WO2005070875A1 - アミン類の製造方法 - Google Patents

アミン類の製造方法 Download PDF

Info

Publication number
WO2005070875A1
WO2005070875A1 PCT/JP2005/000962 JP2005000962W WO2005070875A1 WO 2005070875 A1 WO2005070875 A1 WO 2005070875A1 JP 2005000962 W JP2005000962 W JP 2005000962W WO 2005070875 A1 WO2005070875 A1 WO 2005070875A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
general formula
formula
represented
Prior art date
Application number
PCT/JP2005/000962
Other languages
English (en)
French (fr)
Inventor
Masahiro Terada
Daisuke Uraguchi
Keiichi Sorimachi
Hideo Shimizu
Original Assignee
Takasago International Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corporation filed Critical Takasago International Corporation
Priority to JP2005517310A priority Critical patent/JPWO2005070875A1/ja
Priority to US10/587,279 priority patent/US7902207B2/en
Publication of WO2005070875A1 publication Critical patent/WO2005070875A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/08Preparation of carboxylic acid amides from amides by reaction at nitrogen atoms of carboxamide groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0258Phosphoric acid mono-, di- or triesters ((RO)(R'O)2P=O), i.e. R= C, R'= C, H
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C245/00Compounds containing chains of at least two nitrogen atoms with at least one nitrogen-to-nitrogen multiple bond
    • C07C245/12Diazo compounds, i.e. compounds having the free valencies of >N2 groups attached to the same carbon atom
    • C07C245/14Diazo compounds, i.e. compounds having the free valencies of >N2 groups attached to the same carbon atom having diazo groups bound to acyclic carbon atoms of a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C245/00Compounds containing chains of at least two nitrogen atoms with at least one nitrogen-to-nitrogen multiple bond
    • C07C245/12Diazo compounds, i.e. compounds having the free valencies of >N2 groups attached to the same carbon atom
    • C07C245/14Diazo compounds, i.e. compounds having the free valencies of >N2 groups attached to the same carbon atom having diazo groups bound to acyclic carbon atoms of a carbon skeleton
    • C07C245/18Diazo compounds, i.e. compounds having the free valencies of >N2 groups attached to the same carbon atom having diazo groups bound to acyclic carbon atoms of a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/58One oxygen atom, e.g. butenolide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657109Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms esters of oxyacids of phosphorus in which one or more exocyclic oxygen atoms have been replaced by (a) sulfur atom(s)
    • C07F9/657127Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms esters of oxyacids of phosphorus in which one or more exocyclic oxygen atoms have been replaced by (a) sulfur atom(s) condensed with carbocyclic or heterocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65742Esters of oxyacids of phosphorus non-condensed with carbocyclic rings or heterocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65744Esters of oxyacids of phosphorus condensed with carbocyclic or heterocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6578Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and sulfur atoms with or without oxygen atoms, as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • C07F9/65842Cyclic amide derivatives of acids of phosphorus, in which one nitrogen atom belongs to the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • C07F9/65848Cyclic amide derivatives of acids of phosphorus, in which two nitrogen atoms belong to the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/34Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
    • B01J2231/3411,2-additions, e.g. aldol or Knoevenagel condensations
    • B01J2231/346Mannich type reactions, i.e. nucleophilic addition of C-H acidic compounds, their R3Si- or metal complex analogues to aldimines or ketimines

Definitions

  • the present invention relates to a method for producing amines useful as intermediates of pharmaceuticals, agricultural chemicals and the like.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose L-proline or a derivative thereof in place of a metal compound to form a carbonyl-imine compound and an imine. A method of reacting with such species has been reported.
  • Non-Patent Document 2 requires a large amount of L-proline (more than the amount of catalyst) to be used. It has problems such as re.
  • Non-Patent Document 3 discloses that an optically active N-protected ⁇ -amino acid is obtained by reacting trimethylsilylbutyl ether with an N- (2-hydroxyphenyl) imine with a chiral phosphoric acid derivative. The manufacturing method is described.
  • Non-Patent Document 3 has a problem that the substrate to be reacted with imines must be converted to trimethylsilylbutyl ether by trimethylsilyl ether.
  • Non-Patent Document 4 discloses a phosphoric acid derivative of the general formula (1), but merely shows that the derivative is used in a reaction to obtain a-aminophosphonic acid from imine and diphosphophosphite.
  • Non-patent document 1 J. Org. Chem., Vol. 68, No. 25, 9624 (2003).
  • Non-patent document 2 J. Am. Chem. Soc., Vol. 24, No. 9, 1842 (2002).
  • Non-patent document 3 THE NINTH INTERNATIONAL KYOTO CONFERENC E OF NEW ASPECTS OF ORGANIC CHEMISTRY, Program, Abstracts, List of Participants, pi 16, (2003).
  • Non-special reference Document 4 The ninth International Kyoto Conference on New Aspects of Organic Chemistry, 2003, November, 10-14 (poster pre sentation was held on Nov. 11th) Abstracts, p. 116, No. PA004
  • the present invention has been made in view of the above problems, and amines, particularly optically active compounds, which are useful as intermediates of pharmaceuticals, agricultural chemicals and the like with high yield and optical purity without requiring any special post-treatment or the like.
  • An object of the present invention is to provide a method for producing a soluble amine, and a phosphoric acid derivative, particularly an optically active phosphoric acid derivative, useful for producing the amine.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, by using the phosphoric acid derivative represented by the general formula (1), the desired amines can be obtained with high yield and optical purity. They have found that they can be obtained well and arrived at the present invention.
  • the present invention is as follows.
  • a 1 represents a spacer
  • X 1 and X 2 each independently represent a divalent nonmetal atom or a divalent nonmetal atomic group
  • Y 1 represents an oxygen atom or a sulfur atom.
  • the imine compound has the general formula (2) [Chemical 2]
  • R 1 represents a hydrogen atom or a protecting group
  • R 2 represents a group having no proton or an unsaturated hydrocarbon group
  • the nucleophilic compound has the general formula (3)
  • R 3 represents a hydrogen atom, a hydrocarbon group optionally having a substituent, a heterocyclic group optionally having a substituent, an alkoxy group optionally having a substituent, a substituent R 4 and R 5 each independently represent a hydrogen atom or a substituent, and each represents a hydrogen atom or a substituent.
  • have each may be a hydrocarbon group, a substituted heterocyclic group which may have a
  • EWG ⁇ EWG 1 represents an electron-withdrawing group.
  • a group, an arylthio group optionally having a substituent, an arylalkylthio group optionally having a substituent, an aralkylthio group or a hydroxy group, and Q is a tautomer of the compound represented by the general formula (3).
  • R 7 represents a hydrogen atom, a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, an alkoxy group which may have a substituent, a substituent May have A aryloxy group or a substituted or unsubstituted aryloxy group, an optionally substituted alkylthio group, an optionally substituted arylthio group or a substituted Ararukiruchio group or EWG 2 may be (EWG 2 denotes an electron-withdrawing group.) indicates, Z 1 is N, P (R 8) (3 pieces of R 8 are the same or different, a hydrogen atom, a substituent Having
  • CR 9 R 1Q R 9 and R 1Q each independently represent a hydrogen atom, a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, or a substituent.
  • ring B represents an aliphatic ring or an aliphatic heterocyclic ring
  • Q 2 and Q 3 each independently represent an oxygen atom, NR 17 (R 17 represents a hydrogen atom or a protecting group) or a sulfur atom.
  • R 17 represents a hydrogen atom or a protecting group
  • sulfur atom Show. Or a compound represented by the general formula (21) [0015] [Formula 6]
  • R 51 R 55 are each independently a hydrogen atom or a substituent. However, R 51 and R 52, R 5 2 and R 53, R 53 and R 54, or R 54 and R 55, May be combined with each other to form a ring.).
  • a divalent non-metallic atom or a monovalent non-metallic atomic group represented by X 1 and X 2 are an oxygen atom, - NR 13 - (R 13 is a hydrogen atom Represents a hydrocarbon group which may have a substituent or an acyl group which may have a substituent.), A sulfur atom or _CR 15 R 16 _ ⁇ R 15 and R 16 are each independently , A hydrogen atom, a hydrocarbon group which may have a substituent or EWG 3 (EWG 3 represents an electron-withdrawing group). However, either one of R 15 and R 16 are EWG 3. ⁇ , The production method according to the above 1).
  • a 1 represents a spacer
  • X 3 and X 4 are each independently an oxygen atom
  • -NR 13 - R is a hydrogen atom, Les substituted, also good les carbide Represents a hydrogen group or a substituent, and represents a hydrogen atom or a substituent.
  • a sulfur atom or one of CR 15 R 16- ⁇ R 15 and R 16 are each independently a hydrogen atom or a substituent.
  • a hydrocarbon group or EWG 3 (EWG 3 represents an electron-withdrawing group) that may be present. However, one of R 15 and R 16 is EWG 3 .
  • ⁇ , And Y 1 represents an oxygen atom or a sulfur atom.
  • X 3 X 4 is, X 3 and X 4 - NR ⁇ - O 1 3 is a hydrogen atom, Les substituted, also good les, hydrocarbon group or a substituted group With, Represents a phenyl group. ), A sulfur atom or —CR 15 R 16 —, and when X 3 and X 4 are —NR 13 —, —NR 13 — is _NR a — (R a is a sulfonic acid-derived acyl group. Is shown).
  • X 3 and X 4 when X 3 and X 4 are different, one of X 3 and X 4 is one NR 13 —, and the — NR 13 _ is _NR a _ (R a is sulfonic acid The other is an oxygen atom, _NR 13 — (R 13 is a hydrogen atom, a hydrocarbon group which may have a substituent or an acyl group which may have a substituent.) Represents a group), a sulfur atom or one CR 15 R 16 —. ]
  • a 2 represents a spacer
  • R 21 and R 24 each independently represent a hydrocarbon group which may have a substituent or a heterocyclic group which may have a substituent.
  • a 1 represents a spacer, X 1 and: each independently represent a divalent non-metal atom or a divalent non-metal atomic group, and Y 1 represents an oxygen atom or a sulfur atom.
  • R 2 ° represents a substituted or unsubstituted aryl group or a substituted or unsubstituted benzyl group.
  • —R 4U each independently represents a substituent other than an alkyl-substituted phenyl group, provided that at least one of R 31 —R 35 and at least one of R 36 —R 4 ° are substituted
  • R and R ′ are the same or different and each represent a hydrogen atom, a bromine atom, an iodine atom, a methoxy group, a triphenylsilyl group, a naphthyl group, a phenyl group or a phenyl group having 113 substituents (here, a substituent Represents a fluorine atom, a methoxy group, a methyl group, a tert-butyl group, a phenyl group, A substituent selected from a trifluoromethyl group and a naphthyl group).
  • the phosphoric acid derivative represented by the formula (1).
  • the nucleophilic compound has the general formula (14)
  • R 1 represents a hydrogen atom or a protecting group
  • R 2 represents a group having no proton or an unsaturated hydrocarbon group
  • rings E and G 1 are the same as described above.
  • R 1 represents a hydrogen atom or a protecting group
  • R 2 represents a group having no proton or an unsaturated hydrocarbon group
  • G 2 , ring F and ring I are the same as described above.
  • R 41 — R 4d each independently represent a hydrogen atom or a substituent.
  • R 1 represents a hydrogen atom or a protecting group
  • R 2 represents a group having no proton or an unsaturated hydrocarbon group
  • R 41 to R 43 each independently represent a hydrogen atom or a substituted group.
  • Ar 1 — Ar 5 each independently represent a hydrogen atom or an alkyl-substituted phenyl group . However, the case where all of Ar 1 to Ar 5 are hydrogen atoms is excluded.
  • Examples of the imine compound used in the present invention include compounds represented by general formula (2)
  • R 1 represents a hydrogen atom or a protecting group
  • R 2 represents a group having no proton or an unsaturated hydrocarbon group
  • any one can be used as long as it is used as an amino protecting group.
  • the protecting group (amino protecting group) represented by R 1 include a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, May have an substituent, may have a substituent, may have a substituent, may have an alkoxycarbonyl group, may have a substituent, may have an aryloxy group, may have a substituent, or may have a substituent.
  • Examples include a good aralkyloxycarbonyl group, an aminosulfonyl group and an alkoxysulfonyl group.
  • hydrocarbon group which may have a substituent as a protective group represented by R 1
  • hydrocarbon radicals and substituted hydrocarbon radicals examples include an alkyl group, an alkenyl group, an alkynyl group, an alkadienyl group, an arylene group, an aralkyl group and the like. Is mentioned.
  • alkyl group examples include a linear, branched or cyclic alkyl group, for example, an alkyl group having 120 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, and n-propynole.
  • alkyl group is preferably an alkyl group having 11 to
  • the alkenyl group may be linear or branched, and includes, for example, an alkenyl group having 220 carbon atoms. Specific examples thereof include an ethenyl group, a propenyl group, a 1-butyl group, Examples include a pentyl group, a hexenyl group, a heptenyl group, an otathenyl group, a nonenyl group, and a decenyl group.
  • an alkenyl group having 2 to 15 carbon atoms is more preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable.
  • the alkynyl group may be linear or branched, for example, an alkynyl group having 2 to 20 carbon atoms, and specific examples thereof include an ethynyl group, a 1-propenyl group, and a 2-propynyl group. , 1-butynyl group, 3-butenyl group, pentynyl group, hexyl group and the like.
  • the alkynyl group is more preferably an alkynyl group having 2 to 6 carbon atoms, more preferably an alkynyl group having 2 to 15 carbon atoms, more preferably an alkynyl group having 2 to 15 carbon atoms.
  • the alkadienyl group may have two double bonds in the chain of the alkyl group, and may be linear, branched, or cyclic. For example, it has 4 or more carbon atoms, and preferably 4 to 20 carbon atoms.
  • Alkadienyl groups are mentioned, and specific examples thereof include 1,3-butadienyl group, 2,4-butadienyl group, and 2,3_dimethyl-1,3 butadienyl group.
  • the alkadienyl group is preferably an alkadienyl group having 415 carbon atoms, More preferred are 4-10 alkadienyl groups.
  • Examples of the aryl group include an aryl group having 6 to 20 carbon atoms, and specific examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a biphenyl group.
  • the aryl group is preferably an aryl group having 6 to 15 carbon atoms.
  • Examples of the aralkyl group include a group in which at least one hydrogen atom of the alkyl group is substituted with the aralkyl group, and examples thereof include an aralkyl group having 7 to 20 carbon atoms. Examples include a benzyl group, a 2-phenylethyl group, a 1-phenylpropyl group, and a 3-naphthylpropyl group.
  • the aralkyl group is preferably an aralkyl group having 6 to 15 carbon atoms.
  • Examples of the substituted hydrocarbon group include a hydrocarbon group in which at least one hydrogen atom of the above hydrocarbon group has been substituted with a substituent.
  • Examples of the substituted hydrocarbon group include a substituted alkyl group, a substituted alkenyl group, a substituted alkynyl group, a substituted alkadienyl group, a substituted aryl group, a substituted aralkyl group, and the like. The substituent will be described later.
  • the heterocyclic group include an aliphatic heterocyclic group and an aromatic heterocyclic group.
  • aliphatic heterocyclic group examples include, for example, those having 2 to 20 carbon atoms and including at least one, preferably 113 hetero atoms such as nitrogen, oxygen, and / or sulfur as hetero atoms. And a 5- to 8-membered, preferably 5- or 6-membered, monocyclic aliphatic heterocyclic group, and a polycyclic or fused-ring aliphatic heterocyclic group.
  • aliphatic heterocyclic group examples include, for example, a pyrrolidyl-2-one group, a piperidino group, a piperazinyl group, a monorefolino group, a morpholinyl group, a tetrahydrofuryl group, a tetrahydropyranyl group, a tetrahydrofuranyl group, and the like.
  • the aliphatic heterocyclic group is preferably an aliphatic heterocyclic group having 214 carbon atoms.
  • the aromatic heterocyclic group has, for example, 2 to 20 carbon atoms and includes at least one, preferably 113 hetero atoms such as nitrogen, oxygen and Z or sulfur as hetero atoms.
  • 58 preferably 5 or 6 membered monocyclic heteroaryl, polycyclic or condensed
  • Specific examples thereof include a heterocyclic heteroaryl group.
  • Specific examples thereof include a furyl group, a phenyl group, a pyridyl group, a pyrimidyl group, a virazyl group, a pyridazinole group, a pyrazolyl group, an imidazolyl group, an oxazolyl group, a thiazolyl group, and a benzofuryl group.
  • the aromatic heterocyclic group is preferably an aromatic heterocyclic group having 2 to 15 carbon atoms.
  • Examples of the substituted heterocyclic group include a heterocyclic group in which at least one hydrogen atom of the above heterocyclic group is substituted with a substituent.
  • Examples of the substituted heterocyclic group include a substituted aliphatic heterocyclic group and a substituted aromatic heterocyclic group. The substituent will be described later.
  • Good Ashiru group which may have a substituent group as a protective group represented by R 1 include the Ashiru group and a substituted Ashiru group.
  • the acyl group may be linear, branched or cyclic, and includes, for example, an acyl group having 120 carbon atoms derived from acids such as carboxylic acid, sulfonic acid, sulfinic acid, phosphinic acid and phosphonic acid. No.
  • carboxylic acid-derived acyl group examples include carboxylic acid-derived acyl groups such as aliphatic carboxylic acids and aromatic carboxylic acids.
  • carboxylic acid-derived acyl groups such as aliphatic carboxylic acids and aromatic carboxylic acids.
  • R e is a hydrogen atom, A substituent, a hydrocarbon group, a hydrocarbon group or a substituent, a heterocyclic group, or the like (having the substituent, And the heterocyclic group having a hydrocarbon group and a substituent, and the heterocyclic group may be the same as the groups described as the protecting group for R 1 in the above general formula (2).) ].
  • carboxylic acid-derived acyl group examples include formyl group, acetyl group, propionyl group, butyryl group, bivaloyl group, pentanoyl group, hexanoyl group, lauroyl group, stearoyl group, benzoyl group, ⁇ _naphthoyl group, 2 _ Naphthoyl group and the like.
  • the above-mentioned acyl group is preferably an acyl group having 2 to 18 carbon atoms.
  • Examples of the sulfonic acid-derived acyl group include a sulfonyl group.
  • a sulfonyl group for example, R d -SO _ [R d represents a hydrocarbon group or a substituent which may have a substituent.
  • R 1 is a protecting group. It may be the same as each group described above. ).
  • R 1 is a protecting group. It may be the same as each group described above. ).
  • R 1 is a protecting group. It may be the same as each group described above. ).
  • sulfonyl group include a methanesulfonyl group, a trifluoromethanesulfonyl group, a phenylsulfonyl group, and a p-tonolenesulfonyl group.
  • Examples of the acyl group derived from sulfinic acid include a sulfinyl group.
  • the sulfiel group include, for example, R e -S ⁇ - [R e is a hydrocarbon group which may have a substituent, a substituted or unsubstituted group, a heterocyclic group or a substituted amino group.
  • R e is a hydrocarbon group which may have a substituent, a substituted or unsubstituted group, a heterocyclic group or a substituted amino group.
  • the substituted or unsubstituted hydrocarbon group and the optionally substituted heterocyclic group are the same as those described as a protecting group for R 1 in the general formula (2).
  • the substituted amino group may have the same substituent as that described for R 1 in the general formula (2).
  • Specific examples of the sulfinyl group include a methanesulfinyl group and a benzenesulfinyl group.
  • Examples of the acyl group derived from phosphinic acid include a phosphinyl group.
  • Examples of the phosphinyl group include, for example, (R f ) —P ⁇ _ [two R f are the same or different and may have a substituent.
  • hydrocarbon group has the substituent described as a protecting group for R 1 in the above general formula (2). And the same as the hydrocarbon group which may be used.).
  • phosphinyl group include a dimethylphosphinyl group and a diphenylphosphien group.
  • Examples of the acyl group derived from phosphonic acid include a phosphonyl group.
  • the phosphonyl group for example, (R g O) -PO- [two are the same or different and may have a substituent
  • hydrocarbon group may have the substituent, may be the same as the hydrocarbon group, and may be the substituent described as a protecting group for R 1 in the general formula (2). And it may be the same as the hydrocarbon group.
  • Examples of the substituted acyl group include an acyl group in which at least one hydrogen atom of the above asinole group is substituted with a substituent. The details of the substituent will be described later.
  • the alkoxycarbonyl group which may have a substituent as a protecting group represented by R 1 is , An alkoxycarbonyl group and a substituted alkoxycarbonyl group.
  • the alkoxycarbonyl group may be linear, branched, or cyclic.
  • Examples thereof include a 2-20 alkoxycarbonyl group, and specific examples thereof include a methoxycarboxy group, an ethoxycarbonyl group, an n-propoxycarbonyl group, a 2-propoxycarbinole group, an n-butoxycarbonyl group, and a tert-butoxy group.
  • Examples of the substituted alkoxycarbonyl group include an alkoxycarbonyl group in which at least one hydrogen atom of the above alkoxycarbonyl group is substituted with a substituent.
  • the substituent will be described later.
  • Specific examples of the substituted alkoxy group carbonyl group include a 2,2,2-trichloroethoxycarbonyl group and a 1,1-dimethylino-1,2,2-trichloroethoxycarbonyl group.
  • les have a substituent as a protective group represented by R 1, also good les, ⁇ reel O alkoxycarbonyl group, ⁇ reel O alkoxycarbonyl group and substituted ⁇ reel O alkoxycarbonyl group is exemplified et al It is.
  • the aryloxycarbonyl group include an aryloxycarbonyl group having 7 to 20 carbon atoms, and specific examples thereof include a phenoxycarbonyl group and a naphthyloxycarbonyl group.
  • substituted aryloxycarbonyl group an aryloxycarbonyl group having a substituent
  • an aryloxycarbonyl group in which at least one hydrogen atom of the above aryloxycarbonyl group has been replaced by a substituent is mentioned.
  • An aralkyloxycarbonyl group having a substituent as a protecting group represented by R 1 is an aralkyloxycarbonyl group or a substituted aralkyloxy group.
  • the aralkyloxycarbonyl group include an aranoloxycarbonyl group having 820 carbon atoms, and specific examples thereof include a benzyloxycarbonyl group, a phenylethoxycarbonyl group, and a 9_fluoro group. And a enylmethyloxycarbonyl group.
  • Substituted aralkyloxycarbonyl group (substituted aralkyloxycarbonyl group) Examples of the group) include an aralkyloxycarbonyl group in which at least one hydrogen atom of the above aralkyloxycarbonyl group is substituted with a substituent. The substituent will be described later. Specific examples of the substituted aralkyloxycarbonyl group include 4-nitrobenzyloxycarbonyl group, 4-methoxybenzyloxycarbonyl group, 4-methylbenzyloxycarbonyl group, and 3,4-dimethoxybenzyloxy group. And a carbonyl group.
  • R 1 The aminosulfonyl group as a protective group represented by R 1, for example, R and SO- (R 1 is ⁇
  • the substituted amino group represented by Ri may be the same as the substituted amino group as a substituent described later.
  • Specific examples of the aminosulfonyl group include an aminosulfonyl group, a dimethylaminosulfonyl group, a getylaminosulfonyl group, and a diphenylaminosulfonyl group.
  • alkoxysulfonyl group as the protecting group represented by R 1 examples include R and S ⁇ _ (R
  • R j represents a substituent, a substituent, an alkoxy group, a substituent, a substituent, an aryloxy group or a substituent, a substituent, an arylalkyloxy. Represents a group. )).
  • R j has a substituent represented by R j , may be an alkoxy group, may have a substituent, may have a substituent, may have an aryloxy group and a substituent, or may have a substituent.
  • the alkyloxy group may have a substituent as a substituent described later, may have an alkoxy group, may have an aryloxy group which may have a substituent, and may have a substituent.
  • alkoxysulfonyl group examples include a methoxysulfonyl group, an ethoxysulfonyl group, a phenoxysulfonyl group, and a benzinoleoxysulfonyl group.
  • substituents examples include a substituent, a hydrocarbon group, a halogen atom, a halogenated hydrocarbon group, a heterocyclic group which may have a substituent, An alkoxy group which may have a group, an aryloxy group which may have a substituent, an arylalkyloxy group which may have a substituent, and a heteroaryloxy which may have a substituent Group, a substituted or unsubstituted alkylthio group, a substituted or unsubstituted arylalkyl group, an optionally substituted aralkylthio group or a substituted An optionally substituted heterothio group, an optionally substituted asinole group, an optionally substituted asinole An alkoxycarbonyl group, an optionally substituted alkoxycarbonyl group, an optionally substituted aryloxycarbonyl group, an optionally substituted aryloxycarbonyl group, A dialkyl group, an optionally substituted al
  • the substituent may have a substituent, may have a hydrocarbon group, may have a substituent, may have a heterocyclic group, or may have a substituent.
  • the xycarbonyl group, aminosulfonyl group and alkoxysulfonyl group may be the same as those described for the protecting group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • halogenated hydrocarbon group examples include groups in which at least one hydrogen atom of the above hydrocarbon group is halogenated (for example, fluorinated, chlorinated, brominated, or iodinated).
  • halogenated hydrocarbon examples include a halogenated alkyl group, a halogenated aryl group, and a halogenated aralkyl group.
  • halogenated alkyl group examples include a halogenated alkyl group having 120 carbon atoms, and specific examples thereof include a chloromethyl group, a bromomethyl group, a 2-chloroethyl group, and a 3-bromopropyl group.
  • halogenated aryl group examples include an aryl group having 620 carbon atoms, and specific examples thereof include a 2_fluorophenyl group, a 3_fluorophenyl group, a 4_fluorophenyl group, and a 2-chloro group.
  • the aryl group is preferably a halogenated aryl group having 6 to 15 carbon atoms.
  • halogenated aralkyl group examples include groups in which at least one hydrogen atom of the aralkyl group is substituted with a halogen atom, such as a halogenated aralkyl group having 7 to 20 carbon atoms.
  • the aralkyl halide is preferably an aralkyl halide having 6 to 15 carbon atoms.
  • the alkoxy group which may have a substituent as the substituent includes an alkoxy group and a substituted An alkoxy group.
  • the alkoxy group may be linear, branched, or cyclic, and includes, for example, an alkoxy group having 120 carbon atoms.
  • Specific examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, 2-propoxy, n-butoxy, 2-butoxy, isobutoxy, tert-butoxy, n-pentyloxy, 2-methylbutoxy, 3_methylbutoxy, 2,2-dimethylpropyloxy , N-hexyloxy, 2-methylpentyloxy, 3-methylpentyloxy, 4-methylpentyloxy, 5-methylpentyloxy, heptyloxy, octyloxy, nonyloxy, desinoleoxy And cyclohexynoleoxy groups.
  • alkoxy groups an alkoxy group having 116 carbon atoms is more preferable, and an alkoxy group having 116 carbon atoms is more preferable.
  • Examples of the substituted alkoxy group include an alkoxy group in which at least one hydrogen atom of the alkoxy group is substituted with the above substituent.
  • Examples of the aryloxy group which may have a substituent as a substituent include an aryloxy group and a substituted aryloxy group.
  • the aryloxy group includes, for example, an aryloxy group having 620 carbon atoms, and specific examples thereof include a phenyloxy group, a naphthyloxy group, and an anthroxy group.
  • the aryloxy group is preferably an aryloxy group having 6 to 14 carbon atoms.
  • Examples of the substituted aryloxy group include an aryloxy group in which at least one hydrogen atom of the above aryloxy group is substituted with the above substituent.
  • Examples of the aralkyloxy group which may have a substituent as a substituent include an aralkyloxy group and a substituted aralkyloxy group.
  • Examples of the aralkyloxy group include an aralkyloxy group having 7 to 20 carbon atoms, and specific examples thereof include a benzyloxy group, a 1-phenylethoxy group, a 2_phenylethoxy group, a 1-phenylpropoxy group, 2-phenylpropoxy group, 3-phenylpropoxy group, 1-phenylbutoxy group, 2-phenylbutoxy group, 3-phenylbutoxy group, 4-phenylbutoxy group, 1-phenylpentoxy group, 2-phenylpentyloxy group , 3_phenylpentyloxy, 4_phenylopentyloxy, 5_phenylpentyloxy, 1_phenylhexyloxy And 2-phenylhexyloxy group, 3-phenylhexyloxy group,
  • Examples of the substituted aralkyloxy group include an aralkyloxy group in which at least one hydrogen atom of the aralkyloxy group is substituted with the above substituent.
  • heteroaryloxy group which may have a substituent as a substituent include a heteroaryloxy group and a substituted heteroaryloxy group.
  • the heteroaryloxy group includes, for example, at least one, and preferably one to three, heteroatoms such as a nitrogen atom, an oxygen atom, and a sulfur atom.
  • heteroaryloxy group having 211 to 15 carbon atoms and specific examples thereof include a 2_pyridyloxy group, a 2_pyrazinoleoxy group, a 2_pyrimidinoleoxy group, and a 2_quinolyloxy group.
  • Examples of the substituted heteroaryloxy group include a heteroaryloxy group in which at least one hydrogen atom of the aralkyloxy group is substituted with the above substituent.
  • alkylthio group which may have a substituent as a substituent include an alkylthio group and a substituted alkylthio group.
  • alkylthio group include a straight-chain, branched or cyclic alkylthio group, for example, an alkylthio group having 112 carbon atoms. Specific examples thereof include a methylthio group, an ethylthio group, an n-propylthio group, and a 2-propylthio group.
  • alkylthio group is more preferably an alkylthio group having 116 carbon atoms, which is preferably an alkylthio group having 110 carbon atoms.
  • Examples of the substituted alkylthio group include an alkylthio group in which at least one hydrogen atom of the above alkylthio group has been substituted with the above substituent.
  • Examples of the arylthio group which may have a substituent as a substituent include an arylthio group and a substituted arylthio group.
  • Examples of the arylthio group include an arylthio group having 6 to 20 carbon atoms, and specific examples thereof include a phenylthio group and a naphthylthio group.
  • the arylthio group is preferably an arylthio group having 614 carbon atoms.
  • Examples of the substituted arylthio group include an arylthio group in which at least one hydrogen atom of the arylthio group is substituted with the above substituent.
  • Examples of the aralkylthio group which may have a substituent as a substituent include an aralkylthio group and a substituted aralkylthio group.
  • Examples of the aralkylthio group include an aralkylthio group having 7 to 20 carbon atoms, and specific examples thereof include a benzylthio group and a 2-phenethylthio group.
  • the aralkylthio group is preferably an aralkylthio group having 712 carbon atoms.
  • Examples of the substituted aralkylthio group include an aralkylthio group in which at least one hydrogen atom of the aralkylthio group is substituted with the above substituent.
  • Examples of the optionally substituted heteroarylthio group as a substituent include a heteroarylthio group and a substituted heteroarylthio group.
  • the heteroarylthio group includes, for example, at least one, and preferably one to three, heteroatoms such as a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Examples include a heteroarylthio group represented by the formula 2-15, and specific examples thereof include a 4-pyridinorethio group, a 2-benzimidazolylthio group, a 2_benzoxazolylthio group, and a 2_benzthiazolylthio group. Are mentioned.
  • Examples of the substituted heteroarylthio group include a heteroarylthio group in which at least one hydrogen atom of the heteroarylthio group is substituted with the above substituent.
  • Examples of the acyloxy group which may have a substituent as a substituent include an acyloxy group and a substituted acyloxy group.
  • Examples of the asinoleoxy group include aliphatic carboxylic acids and aromatic carboxylic acids. Examples thereof include an acetyl group having 2 to 20 carbon atoms derived from a carboxylic acid such as an aromatic carboxylic acid, and specific examples thereof include an acetyloxy group, a propionyloxy group, a butyryloxy group, a bivaloyloxy group, a pentanoyloxy group, Hexanoyloxy, lauroyloxy, stearoyloxy, benzoyloxy and the like.
  • the above-mentioned acyloxy group is particularly preferably an acyloxy group having 218 carbon atoms.
  • Examples of the substituted acyloxy group include an acyloxy group in which at least one hydrogen atom of the above-mentioned acyloxy group is substituted with the above substituent.
  • Examples of the substituted amino group as a substituent include an amino group in which one or two hydrogen atoms of an amino group are substituted with a substituent such as a protecting group.
  • a substituent such as a protecting group.
  • the protecting group any one can be used as long as it is used as an amino protecting group.
  • Specific examples of the amino-protecting group include a hydrocarbon group which may have a substituent, an acyl group which may have a substituent, and a group which has a substituent. And an optionally substituted alkoxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group, and the like.
  • the aralkyloxycarbonyl group which may have a group may be the same as each group described in the above protecting group.
  • an amino group substituted with an alkyl group that is, an alkyl group-substituted amino group include N-methylamino group, N, N-dimethylamino group, N, N-dimethylamino group, N, N-diisopropylamino.
  • mono- or dialkylamino groups such as N_methyl_N_ (2_propyl) amino group and N-cyclohexylamino group.
  • an amino group substituted with an aryl group examples include N-phenylamino group, N, N-diphenylamino group, N-naphthylamino group, N-naphthyl-N-phenylamino group and the like. And a mono or diarylamino group.
  • an aralkyl group substituted with an aralkyl group that is, an aralkyl group-substituted amino group include mono- or diaralkylamino groups such as an N-benzylamino group and an N, N-dibenzylamino group.
  • di-substituted amino groups such as N-methinole N-phenylamino group and N-benzyl-N-methylamino group are exemplified.
  • amino group substituted with an acyl group that is, an aminoamino group, an acetylamino group, an acetylamino group, a propionylamino group, a bivaloylamino group, a pentanoylamino group, a hexanoylamino group, a benzoylamino group,- NHSO CH
  • an amino group substituted with an alkoxycarbonyl group that is, an alkoxycarbonylamino group
  • an alkoxycarbonylamino group include methoxycarbonylamino, ethoxycarbonylamino, n-propoxycarbonylamino, n-butoxycarbonyl Amino, tert-butoxycarbonylamino, pentyloxycarbonylamino, hexyloxycarbonylamino and the like.
  • an amino group substituted with an aryloxycarbonyl group that is, an aryloxycarbonyl amino group
  • one hydrogen atom of the amino group is substituted with the above-mentioned aryloxycarbonyl group.
  • specific examples thereof include a phenoxycarbonylamino group and a naphthyloxycarbonylamino group.
  • aralkyl group substituted with an aralkyloxycarbonyl group that is, an aralkyloxycarbonylamino group
  • an aralkyloxycarbonylamino group include a benzyloxycarbonylamino group and the like.
  • the alkylene dioxy group which may have a substituent as the substituent is, for example, a group in which two adjacent hydrogen atoms of an aromatic ring in the above aryl group or aralkyl group have a substituent. It may be substituted with an alkylenedioxy group.
  • the alkylenedioxy group having a substituent include an alkylenedioxy group and a substituted alkylenedioxy group.
  • Examples of the alkylenedioxy group include an alkylenedioxy group having 13 to 13 carbon atoms, and specific examples thereof include a methylenedioxy group, an ethylenedioxy group, a trimethylenedioxy group, and a propylenedioxy group.
  • substituted silyl group for example, three hydrogen atoms of a silyl group are an alkyl group. And a substituted alkyl group, an aryl group, a substituted aryl group, an aralkyl group, a substituted aralkyl group, an alkoxy group, and a substituted alkoxy group.
  • the alkyl group, substituted alkyl group, aryl group, substituted aryl group, aralkyl group, substituted aralkyl group, alkoxy group, and substituted alkoxy group may be the same as those described above.
  • substituted silyl group examples include a trimethylsilyl group, a triethylsilinole group, a tri (2_propynole) silinole group, a tert-butyldimethylsilinole group, a tert-butyldiphenylsilinole group, a triphenylsilinole group, and a tert-butylmethoxyphenyl group.
  • alkoxythiocarbonyl group which may have a substituent as a substituent include an alkoxythiocarbonyl group and a substituted alkoxythiocarbonyl group.
  • the alkoxythiocarbonyl group may be linear, branched or cyclic, and includes, for example, an alkoxythiocarbonyl group having 2 to 20 carbon atoms. Specific examples thereof include a methoxythiocarbonyl group and an ethoxythiocarbonyl group.
  • n-propoxythiocarbonyl group 2-propoxythiocarbonyl group, n-butoxythiocarbonyl group, tert-butoxythiocarbonyl group, pentyloxythiocarbonyl group, hexyloxythiocarbinole group, 2-ethyl Xyloxythiocarbonyl, lauryloxythiocarbonyl, stearyloxythiocarbonyl, cyclohexyloxycarbonyl, and the like.
  • Examples of the substituted alkoxythiocarbonyl group include an alkoxythiocarbonyl group in which at least one hydrogen atom of the above-mentioned alkoxythiocarbonyl group is substituted with the above substituent.
  • the aryloxythiocarbonyl group which may have a substituent as a substituent includes an aryloxythiocarbonyl group and a substituted aryloxythiocarbonyl group.
  • the aryloxy carbonyl group includes, for example, an aryloxy carbonyl group having 720 carbon atoms, and specific examples thereof include a phenyloxy carbonyl group and a naphthyloxy carbonyl group.
  • the substituted aryloxy carbonyl group includes at least one hydrogen atom of the above aryloxy carbonyl group. Is an aryloxythiocarbonyl group substituted with the above substituent.
  • the aralkyloxytiocarbonyl group may have a substituent as a substituent, and examples of the aralkyloxytiocarbonyl group include an aralkyloxytiocarbonyl group and a substituted aralkyloxytiocarbonyl group.
  • examples of the aralkyloxycarbonyl group include an aralkyloxycarbonyl group having 8 to 20 carbon atoms, and specific examples thereof include a benzyloxycarbonyl group, a phenethyloxycarbonyl group, and _Fluorenylmethyloxycarbonyl group and the like.
  • substituted aralkyloxythiocarbonyl group an aralkyloxythiocarbonyl group having a substituent
  • at least one hydrogen atom of the above aralkyloxythiocarbonyl group is substituted with the above substituent.
  • alkylthiocarbonyl group which may have a substituent as a substituent include an alkylthiocarbonyl group and a substituted alkylthiocarbonyl group.
  • alkylthiocarbonyl group may be a linear, branched or cyclic alkylthiocarbonyl group, for example, an alkylthiocarbonyl group having 220 carbon atoms.
  • Specific examples thereof include a methylthio group, a carbonyl group, an ethylthiocarbonyl group, -Propylthiocarbonyl group, 2-propylthiocarbonyl group, n-butylthiocarbonyl group, tert-butylthiocarbonyl group, pentylthiocarbonyl group, hexylthiocarbonyl group, 2-ethylhexylthio force Norebonyl group, laurylthiocarbonyl Group, stearinorethiocarbonyl group, cyclohexylthiocarbonyl group and the like.
  • Examples of the substituted alkylthiocarbonyl group include an alkylthiocarbonyl group in which at least one hydrogen atom of the above alkylthiocarbonyl group is substituted with the above substituent.
  • the arylthiocarbonyl group which may have a substituent as a substituent includes an arylthiocarbonyl group and a substituted arylthiocarbonyl group.
  • the arylthiocarbonyl group include an arylthiocarbonyl group having 7 to 20 carbon atoms, and specific examples thereof include a phenylthiocarbonyl group and a naphthylthiocarbonyl group.
  • Examples of the substituted arylthiocarbonyl group include an arylthiocarbonyl group in which at least one hydrogen atom of the above arylthiocarbonyl group is substituted with the above substituent. .
  • Examples of the aralkylthiocarbonyl group which may have a substituent as a substituent include an aranolalkylthiocarbonyl group and a substituted aralkylthiocarbonyl group.
  • Examples of the aralkylthiothiocarbonyl group include an aralkylthiocarbonyl group having 820 carbon atoms, and specific examples thereof include a benzylthiocarbonyl group, a phenylthiothionorebonyl group, and a 9_fluorenylmethylthiocarbonyl group. Is mentioned.
  • Examples of the substituted aralkylthiocarbonyl group include an aralkylthiocarbonyl group in which at least one hydrogen atom of the above aralkylthiocarbonyl group is substituted with the above substituent. Is mentioned.
  • the rubamoyl group having a substituent as a substituent includes a rubamoyl group and a rubamoyl group having a substituent.
  • the substituted rubamoyl group include a substituted rubamoyl group in which one or two hydrogen atoms of the amino group in the substituted rubamoyl group are substituted with a substituent such as a hydrocarbon group which may have a substituent.
  • the hydrocarbon group having a substituent may be the same as the hydrocarbon group optionally having a substituent described as a protecting group for R 1 in the general formula (2). May be.
  • Specific examples of the substituent rubamoyl group include an N-methylolubamoyl group, an N, N-getylcarbamoyl group, and an N-phenylcarbamoyl group.
  • Examples of the substituted phosphino group as a substituent include phosphino groups in which one or two hydrogen atoms of a phosphino group have a substituent and are substituted with a substituent such as a hydrocarbon group.
  • the hydrocarbon group which may have a substituent may be the same as the hydrocarbon group which may have a substituent described as a protective group for R 1 in the general formula (2).
  • Specific examples of the substituted phosphino group include a dimethinolephosphino group, a getylphosphino group, a diphenylphosphino group, and a methylphenylphosphino group.
  • protecting groups represented by R 1 is, inter alia substituents which may Ashinore group have, Le substituted, also good les, alkoxycarbonyl group, Les have a substituent,
  • the aryloxy group may have a substituent or a substituent, and the aryloxy group may preferably be an arylalkyloxycarbonyl group.
  • the group having no ⁇ -proton represented by R 2 is preferably a group that does not isomerize the imine compound represented by the general formula (2). Examples of the group having no ⁇ -proton include a tertiary alkyl group optionally having a substituent, an aryl group optionally having a substituent, and an aryl group having a substituent. And a heterocyclic group or a substituent having a substituent;
  • tertiary alkyl group examples include a tertiary alkyl group having 412 carbon atoms, and specific examples thereof include a tert-butyl group, a tert-pentyl group, and a tert-hexyl group.
  • Examples of the substituted tertiary alkyl group include a tertiary alkyl group in which at least one hydrogen atom of the tertiary alkyl group is substituted with a substituent.
  • the substituent may be the same as the substituent described for the protecting group for R 1 above.
  • Specific examples of the substituted tertiary alkyl group include, for example, a substituted tertiary alkyl group substituted with an aryl group, for example, an aralkyl group having 920 carbon atoms, and specific examples thereof include ⁇ , ⁇ to dimethylbenzyl. And the like.
  • the aralkyl group is preferably an aralkyl group having 915 carbon atoms.
  • R 1 which may have a substituent Ariru group, in the above-mentioned R 1, which may have a substituent explained in a hydrocarbon group which may have a substituent at the protected group Ariru It may be the same as the group. Further, the heterocyclic group which may have a substituent and the acyl group which may have a substituent may be the same as those described for the protecting group for R 1 above.
  • R b CO— (R b is a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, an alkoxy group which may have a substituent, a substituent An aryloxy group, an optionally substituted aralkyloxy group, A heteroaryloxy group, a group having a substituent, a group having an alkylthio group, a group having a substituent, a group having a substituent, an arylthio group, a substituent. And represents an aralkylthio group, an optionally substituted heteroarylthio group or a substituted amino group. ).
  • R b Les have a substituent group represented by R b, be good les, heterocyclic group which may have a hydrocarbon group and substituents in the above R 1, have a substituent described in the protecting group And the same as a heterocyclic group having a hydrocarbon group and a substituent.
  • an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, an aralkyloxy group which may have a substituent, and a hetero group which may have a substituent Aryloxy group, an alkylthio group which may have a substituent, an arylthio group having a substituent, an arylthio group, an arylthio group having a substituent, an arylthio group having a substituent, an aralkylthio group,
  • the optionally substituted heteroarylthio group and substituted amino group are the same as those described above for the substituent for the optionally substituted hydrocarbon group in the protecting group for R 1 above. May be the same as
  • the unsaturated hydrocarbon group represented by R 2 an optionally substituted alkenyl group, Les substituted, also good les, a alkynyl group, or a substituted group And alkadienyl groups.
  • An optionally substituted alkenyl group it may also have a substituent Le
  • Re has alkynyl group and a substituted group, it may also be, alkadienyl group, in the above-mentioned R 1
  • a protecting group May be the same as each group described in the hydrocarbon group which may have a substituent.
  • imine compound represented by the general formula (2) used in the present invention include, for example, the following compounds.
  • R] Ac, Bz, Boc, Z, Fmoc, Troc, etc.
  • R2 Ph, 4-Me-Ph, 4-C I -Ph, Nap, Py,
  • Ac is an acetyl group
  • Bz is a benzoyl group
  • Boc is a tert-butoxycarbonyl group
  • Z is a benzyloxycarbonyl group
  • Fmoc is a fluorenylmethoxycarbonyl group
  • Troc is 2, 2,2-Trichloroethoxycarbonyl group
  • Ph is phenyl group
  • Nap is naphthyl group
  • Py is pyridinole group
  • t_Bu is tert-butyl group
  • Me is methyl group
  • Et is ethyl group
  • Bn is benzyl group Groups are shown below (the same applies hereinafter).
  • nucleophilic compound excluding trialkylsilyl butyl ethers
  • R 3 is a hydrogen atom, a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, and an alkoxy group which may have a substituent
  • R 4 and R 5 are each independently a hydrogen atom, which may have a substituent hydrocarbon group which may have a substituent heterocyclic group
  • EWG ⁇ EWG 1 represents an electron-withdrawing group.
  • a group, an arylthio group optionally having a substituent, an arylalkylthio group optionally having a substituent, an aralkylthio group or a hydroxy group, and Q is a tautomer of the compound represented by the general formula (3)
  • R 7 is a hydrogen atom, a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, and an alkoxy group which may have a substituent
  • R 7 is a hydrogen atom, a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, and an alkoxy group which may have a substituent
  • R 9 and R 1Q each independently represent a hydrogen atom, a hydrocarbon group optionally having a substituent, a heterocyclic group optionally having a substituent, a substituent
  • ring B represents an aliphatic ring or an aliphatic heterocyclic ring
  • Q 2 and Q 3 each independently represent an oxygen atom, NR 17 (R 17 represents a hydrogen atom or a protecting group) or a sulfur atom.
  • R 51 R 55 are each independently a hydrogen atom or a substituent. However, R 51 and R 52, R 5 2 and R 53, R 53 and R M, or R 54 and R 55, May be combined with each other to form a ring.).
  • the hydrocarbon group optionally having a substituent and the heterocyclic group optionally having a substituent represented by R 3 , R 4 and R 5 are as defined above.
  • it may be the same as each group described as a protecting group for R 1 .
  • R 3 represents an optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aralkyloxy group and a substituted amino group
  • R 4 and R 5 may have a substituent, an alkoxy group, an aryloxy group which may have a substituent, an aralkyloxy group which may have a substituent, and a substituent
  • the alkylthio group, the arylthio group optionally having a substituent, the arylthio group and the aralkylthio group optionally having a substituent are represented by the above general formula (2). It may be the same as each group described for the substituent in the hydrocarbon group which may have a substituent described as a protecting group for R 1 and the like.
  • EWG 1 represented by R 4 and R 5 represents an electron-withdrawing group.
  • Electron-withdrawing groups include A substituted or unsubstituted aryl group, an alkoxy group, an optionally substituted aryloxycarbonyl group, a substituted A substituted or unsubstituted arylalkyloxycarbonyl group, a substituted or unsubstituted alkoxyalkoxycarbonyl group, or a substituted or unsubstituted aryloxycarbonyl group; A carbonyl group, a substituted or unsubstituted, an aralkyloxythiocarbonyl group, a substituted or unsubstituted, an alkylthiocarbonyl group or a substituted Aralkylthiocarbonyl group, substituted or unsubstituted aralkylthiocarbonyl group, substituted or unsubstituted carbamoyl group, cyano group, nitro group Groups, hal
  • an optionally substituted asinole group, an optionally substituted alkoxycarbonyl group, and an optionally substituted aryloxycarbonyl group Group an optionally substituted aralkyloxycarbonyl group, an optionally substituted alkylthiocarbonyl group, an optionally substituted aryloxy group, Carbonyl group, aralkylthiocarbonyl group optionally having substituent (s), optionally having substituent (s), alkoxythiocarbonyl group (s) having substituent (s), optionally having substituent (s), aryloxy Carbonyl group, optionally substituted aralkyloxycarbonyl group, substituted or unsubstituted alkylthiocarbonyl group, substituted or unsubstituted Rearyl monocarbonyl group, substituent May have ⁇ Lal key thiocarbonyl group, may force Rubamoiru groups and halogen atoms have a location substituent is have you in
  • the electron-withdrawing group may be an alkoxycarbonyl group which may have a substituent, may have a substituent, may have an aryloxycarbonyl group, may have a substituent, Aralkyloxycarbonyl group, an alkoxythiocarbonyl group optionally having a substituent, an aryloxythiocarbonyl group optionally having a substituent, Also having a substituted alkyloxycarbonyl group, a substituted or unsubstituted alkylthiocarbonyl group, an optionally substituted arylthiocarbonyl group or a substituted In the case of a aralkylthiocarbonyl group, a substituted or unsubstituted group, or a carbamoyl group, these electron-withdrawing groups can be represented by the formula, for example, Rh-C Z 1 )-[where R h is Substituted, substituted, alkoxy, substituted, substituted, substituted, alkoxy,
  • z 1 represents an oxygen atom or a sulfur atom (an alkoxy group which may have a substituent, an aryloxy group which may have a substituent,
  • the optionally substituted aralkyloxy group, the optionally substituted alkylthio group, the optionally substituted arylaryl group, the optionally substituted aralkylthio group and the substituted amino group in the general formula (2), protected with R 1 May be the same as respective groups described in the substituent in such good coal hydrocarbon group which may have a substituent explained as.).
  • the group giving the tautomer of the compound represented by the general formula (3) represented by Q is a compound represented by the above general formula (3), for example, a compound represented by the general formula (3-1)
  • protecting group represented by R 6 is, in the general formula (2) may be the same as protecting groups as described in R 1.
  • ring when forming a ring include a cyclopentane ring and a cyclohexane ring, for example, a 5- to 7-membered ratatone ring, for example, a 5- to 7-membered ratatam ring.
  • R 4 and R 5 either one EWG ⁇ EWG 1 is as defined above. ) Is preferable.
  • R 3 and R 4 , R 3 and R 5 , or R 4 and R 5 are joined together to form a ring, R 3 and R 4 combine to form a ring is R 5 is when, upon by bonding R 3 and R 5 form a ring may be in R 4 force EWG 1.
  • the force has EWG 1 to ring the form ,, or, yo if there are groups derived from EWG 1 Les ,.
  • R 3 H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py
  • R 4 H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py
  • R 3 H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py, OMe
  • R 4 H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py, etc.
  • R 6 H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py,
  • R 3 H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py, OMe,
  • R 4 H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py, etc.
  • a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, and a substituent which may be represented by R 7 Has alkoxy group and substituent
  • the arylthio group and the aralkylthio group which may have a substituent may be the same as those described for R 4 and R 5 in formula (3).
  • the electron-withdrawing group represented by EWG 2 may be the same as the electron-withdrawing group represented by EWG 1 described for R 4 and R 5 in the general formula (3).
  • the above-mentioned or unsubstituted hydrocarbon group and the optionally substituted heterocyclic group are the same as those described as a protecting group for R 1 in the general formula (2). It may be the same as each group.
  • substituents may alkoxy group optionally having, Les substituted, also good les, Ariruokishi group and Re have a substituent, be good Rere Ararukiruokishi group, said R 1 And may be the same as each group described as a substituent for the protecting group in.
  • the substituents represented by R 9 and R 1Q may have, or may have, a hydrocarbon group and a heterocyclic group which may have a substituent are In the general formula (2), each group may be the same as the group described as a protecting group for R 1 .
  • an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, an aralkyloxy group which may have a substituent, and an alkylthio group which may have a substituent The arylthio group which may have a substituent, the aralkylthio group which may have a substituent, and the substituted amino group have the substituent in the protecting group for R 1 in the above general formula (2). It may be the same as each group described as a substituent in the hydrocarbon group which may be substituted. In CR 9 R 1Q , one of R 9 and R 1Q has an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, and a substituent.
  • R 7 in the general formula (5) is preferably an electron-withdrawing group represented by EWG 2 .
  • Specific examples of the compound represented by the general formula (5) include, for example, the following compounds.
  • R7 -OMe, -OEt, -OBn, -SMe, -SEt, -SBn, etc.
  • R 9, R 10 H, Me, E t, i Pr, Ph, 4- e-Ph, 4-CI -Ph, Nap, Py,
  • R 7 -CHO, Ac, Bz,
  • one of R 9 and R 1Q is an alkoxy group or a substituent which may have a substituent such as OMe, OEt, SMe, SEt, NMe, and NEt.
  • examples of the aliphatic ring represented by ring B include an aliphatic ring having 412 carbon atoms.
  • the aliphatic ring includes a monocyclic aliphatic ring, a polycyclic or condensed aliphatic ring.
  • Specific examples of the aliphatic ring include, for example, cyclobutane ring, cyclopentane ring, cyclohexane ring, tetrahydronaphthalene ring, and perhydronaphthalene ring.
  • the aliphatic ring is preferably an aliphatic heterocyclic group having 5 to 14 carbon atoms.
  • aliphatic heterocyclic ring for example, a heteroatom such as a nitrogen atom, an oxygen atom and / or a sulfur atom having 2 to 20 carbon atoms and preferably having at least 1 and preferably 1 to 3 as hetero atoms is provided. And a 5- to 8-membered, preferably 5- or 6-membered, monocyclic aliphatic heterocycle, polycyclic or fused-ring aliphatic heterocycle.
  • Specific examples of the aliphatic heterocyclic ring include a piperazine ring, a morpholine ring, a ratatone ring, a ratatam ring and the like.
  • the aliphatic heterocyclic ring is preferably an aliphatic heterocyclic ring having 2 to 14 carbon atoms.
  • NR 17 represented by Q 2 and Q 3 may be the same as NR 6 represented by Q in the above general formula (3).
  • the compound represented by the general formula (7) is, for example, a compound represented by the general formula (7-1)
  • ring C represents a cyclohexane ring
  • Q 2 and Q 3 are the same as those described above.
  • the cyclohexane ring represented by ring C may be a monocyclic ring, a polycyclic ring, or a condensed ring. Further, the cyclohexane ring is represented by the general formula (2) In the above, the compound may have the substituent described for the hydrocarbon group which may have a substituent.
  • imines and the nucleophilic compound used in the present invention commercially available products or those appropriately produced may be used.
  • the amines obtained by the production method of the present invention include, for example, those represented by the general formula (4) Q 3
  • the amines obtained by the production method of the present invention are chiral ligated compounds.
  • the amines obtained by the production method of the present invention are optically active phosphoric acid derivatives as the phosphoric acid derivatives represented by the general formula (1), the amines obtained are Active amines are preferably obtained.
  • the optically active amines the amines represented by the general formula (4) include, among others, the general formula (4a)
  • R 2 , R 7 and z 1 are the same as above. ) Are preferably obtained.
  • the amine represented by the general formula (8) is obtained by using the optically active phosphoric acid derivative as the phosphoric acid derivative represented by the general formula (1).
  • the amines represented by the general formula (8) include, for example, the general formula (8-1)
  • optically active amine represented by the general formula (8a-1) is also a preferred compound of the optically active amine represented by the general formula (8a).
  • R 1 Ac, Bz, Boc, Z, Fmoc, Troc, etc.
  • R 2 Ph, 4-Me-Ph, 4-Cut Ph, Nap, Py,
  • R 3 R 4 : H, Me, Et, iPr, Ph, 4-Me-Ph, 4-Cut Ph, Nap, Py,
  • EWG 1 CHO, Ac, Bz,
  • R 1 Ac, Bz, Boc E, EtZ, Fmoc, Troc, etc.
  • R2 Ph, 4-Me-Ph, 4-C BII-Ph, Nap, Py,
  • EWG 1 -CHO, Ac, Bz,
  • R 6 H, Me, Et, iPr, Ph, 4-Me-Ph, 4-Cut Ph, Nap, Py,
  • R ' Ac, Bz, Boc, Z, Fmoc, Troc, etc.
  • R2 Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py,
  • Ph 4-Me-Ph, 4-CI-Ph, Nap, Py, SMe, SEt, SBn, etc.
  • amines represented by the general formula (6a) obtained by the production method of the present invention include:
  • R 2 Ph, 4-Me-Ph, 4-CI-P, Nap, Py,
  • R2 Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py,
  • R ' Ac, Bz, Boc, L, Fmoc, ⁇ roc, etc.
  • R 1 Ac, Bz, Boc, Z, Fmoc, Troc, etc.
  • R 2 Ph, 4-Me-Ph, 4-Cut Ph, Nap, Py,
  • R 11 Me, Et, iPr, Ph, 4-Me-Ph, etc.
  • R7 -CHO, Ac, Bz,
  • examples of the substituent represented by R 51 to R 55 include the same groups as those described above for the substituent such as the substituted hydrocarbon group.
  • benzenes represented by the general formula (21) include, for example, benzene, toluene, ethylbenzene, isopropylbenzene, xylene, getylbenzene, diisopropylbenzene, trimethylbenzene, triethylbenzene, triisopropylbenzene, and methoxybenzene.
  • the compound represented by the general formula (22) obtained in the production method of the present invention is preferably an optically active compound.
  • the optically active compound for example, a compound represented by the general formula (22a)
  • R 51 -R 55 H, Me, Et, Pr, iPr, Ph,
  • the present invention 16 will be described.
  • the unsaturated heterocyclic compound represented by the general formula (14) as the nucleophilic compound used in the present invention at least one double bond represented by ring E is present.
  • the monocyclic heterocyclic ring having 5 or more members include a 5-membered ring and a 6-membered ring.
  • the ring E is, S in addition to (sulfur atom) or NR 26, sulfur atom, hetero atom or NR 27 into the such as nitrogen atom (R 27 represents a hydrogen atom or a protecting group.) Heteroatom groups like to the May be provided. Further, the ring E may have a substituent.
  • the substituent is the same as that described for the optionally substituted heterocyclic ring in the general formula (2).
  • the protecting group represented by R 26 in NR 26 and the protecting group represented by R 27 in NR 27 are the same as the protecting groups described for R 1 in the general formula (2).
  • Specific examples of the 5-membered ring of Ring E include a thiophene ring and a pyrrole ring.
  • Specific examples of the 6-membered ring include a pyridine ring and a pyrazine ring.
  • Specific examples of the unsaturated heterocyclic compound represented by the general formula (14) include, for example, the following compounds.
  • the amines represented by (15-2) are produced depending on the reaction conditions, such as the kind of the nucleophilic compound which is the unsaturated heterocyclic compound represented by the general formula (14) used, the catalyst, and the like. The ratio is different.
  • Sex amines are preferably obtained.
  • nucleophilic compound used in the present invention is an unsaturated heterocyclic compound represented by the general formula (16)
  • the hetero atom represented by G 2 in the general formula (16) oxygen Atom, sulfur atom, nitrogen atom and the like.
  • Examples of the heterocyclic ring having at least one double bond represented by ring F in formula (16) include a 5-membered ring and a 6-membered ring.
  • the ring F may have a hetero atom such as a sulfur atom or a nitrogen atom or NR 29 (R 29 represents a hydrogen atom or a protecting group) in addition to the above-mentioned hetero atom.
  • Examples of the heteroatom group include NR 26 (R 26 represents a hydrogen atom or a protecting group) and the like.
  • the protective groups represented by R 29 in the protection group, NR 29 represented by R 28 in NR 28 include the same groups as protecting groups described in R 1 in the general formula (2).
  • the ring F may have a substituent.
  • the substituent is the same as that described for the heterocyclic ring which may have a substituent in the general formula (2).
  • Ring F wherein the hetero atom or hetero atom group represented by G 2 and a double bond and is one if the ring that is adjacent Nitemoyore.
  • the 5-membered ring F include a thiophene ring, a furan ring, a pyrrole ring and the like.
  • Specific examples of the six-membered ring include a pyridine ring and a pyrazine ring.
  • the aromatic ring optionally having a substituent represented by ring I the aromatic ring optionally having a substituent, and the substituent in the heterocyclic ring are the same as those represented by the above general formula ( The substituents described in 2) above are the same as the substituents described above.
  • Examples of the aromatic ring which may have a substituent include a benzene ring.
  • the heterocyclic ring which may have a substituent includes a pyridine ring and the like. In the general formula (16), a benzene ring is used for convenience.
  • the amines represented by the general formula (17) obtained by reacting a nucleophilic compound which is an unsaturated heterocyclic compound represented by the general formula (16) with an imine compound are represented by the general formula: (17a)
  • Unsaturated heterocyclic compounds represented by the above general formula (16) include, among others, the general formula (16-1)
  • R ⁇ R 2 , R 45 —R 48 , G 2 , ring F and * are the same as described above.
  • R 45 — R 48 are the same as those described above.
  • R 41 is preferably an electron-donating group, which may be an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, an aryloxy group which may have a substituent, or an aralkyloxy group. Further, an electron-withdrawing group such as a substituted or unsubstituted hydrocarbon group is more preferred.
  • furans represented by the general formula (12) include, for example, 2-methoxyfuran, 2-ethoxyfuran, 2-methylfuran, 2-ethylfuran, 2-propylfuran, 2- (2 —Propinole) furan and the like.
  • the alkyl group in the alkyl-substituted phenyl group represented by Ar 1 —Ar 5 and R 45 and R 46 in the following general formulas (32) and (33) may be linear, branched or cyclic, for example, an alkyl group having 16 carbon atoms.
  • the alkyl group is preferably an alkyl group having 13 to 13 carbon atoms.
  • alkyl-substituted phenyl group represented by Ar 1 to Ar 5 include methylphenyl, ethylphenyl, isopropylphenyl, dimethylphenyl, getylphenyl, diisopropylphenyl, trimethylphenyl, and triethyl.
  • examples thereof include a phenyl group, a triisopropylphenyl group and a 2,4,6_trimethylphenyl group.
  • the spacer one represented by A 1, Les substituted also be divalent organic And the like.
  • the divalent organic group which may have a substituent include a divalent organic group and a divalent organic group having a substituent (substituted divalent organic group).
  • Specific examples of the divalent organic group having a substituent include, for example, an alkylene group optionally having a substituent, a arylene group optionally having a substituent, and the like. Is mentioned.
  • the alkylene group which may have a substituent includes an alkylene group and a substituted alkylene group.
  • the alkylene group include linear, branched, or cyclic alkylene groups, for example, an alkylene group having 110 carbon atoms. Specific examples thereof include a methylene group, an ethylene group, a trimethylene group, and a propylene group. , Tetramethylene, butylene, 1,2-dimethylethylene, pentylene, hexylene, 1,2-cyclohexylene, etc.
  • Examples of the substituted alkylene group include an alkylene group in which at least one hydrogen atom of the alkylene group is substituted with a substituent.
  • the substituent may be the same as the substituent described for the hydrocarbon group which may have a substituent described as the protecting group for R 1 in the general formula (2).
  • Specific examples of the substituted alkylene group include a 1,2-diphenylethylene group, a 1,2-di (4_methylphenylinole) ethylene group, a 1,2-dicyclohexylethylene group, and a 1,3-dioxolane 1 4 , 5-diyl group and the like.
  • Examples of the arylene group which may have a substituent include an arylene group and a substituted arylene group.
  • Examples of the arylene group include an arylene group having 6 to 20 carbon atoms, and specific examples thereof include a phenylene group, a biphenyldiyl group, and a binaphthalenediyl group.
  • Examples of the substituted arylene group include an arylene group in which at least one hydrogen atom of the arylene group is substituted with a substituent.
  • the substituent may be the same as the substituent described for the hydrocarbon group which may have a substituent described as a protecting group for R 1 in the general formula (2).
  • These divalent organic groups may have at least one group such as an oxygen atom and a carbonyl group at the terminal of the organic group or at an arbitrary position in the chain.
  • Examples of the divalent organic group having a substituent include groups in which at least one hydrogen atom of the divalent organic group having a substituent is substituted with the above substituent.
  • spacers one represented by A 1 is spacer one with optically active site are preferred .
  • Specific examples of the spacer having the optically active site include 1,2-dimethylethylene group, 1,2-cyclohexylene group, 1,2-diphenylethylene group, 1,2-di ( Examples include 4_methylpheninole) ethylene group, 1,2-dicyclohexylethylene group, 1,3-dioxolan-4,5_diyl group, biphenyldiyl group, and binaphthalenediyl group.
  • the spacer has a (R) -form, (S) -form, (R, R) -form or (S, S) -form.
  • Examples of the divalent nonmetallic atomic group include, for example, one NR 13 — (R 13 is a hydrogen atom, has a substituent, may have a hydrocarbon group or has a substituent, Shows acinole group
  • —CR 15 R 16 — ⁇ R 15 and R 16 each independently represent a hydrogen atom, a hydrocarbon group which may have a substituent, or EWG 3 (EWG 3 represents an electron-withdrawing group.) ).
  • R 15 and R 16 each independently represent a hydrogen atom, a hydrocarbon group which may have a substituent, or EWG 3 (EWG 3 represents an electron-withdrawing group.) ).
  • EWG 3 represents an electron-withdrawing group.
  • R 16 is EWG 3. ⁇ And the like.
  • -NR 13 - Good Ashiru group optionally having may substituted hydrocarbon group and a substituent in, in the above-mentioned general formula (2) And R 1 may be the same as the groups described as the protecting group.
  • R 15 or R 16 hydrocarbon group which may have a substituent, organic broken by the general formula (2) Te, the substituents described as a protective group in R 1 It may be the same as the hydrocarbon group.
  • EWG 3 may be the same as EWG 1 described for R 4 and R 5 in the general formula (3).
  • Specific examples of the phosphoric acid derivative represented by the general formula (1) include a compound represented by the following formula.
  • R 61 - R 70 H, Me, Et, Pr, iPr, Bu, tBu, CF 3,
  • Ph Tolyl, a-Naphtyl, j3-Naphtyl, Mestyl, etc.
  • R 7 ′, R 72 H. Ts. Ms, etc.
  • one of the phosphoric acid moieties is converted to a metal salt or an ammonium salt. Including those that have become.
  • metal salts of the metal salt include salts of alkali metals such as lithium, sodium, potassium, rubidium and cesium, and salts of alkaline earth metals such as magnesium, calcium, strontium and norium.
  • ammonia such as methylamine, ethylamine, propyl N-butylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine, N-methylamine
  • salts with aromatic amines such as N, N-dimethylaniline, pyridine and 4-dimethynoleaminopyridine, and saturated heterocyclic amines such as piperidine.
  • a 1 * represents a spacer having an optically active site, and X 1 , X 2 and Y 1 are the same as described above).
  • optical Examples include a spacer having an active site.
  • optically active phosphoric acid derivative represented by the general formula (1-1) include the phosphoric acid derivatives exemplified as specific examples of the phosphoric acid derivative represented by the general formula (1).
  • a compound that becomes an optically active substance can be mentioned.
  • Representative examples of the optically active phosphoric acid derivative represented by the general formula (11) include, for example, compounds represented by the following formula.
  • a 1 represents a spacer
  • X 3 and X 4 each independently represent an oxygen atom, —NR 13 — (R 13 is a hydrogen atom, , A hydrocarbon group or a substituted group, or a benzyl group.)
  • a sulfur atom or —CR 15 R 16 — ⁇ R 15 and R 16 are each independently a hydrogen atom, A hydrocarbon group which may have a substituent or EWG 3 (EWG 3 represents an electron-withdrawing group).
  • EWG 3 represents an electron-withdrawing group.
  • one of R 15 and R 16 is EWG 3 .
  • ⁇ , And Y 1 represents an oxygen atom or a sulfur atom.
  • R 13 is a hydrogen atom, has a substituent, may have a hydrocarbon group or a substituent. Represents a sulfur group or —CR 15 R 16 —, and when X 3 and X 4 are —NR 13 —, the —NR 13 — Represents _NR a — (Ra represents a sulfonic acid-derived acyl group.) And ii) when X 3 and X 4 are different, one of X 3 and X 4 is one NR 13 —, and _NR 13 — is one NR a — (R a is sulfone .
  • a 2 represents a spacer
  • R 24 independently represents a hydrocarbon group which may have a substituent or a heterocyclic group which may have a substituent.
  • the phosphoric acid derivative represented is preferred.
  • Examples of the phosphoric acid derivative of the general formula (1) include the following general formula (11) [Formula 95]
  • R 31 —R 4 ° each independently represents a substituent other than an alkyl-substituted phenyl group, provided that at least one of R 31 —R 35 and at least one of R 36 —R 4 ° Is a aryl group which may have a substituent (however, excluding an alkyl-substituted phenyl group).
  • phosphoric acid derivative represented by the general formula (11) include, for example, the following compounds.
  • R Z , 34 , R 37 , R 39 Ph, a-Naphtyl, ⁇ -Naphtyl etc.
  • R and R ′ are the same or different and are each a hydrogen atom, a bromine atom, an iodine atom, a methoxy group, a triphenylsilyl group, a naphthyl group, a phenyl group or a phenyl group having 113 substituents (here, The substituent is a substituent selected from a fluorine atom, a methoxy group, a methyl group, a tert-butyl group, a phenyl group, a trifluoromethyl group and a naphthyl group].
  • Specific examples of the phosphoric acid derivative in the general formula (11 ') include the corresponding compounds among the compounds exemplified in the above-mentioned exemplified compounds 1-1 and the exemplified compounds in the above-mentioned exemplified compounds 1-3 and 1-16. And the like.
  • X 3 and X 4 are each independently an oxygen atom, and one NR 13 — (R 13 is a hydrogen atom, has a substituent, is a hydrocarbon group, Or a substituted or unsubstituted aryl group), a sulfur atom or -CR 15 R 16- ⁇ R 15 and R 16 are each independently a hydrogen atom, A hydrocarbon group which may have a substituent or EWG 3 (EWG 3 represents an electron-withdrawing group). However, one of R 15 and R 16 is EWG 3 . ⁇ , And Y 1 represents an oxygen atom or a sulfur atom.
  • Ashiru group derived from a sulfonic acid represented by R a in the above general formula (2), ⁇ sheet Honoré from acid described which may Ashinore group optionally having substituents described in the protecting group R 1 It may be the same as the group.
  • Specific examples of the phosphoric acid derivative represented by the general formula (la) include, for example, the compounds exemplified as the above-mentioned exemplified compounds 1-4-1 1-15.
  • Specific examples of the phosphoric acid derivative represented by the general formula (lb) include the compounds exemplified as the above-mentioned exemplified compounds 1-2.
  • the phosphoric acid derivative represented by the general formula (la-1) for example, among the phosphoric acid derivatives exemplified as the above-mentioned exemplified compounds 1-411-11, compounds which are to be optically active .
  • Representative examples of the optically active phosphoric acid derivative represented by the above general formula (la-1) include, for example, compounds represented by the above-mentioned exemplified compounds 111-122.
  • Specific examples of the phosphoric acid derivative represented by the general formula (lb-1) include, for example, compounds that become optically active compounds among the phosphoric acid derivatives exemplified as the above-mentioned compound 1_2.
  • Representative examples of the optically active phosphoric acid derivative represented by the above general formula (lb-1) include, for example, compounds represented by the above-mentioned exemplified compounds 111-113.
  • the phosphoric acid derivative represented by the general formula (11) is preferably an optically active phosphoric acid derivative.
  • the optically active phosphoric acid derivative for example, the general formula (11a)
  • R dl — R 4U each independently represents a substituent. However, at least one of R — and at least one of R 36 — R 4 ° may have a substituent. It is a good aryl group.
  • an optically active phosphoric acid derivative represented by the general formula (11 ′) It is preferable to use an optically active phosphoric acid derivative represented by the general formula (11 ′).
  • Specific examples of the phosphoric acid derivative represented by the general formula (31) include, for example, the following general formula (32): Phosphoric acid derivatives represented by (33) and the like.
  • R 45 represents an alkyl group.
  • R 4S represents an alkyl group.
  • phosphoric acid derivative represented by the general formula (32) include the following phosphoric acid derivatives.
  • R 45 CH 3 , C 2 H S , C 3 H 7, C 4 H 3 , C 5 H n .
  • the phosphoric acid derivative represented by the general formula (33) for example, Acid derivatives and the like.
  • the phosphoric acid derivative represented by the general formula (31) is preferably an optically active phosphoric acid derivative.
  • the optically active phosphoric acid derivative for example, a compound represented by the general formula (31a) or (31b)
  • the phosphoric acid derivative represented by the general formula (32) and the phosphoric acid derivative represented by the general formula (33) are preferably optically active phosphoric acid derivatives.
  • optically active phosphoric acid derivative include the following general formulas (32a), (32b), (33a) and (33b).
  • R 46 is the same as described above.
  • optically active phosphoric acid derivatives include the optically active substances of the respective phosphoric acid derivatives exemplified above.
  • the phosphoric acid derivative represented by the general formula (1) can be produced, for example, as follows.
  • Examples of the compound represented by the general formula (10) include diols, aminoanoreconores, diamines, dithiols, mercapto alcohols, mercaptoamines and the like.
  • Examples of the diols include those represented by the general formula (10-1)
  • diols include ethylene glycol, propylene glycol, potassium hydroxide, 1,2-cyclohexanediol, 1,2-diphenylethylene glycol, and 2,2'-dihydroxybiphenyl.
  • 1,1'-B2-Naphthonone, 5,5,6,6,7,7,8,8'-octahydro (1,1-binaphthalene) -2,2, -diol can be
  • amino alcohols for example, those represented by the general formula (10-2)
  • R zl represents a hydrogen atom, a hydrocarbon group which may have a substituent or an acyl group which may have a substituent, and A 1 is the same as described above.
  • R zl and the optionally substituted hydrocarbon group and the optionally substituted hydrocarbon group represented by 2 to 4 described below are the same as those described for R 13 in the above 1 NR 13 It may be the same as the group.
  • amino alcohols include 2-aminoethanol, 1-amino-12-propanol, o-aminophenol, 1-amino-1,2-diphenylethyl alcohol, and 2-amino _2, -Hydroxybiphenyl, 2-amino-2'-Hydroxybinaphthyl, 2- (N- (4-toluenesulfonyl) amino) -2, -Hydroxybiphenyl, 2- (N- (4-toluenesulfonyl) amino ) 2′-hydroxybinaphthyl and the like.
  • diamines for example, compounds represented by the general formula (10-3)
  • diamines include ethylenediamine, 1,2-diaminocyclohexane, 1,2-dicyclohexylethylenediamine, 1,2_phenylenediamine, 2,2'-diaminobinaphthyl, N-unsubstituted diamines such as 1,2-diphenylethylenediamine, 1,2-dinaphthylethylenediamine, N-benzenesulfonyl 1,2-phenylenediamine, N_methaneshonole , 2_phenylenediamine, N— (4-tonolenesulfoninole) _1, 2_phenylenediamine, N—benzenesulfoninole-1,2, diphenylethylenediamine, N_methanesulfonyl-1 N, N-substituted diamines such as N, (2-toluenesulfoninole), 1, 2-diphenylethylenediamine
  • the dithiols include, for example, those represented by the general formula (10-4)
  • dithiols include ethanedithiol, 1,2-propanedithiol, and the like.
  • the mercapto alcohols include, for example, those represented by the general formula (10-5)
  • mercapto alcohols include 2-mercaptoethanol, 2-hydroxythiophenol, and the like.
  • the mercaptoamines include, for example, those represented by the general formula (10-6)
  • R z4 represents a hydrogen atom, a hydrocarbon group which may have a substituent or an acinole group which may have a substituent, and A 1 is the same as defined above).
  • a 1 is the same as defined above.
  • mercaptoamines
  • mercaptoamines include 2_aminothiophenol, 2_ (N_ (4_toluenesulfonyl) amino) thiophenol, and the like.
  • These compounds represented by the general formula (10) include the optically active phosphoric acid derivative represented by the above general formula (11) as the phosphoric acid derivative represented by the above general formula (1). To obtain, the general formula (1
  • optically active compounds represented by the general formula (10a) include the diols, aminoanolecols, diamines, dithiols, and diols exemplified as the compounds represented by the general formula (10).
  • compounds such as capto alcohols and mercaptoamines any compounds may be used as long as they can be optically active.
  • diols, amino alcohols and diamines are given as (1R, 2R) -1,2-cycloalkyl.
  • the compounds represented by the above general formula (10) commercially available products or those appropriately produced may be used.
  • diamines, amino alcohols or mercaptoamines are used as the compound represented by the general formula (10), for example, diamines, amino alcohols or mercaptoamines having unsubstituted amino groups are used.
  • the amino group may have a substituent, may have a substituent, may have a hydrocarbon group and / or a substituent, may have a substituent, or may have an amino group.
  • the above general formula (10) in which a substituted or unsubstituted hydrocarbon group and / or an optionally substituted asinole group is introduced.
  • phosphorylating agent used when producing the phosphoric acid derivative represented by the general formula (1) for example, phosphorus oxyhalides such as phosphorus oxychloride and phosphorus oxybromide, for example, phosphorus (IV) chloride, Examples thereof include phosphorus halides such as phosphorus (IV) bromide, and dihalogenophosphines such as dichloroallyloxyphosphine and dichloromethylphosphine. These phosphorylating agents may be used alone or in combination of two or more.
  • the amounts of the compound represented by the general formula (10) and the phosphorylating agent are not particularly limited because they vary depending on the type of the compound represented by the general formula (10) and the phosphorylating agent to be used. Is appropriately selected from the range of about 1.0 to 5.0 equivalents, preferably about 1.5 to 2.5 equivalents, of the phosphorylating agent, based on the substrate represented by the general formula (10). Is done.
  • the production of the phosphoric acid derivative may be performed in the presence of a base, if necessary.
  • the base include an inorganic base and an organic base.
  • the inorganic base include potassium carbonate, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydroxide, magnesium carbonate, calcium carbonate and the like.
  • Organic bases include alkalis such as potassium naphthalenide, sodium acetate, potassium acetate, magnesium acetate, calcium acetate; salts of alkaline earth metals; triethylamine, diisopropylethylamine; N, N-dimethylaniline; Pyridine, 4-dimethylaminopyridine, 1,5_diazavicik Mouth [4 • 3.0] non-5-ene, 1,8-diazabicyclo [5 • 4.0] indene-7-ene, tree Organic amines such as n-butylamine and N-methylmorpholine, metal hydrides such as sodium hydride and potassium hydride, methylmagnesium bromide, ethylmagnesium bromide, propylmagnesium bromide, methyllithium, ethyllithium, Organometallic compounds such as propyllithium, n-butynolelithium, and tert-butyllithium; and quatern
  • the amount of the base used is not particularly limited because it varies depending on the compound represented by the above general formula (10) and the type of the phosphorylating agent to be used. Usually, it is appropriately selected from the range of about 1.0 to 5.0 equivalents, preferably about 1.5 to 2.5 equivalents.
  • the method for producing the phosphoric acid derivative may be performed in the presence of a solvent, if necessary.
  • the solvent include, for example, aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; dichloromethane, 1, 2 —Halogenated hydrocarbons such as dichloroethane, chlorophonolem, carbon tetrachloride, o-dichlorobenzene, getyl ether, diisopropyl ether, tert-butyl methyl ether, dimethoxyethane, ethylene glycol getyl ether, tetrahydrofuran, Ethers such as 4-dioxane, 1,3-dioxolane, ketones such as acetone, methyl ethyl ketone
  • Examples include amides such as N-dimethylformamide and N, N-dimethylacetamide, sulfoxides such as dimethylsulfoxide, cyano-containing compounds such as acetonitrile, and N-methylpyrrolidone. These solvents may be used alone or in an appropriate combination of two or more.
  • the amount of the solvent used is not particularly limited because it varies depending on the compound represented by the above general formula (10) and the kind of the phosphorylating agent to be used. Usually, it is appropriately selected from the range of about 0.1-1M, preferably about 0.1-0.5M.
  • the method for producing a phosphoric acid derivative other components may be added as necessary, in addition to the above-described base and solvent. Further, the method for producing the phosphoric acid derivative can be carried out in a base without using a solvent.
  • the reaction temperature is appropriately selected usually from the range of about -78-100 ° C, preferably about 0-50 ° C.
  • the reaction time is appropriately selected usually in the range of about 10 minutes to 10 days, preferably about 1 hour to 7 days.
  • the phosphoric acid derivative represented by the general formula (1) is prepared by using dihalognoallyloxyphosphines as a phosphorylating agent.
  • optically active phosphoric acid derivative represented by the general formula (9a) is optionally added in the presence of a transition metal catalyst, if necessary.
  • a transition metal catalyst By reacting in the presence of a nucleophile, the phosphoric acid derivative represented by the above general formula (1) can be obtained.
  • the optionally substituted aryl group represented by R 2 ° includes an aryl group and a substituted aryl group.
  • Examples of the substituted aryl group include an aryl group in which at least one hydrogen atom of the aryl group is substituted with a substituent.
  • the substituent may be the same as the substituent described for the hydrocarbon group which may have a substituent described as a protecting group for R 1 in the general formula (2).
  • Examples of the substituted aryl group include a substituted aryl group having 320 carbon atoms, and specific examples thereof include a crotyl group, a prenyl group, a methallyl group, and a cinnamyl group.
  • the benzyl group which may have a substituent includes a benzyl group and a substituted benzyl group.
  • Examples of the substituted benzyl group include a benzyl group in which at least one hydrogen atom of a benzyl group has been substituted with a substituent.
  • the substituent may be the same as the substituent described for the hydrocarbon group which may have a substituent described as the protecting group for R 1 in the general formula (2).
  • Examples of the substituted benzyl group include a substituted benzyl group having 6 to 20 carbon atoms.
  • Specific examples of the phosphoric acid derivative represented by the general formula (9) include, for example, the following compounds.
  • an optically active phosphoric acid derivative is preferably mentioned.
  • Specific examples of the optically active phosphoric acid derivative include optically active substances of the specific examples of the phosphoric acid derivative represented by the general formula (9) exemplified above.
  • transition metal catalyst examples include a high-period transition metal catalyst, and examples of the high-period transition metal include palladium, platinum, rhodium, nickel, ruthenium, and molybdenum. It may be used in any tetravalent oxidation state. In such a case, the transition metal catalyst may have various halide ions, hydroxide ions and the like as a counteranion.
  • these transition metal catalysts may have an appropriate ligand as needed.
  • the ligand include a trivalent phosphorus ligand such as trialkylphosphine, triarylphosphine, and trialkylphosphite, various heterocyclic carbene ligands, amine-based ligands, and sulfur-based ligands. And the like.
  • These transition metal catalysts and ligands may be used alone or in combination of two or more.
  • the amount of the transition metal catalyst used is not particularly limited because it varies depending on the type of the compound represented by the above general formula (9) and the type of the transition metal catalyst to be used.
  • the transition metal catalyst is appropriately selected usually in the range of about 0.0001 to 1.0 equivalent, preferably about 0.01 to 0.1 equivalent.
  • nucleophile examples include carboxylic acids, phenols, ammonium salts, alcohols, and compounds having an active methylene moiety.
  • Examples of the carboxylic acid include formic acid, acetic acid, propionic acid and the like.
  • Examples of the phenols include phenol and catechol.
  • Examples of the ammonium salt include ammonium halide salts having at least two hydrogen atoms, such as getyl ammonium and isopropyl ammonium.
  • Examples of the alcohol include methanol, ethanol, 2-propanol, n-butanol, 2-ethoxyethanol, benzyl alcohol and the like.
  • Examples of the compound having an active methylene site include a compound represented by the above general formula (3).
  • nucleophiles may be prepared in advance or may be prepared by mixing an acid and a base in a reaction system.
  • the amount of the nucleophile used is not particularly limited because it varies depending on the type of the compound represented by the general formula (9) and the type of the transition metal catalyst to be used.
  • the nucleating agent is appropriately selected usually from a range of about 1.0 to 10.0 equivalents, preferably about 1.2 to 2.5 equivalents.
  • This reaction can be carried out in the presence of a base, if necessary.
  • the type of base and the amount used are the same as described above.
  • This reaction may be performed in the presence of a solvent, if necessary.
  • the type of solvent is the same as above.
  • the amount of the solvent used depends on the kind of the compound represented by the general formula (9) and the transition metal catalyst to be used. Although it is not particularly limited because it differs depending on the kind and the like, it is appropriately selected usually from the range of about 0.01 to 10 M, preferably about 0.1 to 0.5 M for the compound represented by the general formula (9).
  • the reaction temperature is not particularly limited because it varies depending on the type of the compound represented by the general formula (9) or the transition metal catalyst to be used, but it is usually about 0-200 ° C, preferably about 0-200 ° C. It is appropriately selected from the range of 100 ° C.
  • the reaction time is appropriately selected usually in the range of about 10 minutes to 10 days, preferably about 1 hour to 7 days.
  • the phosphoric acid derivative can be produced in an inert gas atmosphere as necessary.
  • the inert gas include a nitrogen gas and an argon gas.
  • the obtained phosphoric acid derivative may be used as it is in the production method of the present invention, or may be used after post-treatment, purification, isolation, or the like, if necessary.
  • Specific means of post-treatment, purification, isolation and the like include means known per se, for example, solvent extraction, liquid conversion, phase transfer, salting out, crystallization, recrystallization, various types of chromatography and the like.
  • the amounts of the imine compound represented by the general formula (2) and the compound represented by the general formula (3b) may vary depending on the amount of the imine compound represented by the general formula (2) or the general formula (3b )
  • the optically active phosphoric acid derivative represented by the general formula (11-1) are not particularly limited because they differ depending on the kind and the like, but are not limited to the imine compound represented by the general formula (2).
  • the compound represented by the general formula (3b) is appropriately selected usually from a range of about 0.9 to 2.0 equivalents, preferably about 1.0 to 1.5 equivalents.
  • the present production method may be performed in the presence of a solvent, if necessary.
  • the solvent include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; dichloromethane, 1,2-dichloroethane Halogenated hydrocarbons such as carbon tetrachloride, carbon tetrachloride, o-dichlorobenzene, getyl ether, diisopropyl ether, tert-butyl methyl ether, dimethoxyethane, ethylene glycol getyl ether, Ethers such as trahydrofuran, 1,4-dioxane and 1,3-dioxolane; ketones such as acetone, deacetone, methylethylketone, methylisobutylket
  • Two or more may be used in combination as appropriate.
  • the amount of the solvent to be used is not particularly limited because it varies depending on the type of the imine compound represented by the general formula (2) or the compound represented by the general formula (3b). , General formula
  • the substrate concentration of the imine compound represented by (2) is usually about 0.01-1 M, preferably about 0.05
  • the reaction temperature is generally about -78-100 ° C, preferably about 0-50 ° C, more preferably room temperature. It is appropriately selected from a near range.
  • the reaction time is appropriately selected usually in the range of about 10 minutes to 10 days, preferably about 1 hour to 7 days.
  • an imine compound represented by the general formula (2) is used as the imine compound
  • a compound represented by the general formula (5) is used as the nucleophilic compound
  • the optically active phosphoric acid derivative represented by the general formula (1-1) is used as the phosphoric acid derivative represented by (1)
  • the optically active amine represented by the general formula (6a) is used as an amine. It is a reaction formula showing the obtained reaction.
  • an optically active amine represented by the general formula (6a) By reacting in the presence of the optically active phosphoric acid derivative represented by (111), an optically active amine represented by the general formula (6a) can be obtained.
  • the amounts of the imine compound represented by the general formula (2) and the compound represented by the general formula (5) may be different depending on the amount of the imine compound represented by the general formula (2) or the general formula (5).
  • the optically active phosphoric acid derivative represented by the general formula (11-1) are not particularly limited because they differ depending on the kind of the imine compound represented by the general formula (2).
  • the compound represented by the general formula (5) is appropriately selected usually from a range of about 0.9 to 2.5 equivalents, preferably about 1.0 to 1.5 equivalents.
  • the present production method may be performed in the presence of a solvent, if necessary.
  • a solvent examples include the solvents exemplified in Scheme 1 above.
  • the amount of the solvent used depends on the amount of the imine compound represented by the general formula (2) Although it is not particularly limited because it differs depending on the kind of the compound represented by the general formula (5), the substrate concentration of the imine compound represented by the general formula (2) is usually about 0.01-1M, preferably about 0.01-1M. It is appropriately selected from the range of 0.05-0.2M.
  • the reaction temperature is appropriately selected usually from the range of about 0 100 ° C, preferably about 050 ° C, and more preferably around room temperature.
  • the reaction time is appropriately selected usually in the range of about 10 minutes to 10 days, preferably about 1 hour to 7 days.
  • Scheme 3 uses an imine compound represented by the general formula (2) as an imine compound, and among the compounds represented by the general formula (7) as a nucleophilic compound, Using a compound represented by the general formula (1), a phosphoric acid derivative represented by the general formula (1) is used, and an optically active phosphoric acid derivative represented by the general formula (111) is used. This is a reaction formula showing a reaction for obtaining an optically active amine represented by 8a-1).
  • the amounts of the imine compound represented by the general formula (2) and the compound represented by the general formula (7-1) are determined by using the imine compound represented by the general formula (2) or the general formula (7- It is particularly limited because it differs depending on the type of the compound represented by 1) and the optically active phosphoric acid derivative represented by the general formula (111).
  • the compound represented by the general formula (7-1) is usually used in an amount of about 0.9 to 2.5 equivalents, preferably about 1.0-1 to the imine compound represented by the general formula (2). . Appropriately selected from a range of 5 equivalents.
  • the present production method may be performed in the presence of a solvent, if necessary.
  • a solvent examples include the solvents exemplified in Scheme 1 above.
  • the amount of the solvent used is not particularly limited since it varies depending on the type of the imine compound represented by the general formula (2) or the compound represented by the general formula (7_1), and the like.
  • the substrate concentration of the imine compound represented by the formula (2) is appropriately selected usually from the range of about 0.01-1 M, preferably about 0.05-0.5 M.
  • the reaction temperature is appropriately selected usually from a range of about -50 to 100 ° C, preferably about 1250 ° C, and more preferably around room temperature.
  • the reaction time is appropriately selected usually in the range of about 10 minutes to 10 days, preferably about 30 minutes to 7 days.
  • Scheme 4 uses an imine compound represented by the general formula (2) as an imine compound, and a benzene represented by the general formula (21) as a nucleophilic compound.
  • a reaction for obtaining an optically active amine represented by the general formula (22a) as an amine using an optically active phosphoric acid derivative represented by the general formula (1-1) as the phosphoric acid derivative represented by 1) This is a reaction equation showing
  • the amount of the imine compound represented by the general formula (2) and the amount of the benzenes represented by the general formula (21) may be different depending on the amount of the imine compound represented by the general formula (2) or the general formula (21).
  • the optically active phosphoric acid derivative represented by the general formula (11-1) are not particularly limited because they differ depending on the kind of the imine compound represented by the general formula (2).
  • the benzene represented by the general formula (21) is appropriately selected usually from the range of about 0.9 to 2.5 equivalents, preferably about 1.0 to 1.5 equivalents.
  • the present production method may be performed in the presence of a solvent, if necessary.
  • a solvent examples include the solvents exemplified in Scheme 1 above.
  • the amount of the solvent used is not particularly limited because it varies depending on the type of the imine compound represented by the general formula (2) or the benzene represented by the general formula (21).
  • the substrate concentration of the imine compound represented by the general formula (2) is usually about 0.01-1M, preferably about 0.1-1M.
  • the reaction temperature is appropriately selected usually from a range of about -50 to 100 ° C, preferably about 20 to 50 ° C, and more preferably around room temperature.
  • the reaction time is appropriately selected usually in the range of about 10 minutes to 10 days, preferably about 30 minutes to 7 days.
  • Scheme 5 uses an imine compound represented by the general formula (2) as the imine compound and an unsaturated heterocyclic compound represented by the general formula (14) as the nucleophilic compound, one An optically active phosphoric acid derivative represented by the general formula (11) is used as the phosphoric acid derivative represented by the general formula (1), and an optically active phosphoric acid derivative represented by the general formula (15-la) is used as amines.
  • This is a reaction formula showing a reaction for obtaining an amine and / or an optically active amine represented by the general formula (15-2a).
  • the imine compound represented by the general formula (2) and the unsaturated heterocyclic compound represented by the general formula (14) are combined with the optically active phosphoric acid derivative represented by the general formula (11).
  • an optically active amine represented by the general formula (15-la) and / or an optically active amine represented by the general formula (15_2a) can be obtained.
  • the amount of the imine compound represented by the general formula (2) and the amount of the unsaturated heterocyclic compound represented by the general formula (14) are determined based on the amount of the imine compound represented by the general formula (2) or the amount of the imine compound represented by the general formula (2). Although it is not particularly limited because it differs depending on the type of the unsaturated heterocyclic compound represented by (14) and the optically active phosphoric acid derivative represented by the general formula (11), the compound represented by the general formula (2)
  • the unsaturated heterocyclic compound represented by the general formula (14) is usually added in an amount of about 0.9-2.5 equivalents, preferably about 1.0-1.5 equivalents, to the imine compound. It is appropriately selected.
  • the present production method may be performed in the presence of a solvent, if necessary.
  • a solvent examples include the solvents exemplified in Scheme 1 above.
  • the amount of the solvent to be used is not particularly limited because it varies depending on the kind of the imine compound represented by the general formula (2) or the unsaturated heterocyclic compound represented by the general formula (14).
  • the substrate concentration of the imine compound represented by the general formula (2) is appropriately selected usually from the range of about 0.01-1M, preferably about 0.05-0.5M.
  • the reaction temperature is appropriately selected usually from the range of about -80 to 100 ° C, preferably about 50 to 50 ° C, and more preferably about -35 ° C.
  • the reaction time is appropriately selected usually in the range of about 10 minutes to 10 days, preferably about 30 minutes to 7 days.
  • Scheme 6 uses an imine compound represented by the general formula (2) as an imine compound, and uses an unsaturated heterocyclic compound represented by the general formula (16) as a nucleophilic compound.
  • the optically active phosphoric acid derivative represented by the general formula (11) is used as the phosphoric acid derivative represented by the general formula (1), and the amine represented by the general formula (17a) is represented by amines.
  • 3 is a reaction formula showing a reaction for obtaining active amines.
  • the amount of the imine compound represented by the general formula (2) and the amount of the unsaturated heterocyclic compound represented by the general formula (16) are determined based on the amount of the imine compound represented by the general formula (2) or the amount of the imine compound represented by the general formula (2). Although it is not particularly limited because it differs depending on the type of the unsaturated heterocyclic compound represented by the formula (16) and the optically active phosphoric acid derivative represented by the formula (11), the compound represented by the formula (2)
  • the amount of the unsaturated heterocyclic compound represented by the general formula (16) is usually about 0.92.5 equivalents, preferably about 1.0-1.5 equivalents, relative to the imine compound. Selected.
  • the present production method may be performed in the presence of a solvent, if necessary.
  • a solvent examples include the solvents exemplified in Scheme 1 above.
  • the amount of the solvent to be used is not particularly limited because it varies depending on the kind of the imine compound represented by the general formula (2) or the unsaturated heterocyclic compound represented by the general formula (16).
  • the substrate concentration of the imine compound represented by the general formula (2) is appropriately selected usually from the range of about 0.01-1M, preferably about 0.05-0.5M.
  • the reaction temperature is appropriately selected usually from a range of about 180 to 100 ° C, preferably about 160 to room temperature, and more preferably about 140 ° C.
  • the reaction time is appropriately selected usually in the range of about 10 minutes to 10 days, preferably about 30 minutes to 7 days.
  • Scheme 7 uses an imine compound represented by the general formula (2) as the imine compound, a furan represented by the general formula (12) as the nucleophilic compound,
  • the optically active phosphoric acid derivative represented by the general formula (1-1) is used as the phosphoric acid derivative represented by (1)
  • the optically active amines represented by the general formula (13a) are used as amines. It is a reaction formula showing the obtained reaction.
  • an imine compound represented by the general formula (2) and a furan represented by the general formula (12) are reacted in the presence of the optically active phosphoric acid derivative represented by the general formula (111).
  • the optically active amine represented by the general formula (13a) can be obtained by reacting
  • the amount of the imine compound represented by the general formula (2) and the amount of the furan represented by the general formula (12) are determined by the amount of the imine compound represented by the general formula (2) or the amount of the furan represented by the general formula (12). It is not particularly limited because it varies depending on the kind of the furan represented by the formula and the optically active phosphoric acid derivative represented by the general formula (111), but the iminei conjugate represented by the general formula (2)
  • the furans represented by the general formula (12) are appropriately selected usually in the range of about 0.9 to 5.0 equivalents, preferably about 1.0 to 3.0 equivalents.
  • the present production method may be performed in the presence of a solvent, if necessary.
  • a solvent Solvents exemplified in Chem.
  • the amount of the solvent to be used is not particularly limited because it varies depending on the type of the imine compound represented by the general formula (2) or the furan represented by the general formula (12).
  • the substrate concentration of the imine compound represented by the formula (1) is usually selected as appropriate from the range of about 0.01-1 M, preferably about 0.05-0.5 M.
  • the reaction temperature is appropriately selected usually from the range of about -50 to 100 ° C, preferably about 1250 ° C, and more preferably around room temperature.
  • the reaction time is appropriately selected usually in the range of about 10 minutes to 10 days, preferably about 30 minutes to 7 days.
  • the production method of the present invention described in the above scheme 17 can be carried out in an inert gas atmosphere.
  • the inert gas include a nitrogen gas and an argon gas.
  • optically active amines may be subjected to post-treatment, purification, isolation and the like as necessary.
  • Boc tert-butoxy canoleboninole
  • TCE 1, 1, 2, 2-tetrachloroethane
  • An optically active phosphoric acid derivative represented by the following formula was prepared in the same manner as in Example 2 except that a sulfonyl compound as shown in Table 1 below was used instead of p-toluenesulfonyl chloride in Example 2. Manufactured.
  • An optically active phosphoric acid derivative represented by the above formula was produced in the same manner as in Example 2 except that p-ditrophenylsulfonyl chloride was used instead of p-toluenesulfonyl chloride. Yield: 51.6 mg. Yield: 90%.
  • Example 1 (2) except that (1R, 2S) -diphenylethylene glycol was used in place of N ,, '-di-p-toluenesulfonyl-1,2-phenylenediamine.
  • An optically active phosphoric acid derivative represented by the above formula was produced in the same manner as 1 (2).
  • Example 14 In Example 1 (2), except that 1,1, -binaphthyl-2,2'-diol was used instead of 1,1, -binaphthyl_2,2, -diamine, The optically active phosphoric acid derivative represented by the above formula was produced in the same manner as in the above). [Example 14]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書
ァミン類の製造方法
技術分野
[0001] 本発明は、医薬、農薬等の中間体等として有用なァミン類の製造方法に関する。
背景技術
[0002] 従来、医薬や農薬等に用いられる光学活性な中間体の製造には、例えば金属化 合物を用いた方法が知られている。し力しながら、用いた金属化合物を処理しなけれ ばならない等の問題点を有していた。
[0003] このような問題点を解決するために、非特許文献 1や非特許文献 2には、金属化合 物の代わりに L一プロリン又はその誘導体を用いて、カルボ二ルイ匕合物とイミン類とを 反応させる方法が報告されてレ、る。
し力 ながら、非特許文献 1に記載の方法では、 L一プロリンを用いて反応させた後
、水素化ホウ素ナトリウム等の還元剤で還元反応をしなければならず、また、非特許 文献 2に記載の方法では、 L一プロリンの触媒量を多く(触媒量以上)用いなければな らなレ、等の問題点を有してレ、た。
[0004] 非特許文献 3には、トリメチルシリルビュルエーテルと N— (2—ヒドロキシフヱニル)ィ ミン類とをキラルなリン酸誘導体と反応させることにより、光学活性な N保護 β—ァミノ 酸を製造する方法が記載されてレ、る。
しかしながら、非特許文献 3に記載の方法では、ィミン類と反応させる基質をトリメチ ルシリルイ匕してトリメチルシリルビュルエーテルとしなければならなレ、、とレ、う問題点を 有していた。
また非特許文献 4は一般式(1 )のリン酸誘導体を開示するが、ィミンと亜リン酸ジィ ソプロピルエステルとから a—ァミノホスホン酸を得る反応に使用することを示すに過 ぎない。
[0005] 非特許文献 1 :J. Org. Chem. , Vol. 68, No. 25, 9624 (2003) .
非特許文献 2 :J. Am. Chem. Soc. , Vol. 24, No. 9, 1842 (2002) . 非特許文献 3 : THE NINTH INTERNATIONAL KYOTO CONFERENC E OF NEW ASPECTS OF ORGANIC CHEMISTRY, Program, A bstracts, List of Participants, pi 16, (2003) .
非特言午文献 4 : The ninth International Kyoto Conference on New Asp ects of Organic Chemistry, 2003, November, 10—14 (poster pre sentation was held on Nov. 11th) Abstracts, p. 116, No. PA004 発明の開示
発明が解決しょうとする課題
[0006] 本発明は上記問題に鑑みなされたものであり、特別な後処理等を必要とせずに、 収率及び光学純度よく医薬、農薬等の中間体等として有用なアミン類、特に光学活 性ァミン類の製造方法及び該ァミン類等を製造するのに有用なリン酸誘導体、特に 光学活性リン酸誘導体を提供することを目的とする。
課題を解決するための手段
[0007] 本発明者らは、上記課題を解決するために鋭意検討を行った結果、一般式(1)で 表されるリン酸誘導体を用いることにより、所望のァミン類が収率及び光学純度よく得 られることを見出し本発明に到達した。
[0008] 即ち、本発明は以下の通りである。
[0009] 1)ィミン化合物と求核性化合物(但し、トリアルキルシリルビュルエーテル類を除く。 ) とを一般式(1)
[化 1]
Figure imgf000004_0001
(式中、 A1はスぺーサーを示し、 X1及び X2は夫々独立して、二価の非金属原子又は 二価の非金属原子団を示し、 Y1は酸素原子又は硫黄原子を示す。)で表されるリン 酸誘導体の存在下で反応させることを特徴とする、ァミン類の製造方法。
[0010] 2)—般式(1)で表されるリン酸誘導体が光学活性リン酸誘導体であり、得られるアミ ン類が光学活性アミン類である、前記 1)に記載の製造方法。
[0011] 3)ィミン化合物が一般式(2) [化 2]
Figure imgf000005_0001
(式中、 R1は水素原子又は保護基を示し、 R2はひ—プロトンを有さない基又は不飽和 炭化水素基を示す。)で表されるイミンィ匕合物である、前記 1)に記載の製造方法。
[0012] 4)求核性化合物が一般式 (3)
[化 3]
Figure imgf000005_0002
[式中、 R3は水素原子、置換基を有していてもよい炭化水素基、置換基を有していて もよい複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよ レヽァリールォキシ基、置換基を有してレ、てもよレ、ァラルキルォキシ基又は置換アミノ 基を示し、 R4及び R5は夫々独立して、水素原子、置換基を有していてもよい炭化水 素基、置換基を有していてもよい複素環基、 EWG^EWG1は電子吸引性基を示す。 )、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァリールォキ シ基、置換基を有していてもよいァラルキルォキシ基、置換基を有していてもよいァ ルキルチオ基、置換基を有していてもよいァリールチオ基、置換基を有していてもよ レ、ァラルキルチオ基又はヒドロキシ基を示し、 Qは一般式(3)で表される化合物の互 変異性体を与える基を示す。また、 R3と R4、 R3と R5、又は R4と R5とが一緒になつて結 合して環を形成してもよい。 ]で表される化合物、一般式(5)
[0013] [化 4]
1
(5)
H" 、R'
[式中、 R7は水素原子、置換基を有していてもよい炭化水素基、置換基を有していて もよい複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよ レヽァリールォキシ基又は置換基を有してレ、てもよレ、ァラルキルォキシ基、置換基を有 していてもよいアルキルチオ基、置換基を有していてもよいァリールチオ基、置換基 を有していてもよいァラルキルチオ基又は EWG2 (EWG2は電子吸引性基を示す。) を示し、 Z1は N、 P (R8) (3個の R8は同一又は異なって、水素原子、置換基を有して
2 3
いてもよい炭化水素基、置換基を有していてもよい複素環基、置換基を有していても ょレ、アルコキシ基、置換基を有してレ、てもよレ、ァリールォキシ基又は置換基を有して レ、てもよレ、ァラルキルォキシ基を示す。)又は CR9R1Q (R9及び R1Qは夫々独立して、 水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよい複素 環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァリール ォキシ基、置換基を有していてもよいァラルキルォキシ基、置換基を有していてもよ いアルキルチオ基、置換基を有していてもよいァリールチオ基、置換基を有していて もよぃァラルキルチオ基、アミノ基又は置換アミノ基を示す。但し、 R9及び R1Qの何れ か一方は、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァリー ルォキシ基、置換基を有していてもよいァラルキルォキシ基、置換基を有していても よいアルキルチオ基、置換基を有していてもよいァリールチオ基、置換基を有してい てもよぃァラルキルチオ基、アミノ基又は置換アミノ基を示す。)を示す。 ]で表される 化合物、又は一般式 (7)
[化 5]
Figure imgf000006_0001
[式中、環 Bは脂肪族環又は脂肪族複素環を示し、 Q2及び Q3は夫々独立して、酸素 原子、 NR17 (R17は水素原子又は保護基を示す)又は硫黄原子を示す。 ]で表される 化合物又は一般式 (21) [0015] [化 6]
Figure imgf000007_0001
(式中、 R51 R55は夫々独立して、水素原子又は置換基を示す。但し、 R51と R52、 R5 2と R53、 R53と R54、又は R54と R55、とが一緒になつて結合して環を形成してもよい。)で 表されるベンゼン類、である、前記 1)に記載の製造方法。
5)得られるァミン類が一般式 (4)
[化 7]
Figure imgf000007_0002
(式中、 R1 R5及び Qは前記と同じ。)で表されるアミン類、一般式(6)
[0017] [化 8]
Figure imgf000007_0003
(式中、 R、 R2、 R7及び Z1は前記と同じ。)で表されるアミン類、又は一般式(8) [0018] [化 9]
Figure imgf000007_0004
(式中、
Figure imgf000007_0005
R2、 Q2及び Q3は前記と同じ。)で表されるアミン類又は一般式(22) [0019] [化 10]
Figure imgf000008_0001
(式中、
Figure imgf000008_0002
R2及び R51 R55は前記と同じ。)で表される化合物である、前記 1)に記 載の製造方法。
[0020] 6) 一般式 (4)、(6)又は(8)で表されるァミン類が、光学活性アミン類である、前記
5)に記載の製造方法。
[0021] 7)—般式(1)における、 X1及び X2で示される二価の非金属原子又は二価の非金属 原子団が、酸素原子、 - NR13 - (R13は水素原子、置換基を有していてもよい炭化水 素基又は置換基を有していてもよいアシノレ基を示す。)、硫黄原子又は _CR15R16_{ R15及び R16は夫々独立して、水素原子、置換基を有していてもよい炭化水素基又は EWG3 (EWG3は電子吸引性基を示す。)を示す。但し、 R15及び R16の何れか一方は 、 EWG3である。 }である、前記 1)に記載の製造方法。
[0022] 8)—般式(la)
[化 11]
Figure imgf000008_0003
[式中、 A1はスぺーサーを示し、 X3及び X4は夫々独立して酸素原子、 -NR13- (R は水素原子、置換基を有してレ、てもよレ、炭化水素基又は置換基を有してレ、てもよレ、 ァシル基を示す。)、硫黄原子又は一 CR15R16 - {R15及び R16は夫々独立して、水素 原子、置換基を有していてもよい炭化水素基又は EWG3 (EWG3は電子吸引性基を 示す。)を示す。但し、 R15及び R16の何れか一方は、 EWG3である。 }を示し、 Y1は酸 素原子又は硫黄原子を示す。但し、 i) X3=X4の場合には、 X3及び X4は- NR^- O 1 3は水素原子、置換基を有してレ、てもよレ、炭化水素基又は置換基を有してレ、てもよレ、 ァシル基を示す。)、硫黄原子又は- CR15R16-であり、また、 X3及び X4が- NR13-の ときは、該— NR13—は _NRa— (Raはスルホン酸由来のァシル基を示す。)である。また 、 ii) X3及び X4が異なる場合には、 X3及び X4の何れか一方は一 NR13—であり、かつ、 該— NR13_は、 _NRa_(Raはスルホン酸由来のァシル基を示す。)であり、他方は酸 素原子、 _NR13— (R13は水素原子、置換基を有していてもよい炭化水素基又は置換 基を有していてもよいァシル基を示す。)、硫黄原子又は一 CR15R16—である。 ]で表さ れるリン酸誘導体。
[0023] 9)一般式(la)で表されるリン酸誘導体が、光学活性リン酸誘導体である、前記 8)に 記載のリン酸誘導体。
[0024] 10)—般式(lb)
[化 12]
Figure imgf000009_0001
(式中、 A2はスぺーサーを示し、 R21 R24は夫々独立して置換基を有していてもよい 炭化水素基又は置換基を有していてもよい複素環基を示す。)で表されるリン酸誘導 体。
11)一般式(lb)で表されるリン酸誘導体が、光学活性リン酸誘導体である、前記 10 )に記載のリン酸誘導体。
12)—般式(9)
[化 13]
Figure imgf000009_0002
(式中、 A1はスぺーサーを示し、 X1及び: は夫々独立して、二価の非金属原子又は 二価の非金属原子団を示し、 Y1は酸素原子又は硫黄原子を示し、 R2°は置換基を有 してレ、てもよレ、ァリル基又は置換基を有してレ、てもよレ、ベンジル基を示す。)で表され るリン酸誘導体。
[0026] 13)—般式(11)
[化 14]
Figure imgf000010_0001
(式中、 — R4Uは夫々独立して、アルキル基置換フエニル基以外の置換基を示す 。但し、 R31— R35の少なくとも 1個及び R36— R4°の少なくとも 1個は、置換基を有して いてもよいァリール基 (但し、アルキル基置換フエ二ル基を除く。)で表されるリン酸誘 導体。
[0027] 14)一般式(11)で表されるリン酸誘導体が、光学活性リン酸誘導体である、前記 11
)に記載のリン酸誘導体。
[0028] 15)一般式(1)で表されるリン酸誘導体が一般式(11 ' )
[化 15]
Figure imgf000010_0002
[式中、 R、 R'は同一または異なって水素原子、臭素原子、ヨウ素原子、メトキシ基、ト リフエニルシリル基、ナフチル基、フエニル基または置換基 1一 3個を有するフヱニル 基(ここで置換基はフッ素原子、メトキシ基、メチル基、 tert-ブチル基、フエ二ル基、ト リフルォロメチル基、ナフチル基から選ばれた置換基である)を示す] で表されるリン酸誘導体である、前記 1)に記載の製造方法。
16)求核性化合物が一般式(14)
[化 16]
Figure imgf000011_0001
(式中、 G1は S又は NR2° (IT6は水素原子又は保護基を示す。)を示し、環 Eは二重 結合を少なくとも 1個有する単環の複素環を示す。)で表される不飽和複素環状化合 物又は一般式(16)
[0030] [化 17]
Figure imgf000011_0002
(式中、 G2はへテロ原子又はへテロ原子団を示し、環 Fは二重結合を少なくとも 1個 有する複素環を示し、環 Iは置換基を有してレ、てもよレ、芳香環又は置換基を有してレ、 てもよい複素環を示す。)で表される不飽和複素環状化合物であり、得られるアミン類 が、一般式(15— 1)
[0031] [化 18]
Figure imgf000011_0003
及び/又は一般式(15— 2) [0032] [化 19]
Figure imgf000012_0001
(式中、 R1は水素原子又は保護基を示し、 R2はひ—プロトンを有さない基又は不飽和 炭化水素基を示し、環 E及び G1は前記と同じ。)で表されるアミン類又は一般式(17)
[0033] [化 20]
Figure imgf000012_0002
(式中、 R1は水素原子又は保護基を示し、 R2はひ—プロトンを有さない基又は不飽和 炭化水素基を示し、 G2、環 F及び環 Iは前記と同じ。)で表されるアミン類である、前記 1)に記載の製造方法。
[0034] 17)得られるァミン類が、光学活性アミン類である、前記 16)に記載の製造方法。
[0035] 18)—般式(2)
[化 21]
Figure imgf000012_0003
(式中、 R1は水素原子又は保護基を示し、 R2はひ—プロトンを有さない基又は不飽和 炭化水素基を示す。 )で表されるィミン化合物と一般式(12) [0036] [化 22]
Figure imgf000013_0001
(式中、 R41— R4dは夫々独立して、水素原子又は置換基を示す。)で表されるフラン 類とを反応させることを特徴とする一般式(13)
[0037] [化 23]
Figure imgf000013_0002
(式中、 R1は水素原子又は保護基を示し、 R2はひ—プロトンを有さない基又は不飽和 炭化水素基を示し、 R41— R43は夫々独立して、水素原子又は置換基を示す。)で表 されるァミン類の製造方法。
[0038] 19)得られるァミン類が、光学活性アミン類である、前記 18)に記載の製造方法。
[0039] 20)—般式(31)
[化 24]
(31)
Figure imgf000013_0003
(式中、 Ar1— Ar5は夫々独立して、水素原子又はアルキル基置換フヱニル基を示す 。但し、 Ar1— Ar5の全てが水素原子である場合を除く。)で表されるリン酸誘導体。
[0040] 21)—般式(31)で表されるリン酸誘導体が、光学活性リン酸誘導体である、前記 20 )に記載のリン酸誘導体。
22)前記 9)に記載の光学活性リン酸誘導体を含有する不斉合成用触媒。
発明の効果
[0041] 本発明の製造方法は、触媒として、分子中に金属原子を有さない一般式(1)で表 されるリン酸誘導体を用いるため、特別な後処理等を必要としないため、作業性が非 常に向上した、という効果を奏するものである。
発明を実施するための最良の形態
[0042] 本発明で用いられるィミン化合物としては、例えば、一般式(2)
[化 25]
Figure imgf000014_0001
(式中、 R1は水素原子又は保護基を示し、 R2はひ—プロトンを有さない基又は不飽和 炭化水素基を示す。 )で表されるィミン化合物等が挙げられる。
[0043] 一般式(2)において、 R1で示される保護基としては、ァミノ保護基として用いられる ものであれば何れも使用可能であり、例えば [PROTECTIVE GROUPS IN O RGANIC SYNTHESIS THIRD EDITION QOHN WILEY & SONS, I NC. (1999)」にァミノ保護基として記載されているものが挙げられる。 R1で示される 保護基 (ァミノ保護基)の具体例としては、置換基を有していてもよい炭化水素基、置 換基を有していてもよい複素環基、置換基を有していてもよいアシノレ基、置換基を有 してレ、てもよレ、アルコキシカルボニル基、置換基を有してレ、てもよレ、ァリールォキシ力 ノレボニル基、置換基を有していてもよいァラルキルォキシカルボニル基、アミノスルホ ニル基、アルコキシスルホニル基等が挙げられる。
[0044] R1で示される保護基としての置換基を有していてもよい炭化水素基としては、炭化 水素基及び置換炭化水素基が挙げられる。炭化水素基としては、例えば、アルキル 基、アルケニル基、アルキニル基、アルカジエニル基、ァリーノレ基、ァラルキル基等 が挙げられる。
[0045] アルキル基としては、直鎖状でも、分岐状でも或いは環状でもよい、例えば炭素数 1一 20のアルキル基が挙げられ、その具体例としては、メチル基、ェチル基、 n—プロ ピノレ基、 2_プロピル基、 n—ブチル基、 2_ブチル基、イソブチル基、 tert—ブチル基、 n—ペンチル基、 2_ペンチル基、 tert—ペンチル基、 2_メチルブチル基、 3—メチルブ チノレ基、 2, 2—ジメチルプロピル基、 n—へキシル基、 2_へキシル基、 3_へキシル基 、 tert—へキシル基、 2—メチルペンチル基、 3—メチルペンチル基、 4一メチルペンチ ル基、 2—メチルペンタン一 3—ィル基、ヘプチル基、ォクチル基、ノニノレ基、デシル基 、ラウリノレ基、ステアリノレ基、シクロプロピル基、シクロブチル基、シクロペンチル基、シ クロへキシノレ基等が挙げられる。前記アルキル基は、中でも炭素数 1一 15のアルキ ル基が好ましく、炭素数 1一 10のアルキル基がより好ましレ、。
[0046] アルケニル基としては、直鎖状でも分岐状でもよレ、、例えば炭素数 2 20のァルケ ニル基が挙げられ、その具体例としては、ェテニル基、プロぺニル基、 1ーブテュル基 、ペンテュル基、へキセニル基、ヘプテニル基、オタテニル基、ノネニル基、デセニル 基等が挙げられる。前記アルケニル基は、中でも炭素数 2— 15のアルケニル基が好 ましぐ炭素数 2— 10のアルケニル基がより好ましぐ炭素数 2— 6のアルケニル基が 更に好ましい。
[0047] アルキニル基としては、直鎖状でも分岐状でもよい、例えば炭素数 2— 20のアルキ ニル基が挙げられ、その具体例としては、ェチニル基、 1一プロピエル基、 2—プロピニ ル基、 1ーブチニル基、 3—ブチェル基、ペンチニル基、へキシェル基等が挙げられる 。前記アルキニル基は、中でも炭素数 2— 15のアルキニル基が好ましぐ炭素数 2— 10のアルキニル基がより好ましぐ炭素数 2— 6のアルキニル基のアルキニル基が更 に好ましい。
[0048] アルカジエニル基としては、前記アルキル基の鎖中に二重結合を 2個有する、直鎖 状でも分岐状でも或いは環状でもよい、例えば、炭素数 4以上、好ましくは炭素数 4 一 20のアルカジエニル基が挙げられ、その具体例としては、 1 , 3_ブタジェニル基、 2, 4_ブタジェニル基、 2, 3_ジメチルー 1 , 3ブタジェニル基等が挙げられる。前記ァ ルカジエニル基は、中でも炭素数 4一 15のアルカジエニル基がより好ましぐ炭素数 4一 10のアルカジエニル基が更に好ましい。
[0049] ァリール基としては、例えば炭素数 6— 20のァリール基が挙げられ、その具体例と しては、フエ二ル基、ナフチル基、アントリル基、ビフヱニル基等が挙げられる。前記ァ リール基は、中でも炭素数 6— 15のァリール基が好ましい。
[0050] ァラルキル基としては、前記アルキル基の少なくとも 1個の水素原子が前記ァリール 基で置換された基が挙げられ、例えば炭素数 7— 20のァラルキル基が挙げられ、そ の具体例としてはべンジル基、 2—フエニルェチル基、 1—フエニルプロピル基、 3—ナ フチルプロピル基等が挙げられる。前記ァラルキル基は、中でも炭素数 6— 15のァラ ルキル基が好ましい。
[0051] 置換炭化水素基 (置換基を有する炭化水素基)としては、上記炭化水素基の少なく とも 1個の水素原子が置換基で置換された炭化水素基が挙げられる。置換炭化水素 基としては、置換アルキル基、置換アルケニル基、置換アルキニル基、置換アルカジ ェニル基、置換ァリール基、置換ァラルキル基等が挙げられる。置換基については 後述する。
[0052] R1で示される保護基としての置換基を有してレ、てもよレ、複素環基としては、複素環 基及び置換複素環基が挙げられる。複素環基としては、脂肪族複素環基及び芳香 族複素環基が挙げられる。
脂肪族複素環基としては、例えば、炭素数 2— 20で、異種原子として少なくとも 1個 、好ましくは 1一 3個の例えば窒素原子、酸素原子及び/又は硫黄原子等のへテロ 原子を含んでいる、 5— 8員、好ましくは 5又は 6員の単環の脂肪族複素環基、多環 又は縮合環の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、 例えば、ピロリジルー 2—オン基、ピペリジノ基、ピペラジニル基、モノレホリノ基、モルホ リニル基、テトラヒドロフリル基、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙 げられる。前記脂肪族複素環基は、中でも炭素数 2 14の脂肪族複素環基が好まし レ、。
[0053] 芳香族複素環基としては、例えば、炭素数 2— 20で、異種原子として少なくとも 1個 、好ましくは 1一 3個の窒素原子、酸素原子及び Z又は硫黄原子等の異種原子を含 んでいる、 5 8員、好ましくは 5又は 6員の単環式へテロァリール基、多環式又は縮 合環式のへテロアリール基が挙げられ、その具体例としては、フリル基、チェニル基、 ピリジル基、ピリミジル基、ビラジル基、ピリダジノレ基、ピラゾリル基、イミダゾリル基、ォ キサゾリル基、チアゾリル基、ベンゾフリル基、ベンゾチェ二ル基、キノリル基、イソキノ リル基、キノキサリル基、フタラジル基、キナゾリル基、ナフチリジル基、シンノリル基、 ベンゾイミダゾリル基、ベンゾォキサゾリル基、ベンゾチアゾリル基、アタリジノレ基、ァク リジニル基等が挙げられる。前記芳香族複素環基は、中でも炭素数 2— 15の芳香族 複素環基が好ましい。
[0054] 置換複素環基 (置換基を有する複素環基)としては、上記複素環基の少なくとも 1個 の水素原子が置換基で置換された複素環基が挙げられる。置換複素環基 (置換基 を有する複素環基)としては、置換脂肪族複素環基及び置換芳香族複素環基が挙 げられる。置換基については後述する。
[0055] R1で示される保護基としての置換基を有していてもよいァシル基は、ァシル基及び 置換ァシル基が挙げられる。アシノレ基としては、直鎖状でも分岐状でも或いは環状で もよレ、、例えば、カルボン酸、スルホン酸、スルフィン酸、ホスフィン酸、ホスホン酸等 の酸由来の炭素数 1一 20のァシル基が挙げられる。
[0056] カルボン酸由来のァシル基としては、脂肪族カルボン酸、芳香族カルボン酸等の力 ルボン酸由来のァシル基が挙げられ、例えば一 C〇Re [式中、 Reは水素原子、置換基 を有してレ、てもよレ、炭化水素基又は置換基を有してレ、てもよレ、複素環基等を示す( 該置換基を有してレ、てもよレ、炭化水素基及び置換基を有してレ、てもよレ、複素環基は 、上記一般式(2)において、 R1で保護基として説明した各基と同じであってよい。)。 ]で表される。カルボン酸由来のァシル基の具体例としては、ホルミル基、ァセチル基 、プロピオニル基、ブチリル基、ビバロイル基、ペンタノィル基、へキサノィル基、ラウ ロイル基、ステアロイル基、ベンゾィル基、 ι_ナフトイル基、 2_ナフトイル基等が挙げ られる。前記ァシル基は、中でも炭素数 2— 18のァシル基が好ましい。
[0057] スルホン酸由来のァシル基としては、スルホニル基が挙げられる。スルホニル基とし ては、例えば Rd-SO _[Rdは、置換基を有していてもよい炭化水素基又は置換基を
2
有してレ、てもよレ、複素環基を示す (該置換基を有してレ、てもよレ、炭化水素基及び該 置換基を有していてもよい複素環基は、上記一般式 (2)において、 R1で保護基とし て説明した各基と同じであってよい。)。 ]で表される置換スルホニル基が挙げられる。 スルホニル基の具体例としては、メタンスルホニル基、トリフルォロメタンスルホニル基 、フエニルスルホニル基、 p—トノレエンスルホニル基等が挙げられる。
[0058] スルフィン酸由来のァシル基としては、スルフィニル基が挙げられる。スルフィエル 基としては、例えば Re-S〇-[Reは、置換基を有していてもよい炭化水素基、置換基 を有してレ、てもよレ、複素環基又は置換アミノ基を示す (該置換基を有してレ、てもよレヽ 炭化水素基及び置換基を有していてもよい複素環基は、上記一般式 (2)において、 R1で保護基として説明した各基と同じであってよい。また、該置換アミノ基は、上記一 般式(2)におレ、て、 R1で保護基として説明した置換基を有してレ、てもよレ、炭化水素 基等における置換基で説明した各基と同じであってよい。)。 ]で表される置換スルフ ィニル基が挙げられる。スルフィニル基の具体例としては、メタンスルフィニル基、ベン ゼンスルフィニル基等が挙げられる。
[0059] ホスフィン酸由来のァシル基としては、ホスフィニル基が挙げられる。ホスフィニル基 としては、例えば (Rf)— P〇_[2個の Rfは同一又は異なって、置換基を有していても
2
ょレ、炭化水素基を示す (該置換基を有してレ、てもよレ、炭化水素基は、上記一般式(2 )において、 R1で保護基として説明した置換基を有していてもよい炭化水素基と同じ であってよい。)。 ]で表される置換ホスフィニル基が挙げられる。ホスフィニル基の具 体例としては、ジメチルホスフィニル基、ジフヱニルホスフィエル基等が挙げられる。
[0060] ホスホン酸由来のァシル基としては、ホスホニル基が挙げられる。ホスホニル基とし ては、例えば (RgO) -PO-[2個の は同一又は異なって、置換基を有していてもよ
2
レ、炭化水素基を示す (該置換基を有してレ、てもよレ、炭化水素基は、上記一般式 (2) におレ、て、 R1で保護基として説明した置換基を有してレ、てもよレ、炭化水素基と同じで あってよい。)。 ]で表される置換ホスホニル基が挙げられる。ホスホニル基の具体例と しては、ジメチルホスホニル基、ジフヱニルホスホニル基等が挙げられる。
置換ァシル基 (置換基を有するァシル基)としては、上記アシノレ基の少なくとも 1個 の水素原子が置換基で置換されたァシル基が挙げられる。置換基にっレ、ては後述 する。
[0061] R1で示される保護基としての置換基を有していてもよいアルコキシカルボ二ル基は 、アルコキシカルボニル基及び置換アルコキシカルボニル基が挙げられる。アルコキ シカルボニル基としては、直鎖状でも分岐状でも或いは環状でもよい、例えば炭素数
2— 20のアルコキシカルボニル基が挙げられ、その具体例としては、メトキシカルボ二 ノレ基、エトキシカルボニル基、 n—プロポキシカルボニル基、 2—プロポキシカルボ二ノレ 基、 n—ブトキシカルボニル基、 tert—ブトキシカルボニル基、ペンチルォキシカルボ二 ノレ基、へキシルォキシカルボニル基、 2_ェチルへキシルォキシカルボニル基、ラウリ ノレォキシカルボニル基、ステアリルォキシカルボニル基、シクロへキシルォキシカル ボニル基等が挙げられる。
置換アルコキシカルボニル基(置換基を有するアルコキシカルボニル基)としては、 上記アルコキシカルボニル基の少なくとも 1個の水素原子が置換基で置換されたァ ルコキシカルボニル基が挙げられる。置換基については後述する。置換アルコキシ力 ルボニル基の具体例としては、 2, 2, 2_トリクロ口エトキシカルボニル基、 1, 1_ジメチ ノレ一 2, 2, 2-トリクロ口エトキシカルボニル基等が挙げられる。
[0062] R1で示される保護基としての置換基を有してレ、てもよレ、ァリールォキシカルボニル 基は、ァリールォキシカルボニル基及び置換ァリールォキシカルボニル基が挙げら れる。ァリールォキシカルボニル基としては、例えば炭素数 7— 20のァリールォキシ カルボニル基が挙げられ、その具体例としては、フエノキシカルボニル基、ナフチル ォキシカルボニル基等が挙げられる。
置換ァリールォキシカルボニル基(置換基を有するァリールォキシカルボニル基)と しては、上記ァリールォキシカルボニル基の少なくとも 1個の水素原子が置換基で置 換されたァリールォキシカルボニル基が挙げられる。置換基については後述する。
[0063] R1で示される保護基としての置換基を有してレ、てもよレ、ァラルキルォキシカルボ二 ノレ基は、ァラルキルォキシカルボニル基及び置換ァラルキルォキシカルボニル基が 挙げられる。ァラルキルォキシカルボニル基としては、例えば炭素数 8 20のァラノレ キルォキシカルボニル基が挙げられ、その具体例としては、ベンジルォキシカルボ二 ノレ基、フエニルエトキシカルボニル基、 9_フルォレニルメチルォキシカルボ二ル基等 が挙げられる。
置換ァラルキルォキシカルボニル基(置換基を有するァラルキルォキシカルボニル 基)としては、上記ァラルキルォキシカルボニル基の少なくとも 1個の水素原子が置換 基で置換されたァラルキルォキシカルボニル基が挙げられる。置換基については後 述する。置換ァラルキルォキシカルボニル基の具体例としては、 4_ニトロベンジルォ キシカルボニル基、 4—メトキシベンジルォキシカルボニル基、 4一メチルベンジルォキ シカルボニル基、 3, 4—ジメトキシベンジルォキシカルボニル基等が挙げられる。
[0064] R1で示される保護基としてのアミノスルホニル基としては、例えば Rし SO— (R1はァ
2 ミノ基又は置換アミノ基を示す。)で表されるアミノスルホニル基が挙げられる。 Riで示 される置換アミノ基につレ、ては、後述する置換基としての置換アミノ基と同じであって よレ、。アミノスルホニル基の具体例としては、アミノスルホニル基、ジメチルアミノスル ホニル基、ジェチルアミノスルホニル基、ジフヱニルアミノスルホニル基等が挙げられ る。
[0065] R1で示される保護基としてのアルコキシスルホニル基としては、例えば Rし S〇 _(R
2 jは置換基を有してレ、てもよレ、アルコキシ基、置換基を有してレ、てもよレ、ァリールォキ シ基又は置換基を有してレ、てもよレ、ァラルキルォキシ基を示す。 )で表されるアルコ キシスルホニル基が挙げられる。 Rjで示される置換基を有してレ、てもよレ、アルコキシ 基、置換基を有してレ、てもよレ、ァリールォキシ基及び置換基を有してレ、てもよレヽァラ ルキルォキシ基にっレ、ては、後述する置換基としての置換基を有してレ、てもよレ、アル コキシ基、置換基を有していてもよいァリールォキシ基及び置換基を有していてもよ ぃァラルキルォキシ基と同じであってよレ、。アルコキシスルホニル基の具体例として は、メトキシスルホニル基、ェトキシスルホニル基、フエノキシスルホニル基、ベンジノレ ォキシスルホニル基等が挙げられる。
[0066] 置換基としては、例えば、置換基を有してレ、てもよレ、炭化水素基、ハロゲン原子、 ハロゲンィ匕炭化水素基、置換基を有していてもよい複素環基、置換基を有していても よいアルコキシ基、置換基を有していてもよいァリールォキシ基、置換基を有してい てもよぃァラルキルォキシ基、置換基を有していてもよいへテロアリールォキシ基、置 換基を有してレ、てもよレ、アルキルチオ基、置換基を有してレ、てもよレ、ァリールチオ基 、置換基を有していてもよいァラルキルチオ基、置換基を有していてもよいへテロァリ 一ルチオ基、置換基を有していてもよいアシノレ基、置換基を有していてもよいアシノレ ォキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していて もよレ、ァリールォキシカルボニル基、置換基を有してレ、てもよレ、ァラルキルォキシ力 ルポ二ル基、置換基を有していてもよいアルキレンジォキシ基、ニトロ基、アミノ基、置 換ァミノ基、シァノ基、スルホ基、置換シリル基、ヒドロキシ基、カルボキシ基、置換基 を有してレ、てもよレ、アルコキシチォカルボニル基、置換基を有してレ、てもよレ、ァリール ォキシチォカルボニル基、置換基を有してレ、てもよレ、ァラルキルォキシチォカルボ二 ル基、置換基を有していてもよいアルキルチオカルボニル基、置換基を有していても ょレヽァリールチオカルボニル基、置換基を有してレ、てもよレ、ァラルキルチオカルボ二 ル基、置換基を有していてもよい力ルバモイル基、置換ホスフイノ基、アミノスルホニ ル基、アルコキシスルホニル基等が挙げられる。
[0067] 置換基としての、置換基を有してレ、てもよレ、炭化水素基、置換基を有してレ、てもよ い複素環基、置換基を有していてもよいァシル基、置換基を有していてもよいアルコ キシカルボニル基、置換基を有していてもよいァリールォキシカルボニル基、置換基 を有してレ、てもよレ、ァラルキルォキシカルボニル基、アミノスルホニル基及びアルコキ シスルホニル基は、上記保護基で説明した各基と同じであってよレ、。
[0068] 置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原 子等が挙げられる。
[0069] 置換基としてのハロゲン化炭化水素基は、上記炭化水素基の少なくとも 1個の水素 原子がハロゲン化 (例えばフッ素化、塩素化、臭素化、ヨウ素化等)された基が挙げら れる。ハロゲン化炭化水素としては、例えば、ハロゲン化アルキル基、ハロゲン化ァリ ール基、ハロゲン化ァラルキル基等が挙げられる。
[0070] ハロゲン化アルキル基としては、例えば、炭素数 1一 20のハロゲン化アルキル基が 挙げられ、その具体例としては、クロロメチル基、ブロモメチル基、 2_クロ口ェチル基 、 3_ブロモプロピル基、フルォロメチル基、フルォロェチル基、フルォロプロピル基、 フルォロブチル基、フルォロペンチル基、フルォ口へキシル基、フルォ口へプチル基 、フルォロォクチル基、フルォロノ二ル基、フルォロデシル基、ジフルォロメチル基、 ジフルォロェチル基、フルォロシクロへキシル基、トリフルォロメチル基、 2, 2, 2_トリ フルォロェチル基、 3, 3, 3_トリフルォロプロピル基、ペンタフルォロェチル基、 3, 3 , 4, 4, 4一ペンタフルォロブチル基、ペルフルオロー η—プロピル基、ペルフルォロイ ソプロピル基、ペルフルオロー η—ブチル基、ペルフルォロイソブチル基、ペルフルォ 口一tert—ブチノレ基、ぺノレフノレオロー sec—ブチノレ基、ぺノレフノレオ口ペンチノレ基、ぺノレ フルォロイソペンチル基、ペルフルオロー tert—ペンチル基、ペルフルオロー n_へキシ ノレ基、ペルフルォロイソへキシル基、ペルフルォ口へプチル基、ペルフルォロォクチ ノレ基、ペルフルォロノ二ル基、ペルフルォロデシル基、 2_ペルフルォロォクチルェチ ノレ基、ペルフルォロシクロプロピル基、ペルフルォロシクロペンチル基、ペルフルォロ シクロへキシノレ基等が挙げられる。前記ハロゲンィ匕アルキル基は、中でも炭素数 1一 10のハロゲン化アルキル基が好ましい。
[0071] ハロゲン化ァリール基としては、例えば炭素数 6 20のァリール基が挙げられ、そ の具体例としては、 2_フルオロフヱニル基、 3_フルオロフヱニル基、 4_フルオロフェ 二ノレ基、 2—クロ口フエ二ル基、 3—クロ口フエ二ル基、 4—クロ口フエ二ル基、 2—ブロモフ ェニル基、 3_ブロモフエニル基、 4_ブロモフエニル基、 2_ョードフエニル基、 3—ョー ドフエ二ル基、 4一ョードフエニル基、 2—トリフルォロメチルフヱニル基、 3—トリフルォロ メチルフエニル基、 4一トリフルォロメチルフエニル基、 2—トリクロロメチルフエニル基、 3 一トリクロロメチルフヱニル基、 4一トリクロロメチルフヱニル基、ペルフルオロフヱニル基 、ペルフルオロフェニル基、ペルフルォロナフチル基、ペルフルォロアントリル基、ぺ ルフルォロビフエニル基等が挙げられる。前記ァリール基は、中でも炭素数 6— 15の ハロゲンィ匕ァリール基が好ましい。
[0072] ハロゲン化ァラルキル基としては、前記ァラルキル基の少なくとも 1個の水素原子が ハロゲン原子で置換された基が挙げられ、例えば炭素数 7— 20のハロゲン化ァラノレ キル基が挙げられ、その具体例としては 2_フルォ口べンジル基、 3_フルォロベンジ ノレ基、 4_フルォ口べンジル基、 2_クロ口べンジル基、 3_クロ口べンジル基、 4_クロ口 ベンジル基、 4_ブロモベンジル基、 4_ョードベンジル基、 2_トリフルォロメチルベン ジノレ基、 3_トリフルォロメチルベンジル基、 4_トリフルォロメチルベンジル基、 4—トリク ロロメチルベンジル基、ペルフルォロベンジル基等が挙げられる。前記ハロゲン化ァ ラルキル基は、中でも炭素数 6— 15のハロゲン化ァラルキル基が好ましい。
[0073] 置換基としての置換基を有していてもよいアルコキシ基は、アルコキシ基及び置換 アルコキシ基が挙げられる。アルコキシ基としては、直鎖状でも分岐状でも或いは環 状でもよレ、、例えば炭素数 1一 20のアルコキシ基が挙げられ、その具体例としては、 メトキシ基、エトキシ基、 n—プロポキシ基、 2—プロポキシ基、 n—ブトキシ基、 2—ブトキ シ基、イソブトキシ基、 tert—ブトキシ基、 n—ペンチルォキシ基、 2—メチルブトキシ基、 3_メチルブトキシ基、 2, 2—ジメチルプロピルォキシ基、 n—へキシルォキシ基、 2—メ チルペンチルォキシ基、 3—メチルペンチルォキシ基、 4ーメチルペンチルォキシ基、 5—メチルペンチルォキシ基、ヘプチルォキシ基、ォクチルォキシ基、ノニルォキシ基 、デシノレォキシ基、シクロへキシノレオキシ基等が挙げられる。前記アルコキシ基は、 中でも炭素数 1一 10のアルコキシ基が好ましぐ炭素数 1一 6のアルコキシ基がより好 ましい。
置換アルコキシ基(置換基を有するアルコキシ基)としては、前記アルコキシ基の少 なくとも 1個の水素原子が上記置換基で置換されたアルコキシ基が挙げられる。
[0074] 置換基としての置換基を有していてもよいァリールォキシ基は、ァリールォキシ基及 び置換ァリールォキシ基が挙げられる。ァリールォキシ基としては、例えば炭素数 6 一 20のァリールォキシ基が挙げられ、その具体例としては、フエニルォキシ基、ナフ チルォキシ基、アントリルォキシ基等が挙げられる。前記ァリールォキシ基は、中でも 炭素数 6— 14のァリールォキシ基が好ましい。
置換ァリールォキシ基(置換基を有するァリールォキシ基)としては、前記ァリール ォキシ基の少なくとも 1個の水素原子が上記置換基で置換されたァリールォキシ基が 挙げられる。
[0075] 置換基としての置換基を有していてもよいァラルキルォキシ基は、ァラルキルォキ シ基及び置換ァラルキルォキシ基が挙げられる。ァラルキルォキシ基としては、例え ば炭素数 7— 20のァラルキルォキシ基が挙げられ、その具体例としては、ベンジルォ キシ基、 1_フエニルエトキシ基、 2_フエニルエトキシ基、 1_フエニルプロポキシ基、 2 —フエニルプロポキシ基、 3—フエニルプロポキシ基、 1—フエニルブトキシ基、 2—フエ二 ルブトキシ基、 3—フエニルブトキシ基、 4—フエニルブトキシ基、 1—フエ二ルペンチル ォキシ基、 2_フエ二ルペンチルォキシ基、 3_フエ二ルペンチルォキシ基、 4一フエ二 ノレペンチルォキシ基、 5_フエ二ルペンチルォキシ基、 1_フエ二ルへキシルォキシ基 、 2_フエニルへキシルォキシ基、 3_フエニルへキシルォキシ基、 4一フエエルへキシ ルォキシ基、 5—フエエルへキシルォキシ基、 6—フエエルへキシルォキシ基等が挙げ られる。前記ァラルキルォキシ基は、中でも炭素数 7— 12のァラルキルォキシ基が好 ましい。
置換ァラルキルォキシ基 (置換基を有するァラルキルォキシ基)としては、前記ァラ ルキルォキシ基の少なくとも 1個の水素原子が上記置換基で置換されたァラルキル ォキシ基が挙げられる。
[0076] 置換基としての置換基を有していてもよいへテロアリールォキシ基は、ヘテロァリー ルォキシ基及び置換へテロアリールォキシ基が挙げられる。ヘテロァリールォキシ基 としては、例えば、異種原子として少なくとも 1個、好ましくは 1一 3個の窒素原子、酸 素原子、硫黄原子等の異種原子を含んでいる、炭素数 2— 20、好ましくは炭素数 2 一 15のへテロァリールォキシ基が挙げられ、その具体例としては、 2_ピリジルォキシ 基、 2_ピラジノレォキシ基、 2_ピリミジノレォキシ基、 2_キノリルォキシ基等が挙げられ る。
置換へテロアリールォキシ基(置換基を有するヘテロァリールォキシ基)としては、 前記ァラルキルォキシ基の少なくとも 1個の水素原子が上記置換基で置換されたへ テロアリールォキシ基が挙げられる。
[0077] 置換基としての置換基を有していてもよいアルキルチオ基は、アルキルチオ基及び 置換アルキルチオ基が挙げられる。アルキルチオ基としては、直鎖状でも分岐状でも 或いは環状でもよい、例えば炭素数 1一 20のアルキルチオ基が挙げられ、その具体 例としては、メチルチオ基、ェチルチオ基、 n—プロピルチオ基、 2—プロピルチオ基、 n—ブチルチオ基、 2—ブチルチオ基、イソブチルチオ基、 tert—ブチルチオ基、ペン チルチオ基、へキシノレチォ基、シクロへキシルチオ基等が挙げられる。前記アルキル チォ基は、中でも炭素数 1一 10のアルキルチオ基が好ましぐ炭素数 1一 6のアルキ ルチオ基がより好ましい。
置換アルキルチオ基(置換基を有するアルキルチオ基)としては、前記アルキルチ ォ基の少なくとも 1個の水素原子が上記置換基で置換されたアルキルチオ基が挙げ られる。 [0078] 置換基としての置換基を有していてもよいァリールチオ基は、ァリールチオ基及び 置換ァリールチオ基が挙げられる。ァリールチオ基としては、例えば炭素数 6— 20の ァリールチオ基が挙げられ、その具体例としては、フエ二ルチオ基、ナフチルチオ基 等が挙げられる。前記ァリールチオ基は、中でも炭素数 6 14のァリールチオ基が 好ましい。
置換ァリールチオ基 (置換基を有するァリールチオ基)としては、前記ァリールチオ 基の少なくとも 1個の水素原子が上記置換基で置換されたァリールチオ基が挙げら れる。
[0079] 置換基としての置換基を有していてもよいァラルキルチオ基は、ァラルキルチオ基 及び置換ァラルキルチオ基が挙げられる。ァラルキルチオ基としては、例えば炭素数 7— 20のァラルキルチオ基が挙げられ、具体的にはべンジルチオ基、 2—フエネチル チォ基等が挙げられる。前記ァラルキルチオ基は、中でも炭素数 7 12のァラルキ ルチオ基が好ましい。
置換ァラルキルチオ基 (置換基を有するァラルキルチオ基)としては、前記ァラルキ ルチオ基の少なくとも 1個の水素原子が上記置換基で置換されたァラルキルチオ基 が挙げられる。
[0080] 置換基としての置換基を有していてもよいへテロアリールチオ基は、ヘテロァリール チォ基及び置換へテロアリールチオ基が挙げられる。ヘテロァリールチオ基としては 、例えば、異種原子として少なくとも 1個、好ましくは 1一 3個の窒素原子、酸素原子、 硫黄原子等の異種原子を含んでいる、炭素数 2— 20、好ましくは炭素数 2— 15のへ テロアリールチオ基が挙げられ、その具体例としては、 4一ピリジノレチォ基、 2—べンズ イミダゾリルチオ基、 2_ベンズォキサゾリルチオ基、 2_ベンズチアゾリルチオ基等が 挙げられる。
置換へテロアリールチオ基 (置換基を有するヘテロァリールチオ基)としては、前記 ヘテロァリールチオ基の少なくとも 1個の水素原子が上記置換基で置換されたへテロ ァリールチオ基が挙げられる。
[0081] 置換基としての置換基を有していてもよいァシルォキシ基は、ァシルォキシ基及び 置換ァシルォキシ基が挙げられる。アシノレオキシ基としては、脂肪族カルボン酸、芳 香族カルボン酸等のカルボン酸由来の例えば炭素数 2— 20のァシルォキシ基が挙 げられ、その具体例としては、ァセトキシ基、プロピオニルォキシ基、ブチリルォキシ 基、ビバロイルォキシ基、ペンタノィルォキシ基、へキサノィルォキシ基、ラウロイルォ キシ基、ステアロイルォキシ基、ベンゾィルォキシ基等が挙げられる。前記ァシルォキ シ基は、中でも炭素数 2 18のァシルォキシ基が好ましい。
置換ァシルォキシ基(置換基を有するアシノレオキシ基)としては、前記ァシルォキシ 基の少なくとも 1個の水素原子が上記置換基で置換されたァシルォキシ基が挙げら れる。
[0082] 置換基としての置換アミノ基としては、ァミノ基の 1個又は 2個の水素原子が保護基 等の置換基で置換されたァミノ基が挙げられる。保護基としては、ァミノ保護基として 用いられるものであれば何れも使用可能であり、例えば「PR〇TECTIVE GROUP S IN ORGANIC SYNTHESIS THIRD EDITION (JOHN WILEY & SONS, INC. (1999)」にァミノ保護基として記載されているものが挙げられる。アミ ノ保護基の具体例としては、置換基を有していてもよい炭化水素基、置換基を有して いてもよいァシル基、置換基を有していてもよいアルコキシカルボニル基、置換基を 有してレ、てもよレ、ァリールォキシカルボニル基、置換基を有してレ、てもよレ、ァラルキル ォキシカルボニル基等が挙げられる。置換基を有していてもよい炭化水素基、置換 基を有してレ、てもよレ、ァシル基、置換基を有してレ、てもよレ、アルコキシカルボニル基 、置換基を有してレ、てもよレ、ァリールォキシカルボニル基及び置換基を有してレ、ても よいァラルキルォキシカルボニル基は、上記保護基において説明した各基と同じで あってよい。
[0083] アルキル基で置換されたァミノ基、即ちアルキル基置換アミノ基の具体例としては、 N—メチルァミノ基、 N, N—ジメチルァミノ基、 N, N—ジェチルァミノ基、 N, N_ジイソ プロピルアミノ基、 N_メチル _N_ (2_プロピル)アミノ基、 N—シクロへキシルァミノ基 等のモノ又はジアルキルァミノ基が挙げられる。
[0084] ァリール基で置換されたァミノ基、即ちァリール基置換アミノ基の具体例としては、 N—フエニルァミノ基、 N, N—ジフエニルァミノ基、 N—ナフチルァミノ基、 N—ナフチル —N—フエニルァミノ基等のモノ又はジァリールァミノ基が挙げられる。 [0085] ァラルキル基で置換されたァミノ基、即ちァラルキル基置換アミノ基の具体例として は、 N—ベンジルァミノ基、 N, N—ジベンジルァミノ基等のモノ又はジァラルキルアミノ 基が挙げられる。
また、 N—メチノレー N—フエニルァミノ基、 N—ベンジルー N—メチルァミノ基等のジ置換 ァミノ基が挙げられる。
[0086] ァシル基で置換されたァミノ基、即ちァシルァミノ基の具体例としては、ホルミノレアミ ノ基、ァセチルァミノ基、プロピオニルァミノ基、ビバロイルァミノ基、ペンタノィルァミノ 基、へキサノィルァミノ基、ベンゾィルァミノ基、—NHSO CH
2 3、 -NHSO C H
2 6 5、― N
HSO C H CH
2 6 4 3、 -NHSO CF
2 3、 -NHSO N (CH ) 等が挙げられる。
2 3 2
[0087] アルコキシカルボニル基で置換されたァミノ基、即ちアルコキシカルボニルァミノ基 の具体例としては、メトキシカルボニルァミノ基、エトキシカルボニルァミノ基、 n—プロ ポキシカルボニルァミノ基、 n—ブトキシカルボニルァミノ基、 tert—ブトキシカルボニル アミノ基、ペンチルォキシカルボニルァミノ基、へキシルォキシカルボニルァミノ基等 が挙げられる。
[0088] ァリールォキシカルボニル基で置換されたァミノ基、即ちァリールォキシカルボニル ァミノ基の具体例としては、ァミノ基の 1個の水素原子が前記したァリールォキシカル ボニル基で置換されたァミノ基が挙げられ、その具体例としてフエノキシカルボニルァ ミノ基、ナフチルォキシカルボニルァミノ基等が挙げられる。
[0089] ァラルキルォキシカルボニル基で置換されたァミノ基、即ちァラルキルォキシカルボ ニルァミノ基の具体例としては、ベンジルォキシカルボニルァミノ基等が挙げられる。
[0090] 置換基としての置換基を有していてもよいアルキレンジォキシ基は、例えば上記ァ リール基ゃァラルキル基中の芳香環の隣接した 2個の水素原子が置換基を有してレヽ てもよレ、アルキレンジォキシ基で置換される。置換基を有してレ、てもよレ、アルキレンジ ォキシ基は、アルキレンジォキシ基及び置換アルキレンジォキシ基が挙げられる。ァ ルキレンジォキシ基としては、例えば炭素数 1一 3のアルキレンジォキシ基が挙げら れ、その具体例としては、メチレンジォキシ基、エチレンジォキシ基、トリメチレンジォ キシ基、プロピレンジォキシ基等が挙げられる。
[0091] 置換基としての置換シリル基としては、例えば、シリル基の 3個の水素原子がアルキ ル基、置換アルキル基、ァリール基、置換ァリール基、ァラルキル基、置換ァラルキ ル基、アルコキシ基、置換アルコキシ基等の置換基で置換されたトリ置換シリル基が 挙げられる。アルキル基、置換アルキル基、ァリーノレ基、置換ァリール基、ァラルキル 基、置換ァラルキル基、アルコキシ基、置換アルコキシ基は、上記で説明した各基と 同じであってよい。置換シリル基の具体例としては、トリメチルシリル基、トリェチルシリ ノレ基、トリ(2_プロピノレ)シリノレ基、 tert—ブチルジメチルシリノレ基、 tert—ブチルジフヱ 二ルシリノレ基、トリフエ二ルシリノレ基、 tert—ブチルメトキシフヱ二ルシリノレ基、 tert—ブ トキシジフエニルシリル基等が挙げられる。
[0092] 置換基としての置換基を有していてもよいアルコキシチォカルボニル基は、アルコ キシチォカルボニル基及び置換アルコキシチォカルボニル基が挙げられる。アルコ キシチォカルボニル基としては、直鎖状でも分岐状でも或いは環状でもよい、例えば 炭素数 2— 20のアルコキシチォカルボニル基が挙げられ、その具体例としては、メト キシチォカルボニル基、エトキシチォカルボニル基、 n—プロポキシチォカルボニル基 、 2—プロポキシチォカルボニル基、 n—ブトキシチォカルボニル基、 tert—ブトキシチ ォカルボニル基、ペンチルォキシチォカルボニル基、へキシルォキシチォカルボ二 ノレ基、 2—ェチルへキシルォキシチォカルボニル基、ラウリルォキシチォカルボニル 基、ステアリルォキシチォカルボニル基、シクロへキシルォキシチォカルボ二ル基等 が挙げられる。
置換アルコキシチォカルボニル基(置換基を有するアルコキシチォカルボニル基) としては、上記アルコキシチォカルボニル基の少なくとも 1個の水素原子が上記置換 基で置換されたアルコキシチォカルボニル基が挙げられる。
[0093] 置換基としての置換基を有していてもよいァリールォキシチォカルボニル基は、ァリ 一ルォキシチォカルボニル基及び置換ァリールォキシチォカルボニル基が挙げられ る。ァリールォキシチォカルボニル基としては、例えば炭素数 7 20のァリールォキ シチォカルボニル基が挙げられ、その具体例としては、フヱノキシチォカルボニル基 、ナフチルォキシチォカルボニル基等が挙げられる。
置換ァリールォキシチォカルボニル基(置換基を有するァリールォキシチォカルボ ニル基)としては、上記ァリールォキシチォカルボニル基の少なくとも 1個の水素原子 が上記置換基で置換されたァリールォキシチォカルボニル基が挙げられる。
[0094] 置換基としての置換基を有してレ、てもよレ、ァラルキルォキシチォカルボニル基は、 ァラルキルォキシチォカルボニル基及び置換ァラルキルォキシチォカルボニル基が 挙げられる。ァラルキルォキシチォカルボニル基としては、例えば炭素数 8— 20のァ ラルキルォキシチォカルボニル基が挙げられ、その具体例としては、ベンジルォキシ チォカルボニル基、フエネチルォキシチォカルボニル基、 9_フルォレニルメチルォキ シチォカルボニル基等が挙げられる。
置換ァラルキルォキシチォカルボニル基(置換基を有するァラルキルォキシチォカ ルボニル基)としては、上記ァラルキルォキシチォカルボニル基の少なくとも 1個の水 素原子が上記置換基で置換されたァラルキルォキシチォカルボニル基が挙げられる
[0095] 置換基としての置換基を有していてもよいアルキルチオカルボニル基は、アルキル チォカルボニル基及び置換アルキルチオカルボニル基が挙げられる。アルキルチオ カルボニル基としては、直鎖状でも分岐状でも或いは環状でもよい、例えば炭素数 2 一 20のアルキルチオカルボニル基が挙げられ、その具体例としては、メチルチオ力 ノレボニル基、ェチルチオカルボニル基、 n—プロピルチオカルボニル基、 2—プロピル チォカルボニル基、 n—ブチルチオカルボニル基、 tert—ブチルチオカルボニル基、 ペンチルチオカルボニル基、へキシルチオカルボニル基、 2—ェチルへキシルチオ力 ノレボニル基、ラウリルチオカルボニル基、ステアリノレチォカルボニル基、シクロへキシ ルチオカルボニル基等が挙げられる。
置換アルキルチオカルボニル基(置換基を有するアルキルチオカルボニル基)とし ては、上記アルキルチオカルボニル基の少なくとも 1個の水素原子が上記置換基で 置換されたアルキルチオカルボニル基が挙げられる。
[0096] 置換基としての置換基を有していてもよいァリールチオカルボニル基は、ァリール チォカルボニル基及び置換ァリールチオカルボニル基が挙げられる。ァリールチオ カルボニル基としては、例えば炭素数 7— 20のァリールチオカルボニル基が挙げら れ、その具体例としては、フエ二ルチオカルボニル基、ナフチルチオカルボ二ル基等 が挙げられる。 置換ァリールチオカルボニル基(置換基を有するァリールチオカルボニル基)として は、上記ァリールチオカルボニル基の少なくとも 1個の水素原子が上記置換基で置 換されたァリールチオカルボニル基が挙げられる。
[0097] 置換基としての置換基を有していてもよいァラルキルチオカルボニル基は、ァラノレ キルチオカルボニル基及び置換ァラルキルチオカルボニル基が挙げられる。ァラノレ キルチオカルボニル基としては、例えば炭素数 8 20のァラルキルチオカルボニル 基が挙げられ、その具体例としては、ベンジルチオカルボニル基、フヱネチルチオ力 ノレボニル基、 9_フルォレニルメチルチオカルボニル基等が挙げられる。
置換ァラルキルチオカルボニル基(置換基を有するァラルキルチオカルボニル基) としては、上記ァラルキルチオカルボニル基の少なくとも 1個の水素原子が上記置換 基で置換されたァラルキルチオカルボニル基が挙げられる。
[0098] 置換基としての置換基を有してレ、てもよレ、力ルバモイル基は、力ルバモイル基及び 置換力ルバモイル基が挙げられる。置換力ルバモイル基としては、力ルバモイル基中 のァミノ基の 1個又は 2個の水素原子が置換基を有していてもよい炭化水素基等の 置換基で置換された力ルバモイル基が挙げられる。置換基を有してレ、てもよレ、炭化 水素基は、一般式(2)において、 R1で保護基として説明した置換基を有していてもよ い炭化水素基と同じであってよい。置換力ルバモイル基の具体例としては、 N—メチ ノレ力ルバモイル基、 N, N—ジェチルカルバモイル基、 N—フエ二ルカルバモイル基等 が挙げられる。
[0099] 置換基としての置換ホスフイノ基としては、ホスフイノ基の 1個又は 2個の水素原子が 置換基を有してレ、てもよレ、炭化水素基等の置換基で置換されたホスフイノ基が挙げ られる。置換基を有していてもよい炭化水素基は、一般式(2)において、 R1で保護基 として説明した置換基を有していてもよい炭化水素基と同じであってよい。置換ホスフ イノ基の具体例としては、ジメチノレホスフイノ基、ジェチルホスフイノ基、ジフヱニルホス フイノ基、メチルフエニルホスフイノ基等が挙げられる。
[0100] R1で示される保護基は、中でも置換基を有していてもよいアシノレ基、置換基を有し てレ、てもよレ、アルコキシカルボニル基、置換基を有してレ、てもよレ、ァリールォキシ力 ルポ二ル基、置換基を有してレ、てもよレ、ァラルキルォキシカルボニル基が好ましレ、。 [0101] R2で示される α—プロトンを有さない基は、上記一般式(2)で表されるィミン化合物 を異性化しないような基が好ましい。 α _プロトンを有さない基としては、例えば、置換 基を有していてもよい 3級アルキル基、置換基を有していてもよいァリール基、置換基 を有してレ、てもよレ、複素環基又は置換基を有してレ、てもよレ、アシノレ基等が挙げられ る。
[0102] 置換基を有していてもよい 3級アルキル基は、 3級アルキル基及び置換 3級アルキ ル基が挙げられる。
3級アルキル基としては、例えば炭素数 4一 20の 3級アルキル基が挙げられ、その 具体例としては、 tert—ブチル基、 tert—ペンチル基、 tert—へキシル基等が挙げられ る。
置換 3級アルキル基(置換基を有する 3級アルキル基)としては、上記 3級アルキル 基の少なくとも 1個の水素原子が置換基で置換された 3級アルキル基が挙げられる。 置換基は、上記 R1における保護基で説明した置換基と同じであってよい。置換 3級 アルキル基の具体例として、例えばァリール基で置換された置換 3級アルキル基とし ては、例えば炭素数 9一 20のァラルキル基が挙げられ、その具体例としては α , α ~ ジメチルベンジノレ基等が挙げられる。前記ァラルキル基は、中でも炭素数 9一 15のァ ラルキル基が好ましい。
[0103] 置換基を有していてもよいァリール基は、上記 R1において、保護基における置換基 を有していてもよい炭化水素基中で説明した置換基を有していてもよいァリール基と 同じであってよい。また、置換基を有していてもよい複素環基及び置換基を有してい てもよいァシル基は、上記 R1における保護基において説明した各基と同じであってよ レ、。
[0104] ひ—プロトンを有さない基における、置換基を有していてもよいァシル基としては、 上記 R1における保護基において説明した置換基を有していてもよいアシノレ等が挙げ られ、
例えば RbCO— (Rbは、置換基を有していてもよい炭化水素基、置換基を有していて もよい複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよ レ、ァリールォキシ基、置換基を有していてもよいァラルキルォキシ基、置換基を有し てレ、てもよレ、ヘテロァリールォキシ基、置換基を有してレ、てもよレ、アルキルチオ基、 置換基を有してレ、てもよレ、ァリールチオ基、置換基を有してレ、てもよレ、ァラルキルチ ォ基、置換基を有していてもよいへテロアリールチオ基又は置換アミノ基を示す。)で 表される基が挙げられる。 Rbで示される置換基を有してレ、てもよレ、炭化水素基及び 置換基を有していてもよい複素環基は、上記 R1において、保護基で説明した置換基 を有してレ、てもよレ、炭化水素基及び置換基を有してレ、てもよレ、複素環基と同じであつ てよレ、。また、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァ リールォキシ基、置換基を有していてもよいァラルキルォキシ基、置換基を有してい てもよいへテロァリールォキシ基、置換基を有していてもよいアルキルチオ基、置換 基を有してレ、てもよレ、ァリールチオ基、置換基を有してレ、てもよレ、ァラルキルチオ基、 置換基を有していてもよいへテロアリールチオ基及び置換アミノ基は、上記 R1におけ る保護基において、置換基を有していてもよい炭化水素基における置換基で説明し た各基と同じであってよい。
[0105] R2で示される不飽和炭化水素基としては、置換基を有していてもよいアルケニル基 、置換基を有してレ、てもよレ、アルキニル基又は置換基を有してレ、てもよレ、アルカジエ ニル基等が挙げられる。置換基を有していてもよいアルケニル基、置換基を有してい てもよレ、アルキニル基及び置換基を有してレ、てもよレ、アルカジエニル基は、上記 R1 において、保護基における置換基を有していてもよい炭化水素基中で説明した各基 と同じであってよい。
[0106] 本発明で用いられる上記一般式(2)で表されるィミン化合物の具体例としては、例 えば下記に示す化合物等が挙げられる。
例示化合物 2 - 1 :
[化 26] R2'
R】 : Ac, Bz, Boc, Z, Fmoc, Troc, etc.
R2: Ph, 4-Me-Ph, 4-C I -Ph, Nap, Py,
t-Bu, -CH=CH-CH2, 1 -Propyny l ,
Ac, -COOMe, -COOEt, -COOBn, e tc.
[0107] 上記具体例において、 Acはァセチル基、 Bzはベンゾィル基、 Bocは tert—ブトキシ カルボニル基、 Zはべンジルォキシカルボニル基、 Fmocはフルォレニルメトキシカル ボニル基、 Trocは 2, 2, 2—トリクロ口エトキシカルボニル基、 Phはフエ二ノレ基、 Nap はナフチル基、 Pyはピリジノレ基、 t_Buは tert—ブチル基、 Meはメチル基、 Etはェチ ル基、 Bnはべンジノレ基、を夫々示す(以下同じ。)。
[0108] 本発明で用いられる求核性化合物(但し、トリアルキルシリルビュルエーテル類を除 く。)としては、例えば一般式(3)
[化 27]
Figure imgf000033_0001
[0109] [式中、 R3は水素原子、置換基を有していてもよい炭化水素基、置換基を有していて もよい複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよ レヽァリールォキシ基、置換基を有してレ、てもよレ、ァラルキルォキシ基又は置換アミノ 基を示し、 R4及び R5は夫々独立して、水素原子、置換基を有していてもよい炭化水 素基、置換基を有していてもよい複素環基、 EWG^EWG1は電子吸引性基を示す。 )、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァリールォキ シ基、置換基を有していてもよいァラルキルォキシ基、置換基を有していてもよいァ ルキルチオ基、置換基を有していてもよいァリールチオ基、置換基を有していてもよ レ、ァラルキルチオ基又はヒドロキシ基を示し、 Qは一般式(3)で表される化合物の互 変異性体を与える基を示す。また、 R3と R4、 R3と R5、又は R4と R5とが一緒になつて結 合して環を形成してもよい。 ]で表される化合物、一般式(5)
[0110] [化 28] 人 7 ^
H
[0111] [式中、 R7は水素原子、置換基を有していてもよい炭化水素基、置換基を有していて もよい複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよ レ、ァリールォキシ基又は置換基を有してレ、てもよレ、ァラルキルォキシ基、置換基を有 していてもよいアルキルチオ基、置換基を有していてもよいァリールチオ基、置換基 を有していてもよいァラルキルチオ基又は EWG2 (EWG2は電子吸引性基を示す。) を示し、 Z1は N、 P (R8) (3個の R8は同一又は異なって、水素原子、置換基を有して
2 3
いてもよい炭化水素基、置換基を有していてもよい複素環基、置換基を有していても ょレ、アルコキシ基、置換基を有してレ、てもよレ、ァリールォキシ基又は置換基を有して レ、てもよレ、ァラルキルォキシ基を示す。)又は CR9R1C> (R9及び R1Qは夫々独立して、 水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよい複素 環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァリール ォキシ基、置換基を有していてもよいァラルキルォキシ基、置換基を有していてもよ いアルキルチオ基、置換基を有していてもよいァリールチオ基、置換基を有していて もよぃァラルキルチオ基、アミノ基又は置換アミノ基を示す。但し、 及び R1Qの何れ か一方は、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァリー ルォキシ基、置換基を有していてもよいァラルキルォキシ基、置換基を有していても よいアルキルチオ基、置換基を有していてもよいァリールチオ基、置換基を有してい てもよぃァラルキルチオ基、アミノ基又は置換アミノ基を示す。)を示す。 ]で表される 化合物、一般式 (7) [0112] [化 29]
Figure imgf000035_0001
[式中、環 Bは脂肪族環又は脂肪族複素環を示し、 Q2及び Q3は夫々独立して、酸素 原子、 NR17 (R17は水素原子又は保護基を示す)又は硫黄原子を示す。 ]で表される 化合物、例えば一般式 (21)
[化 30]
Figure imgf000035_0002
(式中、 R51 R55は夫々独立して、水素原子又は置換基を示す。但し、 R51と R52、 R5 2と R53、 R53と RM、又は R54と R55、とが一緒になつて結合して環を形成してもよい。)で 表されるベンゼン類等が挙げられる。
[0113] 一般式(3)において、 R3、 R4及び R5で示される置換基を有していてもよい炭化水 素基及び置換基を有していてもよい複素環基は、上記一般式(2)において、 R1で保 護基として説明した各基と同じであってよい。
[0114] R3で示される置換基を有していてもよいアルコキシ基、置換基を有していてもよい ァリールォキシ基、置換基を有していてもよいァラルキルォキシ基及び置換アミノ基、 及び R4及び R5で示される置換基を有してレヽてもよレ、アルコキシ基、置換基を有して いてもよいァリールォキシ基、置換基を有していてもよいァラルキルォキシ基、置換 基を有してレ、てもよレ、アルキルチオ基、置換基を有してレ、てもよレ、ァリールチオ基及 び置換基を有していてもよいァラルキルチオ基は、上記一般式(2)において、 R1で 保護基として説明した置換基を有していてもよい炭化水素基等における置換基で説 明した各基と同じであってよい。
[0115] R4及び R5で示される EWG1は、電子吸引性基を示す。電子吸引性基としては、置 換基を有してレ、てもよレ、ァシル基、置換基を有してレ、てもよレ、アルコキシカルボニル 基、置換基を有していてもよいァリールォキシカルボニル基、置換基を有していても ょレヽァラルキルォキシカルボニル基、置換基を有してレ、てもよレ、アルコキシチォカル ボニル基、置換基を有していてもよいァリールォキシチォカルボニル基、置換基を有 してレ、てもよレ、ァラルキルォキシチォカルボニル基、置換基を有してレ、てもよレ、アル キルチオカルボニル基、置換基を有していてもよいァリールチオカルボニル基、置換 基を有してレ、てもよレ、ァラルキルチオカルボニル基、置換基を有してレ、てもよレ、カル バモイル基、シァノ基、ニトロ基、ハロゲン原子等が挙げられる。
[0116] 電子吸引性基における、置換基を有していてもよいアシノレ基、置換基を有していて もよいアルコキシカルボニル基、置換基を有していてもよいァリールォキシカルボ二 ル基、置換基を有していてもよいァラルキルォキシカルボニル基、置換基を有してい てもよレ、アルキルチオカルボニル基、置換基を有してレ、てもよレ、ァリールチオカルボ ニル基、置換基を有していてもよいァラルキルチオカルボニル基、置換基を有してい てもよレ、アルコキシチォカルボニル基、置換基を有してレ、てもよレ、ァリールォキシチ ォカルボニル基、置換基を有していてもよいァラルキルォキシチォカルボニル基、置 換基を有してレ、てもよレ、アルキルチオカルボニル基、置換基を有してレ、てもよレヽァリ 一ルチオカルボニル基、置換基を有していてもよいァラルキルチオカルボニル基、置 換基を有していてもよい力ルバモイル基及びハロゲン原子は、上記一般式(2)にお いて、 R1で保護基として説明した置換基を有していてもよい炭化水素基等における 置換基で説明した各基と同じであってよい。
[0117] 前記電子吸引性基が置換基を有していてもよいアルコキシカルボニル基、置換基 を有してレ、てもよレ、ァリールォキシカルボニル基、置換基を有してレ、てもよレ、ァラルキ ルォキシカルボニル基、置換基を有していてもよいアルコキシチォカルボニル基、置 換基を有していてもよいァリールォキシチォカルボニル基、置換基を有していてもよ レヽァラルキルォキシチォカルボニル基、置換基を有してレ、てもよレ、アルキルチオカル ボニル基、置換基を有していてもよいァリールチオカルボニル基、置換基を有してい てもよレ、ァラルキルチオカルボニル基、置換基を有してレ、てもよレ、力ルバモイル基等 の場合には、これら電子吸引性基を式で表すと、例えば Rh-C Z1)- [式中、 Rhは 置換基を有してレ、てもよレ、アルコキシ基、置換基を有してレ、てもよレ、アルコキシ基、 置換基を有してレ、てもよレ、ァリールォキシ基、置換基を有してレ、てもよレ、ァラルキル ォキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいァ リールチオ基、置換基を有していてもよいァラルキルチオ基、アミノ基、置換アミノ基 等を示し、 z1は酸素原子又は硫黄原子を示す(置換基を有していてもよいアルコキシ 基、置換基を有していてもよいァリールォキシ基、置換基を有していてもよいァラルキ ルォキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよい ァリールチオ基、置換基を有していてもよいァラルキルチオ基及び置換アミノ基は、 上記一般式(2)において、 R1で保護基として説明した置換基を有していてもよい炭 化水素基等における置換基で説明した各基と同じであってよい。)。 ]で表される。
[0118] Qで示される一般式(3)で表される化合物の互変異性体を与える基は、上記一般 式(3)で表される化合物が、例えば一般式(3 - 1)
[化 31]
Figure imgf000037_0001
(式中、 R3— R5及び Qは前記と同じ。)で表される互変異性体である化合物を与える ような基であれば特に限定されるものではない。
[0119] Qで示される一般式(3)で表される化合物の互変異性体を与える基の具体例として は、例えば、酸素原子、 NR6 (R6は水素原子又は保護基を示す。)又は硫黄原子等 が挙げられる。
[0120] NR6において、 R6で示される保護基は、上記一般式(2)において、 R1で説明した 保護基と同じであってよい。
[0121] 一般式(3)におレ、て、 R3と R4、 R3と R5、又は R4と R5とが一緒になつて結合して環を 形成する場合には、形成する環は単環状でも多環状でも或いは縮合環状でもよい、 例えば 4一 8員環等の脂肪族環が挙げられる。また、環を構成する炭素鎖中に、 -0 ―、—NH―、カルボニル基(C =〇)、チォカルボニル基(C = S)等を有していてもよい 。環を形成する場合の環の具体例としては、シクロペンタン環、シクロへキサン環、例 えば 5— 7員のラタトン環、例えば 5— 7員のラタタム環等が挙げられる。
[0122] 一般式(3)において、 R4及び R5は、何れか一方が EWG^EWG1は前記と同じ。 ) であることが好ましい。また、 R3と R4、 R3と R5、又は R4と R5とが一緒になつて結合して 環を形成する場合には、 R3と R4とが結合して環を形成する際には R5が、 R3と R5とが 結合して環を形成する際には R4力 EWG1であればよい。また、 R4と R5とが結合して 環を形成する際には、該形成する環に EWG1を有している力、、或いは、 EWG1由来 の基が存在していればよレ、。前記 EWG1由来の基としては、カルボニル基、チォカル ボニル基等が挙げられる。
[0123] 本発明で用いられる一般式(3)で表される化合物の具体例としては、例えば下記 に示す化合物等が挙げられる。
例示化合物 3 - 1:
1)例示化合物 3 - 1 - 1:
[化 32]
Figure imgf000038_0001
R3:H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py
0Et, SMe, SEt, NMe2, NEt2, etc.
R4:H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py
R5:E G'
EWGi : -CHO, Ac, Bz,
-COOMe, -COOEt, -COOBu', -COOBn, -COSMe,
-C0NH2, -CO隨 e2, -C0NEt2,
-CN, -N02, -P0(0Me)2, -S02Me( etc.
[0124] 1)例示化合物 3— 1一 2:
[化 33]
Figure imgf000038_0002
[0125] 例示化合物 3— 2:
[化 34]
Figure imgf000039_0001
R3:H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py, OMe
OEt, S e, SEt, N e2, NEt2, etc.
R4:H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py, etc.
RSiEWG1
E G' : -CHO, Ac, Bz,
-COOMe, -COOEt, -COOBu*, -COOBn, -COSMe,
-CONH2, -CONMe2, -CONEt2
-CN, -N02, -PO(OMe)2, -S02Me, etc.
R6:H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py,
COMe, COPh, COOMe, COOPh, COOC^Ph, COOBu*, CO國 e2, etc.
[0126] 例示化合物 3 - 3:
[化 35]
Figure imgf000039_0002
R3:H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py, OMe,
OEt, SMe, SEt, 圆 e2, NEt2, etc.
R4:H, Me, Et, iPr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py, etc.
R5:EWG'
EWGi : -CHO, Ac, Bz,
-COOMe, -COOEt, -COOBu', -COOBn, -COSMe,
- CONH2, -CONMe2, - CONEt2
-CN, -N02, -PO(O e)2, -S02Me, etc.
[0127] 上記具体例において、 は 2_プロピル基、 Βι は tert—ブチル基、を夫々示す(以 下同じ。)。
[0128] 一般式(5)において、 R7で示される置換基を有していてもよい炭化水素基、置換基 を有していてもよい複素環基、置換基を有していてもよいアルコキシ基、置換基を有 していてもよいァリールォキシ基、置換基を有していてもよいァラルキルォキシ基、置 換基を有してレ、てもよレ、アルキルチオ基、置換基を有してレ、てもよレ、ァリールチオ基 及び置換基を有していてもよいァラルキルチオ基は、上記一般式(3)における R4及 び R5で説明した各基と同じであってよい。また、 EWG2で示される電子吸引性基は、 上記一般式(3)における R4及び R5で説明した EWG1で示される電子吸引性基と同じ であってよい。
[0129] Z1における P (R8) において、 3個の R8は同一又は異なって、水素原子、置換基を
3
有していてもよい炭化水素基、置換基を有していてもよい複素環基、置換基を有して レ、てもよレ、アルコキシ基、置換基を有してレ、てもよレ、ァリールォキシ基又は置換基を 有してレ、てもよレ、ァラルキルォキシ基を示す。前記置換基を有してレ、てもよレ、炭化水 素基及び置換基を有していてもよい複素環基は、上記一般式 (2)において、 R1で保 護基として説明した各基と同じであってよい。また、置換基を有していてもよいアルコ キシ基、置換基を有してレ、てもよレ、ァリールォキシ基及び置換基を有してレ、てもよレヽ ァラルキルォキシ基は、前記 R1における保護基で置換基として説明した各基と同じ であってよい。
[0130] CR¾1Qにおレ、て、 R9及び R1Qで示される置換基を有してレ、てもよレ、炭化水素基及 び置換基を有していてもよい複素環基は、上記一般式(2)において、 R1で保護基と して説明した各基と同じであってよレ、。また、置換基を有していてもよいアルコキシ基 、置換基を有していてもよいァリールォキシ基、置換基を有していてもよいァラルキル ォキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいァ リールチオ基、置換基を有していてもよいァラルキルチオ基及び置換アミノ基は、上 記一般式(2)において、 R1における保護基における置換基を有していてもよい炭化 水素基で置換基として説明した各基と同じであってよい。また、 CR9R1Qにおいて、 R9 及び R1Qの何れか一方は、置換基を有していてもよいアルコキシ基、置換基を有して いてもよいァリールォキシ基、置換基を有していてもよいァラルキルォキシ基、置換 基を有してレ、てもよレ、アルキルチオ基、置換基を有してレ、てもよレ、ァリールチオ基、 置換基を有してレ、てもよレ、ァラルキルチオ基、アミノ基又は置換アミノ基を示す。 尚、一般式(5)における R7は、 EWG2で示される電子吸引性基が好ましい。 [0131] 一般式(5)で表される化合物の具体例としては、例えば下記に示す化合物等が挙 げられる。
例示化合物 6 - 1:
1)例示化合物 6 - 1 - 1:
[化 36]
H' 、R
R7:-OMe, -OEt, -OBn, -SMe, -SEt, - SBn, etc.
[0132] 2)例示化合物 6— 1一 2:
[0133] [化 37]
Figure imgf000041_0001
E G2: -CHO, Ac, Bz,
-COOMe, -COOEt, -COOBut, -COOBn, -COSMe
-C0NH2, -C0NMe2, -C0NEt2
-CN, -N02, - P0(0Me)2, -S02Me, etc.
[0134] 例示化合物 6 - 2:
[化 38]
Figure imgf000041_0002
8 : Me, Et, iPr, Ph, 4-Me-Ph, -OMe, -OEt, -OBn,
EWG2: -CHO, Ac, Bz,
-COOMe, -COOEt, -C00Bu[, -COOBn, -COSMe,
-C0NH2, -CO刚 e2, -C0NEt2,
-CN, - N02, -P0(0Me)2, -S0? e, etc.
[0135] 例示化合物 6— 3:
[化 39]
Figure imgf000042_0001
R9, R10 : H, Me, E t, i Pr, Ph, 4- e-Ph, 4-C I -Ph, Nap, Py,
O e, OE t, S e, SEt , NMe2, NEt2, e tc.
R7 : -CHO, Ac, Bz,
-OMe, -OEt , -OBn, -SMe, -SEt, -SBn,
-COOMe, -COOEt , -COOBu', -COOBn, -COS e,
-CONH2, -CON e2, -CONEt2,
-CN, - N02, - PO (OMe) 2, -S02Me, e tc.
[0136] 尚、例示化合物 6—3において、 R9又は R1Qの何れか一方は、 OMe、 OEt, SMe、 SEt、 NMe、 NEt等の置換基を有していてもよいアルコキシ基、置換基を有していて もよぃァリールォキシ基、置換基を有していてもよいァラルキルォキシ基、置換基を 有していてもよいアルキルチオ基、置換基を有していてもよいァリールチオ基、置換 基を有してレ、てもよレ、ァラルキルチオ基、アミノ基及び置換アミノ基からなる群より選 ばれた少なくとも 1種の基が好ましレ、。
[0137] 一般式(7)において、環 Bで示される脂肪族環としては、例えば、炭素数 4一 20の 脂肪族環が挙げられる。また、前記脂肪族環は、単環の脂肪族環、多環又は縮合環 の脂肪族環が挙げられる。脂肪族環の具体例としては、例えば、シクロブタン環、シク 口ペンタン環、シクロへキサン環、テトラヒドロナフタレン環、ペルヒドロナフタレン環等 力 S挙げられる。前記脂肪族環は、中でも炭素数 5— 14の脂肪族複素環基が好ましい
[0138] 脂肪族複素環としては、例えば、炭素数 2— 20で、異種原子として少なくとも 1個、 好ましくは 1一 3個の例えば窒素原子、酸素原子及び/又は硫黄原子等のへテロ原 子を含んでいる、 5— 8員、好ましくは 5又は 6員の単環の脂肪族複素環、多環又は 縮合環の脂肪族複素環が挙げられる。脂肪族複素環の具体例としては、例えば、ピ ペラジン環、モルホリン環、ラタトン環、ラタタム環等が挙げられる。前記脂肪族複素 環は、中でも炭素数 2— 14の脂肪族複素環が好ましい。
[0139] Q2及び Q3で示される NR17は、上記一般式(3)における Qで示される NR6と同じで あってよい。 [0140] 一般式(7)で表される化合物は、例えば一般式(7— 1)
[化 40]
Figure imgf000043_0001
(式中、環 Cは、シクロへキサン環を示し、 Q2及び Q3は前記と同じ。)で示される化合 物等が挙げられる。
[0141] 一般式(7— 1)において、環 Cで示されるシクロへキサン環は、単環でも多環でも、 或いは縮合環でもよぐ更に、該シクロへキサン環は上記一般式(2)において、置換 基を有していてもよい炭化水素基で説明した置換基を有していてもよい。
[0142] 一般式(7 - 1)で表される化合物の具体例としては、例えば下記に示す化合物等が 挙げられる。
Figure imgf000043_0002
[0143] 本発明で用いられるイミン類及び求核性化合物は、夫々市販品を用いても、適宜 製造したものを用いてもよい。
[0144] 本発明の製造方法により得られるアミン類としては、例えば一般式 (4) Q 3
(式中、 R1— R5及び Qは前記と同じ。)で表されるアミン類、一般式(6)
[0145] [化 43]
Figure imgf000044_0001
(式中、
Figure imgf000044_0002
R2、 R7及び Z1は前記と同じ。)で表されるアミン類、一般式(8)
[0146] [化 44]
Figure imgf000044_0003
[0147] (式中、
Figure imgf000044_0004
R2、 Q2及び Q3は前記と同じ。)で表されるアミン類、一般式(22)
[化 45]
Figure imgf000044_0005
(式中、
Figure imgf000044_0006
R2及び R51— R55は前記と同じ。)で表される化合物等が挙げられる。 これら本発明の製造方法により得られるアミン類は、キラルイ匕合物である。 また、本発明の製造方法により得られるアミン類は、上記一般式(1)で表されるリン 酸誘導体として光学活性リン酸誘導体を用いる場合には、得られるアミン類は、光学 活性アミン類が好ましく得られる。前記光学活性アミン類としては、上記一般式 (4)で 表されるアミン類は、中でも一般式 (4a)
[化 46]
Figure imgf000045_0001
(式中、 *は不斉炭素を示し、 R1 R5及び Qは前記と同じ。)で表される光学活性ァ ミン類が好ましぐ上記一般式 (6)で表されるアミン類は、中でも一般式 (6a)
[化 47]
Figure imgf000045_0002
(式中、 *は不斉炭素を示し、
Figure imgf000045_0003
R2、 R7及び z1は前記と同じ。)で表される光学活 性ァミン類が好ましく得られる。
尚、一般式 (4a)において、 R4と R5とが同一の基である場合には、 R4と R5とが結合し ている炭素原子は、不斉炭素とはならない。
また、上記一般式 (8)で表されるアミン類は、上記一般式(1)で表されるリン酸誘導 体として光学活性リン酸誘導体を用いる場合には、得られる上記一般式 (8)で表され るァミン類は、一般式(8a)
[化 48]
Figure imgf000045_0004
(式中、環 B、 Q2、 Q3及び *は前記と同じ。)で表される光学活性アミン類が得られる また、上記一般式(8)で表されるアミン類は、例えば一般式(8— 1)
[化 49]
Figure imgf000046_0001
(式中、環 C、 Q2及び Q3は前記と同じ。)で表されるアミン類等が挙げられる。
更に、上記一般式(1)で表されるリン酸誘導体として光学活性リン酸誘導体を用い る場合には、得られる上記一般式(8— 1)で表されるアミン類は、例えば一般式(8a— 1)
[化 50]
Figure imgf000046_0002
(式中、環 C、 Q2、 Q3及び *は前記と同じ。)で表される光学活性アミン類が得られる 。尚、前記一般式 (8a— 1)で表される光学活性アミン類は、前記一般式 (8a)で表さ れる光学活性アミン類の好ましレ、ィヒ合物でもある。
尚、本発明の製造方法において、求核性化合物として上記一般式(3)で表される 化合物の中でも一般式 (3a)
[化 51]
Figure imgf000046_0003
(式中、 IT一 R5、 Q及び *は前記と同じ。)で表される光学活性化合物(即ち、 R4と R' とが同一の基でなレ、化合物)を用レ、てもよレ、。
本発明の製造方法により得られる一般式 (4a)で表されるァミン類の具体例としては
、例えば下記式で表される化合物等が挙げられる。
例示化合物 4a - 1:
[化 52]
Figure imgf000047_0001
R1 : Ac, Bz, Boc, Z, Fmoc, Troc, etc.
R2: Ph, 4-Me-Ph, 4-C卜 Ph, Nap, Py,
t-Bu, -CH=CH-CH2, 1-Propynyl,
Ac, - COOMe, -COOEt, - COOBn, etc.
R3:, R4: H, Me, Et, iPr, Ph, 4-Me-Ph, 4-C卜 Ph, Nap, Py,
OMe, OEt, OBn, SMe, SEt, SBn, etc.
R5:EWG'
EWG1 :- CHO, Ac, Bz,
-COOMe, -COOEt, -COOBu', -COOBn, -COSMe,
-C0NH2, - CO圖 e2, -C0 Et2,
-CN, - N02, - P0(0Me)2, -S02Me, etc. 例示化合物 4a - 2:
[化 53]
4
; H
M
R1: Ac, Bz, Boc E, E t Z, Fmoc, Troc, etc.
R2 :Ph, 4-Me-Ph, 4-C B •II-Ph, Nap, Py,
t-Bu, -CH=CH-C^, 1-Propynyl,
Ac, -COOMe, -COOEt, -COOBn, etc.
Pr, Ph, 4-Me-Ph, 4-CI-Ph, Nap, n, SMe, SEt, SBn, etc.
R5:EWG,
EWG1: -CHO, Ac, Bz,
-COOMe, -COOEt, -COOBut, -COOBn, -COSMe, -CONH2, -CONMe2, -CONEt2,
-CN, -N02, -PO(OMe)2, - S02Me, etc.
R6:H, Me, Et, iPr, Ph, 4-Me-Ph, 4- C卜 Ph, Nap, Py,
OMe, OEt, OBn, SMe, SEt, SBn, etc. 例示化合物 4a - 3:
[化 54]
Figure imgf000048_0001
R': Ac, Bz, Boc, Z, Fmoc, Troc, etc.
R2: Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py,
t-Bu, -CH=CH-CH2, 1-Propynyl,
Ac, -COOMe, -COOEt, -COOBn, etc.
Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py,
Figure imgf000048_0002
SMe, SEt, SBn, etc.
R5:EWG'
EWGi: -CHO, Ac, Bz,
-COOMe, -COOEt, -COOBu1, -COOBn, -COSMe,
-CONH2, -CON e2, -CONEt2,
- CN, -NO,, -PO(OMe)2, -S02Me, etc. 尚、これら本発明の製造方法により得られる一般式 (4a)で表されるアミン類は、 R と R5とが同一の基である場合には、 R4と R5とが結合している炭素原子は、不斉炭素と はならない。
本発明の製造方法により得られる一般式(6a)で表されるァミン類の具体例としては
、例えば下記式で表される化合物等が挙げられる。
例示化合物 6a - 1:
1)例示化合物 6a-l— 1
[化 55]
Figure imgf000049_0001
Bz, Boc Troc, etc.
R2: Ph, 4-Me-Ph, 4-CI-P , Nap, Py,
t-Bu, -CH=CH-CH2, 1-Propynyl,
Ac, -COO e, -COOEt, -COOBn, etc.
RT :-0Me, -0Et, -OBn, - SMe, -SEt, -SBn, etc. 2)例示化合物 6a— 1—2
[化 56]
Figure imgf000049_0002
1 : Ac, Bz, Boc, Z, Fmoc Troc, etc.
R2: Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py,
t-Bu, - CH=CH-CH2, 1-Propynyl,
Ac, -COOMe, -COOEt, -COOBn, etc.
EWG2: -CHO, Ac, Bz,
-OMe, -OEt, -OBn, -SMe, -SEt, -SBn,
-COOMe, -COOEt, -COOBu*, -COOBn, - COSMe
-C0NH2, -C0N e2, - C0NEt2,
— CN, -N02, -PO(OMe) -S02Me, etc. [0160] 例示化合物 6a - 2:
[化 57]
Figure imgf000050_0001
R' : Ac, Bz, Boc, L, Fmoc, ι roc, etc.
: Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py,
t-Bu, - CH=CH-CH2, 1-Propyny I,
Ac, -COOMe, -COOEt, -COOBn, etc.
8 : e, Et, iPr, Ph, 4-Me-Ph, OMe, OEt,
OBn, SMe, SEt, SBn, etc.
EWG2 : -CHO, Ac, Bz,
-COOMe, -COOEt, -COOBu', -COOBn, -COSMe,
-CONH2, - CO議 e2, - CONEt2,
-CM, - N02, -P0(0Me)2, -S02Me, etc.
[0161] 例示化合物 6a - 3:
[化 58]
Figure imgf000050_0002
R1 : Ac, Bz, Boc, Z, Fmoc, Troc, etc.
R2 : Ph, 4-Me-Ph, 4-C卜 Ph, Nap, Py,
t-Bu, -CH=CH- C 1-Propyny I,
Ac, -COOMe, -COOEt, -COOBn, etc.
R9, Rio : H, Me, Et, iPr, Ph, 4-Me-Ph, 4-C卜 Ph, Nap, Py,
OMe, OEt, SMe, SEt, N e2, NEt2, etc.
R11 : Me, Et, iPr, Ph, 4-Me-Ph, etc.
R7 : -CHO, Ac, Bz,
-OMe, -OEt, -OBn, -SMe, -SEt, -SBn, -COOMe, -COOEt, -COOBLI, -COOBn, -COSMe,
-CON^, -CON e2, -CONEt2,
-CN, -N¾, -PO(OMe)2, -S02Me, etc. [0162] 一般式(21)及び(22)等において、 R51— R55で示される置換基としては、上記置 換炭化水素基等の置換基で説明した基と同様の基が挙げられる。
一般式(21)で表されるベンゼン類の具体例としては、例えば、ベンゼン、トルエン、 ェチルベンゼン、イソプロピルベンゼン、キシレン、ジェチルベンゼン、ジイソプロピル ベンゼン、トリメチルベンゼン、トリェチルベンゼン、トリイソプロピルベンゼン、メトキシ ベンゼン、エトキシベンゼン、イソプロポキシベンゼン、ジメトキシベンゼン、ジェトキシ ベンゼン、ジイソプロポキシベンゼン、トリメトキシベンゼン、トリエトキシベンゼン、トリ イソプロポキシベンゼン、トリフルォロメチルベンゼン、ァニリン、ァセトァニリド等が挙 げられる。
[0163] 本発明の製造方法において得られる一般式(22)で表される化合物は、光学活性 化合物が好ましい。前記光学活性化合物としては、例えば一般式(22a)
[化 59]
Figure imgf000051_0001
(式中、
Figure imgf000051_0002
R2、 R51— R55及び *は前記と同じ。)で表される。
一般式(22a)で表される化合物の具体例としては、例えば下記式で表される化合 物等が挙げられる。
[化 60]
Figure imgf000052_0001
: Ac, Bz, Boc, 1, Fmoc, Troc, etc.
: Ph, 4-Me-Ph, 4-CI-Ph, Nap, Py,
t-Bu, -CH=CH-CH2, 1-Propynyl,
Ac, -COOMe, -COOEt, -COOBn, etc.
R51-R55 : H, Me, Et, Pr, iPr, Ph,
CI, Br, I,
OMe, OEt, OPr, OiPr, OBn, etc.
[0165] 本発明 16)について説明すると、本発明で用いられる求核性化合物としての上記 一般式(14)で表される不飽和複素環状化合物において、環 Eで示される二重結合 を少なくとも 1個有する単環の複素環は、 5員環、 6員環等が挙げられる。また、該環 Eは、 S (硫黄原子)又は NR26以外に、硫黄原子、窒素原子等のへテロ原子や NR27 (R27は水素原子又は保護基を示す。)等のへテロ原子団を有していてもよい。更に、 該環 Eは、置換基を有していてもよい。尚、該環 Eが置換基を有する場合の該置換基 は、上記一般式(2)において置換基を有していてもよい複素環について説明したの と同じである。また、 NR26における R26で示される保護基、 NR27における R27で示され る保護基は、上記一般式(2)における R1で説明した保護基と同様の基が挙げられる
[0166] 環 Eの 5員環の具体例としては、例えば、チォフェン環、ピロール環等が挙げられる 。 6員環の具体例としては、例えば、ピリジン環、ピラジン環等が挙げられる。 一般式 (14)で表される不飽和複素環状化合物の具体例としては、例えば下記化合物等が 挙げられる。
[化 61]
Figure imgf000053_0001
C2H5 ヽ IT \0CH3 0C2H5
[0167] 上記一般式(14)で表される不飽和複素環状化合物である求核性化合物がとィミン 化合物とを反応させることにより得られる上記一般式(15— 1)及び/又は上記一般 式(15— 2)で表されるアミン類は、用いる上記一般式(14)で表される不飽和複素環 状化合物である求核性化合物の種類や触媒等、反応条件等により、それらの生成比 が異なる。
[0168] 上記一般式(14)で表される不飽和複素環状化合物である求核性化合物がとィミン 化合物とを反応させることにより得られる上記一般式(15— 1)及び/又は上記一般 式(15—2)で表されるアミン類は、一般式(15— la)
[化 62]
Figure imgf000053_0002
[0169] 及び/又は上記一般式(15— 2a)
[化 63]
Figure imgf000053_0003
(式中、 *は不斉炭素を示し、 R2、 G1及び環 Eは前記と同じ。)で表される光学活 性ァミン類が好ましく得られる。
[0170] 本発明で用いられる求核性化合物が上記一般式(16)で表される不飽和複素環状 化合物である場合において、一般式(16)における G2で示されるヘテロ原子としては 、酸素原子、硫黄原子、窒素原子等が挙げられる。ヘテロ原子団としては、 NR28 (R2 8は、水素原子又は保護基を示す。)等が挙げられる。
[0171] 一般式(16)において環 Fで示される二重結合を少なくとも 1個有する複素環は、 5 員環、 6員環等が挙げられる。また、該環 Fは、上記へテロ原子以外に、硫黄原子、 窒素原子等のへテロ原子や NR29 (R29は、水素原子又は保護基を示す。)を有して いてもよい。ヘテロ原子団としては、 NR26 (R26は、水素原子又は保護基を示す。)等 が挙げられる。
[0172] また、 NR28における R28で示される保護基、 NR29における R29で示される保護基は 、上記一般式(2)における R1で説明した保護基と同様の基が挙げられる。
更に、該環 Fは、置換基を有していてもよい。尚、該環 Fが置換基を有する場合の該 置換基は、上記一般式(2)において置換基を有していてもよい複素環について説明 したのと同じである。
[0173] 環 Fは、前記 G2で示されるヘテロ原子又はへテロ原子団と二重結合とが隣接してい る環であれば何れにてもょレ、。
環 Fの 5員環の具体例としては、例えば、チォフェン環、フラン環、ピロール環等が 挙げられる。 6員環の具体例としては、例えば、ピリジン環、ピラジン環等が挙げられ る。
[0174] 一般式(16)において環 Iで示される置換基を有していてもよい芳香環及び置換基 を有していてもよい芳香環、複素環における該置換基は、上記一般式(2)において 置換基を有してレ、てもよレ、複素環にっレ、て説明した置換基と同じである。置換基を 有していてもよい芳香環としては、ベンゼン環等が挙げられる。置換基を有していて もよぃ複素環としては、ピリジン環等が挙げられる。尚、上記一般式(16)では便宜上 ベンゼン環で示した。
[0175] 一般式(16)で表される不飽和複素環状化合物の具体例としては、例えば下記化 合物等が挙げられる。 [化 64]
Figure imgf000055_0001
上記一般式(16)で表される不飽和複素環状化合物である求核性化合物がとィミン 化合物とを反応させることにより得られる上記一般式(17)で表されるアミン類は、一 般式(17a)
[化 65]
Figure imgf000055_0002
(式中、 *は不斉炭素を示し、
Figure imgf000055_0003
G2及び環 Fは前記と同じ。)で表される光学活 性ァミン類が好ましく得られる。
上記一般式(16)で表される不飽和複素環状化合物は、中でも一般式(16— 1) [化 66]
Figure imgf000055_0004
(式中、 R45 R48は夫々独立して、水素原子又は置換基を示し、 G2及び環 Fは前記 と同じ。)で表される不飽和複素環状化合物が好ましい。また、得られる一般式(17— 1)で表されるアミン類は、 [0178] [化 67]
Figure imgf000056_0001
(式中、
Figure imgf000056_0002
R2、 R45— R48、 G2及び環 Fは前記と同じ。)で表されるァミン類が好ましく 得られ、一般式(17 - la)
[0179] [化 68]
Figure imgf000056_0003
(式中、 R\ R2、 R45— R48、 G2、環 F及び *は前記と同じ。)で表される光学活性アミ ン類がより好ましく得られる。ここで、 R45— R48で示される置換基は、上記と同じである
[0180] 上記一般式(2)で表されるィミン化合物と上記一般式(12)で表されるフラン類との 反応において、一般式(12)における R41 R43で示される置換基としては、夫々独立 して、上記と同じである。 R41は、好ましくは電子供与性基であり、置換基を有していて もよいアルコキシ基、置換基を有していてもよいァリールォキシ基、置換基を有してい てもよレ、ァラルキルォキシ基、置換基を有してレ、てもよレ、炭化水素基等の電子吸引 性基がより好ましい。
[0181] 一般式(12)で表されるフラン類の具体例としては、例えば、 2-メトキシフラン、 2- エトキシフラン、 2—メチルフラン、 2—ェチルフラン、 2—プロピルフラン、 2— (2—プロピ ノレ)フラン等が挙げられる。
[0182] また、得られる上記一般式(13)で表されるアミン類は、一般式(13a)
[化 69]
Figure imgf000057_0001
(式中、 *は不斉炭素を示し、
Figure imgf000057_0002
R2及び R41— R43、は前記と同じ。)で表される光学 活性アミン類が好ましく得られる。
[0183] 一般式(31)等において、 Ar1— Ar5で示されるアルキル基置換フエニル基における アルキル基、及び下記する一般式(32)、 (33)等において、 R45及び R46で示される アルキル基としては、直鎖状でも、分岐状でも或いは環状でもよい、例えば炭素数 1 一 6のアルキル基が挙げられ、その具体例としては、メチル基、ェチル基、 n プロピ ル基、 2—プロピル基、 n ブチル基、 2—ブチル基、イソブチル基、 tert ブチル基、 n ペンチル基、 2 ペンチル基、 tert ペンチル基、 2 メチルブチル基、 3—メチルブ チノレ基、 2, 2—ジメチルプロピル基、 n—へキシル基、 2—へキシル基、 3—へキシル基 、 tert—へキシル基、 2—メチルペンチル基、 3—メチルペンチル基、 4 メチルペンチ ル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基等が 挙げられる。前記アルキル基は、中でも炭素数 1一 3のアルキル基が好ましい。
Ar1— Ar5で示されるアルキル基置換フヱニル基の具体例としては、メチルフヱニル 基、ェチルフヱニル基、イソプロピルフヱニル基、ジメチルフヱニル基、ジェチルフヱ ニル基、ジイソプロピルフエニル基、トリメチルフエニル基、トリェチルフエニル基、トリ イソプロピルフヱニル基、 2, 4, 6_トリメチルフヱニル基等が挙げられる。
[0184] 本発明で用いられる上記一般式(1)で表されるリン酸誘導体において、 A1で示さ れるスぺーサ一としては、置換基を有してレ、てもよい 2価の有機基等が挙げられる。 該置換基を有してレ、てもよい 2価の有機基は、 2価の有機基及び置換基を有する 2価 の有機基 (置換 2価の有機基)等が挙げられる。置換基を有してレ、てもよレ、2価の有 機基の具体例としては、置換基を有していてもよいアルキレン基、置換基を有してい てもよぃァリーレン基等が挙げられる。
[0185] 置換基を有していてもよいアルキレン基は、アルキレン基及び置換アルキレン基が 挙げられる。アルキレン基としては、直鎖状でも、分岐状でも或いは環状でもよい、例 えば炭素数 1一 10のアルキレン基が挙げられ、その具体例としてはメチレン基、ェチ レン基、トリメチレン基、プロピレン基、テトラメチレン基、ブチレン基、 1, 2—ジメチル エチレン基、ペンチレン基、へキシレン基、 1, 2—シクロへキシレン基等が挙げられる
[0186] 置換アルキレン基としては、前記アルキレン基の少なくとも 1個の水素原子が置換 基で置換されたアルキレン基が挙げられる。置換基は、上記一般式(2)において、 R 1で保護基として説明した置換基を有していてもよい炭化水素基で説明した置換基と 同じであってよい。置換アルキレン基の具体例としては、 1, 2—ジフエニルエチレン基 、 1 , 2—ジ(4_メチルフエ二ノレ)エチレン基、 1 , 2—ジシクロへキシルエチレン基、 1 , 3 —ジォキソラン一 4, 5—ジィル基等が挙げられる。
[0187] 置換基を有していてもよいァリーレン基は、ァリーレン基及び置換ァリーレン基が挙 げられる。ァリーレン基としては、例えば炭素数 6— 20のァリーレン基が挙げられ、そ の具体例としては、フエ二レン基、ビフヱエルジイル基、ビナフタレンジィル基等が挙 げられる。置換ァリーレン基としては、前記ァリーレン基の少なくとも 1個の水素原子 が置換基で置換されたァリーレン基が挙げられる。置換基は、上記一般式(2)にお いて、 R1で保護基として説明した置換基を有していてもよい炭化水素基で説明した 置換基と同じであってよい。
[0188] これら 2価の有機基は、該有機基の末端又は鎖中の任意の位置に酸素原子、カル ボニル基等の基を少なくとも 1個有していてもよい。
置換基を有する 2価の有機基(置換 2価の有機基)は、前記置換基を有する 2価の 有機基の少なくとも 1個の水素原子が上記置換基で置換された基が挙げられる。
[0189] また、一般式(1)で表されるリン酸誘導体が光学活性リン酸誘導体である場合には 、 A1で示されるスぺーサ一は光学活性部位を有するスぺーサ一が好ましい。前記光 学活性部位を有するスぺーサ一の具体例としては、 1 , 2—ジメチルエチレン基、 1 , 2 —シクロへキシレン基、 1, 2—ジフエニルェチレン基、 1 , 2—ジ(4_メチルフエ二ノレ)ェ チレン基、 1 , 2—ジシクロへキシルエチレン基、 1 , 3—ジォキソラン— 4, 5_ジィル基、 ビフヱニルジィル基、ビナフタレンジィル基等が挙げられる。これら光学活性部位を 有するスぺーサ一は、(R)体、(S)体、 (R, R)体又は(S, S)体が挙げられる。
[0190] X1及び X2で示される二価の非金属原子としては、例えば、酸素原子、硫黄原子等 が挙げられる。二価の非金属原子団としては、例えば、一 NR13— (R13は水素原子、置 換基を有してレ、てもよレ、炭化水素基又は置換基を有してレ、てもよレ、アシノレ基を示す
。)、— CR15R16— {R15及び R16は夫々独立して、水素原子、置換基を有していてもよ い炭化水素基又は EWG3 (EWG3は電子吸引性基を示す。)を示す。但し、 R15及び
R16の何れか一方は、 EWG3である。 }等が挙げられる。
[0191] 二価の非金属原子団において、—NR13—における置換基を有していてもよい炭化 水素基及び置換基を有していてもよいァシル基は、上記一般式(2)において、 R1で 保護基として説明した各基と同じであってよい。
[0192] R15又は R16で示される、置換基を有していてもよい炭化水素基は、上記一般式(2) におレ、て、 R1で保護基として説明した置換基を有してレ、てもよレ、炭化水素基と同じで あってよい。
EWG3は、上記一般式(3)における、 R4及び R5で説明した EWG1と同じであってよ レ、。
[0193] 一般式(1)で表されるリン酸誘導体の具体例としては、例えば下記式で表されるィ匕 合物等が挙げられる。
例示化合物 1 - 1 :
[化 70]
Figure imgf000060_0001
例示化合物 1一 2:
[化 71]
Figure imgf000061_0001
例示化合物 1一 3: [化 72]
Figure imgf000062_0001
09
Z96000/S00Zdf/X3d S.80.0/S00J ΟΛ\
Figure imgf000063_0001
[0197] [化 74]
Figure imgf000064_0001
[0198] 例示化合物 1一 4:
[化 75]
Figure imgf000065_0001
例示化合物 1一 5:
[化 76]
Figure imgf000066_0001
例示化合物 1 - 6:
[化 77]
Figure imgf000067_0001
[化 78]
Figure imgf000068_0001
Figure imgf000069_0001
例示化合物 1一 9:
[化 80]
Figure imgf000070_0001
例示化合物 1一 10:
[化 81]

Figure imgf000071_0001
Figure imgf000071_0002
[0206] 例示化合物 1一 12: [化 83]
Figure imgf000072_0001
[0207] 例示化合物 1一 13:
[化 84]
Figure imgf000073_0001
例示化合物 1一 14:
[化 85]
Figure imgf000074_0001
例示化合物 1一 15:
[化 86]
Figure imgf000075_0001
例示化合物 1—16:
[化 87]
Figure imgf000076_0001
Figure imgf000076_0002
L
Z96000/S00Zdf/X3d S.80.0/S00Z OAV [化 88]
Figure imgf000077_0001
R61- R70 : H, Me, Et, Pr, iPr, Bu, tBu, CF3
Ph, Tolyl, a-Naphtyl, j3-Naphtyl, Mesi tyl, etc.
R7', R72 : H. Ts. Ms, etc. これら本発明に係る一般式(1)等で表されるリン酸誘導体は、リン酸部分の一〇Hが 、金属塩又はアンモニゥム塩になっているものも含む。
金属塩としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金 属の塩、マグネシウム、カルシウム、ストロンチウム、ノ リウム等のアルカリ土類金属の 塩等が挙げられる。
アンモニゥム塩としては、アンモニア、例えばメチルァミン、ェチルァミン、プロピル ァミン、ブチルァミン、シクロへキシルァミン、ジメチルァミン、ジェチルァミン、ジイソプ 口ピルァミン、トリェチルァミン、トリプロピルァミン、ジイソプロピルェチルァミン、ジ(2 ーェチルへキシル)ァミン、へキサデシルァミン、トリー n—ブチルァミン、 N_メチルモル ホリン等の脂肪族ァミン、例えば N, N—ジメチルァ二リン、ピリジン、 4ージメチノレアミノ ピリジン等の芳香族ァミン、例えばピぺリジン等の飽和複素環ァミン等のァミンとの塩 等が挙げられる。
[0213] 一般式(1)で表されるリン酸誘導体は、本発明の製造方法において、光学活性化 合物を製造する場合には、一般式(1 - 1)
[化 89]
Figure imgf000078_0001
(式中、 A1*は光学活性部位を有するスぺーサーを示し、 X1、 X2及び Y1は前記と同 じ。)で表される光学活性リン酸誘導体が好ましい。
[0214] 一般式(1一 1)において、 A1*で示される光学活性部位を有するスぺーサ一として は、上記一般式(1)における A1で示されるスぺーサ一の中でも、光学活性部位を有 するスぺーサ一が挙げられる。
[0215] 上記一般式(1 - 1)で表される光学活性リン酸誘導体の具体例としては、上記一般 式(1)で表されるリン酸誘導体の具体例として例示したリン酸誘導体の中で、光学活 性体となる化合物が挙げられる。上記一般式(1一 1)で表される光学活性リン酸誘導 体の代表例を挙げると、例えば下記式で表される化合物等が挙げられる。
[0216] 例示化合物 1 1 1 :
[化 90]
Figure imgf000079_0001
Figure imgf000079_0002
例示化合物 1一 1一 3:
[化 92]
Figure imgf000079_0003
[0219] 上記一般式(1)で表されるリン酸誘導体は、一般式(la)
[化 93]
Figure imgf000080_0001
[0220] [式中、 A1はスぺーサーを示し、 X3及び X4は夫々独立して酸素原子、— NR13— (R13 は水素原子、置換基を有してレ、てもよレ、炭化水素基又は置換基を有してレ、てもよレヽ ァシル基を示す。)、硫黄原子又は- CR15R16-{R15及び R16は夫々独立して、水素 原子、置換基を有していてもよい炭化水素基又は EWG3 (EWG3は電子吸引性基を 示す。)を示す。但し、 R15及び R16の何れか一方は、 EWG3である。 }を示し、 Y1は酸 素原子又は硫黄原子を示す。但し、 i) X3=X4の場合には、 X3及び X4は- NR13 (R13 は水素原子、置換基を有してレ、てもよレ、炭化水素基又は置換基を有してレ、てもよレ、 ァシル基を示す。)一、硫黄原子又は— CR15R16—であり、また、 X3及び X4がー NR13— のときは、該— NR13—は _NRa— (Raはスルホン酸由来のァシル基を示す。)である。ま た、 ii) X3及び X4が異なる場合には、 X3及び X4の何れか一方は一 NR13—であり、かつ 、該 _NR13—は、一 NRa— (Raはスルホン酸由来のァシル基を示す。)であり、他方は 酸素原子、 -NR13 - (R13は水素原子、置換基を有していてもよい炭化水素基又は置 換基を有していてもよいァシル基を示す。)、硫黄原子又は一 CR15R16—である。 ]で 表されるリン酸誘導体、一般式(lb)
[0221] [化 94]
Figure imgf000080_0002
(式中、 A2はスぺーサーを示し、 R24は夫々独立して置換基を有していてもよい 炭化水素基又は置換基を有していてもよい複素環基を示す。)で表されるリン酸誘導 体等が好ましい。
また一般式(1)のリン酸誘導体の例としては下記一般式(11) [化 95]
Figure imgf000081_0001
(式中、 R31— R4°は夫々独立して、アルキル基置換フエニル基以外の置換基を示す 。但し、 R31— R35の少なくとも 1個及び R36— R4°の少なくとも 1個は、置換基を有して いてもよいァリール基(但し、アルキル基置換フエ二ル基を除く。)である。)で示される 新規リン酸誘導体が挙げられる。
上記一般式(11)で表されるリン酸誘導体の具体例としては、例えば下記化合物等 が挙げられる。
[化 96]
Figure imgf000081_0002
R33, R38 : Ph, α-Naphtyt, ^3-Naphtyl etc. [0224] [化 97]
Figure imgf000082_0001
R Z, 34, R37, R39 : Ph, a-Naphtyl, β-Naphtyl etc.
[0225] また一般式(1)のリン酸誘導体として一般式(11')も代表例として挙げられる。
[化 98]
Figure imgf000082_0002
[式中、 R、 R'は同一または異なって水素原子、臭素原子、ヨウ素原子、メトキシ基、ト リフエエルシリル基、ナフチル基、フエニル基または置換基 1一 3ケを有するフエニル 基(ここで置換基はフッ素原子、メトキシ基、メチル基、 tert—ブチル基、フエニル基、 トリフルォロメチル基、ナフチル基から選ばれた置換基である)を示す]。
[0226] 一般式(11 ' )でリン酸誘導体の具体例としては、上記例示化合物 1 - 1で例示した 化合物のうち該当するもの等および上記例示化合物 1 - 3および 1 - 16でで例示した 化合物等が挙げられる。
[0227] 一般式(la)において、 X3及び X4は夫々独立して酸素原子、一 NR13— (R13は水素 原子、置換基を有してレ、てもよレ、炭化水素基又は置換基を有してレ、てもよレ、ァシル 基を示す。)、硫黄原子又は - CR15R16 - {R15及び R16は夫々独立して、水素原子、 置換基を有していてもよい炭化水素基又は EWG3 (EWG3は電子吸引性基を示す。 )を示す。但し、 R15及び R16の何れか一方は、 EWG3である。 }を示し、 Y1は酸素原子 又は硫黄原子を示す。但し、 i) X3=X4の場合には、 X3及び X4は- NR13 (R13は水素 原子、置換基を有してレ、てもよレ、炭化水素基又は置換基を有してレ、てもよレ、ァシル 基を示す。)_、硫黄原子又は— CR15R16_であり、また、 X3及び X4カ NR13_のとき は、該— NR13—は— NRa_ (Raはスルホン酸由来のァシル基を示す。)である。また、 ii ) X3及び X4が異なる場合には、 X3及び X4の何れか一方は- NR13-であり、かつ、該 _NR13_は、 _NRa_(Raはスルホン酸由来のァシル基を示す。)であり、他方は酸素 原子、 _NR13— (R13は水素原子、置換基を有していてもよい炭化水素基又は置換基 を有していてもよいァシル基を示す。)、硫黄原子又は一 CR15R16—である。
Raで示されるスルホン酸由来のァシル基は、上記一般式(2)において、 R1で保護 基で説明した置換基を有していてもよいアシノレ基で説明したスルホン酸由来のァシ ノレ基と同じであってよい。
[0228] 一般式(la)で表されるリン酸誘導体の具体例としては、例えば上記例示化合物 1 - 4一 1 - 15で例示した化合物等が挙げられる。
[0229] 一般式(lb)で表されるリン酸誘導体の具体例としては、上記例示化合物 1 - 2で例 示した化合物等が挙げられる。
[0230] また、前記一般式(la)及び一般式(lb)で表されるリン酸誘導体はそれぞれ、一般 式(la— 1)
[化 99]
Figure imgf000083_0001
(式中、 A *、 X3、 X4及び Y1は前記と同じ。但し、 X3が- NR13-のときは、該 NR13に おける R13と A1*とが一緒になつて結合して環を形成することはない。)で表される光 学活性リン酸誘導体、及び一般式(lb - 1) [0231] [化 100]
Figure imgf000084_0001
(式中、 A は光学活性部位を有するスぺーサーを示し、 14は前記と同じ。 ) で表される光学活性リン酸誘導体が好ましレ、。
[0232] 一般式(la - 1)で表されるリン酸誘導体の具体例としては、例えば上記例示化合物 1一 4一 1一 15で例示したリン酸誘導体の中で、光学活性体となる化合物が挙げられる 。上記一般式(la— 1)で表される光学活性リン酸誘導体の代表例を挙げると、例えば 上記例示化合物 1一 1一 2で表される化合物等が挙げられる。
[0233] 一般式(lb - 1)で表されるリン酸誘導体の具体例としては、例えば上記例示化合物 1_2で例示したリン酸誘導体の中で、光学活性体となる化合物が挙げられる。上記 一般式(lb— 1)で表される光学活性リン酸誘導体の代表例を挙げると、例えば上記 例示化合物 1一 1一 3で表される化合物等が挙げられる。
[0234] 一般式(11)で表されるリン酸誘導体は、光学活性リン酸誘導体が好ましい。前記 光学活性リン酸誘導体としては、例えば一般式(11a)
[化 101]
Figure imgf000084_0002
(式中、 Rdl— R4Uは夫々独立して、置換基を示す。但し、 R — の少なくとも 1個及 び R36— R4°の少なくとも 1個は、置換基を有していてもよいァリール基である。)で表さ れる。
また一般式(11 ' )で表されるリン酸誘導体も光学活性のものを用いるのが好ましい 一般式(31)で表されるリン酸誘導体の具体例としては、例えば下記一般式(32)、 (33)等で表されるリン酸誘導体が挙げられる。
[化 102]
Figure imgf000085_0001
(式中、 R45はアルキル基を示す。)
[化 103]
Figure imgf000086_0001
(式中、 R4Sはアルキル基を示す。)
一般式(32)で表されるリン酸誘導体の具体例としては、例えば下記リン酸誘導体 等が挙げられる。
[化 104]
Figure imgf000087_0001
R45 : CH3, C2HS, C3H7, C4H3, C5Hn. CBHi3, etc. 一般式 (33)で表されるリン酸誘導体の具体例としては、例えば下記リン酸誘導体 等が挙げられる。
[化 105]
Figure imgf000087_0002
CH3, C2HS, C3H7, C4H9, CsH,,, C6Hn, etc. 一般式(31)で表されるリン酸誘導体は、光学活性リン酸誘導体が好ましい。前記 光学活性リン酸誘導体としては、例えば一般式( 31 a)又は( 31 b)
[化 106]
Figure imgf000088_0001
(上記式中、 Ar1— Ar5は前記と同じ。 )が挙げられる。
また、上記一般式(32)で表されるリン酸誘導体及び一般式(33)で表されるリン酸 誘導体は、光学活性リン酸誘導体が好ましい。前記光学活性リン酸誘導体としては、 それぞれ下記一般式(32a)、(32b)、(33a)又は(33b)が挙げられる。
[化 107]
(32a) (32b)
OH 0H
(式中、 R4bは前記と同じ。)
[化 108]
Figure imgf000089_0001
(式中、 R46は前記と同じ。)
これらの光学活性リン酸誘導体の具体例としては、上記で例示した夫々のリン酸誘 導体の光学活性体が挙げられる。
一般式(1 )で表されるリン酸誘導体は、例えば下記のようにして製造することができ る。
例えば、一般式(10)
[0241] H— X1— A1— X2— H (10)
(式中、
Figure imgf000090_0001
X1及び X2は前記と同じ。)で表される化合物とリン酸化剤とを反応させる ことにより、上記一般式(1)で表されるリン酸誘導体を得ることができる。
[0242] 一般式(10)で表される化合物としては、例えば、ジオール類、アミノアノレコーノレ類、 ジァミン類、ジチオール類、メルカプトアルコール類、メルカプトアミン類等が挙げられ る。
[0243] ジオール類としては、例えば、一般式(10— 1)
HO— A1—〇H (10-1)
(式中、 A1は前記と同じ。)で表されるジオール類が挙げられる。
[0244] ジオール類の具体例としては、エチレングリコール、プロピレングリコール、力テコー ノレ、 1 , 2—シクロへキサンジオール、 1 , 2—ジフエニルエチレングリコール、 2, 2 '—ジ ヒドロキシビフエ二ノレ、 1, 1 '—ビー 2—ナフトーノレ、 5, 5,, 6, 6,, 7, 7,, 8, 8 '—ォクタ ヒドロ(1, 1—ビナフタレン) -2, 2,-ジオール等が挙げられる。
[0245] ァミノアルコール類としては、例えば、一般式(10— 2)
HO— A1— NHRzl (10-2)
(式中、 Rzlは水素原子、置換基を有していてもよい炭化水素基又は置換基を有して いてもよいァシル基を示し、 A1は前記と同じ。)で表されるァミノアルコール類が挙げ られる。
上記 Rzl及び後述する 24で示される置換基を有していてもよい炭化水素基及 び置換基を有していてもよいァシル基は、上記一 NR13における R13で説明した各基と 同じであってよい。
[0246] ァミノアルコール類の具体例としては、 2_アミノエタノール、 1—ァミノ一 2_プロパノー ノレ、 o—ァミノフエノール、 1—ァミノ一1 , 2—ジフエ二ルエチルアルコール、 2—ァミノ _2, —ヒドロキシビフエニル、 2—ァミノ— 2'—ヒドロキシビナフチル、 2— (N— (4—トルエンス ルホニル)ァミノ) -2,—ヒドロキシビフエニル、 2— (N— (4—トルエンスルホニル)ァミノ) _2 '—ヒドロキシビナフチル等が挙げられる。 [0247] ジァミン類としては、例えば、一般式(10-3)
Rz2HN— A1— NHRz3 (10-3)
(式中、 2及び 3は夫々独立して、水素原子、置換基を有していてもよい炭化水素 基又は置換基を有していてもよいアシノレ基を示し、 A1は前記と同じ。)で表されるジァ ミン類が挙げられる。
[0248] ジァミン類の具体例としては、エチレンジァミン、 1 , 2—ジアミノシクロへキサン、 1, 2 —ジシクロへキシルエチレンジァミン、 1 , 2_フエ二レンジァミン、 2, 2 '—ジアミノビナフ チル、 1, 2—ジフエ二ルエチレンジァミン、 1, 2—ジナフチルエチレンジァミン等の N 無置換ジァミン類、 N—ベンゼンスルホ二ルー 1 , 2—フエ二レンジァミン、 N_メタンスノレ ホニノレ一 1 , 2_フエ二レンジァミン、 N— (4—トノレエンスルホニノレ)_1, 2_フエ二レンジ ァミン、 N—ベンゼンスルホ二ノレ— 1 , 2—ジフエニルエチレンジァミン、 N_メタンスルホ ニル—1 , 2—ジフエニルエチレンジァミン、 N— (4—トノレエンスルホニノレ)— 1 , 2—ジフエ ニルエチレンジァミン等の Nモノ置換ジァミン類、 N, N,—ジベンゼンスルホ二ルー 1 , 2_フエ二レンジァミン、 N, N'—ジメタンスルホニノレー 1, 2—フエ二レンジァミン、 N, N ,—ジ(4—トノレエンスルホニノレ)— 1, 2—フエ二レンジァミン、 N, Ν'—ジベンゼンスルホ 二ルー 1 , 2—ジフエニルエチレンジァミン、 Ν, Ν'—ジメタンスルホニノレー 1 , 2—ジフエ ニルエチレンジァミン、 Ν, N'—ジ(4—トルエンスルホニル)— 1 , 2—ジフエニルェチレ ンジァミン、 Ν, N'—ジベンゼンスルホニノレー 1 , 2—ジシクロへキシルエチレンジァミン 、 Ν, N'—ジメタンスルホ二ルー 1, 2—ジシクロへキシルエチレンジァミン、 Ν, _ジ( 4—トルエンスルホニル)— 1 , 2—ジシクロへキシルエチレンジァミン、 2, 2—ジ(Ν, N' —ジベンゼンスルホ二ノレ)アミノビナフチル、 2, 2—ジ(Ν, Ν'—ジメタンスルホ二ノレ)ァ ミノビナフチル、 2, 2—ジ(N, N'—ジ(4—トルエンスルホニル))アミノビナフチル等の Νジ置換ジァミン類等が挙げられる。
[0249] ジチオール類としては、例えば、一般式(10— 4)
HS— A1— SH (10-4)
(式中、 Α1は前記と同じ。)で表されるジチオール類が挙げられる。
[0250] ジチオール類の具体例としては、エタンジチオール、 1, 2_プロパンジチオール等 が挙げられる。 [0251] メルカプトアルコール類としては、例えば、一般式(10— 5)
HS-A'-OH (10-5)
(式中、 A1は前記と同じ。)で表されるメルカプトアルコール類が挙げられる。
[0252] メルカプトアルコール類の具体例としては、 2—メルカプトエタノール、 2—ヒドロキシチ オフェノール等が挙げられる。
[0253] メルカプトアミン類としては、例えば、一般式(10— 6)
HS— A1— NHRz4 (10-6)
(式中、 Rz4は、水素原子、置換基を有していてもよい炭化水素基又は置換基を有し ていてもよいアシノレ基を示し、 A1は前記と同じ。)で表されるメルカプトアミン類が挙げ られる。
[0254] メルカプトアミン類の具体例としては、 2_アミノチォフエノール、 2_ (N_ (4_トルエン スルホニル)ァミノ)チオフヱノール等が挙げられる。
[0255] これら一般式(10)で表される化合物は、上記一般式(1)で表されるリン酸誘導体と して上記一般式(1一 1)で表される光学活性リン酸誘導体を得るためには、一般式(1
Oa)
H— X1— A1*— X2— H (10a)
(式中、 A1*, X1及び X2は前記と同じ。)で表される光学活性化合物を用いることが好 ましレ、。また、上記一般式(10— 1)一(10— 6)で表される化合物も同様である。
[0256] 上記一般式(10a)で表される光学活性化合物は、上記一般式(10)で表される化 合物として例示したジオール類、アミノアノレコール類、ジァミン類、ジチオール類、メ ルカプトアルコール類、メルカプトアミン類等の化合物の中でも、光学活性体となるも のであれば何れにてもよい。上記一般式(10a)で表される光学活性化合物として、ジ オール類、ァミノアルコール類及びジァミン類を代表例として例示すると、その具体例 としては、 (1R, 2R) -1 , 2—シクロへキサンジオール、 (1R, 2S) -1 , 2—シクロへキ サンジオール、 (IS, 2R)-1, 2—シクロへキサンジオール、 (1S, 2S)-1, 2—シクロ へキサンジオール、 (1R, 2R)-1, 2—ジフエニルエチレングリコール、 (1R, 2S) -1 , 2—ジフエニルエチレングリコール、 (IS, 2R) -1 , 2—ジフエニルエチレングリコール 、 (IS, 2S)-1, 2—ジフエニルエチレングリコール、 2, 2'—ジヒドロキシビフエニル、 ( R)— 1, 1,—ビ— 2—ナフトール、 (S)— 1, 1,—ビ— 2—ナフトール、 (R)— 5, 5,, 6, 6,, 7, 7,, 8, 8 '—ォクタヒドロ(1, 1ービナフタレン) _2, 2 '—ジオール、 (S)_5, 5,, 6, 6,, 7, 7', 8, 8,ーォクタヒドロ(1, 1—ビナフタレン)— 2, 2,—ジオール等の光学活性 ジオール類、(1R, 2R)_1—ァミノ—1, 2_ジフヱニルエチルアルコール、 (1R, 2S)_ 1—ァミノ— 1, 2—ジフエニルエチルアルコール、 (IS, 2R)— 1—ァミノ— 1, 2—ジフエ二 ルエチルアルコール、 (IS, 2S)_1—アミノー 1, 2—ジフエニルエチルアルコール等の 光学活性ァミノアルコール類、(1R, 2R)-1, 2—ジアミノシクロへキサン、 (1R, 2S) _1, 2—ジアミノシクロへキサン、 (IS, 2R)-1, 2—ジアミノシクロへキサン、 (IS, 2S) _1, 2—ジアミノシクロへキサン、 (1R, 2R)-1, 2—ジシクロへキシルエチレンジァミン 、 (1R, 2S)-1, 2—ジシクロへキシルエチレンジァミン、 (IS, 2R)-1, 2—ジシクロへ キシノレエチレンジァミン、 (IS, 2S)-1, 2_ジシクロへキシノレエチレンジァミン、 (R)_ 2, 2,—ジァミノ _1, 1'—ビナフチル、 (S)— 2, 2,—ジァミノ _1, 1'—ビナフチル、 (1R , 2R)_1, 2—ジフエニルエチレンジァミン、 (1R, 2S)— 1, 2—ジフエニルエチレンジ ァミン、 (IS, 2R)_1, 2—ジフエニルエチレンジァミン、 (IS, 2S)— 1, 2—ジフエニル エチレンジァミン、 (1R, 2R)— N— (4—トルエンスルホニル)— 1, 2—フエ二レンジアミ ン、 (1R, 2S)— N— (4—トルエンスルホニル)— 1, 2—フエ二レンジァミン、 (IS, 2R)— N_(4—トノレエンスルホニノレ)_1, 2_フエ二レンジァミン、 (IS, 2S)_N_(4—トノレェン スルホ二ノレ)— 1, 2—フエ二レンジァミン、 (1R, 2R)— N, Ν'—ジ(4—トルエンスルホニ ノレ)_1, 2—ジフエニルエチレンジァミン、 (1R, 2S)— Ν, Ν,—ジ(4—トルエンスルホニ ノレ)— 1, 2—ジフエニルエチレンジァミン、 (IS, 2R)-N, N,—ジ(4—トルエンスルホニ ノレ)— 1, 2—ジフエニルエチレンジァミン、 (IS, 2S)— N, N,—ジ(4—トルエンスルホニ ノレ)_1, 2—ジフエニルエチレンジァミン、 (R)_2, 2—ジ(N, N'—ジ(4—トルエンスル ホニル))アミノビナフチル、 (S)_2, 2—ジ(N, N,—ジ(4—トルエンスルホニル))ァミノ ビナフチル等の光学活性ジァミン類等が挙げられる。
これら上記一般式(10)で表される化合物は、市販品を用いても、適宜製造したも のを用いてもよい。また、一般式(10)で表される化合物として、例えばジァミン類、ァ ミノアルコール類又はメルカプトアミン類を用いる場合には、アミノ基部分が無置換の ジァミン類、ァミノアルコール類又はメルカプトアミン類とリン酸化剤とを反応させた後 、該ァミノ基に置換基を有してレ、てもよレ、炭化水素基及び/又は置換基を有してレ、 てもよレ、ァシル基を導入しても、或いはアミノ基部分に置換基を有してレ、てもよレヽ炭 化水素基及び/又は置換基を有していてもよいアシノレ基を導入した上記一般式(10
)で表される化合物とリン酸化剤とを反応させてもよい。
[0258] 一般式(1)で表されるリン酸誘導体を製造する際に用いられるリン酸化剤としては、 例えばォキシ塩化リン、ォキシ臭化リン等のォキシハロゲン化リン、例えば塩化リン (I V)、臭化リン(IV)等のハロゲン化リン、例えばジクロロアリロキシホスフィン、ジクロロ メチルホスフィン等のジハロゲノホスフィン類等が挙げられる。これらリン酸化剤は、夫 々単独で用レ、ても 2種以上適宜組み合わせて用いてもよい。
[0259] 上記一般式(10)で表される化合物及びリン酸化剤の使用量は、用いる上記一般 式(10)で表される化合物及びリン酸化剤の種類等により異なるため特に限定されな いが、基質である一般式(10)で表される化合物に対して、リン酸化剤を通常約 1. 0 一 5. 0当量、好ましくは約 1. 5-2. 5当量の範囲から適宜選択される。
[0260] リン酸誘導体の製造は、必要に応じて塩基の存在下で行ってもよい。塩基としては 、無機塩基、有機塩基等が挙げられる。無機塩基としては、炭酸カリウム、水酸化カリ ゥム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、水酸 化ナトリウム、炭酸マグネシウム、炭酸カルシウム等が挙げられる。有機塩基としては 、カリウムナフタレニド、酢酸ナトリウム、酢酸カリウム、酢酸マグネシウム、酢酸カルシ ゥム等のアルカリ.アルカリ土類金属の塩、トリェチルァミン、ジイソプロピルェチルアミ ン、 N, N—ジメチルァニリン、ピリジン、 4—ジメチルァミノピリジン、 1, 5_ジァザビシク 口 [4· 3. 0]ノナ一 5—ェン、 1, 8—ジァザビシクロ [5· 4. 0]ゥンデ力一 7—ェン、トリー n —ブチルァミン、 N—メチルモルホリン等の有機アミン類、水素化ナトリウム、水素化カリ ゥム等の金属水素化物類、臭化メチルマグネシウム、臭化工チルマグネシウム、臭化 プロピルマグネシウム、メチルリチウム、ェチルリチウム、プロピルリチウム、 n—ブチノレ リチウム、 tert—ブチルリチウム等の有機金属化合物類、 4級アンモニゥム塩等が挙げ られる。
塩基の使用量は、用いる上記一般式(10)で表される化合物及びリン酸化剤の種 類等により異なるため特に限定されないが、発生する酸の予想される当量に対して、 通常約 1. 0— 5. 0当量、好ましくは約 1. 5— 2. 5当量の範囲から適宜選択される。
[0261] リン酸誘導体の製造方法は、必要に応じて溶媒の存在下で行ってもよい。溶媒とし ては、例えば、例えば、ペンタン、へキサン、ヘプタン、オクタン、デカン、シクロへキ サン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、 ジクロロメタン、 1 , 2—ジクロロェタン、クロロホノレム、四塩化炭素、 o—ジクロロベンゼン 等のハロゲン化炭化水素類、ジェチルエーテル、ジイソプロピルエーテル、 tert—ブ チルメチルエーテル、ジメトキシェタン、エチレングリコールジェチルエーテル、テトラ ヒドロフラン、 1 , 4ージォキサン、 1 , 3—ジォキソラン等のエーテル類、アセトン、メチル ェチルケトン、メチルイソブチルケトン、シクロへキサノン等のケトン類、酢酸メチル、 酢酸ェチル、酢酸 η—ブチル、プロピオン酸メチル等のエステル類、ホルムアミド、 N,
N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド等のアミド類、ジメチルスルホキ シド等のスルホキシド類、ァセトニトリル等の含シァノ有機化合物類、 N—メチルピロリ ドン等が挙げられる。これら溶媒は、夫々単独で用いても 2種以上適宜組み合わせて 用いてもよい。
溶媒の使用量は、用いる上記一般式(10)で表される化合物及びリン酸化剤の種 類等により異なるため特に限定されないが、基質である上記一般式(10)で表される 化合物に対して、通常約 0. 1— 1M、好ましくは約 0. 1-0. 5Mの範囲から適宜選 択される。
[0262] 尚、リン酸誘導体の製造方法は、上記した塩基や溶媒の他に、必要に応じてその 他の成分を添加してもよい。また、リン酸誘導体の製造方法は、溶媒を用いずに、塩 基中で行うこともできる。
[0263] 反応温度は、通常約—78— 100°C、好ましくは約 0— 50°Cの範囲から適宜選択さ れる。
反応時間は、通常約 10分一 10日、好ましくは約 1時間一 7日の範囲から適宜選択 される。
[0264] 一般式(1)で表されるリン酸誘導体は、リン酸化剤として、ジハログノアリロキシホス フィン類を用レ、た場合には、中間体として、例えば一般式 (9)
[化 109] 乂 '
(式中、 は置換基を有してレ、てもよレ、ァリル基又は置換基を有してレ、てもよレ、ベン ジノレ基を示し、
Figure imgf000096_0001
X1、 X2及び Y1は前記と同じ。)で表されるリン酸誘導体、好ましく は一般式(9a)
[0265] [化 110]
Figure imgf000096_0002
(式中は、 A1 *
Figure imgf000096_0003
X2、 Y1及び R2°は前記と同じ。)で表される光学活性リン酸誘導 体を製造した後、得られた該一般式 (9a)で表される光学活性リン酸誘導体を必要に 応じて遷移金属触媒の存在下、必要に応じて求核剤の存在下で反応させることによ り、上記一般式(1)で表されるリン酸誘導体を得ることができる。
[0266] R2°で表される置換基を有していてもよいァリル基は、ァリル基及び置換ァリル基が 挙げられる。
置換ァリル基としては、ァリル基の少なくとも 1つの水素原子が置換基で置換された ァリル基が挙げられる。前記置換基は、上記一般式(2)において、 R1で保護基として 説明した置換基を有していてもよい炭化水素基で説明した置換基と同じであってよ レ、。置換ァリル基としては、例えば炭素数 3 20の置換ァリル基が挙げられ、その具 体例としては、クロチル基、プレニル基、メタリル基、シンナミル基等が挙げられる。 置換基を有していてもよいベンジル基は、ベンジル基及び置換べンジル基が挙げ られる。
置換べンジル基としては、ベンジル基の少なくとも 1つの水素原子が置換基で置換 されたベンジル基が挙げられる。前記置換基は、上記一般式(2)において、 R1で保 護基として説明した置換基を有していてもよい炭化水素基で説明した置換基と同じ であってよい。置換べンジル基としては、例えば炭素数 6— 20の置換べンジル基が 挙げられる。 [0267] 一般式(9)で表されるリン酸誘導体の具体例としては、例えば下記化合物等が挙 げられる。
[化 111]
Figure imgf000097_0001
[0268] これら前記一般式(9)で表されるリン酸誘導体は、光学活性なリン酸誘導体が好ま しく挙げられる。前記光学活性なリン酸誘導体の具体例としては、上記で例示した一 般式 (9)で表されるリン酸誘導体の具体例の光学活性体が挙げられる。
[0269] 遷移金属触媒としては、高周期遷移金属の触媒が挙げられ、高周期遷移金属とし ては、パラジウム、白金、ロジウム、ニッケル、ルテニウム、モリブデン等が挙げられる これらの遷移金属触媒は、 0 4価の何れの酸化状態で用いてもよい。このような場 合に遷移金属触媒は、カウンターァニオンとして種々のハロゲン化物イオン、水酸化 物イオン等を有してレ、てもよレ、。
また、これらの遷移金属触媒は、必要に応じて適当な配位子を有していてもよい。 前記配位子としては、トリアルキルホスフィン、トリアリールホスフィン、トリアルキルホス ファイト等の 3価のリン配位子、各種のへテロサイクリックカルベン配位子、アミン系配 位子、硫黄系配位子等が挙げられる。また、これら遷移金属触媒及び配位子は、夫 々単独で用レ、ても 2種以上適宜組み合わせて用いてもよい。
遷移金属触媒の使用量は、用いる上記一般式 (9)で表される化合物や用いる遷移 金属触媒の種類等により異なるため特に限定されないが、上記一般式 (9)で表され る化合物に対して、遷移金属触媒を通常約 0. 0001— 1. 0当量、好ましくは約 0. 0 1-0. 1当量の範囲から適宜選択される。
[0270] 求核剤としては、カルボン酸、フヱノール類、アンモニゥム塩、アルコール及び活性 メチレン部位を有する化合物等が挙げられる。
カルボン酸としては、蟻酸、酢酸、プロピオン酸等が挙げられる。フエノール類として は、フエノール、カテコール等が挙げられる。アンモニゥム塩としては、ジェチルアン モニゥム、シイソプロピルアンモニゥム等の水素原子を少なくとも 2個有するアンモニ ゥムハロゲン化塩等が挙げられる。アルコールとしては、メタノール、エタノール、 2— プロパノール、 n—ブタノール、 2—エトキシエタノール、ベンジルアルコール等が挙げ られる。活性メチレン部位を有する化合物としては、例えば上記一般式(3)で表され る化合物等が挙げられる。
尚、これら求核剤は、予め調製したものを用いても、反応系内で酸と塩基とを混合し て調製したものを用いてもょレ、。
求核剤の使用量は、用いる上記一般式(9)で表される化合物や遷移金属触媒の 種類等により異なるため特に限定されないが、一般式(9)で表される化合物に対して 、求核剤を通常約 1. 0— 10. 0当量、好ましくは約 1. 2-2. 5当量の範囲から適宜 選択される。
[0271] この反応は、必要に応じて塩基の存在下で行うことができる。塩基の種類及びその 使用量は、上記と同じである。
[0272] また、この反応は、必要に応じて溶媒の存在下で行ってもよい。溶媒の種類は、上 記と同じである。
溶媒の使用量は、用いる上記一般式 (9)で表される化合物や遷移金属触媒の種 類等により異なるため特に限定されないが、一般式(9)で表される化合物に対して、 通常約 0. 01— 10M、好ましくは約 0. 1-0. 5Mの範囲から適宜選択される。
[0273] 反応温度は、用いる上記一般式(9)で表される化合物や遷移金属触媒の種類等 により異なるため特に限定されなレ、が、通常約 0— 200°C、好ましくは約 0— 100°Cの 範囲から適宜選択される。
反応時間は、通常約 10分一 10日、好ましくは約 1時間一 7日の範囲から適宜選択 される。
[0274] リン酸誘導体の製造方法は、必要に応じて不活性ガス雰囲気下で行うことができる 。不活性ガスとしては窒素ガス、アルゴンガス等が挙げられる。
[0275] 得られたリン酸誘導体は、そのまま本発明の製造方法に用いても、必要に応じて後 処理、精製、単離等を行った後に用いてもよい。後処理、精製、単離等の具体的手 段としては、 自体公知の手段、例えば、溶媒抽出、液性変換、転溶、塩析、晶出、再 結晶、各種クロマトグラフィー等が挙げられる。
[0276] 次に、本発明の製造方法をスキームを用いて説明する。
1)イミンィ匕合物と一般式 (3)で表される化合物との反応
[化 112]
スキーム 1
Figure imgf000099_0001
[0277] スキーム 1は、それぞれ、ィミン化合物として一般式(2)で表されるィミン化合物を用 レ、、求核性化合物として、一般式(3)で表される化合物における R5が EWG1である一 般式(3b)で表される化合物を用レ、、一般式(1)で表されるリン酸誘導体として、一般 式(1一 1)で表される光学活性リン酸誘導体を用いて、アミン類として一般式 (4c)で 表される光学活性アミン類を得る反応を示した反応式である。 [0278] 即ち、一般式 (2)で表されるィミン化合物と一般式 (3b)で表される化合物とを一般 式(1 1)で表される光学活性リン酸誘導体の存在下で反応させることにより、一般式 (4c)で表される光学活性アミン類を得ることができる。
[0279] 一般式(2)で表されるィミン化合物と一般式(3b)で表される化合物の使用量は、用 レ、る一般式(2)で表されるィミン化合物や一般式(3b)で表される化合物、及び一般 式(1一 1)で表される光学活性リン酸誘導体の種類等により異なるため特に限定され ないが、一般式(2)で表されるィミン化合物に対して、一般式(3b)で表される化合物 を通常約 0. 9-2. 0当量、好ましくは約 1. 0- 1. 5当量の範囲から適宜選択される
[0280] 本製造方法は、必要に応じて溶媒の存在下で行ってもよい。溶媒としては、例えば 、例えば、ペンタン、へキサン、ヘプタン、オクタン、デカン、シクロへキサン等の脂肪 族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン 、 1 , 2—ジクロロェタン、クロ口ホルム、重クロ口ホルム、四塩化炭素、 o—ジクロロベン ゼン等のハロゲン化炭化水素類、ジェチルエーテル、ジイソプロピルエーテル、 tert ブチルメチルエーテル、ジメトキシェタン、エチレングリコールジェチルエーテル、テ トラヒドロフラン、 1 , 4ージォキサン、 1 , 3—ジォキソラン等のエーテル類、アセトン、重 アセトン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン等のケトン類 、 tert—ブタノール等の 3級アルコール類、酢酸メチル、酢酸ェチル、酢酸 n ブチル 、プロピオン酸メチル等のエステル類、ホルムアミド、 N, N—ジメチルホルムアミド、 N , N—ジメチルァセトアミド等のアミド類、ジメチルスルホキシド、重ジメチルスルホキシ ド(ジメチルスルホキシドー d等)等のスルホキシド類、ァセトニトリル等の含シァノ有機
6
化合物類、 N—メチルピロリドン等が挙げられる。これら溶媒は、夫々単独で用いても
2種以上適宜組み合わせて用いてもょレ、。
[0281] 溶媒を用いる場合のその使用量は、用レ、る一般式(2)で表されるィミン化合物や一 般式(3b)で表される化合物の種類等により異なるため特に限定されないが、一般式
(2)で表されるィミン化合物の基質濃度が通常約 0. 01— 1M、好ましくは約 0. 05
0. 2Mの範囲から適宜選択される。
[0282] 反応温度は、通常約—78— 100°C、好ましくは約 0— 50°C、より好ましくは室温付 近の範囲から適宜選択される。
反応時間は、通常約 10分一 10日、好ましくは約 1時間一 7日の範囲から適宜選択 される。
[0283] 2)ィミン化合物と一般式(5)で表される化合物との反応
[化 113]
Figure imgf000101_0001
[0284] スキーム 2は、それぞれ、ィミン化合物として一般式(2)で表されるィミン化合物を用 レ、、求核性化合物として一般式(5)で表される化合物を用レ、、一般式(1)で表される リン酸誘導体として、一般式(1-1)で表される光学活性リン酸誘導体を用いて、アミ ン類として一般式(6a)で表される光学活性アミン類を得る反応を示した反応式であ る。
[0285] 即ち、一般式 (2)で表されるィミン化合物と一般式 (5)で表される化合物とを一般式
(1一 1)で表される光学活性リン酸誘導体の存在下で反応させることにより、一般式(6 a)で表される光学活性アミン類を得ることができる。
[0286] 一般式(2)で表されるィミン化合物と一般式(5)で表される化合物の使用量は、用 レ、る一般式(2)で表されるィミン化合物や一般式(5)で表される化合物、及び一般式 (1一 1)で表される光学活性リン酸誘導体の種類等により異なるため特に限定されな レ、が、一般式(2)で表されるィミン化合物に対して、一般式(5)で表される化合物を 通常約 0. 9-2. 5当量、好ましくは約 1. 0- 1. 5当量の範囲から適宜選択される。
[0287] 本製造方法は、必要に応じて溶媒の存在下で行ってもよい。溶媒としては、上記ス キーム 1で例示した溶媒が挙げられる。
溶媒を用いる場合のその使用量は、用レ、る一般式(2)で表されるィミン化合物や一 般式(5)で表される化合物の種類等により異なるため特に限定されなレ、が、一般式( 2)で表されるィミン化合物の基質濃度が通常約 0. 01— 1M、好ましくは約 0. 05— 0 . 2Mの範囲から適宜選択される。
[0288] 反応温度は、通常約 0 100°C、好ましくは約 0 50°C、より好ましくは室温付近の 範囲から適宜選択される。
反応時間は、通常約 10分一 10日、好ましくは約 1時間一 7日の範囲から適宜選択 される。
3)イミンィ匕合物と一般式 (7)で表される化合物との反応
[0289] [化 114]
スキーム 3
Figure imgf000102_0001
(8a-1 )
[0290] スキーム 3は、それぞれ、ィミン化合物として一般式(2)で表されるィミン化合物を用 レ、、求核性化合物として一般式(7)で表される化合物の中でも一般式 (7— 1)で表さ れる化合物を用い、一般式(1)で表されるリン酸誘導体として、一般式(1一 1)で表さ れる光学活性リン酸誘導体を用いて、アミン類として一般式 (8a— 1)で表される光学 活性アミン類を得る反応を示した反応式である。
[0291] 即ち、一般式 (2)で表されるィミン化合物と一般式 (7—1)で表される化合物とを一 般式(1一 1)で表される光学活性リン酸誘導体の存在下で反応させることにより、一般 式(8a— 1)で表される光学活性アミン類を得ることができる。
[0292] 一般式(2)で表されるィミン化合物と一般式(7—1)で表される化合物の使用量は、 用いる一般式 (2)で表されるィミン化合物や一般式 (7— 1)で表される化合物、及び 一般式(1一 1)で表される光学活性リン酸誘導体の種類等により異なるため特に限定 されないが、一般式(2)で表されるィミン化合物に対して、一般式(7— 1)で表される 化合物を通常約 0. 9— 2. 5当量、好ましくは約 1. 0- 1. 5当量の範囲から適宜選 択される。
[0293] 本製造方法は、必要に応じて溶媒の存在下で行ってもよい。溶媒としては、上記ス キーム 1で例示した溶媒が挙げられる。
溶媒を用いる場合のその使用量は、用レ、る一般式(2)で表されるィミン化合物や一 般式(7_1)で表される化合物の種類等により異なるため特に限定されないが、一般 式(2)で表されるィミン化合物の基質濃度が通常約 0. 01— 1M、好ましくは約 0. 05 一 0. 5Mの範囲から適宜選択される。
[0294] 反応温度は、通常約—50— 100°C、好ましくは約一 20 50°C、より好ましくは室温 付近の範囲から適宜選択される。
反応時間は、通常約 10分一 10日、好ましくは約 30分一 7日の範囲から適宜選択さ れる。
[0295] 4)ィミン化合物と一般式(21)で表されるベンゼン類との反応
[0296] [化 115]
スキーム 4
Figure imgf000103_0001
(21) (22a)
[0297] スキーム 4は、それぞれ、ィミン化合物として一般式(2)で表されるィミン化合物を用 レ、、求核性化合物として一般式 (21)で表されるベンゼン類を用い、一般式(1)で表 されるリン酸誘導体として、一般式(1—1)で表される光学活性リン酸誘導体を用いて 、アミン類として一般式(22a)で表される光学活性アミン類を得る反応を示した反応 式である。
[0298] 即ち、一般式(2)で表されるィミン化合物と一般式(21)で表されるベンゼン類とを 一般式(1一 1)で表される光学活性リン酸誘導体の存在下で反応させることにより、一 般式(22a)で表される光学活性アミン類を得ることができる。
[0299] 一般式(2)で表されるィミン化合物と一般式(21)で表されるベンゼン類の使用量 は、用いる一般式(2)で表されるイミンィ匕合物や一般式(21)で表されるベンゼン類、 及び一般式(1一 1)で表される光学活性リン酸誘導体の種類等により異なるため特に 限定されないが、一般式(2)で表されるィミン化合物に対して、一般式 (21)で表され るベンゼン類を通常約 0. 9-2. 5当量、好ましくは約 1. 0- 1. 5当量の範囲から適 宜選択される。
[0300] 本製造方法は、必要に応じて溶媒の存在下で行ってもよい。溶媒としては、上記ス キーム 1で例示した溶媒が挙げられる。
溶媒を用いる場合のその使用量は、用レ、る一般式(2)で表されるィミン化合物や一 般式(21)で表されるベンゼン類の種類等により異なるため特に限定されないが、一 般式(2)で表されるィミン化合物の基質濃度が通常約 0. 01— 1M、好ましくは約 0.
05-0. 5Mの範囲力 適宜選択される。
[0301] 反応温度は、通常約 _50— 100°C、好ましくは約一 20— 50°C、より好ましくは室温 付近の範囲から適宜選択される。
反応時間は、通常約 10分一 10日、好ましくは約 30分一 7日の範囲から適宜選択さ れる。
[0302] 5)ィミン化合物と一般式(14)で表される不飽和複素環状化合物との反応
[0303] [化 116]
スキーム 5
Figure imgf000104_0001
[0304] スキーム 5は、それぞれ、ィミン化合物として一般式(2)で表されるィミン化合物を用 レ、、求核性化合物として一般式(14)で表される不飽和複素環状化合物を用い、一 般式(1)で表されるリン酸誘導体として、一般式(1 1)で表される光学活性リン酸誘 導体を用いて、アミン類として一般式(15— la)で表される光学活性アミン類及び/ 又は一般式(15— 2a)で表される光学活性アミン類を得る反応を示した反応式である
[0305] 即ち、一般式 (2)で表されるィミン化合物と一般式(14)で表される不飽和複素環 状化合物とを一般式(1一 1)で表される光学活性リン酸誘導体の存在下で反応させる ことにより、一般式(15— la)で表される光学活性アミン類及び/又は一般式(15_2a )で表される光学活性アミン類を得ることができる。
[0306] 一般式 (2)で表されるィミン化合物と一般式(14)で表される不飽和複素環状化合 物の使用量は、用いる一般式(2)で表されるィミン化合物や一般式(14)で表される 不飽和複素環状化合物、及び一般式(1一 1)で表される光学活性リン酸誘導体の種 類等により異なるため特に限定されないが、一般式(2)で表されるィミン化合物に対 して、一般式(14)で表される不飽和複素環状化合物を通常約 0. 9-2. 5当量、好 ましくは約 1. 0-1. 5当量の範囲から適宜選択される。
[0307] 本製造方法は、必要に応じて溶媒の存在下で行ってもよい。溶媒としては、上記ス キーム 1で例示した溶媒が挙げられる。
溶媒を用いる場合のその使用量は、用いる一般式(2)で表されるィミン化合物や一 般式(14)で表される不飽和複素環状化合物の種類等により異なるため特に限定さ れないが、一般式(2)で表されるィミン化合物の基質濃度が通常約 0. 01— 1M、好 ましくは約 0. 05-0. 5Mの範囲から適宜選択される。
[0308] 反応温度は、通常約— 80— 100°C、好ましくは約 50— 50°C、より好ましくは約— 3 5°C付近の範囲から適宜選択される。
反応時間は、通常約 10分一 10日、好ましくは約 30分一 7日の範囲から適宜選択さ れる。
[0309] 6)ィミン化合物と一般式(16)で表される不飽和複素環状化合物との反応 [0310] [化 117]
R
Figure imgf000106_0001
(2) (16) (17a)
[0311] スキーム 6は、それぞれ、ィミン化合物として一般式(2)で表されるィミン化合物を用 い、求核性化合物として一般式(16)で表される不飽和複素環状化合物を用レ、、一 般式(1)で表されるリン酸誘導体として、一般式(1一 1)で表される光学活性リン酸誘 導体を用いて、アミン類として一般式(17a)で表される光学活性アミン類を得る反応 を示した反応式である。
[0312] 即ち、一般式 (2)で表されるィミン化合物と一般式(16)で表される不飽和複素環 状化合物とを一般式(1一 1)で表される光学活性リン酸誘導体の存在下で反応させる ことにより、一般式(17a)で表される光学活性アミン類を得ることができる。
[0313] 一般式 (2)で表されるィミン化合物と一般式(16)で表される不飽和複素環状化合 物の使用量は、用いる一般式(2)で表されるィミン化合物や一般式(16)で表される 不飽和複素環状化合物、及び一般式(1一 1)で表される光学活性リン酸誘導体の種 類等により異なるため特に限定されないが、一般式(2)で表されるィミン化合物に対 して、一般式(16)で表される不飽和複素環状化合物を通常約 0. 9 2. 5当量、好 ましくは約 1. 0-1. 5当量の範囲から適宜選択される。
[0314] 本製造方法は、必要に応じて溶媒の存在下で行ってもよい。溶媒としては、上記ス キーム 1で例示した溶媒が挙げられる。
溶媒を用いる場合のその使用量は、用いる一般式(2)で表されるィミン化合物や一 般式(16)で表される不飽和複素環状化合物の種類等により異なるため特に限定さ れないが、一般式(2)で表されるィミン化合物の基質濃度が通常約 0. 01— 1M、好 ましくは約 0. 05-0. 5Mの範囲から適宜選択される。 [0315] 反応温度は、通常約一 80— 100°C、好ましくは約一 60—室温、より好ましくは約一 4 0°C付近の範囲から適宜選択される。
反応時間は、通常約 10分一 10日、好ましくは約 30分一 7日の範囲から適宜選択さ れる。
[0316] 7)イミンィ匕合物と一般式(12)で表されるフラン類との反応
[0317] [化 118]
スキーム 7
R
Figure imgf000107_0001
[0318] スキーム 7は、それぞれ、ィミン化合物として一般式(2)で表されるィミン化合物を用 い、求核性化合物として一般式(12)で表されるフラン類を用レ、、一般式(1)で表され るリン酸誘導体として、一般式(1—1)で表される光学活性リン酸誘導体を用いて、ァ ミン類として一般式(13a)で表される光学活性アミン類を得る反応を示した反応式で ある。
[0319] 即ち、一般式 (2)で表されるィミン化合物と一般式(12)で表されるフラン類とを一 般式(1一 1)で表される光学活性リン酸誘導体の存在下で反応させることにより、一般 式(13a)で表される光学活性アミン類を得ることができる。
[0320] 一般式(2)で表されるィミン化合物と一般式(12)で表されるフラン類の使用量は、 用いる一般式(2)で表されるィミン化合物や一般式(12)で表されるフラン類、及び一 般式(1一 1)で表される光学活性リン酸誘導体の種類等により異なるため特に限定さ れないが、一般式(2)で表されるイミンィ匕合物に対して、一般式(12)で表されるフラ ン類を通常約 0. 9— 5. 0当量、好ましくは約 1. 0— 3. 0当量の範囲から適宜選択さ れる。
[0321] 本製造方法は、必要に応じて溶媒の存在下で行ってもよい。溶媒としては、上記ス キーム 1で例示した溶媒が挙げられる。
溶媒を用いる場合のその使用量は、用いる一般式(2)で表されるィミン化合物や一 般式(12)で表されるフラン類の種類等により異なるため特に限定されないが、一般 式(2)で表されるィミン化合物の基質濃度が通常約 0. 01— 1M、好ましくは約 0. 05 一 0. 5Mの範囲から適宜選択される。
[0322] 反応温度は、通常約—50— 100°C、好ましくは約一 20 50°C、より好ましくは室温 付近の範囲から適宜選択される。
反応時間は、通常約 10分一 10日、好ましくは約 30分一 7日の範囲から適宜選択さ れる。
[0323] 上記スキーム 1一 7で説明した本発明の製造方法は、不活性ガス雰囲気下で行うこ とができる。不活性ガスとしては窒素ガス、アルゴンガス等が挙げられる。
[0324] 得られた光学活性アミン類は、必要に応じて後処理、精製、単離等を行ってもよい
[0325] このようにして得られたアミン類は、医薬、農薬等の中間体等に有用である。
実施例
[0326] 以下に、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明はこれら によって何ら限定されるものではなレ、。実施例で使用する各略号の意味は、次のとお りである。
Ac:ァセチノレ
anth:アンスリノレ(anthryl)
BIN〇L : 1, 1 '—ビ _2_ナフトール
Bn :ベンゼン
Boc: tert-ブトキシカノレボニノレ
Bs:ベンゼンスルフォニル
Bz:ベンジノレ
CDC1 :重クロロホノレム
3
cHex :シクロへキサン
DCE : 1, 2—ジクロロェタン DCM:ジクロロメタン
Et:ェチノレ
Et O:ジェチノレエーテノレ
2
t_Bu:tert—ブチノレ
i_Pr:イソプロピル
i-Pr〇:ジイソプロピルエーテル
2
Me:メチル
MeCN:ァセトニトリノレ
MeO:メトキシ
mes:メシテノレ mesityl)
Naph:ナフチル
Ph:フエニル
Py:ピリジン
t-Bu: tert—ブチノレ
TCE:1, 1, 2, 2—テトラクロロェタン
TES:トリェチルシリル
Tf:トリフルォロメタンスルフォニル
THF:テトラヒドロフラン
TMS:トリメチルシリル
tol:トリノレ
TPS:トリフエニルシリル
Ts:トシル
[実施例 1]
下記リン酸誘導体 1の合成
[化 119]
Figure imgf000110_0001
リン酸誘導体 1
[0328] ( 1 ) N, N,—ジ p—トルエンスルホニル— 1 , 2—フエ二レンジァミンの合成
1 , 2—フエ二レンジァミン(0. 5mmol)をピリジン(lmL)に溶解した溶液に、塩化 p —トルエンスルホニル(1. Immol)を室温で加え、 6時間撹拌反応させた。反応終了 後、反応混合物をジクロロメタンで希釈し、 1N塩酸を用いて逆抽出してピリジンを除 いた。有機相を無水硫酸ナトリウムで乾燥した後、濃縮した。得られた固体をブフナ 一ロート上でジェチルエーテルを用いて洗浄し、減圧下で乾操して目的物を得た。 白色固体。収率 > 95%。
[0329] (2)リン酸誘導体 1の合成
窒素下、実施例 1の(1 )で得られた N, N '—ジ p—トルエンスルホニルー 1 , 2—フエ二 レンジァミン(0. 5mmol)をピリジン(lmL)に溶解した溶液に、室温でォキシ塩化リ ン (0. 75mmol)を滴下した。 12時間撹拌反応させた。反応終了後、水を加え、更に 30分間撹拌した。得られた懸濁液を酢酸ェチルで希釈し、 1N塩酸を用いて逆抽出 によりピリジンを除いた。定法によりカラムクロマトグラフィーを用いて精製して、 目的 物を得た。 白色固体。収率 > 90%。
1HNMR (CDC1, 270MHz): δ 2. 30 (6Η, s) , 6. 90 (2H, m), 7. 22 (4H,
3
d, J = 8. 5Hz) , 7. 35 (2H, m), 8. 08 (4H, d, J = 8. 5Hz) .
[0330] [実施例 2]
下記光学活性リン酸誘導体 2の合成
[化 120]
Figure imgf000111_0001
リン酸誘導体 2
[0331] (1) N, N,—ジ p—トルエンスルホニルー 1 , 1,—ビナフチルー 2, 2,—ジァミンの合成 窒素下、 1, 1,-ビナフチル -2, 2,-ジァミン(0· 5mmol)をピリジン(lmL)に溶解 した溶液に、室温で、塩化 p_トルエンスルホニル(1. lmmol)を加え、 5— 12時間時 間撹拌反応させた。反応終了後、生成した赤色懸濁液を酢酸ェチルで希釈し、 1N 塩酸により逆抽出してピリジンを除いた。得られた有機相を硫酸ナトリウムにより乾燥 し、溶媒を除去し、残渣をカラムクロマトグラフィーにより精製して、 目的物を得た。淡 黄色一白色固体。収率 > 95%。
[0332] (2)下記光学活性リン酸エステルの合成
[化 121]
Figure imgf000111_0002
[0333] 実施例 2の(1)で得られた N, N,-ジ p—トルエンスルホニル -1 , 1,-ビナフチル -2 , 2,ージァミン(0. lmmol)を窒素下で、無水テトラヒドロフラン(5mL)に溶解した溶 液を 0°Cに冷却し、この溶液にジクロロアリロキシホスフィンのテトラヒドロフラン溶液(0 . 1M、 2mL、 0. 2mmol)及びトリェチルァミン(0. 6mmol)を滴下し、室温で数時 間撹拌した後、再度 0°Cに冷却した。次いで、 3%過酸化水素水(lmL)を滴下し、 0 °Cで 1一 2時間撹拌反応させた。反応終了後、有機相を乾燥した後、濃縮し、残渣の 固体をカラムクロマトグラフィーにより精製して目的物を得た。淡黄色一白色固体。収 率 > 80%。
[0334] (3)光学活性リン酸誘導体 2の合成 実施例 2の(2)で得られた光学活性リン酸エステル(0. lmmol)と、トリフエニルホス フィン(0. 02mmol)及びテトラキストリフエニルホスフィンパラジウム(0· 005mmol) を混合し、窒素雰囲気下で無水テトラヒドロフラン(1. 4mL)を加えた溶液を脱気処 理した。この溶液に室温でトリェチルァミン(0. 3mmol)及び蟻酸(0. 3mmol)を加 え、 12時間撹拌反応させた。反応終了後、得られた懸濁液を減圧濃縮後、残渣の固 体をカラムクロマトグラフィーにより精製して目的物を得た。収率 > 80%。
1HNMR (CDC1 , 270MHz): δ 1. 84 (6H, s) , 6. 24 (4H, d, J = 8. 2Hz) ,
3
6. 87 (2Η, d, J = 8. 6Hz), 7. 02 (2H, t, J = 7. 3Hz), 7. 13 (4H, d, J = 8. 2H z) , 7. 32 (2H, t, J = 7. 3Hz) , 7. 68 (2H, d, J = 8. 4Hz) , 7. 94 (2H, d, J = 8. 9Hz) , 8. 10 (2H, d, J = 8. 4Hz) .
[0335] [実施例 3— 8]
下記光学活性リン酸誘導体の合成
実施例 2において、塩化 p—トルエンスルホニルの代わりに、下記表 1に示したような スルホニル化合物を用いた以外は、実施例 2と同様にして下記式で表される光学活 性リン酸誘導体を製造した。
[0336] [化 122]
Figure imgf000112_0001
[表 1] 実施 スルホニル化合物 生成物 収量 Zm g 収率 % 例
E'=CF3
3 CF3S02CI 48.8 80
E2=H
E' = Ph
4 P S0?CI 59.5 95
E2=H
5 )3 -NaphS02CI 67.6 93
6 p-NO2C6H4S02CI 63.3 83
7 p-CH3OC6H„S02C! 67.3 98
E'=3, 5-CF3C6H4
8 3, 5- CF3CsH4S0?CI 79.1 88
E2=H
9 p-CH3C6H4S02CI m m m m m m 69.1 85
ェェ ¾
[0337] HNMR: o
実施例 3
1HNMR(CDC1 , 270MHz): δ 7.37(2H, t, J = 8.2Hz), 7.45 (2H, d, J
3
=8.2Hz), 7.60 (2H, t, J = 8.2Hz) , 7.71 (2H, dd, J=l.9, 8.2Hz) , 7.9 7(4H, d, J = 8.2Hz).
[0338] 実施例 4
'HNMRCCDCl , 270MHz): δ 6· 49— 6.55 (4H, m), 6.64 (2H, t, J = 7
3
• 3Hz), 6.91 (2H, d, J = 8.1Hz), 7.05 (2H, t, J = 7.3Hz) , 7.24—7.35(8 H, m), 7.71 (2H, d, J = 8.1Hz), 7.90 (2H, d, J = 8.9Hz) , 8.03 (2H, d, J =8.9Hz).
[0339] 実施例 5
-( 3-Naph): 'HNMR CD^D, 270MHZ) : 6 6· 40(2H, d, J = 8.5Hz ), 6.48 (2H, dt, J = l.1, 7. OHz), 6.76 (2H, t, J = 7. OHz), 6.94 (2H, d, J = 8.5Hz), 7.24 (2H, dd, J = 2.1, 8.9Hz), 7.30 (2H, d, J = 7.8Hz) , 7. 33-7.44 (8H, m) , 7.67—7.70 (4H, m) , 8.82 (2H, d, J 8· 9Hz) .
[0340] 実施例 6
1HNMR(CD OD + CDCl , 270MHz): δ 6.80(2H, d, J = 8. OHz), 7. 1
3 3
1(2H, dt, J=l.4, 8. OHz), 7.28 (2H, dt, J=l.4, 8. OHz), 7.31 (4H, d, J = 9.1Hz), 7.45 (4H, d, J = 9.1Hz), 7.59 (2H, d, J = 8. OHz), 7.81 (2H , d, J = 9.1Hz), 7.85(2H, d, J = 9.1Hz).
1— (p— CF— Ph): 'HNMRiCD OD, 270MHz): δ 6.81 (4H, d, J = 8. 1
3 3
Hz), 6.93 (2H, d, J = 8.6Hz), 7.18(2H, t, J = 7. OHz), 7.39—7.44 (6H , m), 7.72-7.79 (6H, m) .
[0341] 実施例 7
1HNMR(CD OD, 270MHz): δ 3.57 (6H, s) , 6.00 (4H, d, J = 8.9Hz
3
), 6.81 (2H, d, J = 8.6Hz), 7.08 (4H, d, J = 8.9Hz), 7.11 (2H, m), 7.4 0 (2H, t, J = 7.0Hz), 7.75-7.87 (6H, m) .
[0342] 実施例 8
1HNMR(CD OD, 270MHz): δ 6.66 (2H, d, J = 8. OHz), 7.05 (2H, t
3
, J = 8.0Hz), 7.34 (2H, t, J = 8. OHz), 7.39 (2H, s), 7.70 (2H, d, J = 8. 0Hz), 7.83 (4H, s) , 7.93 (4H, brs) .
[0343] [実施例 9]
下記光学活性リン酸誘導体の合成
[化 123]
Figure imgf000114_0001
実施例 2において、 1, 1,ービナフチルー 2, 2,ージァミンの代わりに、 6, 6,ジブロモ -1, 1,—ビナフチル—2, 2,—ジァミン—を用いた以外は、実施例 2と同様にして上記 式で表される光学活性リン酸誘導体を製造した。収量: 69. lmg。収率 85%。
1HNMR(acetone-d , 270MHz): δ 2.01 (6Η, s) , 6.43(4Η, d, J = 8.
6
1Hz), 6.54 (2H, d, J = 9. OHz), 7.07 (4H, d, J = 8. lHz), 7.19(2H, d, J 9. 0Hz) , 7. 95-8. 10 (6H, m) .
[0344] [実施例 10]
下記光学活性リン酸誘導体の合成
[化 124]
Figure imgf000115_0001
[0345] 実施例 2において、 1, 1,ービナフチルー 2, 2,ージァミンの代わりに、 (1R, 2S)—ジ フエニルエチレンジァミンを用いた以外は、実施例 2と同様にして上記式で表される 光学活性リン酸誘導体を製造した。収量: 52. 4mg。収率: 90%。
'HNMR iCDCl , 270MHz): δ 2. 23 (6Η, s) , 4. 49 (2Η, d, J= 13. 5Hz
3
) , 6. 95 (4H, d, J = 8. 1Hz) , 7. 04 (6H, br) , 7. 30 (4H, brd, J = 7. 6Hz) , 7 . 69 (4H, d, J = 8. 1Hz) .
[0346] [実施例 11]
下記光学活性リン酸誘導体の合成
[化 125]
Figure imgf000115_0002
実施例 2において、塩化 p—トルエンスルホニルの代わりに、塩化 p—二トロフエニル スルホニルを用いた以外は、実施例 2と同様にして上記式で表される光学活性リン酸 誘導体を製造した。収量: 51. 6mg。収率: 90%。
1HNMR (CDC1 , 270MHz): δ 4. 48 (2H, d, J= 13. 2Hz) , 6. 96 (6H, t
3
, J = 3. 2Hz) , 7. 44 (4H, m) , 7. 89—7. 96 (8H, m) .
[実施例 12]
下記光学活性リン酸誘導体の合成
[化 126]
Figure imgf000116_0001
実施例 1の(2)において、 N, Ν'—ジ p—トルエンスルホニル— 1 , 2—フエ二レンジアミ ンの代わりに(1R, 2S)—ジフヱニルエチレングリコールを用いた以外は、実施例 1の (2)と同様にして上記式で表される光学活性リン酸誘導体を製造した。
1HNMR (CD OD, 270MHz): δ 5. 30 (2Η, br) , 7. 14 (4Η, br) , 7. 27 (
3
2Η, br) , 7. 37 (4Η, br) .
[実施例 13]
下記光学活性リン酸誘導体の合成
[化 127]
Figure imgf000116_0002
実施例 1の(2)において、 1 , 1,—ビナフチル _2, 2,—ジァミンの代わりに 1 , 1,—ビ ナフチル -2, 2' -ジオールを用いた以外は、実施例 1の(2)と同様にして上記式で 表される光学活性リン酸誘導体を製造した。 [0349] [実施例 14]
光学活性アミン類の合成
窒素雰囲気下、下記リン酸誘導体 0. 002mmolと 0. Immolの各種イミン化合物と を溶媒 800 に溶解した溶液に、室温でァセチルアセトン類 0. 1 Immolを加え、 撹拌反応させた。反応終了後、 NMRで反応終了を確認した後、反応溶液をシリカゲ ルカラムクロマトグラフィーにより精製して、 目的物を得た。用いた光学活性リン酸誘 導体、ィミン化合物、反応時間、収量及び収率を下記表 2 6に示す。
[0350] [化 128]
Figure imgf000117_0001
[0351] [表 3]
Figure imgf000118_0001
[0352] [表 4]
Figure imgf000119_0001
5]
Figure imgf000120_0001
[0354] 表 2、表 3において、 (f) , (s)の表記はキラル HPLC分析〔カラム: Chiralpak AD— H,溶媒:へキサン/エタノール = 90/10 (V/V)〕における、ェナンチォマー分析 の際、最初に観測されるピークが主成分の場合は (f)として、後に観測されるピーク が主成分の場合は(s)として記載した。
[0355] リン酸誘導体:
[化 129]
Figure imgf000120_0002
[0356] [化 130]
t
Ph, ヽ H
Figure imgf000121_0001
[0357] [表 6]
Figure imgf000121_0002
[0358] 表 6において、(f),(s)の表記はキラル HPLC分析〔カラム: Chiralpak AD— H, 溶媒:へキサン/イソプロパノール =90/10 (V/V)〕における、ェナンチォマー分 析の際、最初に観測されるピークが主成分の場合は (f)として、後に観測されるピー クが主成分の場合は(s)として記載した。
[0359] リン酸誘導体:
[化 131]
Figure imgf000122_0001
4 5
[0360] 尚、上記表における反応時間において、 minは分を、 hは時間を、 dは日数を夫々 示す(以下において同様である。)。
[0361] 生成物の NMR及び融点:
[化 132]
Figure imgf000122_0002
XH NMR (CDC1 , 270MHz): d 2.10 (3H, s) , 2.30(3H, s),
3
4.90(1H, d, J = 5. 1Hz), 6.04(1H, dd, J = 5.1, 9.2Hz) , 7.20-7.30 (1H, m), 7.31 (4H, d, J = 4.1Hz), 7.41 (2H, tt , J = 1.6, 7.3Hz), 7.50(1H, tt, J = 1.6, 7.3Hz) , 7.78( 2H, dt, J = 1.6, 7.3Hz), 7.93(1H, brd, J = 9.2Hz) . Melt ing point; 193— 194。C.
[0362] [化 133]
NHBz
Ph 丫
C02Me
major isomer NMR (CDC1, 270MHz): d 2. 38(3H, s), 3.
3
66 (3H, s), 4. 15(1H, d, J = 3.8Hz), 6.09(1H, dd, J = 3. 8, 9. 5Hz), 7. 22-7. 33 (5H, m) , 7. 39-7. 54 (3H, m), 7. 78—7 . 83 (2H, m), 8. 14(1H, brd, J = 9. 5Hz) . Melting point (diast ero— mixture); 158°C.
[0363] [化 134]
Figure imgf000123_0001
minor isomer: XH NMR (CDC1, 270MHz): d 2. 15(3H, s), 3.
3
70 (3H, s), 4. 20(1H, d, J = 4. 9Hz), 5. 94(1H, dd, J = 4. 9, 8.6Hz), 7. 22-7. 33 (5H, m) , 7. 39-7. 54 (3H, m), 7. 78—7 . 83 (2H, m), 7. 87(1H, brd, J = 8.6Hz) . Melting point (diast ero— mixture); 158°C.
[0364] [化 135]
Figure imgf000123_0002
Ή NMR (CDC13, 270MHz) : d 1. 95(2H, brquin, J = 6. 5 Hz ), 2. 33 (2H, brt, J = 6. 5Hz) , 2. 64(2H, brt, J = 6. 5Hz), 6. 59(1H, d, J = 9. 5Hz), 7. 16-7. 29 (3H, m) , 7. 38-7. 55 (5H , m), 7.87(2H, d, J = 8.4Hz) , 8. 93(1H, brd, J = 9. 5Hz) , 11. 27 (1H, br). Melting point; 208— 209°C. [0365] [化 136]
Figure imgf000124_0001
XH NMR (CDC1 , 270MHz) : d 6.08(1H, dd, J = 3. 2, 8. 1H
3
z), 6. 10 (1H, s), 7. 17-7. 56(13H, m) , 7. 64(1H, td, J = 1 .4, 7. 3Hz), 7. 79 (2H, td, J = 1.4, 8. 1Hz), 7. 84(2H, td, J = 1.4, 6. 5Hz), 8.06 (2H, td, J = 1. 6, 7. 3Hz) , 8. 52(1 H, d, J = 8. 1Hz). Melting point; 222。C.
[0366] [化 137]
Figure imgf000124_0002
major isomer: XH NMR (CDC1 , 270MHz): d 2. 16 (3H, s), 2
3
. 80 (3H, s), 3.01 (3H, s), 4. 34(1H, d, J = 7. 3Hz), 5. 90(1
H, dd, J = 7.0, 9. 2Hz), 7. 14-7.46 (8H, m), 7.82 (2H, td
, J = 1. 6, 7.0Hz) , amide proton was not detected. Melting p oint (diastero— mixture); 69— 71°C.
[0367] [化 138]
Figure imgf000124_0003
minor isomer: XH NMR (CDC1 , 270MHz): d 2. 29 (3H, s), 2.
3
59 (3H, s), 2. 84 (3H, s), 4. 11(1H, d, J = 3. 2Hz), 5. 97(1 H, dd, J = 3. 2, 8. lHz), 7. 14-7.46 (8H, m), 7.82(2H, td,
J = 1.6, 6. 8Hz), 9. 13 (1H, brd, J = 8. 1Hz). Melting poi nt (diastero— mixture); 69— 71°C. 009 I : ^UTod §υ ΐ3]Α[ · (ra Η9)½ 'ί- Ζ 'L '(jq 'HI)SZ · 'HI) 9 'S '(ΖΗ8 ·9 = f 'P 'HI) 81 ' '(s-iq 'HS)ZI · 'HS)60 'Ζ '(s 'H6)ZS "I P : (ΖΗ1 Ι0ΖΖ ' ΐθαθ) 層 N Ητ
Figure imgf000125_0001
•(ZH9 -
8 = Γ 'P 'HI) IZ "8 '(ΖΗ9 ·8 = Γ 'P 'ΗΙ)68 Ί ' 'HS)S8 •Z-09 Ί '(ZH0 'L "I = Γ '^P 'HI)^9 'L ' 'H9)9S 'Z— 9S ' L '(ΖΗ6 ·8 'S = Γ 'PP 'HI) 18 "9 ' (ZHS · = Γ 'P 'HI)SS '
'(s 'HS)9^ 'Z '(s 'HS)S6 ·ΐ P : (ZUW01Z ' lOQO) Hl^N Ητ
Figure imgf000125_0002
[( ^] [69S0]
"(ra 'Hl)lZ "8 '(ΖΗΙ "8 = Γ 'P 'HI) 16 Ί ' 'HI)
^8 Ί '(ZH0 'L "I = Γ 'PP 'ΗΙ)69 Ί ' ( 'ΗΙ)99 'L ' ' HS)Sg 'L- 'L '(ZHS 'L = Γ 'P 'HI)Z^ 'L ' ¾g)9S ' L- Z ' L '(ZH9 "6 "9 = Γ 'PP 'HI)ZI "9 ' (ZH^ ' = Γ 'P 'HI)S^ "
'(s 'HS)8S 'Z '(s 'HS)SI 'Ζ P : (ΖΗ1 Ι0ΖΖ ' ιοαο) Hl^N Ητ
Figure imgf000125_0003
[6SI^>] [89S0] til
Z96000/S00Zdf/X3d S.80.0/S00Z OAV [0371] [化 142]
Figure imgf000126_0001
H NMR (CDC1 , 270MHz): d 1.37(9H, s), 1.96(3H, s) , 2
.30 (3H, s), 4.40(1H, d, J = 5.4Hz) , 6. 16 brs), 6.2 9(1H, brs), 7.37-7.44 (2H, m) , 7.50(1H, t, 6.8Hz), 7
.59(1H, dt, J = 1.4, 6.8Hz) 7.70-7.80 (1H m ), 7.86(1H, d, J = 7.8Hz) 8.16 (1H, d, J = 8· 4Hz).
[0372] [化 143]
Figure imgf000126_0002
NMR (CDC1 , 270MHz): .35 (9H, s), 2. 11 (6H,
2.48 (3H, s) 11 (1H, d, J 7.0Hz), 5.66 (2H, brs) 3-7.16 (4H,
[化 144]
Figure imgf000126_0003
H NMR (CDC1 , 270MHz): d 1.39(9H, s) , 2. 10(3H, s) , 2
3
.12(3H, s), 3.75 (3H, s), 4.15(1H, d, J = 7.0Hz), 5.40(1
H, brs), 5.65(1H, brs), 6.81 (2H, d, J = 8.5Hz), 7. 16(2H , d, J = 8.5Hz). [0374] [化 145]
Figure imgf000127_0001
H NMR (CDC1 , 270MHz): d 1.36(9H, s) , 2. 10(3H,
3
.15(3H, s), 2.28(1H, d, J = 5.4Hz) , 4. 17(1H, d, J
0Hz), 5.43(1H, brs), 5.70(1H, brs), 7.07— 7.15(4H
[化 146]
Figure imgf000127_0002
H NMR (CDC1 , 270MHz): d 1.36 (9H, s), 2.09 (3H, s) , 2
3
• 16 (3H, s), 4.15(1H, d, J = 6.8Hz), 5.42 (IH, brs), 5.47( IH, brs), 6.94— 7.03 (2H, m) , 7. 19-7.26 (2H, m) .
[0376] [化 147]
Figure imgf000127_0003
Ή NMR (CDC1 , 270MHz): d 1.37 (9H, s), 2.08 (3H, s),
3
2. 19 (3H, s), 4.14 (1H, d, J = 6.2Hz), 5.41 (1H, brs), 5.79 (1H, brs), 7. 14 (2H, d, J = 8.5Hz), 7.42 (2H, d, J = 8.5Hz).
[0377] [化 148]
Figure imgf000127_0004
XH NMR (CDC1 , 270MHz): δ 1.27(3H, t, J = 7.0 Hz), 4
3
25 (2H, q, J = 7.0 Hz), 6.20(1H, d, J = 8.4 Hz), 7.28 - 7.56 (9H
[化 149]
Figure imgf000128_0001
H NMR (CDCl , 270MHz): d 1.28 (3H, t, J = 7.0 Hz),
3
4.27 (2H, q, J = 7.0 Hz), 6.27 (1H, d, J = 8.1 Hz), 7 .33-7.61 (8H, m), 7.87—7.96 (4H, m), 8.36 (1H, s) . [化 150]
Figure imgf000128_0002
Ή NMR (CDCl , 270MHz): d 1.28 (3H, t, J = 7.0 Hz),
3
4.26 (2H, q, J = 7.0 Hz), 6.30 (1H, d, J = 7.8 Hz), 7 .30-7.58 (9H, m), 7.68 (1H, d, J = 7.0 Hz), 7.87-7.96 (2H, m), 8.37 (1H, d, J = 9.4 Hz).
[化 151]
Figure imgf000128_0003
Ή NMR (CDCl , 270MHz): δ 1.25 (3H, t, J = 7.0 Hz),
3
1.45 (9H, s), 4.22 (2H, q, J = 7.0 Hz), 5.39 (1H, brs) , 5.39 (1H, d, J = 7.6 Hz), 7.25 - 7.41( 5H, m) · [8挲]
Figure imgf000129_0002
Figure imgf000129_0001
LZl
Z96000/SOOZdf/X3d SZ.80Z.0/S00J OAV entry 保護基 置換基 触媒 溶媒 反応 収率 光学収
(R'= ) (R ) (catalyst) (sol vent) 時間 (¾) 率
34 O'Bu ト Bu 2:R=Br CDCI3 6d 48 26
35 2:R=I 3d 59 18
36 2:R=H, 6,6' -Br- 7d 37 20
37 a~ 2:R=(3, 5-Ph-Ph) CDCI3 3d 68 58 naph
38 2:R=(3, 5-i-Bu-Ph) 4.5d 68 70
39 /'一 Pr " 1.5d 65 73
40 /-Bu 22 67 80
41 Et 2:R=(3, 5-TMS-Ph) CDCI3 1d 70 73
42 2:R=(3, 5-TES-Ph) 2d 63 75
43 Et 2:R=anthry 1 Id 75 87
44 /-Pr Id 75 68
45 i-Bu 9h 76 89
46 Et CH2C 1 Id 67 73
47 " (-40°C) 33 55
48 Et20 66 85
49 Et /- Pr20 89 85
50 /-Pr 60 56
51 i-Bu 60 73
52 Et THF 32 63
53 to 1 uene 50 89
54 To 1 uene 56 84
(0.5M)
55 CF3Ph 62 73
56 AcOEt 21 59
57 PhH 58 88
58 eye 1 ohexane 64 80 9]
Figure imgf000131_0001
Figure imgf000131_0002
6ZI
Z96000/S00idf/X3d SZ.80Z.0/S00Z OAV
Figure imgf000132_0001
[0386] リン酸誘導体:
[化 153]
Figure imgf000132_0002
H8-
[0387] [実施例 15]
[化 154]
Figure imgf000133_0001
[0388] 乾燥した試験管に窒素雰囲気下、リン酸(1. 40 mg, 2 mol%)とィミン 1 (0. 1 5 mmol)のトルエン(lmL, 0. 1 M)溶液に、ジァゾアセテート(14. 2 mg, 0 . 1 mmol)を加え、室温で 5 h攪拌した。飽和炭酸水素ナトリウム水溶液を 1滴加え 、析出した固体をジクロロメタンで溶解させ TLCで反応の進行を確認した後、カラムク 口マトグラフィー(Hex:AcOEt = 12: 1— 6: 1)により生成物 3を単離、精製した。 以下、同様の手順に従った。ィミン窒素上のァシル保護基 (R CO)が、反応の収率と 光学収率に与える影響を以下の表 11に示す。
[0389] [表 11]
Figure imgf000133_0002
[0390] 化合物データ
[化 155] ·( ZH 9 ·8
= Γ 'P 'HZ ) 08 "Z '( ∞ 'H9 ) ΫΛ Ί - 08 Ί '( ΖΗ 9 ·8 =
Γ 'Ρ 'HS ) 96 "9 '( ΖΗ ' 8 = Γ 'Ρ 'HI ) 91 '9 '( s ¾S
) 9 ·ΐ 9 ··( s Ή6 ) 9 ·ΐ 9 :( Ι〇α〇 'ΖΗ^ 0LZ ) Η: η 03
Figure imgf000134_0001
[ZSI^ ] [26S0]
·( sJq 'HI ) 00 ·6 '( ZH 8 -Z = Γ 'PP 'HI ) 83 "8 '( ^ 'H
6 ) IS "Z - 8S "Z '( ZH 8 = Γ 'HX ) 60 "Z '( ZH ^ "8
= Γ 'P 'HI ) 00 "Z '( ZH X -8 Γ 'P 'HX ) IS ·9 '( s
G ) Z6 Έ '( s 'H6 ) § : ( ΐοαο 'ZHW OZS ) HWN
Figure imgf000134_0002
[99ΐ^>] [ΐβδθ] ·( ZH 9 "I '9 = Γ ' ρ
HS ) S "Z '( 'H6 ) 9S ' - 9S "Z '( ZH ·8 = Γ 'P 'H
) I -9 '( s 'H6 ) 9 9 : ( ΐοαο 'ZHW OZS ) HWN Ητ
Figure imgf000134_0003
Z96000/S00Zdf/X3d S.80.0/S00Z OAV ·( zH 8 "9 = Γ 'Ρ 'HI ) ZL "Z ·( ui ' H6 ) fL - IB Ί '( saq ¾! ) 61 "9 ' ( ZH 8 "Z = Γ 'P Ή x ) Li '9 '( s ¾6 ) Ί ? : ( 'ιοαο ' n οιζ ) HWN HT
Figure imgf000135_0001
[09I^]>] [96S0] ·( ZH I ·
8 = Γ 'P 'H3 ) SZ "Z '( 'H9 ) £ - - OS ' L '( ZH I '8
= Γ 'P 'HZ ) gs - '( ZH ·8 = Γ 'P 'HI ) 91 '9 '( s Ή ε ) ovz '( s ¾6 ) 9 ·ΐ 9 :( ιοαο ' w ozs ) HWN H
Figure imgf000135_0002
[69T^>] [ 6S0] '( ^ Ή6 ) S ·Ζ — 61 Ί
'( saq 'HI ) 61 "9 '( ZH ·8 = Γ 'P 'HI ) SI "9 '( s Ή ε ) LVZ '( s 'H6 ) ·χ 9 : ('ιοαο ' w OZS ) Hl^N HT
Figure imgf000135_0003
[89ΐ^>] [S6S0] εει
Z96000/S00Zdf/X3d SZ.80Z.0/S00Z OAV ■( ZH 9 "8 = Γ
HI ) 69 "Z '( ZH 9 "8 = Γ 'P 'HX )8S "Z ·( ZH 9 "8 =
'HI ) 8S ' ■( ∞ ¾9) 6S -Z - X8 ' '( zH ^ "8 = Γ 'P
I ) "9 '( s 'H6 ) 9 ·"[ 9 : ( 'ΐθαθ 'ZHW OZS ) Hl^N
Figure imgf000136_0001
[S9T^>] [86C0] ·( 'HS ) 29 - - 9S ' ·( ∞ ' ) 9^ ' - QZ -L '( sjq ¾I ) XX Ί '( zH ·8 = Γ 'P 'H
VI "9 '( s 'H6 ) "I 9 : ( 'ΐθαθ 'ZHW OZS ) HWN HT
Figure imgf000136_0002
[Z9I^>] [Z6S0] ·( ZH S '9 = Γ 'P
'Hi ) s " ·( 'H8 ) -z - χε - ( ZH ^ '8 = Γ 'P 'H
I ) I '9 '( s 'H6 ) 9 ·ΐ 9 ( 'ΐθαθ ZHW OZS ) 麵 HT
Figure imgf000136_0003
[ΐ9ΐ^>] [96S0] i96000/S00Zdf/X3d SZ.80Z.0/S00Z OAV 〇
O
·( ZH 0 ·ε '6 "8 = f 'W 'HZ)£L ' L
( ui 'HS ) Ί - LZ "Z '( sjq ¾I ) OS "Z '( m L 'Z ·6
= Γ 'W ΉΖ ) 89 "9 '( ZH ^ ·8 = Γ 'P 'HX ) LI "9 '( s
ε
9 ) εο ·ε '( s ¾6 ) "I 9 : ( ΐοαο 'ZHW OLZ ) 丽 N
Figure imgf000137_0001
[99I^>] [00^0] ( ZH 0 Έ '9 ·9
= Γ 'ρρ 'HI ) 98 '8 '( ZH "8 = Γ 'a 'HI ) 6 " (ra 'HX
) 06 "Ζ - 98 ' L '( ZH X Ί 'ε · = Γ 'PP 'HI ) 9 •Z ·( ' Η8 ) 6S L - saq ' [HI ) 9X · L '( ZH I "8 = = Γ 'P 'H
I ) LZ '9 '( s 'H6 ) LV Ί 9 ■ ( ειοαο 'ZHW OLZ ) 丽 N HT
Figure imgf000137_0002
[ [66S0]
SCI
∑96000/S00Zdf/X3d S.80.0/S00Z OAV [0401] [化 166]
Figure imgf000138_0001
[0402]
[表 12]
Figure imgf000139_0001
表 12において、 (f),(s)の表記はキラル HPLC分析〔カラム: Chiralpak AD— H, 溶媒:へキサン/イソプロパノール = 98/2 (V/V)〕における、ェナンチォマー分析 の際、最初に観測されるピークが主成分の場合は (f)として、後に観測されるピーク が主成分の場合は(S)として記載した。
[0404] [実施例 16]
窒素雰囲気下、試験管にインドール誘導体 0. llmmol及びリン酸触媒 0.002m molを量り取り、溶媒 lmLに溶解する。室温で、ィミン化合物 0. lmmolを neatで加 え、表に示したような時間攪拌する。反応混合物に飽和重曹水を二滴加え、カラムク 口マトグラフィ一により生成物を単離する。
[0405] 生成物の NMR
XH NMR (CDC1 , 270MHz): δ 0.52 (3Η, s) , 0.53 (3Η, s)
3
, 0.89 (9Η, s), 1.45 (9Η, brs) , 5.20 (1Η, brd, J = 6.5 Hz), 6.19 (1Η, brd, J = 6.5 Hz), 6.76 (1H, s) , 7.06 (1 H, dt, J = 1.1, 7.0 Hz), 7.15 (1H, dt, J = 1.1, 7.0 Hz ), 7.26-7.40 (5H, m), 7.44 (1H, d, J = 8.5 Hz), 7.48 ( 1H, d, J = 8.1 Hz).
[0406] [化 167]
Figure imgf000140_0001
[0407] [化 168]
0 :BINOレ R-P(0)OH
NR', R = H : BINAM-R'-P(0)OH
Figure imgf000140_0002
[0408] [表 13] 鏡像体 反応 収率
リン酸誘導体 R" 溶媒 反応時間 過剰率
(%)
(%ee)
1 ach i ra I Ph CDCI3 20min rt 74 -
2 BI 0L-(4-Ph-C6H4)-P(0)0H lOmi n 69 13 (s)
3 BINOL- (3 5-Ph-C6H3)-P(0)0H 3h 76 9 (0
4 B 1 NOL- (4-t- Bu-C6H4) - P (0) OH 5h " 66 16 (f)
5 BINOL- (3, 5-t-Bu-C3H3)-P(0)OH 18 70 9 (s)
6 BIN0L-(4-CF3-C6H4)-P(0)0H 1.5h 61 17 (s)
7 BIN0L-(3,5-CF3-C6H3)-P(0)0H " lOmi n 66 14 (s)
8 ach i ra 1 tBuO 20min 57 -
9 BI 0L-(4-Ph-C6H4)-P(0)0H 1 Om i n 70 12 (S)
10 BINOL-O, 5-Ph-C5H3)-P(0)0H 6h 82 17(R) n B 1 NOし-(4- 1一 Bu-C6H4) -P (0) OH 2d " 66 rac
12 BIN0L-(3, 5-t-Bu-C6H3)-P(0)0H " 2d 70 10 (S)
13 BI 0L-(4-CF3--C6H4)-P(0)0H Id " 74 4 (R)
14 BINOL- (3, 5-CFj-C6H3)-P(0)OH 1.5d " 78 rac
15 BINAM-Tf-P(0)OH 10m in " 84 21 (S)
16 BINAM- Ts- P(0)0H 5d " 56 24 (S)
17 BINOL- (3 5-nes-C6H3)-P(0)0H tBuO CHCI3 4h rt 74 42 (R)
18 CDC 13 19.5h 0 83 84 (R)
19 DCM 19h rt 79 82 ( )
20 n n 21.5h 0 82 88 (R)
[0409] 表 13において、(f), (s)の表記はキラル HPLC分析〔カラム: Chiralpak AD_ H, 溶媒:へキサン/イソプロパノール =95/5 (V/V)〕における、ェナンチォマ 分析の際、最初に観測されるピークが主成分の場合は ( として、後に観測される ピークが主成分の場合は(s)として記載した。
[0410] [表 14]
m o]
Figure imgf000142_0001
dOUUJ乙に 0) 108 Z i Oouxu に o) bso'L
a
Figure imgf000142_0002
[691^}] [11 0]
Figure imgf000142_0003
OH
Z96000/S00Zdf/X3d S.80Z.0/S00Z; OAV
Figure imgf000143_0001
[0413] [実施例 17]
Bz保護ィミンの例:窒素雰囲気下、 0. 002mmolの触媒 1及び 0. lmmolのィミン を試験管中で溶媒 ImLに溶解する。得られた薄黄色溶液に、攪拌下、室温で 2 -メト キシフラン 0. 12mmolを neatで加える。 24時間後、反応溶液に飽和炭酸水素ナトリ ゥム溶液を二滴加え、生成物をカラムクロマトグラフィーにより精製する。
[0414] [実施例 18]
Boc保護ィミンの例:窒素雰囲気下、 0. 002mmolの触媒 1を試験管中で溶媒 lm Uこ溶解する。得られた薄黄色溶液に、攪拌下、室温でィミン 0. lmmolを加え、一 3 5° Cで 2-メトキシフラン 0. 12mmolを neatで加える。 24時間後、反応溶液に飽和 炭酸水素ナトリウム溶液を二滴加え、生成物をカラムクロマトグラフィーにより精製す る。
[0415] [化 170]
Figure imgf000144_0001
2, 6—ビス—(2, 4, 6, 2", 4", 6"—へキサメチル— [1, 1, ;3,, 1,,]ターフェニル— 5 ,一ィル)一 4—ォキソ一3, 5—ジォキサ一 4 λ5_フォスファ一シクロペンタ [2, 1— a;3, 4— a,]ジナフタレン— 4—オール [ 2, 6— Bis— (2, 4, 6, 2", 4", 6 "-hexamethyl- [1 , 1 ;3 , 丄 」 terphenyl— 5 '—yl)_4_oxo_3, 5— dioxa— 4 λ —phospha— cycloh epta[2, 1— a;3, 4— a' ] dinaphthalen— 4— ol] ((R)— 4):
white solid; Rf = 0. 45 (Hexane/EtOAc = l/l); 1H NMR ( 270 MHz, DMSO-d ): δ 2. 06 (24H, s) , 2. 23 (12H, s) , 6.
6
75 (2H, s), 6. 89 (8H, brs) , 7. 11 (2H, d, J = 8. 1 Hz), 7 . 22 (2H, t, J = 8. 1 Hz), 7.45 (2H, t, J = 8. 1 Hz), 7. 5 8 (4H, s), 8. 10 (2H, t, J = 8. 1 Hz), 8. 27 (2H, s); 13C NMR (67. 8 MHz, DMSO-d ): δ 20. 6, 122. 4 (d, J = 2. 4
6 P-C
Hz), 125.4, 125. 9, 126. 6, 127. 8, 127. 9, 128. 6, 128. 8,
128. 9, 130. 7, 130. 8, 131. 5, 133. 5 (d, J = 2. 0 Hz), 1
p-c
35. 2, 135. 3, 135. 8, 137. 3, 138. 5, 140. 4, 145. 6 (d, J
p-c
= 9. 8 Hz) ; P NMR (162 MHz, DMSO-d ): δ 3. 92; IR (KBr
6
): 3400, 2918, 2860, 1612, 1595, 1483, 1439, 1240, 1101 , 1020, 982, 885, 851, 750, 693 cm—1; HRMS (ESI) Calcd f or C H O P ([M— H]— ) 971. 4235. Found 971. 4235.
68 60 4
[0416] 2—メトキシフランの、リン酸触媒によるァザ—フリーデルークラフツ型アルキル化の代 表的方法 (Representative Procedure for the Phosphoric Acid し atalyz ed Aza—Friedel— Crafts Alkylation of 2— Methoxyfuran):
乾燥した試験管に 1 · 95mgの(R) _4 (2モノレ0 /0、 0. 002mmol)を量りとり、窒素雰 囲気とした。リン酸誘導体触媒を lmLの 1, 2—ジクロロェタンに溶かした。 20, 5mg の N— bocで保護されたィミン(R=Ph、 0. 1 mmol)および 11. 1 μ Lの 2—メトシキ フラン(1, 1. 2 equiv, 0. 12 mmol)を _35°Cで neatで加えた。得られら溶液 を当該条件下に 24時間攪拌した。反応混合物をシリカゲルカラムに注ぎカラムクロマ トグラフィにより精製した(溶離液: Hexane/EtOAc = 12/1—8/1)。フラン— 2 ーィル アミン体 (R = Ph)を白色固体として 87%収率で得た。鏡像体過剰率は HPL C 分析で決定した。
[化 171]
Figure imgf000145_0001
tert—ブチル(5—メトキシフラン _2—ィル)(フエニル)メチルカルバミン酸エステル [t ert— butyl (5— methoxyfuran— 2— yl) (.phenyl) metnylcarbamate] (R = Ph): Rf = 0. 40 (Hexane/EtOAc = 1/4); HPLC analysis Chiralpak AD-H (Hexane/'PrOH = 95/5, 1. 0 mL/min, 254 nm, 10 ° C) 14. 9 (major) , 18. 0 min ; XH NMR (CDCl , 270 MHz) : δ
3
1. 43 (9H, brs) , 3. 80 (3H, s), 5. 04 (1H, d, J = 3. 1 Hz ) , 5. 24 (1H, br) , 5. 79 (1H, br) , 5. 94 (1H, d, J = 3. 1 H z) , 7. 23-7. 38 (5H, m) ; 13C NMR (CDCl , 67. 8 MHz): δ 28
3
. 3, 52. 6, 57. 7, 79. 7, 79. 8, 108. 7, 126. 9, 127. 5, 128. 5 , 139. 9, 143. 6, 154. 8, 161. 4 ; IR (KBr): 3354, 2984, 294 3, 1678, 1614, 1585, 1518, 1367, 1319, 1256, 1163, 1043 , 1009, 947, 880, 746 cm"1 ; HRMS (ESI) Calcd for C H NA
17 21
NO ( [M + Na] +) 326. 1363. Found 326. 1364. [0418] [化 172]
Figure imgf000146_0001
tert—ブチル(5—メトキシフラン— 2—ィル)(4—メトキシフエニル)メチルカルバミン酸 エスァノレ [tert—butyl (5— methoxyfuran— 2— yl) (4— methoxyphenyl) methyl carbamate] (R = p_MeO_C H ):
6 5
R =0. 32(Hexane/EtOAc= 1/4); HPLC analysis Chiralpak AD— f
H (Hexane/EtOH = 95/5, 1. 0 mL/min, 254 nm, 10 °C) 2 9. 2, 34. 0 (major) min; ¾ NMR (CDC1 , 270 MHz) : δ 1.42
3
(9H, brs), 3. 79 (3H, s) , 3. 80 (3H, s), 5. 03 (1H, d, J = 3. 2 Hz), 5. 17 (1H, br) , 5. 72 (1H, br) , 5. 92 (1H, br) ,
6. 85 (2H, d, J = 8. 9 Hz), 7. 22 (2H, d, J = 8. 9 Hz); 13 C NMR (CDC1 , 67. 8 MHz): δ 28. 3, 52. 1, 52. 2, 57. 7, 7
3
9. 7, 79. 8, 108. 5, 113. 8, 128. 0, 132. 2, 143. 9, 154. 8, 1 59. 0, 161. 4; IR(KBr): 3385, 2980, 2841, 1711, 1612, 1585 , 1514, 1367, 1252, 1165, 1032, 943, 827 cm"1; HRMS (E SI) Calcd for C H NaNO (【M + Na]+) 356. 1468. Found 356. 1
18 23 5
469.
[0419] [化 173]
Figure imgf000146_0002
tert—ブチル(5—メトキシフラン— 2—ィル)(o_トリル)メチルカルバミン酸エステル [t ert— outyl (5— methoxyiuran— 2— yl) ι,ο— tolyl) metnylcarbamate (R = o -Me-C H ):
6 5
R = 0. 40 (Hexane/EtOAc = 1/4); HPLC analysis Chiralpak AD-H (Hexane/'PrOH = 95/5, 0.7 mL/min, 254 nm, 10 ° C) 16. 1 (major) , 19.3 min; XH NMR (CDCl , 270 MHz): δ
3
1.43 (9H, brs), 2.35 (3H, s), 3.80 (3H, s) , 5.02 (1H, d , J = 3.0 Hz ), 5.18 (1H, br) , 5.82 (1H, brd, J = 3.0 Hz), 5.95 (1H, br), 7.16—7.30 (4H, m) ; 13C NMR (CDCl ,
3
67.8 MHz): δ 19.0, 28.3, 49.6, 57.6, 79.7, 79.8, 108. 9, 126.0, 126.1, 127.5, 130.5, 135.8, 138.0, 143.3, 15 4.7, 161.4; IR (KBr): 3319, 2964, 2936, 1709, 1682, 1618 , 1585, 1526, 1366, 1263, 1173, 1057, 1018, 947, 883, 760, 746 cm— HRMS (ESI) Calcd for C H NaNO ([M + Na]+)
18 23 4
340. 1519. Found 340.1520.
[化 174]
Figure imgf000147_0001
tert—プチル(5—メトキシフラン— 2—ィル)(m—トリル)メチルカルバミン酸- ert— butyl (5— methoxyfuran— 2— yl) (m—toiyl) methylcarbamate 」 (R = m― Me-C H ):
6 5
R = 0.40 (Hexane/EtOAc = 1/4); HPLC analysis Chiralpak f
AD-H (Hexane/ 'PrOH = 95/5, 1.0 mL/min, 254 nm, 10 °C) 12.4 (major) , 14.2 min; 1H NMR (CDCl , 270 MHz):
3
5 1.43 (9H, brs), 2.33 (3H, s), 3.80 (3H, s), 5.04 (1H, d, J = 3.2 Hz ), 5.21 (1H, br) , 5.74 (1H, br) , 5.94 (1
H, brd, J = 3.2 Hz), 7.06—7.11 (3H, m) , 7.19-7.26 (1H, m); 13C NMR (CDCl , 67.8 MHz): δ 21.4, 28.3, 52.7, 5
3
7.7, 79.7, 79.8, 108.6, 123.9, 127.6, 128.3, 128.4, 13 8.1, 139.8, 143.8, 154.8, 161.4; IR (KBr): 3387, 2964, 2937, 1686, 1614, 1578, 1516, 1333, 1259, 1169, 1057, 1 018, 945, 883, 748 cm ; HRMS (ESI) Calcd for C H NaNO
18 23 '
([M + Na]+) 340. 1519. Found 340. 1522.
[0421] [化 175]
Figure imgf000148_0001
tert—ブチル(5—メトキシフラン— 2 ィル)(p—トリル)メチルカルバミン酸エステル [t ert— butyl (5— metnoxyiuran— 2— yl) (p— tolyl) methylcarbamate 」 (R = p— Me-C H ):
6 5
R = 0. 40 (Hexane/EtOAc = 1/4); HPLC analysis Chiralpak f
AD-H (Hexane/'PrOH = 95/5, 0. 7mL/min, 254 nm, 10 ° C)23. 0 (major) , 26. 1 min; XH NMR (CDCl , 270 MHz) : δ 1
3
. 43 (9H, brs), 2. 33 (3H, s), 3. 80 (3H, s) , 5. 03 (1H, d, J = 3. 1 Hz ), 5. 19 (1H, br) , 5. 76 (1H, br) , 5. 93 (1H, d, J =3. 1 Hz), 7. 13 (2H, d, J = 8. 1 Hz), 7. 20 (2H, d, J = 8. 1 Hz) ; 13C NMR (CDCl , 67. 8 MHz): δ 21. 1, 28. 3,
3
52. 4, 57. 7, 79. 7 , 79. 7 , 108. 5, 126. 8, 129. 2, 137. 0,
0 3
137. 2, 143. 9, 154. 8, 161.4; IR (KBr): 3364, 2978, 2936,
1705, 1614, 1578, 1493, 1367, 1259, 1165, 1047, 1020,
951, 878, 783 cm"1; HRMS (ESI) Calcd for C H NaNO ([M
18 23 4
+ Na]+) 340. 1519. Found 340. 1522.
[0422] [化 176]
Figure imgf000148_0002
tert ブチル(2 ブロモフエニル)(5—メトキシフラン 2 ィル)メチルカルバミン酸ェ スァノレ [tert— butyl ( 2— bromophenyl) ( 5— methoxyfuran— 2— vl) methvlcarba mate ] (R = o_Br_C H ):
6 5
Rf = 0.32 (Hexane/EtOAc = 1/4); HPLC analysis Chiralpa k AD-H (Hexane/ 'PrOH = 95/5, 1.0 mL/min, 254 nm, 10 °C) 15.2 (major) , 21.0 min; XH NMR (CDCl , 270 MHz): δ
3
1.42 (9H, brs), 3.78 (3H, s), 5.02 (1H, d, J = 3.2 Hz ), 5.29 (1H, br), 5.89 (1H, d, J = 3.2 Hz), 6.11 (1H, br), 7.14 (1H, dt, J = 7.6, 1.6 Hz ), 7.32 (1H, dt, J = 7.6, 1.1 Hz ) , 7.42 (1H, br) , 7.54 (1H, dd, J = 7.6, 1. 1 Hz ); 13C NMR (CDCl , 67.8 MHz): δ 28.3, 52.6, 57
3
.7, 79.9, 80.0, 109.5, 123.4, 127.5, 128.0, 129.0, 133 .1, 139.0, 142.1, 154.5, 161.5; IR (KBr): 3389, 2978, 2 936, 1690, 1614, 1572, 1510, 1391, 1323, 1258, 1161, 10 57, 1018, 943, 881, 766, 752 cm"1; HRMS (ESI) Calcd for C H BrNaN04 ([M + Na]+) 404.0468, 406.0447. Found 404.0
17 20
468, 406.0445.
[化 177]
Figure imgf000149_0001
tert—ブチル(3_ブロモフエニル)(5—メトキシフラン一 2—ィル)メチルカルバミン酸ェ スァノレ [ter_butyl ( J— bromophenyl) ( 5— methoxyf uran— 2— yi) methylcarba mate ] (R=m— Br— C H ):
6 5
R =0.42 (Hexane/EtOAc = 1/4); HPLC analysis Chiralpak f
AD-H (Hexane/EtOH = 95/5, 0.5 mL/min, 254 nm, 10 °C ) 27.4, 31.1 (major) min; XH NMR (CDCl , 270 MHz): δ 1.
3
43 (9H, brs), 3.81 (3H, s) , 5.04 (1H, d, J = 3.2 Hz ), 5.23 (1H, br), 5.74(1H, br) , 5.95 (1H, d, J = 3.2 Hz), 7.40 (1H, dt, J = 7.3, 1.6 Hz ), 7.46 (1H, d, J = 1.6 Hz ); C NMR (CDC1 , 67. 8 MHz): δ 28. 3, 52. 2, 57. 7, 7
3
9. 8, 80. 2, 109. 2, 122. 6, 125. 6, 129. 9, 130. 0, 130. 7, 142. 3, 142. 7, 154. 7, 161. 6 ; IR (KBr): 3375, 2976, 2936, 1692, 1614, 1578, 1518, 1367, 1337, 1259, 1171, 1045, 970, 951 , 781, 735 cm—1 ; HRMS (ESI) Calcd for C H BrNa
17 20
NO ( [M + Na] +) 404. 0468, 406. 0447. Found 404. 0468, 406.
4
0444.
[化 178]
Figure imgf000150_0001
tert ブチル(4 ブロモフエニル)(5—メトキシフラン 2—ィル)メチルカルバミン酸ェ スァノレ [tert— butyl (4— bromophenyl) ( 5— methoxyfuran— 2— yl) methylcarba mate ] (R = p_Br_C H ):
6 5
Rf =0. 38 (Hexane/EtOAc = 1/4); HPLC analysis Chiralpak AD-H (Hexane/ 'PrOH = 95/5, 1. 0 mL/min, 254 nm, 10 ° C) 16. 1 (major) , 19. 4 min ; 1H NMR (CDC1 , 270 MHz): δ
3
1. 42 (9H, brs) , 3. 80 (3H, s), 5. 03 (1H, d, J = 3. 2 Hz ) , 5. 23 (1H, br) , 5. 72 (1H, br) , 5. 93 (1H, d, J = 3. 2 H z) , 7. 19 (2H, d, J = 8. 4 Hz) , 7. 45 (2H, d, J = 8. 4 Hz)
13C NMR (CDC1 , 67. 8 MHz): δ 28. 3, 52. 1, 57. 7, 79. 8
3
, 80. 1, 109. 1, 121. 4, 128. 6, 131. 6, 139. 1, 142. 8, 154. 7, 161. 6 ; IR (KBr): 3368, 2978, 2937, 1684, 1614, 1585, 1516, 1369, 1340, 1250, 1165, 1047, 1011 , 951, 880, 7 29 cm"1 ; HRMS (ESI) Calcd for C H BrNaNO (【M + Na] +) 404
17 20 4
. 0468, 406. 0447. Found 404. 0468, 406. 0446. [0425] [化 179]
Figure imgf000151_0001
tert—ブチル(4_クロ口フエニル)(5_メトキシフラン _2_イノレ)メチルカルバミン酸ェ スァノレ [tert—butyl (4— chlorophenyl) (5— methoxyf uran— 2— yl) methylcarba mate ] (R = p-Cl-C H ):
6 5
R =0. 36 (Hexane/EtOAc = 1/4); HPLC analysis Chiralpak f
AD-H (Hexane/ 'PrOH = 95/5, 1. 0 mL/min, 254 nm, 10 ° C) 14. 7 (major) , 17. 5 min ; XH NMR (CDCl , 270 MHz) : δ
3
1. 43 (9H, brs) , 3. 80 (3H, s), 5. 04 (1H, d, J = 3. 0 Hz ) , 5. 20 (1H, br) , 5. 74 (1H, br) , 5. 92 (1H, brd, J = 3. 0 Hz) , 7. 23—7. 32 (4H, m) ; 13C NMR (CDCl , 67. 8 MHz): δ
3
28. 3, 52. 1 , 57. 7, 79. 8, 80. 1 , 109. 1 , 128. 2, 128. 6, 133 . 3, 138. 6, 143. 0, 154. 7, 161. 6 ; IR (KBr): 3356, 2980, 2 936, 1707, 1618, 1585, 1491, 1367, 1261, 1167, 1092, 10 47, 1015, 947, 883, 822 cm"1 ; HRMS (ESI) Calcd for C H
17 20
ClNaNO ( [M + Na] +) 360. 0973. Found 360. 0970.
[0426] [化 180]
Figure imgf000151_0002
tert—ブチル(4_フルオロフェニル)(5—メトキシフラン一 2—ィノレ)メチルカルバミン酸 エスァノレ [tert—butyl (4— fluorophenyl) ( 5— methoxyf uran— 2— yl) methylcarb amate ] (R = p_F_C H ):
6 5
R =0. 40 (Hexane/EtOAc = 1/4); HPLC analysis Chiralpak f
AD-H (Hexane/ 'PrOH = 95/5, 0. 7 mL/min, 254 nm, 10 ° C) 20.0 (major) , 24.0 min; XH NMR (CDCl , 270 MHz): δ
3
1.43 (9H, brs), 3.81 (3H, s), 5.04 (1H, d, J = 3.2 Hz ) , 5.21 (1H, br), 5.75 (1H, br) , 5.93 (1H, brd, J = 3.2H z), 6.98-7.04 (2H, m), 7.25-7.30 (2H, m) ; 13C NMR (CD CI, 67.8 MHz): δ 28.3, 52.0, 57.7, 79.7, 80.0, 108.9,
3
115.3 (d, J = 21.6 Hz), 128.5 (d, J = 8.3 Hz), 135
F-C F-C
.8 (d, J = 3.9 Hz), 143.3, 154.8, 161.5, 162.2 (d, J
F-C F—
= 245.1 Hz); IR (KBr): 3373, 2980, 2943, 1690, 1612, c
1585, 1526, 1371, 1306, 1265, 1177, 1057, 1016, 951, 88
3, 847, 743 cm—1; HRMS (ESI) Calcd for C H FNaNO ([M +
17 20 4
Na]+) 344.1269. Found 344.1269.
[化 181]
Figure imgf000152_0001
tert ブチル(5—メトキシフラン _2—ィル)(ナフタレン 1 ィル)メチルカルバミン酸 エスァノレ [tert_butyl (5— methoxyfuran— 2— yl) (napnthalen— 1— yl) methylc arbamate (R = 1— Naphtnyl):
Rf = 0.38 (Hexane/EtOAc = 1/4); HPLC analysis Chiralpak AD-H (Hexane/ 'PrOH = 97/3, 1.0 mL/min, 254 nm, 10 °C) 27. 1, 29.5 (major) min; XH NMR (CDCl , 270 MHz): δ
3
1.44 (9H, brs), 3.80 (3H, s), 5.04 (1H, d, J = 3.2 Hz ), 5.24 (1H, br), 5.92 (1H, br) , 6.59 (1H, brd, J =6.8 Hz), 7.42-7.54 (4H, m), 7.78—7.88 (2H, m), 8.07 (1H, brd, J = 6.8 Hz); 13C NMR (CDCl, 67.8 MHz): δ 28.3, 4
3
9.6, 57.7, 79.9, 80.0, 109.2, 123.3, 124.3, 125.2, 125 .7, 126.4, 128.5, 128.7, 130.9, 133.9, 135.6, 143.5, 1 54.7, 161.3; IR (KBr): 3387, 2978, 2937, 1690, 1616, 158 2, 1508, 1367, 1261 , 1167, 1053, 1018, 945, 883, 779 c m—丄; HRMS (ESI) Calcd for C H NaNO (【M + Na] +) 376. 1519
21 23 4
. Found 376. 1518
[0428] [化 182]
Figure imgf000153_0001
tert—ブチル(5—メトキシフラン— 2—ィル)
Figure imgf000153_0002
エスァノレ [tert—butyl (5— methoxyfuran— 2— yl) (naphthalen— 2— yl) methylc arbamate (R = 2— Naphthyl):
Rf = 0. 38 (Hexane/EtOAc = 1/4); HPLC analysis Chiralpak AD-H (Hexane/EtOH = 95/5, 1. 0 mL/min, 254 nm, 10 °C ) 25. 3, 30. 7 (major) min ; XH NMR (CDCl , 270 MHz) : δ 1.
3
44 (9H, brs) , 3. 81 (3H, s) , 5. 05 (1H, d, J = 3. 1 Hz ) , 5. 30 (1H, br) , 6. 00 (1H, br) , 7. 41-7. 48 (3H, m), 7. 77-7 . 83 (4H, m); 13C NMR (CDCl , 67. 8 MHz): δ 28. 3, 52. 9,
3
57. 7, 79. 8, 80. 0, 109. 0, 125. 1 , 125. 5, 125. 9, 126. 1 , 127. 6, 128. 0, 128. 3, 132. 9, 133. 3, 137. 3, 143. 6, 154. 9 , 161. 5 ; IR (KBr): 3315, 2968, 2937, 1713, 1680, 1614, 1582, 1526, 1371 , 1261 , 1167, 1049, 1020, 945, 864, 750 cm— 1 ; HRMS (ESI) Calcd for C H NaN04 ( [M + Na] +) 376. 1
21 23
519. Found 376. 1520.
[0429] [化 183]
Figure imgf000153_0003
tert ブチル(フラン _2 ィル)(5—メトキシフラン 2 ィル)メチルカルバミン酸エス ァノレ [tert— butvl (furan— 2— yl) ( 5— methoxyfuran— 2— yl) methylcarbamate ( R = 2-Furyl):
R =0.38 (Hexane/EtOAc = 1/4); HPLC analysis Chiralpak A D-H (Hexane/ ^rOH = 95/5, 1.0 mL/min, 254 nm, 10 °C ) 15.3 (major) , 19.2 min; 1H NMR (CDC1 , 270 MHz): δ 1
3
.43 (9H, brs), 3.82 (3H, s), 5.07 (1H, d, J = 3.2 Hz ), 5. 19 (1H, br), 5.88 (1H, br) , 6.07 (1H, d, J = 3.2 Hz) , 6.22 (1H, d, J = 3.2 Hz), 6.31 (1H, dd, J = 3.2, 2. 2 Hz), 7.36 (1H, d, J = 2.2 Hz); 13C NMR (CDC1 , 67.8
3
MHz): δ 28.3, 46.9, 57.7, 79.9, 80.0, 107.0, 108.6, 1 10.3, 141.6, 142.2, 152.1, 154.7, 161.3; IR (KBr): 3348 , 2980, 2936, 1717, 1618, 1585, 1506, 1369, 1261, 1167 , 1047, 1013, 949, 872, 741 cm"1; HRMS (ESI) Calcd for C H NaNO ([M + Na]+) 316.1155. Found 316. 1157.
15 19 5
[実施例 19]
N—TBS—ピロールの Friedel—Crafts Alkylアルキル化反応
窒素下 NMRチューブ中、 2 mol%の触媒の CDC1 (800 mL)溶液にイミンを 0·
3
1 mmol加え攪拌する。室温で、 N— TBS保護のピロール(0.11 mmol)を neatで 加え振り混ぜる。反応を NMR測定により追跡し、ィミンが完全に消費されることを確 認した後、 1 mLのへキサンをカ卩えてカラムクロマトグラフィーにより精製する。
[0431] [化 184]
Figure imgf000155_0001
achiral BINOし Ar-P(0)OH
time yield regioselectivity (ee) achiral 10 min 70% 10 (rac): 1 (rac)
BINOし (3,5-terphenyl)-P(0)OH 4.5 h 82% 5 (rac): 1 (50% ee (f)) BINOレ (3,5-mesitylphenyl)-P(0)OH 27.5 h 81% 4 (24% ee (f)): 1 (55% ee (b))
[0432] 生成物の NMR
主生成物(2位アルキル化) XH NMR (CDCl , 270 MHz): δ 0.51 (3
3
Η, s), 0.57 (3H, brs), 0.96 (9H, s), 1.43 (9H, brs), 5.0 8 (1H, brd, J = 7.6 Hz), 5.79 (1H, dd, J = 2.7, 1.6 Hz ), 5.93 (1H, d, J = 7.6 Hz), 6.13 (1H, t, J = 3.0 Hz),
6.78 (1H, dd, J = 2.7, 1.6 Hz), 7.20—7.36 (5H, m) . HPLC chiral-pak OD-H hexane/lPA = 99.2/0.8, 0.5 mL/mi n, 12.0 min, 13.1 min.
副生成物(3位アルキル化)1 H NMR (CDCl , 270 MHz): δ 0.37 (6
3
Η, s), 0.85 (9Η, s), 1.30 (9Η, brs), 4.76 (1Η, br) , 5.86 (1H, br), 6.46 (1H, br) , 6.69 (1H, t, J = 2.4 Hz), 7.2 0—7.36 (5H, m) one proton missing. HPLC chiralcel 〇D_H he xane/lPA = 99.2/0.8, 0.5 mL/min, 17.4 min, 18.3 min.
[0433] [実施例 20]
1, 3, 5—トリメトキシベンゼンの Friedel— Craftsアルキル化反応
窒素下 NMRチューブ中、 2 mol%の触媒の CDC1 (800 mL)溶液にイミンを 0· 1 mmol加え攪拌する。室温で、 1, 3, 5_トリメトキシベンゼン(0· 11 mmol)を加 え振り混ぜる。反応を NMR測定により追跡し、ィミンが完全に消費されることを確認 した後、飽和重曹水溶液を二滴加えてカラムクロマトグラフィーにより精製する。
[0434] [化 185]
Figure imgf000156_0001
[0435] 生成物の NMR
XH NMR (CDC1 , 270 MHz) : δ 3. 78 (6Η, s) , 3. 81 (3Η, s)
3
, 6. 21 (2Η, s), 6. 21-7. 55 (9Η, m), 7. 67 (1H, d, J = 7. 0 Hz), 7. 80-7. 93 (3H, m) , 8. 36 (1H, m) . HPLC chiralcel
OD-H hexane/lPA = 90/10, 1. 0 mL/min, 22. 7 min, 27. 9 min.
[0436] [実施例 21]
実施例 18で用いたリン酸誘導体の製造
(R) - 2, 6_ビス- (2, 4, 6, 2", 4", 6,しへキサメチノレー [1, 1,;3,, ]ターフェ二 ノレ _5,一ィノレ)一 4_ォキソ一3, 5—ジォキサ _4え5—ホスフアーシクロへプタ [2, l-a;3 , 4_a,]ジナフタレン一 4一オールの製造
(R)_3, 3'_ビス _(3, 5—ジメシチルフエ二ルー [1, 1']ビナフタレニルー 2, 2 '—ジ オール(0. 5mmol)を窒素雰囲気下でピリジン lmLに溶解し、この溶解した溶液に ォキシ塩化リン(1. 5-2. 0当量)を室温で加えた後、 80°Cで 3時間撹拌反応させた 。次いで、反応液に水 lmLをカ卩えた後、更に 80°Cで 3時間撹拌した。反応液にジク ロロメタン及び 1N塩酸を加えた後、有機層を硫酸ナトリウムで乾燥し、カラムクロマト グラフィ一で生成して、 目的とする表題化合物の白色固体を得た。
[実施例 22]
(R) -2, 6—ビス(1 , 1,—ナフチル)—4—ォキソ—3, 5—ジォキサ _4 λ 5—ホスファ—シ クロへプタ [2, l_a ; 3, 4_a' ]ジナフタレン _4_オールの製造
実施例 21において、(R)_3, 3 ' _ビス _(3, 5—ジメシチルフエ二ルー [1, 1,]ビナフ タレ二ルー 2, 2,—ジオールの代わりに(R)_3, 3,—ビス—(4—ナフタレン— 2—ィルーフ ヱ二ルー [1 , 1,]ビナフタレニルー 2, 2 '—ジオールを用いた以外は実施例 21と同様 にして反応を行い、 目的の表題化合物を得た。
[化 186]
Figure imgf000157_0001
white solid; R 0. 75 (CH CI ZPrOH = 10/1); H-NMR (27 0 MHz, DMSO-d ) δ 7. 09 (2Η, d, J = 8. 1 Hz) , 7. 29 (2H,
6
td, J = 6. 8, 1. 1 Hz) , 7. 45 (2H, t J = 8. 1 Hz) , 7. 48- 7. 59 (4H, m), 7. 93—8. 06 (12H, m), 8. 09 (2H, d, J = 8. 1 Hz) , 8. 17 (2H, s), 8. 22 (2H, d, J = 8. 4 Hz) , 8. 35 (2H , s); 13C— NMR (67. 8 MHz, DMSO-d ) δ 122. 7 (d, J = 2
6 p— c
. 0 Hz) , 124. 8, 125. 0, 125. 2, 126. 0, 126. ] 126. 2, 126. 4
126. 5, 126. 6, 127. 5, 128. 2, 128. 5, 130. 130. 2, 131
0, 131. 9 (d, J 0Hz) , 132. 3, 133. 4, 133.
p—c p—c = 2.4 Hz), 137.2, 137.3, 138.5, 147.4 (d, J = 9.3 p-c
Hz); 31P NMR (162 MHz, DMSO-d ) δ 3.19; IR (KBr): 3393,
6
3053, 2924, 1630, 1655, 1599, 1502, 1421, 1400, 1250, 1184, 1103, 972, 854, 837, 816, 748 cm—1; HRMS (ESI) Ca led for C H O P ([M— H]— ) 751.2044. Found 751.2055.

Claims

請求の範囲
[1] ィミン化合物と求核性化合物(但し、トリアルキルシリルビニルエーテル類を除く。 )と を一般式(1)
[化 1]
Figure imgf000159_0001
(式中、 A1はスぺーサーを示し、 X1及び X2は夫々独立して、二価の非金属原子又は 二価の非金属原子団を示し、 Y1は酸素原子又は硫黄原子を示す。)で表されるリン 酸誘導体の存在下で反応させることを特徴とする、ァミン類の製造方法。
[2] 一般式(1)で表されるリン酸誘導体が光学活性リン酸誘導体であり、得られるァミン 類が光学活性アミン類である、請求の範囲第 1項に記載の製造方法。
[3] イミンィ匕合物が一般式 (2)
[化 2]
Figure imgf000159_0002
(式中、 R1は水素原子又は保護基を示し、 R2は α _プロトンを有さない基又は不飽和 炭化水素基を示す。 )で表されるイミンィヒ合物である請求の範囲第 1項に記載の製造 方法。
求核性化合物が一般式 (3)
Figure imgf000159_0003
[式中、 R3は水素原子、置換基を有していてもよい炭化水素基、置換基を有していて もよい複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよ レヽァリールォキシ基、置換基を有してレ、てもよレ、ァラルキルォキシ基又は置換アミノ 基を示し、 R4及び R5は夫々独立して、水素原子、置換基を有していてもよい炭化水 素基、置換基を有していてもよい複素環基、 EWG^EWG1は電子吸引性基を示す。 )、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァリールォキ シ基、置換基を有していてもよいァラルキルォキシ基、置換基を有していてもよいァ ルキルチオ基、置換基を有していてもよいァリールチオ基、置換基を有していてもよ レヽァラルキルチオ基又はヒドロキシ基を示し、 Qは一般式(3)で表される化合物の互 変異性体を与える基を示す。また、 R3と R4、 と 、又は R4と R5とが一緒になつて結 合して環を形成してもよい。 ]で表される化合物、一般式(5)
Figure imgf000160_0001
[式中、 R7は水素原子、置換基を有していてもよい炭化水素基、置換基を有していて もよい複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよ レヽァリールォキシ基又は置換基を有してレ、てもよレ、ァラルキルォキシ基、置換基を有 していてもよいアルキルチオ基、置換基を有していてもよいァリールチオ基、置換基 を有していてもよいァラルキルチオ基又は EWG2 (EWG2は電子吸引性基を示す。) を示し、 Z1は N、 P (R8) (3個の R8は同一又は異なって、水素原子、置換基を有して
2 3
いてもよい炭化水素基、置換基を有していてもよい複素環基、置換基を有していても ょレ、アルコキシ基、置換基を有してレ、てもよレ、ァリールォキシ基又は置換基を有して レ、てもよレ、ァラルキルォキシ基を示す。)又は CR9R1Q (R9及び R1Qは夫々独立して、 水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよい複素 環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァリール ォキシ基、置換基を有していてもよいァラルキルォキシ基、置換基を有していてもよ いアルキルチオ基、置換基を有していてもよいァリールチオ基、置換基を有していて もよぃァラルキルチオ基、アミノ基又は置換アミノ基を示す。但し、 R9及び R1Qの何れ か一方は、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァリー ルォキシ基、置換基を有していてもよいァラルキルォキシ基、置換基を有していても よいアルキルチオ基、置換基を有していてもよいァリールチオ基、置換基を有してい てもよぃァラルキルチオ基、アミノ基又は置換アミノ基を示す。)を示す。 ]で表される 化合物、一般式 (7)
[化 5]
Figure imgf000161_0001
[式中、環 Bは脂肪族環又は脂肪族複素環を示し、 Q2及び Q3は夫々独立して、酸素 原子、 NR17 (R17は水素原子又は保護基を示す)又は硫黄原子を示す。 ]で表される 化合物又は一般式 (21)
[化 6]
Figure imgf000161_0002
(式中、 13は夫々独立して、水素原子又は置換基を示す。但し、 1と R52、 R5 :と R53、 R53と R54、又は R54と R55、とが一緒になつて結合して環を形成してもよい。)で 表されるベンゼン類、である、請求の範囲第 1項に記載の製造方法。
得られるァミン類が一般式 (4)
[化 7]
Figure imgf000161_0003
(式中、 R1 R5及び Qは前記と同じ。)で表されるアミン類、一般式(6)
[化 8]
Figure imgf000162_0001
(式中、 R R7及び Z1は前記と同じ。)で表されるアミン類、一般式 (8)
(
Figure imgf000162_0002
、 Q2及び Q3は前記と同じ。)で表されるアミン類又は一般式(22)
Figure imgf000162_0003
(式中、
Figure imgf000162_0004
R2及び R51— R55は前記と同じ。)で表される化合物、である、請求の範囲 第 1項に記載の製造方法。
[6] 一般式 (4)、 (6)又は(8)で表されるアミン類力 光学活性アミン類である請求の範 囲第 5項に記載の製造方法。
[7] 一般式(1)における、 X1及び X2で示される二価の非金属原子又は二価の非金属 原子団が、酸素原子、 - NR13 - (R13は水素原子、置換基を有していてもよい炭化水 素基又は置換基を有していてもよいアシノレ基を示す。)、硫黄原子又は _CR15R16_{ R15及び R16は夫々独立して、水素原子、置換基を有していてもよい炭化水素基又は EWG3 (EWG3は電子吸引性基を示す。)を示す。但し、 R15及び R16の何れか一方は 、 EWG3である。 }である、請求の範囲第 1項に記載の製造方法。
[8] 一般式 (la) [化 11]
Figure imgf000163_0001
[式中、 A1はスぺーサーを示し、 X3及び X4は夫々独立して酸素原子、— NR13— (R13 は水素原子、置換基を有してレ、てもよレ、炭化水素基又は置換基を有してレ、てもよレ、 ァシル基を示す。)、硫黄原子又は- CR15R16-{R15及び R16は夫々独立して、水素 原子、置換基を有していてもよい炭化水素基又は EWG3 (EWG3は電子吸引性基を 示す。)を示す。但し、 R15及び R16の何れか一方は、 EWG3である。 }を示し、 Y1は酸 素原子又は硫黄原子を示す。但し、 i) X3=X4の場合には、 X3及び X4は- NR13 (R13 は水素原子、置換基を有してレ、てもよレ、炭化水素基又は置換基を有してレ、てもよレ、 ァシル基を示す。)一、硫黄原子又は _CR15R16—であり、また、 X3及び X4がー NR13— のときは、該— NR13—は— NRa_ (Raはスルホン酸由来のァシル基を示す。)である。ま た、 ii) X3及び X4が異なる場合には、 X3及び X4の何れか一方は一 NR13—であり、かつ 、該— NR13_は、 _NRa_ (Raはスルホン酸由来のァシル基を示す。)であり、他方は 酸素原子、 _NR13— (R13は水素原子、置換基を有していてもよい炭化水素基又は置 換基を有していてもよいァシル基を示す。)、硫黄原子又は一 CR15R16—である。 ]で 表されるリン酸誘導体。
[9] 一般式(la)で表されるリン酸誘導体が、光学活性リン酸誘導体である請求の範囲 第 8項に記載のリン酸誘導体。
[10] 一般式(lb)
[化 12]
Figure imgf000163_0002
(式中、 A2はスぺーサーを示し、 R21— R24は夫々独立して置換基を有していてもよい 炭化水素基又は置換基を有していてもよい複素環基を示す。)で表されるリン酸誘導 [11] 一般式(lb)で表されるリン酸誘導体が、光学活性リン酸誘導体である請求の範囲 第 10項に記載のリン酸誘導体。
[12] 一般式 (9)
[化 13]
Figure imgf000164_0001
(式中、 A1はスぺーサーを示し、 X1及び: は夫々独立して、二価の非金属原子又は 二価の非金属原子団を示し、 Y1は酸素原子又は硫黄原子を示し、 R2°は置換基を有 してレ、てもよレ、ァリル基又は置換基を有してレ、てもよレ、ベンジノレ基を示す。 )で表され るリン酸誘導体。
一般式 (11)
[化 14]
Figure imgf000164_0002
[式中、 RDL— R4Uは夫々独立して、アルキル基置換フエニル基以外の置換基を示す 。但し、 R31— R35の少なくとも 1個及び R36— R4°の少なくとも 1個は、置換基を有して いてもよいァリール基 (但し、アルキル基置換フヱニル基を除く。)である。 ]で表される リン酸誘導体。 [14] 一般式(11)で表されるリン酸誘導体が、光学活性リン酸誘導体である、請求の範 囲第 11項に記載のリン酸誘導体。
[15] 一般式(1)で表されるリン酸誘導体が一般式(11 ' )
[化 15]
Figure imgf000165_0001
[式中、 R、 R'は同一または異なって水素原子、臭素原子、ヨウ素原子、メトキシ基、ト リフエニルシリル基、ナフチル基、フエニル基または置換基 1一 3個を有するフヱニル 基(ここで置換基はフッ素原子、メトキシ基、メチル基、 tert—ブチル基、フエニル基、 トリフルォロメチル基、ナフチル基から選ばれた置換基である)を示す]。
で表されるリン酸誘導体である請求の範囲第 1項に記載の製造方法。
[16] 求核性化合物が一般式(14)
[化 16]
Figure imgf000165_0002
(式中、 G1は S又は NR26 (R26は水素原子又は保護基を示す。)を示し、環 Eは二重 結合を少なくとも 1個有する単環の複素環を示す。)で表される不飽和複素環状化合 物又は一般式(16)
[化 17]
(16)
^
(式中、 G2はへテロ原子又はへテロ原子を示し、環 Fは二重結合を少なくとも 1個有 する複素環を示し、環 Iは置換基を有してレ、てもよレ、芳香環又は置換基を有してレ、て もよい複素環を示す。)で表される不飽和複素環状化合物であり、得られるアミン類 が、
一般式(15— 1)
[化 18]
Figure imgf000166_0001
及び/又は一般式(15— 2)
[化 19]
Figure imgf000166_0002
(式中、 R1は水素原子又は保護基を示し、 R2は α _プロトンを有さない基又は不飽和 炭化水素基を示し、環 Ε及び G1は前記と同じ。)で表されるアミン類又は一般式(17) [化 20]
Figure imgf000166_0003
(式中、 R1は水素原子又は保護基を示し、 R2は α _プロトンを有さない基又は不飽和 炭化水素基を示し、 G2、環 F及び環 Iは前記と同じ。)で表されるアミン類である請求 の範囲第 1項に記載の製造方法。
[17] 得られるァミン類が、光学活性アミン類である、請求の範囲第 16項に記載の製造方 法。
[18] 一般式 (2) [化 21]
Figure imgf000167_0001
(式中、 R1は水素原子又は保護基を示し、 R2はひ—プロトンを有さない基又は不飽和 炭化水素基を示す。 )で表されるィミン化合物と一般式(12)
[化 22]
Figure imgf000167_0002
(式中、 R41— R4dは夫々独立して、水素原子又は置換基を示す。)で表されるフラン 類とを反応させることを特徴とする一般式(13)
[化 23]
Figure imgf000167_0003
(式中、 R1は水素原子又は保護基を示し、 R2は α _プロトンを有さない基又は不飽和 炭化水素基を示し、 R41— R43は夫々独立して、水素原子又は置換基を示す。)で表 されるァミン類の製造方法。
[19] 得られるァミン類が、光学活性アミン類である、請求の範囲第 18項に記載の製造方
[20] [化 24]
Figure imgf000168_0001
(式中、 Ar1— Ar5は夫々独立して、水素原子又はアルキル基置換フエ二ル基を示す 。但し、 Ar1— Ar5の全てが水素原子である場合を除く。)で表されるリン酸誘導体。
[21] 一般式(31)で表されるリン酸誘導体が、光学活性リン酸誘導体である、請求の範 囲第 20項に記載のリン酸誘導体。
[22] 請求の範囲第 9項に記載の光学活性リン酸誘導体を含有する不斉合成用触媒。
PCT/JP2005/000962 2004-01-26 2005-01-26 アミン類の製造方法 WO2005070875A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005517310A JPWO2005070875A1 (ja) 2004-01-26 2005-01-26 アミン類の製造方法
US10/587,279 US7902207B2 (en) 2004-01-26 2005-01-26 Process for production of amines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-017725 2004-01-26
JP2004017725 2004-01-26

Publications (1)

Publication Number Publication Date
WO2005070875A1 true WO2005070875A1 (ja) 2005-08-04

Family

ID=34805542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000962 WO2005070875A1 (ja) 2004-01-26 2005-01-26 アミン類の製造方法

Country Status (3)

Country Link
US (1) US7902207B2 (ja)
JP (1) JPWO2005070875A1 (ja)
WO (1) WO2005070875A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047341A1 (de) * 2005-09-30 2007-04-12 Studiengesellschaft Kohle Mbh Verfahren zur organokatalytischen Transferhydrierung von Iminen
JP2008540671A (ja) * 2005-05-19 2008-11-20 ザ・ホンコン・ポリテクニック・ユニバーシティ α−イミノエステルの不斉アルキニル化のための方法
WO2009054240A1 (ja) * 2007-10-24 2009-04-30 National University Corporation Nagoya University ジスルホン酸化合物の製法、不斉マンニッヒ触媒、β-アミノカルボニル誘導体の製法及び新規なジスルホン酸塩
EP2095875A1 (en) 2005-07-07 2009-09-02 Takasago International Corporation Homogeneous asymmetric hydrogenation catalyst
JP2010047490A (ja) * 2008-08-19 2010-03-04 Mitsubishi Chemicals Corp 光学活性ビフェニルリン酸誘導体
WO2010098193A1 (ja) * 2009-02-24 2010-09-02 国立大学法人名古屋大学 β-アミノカルボニル化合物の製法及びリチウムビナフトラート錯体
WO2011111677A1 (ja) 2010-03-09 2011-09-15 国立大学法人東北大学 ビス-リン酸化合物及びそれを用いる不斉反応
US8466096B2 (en) 2007-04-26 2013-06-18 Afton Chemical Corporation 1,3,2-dioxaphosphorinane, 2-sulfide derivatives for use as anti-wear additives in lubricant compositions
JP2014040476A (ja) * 2006-03-01 2014-03-06 Studienges Kohle Mbh 有機塩並びにキラル有機化合物の製造方法
WO2014077323A1 (ja) 2012-11-15 2014-05-22 高砂香料工業株式会社 光学活性イソプレゴールおよび光学活性メントールの製造方法
WO2014136868A1 (ja) 2013-03-06 2014-09-12 高砂香料工業株式会社 光学活性アルデヒドの製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093259A1 (de) * 2002-05-03 2003-11-13 Aventis Pharma Deutschland Gmbh OPTISCH AKTIVE β-AMINOKETONE, OPTISCH AKTIVE 1,3-AMINOALKOHOLE UND VERFAHREN ZU DEREN HERSTELLUNG

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725757B2 (ja) * 1999-03-24 2011-07-13 東ソー株式会社 ビナフトールリン酸誘導体及びその利用
JP4725760B2 (ja) * 2000-03-13 2011-07-13 東ソー株式会社 光学活性リン酸エステル誘導体及びその用途
US6391926B2 (en) * 2000-03-13 2002-05-21 Tosoh Corporation Optically active phosphate derivative
JP2002249495A (ja) * 2000-12-20 2002-09-06 Tosoh Corp 光学活性ビナフトール−リン酸塩誘導体、その製造方法及びそれを用いた光学活性ピラン類縁体の製造法
US7161008B2 (en) * 2002-05-03 2007-01-09 Sanofi - Aventis Deutschland GmbH Optically active β-aminoketones, optically active 1,3-amino alcohols and processes for preparing them

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093259A1 (de) * 2002-05-03 2003-11-13 Aventis Pharma Deutschland Gmbh OPTISCH AKTIVE β-AMINOKETONE, OPTISCH AKTIVE 1,3-AMINOALKOHOLE UND VERFAHREN ZU DEREN HERSTELLUNG

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
URAGUCHI D. ET AL: "Chiral Broensted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, no. 17, 2004, pages 5356 - 5357, XP002980280 *
URAGUCHI D. ET AL: "Organocatalytic Asymmetric Aza-Friedel-Crafts Alkylation of Furan", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, no. 38, 2004, pages 11804 - 11805, XP002988724 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540671A (ja) * 2005-05-19 2008-11-20 ザ・ホンコン・ポリテクニック・ユニバーシティ α−イミノエステルの不斉アルキニル化のための方法
EP2095875A1 (en) 2005-07-07 2009-09-02 Takasago International Corporation Homogeneous asymmetric hydrogenation catalyst
DE102005047341A1 (de) * 2005-09-30 2007-04-12 Studiengesellschaft Kohle Mbh Verfahren zur organokatalytischen Transferhydrierung von Iminen
JP2014040476A (ja) * 2006-03-01 2014-03-06 Studienges Kohle Mbh 有機塩並びにキラル有機化合物の製造方法
US8466096B2 (en) 2007-04-26 2013-06-18 Afton Chemical Corporation 1,3,2-dioxaphosphorinane, 2-sulfide derivatives for use as anti-wear additives in lubricant compositions
JP5408662B2 (ja) * 2007-10-24 2014-02-05 国立大学法人名古屋大学 ジスルホン酸化合物の製法、不斉マンニッヒ触媒、β−アミノカルボニル誘導体の製法及び新規なジスルホン酸塩
WO2009054240A1 (ja) * 2007-10-24 2009-04-30 National University Corporation Nagoya University ジスルホン酸化合物の製法、不斉マンニッヒ触媒、β-アミノカルボニル誘導体の製法及び新規なジスルホン酸塩
JP2010047490A (ja) * 2008-08-19 2010-03-04 Mitsubishi Chemicals Corp 光学活性ビフェニルリン酸誘導体
WO2010098193A1 (ja) * 2009-02-24 2010-09-02 国立大学法人名古屋大学 β-アミノカルボニル化合物の製法及びリチウムビナフトラート錯体
WO2011111677A1 (ja) 2010-03-09 2011-09-15 国立大学法人東北大学 ビス-リン酸化合物及びそれを用いる不斉反応
US8420847B2 (en) 2010-03-09 2013-04-16 National University Corporation Tohoku University Bis-phosphate compound and asymmetric reaction using the same
WO2014077323A1 (ja) 2012-11-15 2014-05-22 高砂香料工業株式会社 光学活性イソプレゴールおよび光学活性メントールの製造方法
WO2014136868A1 (ja) 2013-03-06 2014-09-12 高砂香料工業株式会社 光学活性アルデヒドの製造方法

Also Published As

Publication number Publication date
US7902207B2 (en) 2011-03-08
US20070142639A1 (en) 2007-06-21
JPWO2005070875A1 (ja) 2007-09-06

Similar Documents

Publication Publication Date Title
WO2005070875A1 (ja) アミン類の製造方法
JP6616757B2 (ja) 水素化および脱水素触媒、ならびにこれを作成する方法および用いる方法
US8558017B2 (en) Ruthenium (II) catalysts for use in stereoselective cyclopropanations
Yoshida et al. An enantioselective organocatalyzed aza-Morita–Baylis–Hillman reaction of isatin-derived ketimines with acrolein
Arupula et al. Chemoselective cyclization of N-sulfonyl ketimines with ethenesulfonyl fluorides: access to trans-cyclopropanes and fused-dihydropyrroles
Chen et al. Chiral cyclopalladated complex promoted asymmetric synthesis of diester-substituted P, N-ligands via stepwise hydrophosphination and hydroamination reactions
CN109336792B (zh) 一种4-甲基-n-苯基-n-(2-苯基烯丙基)苯磺酰胺类化合物的合成方法
CN108314658B (zh) 一种多取代噁唑衍生物的制备方法
Pei et al. Quinidine derived organocatalysts for the nucleophile promoted asymmetric [4+ 2] cycloaddition reaction of salicyl N-tosylimine with allenic esters
Peng et al. Lanthanide amide-catalyzed one-pot functionalization of isatins: synthesis of spiro [cyclopropan-1, 3′-oxindoles] and 2-oxoindolin-3-yl phosphates
CN104689849B (zh) 一类磷酰胺‑(伯)二级胺双功能催化剂及其合成方法
JP6476497B2 (ja) 光学活性化合物の製造方法、及び新規な金属−ジアミン錯体
CN108467408B (zh) 一种具有羟基苯基官能团的二芳基磷化合物及其制备方法
CN110590788A (zh) 一种2-酰基-9H-吡咯并[1,2-a]吲哚类化合物的合成方法
CN111004114B (zh) 一种合成远程氟代芳基烯烃的方法
CN110240554B (zh) α-硫醚芳基乙腈类化合物及其合成方法
Sun et al. Diastereoselective synthesis of α-dicarbonyl cyclopropanes via a lanthanide amide-catalysed reaction
Li et al. Efficient synthesis of organic sulfonic acid derivatives containing dithiocarbamate side chains
CN114907404A (zh) 5-(2-(二取代膦基)苯基)-1-烷基-1h-吡唑膦配体及其制备方法和应用
CN112552215A (zh) 一种合成烯丙基胺衍生物的方法
Hou et al. Phosphine-catalysed α-umpolung addition of nucleophiles to δ-acetoxy allenoates: stereoselective synthesis of 2, 4-dienoates
CN109020922B (zh) 一种环状磺酰胺类化合物的制备方法
JP2005220041A (ja) 水溶性遷移金属−ジアミン錯体、及びその製造方法、並びにその用途
JP5943387B2 (ja) 新規トリフロン誘導体及びその製造方法
JP2020516631A (ja) キラル金属錯体化合物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517310

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10587279

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007142639

Country of ref document: US

Ref document number: 10587279

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10587279

Country of ref document: US