WO2014077267A1 - 樹脂組成物およびそれからなる成形体 - Google Patents

樹脂組成物およびそれからなる成形体 Download PDF

Info

Publication number
WO2014077267A1
WO2014077267A1 PCT/JP2013/080651 JP2013080651W WO2014077267A1 WO 2014077267 A1 WO2014077267 A1 WO 2014077267A1 JP 2013080651 W JP2013080651 W JP 2013080651W WO 2014077267 A1 WO2014077267 A1 WO 2014077267A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
resin composition
polymer
parts
glass
Prior art date
Application number
PCT/JP2013/080651
Other languages
English (en)
French (fr)
Inventor
淳 石黒
竜太 栗原
洋平 小出
大道 千葉
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2014546999A priority Critical patent/JP6295962B2/ja
Priority to US14/443,115 priority patent/US9493688B2/en
Priority to ES13855588.3T priority patent/ES2673233T3/es
Priority to PL13855588T priority patent/PL2921524T3/pl
Priority to CN201380059474.7A priority patent/CN104797653B/zh
Priority to EP13855588.3A priority patent/EP2921524B1/en
Publication of WO2014077267A1 publication Critical patent/WO2014077267A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C09J123/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/003Presence of polyolefin in the primer coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2453/00Presence of block copolymer
    • C09J2453/003Presence of block copolymer in the primer coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a resin composition having low hygroscopicity, non-hydrolyzability, excellent weather resistance and transparency, and having strong adhesion to glass and metal. More specifically, the crystal-type solar cell has flexibility that is difficult to break during vacuum lamination, sealing material for sealing the solar cell element in the solar cell module, transparency, and prevention of scattering when the glass is broken.
  • the present invention relates to a resin composition useful as an adhesive for laminated glass, which has excellent properties, ease of handling, storage stability, and the like, and is particularly excellent in the balance between adhesion to glass at lower temperatures, heat resistance and light resistance.
  • the mainstream is one using a single crystal or polycrystalline type crystalline silicon element, or one using a thin film amorphous silicon element.
  • a transparent front substrate 1, a solar cell element 2, and a solar cell element made of a glass substrate or the like are arranged from the sunlight incident surface side.
  • the sealing material 3 having sealing, the tab wire 4 connected to the solar cell element, and the back surface protection sheet 5 are representative.
  • an ethylene / vinyl acetate copolymer (hereinafter abbreviated as “EVA”) is crosslinked with an organic peroxide or the like because of its excellent transparency and light resistance.
  • EVA sealing material obtained by crosslinking and curing using an agent is widely used.
  • EVA contains a structural unit derived from vinyl acetate, it has a property that it tends to be hydrolyzed with time by moisture or water permeated from the outside to generate acetic acid. And there is a concern that such acetic acid contacts the wiring and electrodes inside the battery and promotes the occurrence of corrosion.
  • a barrier layer on the back protective sheet Measures such as a method of multilayering an inorganic oxide vapor-deposited layer (for example, Patent Document 1), a method of using a cyclic olefin resin sheet having low moisture permeability for the back surface protection sheet (for example, Patent Documents 2 to 3), and the like. It has been taken. However, even if moisture and water permeation are reduced in this way, it is difficult to completely eliminate moisture and water permeation. Therefore, in order to prevent deterioration of insulation and corrosion and to improve durability significantly, a sealing material that has low hygroscopicity and moisture permeability and does not generate acid by hydrolysis is required.
  • Patent Document 4 a method of using a sealing resin composition using an ethylene / ⁇ -olefin copolymer and a crosslinking agent instead of EVA (Patent Document 4)
  • Patent Document 6 a method using a propylene-based polymer and a specific propylene-based copolymer (Patent Document 6) have been proposed.
  • the method using such ethylene / ⁇ -olefin copolymer, propylene polymer and specific propylene copolymer has low hygroscopicity and moisture permeability of the resin used, and also reduces the influence of acid generation. It is thought that.
  • these methods have a poor balance between the heat resistance and flexibility of the resin used and do not exhibit good heat resistance when non-crosslinked, and therefore the solar cell element encapsulating sheet having preferred physical properties by omitting the crosslinking step It was difficult to manufacture.
  • Patent Document 7 discloses a polymer block [A] mainly composed of repeating units derived from at least two aromatic vinyl compounds and a heavy polymer composed mainly of repeating units derived from at least one chain conjugated diene compound.
  • a block copolymer comprising a combined block [B], wherein the weight fraction of the polymer block [A] in the entire block copolymer is wA, and the polymer block [B] in the entire block copolymer
  • the block copolymer having a wA to wB ratio (wA: wB) of 20:80 to 60:40 where the weight fraction of wB is wB is hydrogenated over 90% of the total unsaturated bonds.
  • a block copolymer hydride in which an alkoxysilyl group is introduced into the resulting block copolymer hydride has been proposed. Further, in this document, the block copolymer hydride described in this document has low hygroscopicity, non-hydrolyzability, weather resistance, transparency and flexibility, and can be used in a high temperature and high humidity environment for a long time. It is described that the solar cell element can be sealed without being subjected to a special water shielding treatment while maintaining a strong adhesive force with glass even when exposed.
  • polyvinyl butyral resin has been most commonly used as an intermediate layer of laminated glass.
  • polyvinyl butyral resin has a relatively low softening point
  • the glass plate is heated by heat after pasting. Displacement, bubbles are generated, and hygroscopicity is high, so if left in a high humidity atmosphere for a long period of time, it gradually becomes white from the periphery and a decrease in adhesion to glass is observed.
  • the moisture content must be strictly controlled for controlling the adhesive strength with glass (for example, Non-Patent Document 1).
  • thermosetting resin in which an organic peroxide is blended with an ethylene-vinyl acetate copolymer is integrated between glass plates to form a thermosetting resin layer.
  • Laminated glass for example, Patent Document 8 obtained by thermosetting, laminated glass (for example, Patent Document 9) formed by bonding with an acid-modified saponified ethylene / vinyl acetate copolymer have been proposed.
  • ethylene-vinyl acetate copolymer still lacks sufficient impact resistance and penetration resistance, it is composed of an end block made of a polymer of an aromatic vinyl compound and an intermediate block made of a conjugated diene polymer.
  • thermosetting resins formulated with organic peroxides are inferior in long-term storage stability, and depending on the storage conditions of the thermally crosslinkable resin before glass bonding, sufficient adhesive strength cannot be obtained during glass bonding. There was a problem.
  • Patent Document 11 discloses that an aliphatic hydrocarbon resin or the like is blended with a block copolymer hydride composed of an aromatic alkene polymer block and a diene polymer block to impart adhesiveness. However, there is no description about imparting adhesiveness to glass or the like.
  • the sealing temperature at the time of laminating is generally preferably 150 ° C. or lower, but the sealing temperature is preferably lower in order to improve production efficiency.
  • the present inventors tried to use the block copolymer hydride having an alkoxysilyl group proposed in Patent Document 7 as a solar cell element sealing material. As a result, it was confirmed that it was necessary to set the sealing temperature to 160 ° C. or higher in order to ensure that the heat resistance at 120 ° C. was ensured and to prevent cracking of the solar battery cells.
  • the adhesion temperature is generally about 120 to 140 ° C.
  • a block copolymer hydride having an alkoxysilyl group is used for adhering the laminated glass.
  • the bonding temperature it is desirable that the bonding temperature be comparable. Therefore, the present inventors tried to use the block copolymer hydride having an alkoxysilyl group having an alkoxysilyl group proposed in Patent Document 4 as an adhesive for laminating laminated glass. It was confirmed that the combined temperature had to be 150 ° C. or higher.
  • a resin composition obtained by blending a specific amount of a hydrocarbon-based polymer having a specific molecular weight with a block copolymer hydride having an alkoxysilyl group proposed in Patent Document 7 is excellent in transparency, Moreover, by using a sheet made of this resin composition, it is possible to prevent cracking of the crystalline solar cell even when sealed at a lower temperature while maintaining heat resistance.
  • a resin composition containing an olefin and / or conjugated diene (co) polymer hydride having an iodine value of a specific amount or less is excellent in transparency,
  • glass can be bonded at a lower temperature while maintaining heat resistance, and excellent light resistance can also be maintained, so that it becomes a suitable sheet as an adhesive for laminated glass.
  • the following resin compositions (1) to (3) and molded articles (4) and (5) are provided.
  • At least two polymer blocks [A] mainly composed of repeating units derived from an aromatic vinyl compound and at least one polymer block mainly composed of repeating units derived from a chain conjugated diene compound [ B] are provided.
  • the weight fraction of the whole polymer block [A] in the entire block copolymer is wA
  • the weight fraction of the whole polymer block [B] in the whole block copolymer is wB.
  • a block copolymer hydrogen obtained by hydrogenating 90% or more of all unsaturated bonds of a block copolymer [1] having a ratio of wA to wB (wA: wB) of 30:70 to 65:35
  • Block copolymer hydride [3] having an alkoxysilyl group and a block copolymer hydride [3] having an alkoxysilyl group.
  • number average hydrocarbon polymer having a molecular weight of 300 to 5,000 [4] the resin composition obtained by blending 1 to 50 parts by weight.
  • the hydrocarbon polymer [4] is a polyisobutylene, polybutene, poly-4-methylpentene, poly-1-octene, ethylene / ⁇ -olefin copolymer and their hydrides, aliphatic carbonization.
  • the resin composition according to (1) which is at least one selected from the group consisting of hydrogen resins and hydrides thereof, alicyclic hydrocarbon resins and hydrides thereof, and polyisoprene and hydrides thereof.
  • the molded product according to (4) which is a sheet-like product.
  • the resin composition of the present invention has excellent transparency, heat resistance, light resistance, low hygroscopicity and low moisture permeability, and has strong adhesive strength by being heated and melted and bonded to glass or metal. Can be obtained.
  • the sheet-like molded body comprising the resin composition of the present invention, when used as a sealing material for solar cell elements, prevents cracking of the crystalline solar cells during vacuum lamination, and maintains high temperature and humidity for a long period of time. It is a sheet that maintains a strong adhesive force with glass or metal even after being exposed to the environment, and enables the solar cell element to be sealed without a special water shielding treatment. Moreover, since this sheet has sufficient heat resistance even if it is not cross-linked and cured using a cross-linking agent such as an organic peroxide, the heat cross-linking step can be omitted in the manufacturing process of the solar cell.
  • a cross-linking agent such as an organic peroxide
  • the hydrocarbon polymer [4] is a (co) polymer hydride of olefin and / or conjugated diene, and has an iodine value of 2.0 or less.
  • Products, and sheet-like molded products made of them are excellent in transparency, anti-scattering properties when glass breaks, ease of handling, storage stability, etc., especially adhesion to glass at lower temperatures, heat resistance And since it has a balance of light resistance, a laminated glass excellent in durability can be provided.
  • such a resin composition does not require special treatment such as adjustment of the moisture content before bonding with glass, and is used as it is stored for a long time in an environment of normal temperature and humidity. Can be stored and handled easily.
  • FIG. 1 is a schematic cross-sectional view showing an outline of a crystalline silicon-based solar cell module.
  • the resin composition of the present invention has at least two polymer blocks [A] mainly containing a repeating unit derived from an aromatic vinyl compound, and at least 1 containing a repeating unit derived from a chain conjugated diene compound.
  • the weight fraction of all polymer blocks [A] in the whole block copolymer is wA
  • the weight fraction of all polymer blocks [B] in the whole block copolymer is comprised of two polymer blocks [B].
  • the ratio is wB, 90% or more of all unsaturated bonds of the block copolymer [1] having a ratio of wA to wB (wA: wB) of 30:70 to 65:45 were hydrogenated.
  • Block copolymer [1] The block copolymer [1] used in the present invention contains at least two polymer blocks [A] and at least one polymer block [B], and is contained in the entire block copolymer of all polymer blocks [A].
  • the ratio of wA to wB (wA: wB) is 30:70 to 65, where wA is the weight fraction and wB is the weight fraction of the entire block copolymer [B]. : 45.
  • the polymer block [A] has a structural unit derived from an aromatic vinyl compound as a main component.
  • the content of the repeating unit derived from the aromatic vinyl compound is usually 90% by weight or more, preferably 95% by weight or more, more preferably 99% by weight or more based on the entire polymer block [A].
  • the heat resistance of the resin composition of this invention and a molded object consisting thereof may fall.
  • examples of the component other than the repeating unit derived from the aromatic vinyl compound in the polymer block [A] include a repeating unit derived from a chain conjugated diene and / or a repeating unit derived from another ethylenically unsaturated compound.
  • the content thereof is usually 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less, based on the entire polymer block [A].
  • the plurality of polymer blocks [A] may be the same as or different from each other as long as the above range is satisfied.
  • the polymer block [B] has a repeating unit derived from a chain conjugated diene compound as a main component.
  • the content of the repeating unit derived from the chain conjugated diene compound is usually 90% by weight or more, preferably 95% by weight or more, more preferably 99% by weight or more based on the entire polymer block [B].
  • the resin composition of the present invention and the molded article comprising the resin composition are excellent.
  • the sheet-like molded body is excellent in balance with sealing properties when used for sealing solar cell elements, and is excellent in balance between impact resistance and adhesion at low temperatures when used in laminated glass. .
  • examples of the component other than the repeating unit derived from the chain conjugated diene compound in the polymer block [B] include a repeating unit derived from an aromatic vinyl compound and / or a repeating unit derived from another ethylenically unsaturated compound. .
  • the content thereof is usually 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less, based on the entire polymer block [B].
  • the resin composition of the present invention and the molded article comprising the same
  • the flexibility is lowered, the sealing performance of the solar cell element by the sheet-like molded product may be lowered, and the impact resistance when used for laminated glass may be lowered.
  • the block copolymer [1] has a plurality of polymer blocks [B]
  • the plurality of polymer blocks [B] may be the same as or different from each other as long as the above range is satisfied. Also good.
  • aromatic vinyl compound used in the block copolymer [1] examples include styrene; ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t -Styrenes having an alkyl group as a substituent, such as butylstyrene, 5-t-butyl-2-methylstyrene; halogen atoms as substituents such as 4-chlorostyrene, 2-fluorostyrene, 2,4-dichlorostyrene And styrenes having an alkoxy group as a substituent such as 3-methoxystyrene, 4-methoxystyrene, 3,5-dimethoxystyrene, 4-t-butoxystyrene, and the like.
  • styrene which does not contain a polar group and has an alkyl group as a substituent is preferable from the viewpoint of hygroscopicity, and styrene is particularly preferable from the viewpoint of industrial availability.
  • chain conjugated diene compound those having no polar group such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene from the viewpoint of hygroscopicity.
  • 1,3-butadiene and isoprene are particularly preferred because of excellent polymerization controllability.
  • ethylenically unsaturated compounds include chain ethylenically unsaturated compounds and cyclic ethylenically unsaturated compounds. These ethylenically unsaturated compounds may have a nitrile group, alkoxycarbonyl group, carboxyl group, acid anhydride group or halogen group as a substituent.
  • Those having no polar group such as chain olefins such as methyl-1-pentene and 4,6-dimethyl-1-heptene; cyclic olefins such as vinylcyclohexane, and the like, more preferably chain olefins, ethylene, Propylene is particularly preferred.
  • Block copolymer [1] The number of polymer blocks [A] in the block copolymer [1] is usually 4 or less, preferably 3 or less, more preferably 2, and the number of polymer blocks [B] is usually 3 One or less, preferably two or less, more preferably one.
  • the polymer block having the maximum weight average molecular weight and the weight average molecular weight of the polymer block having the minimum weight average molecular weight When Mw (A1) and Mw (A2) are used, the ratio of Mw (A1) and Mw (A2), [Mw (A1) / Mw (A2)], is preferably 2.0 or less, more preferably Is 1.5 or less, more preferably 1.2 or less.
  • the weight average molecular weight of the polymer block having the maximum weight average molecular weight and the weight average molecular weight of the polymer block [B] having the minimum weight average molecular weight are respectively expressed as Mw ( B1) and Mw (B2)
  • the ratio Mw (B1) / Mw (B2) of Mw (B1) and Mw (B2) is preferably 2.0 or less, more preferably 1.5 or less, More preferably, it is 1.2 or less.
  • the form of the block of the block copolymer [1] may be a chain block or a radial block, but a chain block is preferred because of its excellent mechanical strength.
  • a chain block As the chain type block, [A]-[B]-[A] type triblock copolymer, [A]-[B]-[A]-[B] type tetrablock copolymer, [ Examples include pentablock copolymers such as A]-[B]-[A]-[B]-[A] type and [B]-[A]-[B]-[A]-[B] type. It is done. Among these, [A]-[B]-[A] type triblock copolymers are particularly preferable.
  • the weight fraction of the whole polymer block [A] in the entire block copolymer is wA
  • the weight fraction in which the whole polymer block [B] is in the whole block copolymer is wA
  • the weight fraction in which the whole polymer block [B] is in the whole block copolymer is usually 30:70 to 65:35, preferably 40:60 to 60:40, more preferably 45:55 to 55:45 is there.
  • the ratio of wA and wB is within this range, moderate heat resistance and flexibility can be obtained, and particularly when used as a solar cell element sealing material, it has excellent sealing properties and is used as an adhesive material for laminated glass. In some cases, the glass has excellent thermal shock resistance and anti-scattering properties.
  • the molecular weight of the block copolymer [1] is a weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (hereinafter referred to as “GPC”) using tetrahydrofuran (hereinafter referred to as “THF”) as a solvent. ) Usually from 35,000 to 200,000, preferably from 40,000 to 150,000, more preferably from 45,000 to 100,000. Further, the molecular weight distribution (Mw / Mn) of the block copolymer [1] is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less.
  • the block copolymer [1] for example, when producing a block copolymer having three polymer blocks, as a monomer component for forming the polymer block [A] by a method such as living anion polymerization, etc.
  • a method having a third step of polymerizing the aromatic vinyl compound as a monomer component for forming the polymer block [A] A first step of polymerizing a monomer (a1) containing a monomer, a second step of polymerizing a monomer (b1) containing a chain conjugated diene compound as a monomer component for forming a polymer block [B], There is a method of coupling the ends of the combined block [B] with a coupling agent.
  • the monomer (a1), the monomer (a2), and the monomer (b1) may be a monomer mixture (a1), a monomer mixture (a2), and a monomer mixture (b1), respectively (the same applies hereinafter).
  • a monomer (a1) containing an aromatic vinyl compound as a main component is polymerized as a monomer component for forming the polymer block [A].
  • a second step of polymerizing a monomer (b1) containing a chain conjugated diene compound as a main component as a monomer component for forming the polymer block [B], and a polymer block [A] are formed.
  • the monomer (b1) and the monomer (b2) may be the same or different, and the aromatic vinyl compound is contained as a main component as a monomer component for forming the polymer block [A].
  • a method having a fifth step of polymerizing the monomer (a3) (wherein the monomer (a3) and the monomer (a1 and a2) may be the same or different); a monomer component for forming the polymer block [A], A monomer (b1) containing a chain conjugated diene compound as a main component as a monomer component for forming a polymer block [B], a first step of polymerizing a monomer (a1) containing an aromatic vinyl compound as a main component ) Is polymerized, and the ends of the polymer block [B] are coupled with a tetrafunctional coupling agent, A block copolymer having five polymer blocks as a whole polymer as one polymer block [B] in which one polymer block [A] and four polymer blocks [B] are radially bonded Etc.
  • the monomer (a3) and the monomer (b2) may be a monomer mixture (a3) and a monomer mixture (b2), respectively.
  • Block copolymer hydride [2] The block copolymer hydride [2] used in the present invention is obtained by hydrogenating the carbon-carbon unsaturated bond of the main chain and side chain of the block copolymer [1] and the carbon-carbon unsaturated bond of the aromatic ring. It has become.
  • the hydrogenation rate is usually 90% or more, preferably 97% or more, more preferably 99% or more. The higher the hydrogenation rate, the better the transparency, weather resistance, and heat resistance of the resin composition of the present invention and the molded product made from the resin composition.
  • the hydrogenation rate of the block copolymer hydride [2] can be determined from 1 H-NMR measurement data of the block copolymer hydride [2].
  • the method for the hydrogenation reaction of the unsaturated bond is not particularly limited, and may be performed according to a known method.
  • a method for the hydrogenation reaction a hydrogenation method that can increase the hydrogenation rate and has little polymer chain scission reaction is preferable.
  • the method described in international publication WO2011-096389, international publication WO2012 / 043708, etc. is mentioned.
  • the block copolymer hydride [2] can be recovered from the obtained solution after removing the hydrogenation catalyst and / or the polymerization catalyst from the reaction solution containing the block copolymer hydride [2].
  • the recovered block copolymer hydride [2] can be, for example, formed into a pellet and used for the subsequent introduction reaction of an alkoxysilyl group.
  • the molecular weight of the obtained block copolymer hydride [2] is a polystyrene-equivalent weight average molecular weight (Mw) measured by GPC using THF as a solvent, and is usually 35,000 to 200,000, preferably 40, 000 to 150,000, more preferably 45,000 to 100,000.
  • the molecular weight distribution (Mw / Mn) of the block copolymer hydride [2] is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less. When Mw and Mw / Mn are within the above ranges, the mechanical strength and heat resistance of the molded article made of the resin composition of the present invention are improved.
  • Block copolymer hydride having an alkoxysilyl group [3] The block copolymer hydride [3] having an alkoxysilyl group used in the present invention is obtained by introducing an alkoxysilyl group into the above block copolymer hydride [2].
  • the alkoxysilyl group may be directly bonded to the block copolymer hydride [2] or may be bonded via a divalent organic group such as an alkylene group.
  • the method for introducing an alkoxysilyl group is not particularly limited, but a method of reacting the above block copolymer hydride [2] with an ethylenically unsaturated silane compound in the presence of a peroxide is preferable.
  • the introduction amount of the alkoxysilyl group is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0.3 to 3 parts by weight with respect to 100 parts by weight of the block copolymer hydride [2]. Parts by weight.
  • the introduction amount of the alkoxysilyl group is too large, the degree of cross-linking between the alkoxysilyl groups decomposed with a minute amount of moisture or the like increases, and the adhesion to glass or metal may be reduced.
  • the introduction amount of the alkoxysilyl group is too small, there is a possibility that adhesiveness with glass or metal is not sufficiently developed.
  • the alkoxysilyl group can be confirmed by measuring the IR spectrum of the resulting block copolymer hydride [3].
  • the amount of alkoxysilyl group introduced can be determined from 1 H-NMR measurement data of the obtained block copolymer hydride [3].
  • the ethylenically unsaturated silane compound is not particularly limited as long as it is graft-polymerized with the block copolymer hydride [2] and introduces an alkoxysilyl group into the block copolymer hydride [2].
  • vinyltrialkoxysilanes such as vinyltrimethoxysilane and vinyltriethoxysilane; allyltrialkoxysilanes such as allyltrimethoxysilane and allyltriethoxysilane; dialkoxyalkylvinylsilanes such as dimethoxymethylvinylsilane and diethoxymethylvinylsilane; p -P-styryltrialkoxysilanes such as styryltrimethoxysilane, p-styryltriethoxysilane; 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane and the like ( (Meth) acryloxyalkyltrialkoxysilane; etc. are preferably used.
  • ethylenically unsaturated silane compounds may be used alone or in combination of two or more.
  • the amount of the ethylenically unsaturated silane compound used is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0, per 100 parts by weight of the block copolymer hydride [2]. .3 to 3 parts by weight.
  • peroxide those having a one-minute half-life temperature of 170 to 190 ° C. are preferably used.
  • t-butyl cumyl peroxide dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butyl peroxide, etc. are preferably used.
  • peroxides may be used alone or in combination of two or more.
  • the amount of peroxide used is usually 0.05 to 2 parts by weight, preferably 0.1 to 1 part by weight, more preferably 0.2 to 2 parts by weight per 100 parts by weight of the block copolymer hydride [2]. 0.5 weight.
  • the method of reacting the above block copolymer hydride [2] with the ethylenically unsaturated silane compound in the presence of a peroxide is not particularly limited.
  • a block copolymer hydride [2] an ethylenically unsaturated silane compound and a mixture containing a peroxide are kneaded at a desired temperature in a biaxial kneader for a desired time, whereby the block copolymer is obtained.
  • An alkoxysilyl group can be introduced into the hydride [2].
  • the temperature at the time of kneading with a twin-screw kneader is usually 180 to 220 ° C, preferably 185 to 210 ° C, more preferably 190 to 200 ° C.
  • the heat kneading time is usually about 0.1 to 10 minutes, preferably about 0.2 to 5 minutes, more preferably about 0.3 to 2 minutes. What is necessary is just to knead
  • the molecular weight of the block copolymer hydride [3] having an alkoxysilyl group is substantially the same as the molecular weight of the block copolymer hydride [2] used as a raw material because the amount of the introduced alkoxysilyl group is small. Will not change. However, since the block copolymer hydride [2] is reacted with an ethylenically unsaturated silane compound in the presence of a peroxide, the crosslinking reaction and the cleavage reaction of the polymer occur together, and the molecular weight distribution (Mw / Mn) May become larger.
  • the molecular weight distribution (Mw / Mn) of the resulting block copolymer hydride [3] having an alkoxysilyl group is usually 3.5 or less, preferably 2.5 or less, particularly preferably 2.0 or less. When Mw and Mw / Mn are within this range, good mechanical strength and tensile elongation of the molded article made of the resin composition of the present invention are maintained.
  • the block copolymer hydride [3] having an alkoxysilyl group obtained as described above has improved adhesion to glass, metal and the like.
  • a resin composition obtained using the block copolymer hydride [3] having an alkoxysilyl group, and a sheet-like molded body comprising the resin composition are used for a solar cell encapsulant, a glass substrate on the surface Adhesiveness with copper wiring, solder, etc. increases. Therefore, a sufficient adhesive force can be maintained even after being exposed to a high-temperature and high-humidity environment of 85 ° C. and 85% RH, which is usually performed in the reliability evaluation of solar cells. It is preferably applied as
  • Hydrocarbon polymer [4] The hydrocarbon polymer [4] used in the present invention is a hydrocarbon polymer [4] having a number average molecular weight of 300 to 5,000, and is blended with the block copolymer hydride [3] having an alkoxysilyl group. Thus, the fluidity at the time of melting can be improved without significantly impairing the heat resistance of the resin composition obtained.
  • Specific examples of the hydrocarbon polymer [4] include polyisobutylene, polybutene, poly-4-methylpentene, poly-1-octene, ethylene / ⁇ -olefin copolymers and their hydrides, aliphatic carbonization.
  • Examples thereof include at least one selected from the group consisting of hydrogen resins and hydrides thereof, alicyclic hydrocarbon resins and hydrides thereof, and polyisoprene and hydrides thereof.
  • the hydrocarbon polymer [4] may have a polar group such as an alkoxysilyl group, an ester group, a hydroxyl group, an amide group, an amino group, or an acid anhydride group.
  • polyisobutylene, polybutene, polyisobutylene hydride, and polyisoprene hydride are preferable because a resin composition excellent in transparency can be obtained.
  • the molecular weight of the hydrocarbon polymer [4] is a polystyrene-equivalent number average molecular weight (Mn) measured by GPC using THF as a solvent, and is usually 300 to 5,000, preferably 400 to 4,000, more preferably. Is 500 to 3,000. When the number average molecular weight is within this range, the generation of bubbles during melt molding can be suppressed, and low-temperature adhesion to glass is possible.
  • the hydrocarbon polymer [4] is a (co) polymer hydride of olefin and / or conjugated diene, and has an iodine value of 2.0.
  • the adhesion to the glass at low temperature is enhanced without greatly impairing the heat resistance of the resin composition obtained by blending with the block copolymer hydride [3] having an alkoxysilyl group. be able to.
  • (co) polymer hydrides of olefins and / or conjugated dienes include hydrides of homopolymers or copolymers such as isobutene, 1-butene, 4-methylpentene, 1-octene, butadiene, and isoprene. Is mentioned. Among these, isobutene homopolymers or hydrides of copolymers are preferred in that a resin composition excellent in transparency and light resistance can be obtained.
  • the iodine value of the olefin and / or conjugated diene (co) polymer hydride is preferably 2.0 or less, more preferably 0.1 or less, and even more preferably 0.5 or less. .
  • the iodine value is expressed in terms of the amount (g) of iodine that reacts with 100 g of the olefin and / or conjugated diene (co) polymer hydride. When the iodine value exceeds 2.0, the light resistance of the resin composition containing the iodine value is not preferable.
  • the iodine value is a value measured by the Wijs method using iodine monochloride in a cyclohexane solution having a concentration of 10% olefin and / or conjugated diene (co) polymer as a sample.
  • the molecular weight of the (co) polymer hydride of olefin and / or conjugated diene is a polystyrene-equivalent number average molecular weight (Mn) measured by GPC using THF as a solvent, and is usually 500 to 5,000, preferably 800 to 4,000, more preferably 1,000 to 3,000.
  • Mn polystyrene-equivalent number average molecular weight
  • the hydrocarbon-based polymer [4] is usually 1 to 50 parts by weight, preferably 100 parts by weight of the block copolymer hydride [3] having an alkoxysilyl group. Is obtained by blending 2 to 40 parts by weight, more preferably 4 to 30 parts by weight. When the compounding quantity of hydrocarbon type polymer [4] exceeds 50 weight part, there exists a possibility that the heat resistance of a resin composition and a molded object consisting thereof may fall.
  • the blending amount of the hydrocarbon-based polymer [4] is less than 1 part by weight, the fluidity of the resin composition is not enhanced, and a crystalline system is formed using a sheet-like molded body made of this resin composition.
  • the solar battery cell is sealed, the effect of preventing the cell from being cracked cannot be obtained, and the effect of lowering the bonding temperature with glass may be lowered.
  • a predetermined amount of the hydrocarbon-based polymer [4] is dissolved in an appropriate solvent. Then, this was added to the solution of the block copolymer hydride [2], and then the solvent was removed to recover the block copolymer hydride [2] containing the compounding agent.
  • a light stabilizer In the resin composition of the present invention, a light stabilizer, an ultraviolet absorber, an antioxidant, a lubricant, an inorganic filler and the like for improving light resistance and heat resistance are used alone or in combination of two or more. May be added.
  • a hindered amine light stabilizer is preferable, and in the structure, 3,5-di-t-butyl-4-hydroxyphenyl group, 2,2,6,6-tetramethylpiperidyl group, or 1, Examples thereof include compounds having a 2,2,6,6-pentamethyl-4-piperidyl group and the like.
  • N, N′-bis (2,2,6,6-tetramethyl-4-N-methylpiperidyl) -N, N′-diformyl-alkylenediamine having excellent weather resistance N, N '-Bis (2,2,6,6-tetramethyl-4-piperidyl) -N, N'-diformylalkylenediamine, N, N'-bis (2,2,6,6-tetramethyl-4 -Piperidyl) -N, N′-bisalkylene fatty acid amides, poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ ] is preferred, and N, N′-bis ( 2,2,6,6-tetramethyl-4-piperidine
  • the blending amount thereof is usually 0.001 to 2 parts by weight, preferably 0. 0 parts per 100 parts by weight of the block copolymer hydride having an alkoxysilyl group [3]. 002 to 1 part by weight, more preferably 0.005 to 0.5 part by weight.
  • the amount of the hindered amine light stabilizer is less than this, the light resistance of the resin composition and the molded article comprising the resin composition may be insufficient.
  • an extruder is used during the melt molding process of the resin composition.
  • the T-die and the cooling roll are undesirably easily soiled.
  • UV absorber As the ultraviolet absorber, a benzophenone ultraviolet absorber, a salicylic acid ultraviolet absorber, a benzotriazole ultraviolet absorber, or the like can be blended.
  • the blending amount is usually 0.01 to 2 parts by weight, preferably 0.02 to 1 part per 100 parts by weight of the block copolymer hydride having an alkoxysilyl group [3]. 0.5 part by weight, more preferably 0.04 to 1.0 part by weight.
  • the amount of the ultraviolet absorber is smaller than this, the light resistance of the resin composition and the molded article comprising the resin composition may be insufficient, and even if it is added excessively, no further improvement is observed.
  • the thermal stability is further improved by further blending an antioxidant in addition to the hindered amine light stabilizer and the ultraviolet absorber in the block copolymer hydride [3] having an alkoxysilyl group.
  • an antioxidant in addition to the hindered amine light stabilizer and the ultraviolet absorber in the block copolymer hydride [3] having an alkoxysilyl group.
  • the antioxidant to be used include phosphorus antioxidants, phenol antioxidants, sulfur antioxidants and the like, and phosphorus antioxidants with less coloring are preferable.
  • Phosphorous antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t -Butylphenyl) phosphite, monophosphite such as 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl phosphite), 4,4′-isopropylidene-bis (phenyl-di-alkyl (C12 to C15) ) Phosphite) and other diphos
  • phenolic antioxidants include pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 3,9-bis ⁇ 2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) proonyloxy] -1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro [5,5] undecane, 1,3,5 And compounds such as -trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene.
  • sulfur-based antioxidants examples include dilauryl-3,3′-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, laurylstearyl-3,3.
  • '-Thiodipropionate pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5 ]
  • Compounds such as undecane can be mentioned.
  • the amount of the antioxidant is usually 0.01 to 2 parts by weight, preferably 0.05 to 1 part per 100 parts by weight of the block copolymer hydride having an alkoxysilyl group [3]. 0.5 part by weight, more preferably 0.1 to 1 part by weight. When the amount of the antioxidant is within this range, the balance between heat resistance stability, transparency and adhesiveness is excellent.
  • a compounding agent As a method for uniformly dispersing the compounding agent in a resin composition obtained by compounding a hydrocarbon-based polymer [4] with a block copolymer hydride [3] having an alkoxysilyl group, for example, a compounding agent is used. A solution dissolved in an appropriate solvent is added to a solution of a block copolymer hydride [2], which is a precursor of a block copolymer hydride [3] having an alkoxysilyl group, and then the solvent is removed and blended.
  • the block copolymer hydride [2] containing an agent is recovered, and this is reacted with an ethylenically unsaturated silane compound in the presence of a peroxide, and then the hydrocarbon polymer [4] is blended.
  • the resin composition of the present invention contains the hydrocarbon polymer [4] with respect to the block copolymer hydride [3] having an alkoxysilyl group, the fluidity at the time of melting is enhanced.
  • a crystalline solar cell is sealed using a sheet made of this resin composition, it has the effect of preventing cell cracking in the vacuum laminating process. It has the effect of lowering the temperature.
  • the resin composition of the present invention has excellent transparency, heat resistance, light resistance, low hygroscopicity and low moisture permeability, and has strong adhesive strength by being heated and melted and bonded to glass or metal. Demonstrate.
  • the resin composition of the present invention maintains low adhesiveness, non-hydrolyzability, weather resistance, and strong adhesion to glass and metal even after being exposed to a high temperature and high humidity environment for a long time, and , Heat resistance and low temperature sealing.
  • the resin composition of the present invention includes a solar cell element sealing material, a glass plate bonding material (adhesive for laminated glass), a glass plate and metal plate bonding material, a metal plate bonding material, and a high frequency. Bonding material between ceramic substrate or resin substrate for circuit board and copper foil not roughened, bonding material with paper, sealing material for electronic components and electronic elements, middle of cardboard with IC elements sealed It is useful as a layer material, a sealing material for EL displays and EL light emitting elements, a sealing material for liquid crystal displays, a binder for ceramics, a sheath material for glass optical fibers, a nonwoven fabric, a high-frequency connector, and the like. Among these, it is particularly suitable for a solar cell element sealing material and a glass plate bonding material (adhesive for laminated glass).
  • Molded body The molded body of the present invention is obtained by molding the resin composition of the present invention. It does not specifically limit as a shaping
  • the shape of the molded body is not particularly limited, and is a lump, plate, sheet, film, coating film, granule, powder, shaped body, bonded body with other materials, laminated body with other materials, solution, dispersion, An emulsion etc. are mentioned.
  • the molded body may be a molded body composed of multiple components with other materials such as other resins, rubber, inorganic materials, glass, metal, paper, and cloth. Among these, as described later, the molded article of the present invention has a sheet-like shape when used as a sealing material for solar cell elements, a laminated material for glass plates (adhesive for laminated glass), and the like.
  • a molded body (sheet) is preferred.
  • the sheet production method is not particularly limited, and known melt extrusion methods (such as a melt cast molding method, an extruded sheet molding method, an inflation molding method), a compression molding method, a calendar molding method, a solution Examples thereof include a casting method.
  • the resin composition [5] for adhering laminated glass according to the present invention does not require the blending of an organic peroxide for imparting thermal crosslinkability, and thus has a wide range of melt molding temperature selection.
  • the molding temperature of the sheet is appropriately selected depending on the molding method.
  • the resin temperature is usually 130 to 250 ° C., preferably 140 to 230 ° C., more preferably 150 to 210 ° C. is there.
  • the resin temperature is too low, the fluidity is deteriorated, and the molded sheet is liable to cause defects such as the skin and die line, and the extrusion speed of the sheet cannot be increased and the industrial productivity tends to be inferior.
  • the sheet tends to suffer from problems such as a decrease in sealing performance after storage for a long period of time in a normal temperature and humidity environment and adhesion to glass or metal.
  • the sheet of the present invention is a single layer sheet made of the resin composition [5], a layer made of the resin composition [5] is laminated on one side or both sides of a sheet made of another transparent resin.
  • a multilayer sheet may also be used.
  • the method of forming the multilayer sheet is a two-type three-layer coextrusion molding method; a method of laminating a sheet made of the resin composition [5] on one or both sides of a sheet made of a transparent resin by thermocompression bonding or an adhesive; etc. Is mentioned.
  • the thickness of the layer composed of the resin composition [5] is usually 0.001 mm or more, preferably 0.005 mm or more, more preferably 0.01 mm or more. If the thickness of the layer made of the resin composition [5] is within this range, sufficient sealing properties and adhesiveness can be obtained.
  • the shape of the single layer sheet or the multilayer sheet may be flat or embossed.
  • a release film can be stacked and stored on one side of the sheet.
  • the embossed sheet is preferable in that it has a good degassing property at the time of vacuum lamination or pressure lamination in an autoclave, and air bubbles hardly remain on the laminated glass.
  • the sheet of the present invention is preferably used as a sealing material for solar cells using crystalline solar cells using glass as a transparent front substrate, and as an adhesive for laminated glass.
  • the thickness of the silicon wafer is 0.15 to 0.2 mm.
  • the sheet thickness of the solar cell element sealing material is usually 0.2 to 0.8 mm, preferably 0.3 to 0.7 mm, more preferably 0.4 to 0.6 mm. When the sheet thickness is within this range, there are few filling defects and light transmittance is excellent. If the sheet thickness is smaller than 0.2 mm, the crystalline solar battery cell is liable to be damaged in the heating laminating step in the production of the solar cell module, and if larger than 0.8 mm, the light transmittance of the sheet is lowered. In addition, the amount of the solar cell element sealing material used may increase and the economic efficiency may decrease.
  • a back protective sheet as a water shielding layer is not essential. In order to further enhance the durability of the solar cell module, only the back surface protection sheet may be applied for the purpose of mitigating mechanical shock.
  • the back surface protective sheet an inexpensive polyethylene terephthalate resin sheet that is excellent in electrical insulation, mechanical strength, and the like can be used.
  • the back surface protection sheet may have a light shielding property and / or a light reflecting property.
  • the back surface protective sheet may be one containing a light-shielding pigment such as an ultraviolet absorber or titanium oxide.
  • a sheet made of the resin composition [5] may be interposed between the glass plates, and the glass plate and the glass plate may be bonded together.
  • a sheet made of the resin composition [5] is interposed between a plurality of glass plates, and then an autoclave, a heat-resistant bag that can be decompressed, a vacuum press, The glass may be bonded by heating using a vacuum laminator or the like.
  • the thickness of the sheet made of the resin composition [5] is usually in the range of 0.03 to 5 mm.
  • the thickness of the sheet is smaller than 0.03 mm, uneven bonding of the glass plates is likely to occur, and the anti-scattering property and penetration resistance of the broken glass are not preferable.
  • the sheet thickness is larger than 5 mm, the light transmittance of the sheet is lowered, or the amount of the resin composition [5] used is increased, resulting in a decrease in economic efficiency.
  • the thickness of the glass plate to be used is not particularly limited, but is usually about 0.5 to 10 mm.
  • a thin glass plate having a thickness of about 0.03 to 0.4 mm can also be made into a laminated glass through the resin composition [5].
  • the resin composition [5] a plurality of glasses having different thermal expansion coefficients are bonded to each other in order to maintain flexibility and strong adhesion to glass in a wide temperature range of about ⁇ 50 ° C. to + 100 ° C. Even in this case, it is possible to reduce the breakage of the glass due to a rapid temperature change, and in the normal global environment, it has an effect of preventing scattering when the glass is broken.
  • the type of glass is not particularly limited, blue plate glass, white plate glass, aluminosilicate glass, aluminoborosilicate glass, uranium glass, potassium glass, silicate glass, crystallized glass, germanium glass, quartz glass, soda glass, lead glass, Examples thereof include barium borosilicate glass, borosilicate glass, heat ray reflective glass whose surface is coated with an ultrathin metal film, and conductive glass whose surface is coated with an ultrathin metal oxide film.
  • a plurality of sheets made of the resin composition [5] are interposed between two glass plates, and a colored resin film, cloth, fiber, Japanese paper, colored paper, color film, between the plurality of sheets, Insert a thin piece of wood, metal wire, metal foil, metal plate, wire mesh, punching metal, dye, dye, pigment, multilayer thin film, shading element, light control film, carbon fiber, acrylic resin plate, polycarbonate plate, organic EL element, etc. Can do.
  • the resulting laminated glass is decorative glass; design glass; building door glass, window glass, roof glass; automotive windshield, side glass, rear glass, sunroof glass; electromagnetic shielding partition glass; highway / railway -It can be used suitably for glass for sound insulation walls such as a linear motor car; translucent solar cell made of double-sided glass; organic EL lighting equipment;
  • Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) The molecular weights of the block copolymer [1], the block copolymer hydride [2], and the hydrocarbon polymer [4] were determined as standard polystyrene conversion values by GPC. GPC was measured at 38 ° C. using THF as an eluent. As the measuring device, HLC8020GPC manufactured by Tosoh Corporation was used.
  • total light transmittance of sheet A hydrocarbon-based polymer [4] is blended with a block copolymer hydride [3] having an alkoxysilyl group or a block copolymer hydride [3] having an alkoxysilyl group.
  • An extrudate sheet having a thickness of 400 ⁇ m of a resin composition (hereinafter collectively referred to as “resin composition A”) is a release film made of two polyethylene terephthalates (hereinafter abbreviated as “PET”).
  • PET polyethylene terephthalates
  • Adhesive evaluation with glass substrate (peel strength) A 400 ⁇ m-thick extruded sheet of resin composition A or the like is placed on a soda lime glass substrate having a thickness of 2 mm, a width of 25 mm, and a length of 65 mm with a non-adhesive portion provided at the end of the sheet, and 140 to 160 using a vacuum laminator. After degassing by heating at a predetermined temperature of 5 ° C. for 5 minutes under vacuum, a test piece for peel test was prepared by heat-pressure bonding for 10 minutes.
  • the sheet surface was cut into a width of 10 mm, and a peel strength was measured from a non-adhered portion of the sheet at a peeling speed of 50 mm / min with reference to JIS K 6854-1 by a 180 ° peel test.
  • the peel strength was measured after an initial value after vacuum lamination and after exposure to a high temperature and high humidity environment of 85 ° C. and 85% RH for 170 hours. The greater the peel strength, the better the adhesion to glass.
  • the laminate is heated and degassed in a vacuum laminator at a predetermined temperature of 140 ° C. to 160 ° C. at intervals of 5 ° C. for 5 minutes under vacuum, and then heated and pressurized for 10 minutes to seal the solar cell module.
  • a vacuum laminator at a predetermined temperature of 140 ° C. to 160 ° C. at intervals of 5 ° C. for 5 minutes under vacuum, and then heated and pressurized for 10 minutes to seal the solar cell module.
  • the release film was removed from the obtained solar cell module, and the solar cell was evaluated for cracking by visual observation. Five solar cells were observed. The case where no crack was observed in any of the cells was marked with ⁇ , and when a crack was observed, the number of cracks was counted.
  • the current EVA-based standard vacuum laminating temperature is 150 ° C., and there should be no cracking at 150 ° C.
  • Adhesive evaluation of laminated glass with glass plate (peel strength)
  • a sheet made of the resin composition [5] is provided with a non-adhesive part at the end of the sheet, overlapped with a white glass plate having a thickness of 2 mm, a width of 100 mm, and a length of 70 mm, and using a vacuum laminator at 120 ° C
  • a peel test specimen was prepared by vacuum-pressure bonding for 10 minutes.
  • the sheet surface was cut into 15 mm widths, and a 180 degree peel test was performed from the non-adhered portion of the sheet at a peel rate of 50 mm / min based on JIS K 6854-2, and the peel strength was measured.
  • the adhesion was evaluated as ⁇ (good) when the peel strength was greater than 20 N / cm, ⁇ when 10-20 N / cm, and x (bad) when less than 10 N / cm.
  • the laminated glass test piece was visually observed and evaluated for appearance such as misalignment, discoloration, bubbles, and peeling.
  • the heat resistance was evaluated as ⁇ (good) when no abnormality was observed in the appearance, and x (defect) when abnormality was observed.
  • Block copolymer hydride having alkoxysilyl group [3-a] Synthesis of block copolymer [1-a]
  • a reactor equipped with a stirrer in which the inside was sufficiently replaced with nitrogen 550 parts of dehydrated cyclohexane, 25.0 parts of dehydrated styrene, and 0.475 part of n-dibutyl ether were added. While stirring at 60 ° C., 0.99 parts of n-butyllithium (15% cyclohexane solution) was added to initiate polymerization. Thereafter, the mixture was reacted at 60 ° C. for 60 minutes with stirring to obtain a reaction solution A.
  • reaction solution A A part of the reaction solution A was collected and measured by gas chromatography. At this time, the polymerization conversion was 99.5%.
  • 50.0 parts of dehydrated isoprene was added to the reaction solution A, and stirring was continued at 60 ° C. for 30 minutes to obtain a reaction solution B.
  • a part of the reaction solution B was collected and measured by gas chromatography. At this point, the polymerization conversion was 99%.
  • 25.0 parts of dehydrated styrene was further added to the reaction solution B, and the whole volume was stirred at 60 ° C. for 60 minutes to obtain a reaction solution C.
  • the polymerization conversion rate at this point was almost 100%.
  • the weight average molecular weight (Mw) of the block copolymer contained in the reaction solution D was 48,400, and the molecular weight distribution (Mw / Mn) was 1.02.
  • reaction solution E was filtered to remove the hydrogenation catalyst.
  • Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] product name “Irganox® 1010”
  • Irganox® 1010 a phenolic antioxidant
  • the above solution was filtered through a metal fiber filter (pore size 0.4 ⁇ m, manufactured by Nichidai Co., Ltd.) to remove minute solids, and then a cylindrical concentration dryer (product name “Contro”, manufactured by Hitachi, Ltd.) ), At a temperature of 260 ° C. and a pressure of 0.001 MPa or less, the solvent cyclohexane, xylene and other volatile components are removed from the solution and extruded in a molten state from a die directly connected to a concentration dryer, After cooling, it was cut with a pelletizer to obtain 96 parts of a block copolymer pellet A.
  • the weight average molecular weight (Mw) of the block copolymer hydride [2-a] in the obtained pellet A was 48,200, and the molecular weight distribution (Mw / Mn) was 1.03.
  • the hydrogenation rate was almost 100%.
  • Block copolymer hydride having alkoxysilyl group [3-b] Synthesis of block copolymer hydride [2-b] As monomers in the polymerization stage, 20.0 parts of styrene, 0.79 parts of n-butyllithium (15% cyclohexane solution), 60.0 parts of isoprene and 20.20 parts of styrene. 90 parts of block copolymer hydride pellets C were obtained in the same manner as in Synthesis Example 1 except that 0 part was added to the reaction system in this order for polymerization. The resulting block copolymer hydride [2-b] had a weight average molecular weight (Mw) of 59,600 and a molecular weight distribution (Mw / Mn) of 1.03. The hydrogenation rate was almost 100%.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Example 1 (Resin composition obtained by blending block copolymer hydride [3-a] having an alkoxysilyl group with polyisobutene [4-a]) 100 parts by weight of the block copolymer hydride [3-a] having an alkoxysilyl group obtained in Reference Example 1 was added to 100 parts by weight of the ultraviolet absorber 2- (2H-benzotriazol-2-yl) -4. -(1,1,3,3-tetramethylbutyl) phenol (product name “Tinuvin (registered trademark) 329”, manufactured by BASF Japan Ltd.) (0.4 part) was added, and a side feeder capable of adding a liquid substance was provided.
  • -(1,1,3,3-tetramethylbutyl) phenol product name “Tinuvin (registered trademark) 329”, manufactured by BASF Japan Ltd.) (0.4 part) was added, and a side feeder capable of adding
  • Extrusion was performed at a resin temperature of 190 ° C. using a twin screw extruder (product name “TEM37BS”, manufactured by Toshiba Machine Co., Ltd.).
  • polyisobutene [4-a] product name “Nisseki Polybutene HV-300”, number average molecular weight 1,400, manufactured by JX Nippon Oil & Energy Corporation
  • Block copolymer hydride having a silyl group [3-a] is continuously added so as to have a ratio of 10 parts by weight to 100 parts by weight, extruded into a strand, air cooled, and then cut by a pelletizer.
  • 102 parts of pellet E of resin composition [5-aa] obtained by blending polyisobutene [4-a] with block copolymer hydride [3-a] having an alkoxysilyl group was obtained.
  • the pellet E of the obtained resin composition [5-aa] was subjected to a T-die type film melt extrusion molding machine (T-die width 300 mm) having an extruder equipped with a 25 mm ⁇ screw, and a sheet provided with a satin pattern embossing roll Using a take-up machine, a 400 ⁇ m thick sheet was extrusion molded under molding conditions of a molten resin temperature of 190 ° C., a T die temperature of 190 ° C., and a roll temperature of 50 ° C. The obtained extruded sheet [6-aa] was wound around a roll and collected.
  • Example 2 (Resin composition obtained by blending polyisobutene [4-b] with block copolymer hydride [3-b] having an alkoxysilyl group)
  • a hydrocarbon-based polymer is obtained by replacing the block copolymer hydride [3] having an alkoxysilyl group with 100 parts by weight of the block copolymer hydride [3-b] obtained in Reference Example 2.
  • Polyisobutene [4-b] (product name “Nisseki Polybutene HV-100”, number average molecular weight 980, manufactured by JX Nippon Mining & Energy Corporation), a block copolymer hydride having an alkoxysilyl group [3 -B]
  • the block copolymer hydride having an alkoxysilyl group [3-b] and polyisobutene [4 -B] was obtained 98 parts of pellet F of the resin composition [5-bb].
  • Example 2 (Extruded film) Using the obtained pellet F 2 of the resin composition [5-bb], a sheet having a thickness of 400 ⁇ m was extrusion-molded in the same manner as in Example 1. The obtained extruded sheet [6-bb] was wound around a roll and collected.
  • Example 2 (Extruded film) Using the pellet G of the obtained resin composition [5-a], a sheet having a thickness of 400 ⁇ m was extruded and formed in the same manner as in Example 1. The obtained extruded sheet [6-a] was wound up and collected on a roll.
  • Example 2 (Extruded film) Using the obtained pellet H 2 of the resin composition [5-b], a sheet having a thickness of 400 ⁇ m was extruded and formed in the same manner as in Example 1. The obtained extruded sheet [6-b] was wound up and collected on a roll.
  • Example 3 Glass bonding with a resin composition obtained by blending polyisobutene [4-a] with block copolymer hydride [3-a] having an alkoxysilyl group
  • the two glass plates (soda lime glass, 200 ⁇ 200 mm ⁇ thickness 3 mm) were bonded together under the following conditions.
  • Two extruded sheets [6-aa] were stacked on the glass plate, and another glass plate was mounted thereon to form a laminate.
  • the laminate was heated and degassed in a vacuum laminator at a temperature of 130 ° C. for 5 minutes under vacuum, and then heated and pressurized for 10 minutes to produce a laminated glass.
  • Example 4 Resin composition obtained by blending polyisobutene [4-c] with block copolymer hydride [3-a] having an alkoxysilyl group
  • Polyisobutene [4-c] product name “Nisseki Polybutene HV-1900”, number average molecular weight 2900, manufactured by JX Nippon Mining & Energy Corporation
  • hydrocarbon polymer [4] is used as a block copolymer having an alkoxysilyl group.
  • Example 2 (Extruded film) Using the obtained pellets of the resin composition [5-ac], a sheet having a thickness of 400 ⁇ m was extruded and formed in the same manner as in Example 1. The obtained extruded sheet [6-ac] was wound up and collected on a roll. Using the obtained extruded sheet [6-ac], two glass plates were bonded together under the same conditions as in Example 3. As a result of observing the appearance of the obtained laminated glass, no defects such as bubbles were observed. As a result of performing the same heating test as in Example 3 using this laminated glass, no abnormalities such as misalignment, discoloration, bubbles, and peeling were observed.
  • a polymerization reaction and a subsequent hydrogenation reaction were carried out in the same manner as in Reference Example 1 except that the content was changed to 4.0 parts (“E22U”, nickel loading 60%).
  • the resulting block copolymer hydride [2] -1 had a weight average molecular weight (Mw) of 51,600 and a molecular weight distribution (Mw / Mn) of 1.06.
  • the reaction solution was filtered to remove the hydrogenation catalyst, and then the phenol-based antioxidant pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4- Hydroxyphenyl) propionate] (product name “Irganox (registered trademark) 1010”, manufactured by BASF) 2.0 parts of xylene solution in which 0.1 part was dissolved was added and dissolved.
  • the solution is filtered through a Zeta Plus (registered trademark) filter 30H (pore size: 0.5 to 1 ⁇ m, manufactured by Cuno Co., Ltd.), and is further filtered through another metal fiber filter (pore size: 0.4 ⁇ m, manufactured by Nichidai Corp.).
  • the obtained block copolymer hydride [3] -1 having 10 parts of alkoxysilyl groups was dissolved in 100 parts of cyclohexane, and then poured into 400 parts of dehydrated methanol, and the block copolymer having alkoxysilyl groups was added.
  • the combined hydride [3] -1 was coagulated, filtered, and then vacuum dried at 25 ° C. to isolate 9.0 parts of crumb of the block copolymer hydride [3] -1 having an alkoxysilyl group. .
  • the polymer solution was transferred to a pressure-resistant reactor equipped with a stirrer, and a diatomaceous earth-supported nickel catalyst (product name “E22U”, nickel-supported amount 60%, manufactured by JGC Catalysts & Chemicals) 1 as a hydrogenation catalyst. .5 parts and 50 parts of dehydrated cyclohexane were added and mixed. The inside of the reactor was replaced with hydrogen gas, and hydrogen was supplied while stirring the solution. A hydrogenation reaction was performed at a temperature of 160 ° C. and a pressure of 4.5 MPa for 4 hours. The number average molecular weight (Mn) of the hydrogenated isoprene polymer [4] -3 after the hydrogenation reaction was 1,900, and the molecular weight distribution (Mw / Mn) was 1.04.
  • Mn number average molecular weight of the hydrogenated isoprene polymer [4] -3 after the hydrogenation reaction was 1,900, and the molecular weight distribution (Mw / Mn) was 1.04.
  • the reaction solution was filtered to remove the hydrogenation catalyst, and then the phenol-based antioxidant pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4- Hydroxyphenyl) propionate] (product name “Irganox (registered trademark) 1010”, manufactured by BASF) 2.0 parts of xylene solution in which 0.1 part was dissolved was added and dissolved.
  • the above solution was filtered through a Zeta Plus (registered trademark) filter 30H (pore size: 0.5 to 1 ⁇ m, manufactured by Cuno Co., Ltd.) to remove fine solids. The filtrate was heated to 50 ° C.
  • Example 5 (Preparation of Resin Composition [5] -1 Composed of Hydrogenated Block Copolymer [3] -1 Having Alkoxysilyl Group and Isobutene Polymer Hydride [4] -1) To 100 parts of the block copolymer hydride [3] -1 pellets obtained in Reference Example 3, 2- (3,5-dicumyl-2-hydroxyphenyl) -2H- After adding 0.4 part of benzotriazole (Tinuvin (registered trademark) 234, manufactured by BASF Japan) and mixing it evenly, a twin screw extruder (product name “TEM37BS”, equipped with a side feeder to which a liquid material can be added, Extruded at a resin temperature of 190 ° C.
  • benzotriazole Teuvin (registered trademark) 234, manufactured by BASF Japan
  • isobutene polymer hydride [4] -1 product name “Pearlme (registered trademark) 24”, iodine value: 0.5, manufactured by NOF Corporation) (number average molecular weight: 2,200) Is continuously added at a ratio of 20 parts to 100 parts of the block copolymer hydride [3] -1 having an alkoxysilyl group, extruded into a strand shape, air-cooled, and then cut by a pelletizer. Then, 113 parts of pellets of the resin composition [5] -1 obtained by blending the hydrogenated block copolymer [3] -1 having an alkoxysilyl group with the hydrogenated isobutene polymer [4] -1 were obtained.
  • the pellet of the obtained resin composition [5] -1 was subjected to a T-die type film forming machine (T-die width 600 mm) having an extruder equipped with a 40 mm ⁇ screw and a sheet take-up machine equipped with an embossing roll having a satin pattern.
  • the sheet [6] -1 having a thickness of 400 ⁇ m and a width of 450 mm was extruded and molded under the molding conditions of a molten resin temperature of 190 ° C., a T-die temperature of 190 ° C., and a roll temperature of 50 ° C.
  • the resulting sheet had the embossed shape transferred, and was wound up and collected on a roll.
  • Example 6 (Preparation of resin composition [5] -3)
  • the isoprene polymer hydride [4] -3 prepared in Reference Example 6 was replaced with a block copolymer hydride having an alkoxysilyl group [3]. ] -1 parts were obtained in the same manner as in Example 5 except that 20 parts per 100 parts was obtained.
  • Example 5 A sheet [6] -3 having a thickness of 400 ⁇ m and a width of 450 mm was extrusion-molded in the same manner as in Example 5 except that the pellets of the obtained resin composition [5] -3 were used.
  • Example 7 (Preparation of resin composition [5] -4)
  • the isoprene polymer hydride [4] -4 prepared in Reference Example 7 was replaced with a block copolymer hydride [3] having an alkoxysilyl group.
  • ] -1 parts were obtained in the same manner as in Example 5 except that 20 parts were blended with 100 parts of the resin composition [5] -4.
  • Example 5 (Extruded film) In Example 5, a sheet [6] -4 having a thickness of 400 ⁇ m and a width of 450 mm was extruded in the same manner as in Example 5 except that the pellets of the obtained resin composition [5] -4 were used.
  • Example 5 A thickness of 400 ⁇ m was obtained in the same manner as in Example 5 except that pellets of the obtained resin composition [5] -6 were used and the molten resin temperature was 210 ° C., the T die temperature was 210 ° C., and the roll temperature was 65 ° C. Sheet [6] -6 having a width of 450 mm was extruded. About the obtained extruded sheet [6] -6, in the same manner as in Example 5, (8) Adhesion with the glass plate, (9) Durability, (10) Light resistance, (11) Light transmittance, (12) Evaluation of heat resistance and (13) anti-scattering property at the time of cracking were performed. These evaluation results are summarized in Table 3 below.
  • Example 8 (Preparation of resin composition [5] -7)
  • Example 5 instead of the block copolymer hydride [3] -1 having an alkoxysilyl group, pellets of the block copolymer hydride [3] -2 having an alkoxysilyl group obtained in Reference Example 4 were used.
  • the same isobutene polymer hydride [4] -1 as used in Example 5 was used in an amount of 10 parts per 100 parts of the block copolymer hydride [3] -2 having an alkoxysilyl group.
  • 103 parts of the resin composition [5] -7 pellets were obtained in the same manner as in Example 5.
  • Example 5 (Extruded film) Using the pellets of the obtained resin composition [5] -7, a sheet [6] -7 having a thickness of 400 ⁇ m and a width of 450 mm was extruded in the same manner as in Example 5. About the obtained extruded sheet [6] -7, in the same manner as in Example 5, (8) Adhesion with the glass plate, (9) Durability, (10) Light resistance, (11) Light transmittance, (12) Evaluation of heat resistance and (13) anti-scattering property at the time of cracking were performed. These evaluation results are summarized in Table 3 below.
  • Example 9 (Preparation of resin composition [5] -2)
  • unhydrogenated isobutene polymer [4] -2 product name “Nisseki Polybutene HV-300”, JX Nippon Mining & Energy Corporation) (Iodine number: 17.7, number average molecular weight: 1,400), except for blending 15 parts of 100 parts of block copolymer hydride [3] -1 having an alkoxysilyl group
  • 108 parts of pellets of the resin composition [5] -2 were obtained.
  • Example 5 A sheet [6] -2 having a thickness of 400 ⁇ m and a width of 450 mm was extrusion-molded in the same manner as in Example 5 except that the pellets of the obtained resin composition [5] -2 were used.
  • Example 10 (Preparation of resin composition [5] -5)
  • the isoprene polymer hydride [4] -5 prepared in Reference Example 8 was replaced with a block copolymer hydride having an alkoxysilyl group [3]. ] -1 parts were obtained in the same manner as in Example 5 except that 20 parts were added to 100 parts of the resin composition [5] -5.
  • Example 5 A sheet [6] -5 having a thickness of 400 ⁇ m and a width of 450 mm was extruded and formed in the same manner as in Example 5 except that the pellets of the obtained resin composition [5] -5 were used.
  • the obtained extruded sheet [6] -5 in the same manner as in Example 5, (8) Adhesiveness to the glass plate, (9) Durability, (10) Light resistance, (11) Light transmittance, (12) Evaluation of heat resistance and (13) anti-scattering property at the time of cracking were performed. These evaluation results are summarized in Table 3 below.
  • Example 5 A thickness of 400 ⁇ m was obtained in the same manner as in Example 5 except that pellets of the obtained resin composition [5] -8 were used and the molten resin temperature was 200 ° C., the T die temperature was 200 ° C., and the roll temperature was 60 ° C. A sheet [6] -8 having a width of 450 mm was extruded. About the obtained extruded sheet [6] -8, in the same manner as in Example 5, (8) Adhesion with glass plate, (9) Durability, (10) Light resistance, (11) Light transmittance, (12) Evaluation of heat resistance and (13) anti-scattering property at the time of cracking were performed. These evaluation results are summarized in Table 3 below.
  • Example 5 A thickness of 400 ⁇ m was obtained in the same manner as in Example 5 except that pellets of the obtained resin composition [5] -9 were used and the molten resin temperature was 190 ° C., the T die temperature was 190 ° C., and the roll temperature was 30 ° C. A sheet [6] -9 having a width of 450 mm was extruded. The sheet was piled up with a PET film for blocking prevention, and wound up and collected on a roll.
  • Table 2 shows the types of block copolymer hydrides [3] and hydrocarbon polymers [4] into which alkoxysilyl groups are introduced, used in Examples 5 to 10 and Comparative Examples 4 to 6. And the amount used are shown together.
  • Table 3 shows the following.
  • the hydrocarbon-based polymer [4] is blended with the block copolymer hydride [3] having an alkoxysilyl group (Examples 5 to 10)
  • transparency, durability, heat resistance, glass cracking at low temperature It is possible to maintain the anti-scattering property at the time and lower the bonding temperature with the glass.
  • the hydrocarbon polymer [4] is a hydrogenated olefin and / or conjugated diene (co) polymer having an iodine value of 2.0 or less (Example 5 to 8)
  • a laminated glass having excellent light resistance can be obtained.
  • the resin composition of the present invention and a molded body comprising the resin composition are useful for sealing solar cell elements and bonding glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

 本発明は、芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B]とからなり、全不飽和結合の90%以上を水素化した、アルコキシシリル基を有するブロック共重合体水素化物[3]、及び、前記アルコキシシリル基を有するブロック共重合体水素化物[3]100重量部に対して、数平均分子量300~5000の炭化水素系重合体[4]1~50重量部を配合してなる樹脂組成物、並びに、前記樹脂組成物からなるシートを成形してなる成形体である。本発明によれば、特に、低吸湿性、非加水分解性、耐候性、透明性、および真空ラミネート時のセルの割れを防止する柔軟性が改善された太陽電池素子封止材や、透明性、耐光性、低温での割れガラスの飛散防止性、および低温での接着性に優れた合わせガラス用接着剤に好適な樹脂組成物が提供される。

Description

樹脂組成物およびそれからなる成形体
 本発明は、低吸湿性、非加水分解性で、耐候性及び透明性に優れ、ガラスや金属との強固な接着性を有する樹脂組成物に関する。さらに詳しくは、真空ラミネート時に結晶系太陽電池セルが割れ難い柔軟性を有し、太陽電池モジュールにおける太陽電池素子を密封するための封止用材料や、透明性、ガラスが割れた際の飛散防止性、取扱いの容易性、保存安定性等に優れ、特により低温でのガラスとの接着性、耐熱性及び耐光性のバランスに優れた合わせガラス用接着剤として有用な樹脂組成物に関する。
 近年、太陽電池はクリーンエネルギーとして注目され、種々の形態からなる太陽電池モジュ-ルが開発され、提案されてきている。なかでも、単結晶もしくは多結晶タイプの結晶性シリコン系素子を用いたもの、あるいは、薄膜アモルファスシリコン系素子を用いたもの等が主流である。このようなシリコン系素子を用いた太陽電池モジュールの構成としては、図1に示すような、太陽光入射面側から、ガラス基板等からなる透明前面基板1、太陽電池素子2、太陽電池素子を密封する封止材3、太陽電池素子に繋がるタブ線4と、裏面保護シート5を有するものが代表的である。
 従来、太陽電池素子を密封する封止材3としては、透明性及び耐光性に優れることからエチレン・酢酸ビニル共重合体(以下の記載では「EVA」と略す)を有機過酸化物等の架橋剤を用いて架橋硬化してなる封止材(EVA封止材)が広く用いられている。
 しかしながら、EVAは酢酸ビニル由来の構成単位を含むため、外部より透過した湿気や水により経時的に加水分解して酢酸を生じ易い性質を有する。そして、このような酢酸が電池内部の配線や電極と接触して腐食の発生を促進させることが懸念されている。
 そこで、太陽電池内部への水分の浸透による絶縁性低下、配線や電極の腐食等の不具合が生じるのを防止して、太陽電池の耐久性を向上させるために、裏面保護シートに、バリヤー層としての無機酸化物の蒸着層を多層化する方法(例えば、特許文献1)、裏面保護シートに透湿度の低い環状オレフィン系樹脂シートを使用する方法(例えば、特許文献2~3)等の対策がとられている。
 しかしながら、このようにして湿気や水の浸透を低下させたとしても、湿気や水の浸透を完全に無くすことは困難である。従って、絶縁性低下や腐食を防止して耐久性を格段に向上させるためには、吸湿性及び透湿性が低く、加水分解によって酸を発生させない封止材が求められている。
 封止材の加水分解による酸発生の問題の解決を図るものとして、EVAの代わりに、エチレン・α-オレフィン共重合体及び架橋剤を用いる封止用樹脂組成物を使用する方法(特許文献4~5)や、プロピレン系重合体及び特定のプロピレン系共重合体(特許文献6)を使用する方法等が提案されている。このようなエチレン・α-オレフィン共重合体やプロピレン系重合体及び特定のプロピレン系共重合体等を使用する方法は、用いる樹脂の吸湿性及び透湿性が低く、また、酸発生による影響も低減されると考えられる。
 しかしながら、これらの方法は、用いる樹脂の耐熱性と柔軟性とのバランスが悪く、非架橋では良好な耐熱性を発現しないため、架橋工程を省略して、好ましい物性を有する太陽電池素子封止シートを製造することは困難であった。
 一方、特許文献7には、少なくとも2つの芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]と、少なくとも1つの鎖状共役ジエン化合物由来の繰り返し単位を主成分とする重合体ブロック[B]とからなるブロック共重合体であって、ブロック共重合体全体に占める重合体ブロック[A]の重量分率をwAとし、ブロック共重合体全体に占める重合体ブロック[B]の重量分率をwBとしたときの、wAとwBとの比(wA:wB)が20:80~60:40であるブロック共重合体の、全不飽和結合の90%以上を水素化して得られるブロック共重合体水素化物に、アルコキシシリル基を導入したブロック共重合体水素化物が提案されている。また、この文献には、この文献に記載のブロック共重合体水素化物は、低吸湿性、非加水分解性、耐候性、透明性及び柔軟性を有し、かつ、長期間高温高湿環境に暴露されても、ガラスとの強固な接着力を維持し、特別な遮水処理を施すことなく太陽電池素子を封止することができると記載されている。
 ところで、従来、合わせガラスの中間層としてはポリビニルブチラール系樹脂が最も一般的に用いられてきたが、ポリビニルブチラール系樹脂は、軟化点が比較的低いために、貼合わせた後に熱によりガラス板がずれる、気泡が発生する、吸湿性が高いために、高湿度雰囲気下に長期間に亘り放置しておくと周辺部から次第に白色化すると共にガラスとの接着力の低下が認められる、また、ガラスを貼り合わせる前の状態としてガラスとの接着力コントロールのために厳密に含水率管理を要する(例えば、非特許文献1)、等の問題点を有していた。
 上記ポリビニルブチラール系樹脂の問題点を解決するために、エチレン-酢酸ビニル共重合体に有機過酸化物を配合した熱硬化性樹脂をガラス板間に介在させて一体化し、熱硬化性樹脂層を熱硬化させてなる合わせガラス(例えば、特許文献8)、酸変性ケン化エチレン・酢酸ビニル共重合体で張り合わせてなる合わせガラス(例えば、特許文献9)等が提案されている。しかしながら、エチレン-酢酸ビニル共重合体では、まだ十分な耐衝撃性や耐貫通性に不足があるとして、芳香族ビニル化合物の重合体からなる両端ブロックと共役ジエン系重合体からなる中間ブロックから構成される三元ブロック共重合体に有機過酸化物及びシランカップリング剤を配合した熱硬化性樹脂を用い、合わせガラスを得ることが提案されている(特許文献10等)。しかしながら、有機過酸化物を配合した熱硬化性樹脂は、長期保存安定性が劣り、ガラスの貼り合わせ前の熱架橋性樹脂の保存条件によってはガラスの貼り合わせ時に十分な接着力が得られないという問題があった。
 また、特許文献11には、芳香族アルケンポリマーブロックとジエンポリマーブロックからなるブロック共重合体水素化物に脂肪族炭化水素樹脂等を配合して粘着性を付与することが開示されている。しかし、ガラス等への接着性の付与に関しては記載されていない。
特開2000-91610号公報 特開2000-106450号公報 特開2001-44481号公報 特開平6-299125号公報 特開2000-91611号公報 国際公開WO2008/015984号(US2010/0000600A1) 国際公開WO2012/043708号 特開昭57-196747号公報 特開平4-198046号公報 特開平9-030847号公報 国際公開WO1994/021694号(US5352744)
藤崎靖之、日化協月報、35(10)、28(1982)
 太陽電池素子を封止する方法としては、シート状の封止材を結晶系太陽電池セルに真空ラミネートする方法が一般的である。ラミネート時の封止温度は、EVA封止材を用いる場合、一般的に150℃以下が好ましく適用されているが、生産効率向上のためには、封止温度は低い方が好ましい。
 本発明者らは、特許文献7に提案されているアルコキシシリル基を有するブロック共重合体水素化物を太陽電池素子封止材に用いることを試みた。その結果、120℃での耐熱性を確保しつつ、太陽電池セルの割れを発生しにくくするためには、封止温度を160℃以上にすることが必要であることが確認された。
 また、合わせガラスの接着材として汎用のポリビニルブチラール系樹脂の場合、接着温度は一般的には120~140℃程度であり、アルコキシシリル基を有するブロック共重合体水素化物を合わせガラスの接着に使用する場合は同程度の接着温度であることが望ましい。
 そこで、本発明者らは、特許文献4に提案されているアルコキシシリル基を有するアルコキシシリル基を有するブロック共重合体水素化物を合わせガラスの貼り合わせ用の接着材に用いようとした結果、貼り合わせ温度を150℃以上にする必要のあることを確認した。
 そこで、本発明者らは、さらに鋭意検討を進めた結果、以下の2点を見出し、本発明を完成するに至った。
 (1)特許文献7に提案されたアルコキシシリル基を有するブロック共重合体水素化物に、特定の分子量を有する炭化水素系重合体を特定量配合して得られる樹脂組成物は透明性に優れ、しかも、この樹脂組成物からなるシートを使用することにより、耐熱性を維持しつつ、より低温で封止しても結晶系太陽電池セルの割れを防止できること。
 (2)特に前記炭化水素系重合体として、オレフィン及び/又は共役ジエン(共)重合体水素化物であって、ヨウ素価が特定量以下のものを配合した樹脂組成物が、透明性に優れ、それからなるシートを使用することにより、耐熱性を維持しつつ、より低温でガラスを接着でき、優れた耐光性も維持できるため、合わせガラス用接着剤として好適なシートとなること。
 かくして本発明によれば、下記(1)~(3)の樹脂組成物、及び、(4)、(5)の成形体が提供される。
(1)芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B]とからなり、全重合体ブロック[A]のブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]のブロック共重合体全体に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)が30:70~65:35であるブロック共重合体[1]の、全不飽和結合の90%以上を水素化したブロック共重合体水素化物[2]にアルコキシシリル基が導入されてなる、アルコキシシリル基を有するブロック共重合体水素化物[3]、及び、前記アルコキシシリル基を有するブロック共重合体水素化物[3]100重量部に対して、数平均分子量300~5,000の炭化水素系重合体[4]1~50重量部を配合してなる樹脂組成物。
(2)前記炭化水素系重合体[4]が、ポリイソブチレン、ポリブテン、ポリ-4-メチルペンテン、ポリ-1-オクテン、エチレン・α-オレフィン共重合体及びこれらの水素化物、脂肪族系炭化水素樹脂及びその水素化物、脂環族炭化水素樹脂及びその水素化物、並びに、ポリイソプレン及びその水素化物からなる群から選ばれる少なくとも一種である(1)に記載の樹脂組成物。
(3)前記炭化水素系重合体[4]が、オレフィン及び/又は共役ジエンの(共)重合体水素化物であって、ヨウ素価が2.0以下である、(1)に記載の樹脂組成物。
(4)前記(1)に記載の樹脂組成物を成形してなる成形体。
(5)シート状物である(4)に記載の成形体。
 本発明の樹脂組成物は、優れた、透明性、耐熱性、耐光性、低吸湿性及び低透湿性を有しており、加熱溶融させてガラスや金属と接着させることにより、強固な接着力を有する成形体を得ることができる。
 また、本発明の樹脂組成物からなるシート状の成形体は、太陽電池素子の封止材として使用した場合に、真空ラミネート時の結晶系太陽電池セルの割れが防止され、長期間高温高湿環境に暴露された後でもガラスや金属との強固な接着力を維持し、特別な遮水処理を施すことなく太陽電池素子を封止することを可能とするシートである。また、このシートは、有機過酸化物等の架橋剤を用いて架橋硬化しなくても十分な耐熱性を有するため、太陽電池の製造工程で加熱架橋工程を省略することができるものである。
 更に、本発明の樹脂組成物のうち、前記炭化水素系重合体[4]が、オレフィン及び/又は共役ジエンの(共)重合体水素化物であって、ヨウ素価が2.0以下である組成物、及びそれからなるシート状の成形体は、透明性、ガラスが割れた際の飛散防止性、取扱いの容易性、保存安定性等に優れ、特により低温でのガラスとの接着性、耐熱性及び耐光性のバランスを有するため、耐久性に優れた合わせガラスを提供することができる。また、このような樹脂組成物は、ガラスとの張り合わせ前に含有水分量の調整等の特別な処理は必要とせず、長期間、常温常湿の環境下に保管しておいたものをそのまま使用することができ、保管や取り扱いが容易である。
図1は、結晶シリコン系太陽電池モジュールの概要を示す概略断面図である。
 本発明の樹脂組成物は、芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B]とからなり、全重合体ブロック[A]のブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]のブロック共重合体全体に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)が30:70~65:45であるブロック共重合体[1]の、全不飽和結合の90%以上を水素化したブロック共重合体水素化物[2]にアルコキシシリル基が導入されてなる、アルコキシシリル基を有するブロック共重合体水素化物[3]、及び、前記アルコキシシリル基を有するブロック共重合体水素化物[3]100重量部に対して数平均分子量300~5,000の炭化水素系重合体[4]1~50重量部を配合してなることを特徴とする。
1.ブロック共重合体[1]
 本発明に用いるブロック共重合体[1]は、少なくとも2つの重合体ブロック[A]と少なくとも1つの重合体ブロック[B]を含有し、全重合体ブロック[A]のブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]のブロック共重合体全体に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)が30:70~65:45のものである。
(1-1)重合体ブロック[A]
 重合体ブロック[A]は、芳香族ビニル化合物由来の構造単位を主成分とするものである。前記芳香族ビニル化合物由来の繰返し単位の含有量は、重合体ブロック[A]全体に対し、通常90重量%以上、好ましくは95重量%以上、より好ましくは99重量%以上である。重合体ブロック[A]中の芳香族ビニル化合物由来の繰返し単位の含有量が少な過ぎると、本発明の樹脂組成物及びそれからなる成形体の耐熱性が低下するおそれがある。
 また、重合体ブロック[A]中の芳香族ビニル化合物由来の繰返し単位以外の成分としては、鎖状共役ジエン由来の繰返し単位及び/またはその他のエチレン性不飽和化合物由来の繰返し単位が挙げられる。これらの含有量は、重合体ブロック[A]全体に対し、通常10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下である。
 複数の重合体ブロック[A]は、上記の範囲を満足するものであれば互いに同じであっても、異なっていても良い。
(1-2)重合体ブロック[B]
 重合体ブロック[B]は、鎖状共役ジエン化合物由来の繰返し単位を主成分とするものである。前記鎖状共役ジエン化合物由来の繰返し単位の含有量は、重合体ブロック[B]全体に対し、通常90重量%以上、好ましくは95重量%以上、より好ましくは99重量%以上である。鎖状共役ジエン化合物由来の繰返し単位が上記範囲にあると、本発明の樹脂組成物及びそれからなる成形体の柔軟性に優れる。特に、当該シート状の成形体を太陽電池素子封止に用いた場合の封止性とのバランスに優れ、また合わせガラスに用いた場合の耐衝撃性と低温での接着性とのバランスに優れる。
 また、重合体ブロック[B]中の鎖状共役ジエン化合物由来の繰返し単位以外の成分としては、芳香族ビニル化合物由来の繰返し単位及び/またはその他のエチレン性不飽和化合物由来の繰返し単位が挙げられる。これらの含有量は、重合体ブロック[B]全体に対し、通常10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下である。重合体ブロック[B]中の芳香族ビニル化合物由来の繰返し単位及び/またはその他のエチレン性不飽和化合物由来の繰返し単位の含有量が多すぎると、本発明の樹脂組成物及びそれからなる成形体の柔軟性が低下し、当該シート状の成形体による太陽電池素子の封止性が低下するおそれがあり、また合わせガラスに用いた場合の耐衝撃性が低下するおそれがある。
 ブロック共重合体[1]が複数の重合体ブロック[B]を有する場合、複数の重合体ブロック[B]は、上記の範囲を満足するものであれば互いに同じであっても、異なっていても良い。
 ブロック共重合体[1]に用いる芳香族ビニル化合物としては、スチレン;α-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン等の、置換基としてアルキル基を有するスチレン類;4-クロロスチレン、2-フルオロスチレン、2,4-ジクロロスチレン等の置換基としてハロゲン原子を有するスチレン類;3-メトキシスチレン、4-メトキシスチレン、3,5-ジメトキシスチレン、4-t-ブトキシスチレン等の置換基としてアルコキシ基を有するスチレン類;等が挙げられる。これらの中でも、吸湿性の面から極性基を含有しない、スチレン又は置換基としてアルキル基を有するスチレン類が好ましく、工業的な入手し易さの観点から、スチレンが特に好ましい。
 鎖状共役ジエン系化合物としては、吸湿性の観点から、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等の、極性基を含有しないものが好ましく、重合制御性に優れることから、1,3-ブタジエン、イソプレンが特に好ましい。
 その他のエチレン性不飽和化合物としては、鎖状エチレン性不飽和化合物や環状エチレン性不飽和化合物が挙げられる。これらのエチレン性不飽和化合物は、置換基として、ニトリル基、アルコキシカルボニル基、カルボキシル基、酸無水物基またはハロゲン基を有しても良い。なかでも、吸湿性の観点から、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-エイコセン、4-メチル-1-ペンテン、4,6-ジメチル-1-ヘプテン等の鎖状オレフィン;ビニルシクロヘキサン等の環状オレフィン;等の、極性基を有しないものが好ましく、鎖状オレフィンがより好ましく、エチレン、プロピレンが特に好ましい。
(1-3)ブロック共重合体[1]
 ブロック共重合体[1]中の重合体ブロック[A]の数は、通常4個以下、好ましくは3個以下、より好ましくは2個であり、重合体ブロック[B]の数は、通常3個以下、好ましくは2個以下、より好ましくは1個である。
 重合体ブロック[A]が複数存在する際、重合体ブロック[A]の中で、最大の重量平均分子量を有する重合体ブロックと、最小の重量平均分子量を有する重合体ブロックの重量平均分子量を、それぞれMw(A1)及びMw(A2)としたとき、前記Mw(A1)とMw(A2)との比、〔Mw(A1)/Mw(A2)〕は、好ましくは2.0以下、より好ましくは1.5以下、さらに好ましくは1.2以下である。
 また、重合体ブロック[B]の中で、最大の重量平均分子量を有する重合体ブロックの重量平均分子量と、最小の重量平均分子量を有する重合体ブロック[B]の重量平均分子量を、それぞれMw(B1)及びMw(B2)としたとき、前記Mw(B1)とMw(B2)との比Mw(B1)/Mw(B2)は、好ましくは2.0以下、より好ましくは1.5以下、さらに好ましくは1.2以下である。
 前記ブロック共重合体[1]のブロックの形態は、鎖状型ブロックでもラジアル型ブロックでも良いが、鎖状型ブロックであるものが、機械的強度に優れ好ましい。鎖状型ブロックとしては、[A]-[B]-[A]型のトリブロック共重合体、[A]-[B]-[A]-[B]型のテトラブロック共重合体、[A]-[B]-[A]-[B]-[A]型、[B]-[A]-[B]-[A]-[B]型等のペンタブロック共重合体等が挙げられる。これらの中でも、[A]-[B]-[A]型のトリブロック共重合体が特に好ましい。
 ブロック共重合体[1]中の、全重合体ブロック[A]がブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]がブロック共重合体全体に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)は、通常30:70~65:35、好ましくは40:60~60:40、より好ましくは45:55~55:45である。
 wAとwBとの比がこの範囲であれば、適度な耐熱性と柔軟性とが得られ、特に太陽電池素子封止材料として用いる場合に封止性に優れ、また合わせガラスの接着材料として用いる場合に合わせガラスの耐熱衝撃性や飛散防止性に優れる。
 ブロック共重合体[1]の分子量は、テトラヒドロフラン(以下、「THF」という)を溶媒とするゲル・パーミエーション・クロマトグラフィ(以下、「GPC」という)により測定されるポリスチレン換算の重量平均分子量(Mw)で、通常35,000~200,000、好ましくは40,000~150,000、より好ましくは45,000~100,000である。また、ブロック共重合体[1]の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下である。
 ブロック共重合体[1]の製造方法としては、例えば3つの重合体ブロックを有するブロック共重合体を製造する場合、リビングアニオン重合等の方法により、重合体ブロック[A]を形成させるモノマー成分として、芳香族ビニル化合物を含有するモノマー(a1)を重合させる第1工程と、重合体ブロック[B]を形成させるモノマー成分として、鎖状共役ジエン系化合物を含有するモノマー(b1)を重合させる第2工程と、重合体ブロック[A]を形成させるモノマー成分として、芳香族ビニル化合物を含有するモノマー(a2)(ただし、モノマー(a1)とモノマー(a2)は同一でも異なっていてもよい。)を重合させる第3工程を、有する方法;重合体ブロック[A]を形成させるモノマー成分として、芳香族ビニル化合物を含有するモノマー(a1)を重合させる第1工程と、重合体ブロック[B]を形成させるモノマー成分として、鎖状共役ジエン系化合物を含有するモノマー(b1)を重合させる第2工程と、重合体ブロック[B]の末端同士を、カップリング剤によりカップリングさせる方法等がある。ここで、モノマー(a1)、モノマー(a2)、モノマー(b1)は、それぞれモノマー混合物(a1)、モノマー混合物(a2)、モノマー混合物(b1)であってもよい(以下にて同じ)。
 また、例えば5つの重合体ブロックを有するブロック共重合体を製造する場合、重合体ブロック[A]を形成させるモノマー成分として、芳香族ビニル化合物を主成分として含有するモノマー(a1)を重合させる第1工程と、重合体ブロック[B]を形成させるモノマー成分として、鎖状共役ジエン系化合物を主成分として含有するモノマー(b1)を重合させる第2工程と、重合体ブロック[A]を形成させるモノマー成分として、芳香族ビニル化合物を主成分として含有するモノマー(a2)(ただし、モノマー(a1)とモノマー(a2)は同一でも異なっていてもよい)を重合させる第3工程と、重合体ブロック[B]を形成させるモノマー成分として、鎖状共役ジエン系化合物を主成分として含有するモノマー(b2)(ただし、モノマー(b1)とモノマー(b2)は同一でも異なっていてもよい)を重合させる第4工程と、重合体ブロック[A]を形成させるモノマー成分として、芳香族ビニル化合物を主成分として含有するモノマー(a3)(ただし、モノマー(a3)とモノマー(a1及びa2)は同一でも異なっていてもよい)を重合させる第5工程を有する方法;重合体ブロック[A]を形成させるモノマー成分として、芳香族ビニル化合物を主成分として含有するモノマー(a1)を重合させる第1工程と、重合体ブロック[B]を形成させるモノマー成分として、鎖状共役ジエン系化合物を主成分として含有するモノマー(b1)を重合させる第2工程と、重合体ブロック[B]の末端同士を、4官能性のカップリング剤によりカップリングさせ、4つの重合体ブロック[A]と4つの重合体ブロック[B]がラジアル型に結合された1つの重合体ブロック[B]として重合体全体として5つの重合体ブロックを有するブロック共重合体とする方法等がある。ここで、モノマー(a3)、モノマー(b2)は、それぞれモノマー混合物(a3)、モノマー混合物(b2)であってもよい。
2.ブロック共重合体水素化物[2]
 本発明に用いるブロック共重合体水素化物[2]は、上記のブロック共重合体[1]の主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合を水素化したものである。その水素化率は通常90%以上、好ましくは97%以上、より好ましくは99%以上である。水素化率が高いほど、本発明の樹脂組成物及びそれからなる成形体の透明性、耐候性、耐熱性が良好である。ブロック共重合体水素化物[2]の水素化率は、ブロック共重合体水素化物[2]のH-NMR測定データから求めることができる。
 不飽和結合の水素化反応の方法は特に限定されず、公知の方法にしたがって行えばよい。水素化反応の方法としては、水素化率を高くでき、重合体鎖切断反応の少ない水素化方法が好ましい。例えば、国際公開WO2011/096389号公報、国際公開WO2012/043708号公報等に記載された方法が挙げられる。
 ブロック共重合体水素化物[2]は、ブロック共重合体水素化物[2]を含む反応溶液から、水素化触媒及び/または重合触媒を除去した後、得られた溶液から回収することができる。回収したブロック共重合体水素化物[2]は、例えば、ペレット形状にして、その後のアルコキシシリル基の導入反応に供することができる。
 得られたブロック共重合体水素化物[2]の分子量は、THFを溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、通常35,000~200,000、好ましくは40,000~150,000、より好ましくは45,000~100,000である。また、ブロック共重合体水素化物[2]の分子量分布(Mw/Mn)を、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下にする。Mw及びMw/Mnが上記範囲となるようにすると、本発明の樹脂組成物からなる成形体の機械強度や耐熱性が向上する。
3.アルコキシシリル基を有するブロック共重合体水素化物[3]
 本発明に用いるアルコキシシリル基を有するブロック共重合体水素化物[3]は、上記ブロック共重合体水素化物[2]に、アルコキシシリル基が導入されたものである。アルコキシシリル基は、上記ブロック共重合体水素化物[2]に直接結合していても、アルキレン基等の2価の有機基を介して結合していても良い。
 アルコキシシリル基の導入方法は、特に限定されないが、上記のブロック共重合体水素化物[2]とエチレン性不飽和シラン化合物とを過酸化物の存在下で反応させる方法が好ましい。
 アルコキシシリル基の導入量は、ブロック共重合体水素化物[2]100重量部に対し、通常0.1~10重量部、好ましくは0.2~5重量部、より好ましくは0.3~3重量部である。アルコキシシリル基の導入量が多過ぎると、微量の水分等で分解されたアルコキシシリル基同士の架橋度が高くなり、ガラスや金属との接着性が低下するおそれがある。一方、アルコキシシリル基の導入量が少な過ぎると、ガラスや金属との接着性が十分発現しなくなるおそれがある。アルコキシシリル基の導入は、得られるブロック共重合体水素化物[3]のIRスペクトルを測定することで確認することができる。アルコキシシリル基の導入量は、得られたブロック共重合体水素化物[3]のH-NMR測定データから求めることができる。
 エチレン性不飽和シラン化合物としては、上記のブロック共重合体水素化物[2]とグラフト重合し、ブロック共重合体水素化物[2]にアルコキシシリル基を導入するものであれば、特に限定されない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリアルコキシシラン;アリルトリメトキシシラン、アリルトリエトキシシラン等のアリルトリアルコキシシラン;ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン等のジアルコキシアルキルビニルシラン;p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン等のp-スチリルトリアルコキシシラン;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリロキシアルキルトリアルコキシシラン;等が好適に用いられる。
 これらのエチレン性不飽和シラン化合物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて使用してもよい。エチレン性不飽和シラン化合物の使用量は、ブロック共重合体水素化物[2]100重量部に対して、通常0.1~10重量部、好ましくは0.2~5重量部、より好ましくは0.3~3重量部である。
 過酸化物としては、1分間半減期温度が170~190℃のものが好ましく使用される。例えば、t-ブチルクミルパーオキシド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキシド等が好適に用いられる。
 これらの過酸化物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて使用してもよい。過酸化物の使用量は、ブロック共重合体水素化物[2]100重量部に対して、通常0.05~2重量部、好ましくは0.1~1重量部、より好ましくは0.2~0.5重量である。
 上記のブロック共重合体水素化物[2]とエチレン性不飽和シラン化合物とを、過酸化物の存在下で反応させる方法は、特に限定されない。例えば、ブロック共重合体水素化物[2]、エチレン性不飽和シラン化合物及び過酸化物を含む混合物を、二軸混練機にて所望の温度で所望の時間混練することにより、前記ブロック共重合体水素化物[2]にアルコキシシリル基を導入することができる。
 二軸混練機にて混練する時の温度は、通常180~220℃、好ましくは185~210℃、より好ましくは190~200℃である。また、加熱混練時間は、通常0.1~10分、好ましくは0.2~5分、より好ましくは0.3~2分程度である。温度、滞留時間が上記範囲になるようにして、連続的に混練、押出しをすればよい。
 前記アルコキシシリル基を有するブロック共重合体水素化物[3]の分子量は、導入されるアルコキシシリル基の量が少ないため、原料として用いたブロック共重合体水素化物[2]の分子量と実質的には変わらない。しかしながら、ブロック共重合体水素化物[2]を、過酸化物の存在下でエチレン性不飽和シラン化合物と反応させるため、重合体の架橋反応、切断反応も併発し、分子量分布(Mw/Mn)が大きくなる場合がある。
 得られるアルコキシシリル基を有するブロック共重合体水素化物[3]の分子量分布(Mw/Mn)は、通常3.5以下、好ましくは2.5以下特に好ましくは2.0以下である。Mw及びMw/Mnがこの範囲であると、本発明の樹脂組成物からなる成形体の良好な機械強度や引張り伸びが維持される。
 上記のようにして得られたアルコキシシリル基を有するブロック共重合体水素化物[3]は、ガラスや金属等との接着性が改善されている。また、当該アルコキシシリル基を有するブロック共重合体水素化物[3]を用いて得られる樹脂組成物、及びそれからなるシート状の成形体を太陽電池用封止材に使用した場合、表面のガラス基板、銅配線、半田等との接着性が高くなる。それゆえ、太陽電池の信頼性評価で通常行われる85℃、85%RHの高温高湿環境に1000時間暴露された後も、十分な接着力を維持することができ、太陽電池用封止材料として好ましく適用される。
4.炭化水素系重合体[4]
 本発明に用いる炭化水素系重合体[4]は、数平均分子量300~5,000の炭化水素系重合体[4]であり、アルコキシシリル基を有するブロック共重合体水素化物[3]に配合して得られる樹脂組成物の耐熱性を大きく損なうことなく、溶融時の流動性を高めることができるものである。
 炭化水素系重合体[4]の具体例としては、ポリイソブチレン、ポリブテン、ポリ-4-メチルペンテン、ポリ-1-オクテン、エチレン・α-オレフィン共重合体及びこれらの水素化物、脂肪族系炭化水素樹脂及びその水素化物、脂環族炭化水素樹脂及びその水素化物、並びに、ポリイソプレン及びその水素化物からなる群から選ばれる少なくとも一種が挙げられる。また、炭化水素系重合体[4]は、アルコキシシリル基、エステル基、水酸基、アミド基、アミノ基、酸無水物基等の極性基を有しても良い。これらの中でも、特に透明性に優れた樹脂組成物が得られる点で、ポリイソブチレン、ポリブテン、ポリイソブチレン水素化物、ポリイソプレン水素化物が好ましい。
 炭化水素系重合体[4]の分子量は、THFを溶媒とするGPCにより測定されるポリスチレン換算の数平均分子量(Mn)で、通常300~5,000、好ましくは400~4,000、より好ましくは500~3,000である。数平均分子量がこの範囲であれば、溶融成形時の気泡発生を抑制でき、また、ガラスとの低温接着が可能である。
 本発明の樹脂組成物を合わせガラス用接着剤として用いる場合、炭化水素系重合体[4]として、オレフィン及び/又は共役ジエンの(共)重合体水素化物であって、ヨウ素価が2.0以下であるものを用いると、アルコキシシリル基を有するブロック共重合体水素化物[3]に配合して得られる樹脂組成物の耐熱性を大きく損なうことなく、低温でのガラスとの接着性を高めることができる。
 オレフィン及び/又は共役ジエンの(共)重合体水素化物の具体例としては、イソブテン、1-ブテン、4-メチルペンテン、1-オクテン、ブタジエン、イソプレン等の単独重合体又は共重合体の水素化物が挙げられる。これらの中でも特に透明性、耐光性に優れた樹脂組成物が得られる点で、イソブテンの単独重合体あるいは共重合体の水素化物が好ましい。
 オレフィン及び/又は共役ジエンの(共)重合体水素化物のヨウ素価は、2.0以下であることが好ましく、0.1以下であることがより好ましく、0.5以下であることが更に好ましい。ヨウ素価は、オレフィン及び/又は共役ジエンの(共)重合体水素化物100gと反応するヨウ素の量(g数)に換算して表す。ヨウ素価が2.0を超える場合は、これを配合した樹脂組成物の耐光性が低下するため好ましくない。
 ここで、ヨウ素価は、試料であるオレフィン及び/又は共役ジエンの(共)重合体水素化物を濃度10%のシクロヘキサン溶液とし一塩化ヨウ素を用いるウィイス(Wijs)法で測定される値である。
 オレフィン及び/又は共役ジエンの(共)重合体水素化物の分子量は、THFを溶媒とするGPCにより測定されるポリスチレン換算の数平均分子量(Mn)で、通常500~5,000、好ましくは800~4,000、より好ましくは1,000~3,000である。Mnが500を下回る場合は、本発明の樹脂組成物を溶融成形する際に気泡を発生し易くなるため好ましくない。また、Mnが5,000を超える場合は、ガラスとの接着温度を低下させる効果が低くなるため好ましくない。
5.樹脂組成物
 本発明の樹脂組成物は、アルコキシシリル基を有するブロック共重合体水素化物[3]100重量部に対して、炭化水素系重合体[4]を、通常1~50重量部、好ましくは2~40重量部、より好ましくは4~30重量部配合して得られる。炭化水素系重合体[4]の配合量が50重量部を超える場合は、樹脂組成物及びそれからなる成形体の耐熱性が低下するおそれがある。一方、炭化水素系重合体[4]の配合量が1重量部未満の場合は、樹脂組成物の流動性が高められず、この樹脂組成物からなるシート状の成形体を使用して結晶系太陽電池セルを封止した場合、セルの割れ防止の効果が得られなくなり、また、ガラスとの接着温度を低下させる効果が低くなるおそれがある。
 アルコキシシリル基を有するブロック共重合体水素化物[3]に、炭化水素系重合体[4]を配合する方法としては、例えば、炭化水素系重合体[4]の所定量を適当な溶剤に溶解し、このものを、前記ブロック共重合体水素化物[2]の溶液に添加した後、溶媒を除去して配合剤を含むブロック共重合体水素化物[2]を回収し、これとエチレン性不飽和シラン化合物とを過酸化物の存在下で反応させる方法;二軸混錬機、ロール、ブラベンダー、押出機等でブロック共重合体水素化物[2]を溶融状態とし、そこへ、炭化水素系重合体[4]の所定量を添加して混練した後、得られた組成物とエチレン性不飽和シラン化合物とを過酸化物の存在下で反応させる方法;二軸混錬機、ロール、ブラベンダー、押出機等でアルコキシシリル基を有するブロック共重合体水素化物[3]を溶融状態とし、そこへ、炭化水素系重合体[4]の所定量を添加して混練する方法;ブロック共重合体水素化物[2]とエチレン性不飽和シラン化合物とを過酸化物の存在下に混練して反応させる際に、炭化水素系重合体[4]を同時に添加して混練する方法;等が挙げられる。
6.その他の配合剤
 本発明の樹脂組成物には、耐光性や耐熱性等を向上させるための光安定剤、紫外線吸収剤、酸化防止剤、滑剤、無機フィラー等を単独であるいは2種以上を併用して添加してもよい。
(光安定剤)
 光安定剤としては、ヒンダードアミン系光安定剤が好ましく、構造中に3,5-ジ-t-ブチル-4-ヒドロキシフェニル基、2,2,6,6-テトラメチルピペリジル基、あるいは、1,2,2,6,6-ペンタメチル-4-ピペリジル基等を有している化合物が挙げられる。
 具体例として、耐候性に優れた、N,N’-ビス(2,2,6,6-テトラメチル-4-N-メチルピペリジル)-N,N’-ジホルミル-アルキレンジアミン類、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ジホルミルアルキレンジアミン類、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスアルキレン脂肪酸アミド類、ポリ〔{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕が好ましく、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ジホルミルアルキレンジアミン類、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)-1,6-ヘキサンジアミンと2,4,6-トリクロロ-1,3,5-トリアジンとの重合体とN-ブチル-1-ブタンアミンとN-ブチル-2,2,6,6-テトラメチル-4-ピペリジンアミンとの反応生成物等が好ましい。
 ヒンダードアミン系耐光安定剤を使用する場合、その配合量は、アルコキシシリル基を有するブロック共重合体水素化物[3]100重量部に対して、各々通常0.001~2重量部、好ましくは0.002~1重量部、より好ましくは0.005~0.5重量部、である。ヒンダードアミン系耐光安定剤の量がこれより少ない場合は、樹脂組成物及びそれからなる成形体の耐光性が不十分な場合があり、これより多い場合は、樹脂組成物の溶融成形加工時に、押出し機のTダイや冷却ロールの汚れが酷くなり易く好ましくない。
(紫外線吸収剤)
 紫外線吸収剤としては、ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等を配合することができる。
 具体例として、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸3水和物、2-ヒドロキシ-4-オクチロキシベンゾフェノン、4-ドデカロキシ-2-ヒドロキシベンゾフェノン、4-ベンジルオキシ-2-ヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤;フェニルサルチレート、4-t-ブチルフェニル-2-ヒドロキシベンゾエート、フェニル-2-ヒドロキシベンゾエート、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等のサリチル酸系紫外線吸収剤;2-(2-ヒドロキシ-5-メチルフェニル)-2H-ベンゾトリアゾール、2-(3-t-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、5-クロロ-2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-オクチルフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチルフェニル)-2H-ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラヒドロフタリミジルメチル)フェノール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-[(2H-ベンゾトリアゾール-2-イル)フェノール]]等のベンゾトリアゾール系紫外線吸収剤;等が挙げられる。
 紫外線吸収剤を使用する場合、その配合量は、アルコキシシリル基を有するブロック共重合体水素化物[3]100重量部に対して、通常0.01~2重量部、好ましくは0.02~1.5重量部、より好ましくは0.04~1.0重量部である。紫外線吸収剤の量がこれより少ない場合は、樹脂組成物及びそれからなる成形体の耐光性が不十分な場合があり、これを超えて過剰に添加しても、更なる改善は認められない。
(酸化防止剤)
 本発明において、アルコキシシリル基を有するブロック共重合体水素化物[3]に上記ヒンダードアミン系耐光安定剤及び紫外線吸収剤の他に、更に酸化防止剤を配合することにより、より熱安定性を向上することもできる。用いる酸化防止剤としては、リン系酸化防止剤、フェノ-ル系酸化防止剤、硫黄系酸化防止剤等が挙げられ、着色がより少ないリン系酸化防止剤が好ましい。
 リン系酸化防止剤としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のモノホスファイト系化合物;4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4’-イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)等のジホスファイト系化合物;6-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラキス-t-ブチルジベンゾ〔d,f〕〔1.3.2〕ジオキサフォスフェピン、6-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロポキシ〕-2,4,8,10-テトラキス-t-ブチルジベンゾ〔d,f〕〔1.3.2〕ジオキサフォスフェピン等の化合物を挙げることができる。
 フェノ-ル系酸化防止剤としては、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等化合物を挙げることができる。
 硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル3,3’-チオジプロピピオネート、ジステアリル-3,3’-チオジプロピオネート、ラウリルステアリル-3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等等化合物を挙げることができる。
 酸化防止剤を用いる場合、その配合量は、アルコキシシリル基を有するブロック共重合体水素化物[3]100重量部に対して、各々通常0.01~2重量部、好ましくは0.05~1.5重量部、より好ましくは0.1~1重量部である。酸化防止剤の量がこの範囲であれば、耐熱安定性と透明性と接着性とのバランスに優れる。
 アルコキシシリル基を有するブロック共重合体水素化物[3]に炭化水素系重合体[4]を配合してなる樹脂組成物に、上記配合剤を均一に分散する方法としては、例えば、配合剤を適当な溶剤に溶解した溶液を、アルコキシシリル基を有するブロック共重合体水素化物[3]の前駆体であるブロック共重合体水素化物[2]の溶液に添加した後、溶媒を除去して配合剤を含むブロック共重合体水素化物[2]を回収し、これとエチレン性不飽和シラン化合物とを過酸化物の存在下で反応させた後で、炭化水素系重合体[4]を配合する方法;二軸混錬機、ロール、ブラベンダー、押出機等でアルコキシシリル基を有するブロック共重合体水素化物[3]に炭化水素系重合体[4]を配合してなる樹脂組成物を溶融状態にし、そこへ配合剤を添加して混練する方法;ブロック共重合体水素化物[2]とエチレン性不飽和シラン化合物とを過酸化物の存在下で混練して反応させる際に、炭化水素系重合体[4]及び上記配合剤を同時に添加して混練する方法等が挙げられる。
 本発明の樹脂組成物は、アルコキシシリル基を有するブロック共重合体水素化物[3]に対して炭化水素系重合体[4]を配合しているため、溶融時の流動性が高められており、この樹脂組成物からなるシートを使用して結晶系太陽電池セルを封止した場合に、真空ラミネート工程でのセルの割れを防止できる効果があり、ガラスを貼り合わせる場合に、ガラスとの接着温度を低下させる効果がある。
 本発明の樹脂組成物は、優れた、透明性、耐熱性、耐光性、低吸湿性及び低透湿性を有しており、加熱溶融させてガラスや金属と接着させることにより、強固な接着力を発揮する。また、本発明の樹脂組成物は、低吸湿性、非加水分解性、耐候性、及び高温高湿環境に長時間暴露された後でも、ガラスや金属との強固な接着力を維持し、且つ、耐熱性と低温封止性を有する。
 従って、本発明の樹脂組成物は、太陽電池素子の封止材やガラス板の貼り合わせ材(合わせガラス用接着剤)、ガラス板と金属板の貼り合わせ材、金属板の貼り合わせ材、高周波回路基板用のセラミック基板や樹脂基板と粗化処理されていない銅箔との貼り合わせ材、紙との貼り合わせ材、電子部品や電子素子の封止材、IC素子を封止した厚紙の中間層材、ELディスプレイやEL発光素子の封止材、液晶ディスプレイの封止材、セラミック用バインダー、ガラス光ファイバーの鞘材、不織布、高周波コネクター等として有用である。これらの中でも、太陽電池素子封止材用、ガラス板の貼り合わせ材(合わせガラス用接着剤)に特に好適である。
7.成形体
 本発明の成形体は、本発明の樹脂組成物を成形して得られるものである。
 成形法としては特に限定されず、公知の方法が採用できる。例えば、射出成形法、射出圧縮成形法、圧縮成形法、押出し成形法、ブロー成形法、射出ブロー成形法、インフレーション成形法、T-ダイ押出し成形法、カレンダー成形法、塗布法、真空成形法、発泡成形法、熱ラミネート成形法、押出しラミネート成形法、共押出し成形法、多層押出し成形法、マッチドダイ成形法、SMC成形法、電線被覆成形法、切削成形法等が挙げられる。
 成形体の形状は、特に限定されず、塊、板、シート、フィルム、塗膜、粒体、粉体、付形体、他材料との接着体、他材料との積層体、溶液、分散体、エマルジョン等が挙げられる。
 また、成形体は、他樹脂、ゴム、無機物、ガラス、金属、紙、布等の他材料との多成分からなる成形体であっても良い。
 これらのなかでも、本発明の成形体としては、後述するように、太陽電池素子の封止材、ガラス板の貼り合わせ材(合わせガラス用接着剤)等として使用する場合には、シート状の成形体(シート)が好ましい。
 シートの製造方法としては、特に制約は無く、公知の、溶融押出し成形法(溶融キャスト成形法(cast film extrusion)、押出しシート成形法、インフレーション成形法等)、圧縮成形法、カレンダー成形法、溶液流延法(solution casting)等が挙げられる。
 本発明に係る合わせガラス接着用の樹脂組成物[5]は、熱架橋性を付与するための有機過酸化物の配合を必要としないため、溶融成形温度の選択領域が広い。シートの成形温度は、成形方法により適宜選択されるが、例えば溶融押出し成形法による場合、樹脂温度は、通常130~250℃、好ましくは140~230℃、より好ましくは150~210℃の範囲である。樹脂温度が低過ぎる場合は、流動性が悪化し、成形シートにゆず肌やダイライン等の不良を生じ易く、また、シートの押出し速度が上げられず工業生産性に劣る傾向がある。樹脂温度が高過ぎる場合は、得られたシートのガラスへの接着性が不良となったり、ゲル状物が発生して良好な外観のシートが得られなかったり、シートの貯蔵安定性が低下して、シートを常温常湿環境で長期間貯蔵した後の封止性や、ガラスや金属に対する接着性が低下する等の不具合を生じ易く、好ましくない。
 本発明のシートは、樹脂組成物[5]からなる単層のシートであっても、また、他の透明樹脂からなるシートの片面もしくは両面に、樹脂組成物[5]からなる層が積層された多層シートであってもよい。
 多層シートを成形する方法は、2種3層共押出し成形法;透明樹脂からなるシートの片面もしくは両面に、樹脂組成物[5]からなるシートを、熱圧着や接着剤で積層する方法;等が挙げられる。
 多層シートの場合、樹脂組成物[5]からなる層の厚みは、通常は0.001mm以上、好ましくは0.005mm以上、より好ましくは0.01mm以上である。樹脂組成物[5]からなる層の厚みがこの範囲であれば、十分な封止性や接着性が得られる。
 単層シートあるいは多層シートの形状は、平面状であっても、エンボス加工を施した形状等であってもよい。シート同士のブロッキングを防止するために、該シートの片面に離型フィルムを重ねて保管することもできる。エンボス加工したシートは、真空ラミネート時やオートクレーブでの加圧ラミネート時の脱気性が良く、合わせガラスに気泡が残り難い点で好ましい。
 本発明のシートは、ガラスを透明前面基板とする結晶系太陽電池セルを使用した太陽電池の封止材として、及び、合わせガラス用接着剤として好ましく使用される。
 本発明のシートを、太陽電池の封止材として使用する場合であって、太陽電池素子として結晶系シリコンウェハーを使用する場合は、シリコンウェハーの厚みが0.15~0.2mmであるため、太陽電池素子封止材のシート厚みは、通常0.2~0.8mm、好ましくは0.3~0.7mm、より好ましくは0.4~0.6mmである。シート厚みがこの範囲であれば、充填不良が少なく、また光線透過率に優れる。シート厚みが0.2mmよりも小さいと、太陽電池モジュール製造の際の加熱ラミネート工程において結晶系太陽電池セルの破損が起き易くなり、0.8mmよりも大きいと、シートの光線透過率が低下したり、太陽電池素子封止材の使用量が多くなり経済性が低下するおそれがある。
 本発明のシートは透湿度が小さく、吸湿性も低いため、遮水層としての裏面保護シートを必須としない。太陽電池モジュールの耐久性を更に高めるために、機械的衝撃を緩和する目的で裏面保護シートのみを適用すればよい。裏面保護シートとしては、電気絶縁性、機械的強度等に優れ、安価なポリエチレンテレフタレート樹脂シートを使用することができる。
 また、裏面保護シートは、遮光性及び/または光反射性を有していても良い。この場合、裏面保護シートは紫外線吸収剤や酸化チタン等の遮光性顔料を含有したもの等が適用できる。
 本発明のシートを、合わせガラス用接着剤として用いる場合は、樹脂組成物[5]からなるシートをガラス板間に介在させ、ガラス板とガラス板を貼り合わせればよい。 
 本発明のシートが接着剤として用いられた合わせガラスを製造するには、複数のガラス板の間に樹脂組成物[5]からなるシートを介在させた後、オートクレーブ、減圧可能な耐熱バッグ、真空プレス、真空ラミネータ等を使用して加熱して、ガラス同士を接着させれば良い。
 樹脂組成物[5]からなるシートの厚みは、通常0.03~5mmの範囲である。シートの厚みが0.03mmよりも小さい場合は、ガラス板の貼り合わせむらが生じ易くなり、また、割れたガラスの飛散防止性や耐貫通性が低くなるため好ましくない。シート厚みが5mmよりも大きい場合、シートの光線透過率が低下したり、樹脂組成物[5]の使用量が多くなり経済性が低下するため好ましくない。
 用いるガラス板の厚みは、特に限定されないが、通常0.5~10mm程度である。厚み0.03~0.4mm程度の薄膜ガラス板も樹脂組成物[5]を介して合わせガラスとすることができる。樹脂組成物[5]は、-50℃程度~+100℃程度の幅広い温度帯域で、柔軟性と、ガラスとの強固な接着性を維持するため、熱膨張係数の異なる複数のガラスを貼り合わせた場合も、急激な温度変化によるガラスの割れを低減することができ、また、通常の地球環境では、ガラスが割れた際の飛散防止の効果も有している。
 ガラスの種類は特に限定されず、青板ガラス、白板ガラス、アルミノシリケート酸ガラス、アルミノホウケイ酸ガラス、ウランガラス、カリガラス、ケイ酸ガラス、結晶化ガラス、ゲルマニウムガラス、石英ガラス、ソーダガラス、鉛ガラス、バリウムホウケイ酸ガラス、硼珪酸ガラス、表面に極薄の金属膜をコーティングした熱線反射ガラス、表面に極薄の金属酸化物膜をコーティングした導電性ガラス等が挙げられる。
 また、付加価値を高めるために、合わせガラスに、装飾性や、電磁波、放射線、赤外線、熱線等の遮蔽性、表示機能を付与することもできる。例えば、樹脂組成物[5]からなる複数のシートを2枚のガラス板間に介在させ、その複数のシートの間に、彩色された樹脂フィルム、布、繊維、和紙、彩色紙、カラーフィルム、木薄片、金属線、金属箔、金属板、金網、パンチングメタル、色素、染料、顔料、多層薄膜、遮光素子、調光フィルム、カーボンファイバー、アクリル樹脂板、ポリカーボネート板、有機EL素子等を挟むことができる。
 得られる合わせガラスは、装飾ガラス;意匠性ガラス;建築物のドアガラス、窓ガラス、屋根用ガラス;自動車用のフロントガラス、サイドガラス、リアガラス、サンルーフ用ガラス;電磁波遮蔽間仕切り用ガラス;高速道路・鉄道・リニアモーターカー等の遮音壁用ガラス;両面ガラス製透光型太陽電池;有機EL照明機器;等に好適に用いることができる。
 以下、本発明について、実施例及び比較例を挙げて、より具体的に説明する。本発明は、これらの実施例に限定されるものではない。以下の実施例及び比較例において、部及び%は、特に断りがない限り、重量基準である。以下に各種物性の測定法を示す。
(1)重量平均分子量(Mw)及び分子量分布(Mw/Mn)
 ブロック共重合体[1]、ブロック共重合体水素化物[2]及び炭化水素系重合体[4]の分子量は、GPCによる標準ポリスチレン換算値として求めた。GPCはTHFを溶離液として用い、38℃において測定した。測定装置としては、東ソー社製、HLC8020GPCを用いた。
(2)水素化率
 ブロック共重合体水素化物[2]の主鎖、側鎖及び芳香環の水素化率は、H-NMRスペクトルを測定して算出した。
(3)シートの全光線透過率
 アルコキシシリル基を有するブロック共重合体水素化物[3]またはアルコキシシリル基を有するブロック共重合体水素化物[3]に炭化水素系重合体[4]を配合してなる樹脂組成物(以下、これらをまとめて「樹脂組成物A等」という。)の厚さ400μmの押出し成形シートを、2枚のポリエチレンテレフタレート(以下、「PET」と略す)製離形フィルムに挟み、真空ラミネータ(PVL0202S、日清紡メカトロニクス社製)を使用して、150℃で10分間加熱加圧処理したシートを使用して、JIS K 7375に従い測定した。
(4)透湿度
 樹脂組成物A等の厚さ400μmの押出し成形シートを、2枚のPET製離形フィルムに挟み、真空ラミネータで150℃、10分間加熱加圧処理したシートを使用して、JIS Z0208の方法に準じて、40℃、90%RHの環境条件で測定した。
(5)ガラス基板との接着性評価(剥離強度)
 樹脂組成物A等の厚さ400μmの押出しシートを、シート端部に非接着部位を設けて厚さ2mm、幅25mm、長さ65mmのソーダライムガラス基板と重ね合わせ、真空ラミネータにて140~160℃の所定温度で、5分間真空下で加熱脱気した後、10分間加熱加圧接着することにより、剥離試験用試験片を作成した。シート面を10mm幅に切り目を入れ、シートの非接着部位から、剥離速度50mm/分で、JIS K 6854-1を参考にして180°剥離試験を行い、剥離強度を測定した。剥離強度は、真空ラミネート後の初期の値、及び85℃、85%RHの高温高湿環境に170時間暴露した後の値を測定した。剥離強度が大きいほど、ガラスとの接着性が良い。
(6)太陽電池モジュール成形時のセルの割れ性評価
 透明基板(ソーダライムガラス、200×200mm×厚さ3mm)の上に、樹脂組成物A等の厚さ400μmの押出しシートを載せ、その上に厚さ200μmのタブ線を表裏に接続した多結晶シリコン太陽電池セル(アドバンテック社製、155×155mm×厚さ200μm)を載せた。この太陽電池セルの上に、更に樹脂組成物A等の厚さ400μmの押出しシート、次に、裏面保護シートの代わりにPET製離形フィルムの順で載せ積層物を得た。次いで上記積層物を真空ラミネータにて、140~160℃の間を5℃間隔の所定温度で、5分間真空下で加熱脱気した後、10分間加熱加圧して封止し、太陽電池モジュールを作製した。得られた太陽電池モジュールから離形フィルムを除去し、目視観察で太陽電池セルの割れの評価を行った。太陽電池セル5個を観察し、いずれのセルにもクラックが観察されない場合を〇とし、クラックが観察された場合はクラックが発生した枚数を数えた。
 現行のEVA系の標準的真空ラミネート温度は150℃であり、150℃での割れの発生があってはならない。
(7)太陽電池モジュールの耐熱性評価
 前記の太陽電池モジュール成形時のセルの割れ性評価の項で作製した太陽電池モジュールであって、140℃、150℃、160℃で封止したセルの内クラックの無いものを選別し、オーブン中に太陽電池モジュールを垂直に立てて配置し、120℃で48時間保持した後に、太陽電池セルの位置ずれ、クラック、封止材の変形等の外観を観察した。外観に変化が観察されない場合を〇(良好)とした。
(8)合わせガラスのガラス板との接着性評価(剥離強度)
 樹脂組成物[5]からなるシートを、シート端部に非接着部位を設けて、厚さ2mm、幅100mm、長さ70mmの白板ガラス板と重ね合わせ、真空ラミネータを使用して、120℃で、5分間真空脱気した後、10分間真空加圧接着することにより、剥離試験用試験片を作成した。シート面を15mm幅に切り目を入れ、シートの非接着部位から、剥離速度50mm/分で、JIS K 6854-2に基づいて、180度剥離試験を行い、剥離強度を測定した。
 接着性を、剥離強度が20N/cmより大きい場合を○(良好)、10~20N/cmの場合を△、10N/cm未満の場合を×(不良)として評価した。
(9)耐久性
 ガラス板との接着性評価用に作成したのと同様の剥離試験用試験片を使用し、恒温恒湿槽中で、85℃、85%RHの環境で、1000時間保持した後、剥離強度を測定した。
 耐久性を、剥離強度が20N/cmより大きい値である場合を○(良好)、10~20N/cmである場合を△、10N/cm未満の場合を×(不良)として評価した。
(10)合わせガラス用接着剤シートの耐光性
 樹脂組成物[5]からなるシートを使用して、JIS K-6251に記載のダンベル状3号形試験片を作成した。キセノンウェザーメーターを使用し、厚さ3.2mmの白板ガラスを通して試験片に光照射するように試験片を設置し、ブラックパネル温度83℃、放射照度60W/m、水暴露無しにして、700時間の照射を行い、照射前に対する照射後の引張り強度及び伸びの保持率を測定した。
 引張り強度の保持率が初期値の80%以上で、かつ、伸び率の保持率が初期値の80%以上である場合、耐光性は良好であると判断される。
(11)合わせガラスの光透過性
 樹脂組成物[5]からなるシートを幅50mm、長さ50mm、厚さが各々3.2mm及び1.0mmの2枚の白板ガラスの間に挟み、真空ラミネータを使用して、120℃で、5分間真空脱気した後、10分間真空加圧成形して合わせガラス試験片を作成し、JIS K 7375の方法を参照して全光線透過率を測定した。
 光透過性を、全光線透過率が90%以上の場合を○(良好)、90%未満の場合を×(不良)として評価した。
(12)合わせガラスの耐熱性
 樹脂組成物[5]からなるシートを、厚さ3.2mm、幅200mm、長さ200mmの2枚の白板ガラスに挟み、この積層物を真空プレス装置にて、130℃、減圧下で加熱脱気した後、10分間加熱加圧して接着し、合わせガラス試験片を作成した。この合わせガラス試験片を使用して、オーブン中で、架台を用いて片面のガラス板のみ保持し、もう一方のガラス板は保持しないように垂直に立てて、100℃で168時間保存した後、合わせガラス試験片を目視観察し、位置ずれ、変色、気泡、剥離等の外観を評価した。
 耐熱性を、外観に異常が観察されない場合を○(良好)、異常が観察される場合を×(不良)として評価した。
(13)合わせガラスの低温でのガラス割れ時の飛散防止性
 変樹脂組成物[5]からなるシートを、厚さ2.0mm、幅400mm、長さ400mmの2枚の白板ガラス板に挟み、耐熱バッグに入れて脱気した後、複合材料加熱硬化用オートクレーブにて、130℃、圧力0.8MPaで1時間加圧接着することにより、合わせガラス試験片を作成した。この合わせガラス試験片を使用して、恒温恒湿槽中で、-40℃で3時間保存した後、恒温恒湿槽から取り出し直後に、重さ2kgの鋼球を2mの高さから合わせガラス面に落下させ、割れの状況を目視観察した。
 ガラス割れ時の飛散防止性を、鋼球が合わせガラスを貫通せず、割れたガラスが飛散していない場合を○(良好)、は、割れ時の飛散防止性は良好と判断した。
[参考例1]
(アルコキシシリル基を有するブロック共重合体水素化物[3-a])
・ブロック共重合体[1-a]の合成
 内部を充分に窒素置換した攪拌装置を備えた反応器に、脱水シクロヘキサン550部、脱水スチレン25.0部、及びn-ジブチルエーテル0.475部を入れ、60℃で攪拌しながら、n-ブチルリチウム(15%シクロヘキサン溶液)0.99部を加えて重合を開始させた。その後、攪拌しながら60℃で60分反応させて反応液Aを得た。反応液Aの一部を採取してガスクロマトグラフィーにより測定したところ、この時点で重合転化率は99.5%であった。
 次に、反応液Aに脱水イソプレン50.0部を加え、そのまま60℃で30分攪拌を続け、反応液Bを得た。反応液Bの一部を採取してガスクロマトグラフィーにより測定したところ、この時点で重合転化率は99%であった。
 その後、更に、反応液Bに脱水スチレンを25.0部加え、全容を60℃で60分攪拌して反応液Cを得た。反応液Cの一部を採取してガスクロマトグラフィーにより測定したところ、この時点での重合転化率はほぼ100%であった。
 その後、反応液Cにイソプロピルアルコール0.5部を加えて反応を停止させて、反応液Dを得た。反応液Dに含まれるブロック共重合体の重量平均分子量(Mw)は48,400、分子量分布(Mw/Mn)は1.02であった。
・ブロック共重合体水素化物[2-a]の合成
 次に、上記反応液D(重合体溶液)を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として珪藻土担持型ニッケル触媒(製品名「T-8400RL」、ズードケミー触媒社製)3.0部、及び脱水シクロヘキサン100部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度190℃、圧力4.5MPaにて6時間水素化反応を行った。水素化反応後の反応液Eに含まれるブロック共重合体水素化物の重量平均分子量(Mw)は48,900、分子量分布(Mw/Mn)は1.03であった。
 水素化反応終了後、反応液Eをろ過して水素化触媒を除去した。得られた溶液に、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](製品名「Irganox(登録商標)1010」、BASFジャパン社製)0.1部を溶解したキシレン溶液1.0部を添加して溶解させた。
 次いで、上記溶液を、金属ファイバー製フィルター(孔径0.4μm、ニチダイ社製)にて濾過して微小な固形分を除去した後、円筒型濃縮乾燥器(製品名「コントロ」、日立製作所社製)を用いて、温度260℃、圧力0.001MPa以下で、溶液から、溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去し、濃縮乾燥器に直結したダイから溶融状態でストランド状に押出し、冷却後、ペレタイザーでカットしてブロック共重合体のペレットA 96部を得た。得られたペレットA中のブロック共重合体水素化物[2-a]の重量平均分子量(Mw)は48,200、分子量分布(Mw/Mn)は1.03であった。水素化率はほぼ100%であった。
・アルコキシシリル基を有するブロック共重合体水素化物[3-a]の合成
 上記で得られたペレットA 100部に対して、ビニルトリメトキシシラン2.0部、及び、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(製品名「パーヘキサ(登録商標) 25B」、日油社製)0.2部を添加した。この混合物を、二軸押出機(製品名「TEM35B」、東芝機械社製)を用いて、樹脂温度200℃、滞留時間60~70秒で混練し、ストランド状に押出し、空冷した後、ペレタイザーによりカッティングし、アルコキシシリル基を有するブロック共重合体水素化物[3-a]のペレットB 97部を得た。
 得られたペレットB 10部をシクロヘキサン100部に溶解させた後、脱水したメタノール400部中に注いで、アルコキシシリル基を有するブロック共重合体水素化物[3-a]を凝固させ、ろ取した。ろ過物を25℃で真空乾燥してアルコキシシリル基を有するブロック共重合体水素化物[3-a]のクラム9.5部を単離した。
 このもののFT-IRスペクトルを測定したところ、1090cm-1にSi-OCH基及び825、739cm-1にSi-CH基に由来する新たな吸収帯が、ビニルトリメトキシシランのそれらの1075、808、766cm-1と異なる位置に観察された。また、H-NMRスペクトル(重クロロホルム中)を測定したところ、3.6ppmにメトキシ基のプロトンに基づく吸収帯が観察され、ピーク面積比からブロック共重合体水素化物[2-a]の100部に対して、ビニルトリメトキシシラン1.7部が結合したことが確認された。
[参考例2]
(アルコキシシリル基を有するブロック共重合体水素化物[3-b])
・ブロック共重合体水素化物[2-b]の合成
 重合段階でモノマーとして、スチレン20.0部、n-ブチルリチウム(15%シクロヘキサン溶液)0.79部、イソプレン60.0部及びスチレン20.0部をこの順に反応系に添加して重合する以外は合成例1と同様にして、ブロック共重合体水素化物のペレットC 90部を得た。得られたブロック共重合体水素化物[2-b]の重量平均分子量(Mw)は59,600、分子量分布(Mw/Mn)は1.03であった。水素化率はほぼ100%であった。
・アルコキシシリル基を有するブロック共重合体水素化物[3-b]の合成
 上記で得られたペレットCを使用する以外は参考例1と同様にして、アルコキシシリル基を有するブロック共重合体水素化物[3-b]のペレットD 95部を得た。
 アルコキシシリル基を有するブロック共重合体水素化物[3-b]を参考例1と同様に分析した。その結果、FT-IRスペクトルでは、1090cm-1にSi-OCH基及び825、739cm-1にSi-CH基に由来する新たな吸収帯が、ビニルトリメトキシシランのそれらの1075、808、766cm-1と異なる位置に観察された。また、H-NMRスペクトル(重クロロホルム中)では、3.6ppmにメトキシ基のプロトンに基づく吸収帯が観察され、ピーク面積比からブロック共重合体水素化物[2-b]の100部に対してビニルトリメトキシシラン1.8部が結合したことが確認された。
[実施例1]
(アルコキシシリル基を有するブロック共重合体水素化物[3-a]にポリイソブテン[4-a]を配合してなる樹脂組成物)
 参考例1で得られたアルコキシシリル基を有するブロック共重合体水素化物[3-a]のペレットB 100重量部に、紫外線吸収剤である2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(製品名「Tinuvin(登録商標) 329」、BASFジャパン社製)0.4部を添加し、液状物を添加できるサイドフィーダーを備えた二軸押出機(製品名「TEM37BS」、東芝機械社製)を用いて、樹脂温度190℃で押し出した。一方、サイドフィーダーから炭化水素系重合体[4]としてポリイソブテン[4-a](製品名「日石ポリブテン HV-300」、数平均分子量1,400、JX日鉱日石エネルギー社製)を、アルコキシシリル基を有するブロック共重合体水素化物[3-a]100重量部に対して10重量部の割合となるように連続的に添加して、ストランド状に押出し、空冷した後、ペレタイザーによりカッティングしてアルコキシシリル基を有するブロック共重合体水素化物[3-a]にポリイソブテン[4-a]を配合してなる樹脂組成物[5-aa]のペレットE 102部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5-aa]のペレットEを、25mmφのスクリューを備えた押出し機を有するTダイ式フィルム溶融押出し成形機(Tダイ幅300mm)及び梨地パターンのエンボスロールを備えたシート引取機を使用し、溶融樹脂温度190℃、Tダイ温度190℃、ロール温度50℃の成形条件にて、厚さ400μmのシートを押出し成形した。得られた押出シート[6-aa]はロールに巻き取り回収した。
 得られた押出しシート[6-aa]を使用して、(3)全光線透過率、(4)透湿度、(5)ガラス基板との接着性、(6)太陽電池モジュール成形時のセルの割れ性、及び、(7)太陽電池モジュールの耐熱性の評価を行った。結果を表1に示す。
[実施例2]
(アルコキシシリル基を有するブロック共重合体水素化物[3-b]にポリイソブテン[4-b]を配合してなる樹脂組成物)
 アルコキシシリル基を有するブロック共重合体水素化物[3]を、参考例2で得られたアルコキシシリル基を有するブロック共重合体水素化物[3-b]100重量部に代え、炭化水素系重合体[4]としてポリイソブテン[4-b](製品名「日石ポリブテン HV-100」、数平均分子量980、JX日鉱日石エネルギー社製)を、アルコキシシリル基を有するブロック共重合体水素化物[3-b]100重量部に対して5重量部の割合となるように代える以外は、実施例1と同様にして、アルコキシシリル基を有するブロック共重合体水素化物[3-b]にポリイソブテン[4-b]を配合してなる樹脂組成物[5-bb]のペレットF 98部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5-bb]のペレットF を使用し、実施例1と同様にして厚さ400μmのシートを押出し成形した。得られた押出シート[6-bb]はロールに巻き取り回収した。
 得られた押出しシート[6-bb]を使用して、(3)全光線透過率、(4)透湿度、(5)ガラス基板との接着性、(6)太陽電池モジュール成形時のセルの割れ性、及び、(7)太陽電池モジュールの耐熱性の評価を行った。結果を表1に示す。
[比較例1]
(アルコキシシリル基を有するブロック共重合体水素化物[3-a]のシート)
 炭化水素系重合体[4]としてポリイソブテン[4-a]を配合しない以外は実施例1と同様にして、参考例1で得られたアルコキシシリル基を有するブロック共重合体水素化物[3-a]に紫外線吸収剤である2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノールを添加した樹脂組成物[5-a]のペレットG 92部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5-a]のペレットGを使用し、実施例1と同様にして厚さ400μmのシートを押出し成形した。得られた押出シート[6-a]はロールに巻き取り回収した。
 得られた押出しシート[6-a]を使用して、(3)全光線透過率、(4)透湿度、(5)ガラス基板との接着性、(6)太陽電池モジュール成形時のセルの割れ性、及び、(7)太陽電池モジュールの耐熱性の評価を行った。結果を表1に示す。
[比較例2]
(アルコキシシリル基を有するブロック共重合体水素化物[3-b]のシート)
 炭化水素系重合体[4]としてポリイソブテン[4-b]を配合しない以外は実施例2と同様にして、参考例2で得られたアルコキシシリル基を有するブロック共重合体水素化物[3-b]に紫外線吸収剤である2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノールを添加した樹脂組成物[5-b]のペレットH 93部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5-b]のペレットH を使用し、実施例1と同様にして厚さ400μmのシートを押出し成形した。得られた押出シート[6-b]はロールに巻き取り回収した。
 得られた押出しシート[6-b]を使用して、(3)全光線透過率、(4)透湿度、(5)ガラス基板との接着性、(6)太陽電池モジュール成形時のセルの割れ性、及び、(7)太陽電池モジュールの耐熱性の評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例3]
(アルコキシシリル基を有するブロック共重合体水素化物[3-a]にポリイソブテン[4-a]を配合してなる樹脂組成物によるガラス貼り合わせ)
 実施例1で得られたアルコキシシリル基を有するブロック共重合体水素化物[3-a]にポリイソブテン[4-a]を配合してなる樹脂組成物[5-aa]の押出しシート[6-aa]を使用し、2枚のガラス板(ソーダライムガラス、200×200mm×厚さ3mm)を以下のような条件で貼り合わせた。
 ガラス板の上に、押出しシート[6-aa]を2枚重ねて載せ、その上にもう1枚のガラス板を載せて積層物とした。次いで上記積層物を真空ラミネータにて、130℃の温度で、5分間真空下で加熱脱気した後、10分間加熱加圧して、貼り合わせガラスを作製した。
 得られた貼り合わせガラスの外観を観察した結果、気泡等の不良は認められなかった。
 この貼り合わせガラスを使用して、オーブン中で、架台を用いて片面のガラス板のみ保持し、もう一方のガラス板は保持しないように垂直に立てて、100または120℃の温度で170時間保存した後、貼り合わせガラスの外観を観察した結果、位置ずれ、変色、気泡、剥離等の異常は見られなかった。
[比較例3]
(アルコキシシリル基を有するブロック共重合体水素化物[3-a]によるガラス貼り合わせ)
 比較例1で得られたアルコキシシリル基を有するブロック共重合体水素化物[3-a]に紫外線吸収剤を添加した樹脂組成物[5-a]を押出し成形して得られた押出シート[6-a]を使用し、実施例3と同様な条件で2枚のガラス板を貼り合わせた。
 得られた貼り合わせガラスの外観を観察した結果、気泡が多数残留して外観不良であり、接着性も十分ではなかった。
[実施例4]
(アルコキシシリル基を有するブロック共重合体水素化物[3-a]にポリイソブテン[4-c]を配合してなる樹脂組成物)
 炭化水素系重合体[4]としてポリイソブテン[4-c](製品名「日石ポリブテン HV-1900」、数平均分子量2900、JX日鉱日石エネルギー社製)を、アルコキシシリル基を有するブロック共重合体水素化物[3-a]100重量部に対して40重量部の割合となるように変える以外は、実施例1と同様にして、アルコキシシリル基を有するブロック共重合体水素化物[3-a]にポリイソブテン[4-c]を配合してなる樹脂組成物[5-ac]のペレット129部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5-ac]のペレットを使用し、実施例1と同様にして厚さ400μmのシートを押出し成形した。得られた押出シート[6-ac]はロールに巻き取り回収した。
 得られた押出しシート[6-ac]を使用して、実施例3と同様な条件で2枚のガラス板を貼り合わせた。
 得られた貼り合わせガラスの外観を観察した結果、気泡等の不良は認められなかった。この貼り合わせガラスを使用して、実施例3と同様の加熱試験を行った結果、位置ずれ、変色、気泡、剥離等の異常は見られなかった。
 以上、実施例1~4、及び比較例1~3の結果から以下のことがわかる。
 アルコキシシリル基を有するブロック共重合体水素化物[3]からなるシートを使用した場合(比較例1及び比較例2)よりも、アルコキシシリル基を有するブロック共重合体水素化物[3]に炭化水素系重合体[4]を配合した樹脂組成物からなるシートを使用した場合(実施例1及び2)の方が、同じ温度で多結晶シリコン太陽電池セルを封止してもセル割れが発生し難く、より低温で封止が可能となる。
 また、多結晶シリコン太陽電池セルを封止した太陽電池モジュールの耐熱性は、120℃の温度では炭化水素系重合体[4]を配合した場合も影響されない。
 アルコキシシリル基を有するブロック共重合体水素化物[3]からなるシートを使用した場合(比較例3)よりも、アルコキシシリル基を有するブロック共重合体水素化物[3]に、炭化水素系重合体[4]を配合した樹脂組成物からなるシートを使用した場合(実施例3及び4)の方が、より低温でガラスの貼り合わせが可能となる。
 また、貼り合わせたガラスは、温度120℃での耐熱性も維持している。
[参考例3]
(アルコキシシリル基を有するブロック共重合体水素化物[3]-1)
・ブロック共重合体水素化物[2]-1の合成
 次に、重合段階で、n-ブチルリチウム(15%シクロヘキサン溶液)の使用量を0.99部から0.86部に変更し、水素化反応段階での水素化触媒を、珪藻土担持型ニッケル触媒(製品名「T-8400RL」、ズードケミー触媒社製)3.0部の代わりに、珪藻土担持型ニッケル触媒(日揮触媒化成社製、製品名「E22U」、ニッケル担持量60%)4.0部に変える以外は、参考例1と同様にして重合反応、及び、それに続く水素化反応を行った。得られたブロック共重合体水素化物[2]-1の重量平均分子量(Mw)は51,600、分子量分布(Mw/Mn)は1.06であった。
 水素化反応終了後、反応溶液を濾過して水素化触媒を除去した後、フェノ-ル系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](製品名「イルガノックス(登録商標)1010」、BASF社製)0.1部を溶解したキシレン溶液2.0部を添加して溶解させた。
 次いで、上記溶液を、ゼータプラス(登録商標)フィルター30H(孔径0.5~1μm、キュノ社製)にて濾過し、更に別の金属ファイバー製フィルター(孔径0.4μm、ニチダイ社製)にて順次濾過して微小な固形分を除去した後、円筒型濃縮乾燥器(日立製作所社製)を用いて、温度260℃、圧力0.001MPa以下で、溶液から、溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去し、濃縮乾燥器に直結したダイから溶融状態でストランド状に押し出し、冷却後、ペレタイザーでカットしてブロック共重合体水素化物[2]-1のペレット93部を作成した。
 得られたブロック共重合体水素化物[2]-1の重量平均分子量(Mw)は51,100、分子量分布(Mw/Mn)は1.10、水素化率はほぼ100%、wA:wB=50:50であった。
・アルコキシシリル基を有するブロック共重合体水素化物[3]-1の合成)
 得られたブロック共重合体水素化物[2]-1のペレット100部に対してビニルトリメトキシシラン2.0部、及び2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(製品名「パーヘキサ(登録商標) 25B」、日油社製)0.2部を添加した。この混合物を、二軸押出機を用いて、樹脂温度200℃、滞留時間60~70秒で混練し、ストランド状に押出し、空冷した後、ペレタイザーによりカッティングし、アルコキシシリル基を有するアルコキシシリル基を有するブロック共重合体水素化物[3]-1のペレット95部を得た。
 得られたアルコキシシリル基を有するブロック共重合体水素化物[3]-1のペレット10部をシクロヘキサン100部に溶解した後、脱水したメタノール400部中に注いで、アルコキシシリル基を有するブロック共重合体水素化物[3]-1を凝固させ、濾別した後、25℃で真空乾燥してアルコキシシリル基を有するブロック共重合体水素化物[3]-1のクラム9.0部を単離した。
 このものの、FT-IRスペクトルで、1090cm-1にSi-OCH基、825cm-1と739cm-1にSi-CH基に由来する新たな吸収帯が、ビニルトリメトキシシランのそれらの1075cm-1、808cm-1及び766cm-1と異なる位置に観察された。
 また、H-NMRスペクトル(重クロロホルム中)では3.6ppmにメトキシ基のプロトンに基づく吸収帯が観察され、ピーク面積比からブロック共重合体水素化物[2]-1の100部に対して、ビニルトリメトキシシラン1.8部が結合したことが確認された。
[参考例4]
(アルコキシシリル基を有するブロック共重合体水素化物[3]-2)
・ブロック共重合体水素化物[2]-2の合成
 重合段階で、スチレン20.0部、n-ブチルリチウム(15%シクロヘキサン溶液)0.84部、イソプレン60.0部及びスチレン20.0部をこの順に反応系に添加して重合する以外は、参考例3と同様にして、ブロック共重合体水素化物[2]-2のペレット92部を得た。
 得られたブロック共重合体水素化物[2]-2の重量平均分子量(Mw)は52,000、分子量分布(Mw/Mn)は1.12、水素化率はほぼ100%、wA:wB=40:60であった。
・アルコキシシリル基を有するブロック共重合体水素化物[3]-2の合成
 参考例3と同様にして、ブロック共重合体水素化物[2]-2のペレット100部に、ビニルトリメトキシシラン2.0部、及び2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン0.2部を添加し、参考例3と同様にして、アルコキシシリル基を有するアルコキシシリル基を有するブロック共重合体水素化物[3]-2のペレット94部を得た。
 得られたペレットを、参考例3と同様にして分析したところ、ブロック共重合体水素化物[2]-2の100部に対してビニルトリメトキシシラン1.8部が結合したことが確認された。
[参考例5]
(アルコキシシリル基を有するブロック共重合体水素化物[3]-3)
・ブロック共重合体水素化物[2]-3の合成
 重合段階で、スチレン10.0部、n-ブチルリチウム(15%シクロヘキサン溶液)0.80部、イソプレン80.0部、及びスチレン10.0部をこの順に反応系に添加して重合する以外は、参考例3と同様にして、ブロック共重合体水素化物[2]-3のペレット89部を得た。
 得られたブロック共重合体水素化物[2]-3の重量平均分子量(Mw)は53,100、分子量分布(Mw/Mn)は1.11、水素化率はほぼ100%、wA:wB=20:80であった。
・アルコキシシリル基を有するブロック共重合体水素化物[3]-3の合成
 参考例3と同様にして、ブロック共重合体水素化物[2]-3のペレット100部に、ビニルトリメトキシシラン2.0部、及び2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン0.2部を添加し、参考例3と同様にして、アルコキシシリル基を有するアルコキシシリル基を有するブロック共重合体水素化物[3]-3のペレット85部を得た。
 得られたペレットを、参考例3と同様にして分析したところ、ブロック共重合体水素化物[2]-3の100部に対してビニルトリメトキシシラン1.8部が結合したことが確認された。
[参考例6]
(イソプレン重合体水素化物[4]-3)
 充分に窒素置換された、攪拌装置を備えた反応器に、脱水シクロヘキサン400部、脱水イソプレン25.0部、n-ジブチルエーテル7.5部を入れ、60℃で攪拌しながらn-ブチルリチウムの15%シクロヘキサン溶液20.0部を加えて重合を開始した。さらに、60℃で30分撹拌した。
 次に、脱水イソプレン75.0部を3回に分けて30分おきに加え、その後60分攪拌した。この時点で重合転化率はほぼ100%であった。
 ここでイソプロピルアルコール3.0部を加えて反応を停止した。
 得られたポリイソプレンの数平均分子量(Mn)は1,900、分子量分布(Mw/Mn)は1.04であった。
 次に、上記重合体溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として珪藻土担持型ニッケル触媒(製品名「E22U」、ニッケル担持量60%、日揮触媒化成社製)1.5部、及び脱水シクロヘキサン50部を添加して混合した。反応器内部を水素ガスで置換し、更に溶液を攪拌しながら水素を供給し、温度160℃、圧力4.5MPaにて4時間水素化反応を行った。
 水素化反応後のイソプレン重合体水素化物[4]-3の数平均分子量(Mn)は1,900、分子量分布(Mw/Mn)は1.04であった。
 水素化反応終了後、反応溶液を濾過して水素化触媒を除去した後、フェノ-ル系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](製品名「イルガノックス(登録商標)1010」、BASF社製)0.1部を溶解したキシレン溶液2.0部を添加して溶解した。
 次いで、上記溶液を、ゼータプラス(登録商標)フィルター30H(孔径0.5~1μm、キュノ社製)にて濾過して微小な固形分を除去した。この濾液を、減圧下で50℃に加温し、シクロヘキサン200部を留去させ、濃縮した。この濃縮した溶液にイソプロピルアルコール500部を加え、水素化ポリイソプレンを粘稠な液状体として分離した。上澄み液を除去した後、120℃、減圧下で24時間保持して揮発成分を除去し、水素化ポリイソプレン76部を得た。
 得られたイソプレン重合体水素化物[4]-3の数平均分子量(Mn)は2,000、分子量分布(Mw/Mn)は1.03、ヨウ素価は0.2であった。
[参考例7]
(イソプレン重合体水素化物[4]-4)
 参考例6において、水素化反応の時間を2.5時間とする以外は、参考例6と同様にして、水素化ポリイソプレン70部を得た。
 得られたイソプレン重合体水素化物[4]-4の数平均分子量(Mn)は2,100、分子量分布(Mw/Mn)は1.04、ヨウ素価は1.3であった。
[参考例8]
(イソプレン重合体水素化物[4]-5)
 参考例6において、水素化触媒の使用量を1.0部とする以外は、参考例6と同様にして、イソプレン重合体水素化物[4]-5を67部得た。
 得られたイソプレン重合体水素化物[4]-5の数平均分子量(Mn)は2,100、分子量分布(Mw/Mn)は1.04、ヨウ素価は2.5であった。
[実施例5]
(アルコキシシリル基を有するブロック共重合体水素化物[3]-1にイソブテン重合体水素化物[4]-1を配合してなる樹脂組成物[5]-1の作成)
 参考例3で得られたアルコキシシリル基を有するブロック共重合体水素化物[3]-1のペレット100部に紫外線吸収剤である2-(3,5-ジクミル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール(Tinuvin(登録商標) 234、BASFジャパン社製)0.4部を添加し、均等に混合した後、液状物を添加できるサイドフィーダーを備えた二軸押出機(製品名「TEM37BS」、東芝機械社製)を用いて、樹脂温度190℃で押し出した。
 一方、サイドフィーダーから、イソブテン重合体水素化物[4]-1(製品名「パールリーム(登録商標) 24」、ヨウ素価:0.5、日油社製)(数平均分子量:2,200)を、アルコキシシリル基を有するブロック共重合体水素化物[3]-1の100部に対して20部の割合で連続的に添加して、ストランド状に押出し、空冷した後、ペレタイザーによりカッティングして、アルコキシシリル基を有するブロック共重合体水素化物[3]-1にイソブテン重合体水素化物[4]-1を配合してなる樹脂組成物[5]-1のペレット113部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5]-1のペレットを、40mmφのスクリューを備えた押出し機を有するTダイ式フィルム成形機(Tダイ幅600mm)及び梨地パターンのエンボスロールを備えたシート引取機を使用し、溶融樹脂温度190℃、Tダイ温度190℃、ロール温度50℃の成形条件にて、厚さ400μm、幅450mmのシート[6]-1を押出し成形した。得られたシートはエンボス形状が転写されており、ロールに巻き取り回収した。
 得られた押出しシート[6]-1について、前記(8)ガラス板との接着性、(9)耐久性、(10)耐光性、(11)光透過性、(12)耐熱性、(13)割れ時の飛散防止性の評価を行った。
 これらの評価結果をまとめて下記表3に示す。
[実施例6]
(樹脂組成物[5]-3の作成)
 実施例5において、イソブテン重合体水素化物[4]-1に換えて、参考例6で作成したイソプレン重合体水素化物[4]-3を、アルコキシシリル基を有するブロック共重合体水素化物[3]-1の100部に対して20部の割合で配合する以外は、実施例5と同様にして、樹脂組成物[5]-3のペレット111部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5]-3のペレットを使用する以外は、実施例5と同様にして、厚さ400μm、幅450mmのシート[6]-3を押出し成形した。
 得られた押出しシート[6]-3について、実施例5と同様にして、前記(8)ガラス板との接着性、(9)耐久性、(10)耐光性、(11)光透過性、(12)耐熱性、(13)割れ時の飛散防止性の評価を行った。
 これらの評価結果をまとめて下記表3に示す。
[実施例7]
(樹脂組成物[5]-4の作成)
 実施例5において、イソブテン重合体水素化物[4]-1に換えて、参考例7で作成したイソプレン重合体水素化物[4]-4を、アルコキシシリル基を有するブロック共重合体水素化物[3]-1の100部に対して20部の割合で配合する以外は、実施例5と同様にして、樹脂組成物[5]-4のペレット108部を得た。
(押出しフィルム化)
 実施例5において、得られた樹脂組成物[5]-4のペレットを使用する以外は、実施例5と同様にして、厚さ400μm、幅450mmのシート[6]-4を押出し成形した。
 得られた押出しシート[6]-4について、実施例5と同様にして、前記(8)ガラス板との接着性、(9)耐久性、(10)耐光性、(11)光透過性、(12)耐熱性、(13)割れ時の飛散防止性の評価を行った。
 これらの評価結果をまとめて下記表3に示す。
[比較例4]
(樹脂組成物[5]-6の作成)
 実施例5において、イソブテン重合体水素化物[4]-1を配合しないこと、及び、二軸押出し機での樹脂温度を210℃とする以外は、実施例5と同様にして、樹脂組成物[5]-6のペレット95部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5]-6のペレットを使用し、溶融樹脂温度210℃、Tダイ温度210℃、ロール温度65℃とする以外は、実施例5と同様にして、厚さ400μm、幅450mmのシート[6]-6を押出し成形した。
 得られた押出しシート[6]-6について、実施例5と同様にして、前記(8)ガラス板との接着性、(9)耐久性、(10)耐光性、(11)光透過性、(12)耐熱性、(13)割れ時の飛散防止性の評価を行った。
 これらの評価結果をまとめて下記表3に示す。
[実施例8]
(樹脂組成物[5]-7の作成)
 実施例5において、アルコキシシリル基を有するブロック共重合体水素化物[3]-1に換えて、参考例4で得られたアルコキシシリル基を有するブロック共重合体水素化物[3]-2のペレットを使用し、実施例5で使用したのと同じイソブテン重合体水素化物[4]-1を、アルコキシシリル基を有するブロック共重合体水素化物[3]-2の100部に対して10部の割合で配合する以外は、実施例5と同様にして、樹脂組成物[5]-7のペレット103部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5]-7のペレットを使用し、実施例5と同様にして、厚さ400μm、幅450mmのシート[6]-7を押出し成形した。
 得られた押出しシート[6]-7について、実施例5と同様にして、前記(8)ガラス板との接着性、(9)耐久性、(10)耐光性、(11)光透過性、(12)耐熱性、(13)割れ時の飛散防止性の評価を行った。
 これらの評価結果をまとめて下記表3に示す。
[実施例9]
(樹脂組成物[5]-2の作成)
 実施例5において、イソブテン重合体水素化物[4]-1に換えて、水素化されていないイソブテン重合体[4]-2(製品名「日石ポリブテンHV-300」、JX日鉱日石エネルギー社製)(ヨウ素価:17.7、数平均分子量:1,400)を、アルコキシシリル基を有するブロック共重合体水素化物[3]-1の100部に対して15部の割合で配合する以外は、実施例5と同様にして、樹脂組成物[5]-2のペレット108部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5]-2のペレットを使用する以外は、実施例5と同様にして、厚さ400μm、幅450mmのシート[6]-2を押出し成形した。
 得られた押出しシート[6]-2について、実施例5と同様にして、前記(8)ガラス板との接着性、(9)耐久性、(10)耐光性、(11)光透過性、(12)耐熱性、(13)割れ時の飛散防止性の評価を行った。
 これらの評価結果をまとめて下記表3に示す。
[実施例10]
(樹脂組成物[5]-5の作成)
 実施例5において、イソブテン重合体水素化物[4]-1に換えて、参考例8で作成したイソプレン重合体水素化物[4]-5を、アルコキシシリル基を有するブロック共重合体水素化物[3]-1の100部に対して20部の割合で配合する以外は、実施例5と同様にして、樹脂組成物[5]-5のペレット112部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5]-5のペレットを使用する以外は、実施例5と同様にして、厚さ400μm、幅450mmのシート[6]-5を押出し成形した。
 得られた押出しシート[6]-5について、実施例5と同様にして、前記(8)ガラス板との接着性、(9)耐久性、(10)耐光性、(11)光透過性、(12)耐熱性、(13)割れ時の飛散防止性の評価を行った。
 これらの評価結果をまとめて下記表3に示す。
[比較例5]
(樹脂組成物[5]-8の作成)
 実施例5において、イソブテン重合体水素化物[4]-1を配合しないこと、及び、二軸押出し機での樹脂温度を200℃とする以外は、実施例5と同様にして、樹脂組成物[5]-8のペレット93部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5]-8のペレットを使用し、溶融樹脂温度200℃、Tダイ温度200℃、ロール温度60℃とする以外は、実施例5と同様にして、厚さ400μm、幅450mmのシート[6]-8を押出し成形した。
 得られた押出しシート[6]-8について、実施例5と同様にして、前記(8)ガラス板との接着性、(9)耐久性、(10)耐光性、(11)光透過性、(12)耐熱性、(13)割れ時の飛散防止性の評価を行った。
 これらの評価結果をまとめて下記表3に示す。
[比較例6]
(樹脂組成物[5]-9の作成)
 実施例5において、イソブテン重合体水素化物[4]-1を配合しないこと、及び、二軸押出し機での樹脂温度を190℃とする以外は、実施例5と同様にして、樹脂組成物[5]-9のペレット82部を得た。
(押出しフィルム化)
 得られた樹脂組成物[5]-9のペレットを使用し、溶融樹脂温度190℃、Tダイ温度190℃、ロール温度30℃とする以外は、実施例5と同様にして、厚さ400μm、幅450mmのシート[6]-9を押出し成形した。シートはブロッキング防止用のPETフィルムを重ねて、ロールに巻き取り回収した。
 得られた押出しシート[6]-9について、実施例5と同様にして、前記(8)ガラス板との接着性、(9)耐久性、(10)耐光性、(11)光透過性、(12)耐熱性、(13)割れ時の飛散防止性の評価を行った。
 これらの評価結果をまとめて下記表3に示す。
 なお、下記表2に、実施例5~10、比較例4~6で使用した、アルコキシシリル基が導入されてなるブロック共重合体水素化物[3]、炭化水素系重合体[4]の種類と使用量をまとめて示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3から以下のことがわかる。
 アルコキシシリル基を有するブロック共重合体水素化物[3]に、炭化水素系重合体[4]を配合した場合(実施例5~10)、透明性、耐久性、耐熱性、低温でのガラス割れ時の飛散防止性を維持して、ガラスとの接着温度を下げることができる。
 さらに、炭化水素系重合体[4]として、オレフィン及び/又は共役ジエンの(共)重合体水素化物であって、ヨウ素価の値が2.0以下のものを用いた場合(実施例5~8)、上記特性に加えて耐光性にも優れる合わせガラスを得ることができる。
 一方、アルコキシシリル基を有するブロック共重合体水素化物[3]に、炭化水素系重合体[4]を配合しない場合(比較例4、5)は、120℃ではガラスと十分な接着ができず、耐久性、低温でのガラス割れ時の飛散防止性に劣る。
 120℃でガラスとの十分な接着力を得るために、芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]の割合を少なくした場合(比較例6)は、耐熱性が低下する。
 本発明の樹脂組成物及びそれからなる成形体は、太陽電池素子の封止やガラスの貼り合わせに有用である。
1・・・透明前面基板
2・・・太陽電池素子
3・・・封止材
4・・・タブ線
5・・・裏面保護シート

Claims (5)

  1.  芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B]とからなり、
    全重合体ブロック[A]のブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]のブロック共重合体全体に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)が30:70~65:35であるブロック共重合体[1]の、全不飽和結合の90%以上を水素化したブロック共重合体水素化物[2]に、アルコキシシリル基が導入されてなるアルコキシシリル基を有するブロック共重合体水素化物[3]、及び、
    前記アルコキシシリル基を有するブロック共重合体水素化物[3]100重量部に対して、数平均分子量300~5000の炭化水素系重合体[4]1~50重量部を配合してなる樹脂組成物。
  2.  前記炭化水素系重合体[4]が、ポリイソブチレン、ポリブテン、ポリ-4-メチルペンテン、ポリ-1-オクテン、エチレン・α-オレフィン共重合体及びこれらの水素化物、脂肪族系炭化水素樹脂およびその水素化物、脂環族炭化水素樹脂およびその水素化物、並びに、ポリイソプレンおよびその水素化物からなる群から選ばれる少なくとも一種である請求項1に記載の樹脂組成物。
  3.  前記炭化水素系重合体[4]が、オレフィン及び/又は共役ジエンの(共)重合体水素化物であって、ヨウ素価が2.0以下である、請求項1に記載の樹脂組成物。
  4.  請求項1に記載の樹脂組成物を成形してなる成形体。
  5.  シート状物である請求項4に記載の成形体。
PCT/JP2013/080651 2012-11-15 2013-11-13 樹脂組成物およびそれからなる成形体 WO2014077267A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014546999A JP6295962B2 (ja) 2012-11-15 2013-11-13 樹脂組成物およびそれからなる成形体
US14/443,115 US9493688B2 (en) 2012-11-15 2013-11-13 Resin composition and molded article comprising same
ES13855588.3T ES2673233T3 (es) 2012-11-15 2013-11-13 Composición de resina y artículo moldeado que comprende la misma
PL13855588T PL2921524T3 (pl) 2012-11-15 2013-11-13 Kompozycja żywicy i artykuł wytłoczony ją zawierający
CN201380059474.7A CN104797653B (zh) 2012-11-15 2013-11-13 树脂组合物以及由其形成的成型体
EP13855588.3A EP2921524B1 (en) 2012-11-15 2013-11-13 Resin composition and molded article comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-251506 2012-11-15
JP2012251506 2012-11-15
JP2012-279112 2012-12-21
JP2012279112 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014077267A1 true WO2014077267A1 (ja) 2014-05-22

Family

ID=50731178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080651 WO2014077267A1 (ja) 2012-11-15 2013-11-13 樹脂組成物およびそれからなる成形体

Country Status (8)

Country Link
US (1) US9493688B2 (ja)
EP (1) EP2921524B1 (ja)
JP (1) JP6295962B2 (ja)
CN (1) CN104797653B (ja)
ES (1) ES2673233T3 (ja)
PL (1) PL2921524T3 (ja)
TW (1) TWI625356B (ja)
WO (1) WO2014077267A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227395A (ja) * 2014-05-30 2015-12-17 綜研化学株式会社 粘着剤組成物及びその製造方法、ならびに、粘着剤層及びその製造方法
WO2016104740A1 (ja) * 2014-12-25 2016-06-30 日本ゼオン株式会社 ブロック共重合体水素化物および合わせガラス
JP2016180026A (ja) * 2015-03-23 2016-10-13 日本ゼオン株式会社 樹脂組成物及び複合成形体
KR20170069236A (ko) * 2014-10-15 2017-06-20 니폰 제온 가부시키가이샤 블록 공중합체 수소화물, 및 그로부터 이루어지는 연신 필름
WO2017159589A1 (ja) * 2016-03-18 2017-09-21 日本ゼオン株式会社 有機エレクトロニクスデバイス封止体の製造方法
JP2017171833A (ja) * 2016-03-25 2017-09-28 日本ゼオン株式会社 接着剤および複合接合体
JPWO2018003715A1 (ja) * 2016-06-30 2019-04-18 日本ゼオン株式会社 偏光板保護フィルム、偏光板及び表示装置
KR20200060378A (ko) * 2017-09-27 2020-05-29 니폰 제온 가부시키가이샤 광학 적층 필름 및 터치 패널
JP2021038286A (ja) * 2019-08-30 2021-03-11 日本ゼオン株式会社 樹脂組成物、成形体、接合体、および接合体の製造方法
JP2021037641A (ja) * 2019-08-30 2021-03-11 日本ゼオン株式会社 接合体の製造方法
WO2023189967A1 (ja) 2022-03-30 2023-10-05 日本ゼオン株式会社 識別媒体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076338A1 (ja) * 2014-11-10 2016-05-19 株式会社クラレ 合わせガラス用中間膜および合わせガラス
US10538063B2 (en) 2016-05-09 2020-01-21 Kuraray America, Inc. Multilayer interlayer and glass laminate
KR101936461B1 (ko) * 2016-07-29 2019-01-08 현대자동차주식회사 합판 유리용 수지 필름, 이를 포함하는 합판 유리 및 이를 포함하는 자동차
CN110062748B (zh) * 2016-12-22 2022-05-13 日本瑞翁株式会社 夹层玻璃
CN110418988B (zh) * 2017-03-30 2021-08-13 日本瑞翁株式会社 光学膜、光学膜的制造方法、偏振片及液晶显示装置
KR102520986B1 (ko) * 2017-08-30 2023-04-12 니폰 제온 가부시키가이샤 적층체 및 그 제조 방법

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196747A (en) 1981-05-29 1982-12-02 Bridgestone Corp Laminated glass
JPS58132032A (ja) * 1982-01-30 1983-08-06 Mitsubishi Petrochem Co Ltd 架橋性組成物の製造法およびその架橋体の製造法
JPS62218468A (ja) * 1986-02-28 1987-09-25 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ シ−ラント組成物
JPH04198046A (ja) 1990-11-29 1992-07-17 Tosoh Corp 合せガラス
WO1994021694A1 (en) 1993-03-15 1994-09-29 Exxon Chemical Patents Inc. Method for hydrogenating polymers and products therefrom
JPH06299125A (ja) 1993-04-14 1994-10-25 Du Pont Mitsui Polychem Co Ltd 太陽電池用接着シート
JPH0930847A (ja) 1995-05-17 1997-02-04 Bridgestone Corp 合わせガラス
JP2000091611A (ja) 1998-09-17 2000-03-31 Dainippon Printing Co Ltd 太陽電池のカバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
JP2000091610A (ja) 1998-09-17 2000-03-31 Dainippon Printing Co Ltd 太陽電池のカバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
JP2000106450A (ja) 1998-09-29 2000-04-11 Nippon Zeon Co Ltd 太陽電池モジュール用保護シートおよびモジュール
JP2001044481A (ja) 1999-08-04 2001-02-16 Dainippon Printing Co Ltd 太陽電池モジュ−ル用保護シ−トおよびそれを使用した太陽電池モジュ−ル
WO2008015984A1 (fr) 2006-07-31 2008-02-07 Mitsui Chemicals, Inc. Composition de résine thermoplastique pour scellement de cellule solaire, feuille pour scellement de cellule solaire et cellule solaire
WO2009151029A1 (ja) * 2008-06-09 2009-12-17 Jsr株式会社 封止材料およびそれを用いた太陽電池モジュール
WO2011096389A1 (ja) 2010-02-02 2011-08-11 日本ゼオン株式会社 太陽電池素子封止用樹脂組成物及び太陽電池モジュール
WO2012043708A1 (ja) 2010-09-29 2012-04-05 日本ゼオン株式会社 アルコキシシリル基を有するブロック共重合体水素化物及びその利用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777082B2 (en) * 1999-07-28 2004-08-17 The Dow Chemical Company Hydrogenated block copolymers having elasticity and articles made therefrom
US7056971B2 (en) * 2001-02-13 2006-06-06 Gls Corporation Essentially gas-impermeable thermoplastic elastomer
GB0319738D0 (en) * 2003-08-22 2003-09-24 Bp Chem Int Ltd Supported polymerisation catalysts
US20130244367A1 (en) 2010-09-29 2013-09-19 Zeon Corporation Hydrogenated block copolymer having alkoxysilyl group and use therefor

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196747A (en) 1981-05-29 1982-12-02 Bridgestone Corp Laminated glass
JPS58132032A (ja) * 1982-01-30 1983-08-06 Mitsubishi Petrochem Co Ltd 架橋性組成物の製造法およびその架橋体の製造法
JPS62218468A (ja) * 1986-02-28 1987-09-25 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ シ−ラント組成物
JPH04198046A (ja) 1990-11-29 1992-07-17 Tosoh Corp 合せガラス
WO1994021694A1 (en) 1993-03-15 1994-09-29 Exxon Chemical Patents Inc. Method for hydrogenating polymers and products therefrom
US5352744A (en) 1993-03-15 1994-10-04 University Of Minnesota Method for hydrogenating polymers and products therefrom
JPH06299125A (ja) 1993-04-14 1994-10-25 Du Pont Mitsui Polychem Co Ltd 太陽電池用接着シート
JPH0930847A (ja) 1995-05-17 1997-02-04 Bridgestone Corp 合わせガラス
JP2000091611A (ja) 1998-09-17 2000-03-31 Dainippon Printing Co Ltd 太陽電池のカバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
JP2000091610A (ja) 1998-09-17 2000-03-31 Dainippon Printing Co Ltd 太陽電池のカバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
JP2000106450A (ja) 1998-09-29 2000-04-11 Nippon Zeon Co Ltd 太陽電池モジュール用保護シートおよびモジュール
JP2001044481A (ja) 1999-08-04 2001-02-16 Dainippon Printing Co Ltd 太陽電池モジュ−ル用保護シ−トおよびそれを使用した太陽電池モジュ−ル
WO2008015984A1 (fr) 2006-07-31 2008-02-07 Mitsui Chemicals, Inc. Composition de résine thermoplastique pour scellement de cellule solaire, feuille pour scellement de cellule solaire et cellule solaire
US20100000600A1 (en) 2006-07-31 2010-01-07 Mitsui Chemicals, Inc. Thermoplastic resin composition for sealing solar cell, sheet for sealing solar cell and solar cell
WO2009151029A1 (ja) * 2008-06-09 2009-12-17 Jsr株式会社 封止材料およびそれを用いた太陽電池モジュール
WO2011096389A1 (ja) 2010-02-02 2011-08-11 日本ゼオン株式会社 太陽電池素子封止用樹脂組成物及び太陽電池モジュール
WO2012043708A1 (ja) 2010-09-29 2012-04-05 日本ゼオン株式会社 アルコキシシリル基を有するブロック共重合体水素化物及びその利用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2921524A4
YASUYUKI FUJISAKI, NIKKAKYO GEPPO, vol. 35, no. 10, 1982, pages 28

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227395A (ja) * 2014-05-30 2015-12-17 綜研化学株式会社 粘着剤組成物及びその製造方法、ならびに、粘着剤層及びその製造方法
KR20170069236A (ko) * 2014-10-15 2017-06-20 니폰 제온 가부시키가이샤 블록 공중합체 수소화물, 및 그로부터 이루어지는 연신 필름
KR102455285B1 (ko) 2014-10-15 2022-10-14 니폰 제온 가부시키가이샤 블록 공중합체 수소화물, 및 그로부터 이루어지는 연신 필름
WO2016104740A1 (ja) * 2014-12-25 2016-06-30 日本ゼオン株式会社 ブロック共重合体水素化物および合わせガラス
CN107001489A (zh) * 2014-12-25 2017-08-01 日本瑞翁株式会社 嵌段共聚物氢化物及夹层玻璃
JPWO2016104740A1 (ja) * 2014-12-25 2017-10-05 日本ゼオン株式会社 ブロック共重合体水素化物および合わせガラス
JP2016180026A (ja) * 2015-03-23 2016-10-13 日本ゼオン株式会社 樹脂組成物及び複合成形体
US10553818B2 (en) 2016-03-18 2020-02-04 Zeon Corporation Method for manufacturing organic electronic device sealing body
WO2017159589A1 (ja) * 2016-03-18 2017-09-21 日本ゼオン株式会社 有機エレクトロニクスデバイス封止体の製造方法
JPWO2017159589A1 (ja) * 2016-03-18 2019-01-24 日本ゼオン株式会社 有機エレクトロニクスデバイス封止体の製造方法
JP2017171833A (ja) * 2016-03-25 2017-09-28 日本ゼオン株式会社 接着剤および複合接合体
US20190162876A1 (en) * 2016-06-30 2019-05-30 Zeon Corporation Polarizing plate protective film, polarizing plate and display device
US10816697B2 (en) * 2016-06-30 2020-10-27 Zeon Corporation Polarizing plate protective film, polarizing plate and display device
JPWO2018003715A1 (ja) * 2016-06-30 2019-04-18 日本ゼオン株式会社 偏光板保護フィルム、偏光板及び表示装置
KR20200060378A (ko) * 2017-09-27 2020-05-29 니폰 제온 가부시키가이샤 광학 적층 필름 및 터치 패널
KR102514977B1 (ko) 2017-09-27 2023-03-27 니폰 제온 가부시키가이샤 광학 적층 필름 및 터치 패널
JP2021038286A (ja) * 2019-08-30 2021-03-11 日本ゼオン株式会社 樹脂組成物、成形体、接合体、および接合体の製造方法
JP2021037641A (ja) * 2019-08-30 2021-03-11 日本ゼオン株式会社 接合体の製造方法
JP7351145B2 (ja) 2019-08-30 2023-09-27 日本ゼオン株式会社 樹脂組成物、成形体、接合体、および接合体の製造方法
JP7443699B2 (ja) 2019-08-30 2024-03-06 日本ゼオン株式会社 接合体の製造方法
WO2023189967A1 (ja) 2022-03-30 2023-10-05 日本ゼオン株式会社 識別媒体

Also Published As

Publication number Publication date
TW201430039A (zh) 2014-08-01
CN104797653B (zh) 2017-08-25
EP2921524A1 (en) 2015-09-23
US9493688B2 (en) 2016-11-15
PL2921524T3 (pl) 2018-11-30
JP6295962B2 (ja) 2018-03-20
JPWO2014077267A1 (ja) 2017-01-05
EP2921524A4 (en) 2016-08-24
TWI625356B (zh) 2018-06-01
CN104797653A (zh) 2015-07-22
EP2921524B1 (en) 2018-03-28
US20150329750A1 (en) 2015-11-19
ES2673233T3 (es) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6295962B2 (ja) 樹脂組成物およびそれからなる成形体
CN108638614B (zh) 夹层玻璃的制造方法
EP2623526B1 (en) Hydrogenated block copolymer having alkoxysilyl group, and use therefor
US20170037157A1 (en) Hydrogenated block copolymer having alkoxysilyl group and use therefor
JP6287040B2 (ja) 合わせガラス
JP7249926B2 (ja) 合わせガラス
EP3546538A1 (en) Adhesive sheet and laminated glass
JP6465101B2 (ja) 透明粘着シート
JP2013132755A (ja) 多層シート及びその利用
JP2016204217A (ja) 複層ガラス
JP6229460B2 (ja) 薄膜ガラス積層体
CN111052354B (zh) 层叠体及其制造方法
JP2019172910A (ja) 樹脂組成物および合わせガラス
JP2018002763A (ja) アルコキシシリル基を有する変性ブロック共重合体水素化物及びその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014546999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14443115

Country of ref document: US

Ref document number: 2013855588

Country of ref document: EP