WO2014073561A1 - 二次電池、及び二次電池の製造方法 - Google Patents

二次電池、及び二次電池の製造方法 Download PDF

Info

Publication number
WO2014073561A1
WO2014073561A1 PCT/JP2013/079999 JP2013079999W WO2014073561A1 WO 2014073561 A1 WO2014073561 A1 WO 2014073561A1 JP 2013079999 W JP2013079999 W JP 2013079999W WO 2014073561 A1 WO2014073561 A1 WO 2014073561A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
active material
secondary battery
Prior art date
Application number
PCT/JP2013/079999
Other languages
English (en)
French (fr)
Inventor
則彦 丸山
佐藤 正春
英司 国府
一美 千葉
風人 梁田
俊幸 桐生
照久 高田
英久 目代
鋤柄 宜
Original Assignee
株式会社村田製作所
カーリットホールディングス株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, カーリットホールディングス株式会社, 本田技研工業株式会社 filed Critical 株式会社村田製作所
Priority to JP2014545728A priority Critical patent/JP5800444B2/ja
Publication of WO2014073561A1 publication Critical patent/WO2014073561A1/ja
Priority to US14/707,314 priority patent/US20150243992A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C327/00Thiocarboxylic acids
    • C07C327/38Amides of thiocarboxylic acids
    • C07C327/40Amides of thiocarboxylic acids having carbon atoms of thiocarboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C327/42Amides of thiocarboxylic acids having carbon atoms of thiocarboxamide groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of a saturated carbon skeleton
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a secondary battery and a method for manufacturing a secondary battery, and more particularly, has an electrode active material mainly composed of a multi-electron organic compound, and is charged and discharged using a battery electrode reaction of the electrode active material.
  • the present invention relates to a repetitive secondary battery and a manufacturing method thereof.
  • the electrode active material is a substance that directly contributes to the battery electrode reaction such as the charge reaction and the discharge reaction, and has the central role of the secondary battery. That is, the battery electrode reaction is a reaction that occurs with the transfer of electrons by applying a voltage to an electrode active material that is electrically connected to an electrode disposed in the electrolyte, and proceeds during charging and discharging of the battery. To do. Therefore, as described above, the electrode active material has a central role of the secondary battery in terms of system.
  • organic materials having redox activity have attracted attention as this type of electrode active material. Since organic materials can involve multiple electrons of two or more electrons in an oxidation-reduction reaction, by utilizing such characteristics for battery electrode reactions, it has a higher capacity density than inorganic materials. It is considered that a secondary battery can be realized.
  • Patent Document 1 discloses a general formula (1 ′): -(NH-CS-CS-NH) (1 ') Or general formula (2 ') R 1- (NH-CS-CS-NH) n -R 2 (2 ')
  • An aqueous battery has been proposed.
  • R 1 and R 2 represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, an amino group, a hydroxyl group, or a sulfone group, and n represents an integer of 1 to 20 Show.
  • FIG. 3 is a cross-sectional view schematically showing the structure of the nonaqueous solution battery described in Patent Document 1.
  • the positive electrode active material layer 102 mainly composed of active material particles 102a made of rubeanic acid or rubeanic acid polymer is formed on the surface of the positive electrode current collector 101 formed of aluminum foil or the like, and the positive electrode current collector is formed.
  • a positive electrode 103 is constituted by the electric conductor 101 and the positive electrode active material layer 102.
  • a negative electrode 104 is disposed on the opposite side of the positive electrode 103.
  • the negative electrode 104 includes a negative electrode current collector 105 made of copper or the like, and a negative electrode active material layer 106 containing metallic lithium formed on the surface of the negative electrode current collector 105 so as to face the positive electrode active material layer 102. have.
  • a separator 107 made of a gel or solid electrolyte is interposed between the positive electrode active material layer 102 and the negative electrode active material layer 105, and an electrolyte solution (electrolytic solution) 108 obtained by dissolving an electrolyte salt in a solvent is a battery can. (Not shown).
  • rubeanic acid or a rubeanic acid polymer containing a dithione structure represented by the general formula (1 ′) or (2 ′) binds to lithium ions during reduction and releases the bound lithium ions during oxidation.
  • Charging / discharging can be performed by utilizing such a reversible oxidation-reduction reaction of rubeanic acid or rubeanic acid polymer.
  • this Patent Document 1 describes that a solid electrolyte containing an electrolyte salt in a gel or solid (hereinafter referred to as “solid etc.”) may be used instead of the electrolyte solution. Yes.
  • Patent Document 2 discloses a battery comprising a positive electrode, a negative electrode, and an electrolyte solution containing an electrolyte interposed between the positive electrode and the negative electrode, wherein the positive electrode is rubeanic acid or rubeanic acid as an active material.
  • a battery including a derivative and having a molar concentration of the electrolyte in the electrolytic solution higher than 1.0 mol / L.
  • Patent Document 2 also has the same structure as Patent Document 1.
  • the concentration of the electrolyte salt in the electrolyte solution is increased to increase the molar amount of anion derived from the electrolyte salt, thereby obtaining a high charge / discharge capacity density.
  • JP 2008-147015 A (Claim 4, paragraph numbers [0011], [0013], FIG. 3, FIG. 5)
  • JP 2012-164480 A (Claim 1, paragraph numbers [0008], [0028])
  • lithium ions can freely move to the negative electrode side during charging, and freely move to the positive electrode side during discharging. It is important to be able to do it.
  • the electrolyte solution 108 is in contact with the surface of the positive electrode active material layer 102.
  • the positive electrode active material active material particles 102 a
  • charge / discharge is performed using the oxidation-reduction reaction of the molecule itself. Therefore, a lithium ion secondary battery that performs charge / discharge while maintaining the crystal system
  • the positive electrode active material is easily dissolved in the electrolyte solution 108.
  • the electrolyte solution 108 When the positive electrode active material is dissolved in the electrolyte solution 108 in this way, the electrolyte solution 108 is contaminated, leading to a decrease in lithium ion transfer efficiency, and sufficient electrons cannot be exchanged inside or on the positive electrode surface. In addition, the charge / discharge efficiency may deteriorate and the battery capacity may decrease.
  • Patent Document 1 describes that a solid electrolyte may be used in place of the electrolyte solution 108, no specific technique is mentioned. In this case, it is difficult to allow lithium ions to reach the inside of the positive electrode active material only by bringing the solid electrolyte into contact with the positive electrode active material layer 102. That is, the positive electrode active material layer 102 contains a positive electrode active material (active material particles 102a), a conductive additive such as carbon black, and a binder, and the positive electrode active material layer 102 is microscopic. A current collector having a very complicated uneven shape at a level and having a thickness of about several tens of ⁇ m is formed.
  • the solid electrolyte currently in practical use is inferior in ionic conductivity compared to the liquid electrolyte solution, in order to obtain the desired ionic conductivity, the solid electrolyte is used in combination with the electrolyte solution. It is necessary to reduce the usage rate as much as possible, and there is a risk of complicating the battery configuration.
  • This invention is made
  • a secondary battery according to the present invention includes an electrolyte interposed between a first electrode and a second electrode, the first electrode, the second electrode, and the electrolyte.
  • the electrode active material layer does not elute into the electrolyte, and organic molecules and other ions do not reach the surface or inside of the electrode active material layer. It can be easily reached.
  • the ion conductor thin film contains at least one selected from a polymer of polyvinylidene fluoride, polymethacrylate, and tripropylene glycol diacrylate.
  • the organic compound has in its constituent unit at least one selected from a dithione compound having a dithione structure, a dione compound having a dione structure, and a diamine compound having a diamine structure. It is preferable.
  • the dithione compound has the general formula: Or It is preferable to be represented by
  • n is an integer of 1 or more
  • R 1 to R 3 and R 5 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, a substituted or unsubstituted alkyl group.
  • R 4 represents at least one of a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted imino group, and the imino groups are linked to each other. Including.
  • the dione compound has the general formula: Or It is preferable to be represented by
  • n is an integer of 1 or more
  • R 6 to R 8 and R 10 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, a substituted or unsubstituted alkyl group.
  • R 9 represents at least one of a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted imino group, and the imino groups are linked to each other. Including.
  • the diamine compound has the general formula: It is preferable to be represented by
  • R 11 and R 12 are a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted carbonyl group, substituted or unsubstituted Substituted acyl group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted ether group, substituted or unsubstituted thioether group, substituted or unsubstituted amino group, substituted or unsubstituted An amide group, a substituted or unsubstituted sulfone group, a substituted or unsubstituted thiosulfonyl group, a substituted or unsubstituted sulfonamido group, a substituted or unsubstituted imino group
  • X 1 to X 4 are a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, Substituted or unsubstituted aryl group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted amino group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy At least one of a group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group, a substituted or unsubstituted acyl group, and a
  • the electrode active material is included in at least one of a reaction starting material, a product, and an intermediate product in the discharge reaction of the battery electrode reaction.
  • a method for manufacturing a secondary battery according to the present invention is a method for manufacturing a secondary battery in which an electrolyte is interposed between a first electrode and a second electrode.
  • One of the electrodes is formed so as to have an electrode active material layer mainly composed of a multi-electron organic compound, and at least the surface of the electrode active material layer selectively transmits lithium ions. It is characterized by coating with.
  • an electrolyte is interposed between the first electrode and the second electrode, and at least one of the first and second electrodes and the electrolyte contains lithium.
  • at least the surface of the electrode active material layer is coated with an ion conductor thin film that selectively permeates lithium, so that the electrode active material is eluted into the electrolyte, and organic molecules and other ions Does not reach the surface or the inside of the electrode active material layer, and only lithium ions smoothly reach the surface or the inside of the electrode active material layer.
  • ion conduction efficiency improves by this, the fall of discharge capacity can be suppressed, and the secondary battery which has favorable charging / discharging efficiency and desired battery capacity can be obtained.
  • the electrode active material is mainly composed of organic compounds, the environmental load is low and safety is taken into consideration.
  • a method for manufacturing a secondary battery in which an electrolyte is interposed between the first electrode and the second electrode, the first and second electrodes.
  • One of the electrodes is formed to have an electrode active material layer mainly composed of a multi-electron organic compound, and at least the surface of the electrode active material layer selectively transmits lithium ions. Since it is covered with a thin film, a secondary battery having good charge / discharge efficiency and a desired battery capacity can be easily produced.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of a secondary battery according to the present invention.
  • a positive electrode active material layer (electrode active material layer) 2 mainly composed of a multi-electron organic compound is formed on the surface of a positive electrode current collector 1 formed of aluminum foil or the like.
  • the surface of the active material layer 2 is covered with an ion conductor thin film 3 that selectively transmits lithium ions.
  • the positive electrode current collector 1, the positive electrode active material layer 2, and the ion conductor thin film 3 constitute a positive electrode (first electrode) 4.
  • a negative electrode (second electrode) 5 is disposed on the opposite side of the positive electrode 4.
  • the negative electrode 5 includes a negative electrode current collector 6 made of copper or the like, and a negative electrode active material layer 7 containing metallic lithium formed on the surface of the negative electrode current collector 6 so as to face the positive electrode active material layer 2. And have.
  • a separator 8 made of a porous resin material or a gel or solid material is interposed between the positive electrode 4 and the negative electrode 5, and an electrolyte solution 9 obtained by dissolving an electrolyte salt in a solvent is a battery can (not shown). .
  • the positive electrode active material layer 2 contains active material particles 2a made of a multi-electron organic compound.
  • electrode active materials mainly composed of organic compounds have attracted attention.
  • multi-electron organic compounds in which two or more electrons are involved in the battery electrode reaction such as dithion compounds, dione compounds, and diamine compounds Is promising as an active material capable of realizing a high capacity density with good charge / discharge efficiency.
  • the active material particles 2 a made of a multi-electron organic compound are used as the main body of the positive electrode active material layer 2.
  • the positive electrode active material layer 2 contains a conductive auxiliary agent and a binder in addition to the active material particles 2a as will be described later.
  • the lithium ion from the negative electrode 5 cannot reach the inside of the positive electrode active material layer 2 only by contacting with the positive electrode active material layer 2, and the ion conduction efficiency is low. There is a risk of inviting.
  • the lithium ion from the negative electrode 5 can effectively reach the positive electrode active material layer 2 to improve the ion conduction efficiency. That is, by covering at least the surface of the positive electrode active material layer 2 with the ion conductor thin film 3 in this way, charging / discharging efficiency is improved, and it is possible to suppress a decrease in battery capacity even after repeated charging / discharging. it can.
  • the ion conductor thin film 3 is sufficient if it can prevent elution of the positive electrode active material layer 2 into the electrolyte solution 9, and therefore the thickness is preferably as thin as possible, and is preferably formed to be about 5 to 10 ⁇ m.
  • the ion conductor thin film 3 is not particularly limited as long as it transmits only lithium ions having a small ion radius and does not transmit organic molecules or other ions.
  • polyvinylidene fluoride A material containing at least one selected from polymers of polymethacrylate and tripropylene glycol diacrylate can be used.
  • the desired ion conductor thin film 3 can be produced by apply
  • the positive electrode active material layer 2 contains a conductive auxiliary agent and a binder in addition to the active material particles 2a.
  • the conductive auxiliary agent is not particularly limited, for example, carbonaceous fine particles such as graphite, carbon black, and acetylene black, vapor grown carbon fibers, carbon nanotubes, carbon fibers such as carbon nanohorns, polyaniline, Conductive polymers such as polypyrrole, polythiophene, polyacetylene, and polyacene can be used. Further, two or more kinds of conductive agents can be mixed and used.
  • the content of the conductive auxiliary agent in the positive electrode active material layer 2 is preferably 10 to 80% by weight.
  • the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, carboxymethylcellulose, and the like can be used.
  • the electrolyte solution 9 is interposed between the positive electrode 4 and the negative electrode 5 and transports charge carriers between the two electrodes.
  • Such an electrolyte solution 9 has 10 ⁇ 5 to 10 ⁇ 1 S / s at room temperature.
  • Those having an ionic conductivity of cm can be used, and the electrolyte salt can be used by dissolving in an organic solvent.
  • electrolyte salt for example, LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 or the like can be used.
  • organic solvent ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, 1-methyl-2-pyrrolidone, etc. are used. be able to.
  • organic compounds (active material particles 2a) that are the main components of the positive electrode active material layer 2 dithion compounds, dione compounds, and diamine compounds that are expected to be put to practical use will be described in detail.
  • Dithione compound is excellent in stability during charge and discharge (oxidized state and reduced state), and can perform a multi-electron reaction of two or more electrons by an oxidation-reduction reaction. Since the charge / discharge efficiency is improved by covering the surface of the positive electrode active material layer 2 with the ion conductor thin film 3, the charge / discharge of the multi-electron reaction can be stably repeated, and the high capacity density of A secondary battery can be obtained.
  • Such a dithione compound is not particularly limited as long as it has a dithione structure in the structural unit, but preferably uses a compound represented by the following general formula (1) or (2). Can do.
  • n is an integer of 1 or more
  • R 1 to R 3 and R 5 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, Substituted or unsubstituted alkyl group, substituted or unsubstituted alkylene group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxyl group, substituted Or an unsubstituted alkenyl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted arylamino group, a substituted or unsubstituted alkylamino group, a substituted or unsubstituted thioaryl group, a substituted or unsubstituted thio
  • R 4 represents at least one of a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted imino group, including the case where the imino groups are linked to each other. It is out.
  • Examples of the dithione compound belonging to the category of the general formula (1) include organic compounds represented by the following chemical formulas (1a) to (1i).
  • the following chemical reaction formula (I) shows an example of a charge / discharge reaction expected when the dithione compound shown in the chemical formula (1a) is used as the main component of the positive electrode active material layer 2 and Li is used as the cation of the electrolyte salt. ing.
  • Examples of the dithione compound belonging to the category of the general formula (2) include organic compounds represented by the following chemical formulas (2a) to (2g).
  • the following chemical reaction formula (II) shows an example of a charge / discharge reaction expected when the dithione compound shown in the chemical formula (2a) is used as the main component of the positive electrode active material layer 2 and Li is used as the cation of the electrolyte salt. ing.
  • the molecular weight of the dithione compound is not particularly limited, but when a portion other than the dithione structure is increased, the molecular weight increases, and thus the storage capacity per unit mass, that is, the capacity density is reduced. Therefore, it is preferable that the molecular weight of the portion other than the dithione structure is small.
  • the dione compound is excellent in stability during charge and discharge (oxidized state and reduced state), and can perform a multi-electron reaction of two or more electrons by an oxidation-reduction reaction. Since the charge / discharge efficiency is improved by covering the surface of the positive electrode active material layer 2 with the ion conductor thin film 3, the charge / discharge of the multi-electron reaction can be stably repeated, and the high capacity density of A secondary battery can be obtained.
  • the dione compound is not particularly limited as long as it has a dione structure in the structural unit, but preferably uses a compound represented by the following general formula (3) or (4). Can do.
  • n is an integer of 1 or more
  • R 6 to R 8 and R 10 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, Substituted or unsubstituted alkyl group, substituted or unsubstituted alkylene group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxyl group, substituted Or an unsubstituted alkenyl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted arylamino group, a substituted or unsubstituted alkylamino group, a substituted or unsubstituted thioaryl group, a substituted or unsubstituted thio
  • R 9 represents at least one of a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted imino group, including a case where the imino groups are linked to each other. It is out.
  • Examples of the dione compound belonging to the category of the general formula (3) include organic compounds represented by the following chemical formulas (3a) to (3e).
  • the following chemical reaction formula (III) is an example of a charge / discharge reaction expected when the dione compound represented by the chemical formula (3a) is used as the main component of the positive electrode active material layer 2 and Li is used as the cation of the electrolyte salt. Is shown.
  • Examples of the dione compound belonging to the category of the general formula (4) include organic compounds represented by the following chemical formulas (4a) to (4f).
  • the following chemical reaction formula (IV) shows an example of a charge / discharge reaction expected when the dione compound represented by the chemical formula (4a) is used as the main component of the positive electrode active material layer 2 and Li is used as the cation of the electrolyte salt. ing.
  • the molecular weight of the dione compound is not particularly limited. However, when the portion other than the dione structure is increased, the molecular weight increases, so that the storage capacity per unit mass, that is, the capacity density is reduced. Therefore, the molecular weight of the portion other than the dione structure is preferably small.
  • the diamine compound is excellent in stability at the time of charge and discharge (oxidized state and reduced state), and a multi-electron reaction of two or more electrons is possible by the oxidation-reduction reaction. . Since the charge / discharge efficiency is improved by covering the surface of the positive electrode active material layer 2 with the ion conductor thin film 3, the charge / discharge of the multi-electron reaction can be stably repeated, and the high capacity density of A secondary battery can be obtained.
  • Such a diamine compound is not particularly limited as long as it has a diamine structure in the structural unit, but an organic compound represented by the following general formula (5) can be preferably used.
  • R 11 and R 12 are a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted carbonyl group, Substituted or unsubstituted acyl group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted ether group, substituted or unsubstituted thioether group, substituted or unsubstituted amine group, substituted Or an unsubstituted amide group, a substituted or unsubstituted sulfone group, a substituted or unsubstituted thiosulfonyl group, a substituted or unsubstituted sulfonamido group, a substituted or unsubstituted imine group,
  • X 1 to X 4 are a hydrogen atom, halogen atom, hydroxyl group, nitro group, cyano group, carboxyl group, substituted or unsubstituted alkyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkyl Group, substituted or unsubstituted aryl group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted amino group, substituted or unsubstituted alkoxy group, substituted or unsubstituted At least one of an aryloxy group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group, a substituted or unsubstituted acyl group, and a substituted or unsubstituted acyloxy group,
  • the substituent
  • the organic compound included in the category of the general formula (5) is more preferably an organic compound including a phenazine structure in which an aryl group is bonded with a pyrazine ring interposed therebetween, in the structural unit, for example, the chemical formulas (5a) to (5)
  • the organic compounds shown in 5f) can be preferably used.
  • the following chemical reaction formula (V) shows an example of a charge / discharge reaction expected when the organic compound shown in the chemical formula (5b) is used as the main component of the positive electrode active material layer 2 and Li is used as the cation of the electrolyte salt. ing.
  • the molecular weight of the diamine compound is not particularly limited. However, when the portion other than the diamine structure is increased, the molecular weight increases, so that the storage capacity per unit mass, that is, the capacity density is reduced. Accordingly, the molecular weight of the portion other than the diamine structure is preferably small.
  • the substituents listed in the general formulas (1) to (5) are not limited as long as they belong to the respective categories. However, as the molecular weight increases, the substituents accumulate per unit mass of the positive electrode active material. Since the amount of charge that can be reduced, it is preferable to select a desired substituent so that the molecular weight is about 250.
  • the positive electrode active material Since the positive electrode active material is reversibly oxidized or reduced by charge / discharge, the positive electrode active material takes a different structure and state depending on the charged state, discharged state, or intermediate state. Is contained in at least one of a reaction starting material (a substance that causes a chemical reaction in a battery electrode reaction), a product (a substance resulting from a chemical reaction), and an intermediate product.
  • a reaction starting material a substance that causes a chemical reaction in a battery electrode reaction
  • a product a substance resulting from a chemical reaction
  • an intermediate product A secondary battery having a positive electrode active material with good discharge efficiency and high capacity density can be realized.
  • a positive electrode active material is formed into an electrode shape. That is, preferably any one of the organic compounds described above is prepared. And this organic compound is mixed with the electrically conductive agent mentioned above and a binder, the solvent is added, the slurry for active materials is produced, and this slurry for active materials is formed on the positive electrode collector 1 by arbitrary coating methods.
  • the positive electrode active material layer 2 is formed on the positive electrode current collector 1 by coating and drying.
  • the solvent used for producing the slurry for active material is not particularly limited, and examples thereof include dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, ⁇ -butyrolactone, and the like.
  • Basic solvents, acetonitrile, tetrahydrofuran, nitrobenzene, non-aqueous solvents such as acetone, and protic solvents such as methanol and ethanol can be used.
  • the type of solvent, the compounding ratio of the organic compound and the solvent, the type of conductive agent and binder, and the amount added thereof can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery. it can.
  • a conductor solution is prepared by dissolving a conductor material such as polyvinylidene fluoride in an organic solvent. Then, this conductor solution is applied to the entire surface of the positive electrode active material layer 2 and dried, whereby the surface of the positive electrode active material layer 2 is covered with an ion conductor thin film 3 having a predetermined thickness (for example, 5 to 10 ⁇ m). Then, the positive electrode 4 is formed.
  • a conductor solution is prepared by dissolving a conductor material such as polyvinylidene fluoride in an organic solvent. Then, this conductor solution is applied to the entire surface of the positive electrode active material layer 2 and dried, whereby the surface of the positive electrode active material layer 2 is covered with an ion conductor thin film 3 having a predetermined thickness (for example, 5 to 10 ⁇ m). Then, the positive electrode 4 is formed.
  • the solvent for dissolving the conductor material is not particularly limited, and for example, the same solvent as that used in the preparation of the positive electrode active material layer 2 described above can be used.
  • an electrolyte solution 9 is prepared.
  • the positive electrode 4 is impregnated with an electrolyte solution
  • the positive electrode 4 is impregnated with the electrolyte solution 9, and then a separator 8 impregnated with the electrolyte solution 9 is laminated on the positive electrode 4 and further formed of metal Li or the like.
  • the negative electrode active material 7 and the negative electrode current collector 6 formed of copper foil or the like are sequentially laminated, and then the electrolyte solution 9 is injected into the internal space.
  • the battery is sealed with a battery can (not shown), thereby producing a secondary battery.
  • the positive electrode 4 has the positive electrode active material layer 2 mainly composed of a multi-electron organic compound in which two or more electrons are involved in the battery electrode reaction, and the positive electrode active material Since the surface of the layer 2 is coated with an ion conductor thin film 3 that selectively permeates lithium, the organic molecules and other ions do not reach the surface and the inside of the positive electrode active material layer 2, and lithium ions Only easily reaches the surface and the inside of the positive electrode active material layer 2. And since ion conduction efficiency improves by this, the fall of discharge capacity can be suppressed, and the secondary battery which has favorable charging / discharging efficiency and desired battery capacity can be obtained.
  • the positive electrode active material layer 2 mainly composed of a multi-electron organic compound in which two or more electrons are involved in the battery electrode reaction, and the positive electrode active material Since the surface of the layer 2 is coated with an ion conductor thin film 3 that selectively permeates lithium, the organic molecules and other ions do not reach the surface and the inside of the positive electrode active material
  • the positive electrode active material layer 2 is mainly composed of an organic compound, the environmental load is low and the safety is taken into consideration.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
  • the surface of the positive electrode active material layer 2 is covered with the ion conductor thin film 3, but at least the surface of the positive electrode active material layer 2 may be covered with the ion conductor thin film 3, and thus the positive electrode
  • the entire surface of the current collector 1 and the positive electrode active material layer 2 may be covered with the ion conductor thin film 3.
  • a liquid electrolyte solution in which an electrolyte salt is dissolved in a solvent is used as the electrolyte.
  • the ionic conductivity is inferior to that of the electrolyte solution, it is also possible to use a solid electrolyte. is there.
  • examples of the polymer compound used for the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, and vinylidene fluoride-monofluoroethylene copolymer.
  • electrolyte a solid electrolyte, an ionic liquid combining a cation and an anion, a symmetric glycol diether such as glymes, a chain sulfone, or the like can be used.
  • the organic compound is used for the positive electrode active material layer 2, but it may be used for the negative electrode active material layer.
  • the battery shape is not particularly limited, and can be applied to a coin type, a cylindrical type, a square type, a sheet type, and the like.
  • the exterior method is not particularly limited, and a metal case, mold resin, aluminum laminate film, or the like may be used.
  • Example shown below is an example and this invention is not limited to the following Example.
  • rubeanic acid 300 mg
  • graphite powder as a conductive agent 600 mg
  • polytetrafluoroethylene resin as a binder 100 mg were weighed and kneaded while mixing so as to obtain a uniform mixture. It was.
  • this mixture was pressure-molded to produce a sheet-like member having a thickness of about 150 ⁇ m.
  • this sheet-like member was dried at 70 ° C. for 1 hour in a vacuum, and then punched into a circle having a diameter of 12 mm to produce a positive electrode active material mainly composed of rubeanic acid.
  • polyvinylidene fluoride as a conductor material was dissolved in N-methyl-2-pyrrolidone as a solvent so as to be 10% by weight, thereby preparing a conductor solution.
  • a positive electrode active material was applied onto the positive electrode current collector to form a positive electrode active material layer, and a conductor solution was further applied onto the positive electrode active material layer. Then, vacuum drying was performed at 110 ° C., and the surface of the positive electrode active material layer was covered with an ion conductor thin film having a thickness of 10 ⁇ m, thereby obtaining a positive electrode.
  • a 20 ⁇ m-thick separator made of a polypropylene porous film impregnated with this electrolyte solution is laminated on the positive electrode, and a negative electrode in which lithium is pasted on a negative electrode current collector made of copper foil is laminated on the separator. Formed body.
  • a metal spring is placed on the negative electrode current collector, and the negative electrode case is joined to the positive electrode case with a gasket disposed on the periphery, and the outer battery is sealed with a caulking machine, thereby Produced.
  • a battery cell of a comparative example was produced by the same method and procedure as in the above example except that the positive electrode active material layer was not covered with the ion conductive film.
  • FIG. 2 shows the measurement results.
  • the horizontal axis is the capacity density (mAh / g)
  • the vertical axis is the voltage (V)
  • the solid line shows the charge / discharge curve of the example
  • the broken line shows the charge / discharge curve of the comparative example.
  • a voltage flat portion is formed at 4.0 V at the time of charging, the capacity density is about 92 mAh / g, and a voltage flat portion is formed at about 3.3 V also at the time of discharging, and the discharge ends.
  • the capacity density was about 80 mAh / g, and the charge / discharge efficiency was 87%, which was a good result.
  • rubeanic acid which is the main component of the positive electrode active material layer, does not dissolve in the electrolyte solution, and lithium ions are positively charged with good ion conduction efficiency. This is probably because the surface of the active material layer and the inside thereof were reached, and a desired charge / discharge reaction was performed between these lithium ions and rubeanic acid.
  • a secondary battery is realized that has good charge / discharge efficiency and can suppress a decrease in battery capacity even after repeated charge / discharge.
  • Positive electrode active material layer (electrode active material layer) 3 Ion conductor thin film 4 Positive electrode (first electrode) 5 Negative electrode (second electrode) 9 Electrolyte solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 アルミ箔等で形成された正極集電体1の表面に多電子系の有機化合物(ジチオン化合物、ジオン化合物、ジアミン化合物等)を主体とした正極活物質層2が形成され、さらに正極活物質層2の表面は、リチウムイオンを選択的に透過するイオン伝導体薄膜3で被覆されている。そして、前記正極集電体1、前記正極活物質層2、及びイオン伝導体薄膜3とで正極4を構成している。これにより充放電効率を向上させて所望の電池容量を得ることができる二次電池とその製造方法を実現する。

Description

二次電池、及び二次電池の製造方法
 本発明は二次電池、及び二次電池の製造方法に関し、より詳しくは多電子系有機化合物を主体とした電極活物質を有し、該電極活物質の電池電極反応を利用して充放電を繰り返す二次電池とその製造方法に関する。
 携帯電話、ノートパソコン、デジタルカメラ等の携帯用電子機器の市場拡大に伴い、これら電子機器のコードレス電源としてエネルギー密度が大きく長寿命の二次電池の開発が盛んに行なわれている。
 二次電池の構成要素のうち電極活物質は、充電反応、放電反応という電池電極反応に直接寄与する物質であり、二次電池の中心的役割を有する。すなわち、電池電極反応は、電解質中に配された電極と電気的に接続された電極活物質に対し電圧を印加することにより、電子の授受を伴って生じる反応であり、電池の充放電時に進行する。したがって、上述したように電極活物質は、システム的には、二次電池の中心的役割を有する。
 この種の電極活物質用材料として、近年、酸化還元活性を有する有機系材料が注目されている。有機系材料は、酸化還元反応で2電子以上の多電子の関与が可能であることから、斯かる特性を電池電極反応に利用することにより、無機系材料に比べ、より大きな容量密度を有する二次電池の実現が可能になると考えられる。
 例えば、特許文献1には、一般式(1′):
 -(NH-CS-CS-NH)…(1′)
 又は、一般式(2′)
 R-(NH-CS-CS-NH)-R …(2′)
で示される構造単位を有し、リチウムイオンと結合可能であるルベアン酸又はルベアン酸ポリマーを含む電池用電極を正極とし、リチウムイオンの吸蔵及び放出が可能な活物質を含む電極を負極とした非水溶液系電池が提案されている。
 上記一般式(2′)中、R及びRは、水素原子、ハロゲン原子、炭素数が1~3のアルキル基、アミノ基、水酸基、スルホン基を示し、nは1~20の整数を示している。
 図3は、特許文献1に記載された非水溶液電池の構造を模式的に示した断面図である。
 すなわち、この非水溶液電池は、アルミ箔等で形成された正極集電体101の表面にルベアン酸又はルベアン酸ポリマーからなる活物質粒子102aを主体とした正極活物質層102が形成され、正極集電体101と正極活物質層102とで正極103を構成している。また、正極103の対向側には負極104が配されている。この負極104は、銅等で形成された負極集電体105と、正極活物質層102と対向するように負極集電体105の表面に形成された金属リチウムを含有した負極活物質層106とを有している。
 さらに、正極活物質層102と負極活物質層105との間にはゲル状又は固体電解質からなるセパレータ107が介在され、さらに電解質塩を溶媒に溶解させた電解質溶液(電解液)108が電池缶(図示せず。)に満たされている。
 特許文献1では、一般式(1′)又は(2′)で表されるジチオン構造を含有したルベアン酸又はルベアン酸ポリマーが、還元時にリチウムイオンと結合し、酸化時に前記結合したリチウムイオンを放出する。このようなルベアン酸又はルベアン酸ポリマーの可逆的な酸化還元反応を利用することによって充放電を行うことができる。
 さらに、この特許文献1では、電解質溶液に代えて電解質塩をゲル状物又は固形物(以下、「固形物等」という。)に含有させた固体電解質を使用してもよいことが記載されている。
 また、特許文献2には、正極と、負極と、これら正極と負極との間に介在する電解質を含む電解液と、を備える電池であって、前記正極は、活物質としてルベアン酸又はルベアン酸誘導体を含み、前記電解液中における前記電解質のモル濃度は、1.0mol/Lよりも高くした電池が提案されている。
 特許文献2の電池も、特許文献1と同様の構造を有している。
 そして、特許文献2では、電解質溶液中の電解質塩濃度を高めて、電解質塩由来のアニオンのモル量を増加させ、これにより、高い充放電容量密度が得られるようにしようとしている。
特開2008-147015号公報(請求項4、段落番号〔0011〕、〔0013〕、図3、図5) 特開2012-164480号公報(請求項1、段落番号〔0008〕、〔0028〕)
 ところで、上述した二次電池では、正極と負極との間でリチウムイオンを介して電子の授受を行なうことから、リチウムイオンが充電時には負極側に自由に移動でき、放電時には正極側に自由に移動できることが重要である。
 しかしながら、特許文献1や2では、セパレータ107にゲル状物又は固形物を使用しているものの、電解質溶液108が正極活物質層102の表面と接触しているため、正極活物質層102中の正極活物質(活物質粒子102a)が電解質溶液108に溶出するおそれがある。特に、有機化合物を正極活物質に使用した二次電池では、分子自体の酸化還元反応を利用して充放電を行なうことから、結晶系を維持した状態で充放電を行なうリチウムイオン二次電池とは異なり、正極活物質の電解質溶液108への溶解が起こり易い。
 そして、このように正極活物質が電解質溶液108に溶解すると、電解質溶液108が汚染され、リチウムイオンの移動効率の低下を招き、正極内部又は正極表面で十分な電子の授受を行なうことができなくなり、充放電効率が劣化し、電池容量の低下を招くおそれがある。
 また、この特許文献1には、電解質溶液108に代えて固体電解質を使用してもよいことが記載されているものの、具体的な手法については言及されていない。この場合、固体電解質を正極活物質層102に接触させただけでは、リチウムイオンを正極活物質の内部に到達させるのは困難である。すなわち、正極活物質層102中には正極活物質(活物質粒子102a)の他、カーボンブラック等の導電補助剤や結着剤が含有されており、正極活物質層102は、微視的なレベルで非常に複雑な凹凸形状を有する厚さが数十μm程度の集電体を形成している。このため固体電解質を正極活物質層102に接触させただけでは、たとえ正極活物質層102の表面積を増加させても、負極106から移動してきたリチウムイオンは固体電解質との接触部でしかリチウムイオンの授受ができず、正極活物質層102の内部に到達させるのが困難であり、イオンの伝導効率の著しい低下を招くおそれがある。
 しかも、現在実用化されている固体電解質は、液状の電解質溶液に比べるとイオン導電性に劣ることから、所望のイオン導電性を得るためには、固体電解質を電解質溶液と併用し、固体電解質の使用割合を極力減らす必要があり、電池構成の煩雑化を招くおそれがある。
 本発明はこのような事情に鑑みてなされたものであって、充放電効率を向上させて所望の電池容量を得ることができる二次電池、及び二次電池の製造方法を提供することを目的とする。
 上記目的を達成するために本発明に係る二次電池は、第1の電極と第2の電極との間に電解質が介在されると共に、前記第1及び第2の電極、前記電解質のうちの少なくともいずれかにリチウムを含有した二次電池であって、前記第1及び第2の電極のうちの一方の電極は、電池電極反応で2つ以上の電子が関与する多電子系の有機化合物を主体とした電極活物質層を有すると共に、少なくとも前記電極活物質層の表面が、リチウムを選択的に透過するイオン伝導体薄膜で被覆されていることを特徴としている。
 これにより電極活物質層が電解質に溶出したり、有機分子や他のイオンが電極活物質層の表面や内部に到達することもなく、リチウムイオンのみを効率良く電極活物質層の表面や内部に容易に到達させることができる。
 また、本発明の二次電池は、前記イオン伝導体薄膜が、ポリフッ化ビニリデン、ポリメタクリレート、及びトリプロピレングリコールジアクリレートの重合体の中から選択された少なくとも一種を含有しているのが好ましい。
 さらに、本発明の二次電池は、前記有機化合物が、ジチオン構造を有するジチオン化合物、ジオン構造を有するジオン化合物、及びジアミン構造を有するジアミン化合物の中から選択された少なくとも一種を構成単位中に有しているのが好ましい。  
 そして、本発明の二次電池は、前記ジチオン化合物が、一般式
Figure JPOXMLDOC01-appb-C000006
 又は
Figure JPOXMLDOC01-appb-C000007
 で表されるのが好ましい。
 ここで、上記一般式中、nは1以上の整数であり、R~R及びRは、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR~R及びRは同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含んでいる。また、Rは、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、及び置換若しくは非置換のイミノ基のうちの少なくとも一種を示し、前記イミノ基同士が互いに連結している場合を含む。
 また、本発明の二次電池は、前記ジオン化合物が、一般式
Figure JPOXMLDOC01-appb-C000008
又は、
Figure JPOXMLDOC01-appb-C000009
で表されるのが好ましい。
 ここで、上記一般式中、nは1以上の整数であり、R~R及びR10は、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR~R及びR10は同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含んでいる。また、Rは、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、及び置換若しくは非置換のイミノ基のうちの少なくとも一種を示し、前記イミノ基同士が互いに連結している場合を含む。
 さらに、本発明の二次電池は、前記ジアミン化合物が、一般式
Figure JPOXMLDOC01-appb-C000010
 で表されるのが好ましい。
 ここで、上記一般式中、R11及びR12は、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、置換若しくは非置換のカルボニル基、置換若しくは非置換のアシル基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のエステル基、置換若しくは非置換のエーテル基、置換若しくは非置換のチオエーテル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアミド基、置換若しくは非置換のスルホン基、置換若しくは非置換のチオスルホニル基、置換若しくは非置換のスルホンアミド基、置換若しくは非置換のイミノ基、置換若しくは非置換のアゾ基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示す。X~Xは、水素原子、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアリール基、置換若しくは非置換の芳香族複素環基、置換若しくは非置換のアラルキル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアルコキシ基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のアリールオキシカルボニル基、置換若しくは非置換のアシル基、及び置換若しくは非置換のアシルオキシ基のうちの少なくとも1種を示し、これらの置換基は置換基同士で環構造を形成する場合を含んでいる。
 さらに、本発明の二次電池は、前記電極活物質が、前記電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれるのが好ましい。
 また、本発明に係る二次電池の製造方法は、第1の電極と第2の電極との間に電解質を介在した二次電池の製造方法であって、前記第1及び第2の電極のうちの一方の電極を、多電子系の有機化合物を主体とした電極活物質層を有するように形成し、少なくとも前記電極活物質層の表面を、リチウムイオンを選択的に透過するイオン伝導体薄膜で被覆することを特徴としている。
 本発明の二次電池によれば、第1の電極と第2の電極との間に電解質が介在されると共に、前記第1及び第2の電極、前記電解質のうちの少なくともいずれかにリチウムを含有した二次電池であって、前記第1及び第2の電極のうちの一方の電極は、電池電極反応で2つ以上の電子が関与する多電子系の有機化合物を主体とした電極活物質層を有すると共に、少なくとも前記電極活物質層の表面が、リチウムを選択的に透過するイオン伝導体薄膜で被覆されているので、電極活物質が電解質に溶出したり、また有機分子や他のイオンが電極活物質層の表面や内部に到達することなく、リチウムイオンのみが電極活物質層の表面や内部に円滑に到達する。そしてこれによりイオンの伝導効率が向上することから、放電容量の低下を抑制することができ、充放電効率が良好で所望の電池容量を有する二次電池を得ることができる。
 しかも、電極活物質が有機化合物を主体としているため、環境負荷も低く安全性にも配慮したものとなる。
 また、本発明の二次電池の製造方法によれば、第1の電極と第2の電極との間に電解質を介在した二次電池の製造方法であって、前記第1及び第2の電極のうちの一方の電極を、多電子系の有機化合物を主体とした電極活物質層を有するように形成し、少なくとも前記電極活物質層の表面を、リチウムイオンを選択的に透過するイオン伝導体薄膜で被覆するので、充放電効率が良好で所望の電池容量を有する二次電池を容易に作製することができる。
本発明に係る二次電池の一実施の形態を模式的に示した断面図である。 実施例の充放電特性を示す図である。 二次電池の従来例を模式的に示した断面図である。
 次に、本発明の実施の形態を詳説する。
 図1は、本発明に係る二次電池の一実施の形態を模式的に示した断面図である。
 すなわち、この二次電池は、アルミ箔等で形成された正極集電体1の表面に多電子系の有機化合物を主体とした正極活物質層(電極活物質層)2が形成され、さらに正極活物質層2の表面は、リチウムイオンを選択的に透過するイオン伝導体薄膜3で被覆されている。そして、前記正極集電体1、前記正極活物質層2、及びイオン伝導体薄膜3とで正極(第1の電極)4を構成している。
 また、正極4の対向側には負極(第2の電極)5が配されている。この負極5は、銅等で形成された負極集電体6と、正極活物質層2と対向するように前記負極集電体6の表面に形成された金属リチウムを含有した負極活物質層7とを有している。
 さらに、正極4と負極5との間には多孔性樹脂材料やゲル状又は固形状材料からなるセパレータ8が介在され、さらに電解質塩を溶媒に溶解させた電解質溶液9が電池缶(図示せず。)に充満されている。
 そして、正極活物質層2には、多電子系の有機化合物からなる活物質粒子2aが含有されている。
 すなわち、近年、有機化合物を主体とした電極活物質が注目されているが、その中でも電池電極反応で2電子以上の電子が関与する多電子系有機化合物、例えばジチオン化合物、ジオン化合物、及びジアミン化合物は、充放電効率が良好で高容量密度の実現が可能な活物質材料として有望視されている。
 そこで、本実施の形態では、正極活物質層2の主体として多電子系の有機化合物からなる活物質粒子2aを使用している。
 ところで、〔発明が解決しようとする課題〕の項でも述べたように、上記有機化合物を正極活物質層2の主体に使用した場合、低分子量の有機化合物では、電解質溶液9への溶解や、溶解した化合物による電極の汚染などが生じ易く、このため繰り返し充放電に対する安定性に欠ける。一方、高分子化合物では、高分子化合物内の分子間相互作用が大きく、このため、イオンの移動が妨げられ、有効に利用できる活物質の割合が少なくなるおそれがある。
 また、電解質溶液に代えて固体電解質を使用した場合は、正極活物質層2は後述するように活物質粒子2aの他、導電補助剤や結着剤が含有されていることから、固体電解質を正極活物質層2と接触させただけでは、負極5からのリチウムイオンを正極活物質層2の内部にまで到達させることができず、イオンの伝導効率が低く、このため充放電効率の低下を招くおそれがある。
 そこで、本実施の形態では、少なくとも正極活物質層2の表面をリチウムのみを選択的に透過するイオン伝導体薄膜3で被覆し、これにより正極活物質層2の電解質溶液9への溶出を招くことなく、負極5からのリチウムイオンを効果的に正極活物質層2に到達できるようにしてイオンの伝導効率を向上させている。すなわち、このように少なくとも正極活物質層2の表面を前記イオン伝導体薄膜3で被覆することにより、充放電効率が向上し、充放電を繰り返しても電池容量が低下するのを抑制することができる。
 尚、イオン伝導体薄膜3は、正極活物質層2の電解質溶液9への溶出を防止できれば十分であり、したがって厚みは極力薄いのが好ましく、5~10μm程度に形成するのが望ましい。
 このようなイオン伝導体薄膜3としては、イオン半径の小さいリチウムイオンのみを透過し、有機分子や他のイオン等を透過させないものであれば、特に限定されるものではなく、例えば、ポリフッ化ビニリデン、ポリメタクリレート、及びトリプロピレングリコールジアクリレートの重合体の中から選択された少なくとも一種を含有した材料を使用することができる。そして、これらの材料を有機溶媒に溶解させたイオン伝導膜溶液を正極活物質層2の表面に塗布し、乾燥することにより所望のイオン伝導体薄膜3を作製することができる。
 また、正極活物質層2は、上述したように活物質粒子2aの他、導電補助剤及び結着剤が含有されている。
 ここで、導電補助剤としては、特に限定されるものでなく、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、気相成長炭素繊維、カーボンナノチューブ、カーボンナノホーン等の炭素繊維、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子などを使用することができる。また、導電剤を2種類以上混合して用いることもできる。尚、導電補助剤の正極活物質層2中の含有率は10~80重量%が好ましい。
 また、結着剤も特に限定されるものではなく、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、カルボキシメチルセルロース等の各種樹脂を使用することができる。
 また、電解質溶液9は、正極4と負極5との間に介在されて両電極間の荷電担体輸送を行うが、このような電解質溶液9としては、室温で10-5~10-1S/cmのイオン伝導度を有するものを使用することができ、電解質塩を有機溶媒に溶解させて使用することができる。
 ここで、電解質塩としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiC(CSO等を使用することができる。
 また、有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、1-メチル-2-ピロリドン等を使用することができる。
 次に、正極活物質層2の主体となる有機化合物(活物質粒子2a)のうち、特に実用化が期待されているジチオン化合物、ジオン化合物、及びジアミン化合物について詳述する。
(1)ジチオン化合物
 ジチオン化合物は、充放電時(酸化状態及び還元状態)の安定性に優れており、酸化還元反応で二電子以上の多電子反応が可能である。そして、正極活物質層2の表面をイオン伝導体薄膜3で被覆することにより、充放電効率が向上することから、多電子反応の充放電を安定的に繰り返すことができ、高容量密度の二次電池を得ることが可能となる。
 このようなジチオン化合物としては、構成単位中にジチオン構造を有するものであれば特に限定されるものではないが、下記一般式(1)又は(2)で表される化合物を好んで使用することができる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 ここで、上記一般式(1)、(2)中、nは1以上の整数であり、R~R及びRは、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR~R及びRは同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含んでいる。また、Rは、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、及び置換若しくは非置換のイミノ基のうちの少なくとも一種を示し、前記イミノ基同士が連結している場合を含んでいる。
 そして、上記一般式(1)の範疇に属するジチオン化合物としては、下記化学式(1a)~(1i)に示す有機化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000013
 下記化学反応式(I)は、化学式(1a)に示すジチオン化合物を正極活物質層2の主体に使用し、Liを電解質塩のカチオンに使用した場合に予想される充放電反応の一例を示している。
Figure JPOXMLDOC01-appb-C000014
 また、上記一般式(2)の範疇に属するジチオン化合物としては、下記化学式(2a)~(2g)に示す有機化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000015
 下記化学反応式(II)は、化学式(2a)に示すジチオン化合物を正極活物質層2の主体に使用し、Liを電解質塩のカチオンに使用した場合に予想される充放電反応の一例を示している。
Figure JPOXMLDOC01-appb-C000016
 尚、上記ジチオン化合物の分子量は、特に限定されないが、ジチオン構造以外の部分が大きくなると、分子量が増加するため単位質量当たりの蓄電容量、すなわち容量密度が小さくなる。したがって、ジチオン構造以外の部分の分子量は小さいのが好ましい。
(2)ジオン化合物
 ジオン化合物も、ジチオン化合物と同様、充放電時(酸化状態及び還元状態)の安定性に優れており、酸化還元反応で二電子以上の多電子反応が可能である。そして、正極活物質層2の表面をイオン伝導体薄膜3で被覆することにより、充放電効率が向上することから、多電子反応の充放電を安定的に繰り返すことができ、高容量密度の二次電池を得ることが可能となる。
 このようなジオン化合物としては、構成単位中にジオン構造を有するものであれば特に限定されるものではないが、下記一般式(3)又は(4)で表される化合物を好んで使用することができる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 ここで、上記一般式(3)又は(4)中、nは1以上の整数であり、R~R及びR10は、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR~R及びR10は同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含んでいる。また、Rは、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、及び置換若しくは非置換のイミノ基のうちの少なくとも一種を示し、前記イミノ基同士が連結している場合を含んでいる。
 そして、上記一般式(3)の範疇に属するジオン化合物としては、下記化学式(3a)~(3e)に示す有機化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000019
 下記化学反応式(III)は、化学式(3a)で表されるジオン化合物を正極活物質層2の主体に使用し、Liを電解質塩のカチオンに使用した場合に予想される充放電反応の一例を示している。
Figure JPOXMLDOC01-appb-C000020
 また、上記一般式(4)の範疇に属するジオン化合物としては、下記化学式(4a)~(4f)に示す有機化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000021
 下記化学反応式(IV)は、化学式(4a)に示すジオン化合物を正極活物質層2の主体に使用し、Liを電解質塩のカチオンに使用した場合に予想される充放電反応の一例を示している。
Figure JPOXMLDOC01-appb-C000022
 上記ジオン化合物の分子量は、特に限定されないが、ジオン構造以外の部分が大きくなると、分子量が増加するため単位質量当たりの蓄電容量、すなわち容量密度が小さくなる。したがって、ジオン構造以外の部分の分子量は小さいのが好ましい。
(3)ジアミン化合物
 ジアミン化合物も、ジチオン化合物やジオン化合物と同様、充放電時(酸化状態及び還元状態)の安定性に優れており、酸化還元反応で二電子以上の多電子反応が可能である。そして、正極活物質層2の表面をイオン伝導体薄膜3で被覆することにより、充放電効率が向上することから、多電子反応の充放電を安定的に繰り返すことができ、高容量密度の二次電池を得ることが可能となる。
 このようなジアミン化合物としては、構成単位中にジアミン構造を有するものであれば特に限定されるものではないが、下記一般式(5)で表される有機化合物を好んで使用することができる。
Figure JPOXMLDOC01-appb-C000023
 ここで、上記一般式(5)中、R11及びR12は、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、置換若しくは非置換のカルボニル基、置換若しくは非置換のアシル基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のエステル基、置換若しくは非置換のエーテル基、置換若しくは非置換のチオエーテル基、置換若しくは非置換のアミン基、置換若しくは非置換のアミド基、置換若しくは非置換のスルホン基、置換若しくは非置換のチオスルホニル基、置換若しくは非置換のスルホンアミド基、置換若しくは非置換のイミン基、置換若しくは非置換のアゾ基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示している。また、X~Xは、水素原子、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアリール基、置換若しくは非置換の芳香族複素環基、置換若しくは非置換のアラルキル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアルコキシ基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のアリールオキシカルボニル基、置換若しくは非置換のアシル基、及び置換若しくは非置換のアシルオキシ基のうちの少なくとも1種を示し、これらの置換基は置換基同士で環構造を形成する場合を含んでいる。
 そして、上記一般式(5)の範疇に含まれる有機化合物としては、ピラジン環を挟んでアリール基が結合したフェナジン構造を構成単位中に含む有機化合物がより好ましく、例えば、化学式(5a)~(5f)に示す有機化合物を好んで使用することができる。
Figure JPOXMLDOC01-appb-C000024
 下記化学反応式(V)は、化学式(5b)に示す有機化合物を正極活物質層2の主体に使用し、Liを電解質塩のカチオンに使用した場合に予想される充放電反応の一例を示している。
Figure JPOXMLDOC01-appb-C000025
 上記ジアミン化合物の分子量は、特に限定されないが、ジアミン構造以外の部分が大きくなると、分子量が増加するため単位質量当たりの蓄電容量、すなわち容量密度が小さくなる。したがって、ジアミン構造以外の部分の分子量は小さいのが好ましい。
 尚、上記一般式(1)~(5)で列挙した各置換基は、それぞれの範疇に属するものであれば限定されるものではないが、分子量が大きくなると正極活物質の単位質量当たりに蓄積できる電荷量が小さくなるので、分子量が250程度となるように所望の置換基を選択するのが好ましい。
 そして、正極活物質は、充放電により可逆的に酸化もしくは還元されるため、充電状態、放電状態、あるいはその途中の状態で異なる構造、状態を取るが、本実施の形態では、前記正極活物質は、少なくとも放電反応における反応出発物(電池電極反応で化学反応を起こす物質)、生成物(化学反応の結果生じる物質)、及び中間生成物のうちのいずれかに含まれており、これにより充放電効率が良好で高容量密度の正極活物質を有する二次電池を実現することができる。
 次に、上記二次電池の製造方法の一例を詳述する。
 まず、正極活物質を電極形状に形成する。すなわち、好ましくは上述したいずれかの有機化合物を用意する。そして、この有機化合物を上述した導電剤、及び結着剤と共に混合し、溶媒を加えて活物質用スラリーを作製し、該活物質用スラリーを正極集電体1上に任意の塗工方法で塗工し、乾燥することにより正極集電体1上に正極活物質層2を形成する。
 ここで、活物質用スラリーの作製に使用される溶媒は、特に限定されるものではなく、例えば、ジメチルスルホキシド、ジメチルホルムアミド、N-メチルピロリドン、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ-ブチロラクトン等の塩基性溶媒、アセトニトリル、テトラヒドロフラン、ニトロベンゼン、アセトン等の非水溶媒、メタノール、エタノール等のプロトン性溶媒等を使用することができる。
 尚、溶媒の種類、有機化合物と溶媒との配合比、導電剤や結着剤の種類及びその添加量等は、二次電池の要求特性や生産性等を考慮し、任意に設定することができる。
 次に、ポリフッ化ビニリデン等の伝導体材料を有機溶媒に溶解させた伝導体溶液を作製する。そして、この伝導体溶液を正極活物質層2の表面全域に塗布し、乾燥させ、これにより正極活物質層2の表面を所定厚み(例えば、5~10μm)のイオン伝導体薄膜3で被覆し、正極4を形成する。
 ここで、伝導体材料を溶解させる溶媒についても、特に限定されるものではなく、例えば、上述した正極活物質層2の作製時に使用した溶媒と同一の溶媒を使用することができる。
 次に、電解質溶液9を用意する。そして、正極4を電解質溶液に含浸させて該正極4に前記電解質溶液9を染み込ませ、その後、前記電解質溶液9を含浸させたセパレータ8を正極4上に積層し、さらに金属Li等で形成された負極活物質7及び銅箔等で形成された負極集電体6を順次積層し、その後、内部空間に電解質溶液9を注入する。そして、その後電池缶(図示せず。)で外装封止し、これにより二次電池が作製される。
 このように本実施の形態によれば、正極4が、電池電極反応で2つ以上の電子が関与する多電子系の有機化合物を主体とした正極活物質層2を有すると共に、該正極活物質層2の表面が、リチウムを選択的に透過するイオン伝導体薄膜3で被覆されているので、有機分子や他のイオンが正極活物質層2の表面及び内部に到達することもなく、リチウムイオンのみが正極活物質層2の表面及び内部に容易に到達する。そしてこれによりイオンの伝導効率が向上することから、放電容量の低下を抑制することができ、充放電効率が良好で所望の電池容量を有する二次電池を得ることができる。
 しかも、正極活物質層2が有機化合物を主体としているため、環境負荷も低く安全性にも配慮したものとなる。
 尚、本発明は上記実施の形態に限定されるものではなく、要旨を逸脱しない範囲において種々の変形が可能である。例えば、上記実施の形態では、正極活物質層2の表面をイオン伝導体薄膜3で被覆しているが、少なくとも正極活物質層2の表面をイオン伝導体薄膜3で被覆すればよく、したがって正極集電体1及び正極活物質層2の表面全域をイオン伝導体薄膜3で被覆してもよい。
 また、上記実施の形態では、電解質として電解質塩を溶媒に溶解させた液状の電解質溶液を使用しているが、電解質溶液に比べてイオン伝導性は劣るものの、固体電解質を使用することも可能である。
 ここで、固体電解質に用いられる高分子化合物としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-モノフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体、アクリロニトリル-メチルメタクリレート共重合体、アクリロニトリル-メチルアクリレート共重合体、アクリロニトリル-エチルメタクリレート共重合体、アクリロニトリル-エチルアタリレート共重合体、アクリロニトリル-メタクリル酸共重合体、アクリロニトリル-アクリル酸共重合体、アクリロニトリル-ビニルアセテート共重合体等のアクリルニトリル系重合体、更にはポリエチレンオキサイド、エチレンオキサイド-プロピレンオキサイド共重合体、及びこれらのアクリレート体やメタクリレート体の重合体等を挙げることができる。
 また、これらの高分子化合物に電解質溶液を含ませてゲル状にしたものや、電解質塩を含有させた高分子化合物のみを使用することもできる。
 さらに、電解質には、固体電解質やカチオンとアニオンを組み合わせたイオン性液体、グライム類などの対称グリコールジエーテル、鎖状スルホン類等を使用することができる。
 また、上記実施の形態では、有機化合物を正極活物質層2に使用したが、負極活物質層に使用してもよい。
 さらに、電池形状についても、特に限定されるものではなく、コイン型、円筒型、角型、シート型等にも適用できる。また、外装方法も特に限定されず、金属ケースや、モールド樹脂、アルミラミネートフイルム等を使用してもよい。
 次に、本発明の実施例を具体的に説明する。
 尚、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。
〔電池セルの作製〕
 活物質用材料として、化学式(1a)で表されるルベアン酸を用意した。
Figure JPOXMLDOC01-appb-C000026
 そして、ルベアン酸:300mg、導電剤としてのグラファイト粉末:600mg、結着剤としてのポリテトラフルオロエチレン樹脂:100mgをそれぞれ秤量し、全体が均一になるように混合しながら混練し、混合体を得た。
 次いで、この混合体を加圧成形し、厚さ約150μmのシート状部材を作製した。次に、このシート状部材を、真空中70℃で1時間乾燥した後、直径12mmの円形に打ち抜き、ルベアン酸を主体とする正極活物質を作製した。
 また、伝導体材料としてのポリフッ化ビニリデンが10重量%となるように溶媒としてのN-メチル―2―ピロリドンに溶解させ、これにより伝導体溶液を作製した。
 そして、正極集電体上に正極活物質を塗工して正極活物質層を形成し、さらに該正極活物質層上に伝導体溶液を塗布した。そしてこの後、110℃で真空乾燥し、正極活物質層の表面を膜厚が10μmのイオン伝導体薄膜で被覆し、これにより正極を得た。
 次に、LiPF(電解質塩)のモル濃度が1.0mol/Lとなるように、有機溶剤であるエチレンカーボネート/ジエチルカーボネートにLiPFを溶解させ、これにより電解質溶液を作製した。尚、エチレンカーボネートとジエチルカーボネートの混合比率は、体積%でエチレンカーボネート:ジエチルカーボネート=30:70とした。
 次いで、この電解質溶液を含浸させたポリプロピレン多孔質フイルムからなる厚さ20μmのセパレータを正極上に積層し、さらに銅箔からなる負極集電体にリチウムを貼付した負極をセパレータ上に積層し、積層体を形成した。
 そして、この電解質溶液を前記積層体に0.2mL滴下し、含浸させた。
 その後、負極集電体上に金属製ばねを載置すると共に、周縁にガスケットを配置した状態で負極ケースを正極ケースに接合し、かしめ機によって外装封止し、これにより実施例の電池セルを作製した。
 また、正極活物質層をイオン伝導膜で被覆しなかった以外は、上記実施例と同様の方法・手順で比較例の電池セルを作製した。
〔電池セルの動作確認〕
 以上のようにして作製した実施例及び比較例の電池セルを、0.1mAの定電流で3時間充電し、その後、0.1mAの定電流で電圧が1.5Vに低下するまで放電し、充放電特性を調べた。
 図2は、その測定結果を示している。横軸は容量密度(mAh/g)、縦軸は電圧(V)であり、実線が実施例、破線が比較例の充放電曲線を示している。
 この図2から明らかなように、比較例は、充電時は3.5Vで電圧平坦部が形成され、容量密度は約92mAh/gとなったが、放電すると電圧平坦部が形成されることなく、容量密度が急激に低下し、放電が終了する電圧が1.5Vで、容量密度は約28mAh/gとなり、充放電効率は約30%と低くなった。
 これに対し実施例は、充電時は4.0Vで電圧平坦部が形成され、容量密度は約92mAh/gとなり、放電時にも約3.3Vで電圧平坦部が形成され、放電が終了する1.5Vの電圧で、容量密度は約80mAh/gとなり、充放電効率は87%と良好な結果が得られた。これは正極活物質層の表面をイオン伝導体薄膜で被覆したことから、正極活物質層の主体であるルベアン酸が電解質溶液に溶解することもなく、良好なイオン伝導効率でもってリチウムイオンが正極活物質層の表面及び内部に到達し、これらリチウムイオンとルベアン酸との間で所望の充放電反応が行なわれたためと思われる。
 電極活物質に多電子系の有機化合物を使用しても、充放電効率が良好で、充放電を繰り返しても電池容量の低下を抑制できる二次電池を実現する。
2 正極活物質層(電極活物質層)
3 イオン伝導体薄膜
4 正極(第1の電極)
5 負極(第2の電極)
9 電解質溶液

Claims (10)

  1.  第1の電極と第2の電極との間に電解質が介在されると共に、前記第1及び第2の電極、前記電解質のうちの少なくともいずれかにリチウムを含有した二次電池であって、
     前記第1及び第2の電極のうちの一方の電極は、電池電極反応で2つ以上の電子が関与する多電子系の有機化合物を主体とした電極活物質層を有すると共に、
     少なくとも前記電極活物質層の表面が、リチウムを選択的に透過するイオン伝導体薄膜で被覆されていることを特徴とする二次電池。
  2.  前記イオン伝導体薄膜は、ポリフッ化ビニリデン、ポリメタクリレート、及びトリプロピレングリコールジアクリレートの重合体の中から選択された少なくとも一種を含有していることを特徴とする請求項1記載の二次電池。
  3.  前記有機化合物は、ジチオン構造を有するジチオン化合物、ジオン構造を有するジオン化合物、及びジアミン構造を有するジアミン化合物の中から選択された少なくとも一種を構成単位中に有していることを特徴とする請求項1又は請求項2記載の二次電池。
  4.  前記ジチオン化合物は、一般式
    Figure JPOXMLDOC01-appb-C000001
     [式中、nは1以上の整数であり、R及びRは、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR及びRは同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含む。]
     で表わされることを特徴とする請求項3記載の二次電池。
  5.  前記ジチオン化合物は、一般式
    Figure JPOXMLDOC01-appb-C000002
     [式中、nは1以上の整数であり、R及びRは、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR及びRは同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含み、Rは、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、及び置換若しくは非置換のイミド基のうちの少なくとも1種を示し、前記イミノ基同士が互いに連結している場合を含む。]
     で表わされることを特徴とする請求項3記載の二次電池。
  6.  前記ジオン化合物は、一般式
    Figure JPOXMLDOC01-appb-C000003
     [式中、nは1以上の整数であり、R及びRは、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR及びRは同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含む。]
     で表わされることを特徴とする請求項3記載の二次電池。
  7.  前記ジオン化合物は、一般式
    Figure JPOXMLDOC01-appb-C000004
     [式中、nは1以上の整数であり、R及びR10は、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR及びR10は同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含み、Rは、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、及び置換若しくは非置換のイミノ基のうちの少なくとも一種を示し、前記イミノ基同士が互いに連結している場合を含む。]
      で表わされることを特徴とする請求項3記載の二次電池。
  8.  前記ジアミン化合物は、一般式
    Figure JPOXMLDOC01-appb-C000005
     [式中、R11及びR12は、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、置換若しくは非置換のカルボニル基、置換若しくは非置換のアシル基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のエステル基、置換若しくは非置換のエーテル基、置換若しくは非置換のチオエーテル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアミド基、置換若しくは非置換のスルホン基、置換若しくは非置換のチオスルホニル基、置換若しくは非置換のスルホンアミド基、置換若しくは非置換のイミノ基、置換若しくは非置換のアゾ基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示す。X~Xは、水素原子、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアリール基、置換若しくは非置換の芳香族複素環基、置換若しくは非置換のアラルキル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアルコキシ基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のアリールオキシカルボニル基、置換若しくは非置換のアシル基、及び置換若しくは非置換のアシルオキシ基のうちの少なくとも1種を示し、これらの置換基は置換基同士で環構造を形成する場合を含む。]
     で表わされることを特徴とする請求項3記載の二次電池。
  9.  前記電極活物質が、前記電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれることを特徴とする請求項1乃至請求項8のいずれかに記載の二次電池。
  10.  第1の電極と第2の電極との間に電解質を介在した二次電池の製造方法であって、
     前記第1及び第2の電極のうちの一方の電極を、多電子系の有機化合物を主体とした電極活物質層を有するように形成し、少なくとも前記電極活物質層の表面を、リチウムイオンを選択的に透過するイオン伝導体薄膜で被覆することを特徴とする二次電池の製造方法。
PCT/JP2013/079999 2012-11-09 2013-11-06 二次電池、及び二次電池の製造方法 WO2014073561A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014545728A JP5800444B2 (ja) 2012-11-09 2013-11-06 二次電池、及び二次電池の製造方法
US14/707,314 US20150243992A1 (en) 2012-11-09 2015-05-08 Secondary battery and method for producing secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-247700 2012-11-09
JP2012247700 2012-11-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/707,314 Continuation US20150243992A1 (en) 2012-11-09 2015-05-08 Secondary battery and method for producing secondary battery

Publications (1)

Publication Number Publication Date
WO2014073561A1 true WO2014073561A1 (ja) 2014-05-15

Family

ID=50684663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079999 WO2014073561A1 (ja) 2012-11-09 2013-11-06 二次電池、及び二次電池の製造方法

Country Status (3)

Country Link
US (1) US20150243992A1 (ja)
JP (1) JP5800444B2 (ja)
WO (1) WO2014073561A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041097A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 二次電池、及び二次電池の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6638622B2 (ja) 2016-11-08 2020-01-29 トヨタ自動車株式会社 フッ化物イオン電池およびその製造方法
JP6536538B2 (ja) * 2016-11-08 2019-07-03 トヨタ自動車株式会社 フッ化物イオン電池およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147015A (ja) * 2006-12-11 2008-06-26 Honda Motor Co Ltd 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法
JP2011124017A (ja) * 2009-12-08 2011-06-23 Murata Mfg Co Ltd 電極活物質及びそれを用いた二次電池
JP2012142297A (ja) * 1995-06-28 2012-07-26 Ube Ind Ltd 非水二次電池
JP2012164480A (ja) * 2011-02-04 2012-08-30 Honda Motor Co Ltd 電池
JP2013020710A (ja) * 2011-07-07 2013-01-31 Nissan Chem Ind Ltd 電荷貯蔵材料、電極活物質、電極及び電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142297A (ja) * 1995-06-28 2012-07-26 Ube Ind Ltd 非水二次電池
JP2008147015A (ja) * 2006-12-11 2008-06-26 Honda Motor Co Ltd 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法
JP2011124017A (ja) * 2009-12-08 2011-06-23 Murata Mfg Co Ltd 電極活物質及びそれを用いた二次電池
JP2012164480A (ja) * 2011-02-04 2012-08-30 Honda Motor Co Ltd 電池
JP2013020710A (ja) * 2011-07-07 2013-01-31 Nissan Chem Ind Ltd 電荷貯蔵材料、電極活物質、電極及び電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041097A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 二次電池、及び二次電池の製造方法

Also Published As

Publication number Publication date
JPWO2014073561A1 (ja) 2016-09-08
JP5800444B2 (ja) 2015-10-28
US20150243992A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP5488799B2 (ja) 電極活物質及び二次電池
JP2010055923A (ja) 電極活物質、及び二次電池
JP2010080343A (ja) 電極活物質、及び二次電池
JP5527882B2 (ja) 電極活物質及びそれを用いた二次電池
WO2012121145A1 (ja) 電極活物質、電極、及び二次電池
JP5808067B2 (ja) 二次電池
JP5483521B2 (ja) 電極活物質、及び二次電池
JP5692741B2 (ja) 電極活物質及び二次電池
JP5645319B2 (ja) 二次電池
JP5800444B2 (ja) 二次電池、及び二次電池の製造方法
WO2012117941A1 (ja) 電極活物質、電極、及び二次電池
JP5818689B2 (ja) リチウムイオン二次電池
JP2013134947A (ja) 電極活物質およびそれを含む二次電池
JP6179233B2 (ja) 非水電解液二次電池
WO2012105439A1 (ja) 電極活物質、電極、及び二次電池
WO2013157458A1 (ja) 電極と該電極の製造方法、及び二次電池
JP5800443B2 (ja) 二次電池、及び二次電池の充放電方法
JP6071819B2 (ja) 二次電池、及び二次電池の製造方法
JP5536519B2 (ja) 電極活物質及び二次電池
JP5633948B2 (ja) 電極活物質、電極、及び二次電池
JP2010113840A (ja) 電極活物質及び電池
JP5534589B2 (ja) 電極活物質及び二次電池
JP5716934B2 (ja) 電極活物質、電極、及び二次電池
WO2012105438A1 (ja) 電極活物質、電極、及び二次電池
WO2013172323A1 (ja) 電極活物質、電極、及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852859

Country of ref document: EP

Kind code of ref document: A1