WO2014075649A1 - Bandförmiger chopper für einen teilchenstrahl - Google Patents

Bandförmiger chopper für einen teilchenstrahl Download PDF

Info

Publication number
WO2014075649A1
WO2014075649A1 PCT/DE2013/000533 DE2013000533W WO2014075649A1 WO 2014075649 A1 WO2014075649 A1 WO 2014075649A1 DE 2013000533 W DE2013000533 W DE 2013000533W WO 2014075649 A1 WO2014075649 A1 WO 2014075649A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle beam
control
chopper
drive source
band
Prior art date
Application number
PCT/DE2013/000533
Other languages
English (en)
French (fr)
Inventor
Alexander Ioffe
Peter Stronciwilk
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Priority to DE112013005055.2T priority Critical patent/DE112013005055A5/de
Priority to EP13801464.2A priority patent/EP2909840B1/de
Priority to US14/434,612 priority patent/US9330802B2/en
Priority to JP2015537141A priority patent/JP6261597B2/ja
Publication of WO2014075649A1 publication Critical patent/WO2014075649A1/de

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/043Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers changing time structure of beams by mechanical means, e.g. choppers, spinning filter wheels

Definitions

  • the invention relates to a chopper for a particle beam.
  • choppers are used with a control that have areas with different particle beam transmission. By moving the control through the particle beam, the particle beam alternately strikes higher and lower transmission regions and is modulated in this way.
  • choppers designed as wheels are known, which are rotated by the particle beam.
  • the peripheral speed at the edge of the chopper wheel specifies the frequency with which the particle beam can be modulated.
  • the disadvantage is a lot of space needed for the Chopperrad or for the guide element.
  • this space is tight enough to allow as many users as possible to get involved.
  • there is a great interest in modulating the beam as close as possible to this place of origin in particular at spallation sources or research reactors, which initially emit neutrons starting from their place of origin analogously to a point source in order to be able to use as many neutrons as possible during a given pulse duration ,
  • spallation sources or research reactors which initially emit neutrons starting from their place of origin analogously to a point source in order to be able to use as many neutrons as possible during a given pulse duration .
  • the closer the chopper is to the place of origin of the neutrons the less space is available.
  • a chopper for a particle beam comprises at least one flexible control element which is subdivided into at least two regions A and B, the region B having a smaller, in particular no, transparency for the particle beam than the region A, and at least one drive source for conveying the control element through the latter Particle beam that this time alternately hits the areas A and B.
  • control element is strip-shaped and frictionally abuts the outer circumference of at least one element displaceable by the drive source in rotation.
  • the formation of the control element as a band-shaped element of the chopper can be made substantially more space-saving than wheel or annular choppers according to the prior art.
  • the voluminous in comparison to the control drive source can be arranged spatially separated from the beam path by the tape itself transmits the power of the drive source.
  • the belt can be deflected by one or more rollers and the drive source can be placed far away from the beam path in a place where space is no longer scarce.
  • the tape can also be passed through a narrow opening in a wall in another room by the drive source is located. The rate at which the control is promoted by the particle beam can then be increased by increasing the circumference of the rotatable element.
  • the space savings entail that the user gains additional freedom in which direction the control element is conveyed by the particle beam. For example, if the particle beam does not have a square, but a rectangular transverse cut, so at the same linear conveying speed, the minimum achievable pulse duration can be shortened by the control element along the short side of the rectangular cross section is promoted by the particle beam. For this purpose, it is particularly advantageous if the control is flexible in itself (twistable), because it can then be promoted along a bent course.
  • the drive source is advantageously protected from potential radiation damage, which improves the durability of the chopper.
  • a neutron beam is modulated as a particle beam with the chopper, many materials that can serve to capture the neutron beam in region B are activated by the incident neutrons and in turn emit strong gamma radiation. This attacks organic molecules by breaking chemical bonds and stimulating the formation of free radicals.
  • the insulation of the windings in electric motors, which are often used as a driving source, contains organic molecules and is therefore permanently attacked by the gamma radiation, so that the motor finally fails due to a short circuit.
  • the control has only a very small mass in comparison to solid Chopperrä- ners and that by the non-positive engagement on the displaceable by the drive source in rotation element, a change or even reversal of the rotational speed of this element immediately passes through the control without having to overcome a large moment of inertia. Therefore, the conveying speed at which the control is moved by the particle beam can be varied.
  • the drive source may be operated at a different conveying speed than in the configuration of the control in which the particle beam fully strikes an area B.
  • the former conveying speed is then decisive for the pulse duration, within which the chopper is more permeable to the particle beam.
  • the latter conveying speed is decisive for the repetition rate, ie the duration between the pulses.
  • Both speeds can be selected independently of one another according to the needs arising from the specific application.
  • the rotational frequency of the control element could be varied in the prior art, it was not possible to change the revolution speed during a single revolution.
  • the chopper according to the invention can at least achieve the performance of the previous Radchopper, because of the lower moving mass tends to rather a better performance.
  • the chopper according to the invention it is also possible to respond more flexibly to a change in the beam cross section, in particular the beam height, than with conventional wheel choppers.
  • the beam height changes perpendicular to the conveying direction of the control element
  • the areas A and B would have to be redesigned in the same situation with regard to the peripheral speed dependent on the radial distance from the axis of rotation, so that the jet is closed or opened over its entire cross-sectional area for the same time.
  • the control is stretchable in the conveying direction. As a result, it can be kept constantly on mechanical tension, which improves the adhesion to the rotatable element.
  • the control need not be externally pressed against the rotatable element.
  • a coating which forms the areas B with a lower permeability to the particle beam can be applied to the outside of the control, which is not frictionally engaged, in partial areas. Both a pressing mechanism and the coating itself wear out quickly when the coating is repeatedly rolled between the Andrückmechanik and the rotatable element.
  • the stretchable control also has damping characteristics such that vibrations from the drive source are largely unable to propagate to the location where the beam is modulated.
  • Radchoppers are rigid systems and susceptible to vibrations.
  • a damping element is arranged in the frictional connection between the drive source and the control element, for example a torsion spring.
  • the damping element dissipates the energy of the vibrations originating from the drive source.
  • the torque at which the drive source via the rotatable element promotes the control, and the mass density of the control should be coordinated so that the running of the drive source is not affected.
  • the control has a mean mass density of less than 50 g per meter in length. The lighter the material, the lower the forces required to drive and change any direction of rapid movement. For example, if the tape is closed, there are inevitably reversal points along its length, at which even a uniform speed motion becomes an accelerated motion. As a result, both the control itself and the mechanics are claimed for their deflection at the turning point with forces.
  • a carbon fiber ribbon or a band made of a fiber composite material having a thickness of between 0.025 mm and 0.5 mm, preferably with a thickness of 0.1 mm or less, is suitable as a control element.
  • These materials are both light and stretchable in the conveying direction. They are very well transparent to a neutron beam as a particle beam, thus forming the area A.
  • Areas B are formed on the belt by applying a neutron absorbing material either as a layer on one or both sides of the belt or integrated into the belt.
  • Suitable neutron-absorbing materials are, for example, 10 B or Gd, which can be applied to the tape, for example embedded in a polymer, with a layer thickness of between 0.1 and 0.5 mm.
  • the control may also be a metallic band with openings through which particles can pass. The openings then form the areas A, while the metallic band itself forms the impermeable area B.
  • the control consists essentially (95%) of areas B which are neutron-impermeable and has only a few neutron windows (areas A) that are permeable to neutrons.
  • the range A for the particle beam is advantageously at least 75%, preferably at least 90%, very particularly preferably at least 95%, and ideally completely permeable.
  • the area B for the particle beam is advantageously at most 10%, preferably at most 1%, very particularly preferably at most 0.1% permeable and ideally completely impermeable.
  • control is a closed band. Then, the drive source can be operated uniformly and the particle beam can nevertheless be periodically modulated. In particular, it is not necessary to stop and reverse the movement again and again under high acceleration forces.
  • the control can be performed on a path (in a position) through the beam path and be guided on the way back around the beam path around.
  • the control is guided at least in two layers through the beam path of the particle beam and has in each case at least two areas A and two areas B. These regions are arranged relative to one another in such a way that at least part of the particle beam in at least one configuration of the control element that can be moved by the drive source passes through an area A in both layers. Then it is not necessary to guide the control on the way back around the beam path around. Rather, both paths can be kept in one plane. so that the tape does not have to be twisted. In this configuration, the entire particle beam advantageously passes through an area A in both layers.
  • the distance between the two layers in the beam direction is variable. This can be achieved, for example, by guiding both layers over separate pairs of rollers. By guiding the rollers of the second pair, over which the second layer is guided, closer together and at the same time away from the first layer in the beam direction, the distance between the two layers can be increased while the length of the control element remains the same. This can be used to allow only particles with a speed within a certain range to pass through the time of flight (speed filter).
  • the particle beam strikes a region B in the second position then it helps to form a permeable window for the particle beam only for the shortest possible time.
  • this configuration one-half of the beam cross-section is blocked by a region B in the first layer.
  • the second half of the beam cross section, which passes through a region A in the first layer, is blocked by a region B in the second layer. Then the pulse duration can be halved. This effect can be achieved not only with two layers of one and the same closed band, but also with two non-contiguous bands which are only synchronized in their movement.
  • the invention also relates to a method for operating a chopper according to the invention.
  • the drive source in the configuration of the control element in which at least part of the particle beam passes exclusively through regions A of the control, the drive source is operated at a different conveying speed than in the configuration of the control element in which the particle beam completely strikes a region B. This has the effect that the pulse duration and the repetition rate can be adjusted independently of each other.
  • Figure 1 embodiment of the chopper invention.
  • FIG. 2 generation of a neutron pulse with the chopper shown in FIG.
  • Figure 3 modulation of the feed rate of the control.
  • FIG. 1a shows an exemplary embodiment of a chopper according to the invention, in which the drive source and the element which can be set into rotation by rotation thereof are not shown for the sake of clarity, in a perspective schematic drawing.
  • the control element 1 is a closed, 0.1 mm thick band of carbon fiber, which is coated in the areas B1, B2 with 10 B as neutron-absorbing material. In areas A1, A2 it is uncoated; these areas serve as neutron windows.
  • the band runs in a plane and is thus guided in two layers through the beam path 2 of the neutron beam. The two layers move in different directions, which are indicated by arrows.
  • the regions A1, A2 are arranged relative to one another in such a way that there is a position of the band in which an area A1 and simultaneously in the second position an area A2 in the line of the beam path are in the first position. In this position, the chopper for the neutron beam 2 is permeable. If, on the other hand, all neutrons are absorbed either by a region B1 of the first layer or by a region B2 of the second layer of the strip, the chopper is impermeable to the neutron beam as a whole (closed).
  • the designation in which position an area is (A1 or A2 or B1 or B2) refers to the instantaneous state shown in FIG. 1a. Of course, the areas wander from one layer to another as the tape rotates.
  • Figure 1 b shows this embodiment in a further schematic drawing in plan view.
  • the control element 1 is stretched between two rollers 3 and 4, on the outer circumference of which it rests in each case in a force-fitting manner.
  • the roller 3 can be rotated by the drive source, which causes the belt to rotate.
  • the drive source is a DC motor that can drive the roller 3 in both directions of rotation.
  • the tape (control) is guided by further non-driven rollers 5 so that the two layers in which it is guided by the neutron beam 2, parallel to each other and are close to each other. If the neutrons are guided in evacuated neutron guides, then only a minimal gap between two neutron conductors is necessary for the installation of the chopper, which must pass through the neutron in air. In addition, the closer the two layers are to each other, the sharper the pulse width.
  • FIG. 1 c shows a further snapshot.
  • the roller 3 has rotated clockwise. Accordingly, the area A1 has moved to the right, while at the same time the area A2 has moved to the left.
  • the neutron beam 2 is still incident on the belt 1 at the same location with the same beam width w. He is already there in the first position on an impermeable area B1 and is absorbed, so that he no longer reaches the second position and certainly can not pass the chopper as a whole.
  • Figure 1 c shows the closed state of the chopper.
  • FIG. 2 shows schematically the generation of a neutron pulse with the chopper sketched in FIG.
  • the first layer of the tape has areas A1 which are transparent to the neutron beam and areas B1 which are opaque to the neutron beam.
  • the second layer of tape has areas A2 which are permeable to the neutron beam and areas B2 which are opaque to the neutron beam.
  • the beam hits entirely on an impermeable area B1 in the first layer of the strip and is therefore shaded (FIG. 2a).
  • the two layers of the tape move in opposite directions in the directions indicated by arrows.
  • any further movement of the band in the same direction will mean that the beam will no longer be completely shadowed, but a gap will be created between areas B1 and B2.
  • the part of the neutron beam which has been transmitted in the first position through an area A1 is not completely shaded by a region B2 in the second position, but also encounters a transmissive area A2 there (FIG. 2c).
  • the part of the neutron beam that has not been shaded in either of the two layers of the tape is allowed to pass through the chopper as a whole.
  • the neutron beam After a time w / (2 * v), where w is the beam width and v is the linear velocity of the belt, the neutron beam passes completely through first the transmissive region A1 in the first layer and then through the transmissive region A2 in the second layer therethrough. He is thus passed through the chopper in total undiminished. At this moment, the neutron pulse reaches its maximum intensity (FIG. 2d).
  • a pulse duration of about 3 ms can be realized at a repetition rate of 14 Hz.
  • T can be varied during operation by operating the drive source at a different speed in the closed state of the chopper than during a pulse. Typically, the shortest possible pulses are desired, so that the band runs much faster during a pulse than between the pulses. With wheel choppers or even Fermi choppers, pulse duration and repetition time T can not be set independently of each other to the same extent.
  • FIG. 3 shows a possible course of the linear velocity v of the band over time t.
  • the feed of the tape is between two different working speeds V! and v 2 alternates.
  • the belt moves at the speed Vi.
  • the band is accelerated in time before the start of a pulse at the maximum possible rate that it runs for the duration ⁇ of the pulse at the much higher speed v 2 .
  • is defined either over the half-width (FWHM) or over the time span during which a nonzero number of neutrons passes the chopper.
  • FWHM half-width
  • the tape is decelerated with the maximum possible delay until it again runs at the speed Vi.
  • the carbon fiber ribbon may not only be coated with 10 B or Gd as a neutron absorber, but also be impregnated with these materials in conjunction with a binder.
  • the neutron absorber (region B) is then less susceptible to damage than a coating that can flake off in the course of bending the belt, such as when passing through rollers. Should the band break or lose its coating, it is advantageously much easier to replace than a voluminous and heavy wheel chopper, so that less of the precious measuring time is required for the repair.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Particle Accelerators (AREA)

Abstract

Im Rahmen der Erfindung wurde ein Chopper für einen Teilchenstrahl (2) entwickelt. Dieser Chopper umfasst mindestens ein Steuerelement (1), das in mindestens zwei Bereiche A und B unterteilt ist, wobei der Bereich B eine geringere Transparenz für den Teilchenstrahl hat als der Bereich A, sowie mindestens eine Antriebsquelle ((3), (4)) zur derartigen Förderung des Steuerelements durch den Teilchenstrahl, dass dieser zeitlich abwechselnd auf die Bereiche A und B trifft. Erfindungsgemäß ist das Steuerelement bandförmig ausgebildet und liegt kraftschlüssig am Außenumfang mindestens eines durch die Antriebsquelle in Rotation versetzbaren Elements an. Es wurde erkannt, dass durch die Ausbildung des Steuerelements als bandförmiges Element der Chopper wesentlich platzsparender ausgestaltet werden kann als rad- oder ringförmige Chopper nach dem bisherigen Stand der Technik. Insbesondere kann die im Vergleich zum Steuerelement voluminöse Antriebsquelle räumlich vom Strahlengang getrennt angeordnet werden, indem das Band selbst die Kraft der Antriebsquelle überträgt.

Description

B e s c h r e i b u n g Bandförmiger Chopper für einen Teilchenstrahl
Die Erfindung betrifft einen Chopper für einen Teilchenstrahl. Stand der Technik
Bei der Nutzung von Teilchenstrahlen, etwa für Forschungszwecke, kommt es vielfach darauf an, den Strahl in räumlich und zeitlich begrenzte Pulse zu modulieren. Hierzu werden Chopper mit einem Steuerelement verwendet, die Bereiche mit unterschiedlicher Durchlässigkeit für den Teilchenstrahl aufweisen. Indem das Steuerelement durch den Teilchenstrahl bewegt wird, trifft der Teilchenstrahl abwechselnd auf Bereiche höherer und niedrigerer Durchlässigkeit und wird auf diese Weise moduliert.
Aus der DE 10 2004 002 326 A1 sind als Räder ausgebildete Chopper bekannt, die durch den Teilchenstrahl rotiert werden. Dabei gibt die Umfangsgeschwindigkeit am Rand des Chopperrades die Frequenz vor, mit der der Teilchenstrahl moduliert werden kann.
Aus der DE 10 2007 046 739 A1 ist eine Verfeinerung dieser Chopper bekannt, bei der ein kleines Steuerelement periodisch um ein ortsfestes Führungselement umläuft, das die Bahn des Steuerelements vorgibt. Dadurch muss zum Modulieren des Teilchenstrahls deutlich weniger Masse bewegt werden, was hohe mechanische Beanspruchung des Materials durch Fliehkräfte sowie unerwünschte Eigenschwingungen vermeidet.
Nachteilig wird für das Chopperrad bzw. für das Führungselement viel Platz benötigt. Gerade an wissenschaftlichen Großgeräten, die Teilchenstrahlen produzieren, ist dieser Platz jedoch knapp bemessen, um möglichst viele Nutzer zum Zuge kommen zu lassen. Gleichzeitig besteht insbesondere an Spallationsquellen oder Forschungsreaktoren, die Neutronen ausgehend von ihrem Entstehungsort zunächst analog einer Punktquelle in alle Richtungen emittieren, ein großes Interesse, den Strahl möglichst nah an diesem Entstehungsort zu modulieren, um während einer vorgegebenen Pulsdauer eine möglichst große Anzahl Neutronen nutzen zu können. Je näher sich aber der Chopper am Entstehungsort der Neutronen befindet, desto weniger Platz steht zur Verfügung.
Weiterhin können bei den bisherigen Choppern die Pulsdauer und Repetitionsrate nicht unabhängig voneinander variiert werden, da beide Größen an die Umlauffrequenz des Steuerelements gekoppelt sind. Aufgabe und Lösung
Es ist daher die Aufgabe der Erfindung, einen Chopper zur Verfügung zu stellen, der in unmittelbarer Nähe des Strahlengangs des zu modulierenden Teilchenstrahls weniger Platz beansprucht als Chopper nach dem bisherigen Stand der Technik. Es ist eine weitere Aufgabe der Erfindung, die Pulsdauer und die Repetitionsrate voneinander zu entkoppeln, damit beide Größen für die jeweilige Anwendung optimal gewählt werden können.
Diese Aufgabe wird erfindungsgemäß gelöst durch einen Chopper gemäß Hauptanspruch sowie durch ein Verfahren gemäß Nebenanspruch. Weitere vorteilhafte Ausgestaltungen ergeben sich aus den darauf rückbezogenen Unteransprüchen.
Gegenstand der Erfindung
Im Rahmen der Erfindung wurde ein Chopper für einen Teilchenstrahl entwickelt. Dieser Chopper umfasst mindestens ein biegsames Steuerelement, das in mindestens zwei Bereiche A und B unterteilt ist, wobei der Bereich B eine geringere, insbesondere keine, Transparenz für den Teilchenstrahl hat als der Bereich A, sowie mindestens eine Antriebsquelle zur derartigen Förderung des Steuerelements durch den Teilchenstrahl, dass dieser zeitlich abwechselnd auf die Bereiche A und B trifft.
Erfindungsgemäß ist das Steuerelement bandförmig ausgebildet und liegt kraftschlüssig am Außenumfang mindestens eines durch die Antriebsquelle in Rotation versetzbaren Elements an.
Es wurde erkannt, dass durch die Ausbildung des Steuerelements als bandförmiges Element der Chopper wesentlich platzsparender ausgestaltet werden kann als rad- oder ringförmige Chopper nach dem bisherigen Stand der Technik. Insbesondere kann die im Vergleich zum Steuerelement voluminöse Antriebsquelle räumlich vom Strahlengang getrennt angeordnet werden, indem das Band selbst die Kraft der Antriebsquelle überträgt. Beispielsweise kann das Band durch eine oder mehrere Rollen umgelenkt werden und die Antriebsquelle weit entfernt vom Strahlengang an einem Ort platziert werden, an dem der Platz nicht mehr knapp ist. Dabei kann das Band auch durch eine schmale Öffnung in einer Wand in einen anderen Raum geführt sein, indem sich die Antriebsquelle befindet. Die Geschwindigkeit, mit der das Steuerelement durch den Teilchenstrahl gefördert wird, kann dann gesteigert werden, indem der Umfang des in Rotation versetzbaren Elements vergrößert wird.
Die Platzersparnis bringt es mit sich, dass der Anwender eine zusätzliche Freiheit dahingehend erlangt, in welcher Richtung das Steuerelement durch den Teilchenstrahl gefördert wird. Hat etwa der Teilchenstrahl keinen quadratischen, sondern einen rechteckigen Quer- schnitt, so kann bei gleicher linearer Fördergeschwindigkeit die minimal erzielbare Pulsdauer verkürzt werden, indem das Steuerelement entlang der kurzen Seite des rechteckigen Querschnitts durch den Teilchenstrahl gefördert wird. Hierfür ist besonders vorteilhaft, wenn das Steuerelement auch in sich biegsam (tordierbar) ist, weil es dann auch entlang eines abgeknickten Verlaufs gefördert werden kann.
Indem die Antriebsquelle nicht mehr zwangsläufig nah an dem Ort angeordnet sein muss, an dem der Teilchenstrahl auf den Chopper auftrifft, ist sie vorteilhaft vor potentiellen Strahlenschäden geschützt, was die Dauerhaltbarkeit des Choppers verbessert. Wird ein Neutronenstrahl als Teilchenstrahl mit dem Chopper moduliert, so werden viele Materialien, die im Bereich B zum Abfangen des Neutronenstrahls dienen können, durch die auftreffenden Neutronen aktiviert und senden ihrerseits eine starke Gammastrahlung aus. Diese greift organische Moleküle an, indem chemische Bindungen aufgebrochen und die Bildung freier Radikale angeregt wird. Die Isolierung der Wicklungen in Elektromotoren, die vielfach als Antriebsquelle dienen, enthält organische Moleküle und wird somit auf die Dauer durch die Gammastrahlung angegriffen, so dass der Motor schließlich durch Kurzschluss versagt.
Es wurde weiterhin erkannt, dass das Steuerelement im Vergleich zu massiven Chopperrä- dern nur eine sehr geringe Masse hat und dass durch das kraftschlüssige Anliegen an dem durch die Antriebsquelle in Rotation versetzbaren Element eine Änderung oder gar Umkehr der Rotationsgeschwindigkeit dieses Elements sofort auf das Steuerelement durchgreift, ohne dass hierzu ein großes Trägheitsmoment überwunden werden muss. Daher kann die Fördergeschwindigkeit, mit der das Steuerelement durch den Teilchenstrahl bewegt wird, variiert werden. Insbesondere kann die Antriebsquelle in der Konfiguration des Steuerelements, in der mindestens ein Teilbereich des Teilchenstrahls ausschließlich durch Bereiche A des Steuerelements hindurchtritt, mit einer anderen Fördergeschwindigkeit betrieben werden als in der Konfiguration des Steuerelements, in der der Teilchenstrahl vollständig auf einen Bereich B trifft. Die erstere Fördergeschwindigkeit ist dann für die Pulsdauer maßgeblich, innerhalb derer der Chopper durchlässiger für den Teilchenstrahl ist. Die letztere Fördergeschwindigkeit ist für die Repetitionsrate, also die Dauer zwischen den Pulsen, maßgeblich. Beide Geschwindigkeiten können unabhängig voneinander gewählt werden entsprechend dem Bedarf, der sich aus der konkreten Anwendung ergibt. Nach dem bisherigen Stand der Technik konnte zwar die Umlauffrequenz des Steuerelements variiert werden, es war jedoch nicht möglich, die Umlaufgeschwindigkeit während eines einzelnen Umlaufs zu ändern. Für jede der beiden Geschwindigkeiten kann der erfindungsgemäße Chopper mindestens die Leistung der bisherigen Radchopper erreichen, wegen der geringeren bewegten Masse tendenziell eher eine bessere Leistung. Mit dem erfindungsgemäßen Chopper kann weiterhin flexibler auf eine Änderung des Strahlquerschnitts, insbesondere der Strahlhöhe, reagiert werden als mit herkömmlichen Rad- choppern. Ändert sich beispielsweise die Strahlhöhe senkrecht zur Förderrichtung des Steuerelements, so ist lediglich das Steuerelement zu verbreitern, um den Strahl in der gleichen Weise wie zuvor zu modulieren. Bei einem Radchopper wären in der gleichen Situation mit Rücksicht auf die vom radialen Abstand zur Drehachse abhängige Umfangsgeschwindigkeit die Bereiche A und B dergestalt neu zu designen, dass der Strahl über seine gesamte Querschnittsfläche für die gleiche Zeit geschlossen bzw. geöffnet wird.
Vorteilhaft ist das Steuerelement in Förderrichtung dehnbar. Dadurch kann es ständig auf mechanischer Spannung gehalten werden, was den Kraftschluss zum in Rotation versetzbaren Element verbessert. Insbesondere muss das Steuerelement nicht extern an das in Rotation versetzbare Element angedrückt werden. Dadurch kann beispielsweise an der nicht kraftschlüssig anliegenden Außenseite des Steuerelements in Teilbereichen eine Beschich- tung aufgebracht sein, die die Bereiche B mit geringerer Durchlässigkeit für den Teilchenstrahl bildet. Sowohl eine Andrückmechanik als auch die Beschichtung selbst verschleißen schnell, wenn die Beschichtung immer wieder zwischen der Andrückmechanik und dem in Rotation versetzbaren Element gewalzt wird.
Weiterhin werden mit einem dehnbaren Steuerelement extreme mechanische Beanspruchungen des Steuerelements bei einer Änderung oder gar Umkehr der Fördergeschwindigkeit der Antriebsquelle vermieden. Das dehnbare Steuerelement besitzt außerdem Dämpfungseigenschaften, so dass von der Antriebsquelle ausgehende Schwingungen sich größtenteils nicht mehr bis zu dem Ort fortpflanzen können, an dem der Strahl moduliert wird. Radchopper dagegen sind starre Systeme und anfällig für Schwingungen.
Alternativ oder auch in Kombination hierzu ist in einer weiteren vorteilhaften Ausgestaltung der Erfindung im Kraftschluss zwischen der Antriebsquelle und dem Steuerelement ein Dämpfungselement angeordnet, beispielsweise eine Torsionsfeder. Das Dämpfungselement dissipiert die Energie der von der Antriebsquelle ausgehenden Schwingungen.
Das Drehmoment, mit dem die Antriebsquelle über das in Rotation versetzbare Element das Steuerelement fördert, und die Massenbelegung des Steuerelements sollten so aufeinander abgestimmt sein, dass der Lauf der Antriebsquelle nicht beeinträchtigt wird. Vorteilhaft weist das Steuerelement eine mittlere Massenbelegung von weniger als 50 g pro Meter Länge auf. Je leichter das Material ist, desto geringer sind die Kräfte, die für den Antrieb und für jede Richtungsänderung einer schnellen Bewegung erforderlich sind. Ist das Band beispielsweise geschlossen, gibt es entlang seiner Länge zwangsläufig Umkehrpunkte, an denen auch eine Bewegung mit gleichförmiger Geschwindigkeit zu einer beschleunigten Bewegung wird. Dadurch werden sowohl das Steuerelement selbst als auch die Mechanik für seine Umlen- kung am Umkehrpunkt mit Kräften beansprucht.
Insbesondere ist ein Kohlefaserband oder ein Band aus einem Faserverbundmaterial mit einer Dicke zwischen 0,025 mm und 0,5 mm, bevorzugt mit einer Dicke von 0,1 mm oder weniger, als Steuerelement geeignet. Diese Materialien sind sowohl leicht als auch in Förderrichtung dehnbar. Sie sind für einen Neutronenstrahl als Teilchenstrahl sehr gut durchlässig, bilden also den Bereich A. Bereiche B werden auf dem Band gebildet, indem ein neutronenabsorbierendes Material entweder als Schicht ein- oder beidseitig auf das Band aufgebracht oder in das Band integriert wird. Als neutronenabsorbierende Materialien sind beispielsweise 10B oder Gd geeignet, die, beispielsweise eingebettet in ein Polymer, mit einer Schichtdicke zwischen 0,1 und 0,5 mm auf das Band aufgebracht werden können. Das Steuerelement kann aber auch ein metallisches Band mit Öffnungen sein, durch die Teilchen hindurchtreten können. Die Öffnungen bilden dann die Bereiche A, während das metallische Band selbst den undurchlässigen Bereich B bildet. Typischerweise besteht das Steuerelement im Wesentlichen (zu 95 %) aus Bereichen B, die für Neutronen undurchlässig sind, und hat nur einige wenige Neutronenfenster (Bereiche A), die für Neutronen durchlässig sind.
Vorteilhaft ist der Bereich A für den Teilchenstrahl zu mindestens 75 %, bevorzugt zu mindestens 90 %, ganz besonders bevorzugt zu mindestens 95 % und idealerweise vollständig durchlässig. Vorteilhaft ist der Bereich B für den Teilchenstrahl zu höchstens 10 %, bevorzugt zu höchstens 1 %, ganz besonders bevorzugt zu höchstens 0,1 % durchlässig und idealerweise vollständig undurchlässig.
In einer besonders vorteilhaften Ausgestaltung der Erfindung ist das Steuerelement ein geschlossenes Band. Dann kann die Antriebsquelle gleichförmig betrieben und der Teilchenstrahl dennoch periodisch moduliert werden. Insbesondere ist es nicht erforderlich, immer wieder unter hohen Beschleunigungskräften die Bewegung zu stoppen und umzukehren.
Dabei kann das Steuerelement auf einem Weg (in einer Lage) durch den Strahlengang geführt sein und auf dem Rückweg um den Strahlengang herum geführt sein. In einer besonders vorteilhaften Ausgestaltung der Erfindung ist jedoch das Steuerelement mindestens in zwei Lagen durch den Strahlengang des Teilchenstrahls geführt und weist jeweils mindestens zwei Bereiche A und zwei Bereiche B auf. Diese Bereiche sind zueinander dergestalt angeordnet, dass zumindest ein Teil des Teilchenstrahls in mindestens einer von der Antriebsquelle anfahrbaren Konfiguration des Steuerelements in beiden Lagen durch je einen Bereich A hindurchtritt. Dann ist es nicht erforderlich, das Steuerelement auf dem Rückweg um den Strahlengang herum zu führen. Vielmehr können beide Wege in einer Ebene verlau- fen, so dass das Band nicht in sich verdreht werden muss. Vorteilhaft tritt in dieser Konfiguration der gesamte Teilchenstrahl in beiden Lagen durch je einen Bereich A hindurch.
Vorteilhaft ist der Abstand der beiden Lagen in der Strahlrichtung veränderbar. Dies lässt sich beispielsweise erreichen, indem beide Lagen über separate Rollenpaare geführt werden. Indem die Rollen des zweiten Paars, über das die zweite Lage geführt wird, näher zusammen und gleichzeitig in Strahlrichtung von der ersten Lage weg geführt werden, lässt sich bei gleich gebliebener Länge des Steuerelements der Abstand beider Lagen vergrößern. Dies kann genutzt werden, um über die Flugzeit nur Teilchen mit einer Geschwindigkeit innerhalb eines bestimmten Bereichs passieren zu lassen (Geschwindigkeitsfilter).
I n einer besonders vorteilhaften Ausgestaltung der Erfindung trifft der Teilchenstrahl in mindestens einer von der Antriebsquelle anfahrbaren Konfiguration des Steuerelements in dem Umfang, in dem er in der ersten Lage durch einen Bereich A hindurchtritt, in der zweiten Lage auf einen Bereich B. Beide Lagen tragen dann dazu bei, dass sich in der Summe nur für die kürzestmögliche Zeit ein durchlässiges Fenster für den Teilchenstrahl bildet. Idealerweise wird in dieser Konfiguration eine Hälfte des Strahlquerschnitts durch einen Bereich B in der ersten Lage blockiert. Die zweite Hälfte des Strahlquerschnitts, die in der ersten Lage durch einen Bereich A hindurchtritt, wird in der zweiten Lage durch einen Bereich B blockiert. Dann lässt sich die Pulsdauer halbieren. Dieser Effekt lässt sich nicht nur mit zwei Lagen ein und desselben geschlossenen Bandes erzielen, sondern auch mit zwei nicht zusammenhängenden Bändern, die lediglich in ihrer Bewegung synchronisiert sind.
Nach dem zuvor Gesagten bezieht sich die Erfindung auch auf ein Verfahren zum Betreiben eines erfindungsgemäßen Choppers. Dabei wird die Antriebsquelle in der Konfiguration des Steuerelements, in der mindestens ein Teilbereich des Teilchenstrahls ausschließlich durch Bereiche A des Steuerelements hindurchtritt, mit einer anderen Fördergeschwindigkeit betrieben als in der Konfiguration des Steuerelements, in der der Teilchenstrahl vollständig auf einen Bereich B trifft. Dies hat die Wirkung, dass die Pulsdauer und die Repetitionsrate unabhängig voneinander eingestellt werden können.
Spezieller Beschreibunqsteil
Nachfolgend wird der Gegenstand der Erfindung anhand von Figuren erläutert, ohne dass der Gegenstand der Erfindung hierdurch beschränkt wird. Es ist gezeigt: Figur 1 : Ausführungsbeispiel des erfindungsgemäßen Choppers.
Figur 2: Erzeugung eines Neutronenpulses mit dem in Figur 1 gezeigten Chopper.
Figur 3: Modulation der Vorschubgeschwindigkeit des Steuerelements.
Figur 1a zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Choppers, bei dem die Antriebsquelle und das durch sie in Rotation versetzbare Element der Übersichtlichkeit halber nicht eingezeichnet sind, in perspektivischer Schemazeichnung. Das Steuerelement 1 ist ein geschlossenes, 0,1 mm dickes Band aus Kohlefaser, das in den Bereichen B1 , B2 mit 10B als neutronenabsorbierendem Material beschichtet ist. In den Bereichen A1 , A2 ist es unbeschichtet; diese Bereiche dienen als Neutronenfenster. Das Band verläuft in einer Ebene und wird somit in zwei Lagen durch den Strahlengang 2 des Neutronenstrahls geführt. Dabei bewegen sich die beiden Lagen in unterschiedlichen Richtungen, die durch Pfeile angedeutet sind. Die Bereiche A1 , A2 sind dergestalt zueinander angeordnet, dass es eine Position des Bandes gibt, in der in der ersten Lage ein Bereich A1 und gleichzeitig in der zweiten Lage ein Bereich A2 in der Linie des Strahlengangs stehen. In dieser Position ist der Chopper für den Neutronenstrahl 2 durchlässig. Werden dagegen alle Neutronen entweder durch einen Bereich B1 der ersten Lage oder durch einen Bereich B2 der zweiten Lage des Bandes absorbiert, ist der Chopper für den Neutronenstrahl insgesamt undurchlässig (geschlossen). Die Bezeichnung, in welcher Lage sich ein Bereich befindet (A1 bzw. A2 oder B1 bzw. B2), bezieht sich auf den in Figur 1a dargestellten Momentanzustand. Selbstverständlich wandern die Bereiche von einer Lage zur anderen, wenn das Band umläuft.
Figur 1 b zeigt dieses Ausführungsbeispiel in einer weiteren Schemazeichnung in Aufsicht. Das Steuerelement 1 ist zwischen zwei Rollen 3 und 4 gespannt, an deren Außenumfang es jeweils kraftschlüssig anliegt. Dabei kann die Rolle 3 durch die Antriebsquelle in Rotation versetzt werden, was dazu führt, dass das Band umläuft. Die Antriebsquelle ist ein Gleichstrommotor, der die Rolle 3 in beiden Drehrichtungen antreiben kann. Das Band (Steuerelement) wird durch weitere nicht angetriebene Rollen 5 so geführt, dass die beiden Lagen, in denen es durch den Neutronenstrahl 2 geführt wird, parallel zueinander verlaufen und dicht beieinander liegen. Werden die Neutronen in evakuierten Neutronenleitern geführt, ist somit für den Einbau des Choppers nur ein minimaler Spalt zwischen zwei Neutronenleitern notwendig, den die Neutronen an Luft durchqueren müssen. Zudem ist die Pulsbreite um so schärfer definiert, je näher die beiden Lagen aneinander liegen.
In der in Figur 1b gezeigten Momentaufnahme befinden sich in der ersten Lage des Bandes zwei für Neutronen undurchlässige Bereiche B1 und ein für Neutronen durchlässiger Bereich A1 . In der zweiten Lage des Bandes befinden sich ebenfalls zwei für Neutronen undurchlässige Bereiche B2 und ein für Neutronen durchlässiger Bereich A2. Die Bereiche A1 und A2 liegen in Richtung des Neutronenstrahls 2 hintereinander, so dass der Neutronenstrahl jeweils durchgelassen wird und den Chopper insgesamt ungeschmälert passieren kann. Somit zeigt Figur 1 b den offenen Zustand des Choppers.
Figur 1 c zeigt eine weitere Momentaufnahme. Im Vergleich zu Figur 1 b hat sich die Rolle 3 im Uhrzeigersinn gedreht. Dementsprechend ist der Bereich A1 nach rechts gewandert, während gleichzeitig der Bereich A2 nach links gewandert ist. Gleichzeitig fällt der Neutronenstrahl 2 noch immer mit der gleichen Strahlbreite w an der gleichen Stelle auf das Band 1 ein. Er trifft dort nun bereits in der ersten Lage auf einen undurchlässigen Bereich B1 und wird absorbiert, so dass er die zweite Lage gar nicht mehr erreicht und erst recht den Chopper als Ganzes nicht passieren kann. Somit zeigt Figur 1 c den geschlossenen Zustand des Choppers.
Figur 2 zeigt schematisch die Erzeugung eines Neutronenpulses mit dem in Figur 1 skizzierten Chopper. Die erste Lage des Bandes hat Bereiche A1 , die für den Neutronenstrahl durchlässig sind, und Bereiche B1 , die für den Neutronenstrahl undurchlässig sind. Die zweite Lage des Bandes hat Bereiche A2, die für den Neutronenstrahl durchlässig sind, und Bereiche B2, die für den Neutronenstrahl undurchlässig sind. Im überwiegenden Anteil der Zeit trifft der Strahl zur Gänze auf einen undurchlässigen Bereich B1 in der ersten Lage des Bandes und wird somit abgeschattet (Figur 2a). Die beiden Lagen des Bandes bewegen sich gegenläufig zueinander in den Richtungen, die durch Pfeile angedeutet sind.
An dem Punkt, an dem der Chopper insgesamt gerade noch undurchlässig ist, wird genau eine Hälfte des Strahls durch den Bereich B1 in der ersten Lage abgeschattet. Die andere Hälfte des Strahls dringt zunächst noch bis zur zweiten Lage vor. Dort wird diese Hälfte durch den Bereich B2 abgeschattet, so dass insgesamt keine Neu-tronen den Chopper passieren (Figur 2b).
Jede weitere Bewegung des Bandes in der gleichen Richtung hat nun zur Folge, dass der Strahl nicht mehr vollständig abgeschattet wird, sondern zwischen den Bereichen B1 und B2 ein Spalt entsteht. Der Teil des Neutronenstrahls, der in der ersten Lage durch einen Bereich A1 durchgelassen wurde, wird in der zweiten Lage nicht vollständig durch einen Bereich B2 abgeschattet, sondern trifft auch dort auf einen durchlässigen Bereich A2 (Figur 2c). Der Teil des Neutronenstrahls, der in keiner der beiden Lagen des Bandes abgeschattet wurde, wird vom Chopper insgesamt durchgelassen.
Nach einer Zeit w/(2*v), worin w die Strahlbreite und v die lineare Geschwindigkeit des Bandes ist, tritt der Neutronenstrahl vollständig zunächst durch den durchlässigen Bereich A1 in der ersten Lage und anschließend durch den durchlässigen Bereich A2 in der zweiten Lage hindurch. Er wird somit vom Chopper insgesamt ungeschmälert durchgelassen. In diesem Moment erreicht der Neutronenpuls seine maximale Intensität (Figur 2d).
Die weitere Bewegung des Bandes führt nun dazu, dass in der ersten Lage des Bandes erneut ein Bereich B1 in die rechte Hälfte des Neutronenstrahls hineintritt, während gleichzeitig in der zweiten Lage des Bandes ein Bereich B2 in die linke Hälfte des Neutronenstrahls hineintritt. Nach einer weiteren Zeit w/(2*v) tritt die linke Hälfte des Neutronenstrahls in der ersten Lage des Bandes durch den Bereich A1 hindurch, trifft jedoch in der zweiten Lage auf den Bereich B2. Die rechte Hälfte des Neutronenstrahls trifft bereits in der ersten Lage auf den Bereich B1 und wird dort absorbiert. Insgesamt lässt der Chopper keine Neutronen mehr durch. Der Neutronenpuls ist zu Ende (Figur 2e).
Der Intensitätsverlauf während des Pulses ist in Figur 2f über der Zeit aufgetragen. Wenn als Pulsdauer die Zeit gewertet wird, in der überhaupt Neutronen den Chopper passieren, so ist die Pulsdauer x=w/v. Wird als Pulsdauer dagegen die Zeit gewertet, während der der Puls mindestens die Hälfte seiner Maximalintensität hat (füll width half maximum), so ist die Pulsdauer
Figure imgf000011_0001
Mit diesem Ausführungsbeispiel lässt sich eine Pulsdauer von etwa 3 ms bei einer Repetiti- onsrate von 14 Hz realisieren. Die Zeitspanne T zwischen zwei Pulsen ergibt sich zu T=l/v, worin I die Länge ist, um die das Band von einem Pulsbeginn gemäß Figur 2b bis zum nächsten derartigen Pulsbeginn weiterzubewegen ist. Diese Länge hängt von der Verteilung der Bereiche A und B auf dem Band ab. T lässt sich im laufenden Betrieb variieren, indem die Antriebsquelle im geschlossenen Zustand des Choppers mit einer anderen Geschwindigkeit betrieben wird als während eines Pulses. Typischerweise sind möglichst kurze Pulse gewünscht, so dass das Band während eines Pulses sehr viel schneller läuft als zwischen den Pulsen. Bei Radchoppern oder auch Fermi-Choppern lassen sich Pulsdauer und Repeti- tionszeit T nicht in diesem Maße unabhängig voneinander einstellen.
Figur 3 zeigt einen möglichen Verlauf der linearen Geschwindigkeit v des Bandes über der Zeit t. Der Vorschub des Bandes wird zwischen zwei verschiedenen Arbeitsgeschwindigkeiten V! und v2 alterniert. Zwischen zwei Pulsen bewegt sich das Band mit der Geschwindigkeit Vi . Das Band wird so rechtzeitig vor Beginn eines Pulses mit der maximal möglichen Rate beschleunigt, dass es für die Dauer τ des Pulses mit der deutlich höheren Geschwindigkeit v2 läuft. Dabei ist τ entweder über die Halbwertsbreite (FWHM) definiert oder über die Zeitspanne, während der überhaupt eine von Null verschiedene Zahl Neutronen den Chopper passiert. Nach Ablauf des Pulses wird das Band mit der maximal möglichen Verzögerung abgebremst, bis es wieder mit der Geschwindigkeit Vi läuft. Das Kohlefaserband kann nicht nur mit 10B oder Gd als Neutronenabsorber beschichtet, sondern auch mit diesen Materialien in Verbindung mit einem Bindemittel getränkt sein. Der Neutronenabsorber (Bereich B) ist dann bei Verbiegungen des Bandes, wie etwa beim Passieren von Rollen, weniger anfällig für Beschädigungen als eine Beschichtung, die auf die Dauer abblättern kann. Sollte das Band reißen oder seine Beschichtung verlieren, so ist es vorteilhaft deutlich einfacher auszutauschen als ein voluminöser und schwerer Radchopper, so dass weniger von der kostbaren Messzeit für die Reparatur in Anspruch genommen wird.

Claims

P a t e n t a n s p r ü c h e
1. Chopper für einen Teilchenstrahl, umfassend mindestens ein biegsames Steuerelement, das in mindestens zwei Bereiche A und B unterteilt ist, wobei der Bereich B eine geringere Transparenz für den Teilchenstrahl hat als der Bereich A, sowie mindestens eine Antriebsquelle zur derartigen Förderung des Steuerelements durch den Teilchenstrahl, dass dieser zeitlich abwechselnd auf die Bereiche A und B trifft,
dadurch gekennzeichnet, dass
das Steuerelement bandförmig ausgebildet ist und kraftschlüssig am Außenumfang mindestens eines durch die Antriebsquelle in Rotation versetzbaren Elements anliegt.
2. Chopper nach Anspruch 1 , dadurch gekennzeichnet, dass das Steuerelement in Förderrichtung dehnbar ist.
3. Chopper nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass im Kraft- schluss zwischen der Antriebsquelle und dem Steuerelement ein Dämpfungselement angeordnet ist.
4. Chopper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Steuerelement eine mittlere Massenbelegung von weniger als 50 g pro Meter Länge aufweist.
5. Chopper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Steuerelement ein geschlossenes Band ist.
6. Chopper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Steuerelement mindestens in zwei Lagen durch den Strahlengang des Teilchenstrahls geführt ist und jeweils mindestens zwei Bereiche A und zwei Bereiche B aufweist, wobei diese Bereiche zueinander dergestalt angeordnet sind, dass zumindest ein Teil des Teilchenstrahls in mindestens einer von der Antriebsquelle anfahrbaren Konfiguration des Steuerelements in beiden Lagen durch je einen Bereich A hindurchtritt.
7. Chopper nach Anspruch 6, dadurch gekennzeichnet, dass der Abstand der beiden Lagen in der Strahlrichtung veränderbar ist.
8. Chopper nach einem der Ansprüche 6 bis 7, dadurch gekennzeichnet, dass der Teilchenstrahl in mindestens einer von der Antriebsquelle anfahrbaren Konfiguration des Steuerelements in dem Umfang, in dem er in der ersten Lage durch einen Bereich A hindurchtritt, in der zweiten Lage auf einen Bereich B trifft.
9. Verfahren zum Betreiben eines Choppers nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Antriebsquelle in der Konfiguration des Steuerelements, in der mindestens ein Teilbereich des Teilchenstrahls ausschließlich durch Bereiche A des Steuerelements hindurchtritt, mit einer anderen Fördergeschwindigkeit betrieben wird als in der Konfiguration des Steuerelements, in der der Teilchenstrahl vollständig auf einen Bereich B trifft.
PCT/DE2013/000533 2012-10-20 2013-09-19 Bandförmiger chopper für einen teilchenstrahl WO2014075649A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112013005055.2T DE112013005055A5 (de) 2012-10-20 2013-09-19 Bandförmiger Chopper für einen Teilchenstrahl
EP13801464.2A EP2909840B1 (de) 2012-10-20 2013-09-19 Bandförmiger chopper für einen teilchenstrahl
US14/434,612 US9330802B2 (en) 2012-10-20 2013-09-19 Band-shaped chopper for a particle beam
JP2015537141A JP6261597B2 (ja) 2012-10-20 2013-09-19 ベルト形状の粒子ビーム用チョッパおよびその動作方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012020636.4 2012-10-20
DE102012020636.4A DE102012020636A1 (de) 2012-10-20 2012-10-20 Bandförmiger Chopper für einen Teilchenstrahl

Publications (1)

Publication Number Publication Date
WO2014075649A1 true WO2014075649A1 (de) 2014-05-22

Family

ID=49724428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2013/000533 WO2014075649A1 (de) 2012-10-20 2013-09-19 Bandförmiger chopper für einen teilchenstrahl

Country Status (5)

Country Link
US (1) US9330802B2 (de)
EP (1) EP2909840B1 (de)
JP (1) JP6261597B2 (de)
DE (2) DE102012020636A1 (de)
WO (1) WO2014075649A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365561A (en) * 1988-03-25 1994-11-15 Canon Kabushiki Kaisha Exposure control in an X-ray exposure apparatus
DE102004002326A1 (de) 2004-01-16 2005-08-04 Forschungszentrum Jülich GmbH Rotor
US20090103686A1 (en) * 2007-10-23 2009-04-23 American Science And Engineering, Inc. X-Ray Imaging with Continuously Variable Zoom and Lateral Relative Displacement of the Source
DE102007046739A1 (de) 2007-09-28 2009-07-23 Forschungszentrum Jülich GmbH Chopper für einen Teilchenstrahl
WO2011115923A1 (en) * 2010-03-14 2011-09-22 Rapiscan Systems, Inc. Beam forming apparatus

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2673297A (en) * 1949-06-13 1954-03-23 Phillips Petroleum Co Analyzing and control device
US2926253A (en) * 1954-12-22 1960-02-23 Distillers Co Yeast Ltd Radiation analysis
US3184679A (en) * 1961-10-17 1965-05-18 Texas Instruments Inc Multi-phase signal processor for light line optical correlator
JPS4527652Y1 (de) * 1966-12-29 1970-10-26
JPS545199A (en) * 1977-06-15 1979-01-16 Mitsubishi Heavy Ind Ltd High speed opening and clothing valve
US5533692A (en) * 1979-01-30 1996-07-09 Oerlikon-Contraves Ag Beamrider guidance system using digital phase modulation encoding
DE8436281U1 (de) * 1984-12-11 1986-04-10 Siemens AG, 1000 Berlin und 8000 München Primärstrahlenblende für Röntgenuntersuchungsgeräte
JP2744245B2 (ja) * 1988-03-25 1998-04-28 キヤノン株式会社 露光装置と露光方法
JPH0747095B2 (ja) * 1989-02-08 1995-05-24 富士電機株式会社 電気浸透式脱水機
US4969174A (en) * 1989-09-06 1990-11-06 General Electric Company Scanning mammography system with reduced scatter radiation
JPH0562885A (ja) * 1991-09-03 1993-03-12 Canon Inc Sor露光システム
JPH0743498A (ja) * 1993-07-30 1995-02-14 Seiko Seiki Co Ltd 中性子チョッパのコリメータおよびその製造方法
US5686722A (en) * 1996-02-28 1997-11-11 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Selective wavelength identification friend or foe (SWIFF)
JP4346320B2 (ja) * 2003-02-05 2009-10-21 大日本印刷株式会社 露光方法及び露光装置
JP4227065B2 (ja) * 2004-04-16 2009-02-18 株式会社神戸製鋼所 中性子ディスクチョッパ
DE202004011832U1 (de) * 2004-07-28 2004-11-04 Lambda Physik Ag Sperrelement mit synchronisierter Triggerung
JP2006264329A (ja) * 2005-02-28 2006-10-05 Toray Ind Inc 繊維強化プラスチック長尺シートおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365561A (en) * 1988-03-25 1994-11-15 Canon Kabushiki Kaisha Exposure control in an X-ray exposure apparatus
DE102004002326A1 (de) 2004-01-16 2005-08-04 Forschungszentrum Jülich GmbH Rotor
DE102007046739A1 (de) 2007-09-28 2009-07-23 Forschungszentrum Jülich GmbH Chopper für einen Teilchenstrahl
US20090103686A1 (en) * 2007-10-23 2009-04-23 American Science And Engineering, Inc. X-Ray Imaging with Continuously Variable Zoom and Lateral Relative Displacement of the Source
WO2011115923A1 (en) * 2010-03-14 2011-09-22 Rapiscan Systems, Inc. Beam forming apparatus

Also Published As

Publication number Publication date
DE112013005055A5 (de) 2015-07-02
US9330802B2 (en) 2016-05-03
EP2909840B1 (de) 2021-03-31
DE102012020636A1 (de) 2014-04-24
JP2015533414A (ja) 2015-11-24
EP2909840A1 (de) 2015-08-26
JP6261597B2 (ja) 2018-01-17
US20150279494A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
EP2241360B1 (de) Filterelement
DE102014017149A1 (de) Verfahren zur Herstellung von Lamellenpaketen und Anlage zur Durchführung des Verfahrens
DE2900516A1 (de) Vorrichtung zur erzeugung einer roentgenbremsstrahlung
EP0460485A1 (de) Getriebe zur Überführung einer rotatorischen in eine translatorische Bewegung
DE10154941C2 (de) Antriebsanordnung für das Webblatt einer Webmaschine
EP2909840B1 (de) Bandförmiger chopper für einen teilchenstrahl
EP2009219B1 (de) Rollo mit Spannvorrichtung sowie Mehrscheiben-Isolierglaselement mit einem solchen Rollo
EP0593961A1 (de) Optischer Strahlteiler, insbesondere für einen Laserstrahl
DE2040158B2 (de) Verfahren und seine Anwendung zur Erzielung eines geringen Intensitätsverlusts beim Austritt aus einem Elektronenbeschleuniger
DE2160297A1 (de) Verfahren und vorrichtung zum registerhaltigen querschneiden kontinuierlich fortbewegter etiketten-, folienbaender oder dgl. in flaschenausstattungsmaschinen
EP1923502B1 (de) Verfahren und Vorrichtung zum Plissieren eines textilen Flächengebildes
DE202012002333U1 (de) Antriebsvorrichtung für den Substrattransport in einer Vakuumbehandlungsanlage
AT513942B1 (de) Vorrichtung zur Abdeckung einer Sichtöffnung
DE4324938C2 (de) Schneid- und Schweißvorrichtung zum stumpfen Aneinanderschweißen der Enden von vor- und nachlaufenden Metallbändern sowie Verfahren zum Schneiden und Stumpfschweißen von Bandenden unter Verwendung der Schneid- und Schweißvorrichtung
DE2211597C3 (de) Einrichtung zum Freihalten des Strahlwegs und der unmittelbaren Umgebung des Strahlwegs eines Strahls einer Energiestrahl-Materialbearbeitungsmaschine von störender Materie
DE2120357C3 (de) Vorrichtung zur schrittweisen Fortschaltung eines Schaltrades zum Antrieb von Zeitmeß gerätea
EP2954141B1 (de) Elastisches beschattungstextil mit photovoltaikelementen und eine entsprechende mehrfachverglasung
DE1708164A1 (de) Verstellvorrichtung fuer Fenster,insbesondere solche von Kraftfahrzeugen
DE2029864A1 (de) Einrichtung zum Herstellen von Ver bindungsstellen ubereinanderhegender Bahnen, insoesondere Formularbahnen
DE102007041387A1 (de) Bremsvorrichtung für eine Cockpittür zum Bremsen im Dekompressionsfall
DE1916963A1 (de) Antriebsaggregat fuer eine Waschmaschine
WO2014037302A1 (de) Belichtungsanlage
DE10204625B4 (de) Arretierbare Spannvorrichtung, insbesondere für eine Feststellbremsanlage
EP4126727A1 (de) Vorrichtung zum verlegen eines fadens
DE1614191C3 (de) Anordnung zur Bestrahlung einer Schicht aus einem für Elektronenstrahlen empfindlichen Aufnahmematerial

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801464

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2013801464

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015537141

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14434612

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130050552

Country of ref document: DE

Ref document number: 112013005055

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112013005055

Country of ref document: DE