細書に組み込むものとする。]。
 一般式(6)のビス(ジアリールフェノール)類は、例えば、日本国特表2008-538101号公報(特許文献9)に記載にされている[参照により、本明細書に組み込むものとする。]。
 本発明における好ましいフェノール配位子としては、下記一般式(5-a)で表されるフェノール配位子及び下記一般式(6-a)で表されるビス(ジアリールフェノール)配位子から選ばれる一種のフェノール配位子である。
Figure JPOXMLDOC01-appb-C000028
(式(5-a)中、R1aは、置換基を有していてもよい炭素数6乃至15のアリール基、置換基を有していてもよい炭素数4乃至15のヘテロアリール基;R5aは、置換基を有していてもよい炭素数5乃至15の環状アルキル基であり;R、R、Rは、各々独立して、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数1乃至4のパーフロロアルキル基、炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、炭素数1乃至4のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基、ポリマー鎖である。)
Figure JPOXMLDOC01-appb-C000029
(式(6-a)中、R6a及びR10aは、各々独立して、置換基を有していてもよい炭素数6乃至15のアリール基、又は置換基を有していてもよい炭素数4乃至15のヘテロアリール基であり;R9a及びR13aは、置換基を有していてもよい炭素数5乃至15の環状アルキル基であり;R、R、R11及びR12は、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数1乃至4のパーフロロアルキル基、炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、炭素数1乃至4のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基、ポリマー鎖である。
 Aは、(i)単結合、(ii)置換基及び不飽和結合のうち1以上を有してもよい炭素数1乃至25の直鎖状、分岐状又は環状のアルキレン基、(iii)置換基を有してもよい炭素数6~15のアリーレン基、(iv)置換基を有してもよい炭素数2~15のヘテロアリーレン基、あるいは(v)-O-、-S-、-N(R14)-、-S(O)-、-C(O)-、-S(O)-、-P(R14)-、-(R14)P(O)-及び-Si(R1516)-の群から選択される官能基またはヘテロ元素である。ここで、R14~R16は、それぞれ独立して、炭素数1乃至6のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有してもよい炭素数7~12のアラルキル基、又は置換基を有してもよい炭素数6~10のアリール基である。)
 本発明において、好ましい一般式(5)で表されるフェノール配位子としては、例えば、2,6-ジフェニルフェノール、2,6-ジ(4-フロロフェニル)フェノール、2,6-ジ(3,4-ジフロロフェニル)フェノール、2,6-ジ(3,4,5-トリフロロフェニル)フェノール、2,6-ジフェニル-4-メチルフェノール、2,6-ジフェニル-3,5-ジメチルフェノール、2,6-ジ(2-メチルフェニル)-3,5-ジメチルフェノール、2,6-ジ(2-イソプロピルフェニル)-3,5-ジメチルフェノール、2,6-ジ(α-ナフチル)-3,5-ジメチルフェノール、3-フェニル-1,1’-ビナフチル-2-オール、3-(4-フロロフェニル)-1,1’-ビナフチル-2-オール及び1,3-ジフェニル-2-ナフトール、3,3’,5,5’-テトラフェニルビフェニル-4,4’ジオール)及び2-シクロアルキル-6-アリールフェノール類(一般式(5-a))等が挙げられる。
 本発明において、好ましい一般式(5-a)で表されるフェノール配位子(2-シクロアルキル-6-アリールフェノール類)としては、例えば以下のような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000030
 本発明において、好ましい一般式(6)で表されるビス(ジアリールフェノール)配位子としては、例えば、例えば以下のような構造及びビス(2-シクロアルキル-6-アリールフェノール類(一般式(6-a))等が挙げられる。(式中、Aは前記と同義である)
Figure JPOXMLDOC01-appb-C000031
 本発明において好ましい式(6-a)で表されるビス(ジアリールフェノール)配位子としては、例えば以下のような構造が挙げられる。(式中、Aは前記と同義である)
Figure JPOXMLDOC01-appb-C000032
 上記一般式(5)、(5-a)、(6)、(6-a)で表される各フェノール配位子は、公知の合成方法により合成でき、また一般に入手可能な化合物である。
 なお、本発明のアルミニウム触媒の配位子のひとつである2-シクロヘキシル-6-フェニルフェノールは、従来用いられてきた2,6-ジフェニルフェノールの前駆体であり、酸性触媒存在下、容易に、しかも安価に製造できる(日本国特開2009-269868号公報)。
 本発明のアルミニウム触媒は、上記した一般式(7)、(8)、(9)及び(10)で表されるアルミニウム化合物から選ばれる少なくとも1種と、上記した一般式(5)、(5-a)、(6)及び(6-a)で表されるフェノール配位子から選ばれる少なくとも1種とを反応させることにより得られる。
 その際、アルミニウム化合物に対し、フェノール配位子を、好ましくは1.0~5等量、より好ましくは1.4~3.5等量の割合(アルミニウム原子:化合物モル比)で反応させることが好ましい。
 前記反応は、不活性ガス雰囲気中又は不活性溶媒存在下で行うことができる。
 不活性ガスとしては、例えば窒素、アルゴン、その他希ガス類等を用いることが好ましい。
 不活性溶媒としては、例えば、脂肪族炭化水素(ヘキサン、ヘプタン及びオクタンなど)、脂環式炭化水素(シクロヘキサン及びメチルシクロヘキサンなど)、芳香族炭化水素(ベンゼン、トルエン及びキシレンなど)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、メチルtert-ブチルエーテル、テトラヒドロフラン、ジオキサン及びジオキソランなど)、ハロゲン化炭化水素(ジクロロメタン、ジクロロエタン及びクロロベンゼン)等を挙げることができる。これらのうちで好ましくは、トルエン及びヘプタン等の有機溶媒である。これら溶媒は、予め乾燥されたものか、または無水溶媒を用いることが好ましい。
 また、前記溶媒の使用量(L)は、フェノール配位子(kg)に対して、好ましくは1~10000倍容量〔L/kg〕、より好ましくは20~400倍容量〔L/kg〕の範囲である。なお、一般式(9)及び(10)で表されるアルミノキサンの重合度は2以上が好ましい。
 反応の温度は、約-60~100℃程度の範囲とすることが好ましく、約-30~50℃程度の範囲とすることがより好ましく、約-10~30℃程度とすることが特に好ましい。前記の温度を保ちながら好ましくは約0.25~30時間、より好ましくは約0.5~10時間反応させることによって、アルミニウム触媒を円滑に製造することができる。
 本発明に係るアルミニウム触媒は、分子内反応、特に分子内環化反応を行うにあたり触媒として優れた効果を有する。
 本発明に係るアルミニウム触媒は、光学活性体のシトロネラールを環化反応させ、光学活性体のイソプレゴールを合成する反応を行うにあたり触媒として使用することができる。
 本発明では、前記した触媒の存在下に光学活性シトロネラールを閉環反応させることにより、光学活性イソプレゴールが得られる。
 原料化合物である光学活性シトロネラールは工程Aによって製造されたものを使用する。
 工程Bにおける光学活性シトロネラールの閉環反応に使用するアルミニウム触媒の量は、シトロネラールに対して約0.05~10モル%程度の範囲とすることが好ましく、約0.1~3モル%程度の範囲とすることがより好ましい。
 本発明における光学活性シトロネラールの閉環反応に用いるアルミニウム触媒は、a)予め、反応系中において一般式(7)、(8)、(9)及び(10)で表されるアルミニウム化合物から選ばれる少なくとも1種と、一般式(5)、(5-a)、(6)及び(6-a)で表されるフェノール配位子から選ばれる少なくとも1種とを混合してアルミニウム触媒を調製した後、光学活性シトロネラールを仕込む方法、又は、b)予め、該アルミニウム化合物から選ばれる少なくとも1種と、該フェノール配位子から選ばれる少なくとも一種とを混合して調製したアルミニウム触媒を、閉環反応時に、光学活性シトロネラールとそれぞれ単独に仕込む方法、の何れかの方法によっても同等の結果が得られる。
 光学活性シトロネラールの閉環反応の温度は、約-60~60℃程度の範囲とすることが好ましく、約-30~40℃程度の範囲とすることがより好ましく、約-20~20℃程度とすることが特に好ましい。前記の温度を保ちながら好ましくは約0.25~30時間、より好ましくは約0.5~20時間反応させることによって、式(3)で表される光学活性イソプレゴールを円滑に製造することができる。
 本発明における光学活性シトロネラールの閉環反応は、無溶媒条件下、不活性溶媒存在下において、窒素ガス又はアルゴンガスなどのような不活性ガス雰囲気下で行うことが、閉環反応の円滑な進行のために好ましい。
 使用される溶媒としては、本反応を著しく阻害しない溶媒であればよく、特に限定するものではないが、例えば脂肪族炭化水素(ヘキサン、ヘプタン及びオクタンなど)、脂環式炭化水素(シクロヘキサン及びメチルシクロヘキサンなど)、芳香族炭化水素(ベンゼン、トルエン及びキシレンなど)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、メチルtert-ブチルエーテル、テトラヒドロフラン、ジオキサン及びジオキソランなど)又はハロゲン化炭化水素(ジクロロメタン、ジクロロエタン及びクロロベンゼン)等を挙げることができる。これらのうちで好ましくは、トルエン又はヘプタン等の有機溶媒である。これら溶媒は、予め乾燥されたものかまたは無水溶媒を用いることが好ましい。
 これら溶媒の使用量は、光学シトロネラールに対して約0~20倍容量とすることが好ましく、0.5~7倍量の範囲とすることがより好ましい。
 また、上記閉環反応の際に、添加物を加えてもよい。添加物の具体例としては、例えば、鉱酸(塩酸及び硫酸など)、有機酸とそのエステル化合物(ギ酸、酢酸、ピルビン酸、プロピオン酸、シトロネリル酸、ゲラニル酸及びネリル酸など、若しくはそのアルキル・アリールエステル)、シトロネラール以外のアルデヒド(クロラール、アセトアルデヒド、p-ブロモベンズアルデヒド、エチルグリオキシレートなど)、有機酸無水物(無水酢酸、無水プロピオン酸、無水デカン酸、無水マレイン酸、無水シトロネリル酸、無水コハク酸及び無水ピバロイル酸など)、ケトン(パーフルオロアセトン、1,1,1-トリフルオロアセトンなど)、酸ハライド(酢酸クロライド、プロピオン酸クロライド、デカン酸クロライドなど)、ビニルエーテル(メチルビニルエーテル、エチルビニルエーテルなど)、又はエポキシ化合物(α-ピネンオキシド、イソブチレンオキシド、イソプレゴールオキシドなど)を挙げることができる。
 また、添加物である酸とそのエステル化合物、シトロネラール以外のアルデヒド、有機酸無水物、ケトン、酸ハライド、ビニルエーテル及びエポキシ化合物は、アルミニウム触媒が調製された後であれば、触媒層あるいはシトロネラール層に添加して、シトロネラールの閉環反応を行うことができる。
 これら添加する酸とそのエステル化合物類、アルデヒド類、有機酸無水物類、ケトン類、酸ハライド、ビニルエーテル及びエポキシ化合物の使用量は、閉環触媒のアルミニウム(重量)に対して10~100(重量%)とすることが好ましく、20~60(重量%)の範囲とすることがより好ましい。
 反応の終了後は、通常の後処理を行うことができる。また、スキーム1の工程Bによって得られた光学活性イソプレゴールの精製は、単に蒸留による処理によって得るか、又はスキーム1の工程Dの深冷晶析によって、高純度の光学活性イソプレゴールを得ることができる。
 全ての有機アルミニウム化合物の配位子においては、触媒失活後に回収することにより再び触媒へと再利用することが出来る。つまり蒸留処理後の残留物をそのまま、あるいは酸またはアルカリにて通常に処理を行い、アルミニウムを含む不純物などを除去し、その後、晶析、蒸留などを行うことでヒドロキシ化合物をフェノール配位子として再利用することができる。
 一方、本発明のアルミニウム触媒において、溶媒に溶けにくいアルミニウム触媒については、反応終了後の溶液を濾過もしくはデカンテーション等して生成したイソプレゴールを除いた後、さらにシトロネラールを投入し連続して閉環反応を行うことができる。又は、閉環反応終了後ろ過して取り除き、そのまま、次の閉環反応に使用することもできる。
 また、部分的にアルミニウム触媒が失活した場合は、反応溶液に失活した分の触媒を加えて次の閉環反応に使用することができる。
<工程D>
 本発明のスキーム1に示した工程Dは工程Bで得られた光学活性イソプレゴールを、低温で晶析(深冷晶析)することにより成り立つ。これにより、より高い化学純度、光学純度の光学活性イソプレゴールを製造することが可能となる。
Figure JPOXMLDOC01-appb-C000033
<工程D:光学活性イソプレゴールの深冷晶析>
 光学活性イソプレゴールの深冷晶析は、例えば、日本国特許第3241542号公報に記載にされている[参照により、本明細書に組み込むものとする。]。
 工程Bで得られた光学活性イソプレゴールを有機溶媒中に溶かした溶液を低温で晶析する(深冷晶析)ことにより化学純度及び光学純度がともに99.7%以上の光学活性イソプレゴールが得られる。
 光学活性イソプレゴールの深冷晶析の温度は、約-60~-20℃程度の範囲とすることが好ましく、約-50~-25℃程度の範囲とすることが特に好ましい。前記の温度を徐々に下げながら、化学純度及び光学純度がともに99.7%以上の光学活性イソプレゴールの結晶を析出させ攪拌し熟成する。結晶の析出を速くするために化学純度及び光学純度がともに99.7%以上の光学活性イソプレゴールの結晶を少量加えることもできる。
 晶析時間は好ましくは約1~30時間、より好ましくは約10~20時間反応させる。その後、析出した高純度イソプレゴールを遠心分離機によりろ過することによって、スキーム1の工程Dで表される高純度の光学活性イソプレゴールを製造することができる。
 使用される溶媒としては、特に限定するものではないが、例えば脂肪族炭化水素(ヘキサン、ヘプタン、オクタン及び石油エーテルなど)、脂環式炭化水素(シクロヘキサン及びメチルシクロヘキサンなど)、芳香族炭化水素(ベンゼン、トルエン及びキシレンなど)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、メチルtert-ブチルエーテル、テトラヒドロフラン、ジオキサン及びジオキアオランなど)、アルコール(メタノール、エタノール、イソプロパノールなど)及びケトン(アセトン、メチルエチルケトンなど)、あるいはそれらの混合溶媒が挙げられる。これらのうちで好ましくは、ヘプタン、石油エーテル、アセトン等の有機溶媒である。これら溶媒は、予め乾燥されたものかまたは無水溶媒を用いることが好ましい。
 これら溶媒の使用量(L)は、イソプレゴール(kg)に対して約0.5~5倍容量〔L/kg〕とすることが好ましく、1~3倍容量〔L/kg〕の範囲とすることがより好ましい。
 また、無臭で清涼感のみを持つ高純度光学活性イソプレゴールは、理論段数5~50段の精密蒸留等で製品化可能である。あるいは、深冷晶析の前に光学活性イソプレゴールを精密蒸留する場合には、深冷後は単蒸留するのみで、無臭で清涼感のみを持つ高純度光学活性イソプレゴールを製造可能である。
<工程C及び工程E>
 本発明のスキーム1に示した工程C及び工程Eは、工程Bまたは工程Dで得られた光学活性イソプレゴールを、触媒を用いて水素化することにより、光学活性メントールを製造することにより成り立つ。
Figure JPOXMLDOC01-appb-C000034
<工程C及び工程E:光学活性イソプレゴールの水素化反応>
 光学活性イソプレゴールの炭素―炭素二重結合部分を水素化する方法は、通常の方法でできる。すなわち、ラネーニッケル、Pd/C等の水素化能力のある触媒を、オートクレーブ中に投入し、光学活性イソプレゴールを無溶媒又は溶媒存在下、水素圧をかけて水素化を行い光学活性メントールを製造できる。
 光学活性イソプレゴールの水素化の温度は、約0~80℃程度の範囲とすることが好ましく、約20~60℃程度の範囲とすることが特に好ましい。反応時間は好ましくは約1~30時間、より好ましくは約3~15時間反応させる。その後、光学活性メントールをろ過し、蒸留することによって、光学活性メントールを製造することができる。
 使用される溶媒としては、特に限定するものではないが、例えば脂肪族炭化水素(ヘキサン、ヘプタン、オクタン及び石油エーテルなど)、脂環式炭化水素(シクロヘキサン及びメチルシクロヘキサンなど)、芳香族炭化水素(ベンゼン、トルエン及びキシレンなど)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、メチルtert-ブチルエーテル、テトラヒドロフラン、ジオキサン及びジオキアオランなど)、アルコール(メタノール、エタノール、イソプロパノールなど)及びケトン(アセトン、メチルエチルケトンなど)、あるいはそれらの混合溶媒が挙げられる。これらのうちで好ましくは、ヘプタン、石油エーテル、アセトン等の有機溶媒である。これら溶媒は、予め乾燥されたものかまたは無水溶媒を用いることが好ましい。
 これら溶媒の使用量(L)は、光学活性メントール(kg)に対して約0~5倍容量〔L/kg〕とすることが好ましく、0~3倍容量〔L/kg〕の範囲とすることがより好ましい。
 以下、本発明を比較例および実施例を用いて詳細に説明するが、本発明はこれらにより何ら限定されるものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。
 合成例、実施例中での生成物の測定は、次の機器装置類を用いて行った。
核磁気共鳴スペクトル(H-NMR):Oxford 300MHz FT-NMR(300MHz、溶媒CDCl)(バリアン社製)
ガスクロマトグラフ:島津製作所社製 GC-2010ガスクロマトグラフ
添加率測定:Agilent社製 DB-WAX(0.25mm×30m)
光学純度測定:スペルコ社製 beta-DEX-225(0.25mm×30m)
検出器:FID
(実施例1)ゲラニオールの不斉異性化
 アルゴン気流中にて、一般式(14)で表される触媒[A]:RuCl[(R)-DBAPE][(S)-TolBINAP];Ar=4-CH,R=n-C,R’=C(3.2mg,0.0029mmol)、ゲラニオール(89.3mg,0.579mmol)、エタノール(2.6mL),46.7mM-KOH(0.31mL,0.015mmol)を加え、25℃で1時間撹拌した。
 反応終了後、溶液を減圧下濃縮し、残渣をシリカゲルショートパスカラムで精製することにより、(R)-シトロネラール(52.9mg,58%)を得た。ガスクロマトグラフィー(カラム:BetaDEX225(0.25mm×30m,DF=0.25))による分析を行った結果、このものの光学純度は99%e.e.以上であった。
(実施例2)ネロールの不斉異性化
 実施例1において使用した触媒、基質と触媒のモル比、反応温度、反応時間を表1に示したように変更した以外は、原料としてネロールを用いて実施例1と同様の方法で反応を実施した。(S)-シトロネラールの収率は、GC収率83%であった.実施例1と同様に、反応終了後、溶媒を減圧下濃縮し、残渣をガスクロマトグラフィーにて測定した。光学純度は99%e.e.であった。
(実施例3)ゲラニオールの不斉異性化
 3L反応フラスコに、実施例1で用いた触媒[A](3.2g,2.9mmol)、ゲラニオール(89.3g,0.579mol)、エタノール(2.6L),46.7mM-KOH(0.31L,0.015mol)を加え、25℃で1時間撹拌した。
 反応終了後、溶液を減圧蒸留(69~71℃、0.66kPa)することにより、(R)-シトロネラール(52.9g,58%)を得た。ガスクロマトグラフィー(カラム:BetaDEX225(0.25mm×30m,DF=0.25))による分析を行った結果、このものの光学純度は99%e.e.以上であった。この反応を4回行った。
(実施例4)アルミニウム触媒の調製及びl-イソプレゴールの合成
 1L反応フラスコに2,6-ジフェニルフェノール3.621g(14.7mmol)を入れ、窒素置換した後、窒素雰囲気下にて攪拌しつつトルエン96mL、次いでトリエチルアルミニウム1.0mol/Lトルエン溶液4.54mL(4.54mmol)を添加した。室温にて1時間攪拌後に系内温度を0~10℃に冷却し、d-シトロネラール100.0g(648.3mmol、光学純度97.8%e.e.)を滴下し、0~10℃で終夜撹拌した。反応終了後、この溶液サンプルに水を加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率99.5%、イソプレゴール選択率は98.2%で、l-n-イソプレゴールとその他の異性体の比率は99.5:0.5であった。
(実施例5)アルミニウム触媒の調製及びl-イソプレゴールの合成
 窒素雰囲気、200mL反応フラスコに2-シクロヘキシル-6-フェニルフェノール0.34g(1.36mmol、三光株式会社製、もしくは日本国特開2009-269868号公報に記載の方法に従い合成したもの(以下同様))を入れ、窒素置換した後、トルエン4.9mL、トリエチルアルミニウム・トルエン溶液(1.0mol/L)0.39mL(0.389mmol)を順次加え、室温にて2時間撹拌した後、溶媒を留去して無色~薄オレンジ色のアモルファス状の黄色固体0.40gを得た。この得られた固体を、減圧濃縮により乾固させて測定したH-NMRスペクトルを図1に、低磁場側を拡大したものを図2に示す。また、2-シクロヘキシル-6-フェニルフェノールのH-NMRスペクトルを図3に、低磁場側を拡大したものを図4に示す。
 上記で得られた固体234mgを-15~-10℃に冷却したd-シトロネラール2.00g(13mmol)に添加し、0~5℃で1時間撹拌した。反応終了後、水2mLとトルエン2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率99.1%、l-イソプレゴール選択率は96.6%で、l-イソプレゴールとその他の異性体の比率は99.5:0.5であった。
(実施例6)アルミニウム触媒の調製及びl-イソプレゴールの合成
 50mlシュレンク管に2-シクロヘキシル-6-フェニルフェノール344mg(1.4mmol)を入れ、窒素置換した後、トルエン1.6mL、トリエチルアルミニウム・トルエン溶液(1.0mol/L)0.4mL(0.40mmol)を順次加え、室温にて2時間撹拌して触媒溶液を得た。得られた触媒溶液を-15~-10℃に冷却した後、d-シトロネラール2.00g(13mmol)を滴下し、0~5℃で1時間撹拌した。反応終了後、水2mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率99.8%、l-イソプレゴール選択率は86.3%で、l-イソプレゴールとその他の異性体の比率は99.6:0.4であった。
(実施例7~12)アルミニウム触媒によるl-イソプレゴールの合成
 ヒドロキシ化合物として、種々のフェノール類を用いた結果を表1に示す。反応条件は50mLシュレンク管にフェノール類を、実施例7~11については1.7mmol、実施例12については0.87mmolを入れ、窒素置換した後、溶媒としてトルエンを合計3mL、トリエチルアルミニウム・トルエン溶液0.58mL(0.58mmol)を順次加え、室温にて2時間撹拌し触媒溶液を得た。触媒溶液を-10℃に冷却した後、d-シトロネラール3.0g(19mmol)を滴下し、1時間撹拌した。反応終了後、水2mLを加えて、有機層をガスクロマトグラフィーで分析した。
 なお、各フェノール類は、実施例7~12は日本国特開2009-269868号公報に記載の方法に従い2-シクロヘキシル-6-フェニルフェノールと同様に合成した。
 表1中、転化率はシトロネラールの転化率を、イソプレゴール選択性は反応したシトロネラールのイソプレゴールへの選択率を、n-イソプレゴール選択性は、生成したイソプレゴール中のn-イソプレゴールの選択率を、エステル選択率はシトロネラールの二量化エステル(シトロネリルシトロネレート)への選択率を、それぞれ表す。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-T000037
(実施例13~18)アルミニウム触媒によるl-イソプレゴールの合成
 50mLシュレンク管に2-シクロヘキシル-6-フェニルフェノール269mg(1.1mmol)を入れ、窒素置換した後、トルエン4.7mL、トリエチルアルミニウム・トルエン溶液(1.0mol/L)0.3mL(0.32mmol)を順次加え、室温にて2時間撹拌して触媒溶液を得た。得られた触媒溶液を-15~-10℃に冷却した後、表2に示す各添加物を0.5重量%加えたd-シトロネラール5.00g(32mmol)を滴下し、3時間撹拌した。反応終了後、水2mLを加えて、有機層をガスクロマトグラフィーで分析した。結果を表2に示す。
 表2中、転化率はシトロネラールの転化率を、イソプレゴール選択性は反応したシトロネラールのイソプレゴールへの選択率を、n-イソプレゴール選択性は、生成したイソプレゴール中のn-イソプレゴールの選択率を、エステル選択率はシトロネラールの二量化エステル(シトロネリルシトロネレート)への選択率それぞれ表す。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-T000039
(実施例19)l-イソプレゴールの合成と配位子リサイクル
 1L反応フラスコに2-シクロヘキシル-6-フェニルフェノール10.14g(40.2mmol)を入れ、窒素置換した後、窒素雰囲気下にて攪拌しつつトルエン87mL、次いでトリエチルアルミニウム・1.0mol/Lトルエン溶液13.0mL(13.0mmol)を添加した。室温にて1時間攪拌後に系内温度を-10~5℃に冷却し、d-シトロネラール100.0g(648.3mmol、光学純度97.8%e.e.)とエチルグリオキシレートポリマー・47重量%トルエン溶液0.33mLの混合溶液を滴下し、-10~5℃で終夜撹拌した。反応終了後、トルエンを減圧除去し、溶液を単蒸留(バス温85℃、減圧度0.5mmHg、塔頂58~61℃)して目的のl-n-イソプレゴールを94.5g得た。ガスクロマトグラフィーで分析した結果、純度97.8%、l-n-イソプレゴールとその他の異性体の比率は99.6:0.4であった。蒸留残渣をトルエンに溶解させ、希硫酸で洗浄後に油層を減圧濃縮し、粘性のある液体を得た。これを単蒸留(101~120℃、0.04kPa)し、2-シクロヘキシル-6-フェニルフェノール8.02gを得た。ガスクロマトグラフィーで分析した結果、純度98.2%であった。
 50mLシュレンクに、得られた2-シクロヘキシル-6-フェニルフェノール324mg(1.284mmol)を入れ、窒素置換した後、窒素雰囲気下にて攪拌しつつトルエン2.6mL、次いでトリエチルアルミニウム・1.0mol/Lトルエン溶液0.39mL(0.39mmol)を添加した。室温にて1時間攪拌後に系内温度を-10~5℃に冷却し、d-シトロネラール3.00g(19.45mmol、光学純度97.8%e.e.)とエチルグリオキシレートポリマー47重量%トルエン溶液27μLの混合溶液を滴下し、-10~5℃で終夜撹拌した。反応終了後、この溶液に水3mLを加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率99.7%、イソプレゴール選択率は98.0%で、l-n-イソプレゴールとその他の異性体の比率は99.6:0.4であった。
(実施例20)l-イソプレゴールの合成
 1L反応フラスコに2-シクロヘキシル-6-フェニルフェノール3.56g(14.7mmol)を入れ、窒素置換した後、窒素雰囲気下にて攪拌しつつトルエン96mL、次いでトリエチルアルミニウム・1.0mol/Lトルエン溶液4.54mL(4.54mmol)を添加した。室温にて1時間攪拌後に系内温度を-10~5℃に冷却し、実験項3で得られたd-シトロネラール100.0g(648.3mmol、光学純度99%e.e.)とエチルグリオキシレートポリマー・47重量%トルエン溶液0.33mLの混合溶液を滴下し、-10~5℃で終夜撹拌した。反応終了後、この溶液サンプルに水を加えて、有機層をガスクロマトグラフィーで分析した結果、基質転化率99.5%、イソプレゴール選択率は98.2%で、光学純度99%e.e.であった。l-n-イソプレゴールとその他の異性体の比率は99.7:0.3であった。トルエン減圧溜去後に単蒸留し(57~61℃、0.053~0.067kPa)目的のl-n-イソプレゴールを95.8g得た。ガスクロマトグラフィーで分析した結果、純度97.6%、l-n-イソプレゴールとその他の異性体の比率は99.7:0.3であった。この反応を2回行った。
(比較例1~18)アルミニウム触媒によるl-イソプレゴールの合成
 ヒドロキシ化合物として、種々のフェノール類を用いた結果を表3及び表4に示す。反応条件は50mLシュレンク管にフェノール類を所定量(2.0mmol)入れ、窒素置換した後、溶媒としてトルエンを合計3mL、トリエチルアルミニウム・トルエン溶液0.58mL(0.58mmol)を順次加え、室温にて2時間撹拌し触媒溶液を得た。触媒溶液を所定温度に冷却した後、d-シトロネラール3.0g(19mmol)を滴下し、所定の温度で1時間撹拌した。反応終了後、水2mLを加えて、有機層をガスクロマトグラフィーで分析した。
 なお、各フェノール類は、比較例1~15、17、18はAldrich社製、比較例16はBepharm社製である。
 表3及び表4中、転化率はシトロネラールの転化率を、イソプレゴール選択性は反応したシトロネラールのイソプレゴールへの選択率を、n-イソプレゴール選択性は、生成したイソプレゴール中のn-イソプレゴールの選択率を、エステル選択率はシトロネラールの二量化エステル(シトロネリルシトロネレート)への選択率それぞれ表す。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
(実施例21)高純度l-イソプレゴールの水素化反応、高純度l-メントールの合成
 500mLのオートクレーブに、窒素雰囲気下、実施例20で得られたl-イソプレゴール100.0g(0.65mol)と、ラネーニッケル0.4gを投入し、水素圧2.5MPa、70℃で10時間水素化を行った。反応液をろ過し、蒸留(bp212℃)をすることによってl-メントール94.0g(0.60mol、99%e.e.)を得た。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2012年11月15日出願の日本特許出願(特願2012-251301)及び2013年3月6日出願の日本特許出願(特願2013-044065)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明において用いられる光学活性シトロネラールは、光学活性ルテニウム触媒を用いてゲラニオール及び/又はネロールを不斉異性化することにより製造することができる。
 また、本発明において用いられるシトロネラールの閉環反応触媒は、アルキルアルミニウム化合物と特定のアルコール類を混合するだけで、シトロネラール、及び光学活性シトロネラールを簡便に閉環し、高いn-選択性のイソプレゴール、及び光学活性イソプレゴールを製造することができる。
 得られた光学活性イソプレゴールを深冷晶析して高純度の光学活性イソプレゴール、又は、深冷晶析しない光学活性イソプレゴールを通常用いられる炭素-炭素二重結合の水素化触媒を用いて水素化し、光学活性メントールを製造することができる。
 以上のように、本発明の光学活性メントールの製造方法は、非常に短い工程で成り立っており、すべての工程が触媒反応の工程で成り立っている。従って、この製造方法は、環境を汚染する廃棄物が少なく、製造経費も節約できる。

Claims (11)

  1.  下記一般式(1)で表される化合物を、ルテニウム触媒と塩基の存在下に不斉異性化することにより、下記一般式(2)で表される光学活性体シトロネラールを得る工程、前記一般式(2)で表される光学活性体シトロネラールを、アルミニウム触媒の存在下、選択的に閉環させる工程を含む、下記一般式(3)で表される光学活性イソプレゴールの製造方法であって、
     前記アルミニウム触媒は、下記一般式(5)で表されるヒドロキシ化合物、又は、下記一般式(6)で表されるヒドロキシ化合物を、下記一般式(7)で表されるアルキルアルミニウム化合物、下記一般式(8)で表されるヒドリドアルミニウム化合物、下記一般式(9)で表される鎖状アルミノキサン類、及び下記一般式(10)で表される環状アルミノキサン類、から選ばれる少なくとも1種のアルミニウム化合物と反応させて得られるものである、光学活性イソプレゴールの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、波線は二重結合の(E)体及び/又は(Z)体であることを示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、*は、不斉炭素原子を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、*は、不斉炭素原子を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(5)中、R及びRは、各々独立して、置換基を有していてもよい炭素数6乃至15のアリール基、置換基を有していてもよい炭素数4乃至15のヘテロアリール基、又は置換基を有していてもよい炭素数3乃至15の環状アルキル基であり;R、R、Rは、各々独立して、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数1乃至4のパーフロロアルキル基、炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、炭素数1乃至4のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基、ポリマー鎖である。)
    Figure JPOXMLDOC01-appb-C000005
    (式(6)中、R、R、R10及びR13は、各々独立して、置換基を有していてもよい炭素数6乃至15のアリール基、置換基を有していてもよい炭素数4乃至15のヘテロアリール基、置換基を有していてもよい炭素数3乃至15の環状アルキル基であり;R、R、R11及びR12は、各々独立して、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数1乃至4のパーフロロアルキル基、炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、炭素数1乃至4のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基、又はポリマー鎖である。
     Aは、(i)単結合、(ii)置換基及び不飽和結合のうち1以上を有してもよい炭素数1乃至25の直鎖状、分岐状又は環状のアルキレン基、(iii)置換基を有してもよい炭素数6~15のアリーレン基、(iv)置換基を有してもよい炭素数2~15のヘテロアリーレン基、あるいは(v)-O-、-S-、-N(R14)-、-S(O)-、-C(O)-、-S(O)-、-P(R14)-、-(R14)P(O)-及び-Si(R1516)-の群から選択される官能基またはヘテロ元素である。ここで、R14~R16は、それぞれ独立して、炭素数1乃至6のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有してもよい炭素数7~12のアラルキル基、又は置換基を有してもよい炭素数6~10のアリール基である。)
     AlH(Lg)3-k   (7)
    (式(7)中、Alはアルミニウムであり、Lgは炭素数1乃至8の分岐状もしくは直鎖状のアルキル基、炭素数5乃至8の環状アルキル基、または置換基を有していてもよい炭素数7乃至12のアラルキル基であり、kは0乃至3の整数である。)
     MAlH   (8)
    (式(8)中、Alはアルミニウムであり、Mはリチウム、ナトリウム又はカリウムである。)
    Figure JPOXMLDOC01-appb-C000006
    (式(9)中、Alはアルミニウムであり、R17は炭素数1乃至8の分岐状もしくは直鎖状のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有していてもよい炭素数7乃至12のアラルキル基であり、複数のR17はそれぞれ同一であっても異なっていてもよく、lは0~40の整数である。)
    Figure JPOXMLDOC01-appb-C000007
    (式(10)中、Alはアルミニウムであり、R18は炭素数1乃至8の分岐状若しくは直鎖状のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有していてもよい炭素数7乃至12のアラルキル基であり;jは0~40の整数である。)
  2.  前記一般式(5)で表されるヒドロキシ化合物が、下記一般式(5-a)で表されるヒドロキシ化合物である請求項1記載の光学活性イソプレゴールの製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (式(5-a)中、R1aは、置換基を有していてもよい炭素数6乃至15のアリール基、置換基を有していてもよい炭素数4乃至15のヘテロアリール基であり、R5aは、置換基を有していてもよい炭素数5乃至15の環状アルキル基であり、R、R、Rは、各々独立して、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数1乃至4のパーフロロアルキル基、炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、炭素数1乃至4のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基、又はポリマー鎖である。)
  3.  前記一般式(6)で表されるヒドロキシ化合物が、下記一般式(6-a)で表されるヒドロキシ化合物である請求項1記載の光学活性イソプレゴールの製造方法。
    Figure JPOXMLDOC01-appb-C000009
    (式(6-a)中、R6a及びR10aは、各々独立して、置換基を有していてもよい炭素数6乃至15のアリール基、又は置換基を有していてもよい炭素数4乃至15のヘテロアリール基であり、R9a及びR13aは、置換基を有していてもよい炭素数5乃至15の環状アルキル基であり、R、R、R11及びR12は、各々独立して、水素原子、炭素数1乃至8のアルキル基、炭素数1乃至8のアルコキシ基、置換基を有していてもよい炭素数6乃至15のアリール基、炭素数1乃至4のパーフロロアルキル基、炭素数7乃至12のアラルキル基、ハロゲン原子、オルガノシリル基、炭素数1乃至4のジアルキルアミノ基、炭素数1乃至4のチオアルコキシ基、ニトロ基、又はポリマー鎖である。
     Aは、(i)単結合、(ii)置換基及び不飽和結合のうち1以上を有してもよい炭素数1乃至25の直鎖状、分岐状又は環状のアルキレン基、(iii)置換基を有してもよい炭素数6~15のアリーレン基、(iv)置換基を有してもよい炭素数2~15のヘテロアリーレン基、あるいは(v)-O-、-S-、-N(R14)-、-S(O)-、-C(O)-、-S(O)-、-P(R14)-、-(R14)P(O)-及び-Si(R1516)-の群から選択される官能基またはヘテロ元素である。ここで、R14~R16は、それぞれ独立して、炭素数1乃至6のアルキル基、炭素数5乃至8の環状アルキル基、置換基を有してもよい炭素数7~12のアラルキル基、又は置換基を有してもよい炭素数6~10のアリール基である。)
  4.  前記閉環反応を、下記I及びIIのうち少なくとも一方の化合物の存在下で行う請求項1乃至3のいずれか1項に記載の光学活性イソプレゴールの製造方法。
    I.少なくとも1種の酸
    II.シトロネラール以外のアルデヒド、酸無水物、ケトン、酸ハライド、エポキシ化合物及びビニルエーテルを含む郡から選択される少なくとも1種の化合物
  5.  前記ルテニウム触媒が、下記一般式(11)で表されるルテニウム化合物である、請求項1乃至4のいずれか1項に記載の光学活性イソプレゴールの製造方法。
    [Ru     (11)
    (式中、Lは、光学活性ホスフィン配位子であり、Wは、水素原子、ハロゲン原子、アシルオキシ基、アリール基、ジエン又はアニオンであり、Uは、水素原子、ハロゲン原子、アシルオキシ基、アリール基、ジエン、アニオン又はL以外の配位子であり、Zは、アニオン、アミン又は光学活性含窒素化合物であり、m、n及びrは各々独立して1~5の整数であり、p、q及びsは各々独立して0~5の整数であり、p+q+sは1以上である。)
  6.  前記塩基が、アルカリ金属又はアルカリ土類金属の塩若しくは四級アンモニウム塩である請求項1乃至5のいずれか1項に記載の光学活性イソプレゴールの製造方法。
  7.  請求項1乃至6のいずれか1項に記載の方法により光学活性イソプレゴールを得る工程、及び得られた光学活性イソプレゴールに水素添加する工程を含む光学活性メントールの製造方法。
  8.  以下の工程を含む光学活性メントールの製造方法。
    A-1)ゲラニオール又はネロールの不斉異性化により光学活性シトロネラールを得る。
    B-1)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
    C-1)光学活性イソプレゴールを水素化し光学活性メントールを得る。
  9.  以下の工程を含む光学活性メントールの製造方法。
    A-2)ゲラニオール又はネロールの不斉異性化により光学活性シトロネラールを得る。
    B-2)酸性触媒による光学活性シトロネラールの閉環反応によって光学活性イソプレゴールを得る。
    D-2)光学活性イソプレゴールを深冷によって再結晶を行いさらに高い純度のイソプレゴールを得る。
    E-2)工程D-2で得た光学活性イソプレゴールを水素化し光学活性メントールを得る。
  10.  以下の工程を含む光学活性メントールの製造方法。
    A-3)ゲラニオール又はネロールの不斉異性化によりd-シトロネラールを得る。
    B-3)酸性触媒によるd-シトロネラールの閉環反応によってl-イソプレゴールを得る。
    C-3)l-イソプレゴールを水素化しl-メントールを得る。
  11.  以下の工程を含む光学活性メントールの製造方法。
    A-4)ゲラニオール又はネロールの不斉異性化によりd-シトロネラールを得る。
    B-4)酸性触媒によるd-シトロネラールの閉環反応によってl-イソプレゴールを得る。
    D-4)l-イソプレゴールを深冷によって再結晶を行いさらに高い純度の1-イソプレゴールを得る。
    E-4)工程D-4で得たl-イソプレゴールを水素化しl-メントールを得る。
PCT/JP2013/080803 2012-11-15 2013-11-14 光学活性イソプレゴールおよび光学活性メントールの製造方法 WO2014077323A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/442,873 US20150329452A1 (en) 2012-11-15 2013-11-14 Method for producing optically active isopulegol and optically active menthol
JP2014547034A JPWO2014077323A1 (ja) 2012-11-15 2013-11-14 光学活性イソプレゴールおよび光学活性メントールの製造方法
EP13854981.1A EP2921228A1 (en) 2012-11-15 2013-11-14 Method for producing optically active isopulegol and optically active menthol

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012251301 2012-11-15
JP2012-251301 2012-11-15
JP2013044065 2013-03-06
JP2013-044065 2013-03-06

Publications (1)

Publication Number Publication Date
WO2014077323A1 true WO2014077323A1 (ja) 2014-05-22

Family

ID=50731232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080803 WO2014077323A1 (ja) 2012-11-15 2013-11-14 光学活性イソプレゴールおよび光学活性メントールの製造方法

Country Status (4)

Country Link
US (1) US20150329452A1 (ja)
EP (1) EP2921228A1 (ja)
JP (1) JPWO2014077323A1 (ja)
WO (1) WO2014077323A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108083980B (zh) * 2017-11-27 2021-02-02 万华化学集团股份有限公司 一种制备光学纯l-薄荷醇的方法
CN111087343B (zh) * 2019-11-29 2022-02-18 万华化学集团股份有限公司 一种羟基吡啶配体及其制备方法和催化应用
JP7456789B2 (ja) * 2020-01-30 2024-03-27 高砂香料工業株式会社 イソプレゴールの製造方法

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163690A (ja) 1984-09-04 1986-04-01 Takasago Corp ルテニウム−ホスフイン錯体
JPS62265293A (ja) 1986-05-13 1987-11-18 Takasago Corp ルテニウム−ホスフイン錯体
JPH04139140A (ja) 1990-10-01 1992-05-13 Takasago Internatl Corp 2,2’―ビス(ジフェニルホスフィノ)―5,5’,6,6’,7,7’,8,8’―オクタヒドロ―1,1’―ビナフチル及びこれを配位子とする遷移金属錯体
EP0563611A1 (de) 1992-03-17 1993-10-06 Bayer Ag Verfahren zur Herstellung von d,1-Menthol
JPH0840959A (ja) * 1994-07-29 1996-02-13 Takasago Internatl Corp (−)−n−イソプレゴールの精製方法及びその方法で得られた(−)−n−イソプレゴールを含有するシトラス系香料組成物
JPH08225466A (ja) 1994-12-07 1996-09-03 Res Dev Corp Of Japan 光学活性アルコール類の製造方法
EP0743295A1 (de) 1995-05-17 1996-11-20 Bayer Ag Verfahren zur Herstellung von d,I-Menthol aus d-Menthol
JPH11189600A (ja) 1997-12-26 1999-07-13 Japan Science & Technology Corp ルテニウム錯体とこれを触媒とするアルコール化合物 の製造方法
JPH11269185A (ja) 1998-03-23 1999-10-05 Takasago Internatl Corp ルテニウム−ホスフィン錯体及びその製造方法
JP2001058999A (ja) 1999-06-16 2001-03-06 Nippon Soda Co Ltd ルテニウム化合物及び光学活性アルコール化合物の製造法
US6342644B1 (en) 2000-05-10 2002-01-29 Takasago International Corporation Method for producing 1-menthol
WO2002055477A1 (fr) 2001-01-15 2002-07-18 Nippon Soda Co.,Ltd. Compose de ruthenium, compose diamine et procede de production de ?-amino-alcool
JP2002212121A (ja) 2001-01-18 2002-07-31 Takasago Internatl Corp イソプレゴールの製造方法
JP2002284790A (ja) 2001-01-15 2002-10-03 Nippon Soda Co Ltd ルテニウム化合物、ジアミン配位子および光学活性アルコールの製造方法
WO2004007506A1 (ja) 2002-07-15 2004-01-22 Nippon Soda Co.,Ltd. ルテニウム化合物、ジアミン配位子および光学活性アルコールの製造方法
JP2005068113A (ja) 2003-08-27 2005-03-17 Nippon Soda Co Ltd ルテニウム化合物及び光学活性アルコール化合物の製造方法
WO2005070875A1 (ja) 2004-01-26 2005-08-04 Takasago International Corporation アミン類の製造方法
JP2008521763A (ja) 2004-11-26 2008-06-26 ビーエーエスエフ ソシエタス・ヨーロピア メントールの調製法
JP2008538101A (ja) 2005-03-03 2008-10-09 ビーエーエスエフ ソシエタス・ヨーロピア ジアリールフェノキシアルミニウム化合物
WO2009068444A2 (de) 2007-11-30 2009-06-04 Basf Se Verfahren zur herstellung von optisch aktivem und racemischem menthol
JP2009269868A (ja) 2008-05-08 2009-11-19 Sanko Kk 2,6−ジフェニルフェノール又はその誘導体の製造方法
WO2009144906A1 (ja) 2008-05-26 2009-12-03 高砂香料工業株式会社 アルミニウム錯体とその使用
WO2010071227A1 (en) 2008-12-17 2010-06-24 Takasago International Corporation Aluminium complexes and use thereof as a catalyst in intramolecular ring closure reactions
WO2010071231A1 (en) 2008-12-17 2010-06-24 Takasago International Corporation Aluminium complexes and use thereof as a catalyst in intramolecular ring closure reactions
JP2011246366A (ja) 2010-05-25 2011-12-08 Takasago Internatl Corp 有機アルミニウム化合物
WO2012074075A1 (ja) 2010-12-01 2012-06-07 高砂香料工業株式会社 光学活性メントールの製造方法

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163690A (ja) 1984-09-04 1986-04-01 Takasago Corp ルテニウム−ホスフイン錯体
JPS62265293A (ja) 1986-05-13 1987-11-18 Takasago Corp ルテニウム−ホスフイン錯体
JPH04139140A (ja) 1990-10-01 1992-05-13 Takasago Internatl Corp 2,2’―ビス(ジフェニルホスフィノ)―5,5’,6,6’,7,7’,8,8’―オクタヒドロ―1,1’―ビナフチル及びこれを配位子とする遷移金属錯体
EP0563611A1 (de) 1992-03-17 1993-10-06 Bayer Ag Verfahren zur Herstellung von d,1-Menthol
JPH0840959A (ja) * 1994-07-29 1996-02-13 Takasago Internatl Corp (−)−n−イソプレゴールの精製方法及びその方法で得られた(−)−n−イソプレゴールを含有するシトラス系香料組成物
JP3241542B2 (ja) 1994-07-29 2001-12-25 高砂香料工業株式会社 (−)−n−イソプレゴールの精製方法及びその方法で得られた(−)−n−イソプレゴールを含有するシトラス系香料組成物
JPH08225466A (ja) 1994-12-07 1996-09-03 Res Dev Corp Of Japan 光学活性アルコール類の製造方法
EP0743295A1 (de) 1995-05-17 1996-11-20 Bayer Ag Verfahren zur Herstellung von d,I-Menthol aus d-Menthol
JPH11189600A (ja) 1997-12-26 1999-07-13 Japan Science & Technology Corp ルテニウム錯体とこれを触媒とするアルコール化合物 の製造方法
JPH11269185A (ja) 1998-03-23 1999-10-05 Takasago Internatl Corp ルテニウム−ホスフィン錯体及びその製造方法
JP2001058999A (ja) 1999-06-16 2001-03-06 Nippon Soda Co Ltd ルテニウム化合物及び光学活性アルコール化合物の製造法
US6342644B1 (en) 2000-05-10 2002-01-29 Takasago International Corporation Method for producing 1-menthol
WO2002055477A1 (fr) 2001-01-15 2002-07-18 Nippon Soda Co.,Ltd. Compose de ruthenium, compose diamine et procede de production de ?-amino-alcool
JP2002284790A (ja) 2001-01-15 2002-10-03 Nippon Soda Co Ltd ルテニウム化合物、ジアミン配位子および光学活性アルコールの製造方法
JP2002212121A (ja) 2001-01-18 2002-07-31 Takasago Internatl Corp イソプレゴールの製造方法
WO2004007506A1 (ja) 2002-07-15 2004-01-22 Nippon Soda Co.,Ltd. ルテニウム化合物、ジアミン配位子および光学活性アルコールの製造方法
JP2005068113A (ja) 2003-08-27 2005-03-17 Nippon Soda Co Ltd ルテニウム化合物及び光学活性アルコール化合物の製造方法
WO2005070875A1 (ja) 2004-01-26 2005-08-04 Takasago International Corporation アミン類の製造方法
JP2008521763A (ja) 2004-11-26 2008-06-26 ビーエーエスエフ ソシエタス・ヨーロピア メントールの調製法
JP2008538101A (ja) 2005-03-03 2008-10-09 ビーエーエスエフ ソシエタス・ヨーロピア ジアリールフェノキシアルミニウム化合物
WO2009068444A2 (de) 2007-11-30 2009-06-04 Basf Se Verfahren zur herstellung von optisch aktivem und racemischem menthol
JP2009269868A (ja) 2008-05-08 2009-11-19 Sanko Kk 2,6−ジフェニルフェノール又はその誘導体の製造方法
WO2009144906A1 (ja) 2008-05-26 2009-12-03 高砂香料工業株式会社 アルミニウム錯体とその使用
WO2010071227A1 (en) 2008-12-17 2010-06-24 Takasago International Corporation Aluminium complexes and use thereof as a catalyst in intramolecular ring closure reactions
WO2010071231A1 (en) 2008-12-17 2010-06-24 Takasago International Corporation Aluminium complexes and use thereof as a catalyst in intramolecular ring closure reactions
JP2011246366A (ja) 2010-05-25 2011-12-08 Takasago Internatl Corp 有機アルミニウム化合物
WO2012074075A1 (ja) 2010-12-01 2012-06-07 高砂香料工業株式会社 光学活性メントールの製造方法

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
"ASYMMETRIC CATALYSIS IN ORGANIC SYNTHESIS", 1994, JOHN WILEY & SONS INC.
"Catalytic Asymmetric Synthesis", 2000, WILEY-VCH
"Handbook of Enantioselective Catalysis with Transition Metal Complex", 1993, VCH
ANGEW. CHEM. INT. ED., vol. 48, 2009, pages 5143 - 5147
ANGEW. CHEM. INT. ED., vol. 50, 2011, pages 2354 - 2358
ANGEW. CHEM. INT. ED., vol. 52, 2013, pages 7500 - 7504
CHAOUIS C. ET AL: "SYNTHESIS OF CITRONELLAL BY RHI-CATALYSED ASYMMETRIC ISOMERIZATION OF N,N-DIETHYL-SUBSTITUTED GERANYL- AND NERYLAMINES OR GERANIOL AND NEROL IN THE PRESENCE OFCHIRAL DIPHOSPHINO LIGANDS, UNDER HOMOGENEOUS AND SUPPORTED CONDITIONS", HELVETICA CHIMICA ACTA, vol. 84, no. 2, 24 January 2001 (2001-01-24), pages 230 - 242 *
CHEM. COMMUN., vol. 46, 2010, pages 445 - 447
CHEM. EUR. J., vol. 16, 2010, pages 12736 - 12745
CHEM. EUR. J., vol. 17, 2011, pages 11143 - 11145
CHEM. LETT., vol. 40, 2011, pages 341 - 344
CHEM. REV., vol. 103, 2003, pages 27 - 51
GAZZ. CHIM. ITAL., vol. 106, 1976, pages 1131 - 1134
HELV. CHIM. ACTA, vol. 84, 2001, pages 230 - 242
J. AM. CHEM. SOC., vol. 122, 2000, pages 9870 - 9871
J. CHEM. SOC., CHEM. COMMUN., 1985, pages 922
J. CHEM. SOC., CHEM. COMMUN., 1985, pages 992
J. CHEM. SOC., CHEM. COMMUN., 1989, pages 1208
J. ORG. CHEM., vol. 66, 2001, pages 8177 - 8186
J. ORGANOMET. CHEM., vol. 650, 2002, pages 1 - 24
P.A. EVANS: "Modern Rhodium-Catalyzed Organic Reactions", 2005, WILEY-VCH, pages: 79 - 91
PURE APPL. CHEM., vol. 57, 1985, pages 1845 - 1854
SYNTHESIS, 2008, pages 2547 - 2550
TETRAHEDRON LETT., vol. 47, 2006, pages 5021 - 5024
TOPICS IN CATALYSIS, vol. 4, 1997, pages 271 - 274
WU R. ET AL: "RUTHENIUM-CATALYZED ASYMMETRIC TRANSFER HYDROGENATION OF ALLYLIC ALCOHOLS BY AN ENANTIOSELECTIVE ISOMERIZATION/TRANSFER HYDROGENATION MECHANISM", ANGEWANDTE CHEMIE INTERNATIOAN EDITION, vol. 51, no. 9, 20 January 2012 (2012-01-20), pages 2106 - 2110 *

Also Published As

Publication number Publication date
US20150329452A1 (en) 2015-11-19
EP2921228A1 (en) 2015-09-23
JPWO2014077323A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
Focken et al. Synthesis of iridium complexes with new planar chiral chelating phosphinyl-imidazolylidene ligands and their application in asymmetric hydrogenation
JP4004123B2 (ja) ルテニウム錯体を触媒とするアルコール化合物の製造方法
CN106068160B (zh) 用于转移氢化反应的钌-酚催化剂
EP2390001A1 (en) Organoaluminium compounds and their use as catalysts in the selective cyclisation of citronellal to isopulegol
Morris et al. Extending the range of pentasubstituted cyclopentadienyl compounds: The synthesis of a series of tetramethyl (alkyl or aryl) cyclopentadienes (Cp∗ R), their iridium complexes and their catalytic activity for asymmetric transfer hydrogenation
EP2279992A1 (en) Aluminum complex and use thereof
WO2014077321A1 (ja) アルミニウム触媒
JP4722037B2 (ja) 光学活性アルコールの製法
JP2003252884A (ja) 新規ルテニウム錯体およびこれを触媒として用いるアルコール化合物の製造方法
Schotes et al. Bicyclo [3.2. 0] heptane-Based Enamides by Ru/PNNP-Catalyzed Enantioselective Ficini Reactions: Scope and Application in Ligand Design
WO2014077323A1 (ja) 光学活性イソプレゴールおよび光学活性メントールの製造方法
EP2264000B1 (en) Method for producing optically active aminoalcohol compound using ruthenium compound
JP5244158B2 (ja) 光学活性アルコールの製法
Marozsán et al. Catalytic racemization of secondary alcohols with new (arene) Ru (II)-NHC and (arene) Ru (II)-NHC-tertiary phosphine complexes
Hadzovic et al. Ketone H2-hydrogenation catalysts: Ruthenium complexes with the headphone-like ligand bis (phosphaadamantyl) propane
US20020042540A1 (en) New 6,6'-bis-(1-phosphanorbornadiene) diphosphines, their preparation and their uses
Espino et al. Synthesis, coordination behaviour, structural features and use in asymmetric hydrogenations of bifep-type biferrocenes
JP5009613B2 (ja) 不斉合成における使用のためのキラル配位子
JP6261563B2 (ja) 光学活性アルデヒドの製造方法
CN110357923B (zh) 二氨基二膦四齿配体、其钌络合物及上述两者的制备方法和应用
JP4713134B2 (ja) 光学活性アルキルフタリド類の製造方法
EP2937355B1 (en) Phosphorus compound and transition metal complex of the same
Chiew Development of phosphapalladacycles as potential catalysts for asymmetric synthesis
JP3229099B2 (ja) 光学活性ホスホネートの製造方法
JP2012031119A (ja) 軸不斉イソキノリン誘導体及びその製造方法並びに不斉合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014547034

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013854981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14442873

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE