WO2014068886A1 - 集積型ガス供給装置 - Google Patents

集積型ガス供給装置 Download PDF

Info

Publication number
WO2014068886A1
WO2014068886A1 PCT/JP2013/006184 JP2013006184W WO2014068886A1 WO 2014068886 A1 WO2014068886 A1 WO 2014068886A1 JP 2013006184 W JP2013006184 W JP 2013006184W WO 2014068886 A1 WO2014068886 A1 WO 2014068886A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas supply
inlet
outlet
block
Prior art date
Application number
PCT/JP2013/006184
Other languages
English (en)
French (fr)
Inventor
睦典 小艾
廣瀬 隆
山路 道雄
隆博 松田
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to SG11201501475PA priority Critical patent/SG11201501475PA/en
Priority to KR1020157004553A priority patent/KR101800684B1/ko
Priority to US14/425,790 priority patent/US9471065B2/en
Priority to CN201380057366.6A priority patent/CN104737086B/zh
Publication of WO2014068886A1 publication Critical patent/WO2014068886A1/ja
Priority to IL237344A priority patent/IL237344A/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0652Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/003Housing formed from a plurality of the same valve elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/044Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0676Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on flow sources
    • G05D7/0682Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on flow sources using a plurality of flow sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87249Multiple inlet with multiple outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • Y10T137/87885Sectional block structure

Definitions

  • the present invention relates to an improvement of an integrated gas supply device, and is an integrated gas that can increase the number of gas supply lines, reduce the size of the integrated gas supply device, facilitate maintenance and inspection, improve gas replacement properties, and the like.
  • the present invention relates to a supply device.
  • FIG. 15 shows an example, and the two-way opening / closing valves 41A and 41B, the three-way opening / closing valves 42A and 42B, the flow rate control device 43 and the like are provided in block bodies 44, 45, 46, 47, and 48 provided with gas flow paths.
  • An integrated gas supply apparatus is constructed by forming a single gas supply line by integrating in series via a block, and arranging and fixing the gas supply line in parallel in a plurality of rows via block bodies 45 and 49. (JP-A-5-172165, etc.).
  • This type of integrated gas supply apparatus can easily replace the control devices forming each gas supply line by removing the fixing bolts for fixing the devices to the block body from above. There is an effect that it is possible to easily cope with expansion of supply lines.
  • the gas supply line number required by the come increased thermal flow control device for the thickness L 0 of (mass flow controller) or a pressure type flow rate control device is about 20 ⁇ 24 mm, inevitably integrated gas supply There is a problem that the depth L of the apparatus increases and the integrated gas supply apparatus becomes larger.
  • semiconductor manufacturing equipment has adopted a multi-chamber method in which a plurality of processing chambers are provided and a plurality of wafers are simultaneously processed, or a chamber multi-process method in which a plurality of processes are continuously performed in one processing chamber.
  • the integrated gas supply apparatus needs to be provided with a large number of gas supply lines in order to cope with an increase in the types of supply gas.
  • an integrated gas supply apparatus used in a one-chamber multi-process semiconductor manufacturing apparatus may require 16 gas supply lines.
  • the number of gas supply lines increases, there is a problem that the size of the semiconductor manufacturing apparatus is inevitably increased, the installation location is increased, and the volume of an expensive clean room is increased.
  • the integrated gas supply apparatus it is necessary to instantaneously switch various processing gases supplied to the process chamber and supply a specific gas at a predetermined flow rate in a clean state. For this reason, the gas flow volume inside the integrated gas supply device is reduced as much as possible to improve the gas replacement performance, and maintenance and management of the device, in particular, replacement and adjustment of various devices can be performed easily and leaks to the connection. It is essential to prevent the occurrence of However, in reality, it is difficult to reduce the gas flow path volume inside the integrated gas supply device.
  • the rated gas flow rate is 1.0 SLM, gas
  • the inner diameter of the flow path is 6.27 mm (1/4 inch)
  • the gas type cannot be switched quickly, On average, it takes about 5 seconds, which causes various problems in terms of productivity and product quality of semiconductor manufacturing equipment.
  • the present invention relates to the above-mentioned problems in the conventional integrated gas supply device of this type, i.e., each device such as the conventional inlet on-off valve, purge three-way on-off valve, flow controller, outlet on-off valve, etc.
  • each device such as the conventional inlet on-off valve, purge three-way on-off valve, flow controller, outlet on-off valve, etc.
  • a device having a structure in which a plurality of gas supply lines S connected in a row (in series) are arranged and fixed in parallel on the base plate, it is difficult to reduce the size of the device, and the number of gas supply lines increases.
  • it will not solve the problems such as the inability to meet the requirements such as reduction of installation space, b) the difficulty of increasing the gas replacement capacity by reducing the volume of the fluid passage inside the integrated gas supply device, etc.
  • the clean room volume can be reduced and the gas replacement performance can be greatly improved. It is an object of the present invention to provide an integrated gas supply device that can be easily inspected and maintained even when installed on the ceiling, and enables highly accurate flow rate control and stable supply of clean gas.
  • two gas flow rate controllers 3 provided with a plurality of flow rate control units are combined and fixed facing each other on the gas inlet side block 12 and the gas outlet side block 13 juxtaposed at intervals in a plan view,
  • a gas supply unit U having at least four gas supply lines S is formed, and a plurality of the gas supply units U are stacked.
  • the basic configuration of the present invention is to fix.
  • the flow rate controller 3 is a pressure type flow rate controller 3 in which two flow rate control units are provided in parallel, and the inlet block 15 of each flow rate controller 3 is connected to the side surface of the gas inlet side block 12 and each flow rate is controlled.
  • the outlet block 16 of the controller 3 is fixed to the side surface of the gas outlet side block 13 so that the flow rate controllers 3 are combined and fixed facing each other.
  • the inlet opening / closing valve 1 is provided on the right side of the gas inlet side block 12.
  • the outlet on / off valve 5 is fixed to the left side of the gas outlet side block 13, and the number of stacked gas supply units U is plural, for example, four, and the total number of gas supply lines S is radix ⁇ 4, for example, 16 Is desirable.
  • an integrated gas supply apparatus having a total of 16 gas supply lines S can be formed extremely compactly by adopting a configuration in which the number of stacks is four.
  • the inlet on / off valve main body block 18 is provided on the right side surface of the gas inlet side block 12, the inlet on / off valve 1 of the flow rate controller 3 is provided on the front side and the back side of the inlet on / off valve main body block 18, and the gas.
  • the outlet on / off valve main body block 19 is attached to the left side surface of the outlet side block 13, and the outlet on / off valves 5 of both flow controllers 3 are attached and fixed to the front side and the rear side of the outlet on / off valve main body block 19, respectively. It is desirable to do. With such an attachment configuration, the integrated gas supply device can be made more compact.
  • the inlet on / off valve main body block 18 is provided with one inlet on / off valve 1 for each flow rate controller 3, and the process gas or purge gas is supplied from one process gas inlet joint 6 or purge gas inlet joint 7 to both flow rate controllers. 3, and the process gas or purge gas is supplied to each flow rate controller 3 through the gas passage 28 of the gas inlet side block 12 and the gas passage 28 of the pressure type flow rate controller inlet block 15. good.
  • the process gas is supplied from the four process gas inlet joints 6 to each gas supply unit U, and the operation management of the apparatus becomes easy.
  • process gas or purge gas is supplied from a total of four outlet on / off valves 5 through one process gas outlet joint 8.
  • process gas is merged from a plurality of gas supply units U, for example, four gas supply units U, and supplied through the process gas outlet joint 8.
  • the gas inlet side block 12 is a columnar body having a height H, and a plurality of, for example, four vertical gas passages (through holes) 25 are perforated and stacked by the vertical gas passages 25.
  • the inlet-side gas passages including the four gas passages 28 of the gas inlet-side blocks 12 of the four gas supply units U may be communicated with each other.
  • the volume of the gas flow passage inside the integrated gas supply device can be reduced, and it can be used as a support and fixing member for the flow rate controller 3 and the like with the gas inlet side block 12 facing each other. It becomes possible to do.
  • the process gas flowing in from each process gas inlet joint 6 is equally introduced into a plurality of, for example, four gas supply units U.
  • the gas outlet side block 13 is a columnar body having a height H, and an outlet side gas passage portion composed of four gas passages 28 of a plurality of, for example, four gas supply units U stacked on the column is formed. It is preferable to form it at intervals in the direction. By setting it as the said structure, fixation of each apparatus, such as the flow controller 3 etc. which faced, becomes easier. Further, as shown in FIG. 1, the gases from the four gas supply lines S of each gas supply unit U are merged and supplied through the process gas outlet joint 8.
  • the gas inlet side block 12 being a columnar body having a height H. It is good also as a structure which forms the inlet side gas channel part which becomes a space
  • the process gas flowing in from each process gas inlet joint 6 is equally introduced into the four flow rate controllers 3 of one gas supply unit U.
  • Process gas outlet joints 8 are provided in each of the gas passages 28 as outlet side gas passages comprising four independent gas passages 28 each communicating the outlet on / off valve body block 19 with the four outlet on / off valves 5. It is also possible to adopt a configuration in which the process gas outlet joints 8 of a plurality of, for example, four gas supply units U provided and stacked are connected by a connecting pipe 29. With this configuration, as shown in FIG. 8, one gas supply line S is joined from each gas supply unit U and supplied through the process gas outlet joint 8.
  • the outlet on / off valve main body block 19 is formed into a columnar body having a height H, and a plurality of, for example, four longitudinal gas passages (through holes) 25 are perforated therein.
  • a plurality of, for example, four gas supply units U of four gas supply units U stacked on the main body block 19 are formed with outlet-side gas passage portions formed at intervals in the height direction. It is also possible to connect the gas passages 28 of the outlet side gas passage portions of the plurality of stacked gas supply units U, for example, four gas supply units U to each other by the (through holes) 25.
  • the connecting pipe 29 is unnecessary and the apparatus can be further simplified.
  • an inlet on / off valve main body block 18a is interposed between the gas inlet side block 12 and the inlet on / off valve main body block 18, and an inlet on / off valve is provided on the back side and front side of the inlet on / off valve main body block 18a. It is also possible to fix the 1a and the process gas inlet joint 6a and increase the number of process gas supply points. By adopting such a configuration, the number of supply points for process gas and the like can be increased more easily.
  • two flow rate controllers 3 provided with a plurality of flow rate control units are combined and fixed facing each other on the gas inlet side block 12 and the gas outlet side block 13 that are juxtaposed at intervals in a plan view.
  • a gas supply unit U having at least four gas supply lines S is formed, and a plurality of gas supply units U are provided.
  • the control flow rate is 1 LM, the dimensions of the integrated gas supply device can be suppressed to a height of 240 mm, a width of 240 mm, and a depth of 450 mm, which enables a significant reduction in size.
  • the gas flow passage volume inside the integrated gas supply device can be significantly reduced, and in particular, the gas inlet side block 12 and the gas outlet side block 13 arranged in parallel at intervals,
  • the two flow controllers 3 provided with a plurality of flow controllers are combined and fixed facing each other, and each flow controller 3 is provided with an inlet on-off valve 1 and an outlet on-off valve 5 so that a gas flow passage is provided.
  • the inner diameter is 6.27 mm
  • the number of gas supply lines is 16, and the control flow rate of each line is 1 LM
  • the gas passage volume inside the apparatus can be about 60 to 70 CC, and the internal gas passage volume of the conventional integrated gas supply apparatus It can be reduced to almost 1/3 or less.
  • the so-called gas substituting property is remarkably improved, and the time required for gas replacement can be shortened by about 30 to 40% as compared with a conventional integrated gas supply apparatus having the same control capacity.
  • the integrated gas supply apparatus of the present invention is small and lightweight, it can be easily installed on the ceiling surface of a semiconductor manufacturing apparatus, and the footprint of the clean room can be reduced and the integrated gas supply apparatus. Can be removed or attached from the side of the apparatus, and the maintenance management of the apparatus becomes extremely easy.
  • FIG. 1 is a gas supply system diagram of an integrated gas supply apparatus for a semiconductor manufacturing apparatus according to a first embodiment of the present invention.
  • 1 is a front view of an integrated gas supply apparatus for a semiconductor manufacturing apparatus according to a first embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the gas supply unit used in the first embodiment of the present invention (cross-sectional view taken along the line II in FIG. 2).
  • FIG. 3 is an enlarged schematic sectional view taken along the line II in FIG. 2.
  • It is a left view of the gas outlet part of FIG.
  • It is a cross-sectional schematic diagram of the gas supply unit which concerns on the 2nd example used in 1st Example of this invention. It is a left view of the gas outlet part of FIG.
  • FIG. 10 is a schematic cross-sectional view of the view in FIG.
  • FIG. 10 is an enlarged schematic cross-sectional view of the roll view of FIG. 9.
  • It is a left view of the gas outlet part of FIG.
  • It is a gas supply system diagram of the integrated gas supply apparatus for semiconductor manufacturing apparatuses which concerns on 3rd Example.
  • It is a cross-sectional schematic diagram of the gas inlet part of the gas supply unit U which concerns on 3rd Example.
  • FIG. 6 is a perspective view showing an example of a conventional integrated gas supply device (Japanese Patent Laid-Open No. 5-172165).
  • FIG. 1 to 7 show an integrated gas supply apparatus for a semiconductor manufacturing apparatus according to a first embodiment of the present invention.
  • the gas supply system shown in FIG. the four types of gas supplied to the process gas inlet joint 6 are supplied from the process gas outlet joint 8 through any one of the sixteen gas supply lines S and the four process gas passages 10 to the process processing apparatus. (Not shown). That is, in the present embodiment, the total 16 gas supply lines S are divided into four groups, and the gas flowing in from each process gas inlet joint 6 is introduced into each of the four groups, and each of the four groups. The four gas supply lines S drawn out from the two are joined together and supplied from the process gas passage 10 to a process processing apparatus (not shown).
  • 1 is an inlet on-off valve
  • 2 is a valve drive unit
  • 3 is a flow controller
  • 5 is an outlet on-off valve
  • 6 is a process gas inlet joint
  • 7 is a purge gas inlet joint
  • 8 is a process gas outlet joint
  • 9 is a purge gas passage
  • 10 is a process gas passage 10.
  • a group consisting of the four gas supply lines S is referred to as a gas supply unit U.
  • FIG. 2 is a front view of an integrated gas supply apparatus for a semiconductor manufacturing apparatus according to the first embodiment of the present invention.
  • the integrated gas supply apparatus includes four gas supply lines S composed of the four systems.
  • the gas supply unit U is formed by stacking in the vertical direction and fixing them to each other.
  • the inlet on / off valve 1 side is the right side
  • the back side facing the front is the back side (the back part of the depth L)
  • FIG. 3 is a schematic cross-sectional view taken along the line II in FIG. 2 and corresponds to the schematic cross-sectional view of each gas supply unit U.
  • the gas supply unit U has a gas inlet side block 12 and a gas outlet side block 13 arranged in parallel in a vertical direction at intervals in a plan view, and an inlet on / off valve is connected to the gas inlet side block 12.
  • the main body block 18 for outlet and the main body block 19 for outlet on / off valve are fixed to the gas outlet side block 13, and the inlet on / off valve 1, the flow controller 3, the outlet on / off valve 5 are provided on the front side and back side of these members. Etc. are fixed to each other so as to face each other.
  • each of the flow rate controllers 3 is fixed to the gas inlet side block 12 and the gas outlet side block 13 via the pressure type flow rate controller inlet block 15 and the pressure type flow rate controller outlet block 16, and is connected to the gas inlet side.
  • a first unit body U 1 having two systems of gas supply lines S including an inlet on-off valve 1, a flow controller 3, an outlet on-off valve 5 and the like on the front side and the back side of the block 12 and the gas outlet side block 13 and the first unit body U 1 by the 2 unit body U 2 was horizontally opposed to fixed, the gas supply unit U 1 group having a gas supply line S of four systems are formed.
  • reference numeral 14 denotes a flow controller main body block
  • 20 denotes a fixing bolt
  • 21a denotes a control valve of the flow controller
  • 28 denotes a gas passage.
  • FIG. 4 shows the configuration of the gas supply unit U used in the first embodiment, and the gas supply units U according to the first example are arranged in parallel in a vertical direction with a certain interval. It is formed by assembling the first unit body U 1 and the second unit body U 2 having the same configuration horizontally facing each other on the front side and the back side of the gas inlet side block 12 and the gas outlet side block 13. .
  • the first unit body U 1 has a square inlet-opening / closing valve main body block 18 airtightly fixed to the right side surface of the gas inlet side block 12 and a square shape airtightly fixed to the left side surface of the gas outlet side block 13.
  • the main body block 19 for the outlet on-off valve and the back side of the gas inlet side block 12 and the gas outlet side block 13 are hermetically fixed via a pressure type flow controller inlet block 15 and a pressure type flow controller outlet block 16.
  • a flow rate controller 3 having a pair of piezoelectric element drive portions 21 provided in parallel, an inlet on / off valve 1 fixed on the back side of the inlet on / off valve main body block 18, and a rear side of the outlet on / off valve main body block 19 in parallel. It is formed in the shape of two outlet on-off valves 5 and the like.
  • Reference numeral 21 a denotes a control valve that is driven by the piezo element driving unit 21.
  • the second unit body U 2 includes a rectangular inlet on / off valve body block 18 that is airtightly fixed to the right side surface of the gas inlet side block 12 and a square that is airtightly fixed to the left side surface of the gas outlet side block 13.
  • the main body block 19 for the outlet on-off valve and two sets of piezo element driving units 21 that are airtightly fixed to the front side of the gas inlet side block 12 and the gas outlet side block 13 via the inlet block 15 and the outlet block 16 are parallel.
  • the flow rate controller 3 provided in a shape, the inlet on / off valve 1 fixed on the front side of the inlet on / off valve main body block 18, and two outlet on / off fixed in parallel on the front side of the outlet on / off valve main body block 19
  • the process gas inlet joint 6 and the purge gas inlet joint 7 are formed on the right side surface of the inlet on / off valve main body block 18 and the left side of the outlet on / off valve main body block 19.
  • the process gas outlet coupling 8 are respectively fixed to.
  • the main body block 18 for the inlet on / off valve is a square block having a thickness of about 20 to 21 mm, and a mounting recess 24 for the inlet on / off valve 1 is provided on the front side and the rear side thereof.
  • a valve chamber of the valve 1 is formed.
  • an inlet on-off valve 1 having a metal diaphragm as a valve body is used, which communicates with a gas passage communicating with the process gas inlet joint 6 and the purge gas inlet joint 7 and with a gas inlet side block 12.
  • a gas passage 28 is provided.
  • each of the inlet on / off valves 1 and the outlet on / off valve 5 is fixed by screwing into the valve mounting recess 24.
  • the gas inlet side block 12 is a rectangular column having a height H of about 85 to 90 mm, and four vertical gas passages (through holes) 25 are perforated in the height direction.
  • a horizontal gas passage 28 communicating with the longitudinal gas passage (through hole) 25 of the book is provided.
  • an inflow side gas passage portion composed of a horizontal gas passage 28 communicating with the four vertical gas passages (through holes) 25 is arranged at a certain interval in the height direction of the gas inlet side block 12. Steps are provided, and the gas passages 28 of the inlet opening / closing valve main body block 18 of each unit body U communicate with the gas passages 28 of the respective steps.
  • the inlet block 15 connects the flow rate controller main body block 14 of the flow rate controller 3 and the gas inlet side block 12 and fixes the flow rate controller 3 to the gas inlet side block 12 with fixing bolts 20. It is fixed airtightly by a sealing bolt 23 with a fixing bolt 20.
  • the inlet block 15 is provided with two gas passages 28. Further, “W seal” manufactured by Fujikin Co., Ltd. is used for the sealing material 23, and the process gas inlet joint 6, purge gas inlet joint 7, and process gas outlet joint 8 are manufactured by Fujikin Corporation. A UPG joint (HEX14) is used. However, it goes without saying that seal members and joints other than these may be used.
  • the flow controller 3 may be a thermal flow controller or a pressure flow controller, but in this embodiment, a pressure flow controller is used.
  • the pressure type flow rate controller is known from Japanese Patent Application Laid-Open No. 2006-330551 and the upstream side of the orifice using a known metal diaphragm type piezo element drive type control valve disclosed in Japanese Patent Application Laid-Open No. 2008-239002. By adjusting the pressure of the gas, the flow rate of gas flowing through the orifice is controlled.
  • the pressure type flow controller 3 includes a substantially square flow controller body block 14 provided with gas passages 28 for two systems, and two valves provided in parallel on one side of the flow controller body block 14.
  • the mounting recess 24, the piezo element driving unit 21 arranged and fixed in parallel to each valve mounting recess 24, the two control circuit control circuits 22, and the two provided in parallel on the other side of the flow controller main body block 14
  • the two-piezo element drive unit 21 and the control circuit 22 are organically combined to integrate the flow rate control unit, thereby providing a thin structure with two systems of pressure-type flow rate controllers. It is a characteristic
  • a flow rate controller using a piezo element drive type flow rate control valve manufactured by Fujikin Co., Ltd. is used as the pressure type flow rate controller, but the pressure type flow rate controller itself is known. Detailed description thereof is omitted here.
  • Reference numeral 20 denotes a fixing bolt.
  • the outlet block 16 is for fixing the flow controller main body block 14 to the gas outlet side block 13, is formed in a square block body, and is provided with two gas passages 28.
  • the gas outlet side block 13 is a rectangular column having a height H of about 85 to 90 mm, similar to the gas inlet side block 12, and is an outlet comprising a total of four gas passages 28 for one gas supply unit U.
  • a side gas passage is formed.
  • the four gas passages 28 forming the outlet side gas passage portion are perforated at two different positions in the height direction, and the outlet side gas passage portion composed of the four gas passages 28 is formed. However, four stages are formed so as to correspond to each gas supply unit U with an interval of about 20 to 21 mm in the height direction.
  • the outlet on / off valve main body block 19 is a rectangular block having a thickness of about 20 to 21 mm, similar to the inlet on / off valve main body block 18, and has two outlet open / close valves on the front side and the back side.
  • the recessed part 24 for attaching the valve 5 The recessed part 24 for attaching a valve is provided in parallel, and the valve chamber of the outlet on-off valve 5 is formed in each.
  • the outlet opening / closing valve 5 having a metal diaphragm as a valve body is used, and the outlet opening / closing valve main body block 19 includes the outlet opening / closing valve 5 and the outlet opening / closing valve 5 and the gas outlet.
  • Gas passage gas passages 28 that communicate between the gas passages 28 of the side block 13 and between the outlet on-off valve 5 and the process gas outlet joint 8 are provided.
  • the gas supply unit U is gas-tightly fixed with a fixing bolt 20 (partially omitted) through a seal member 23 and an orifice 27, and the gas supply unit U includes a gas inlet side block 12 and a gas outlet side block 13. Except for this part, it is finished to a thickness of about 20mm.
  • the gas supply units U provided with the four gas supply lines S composed of the first unit body U 1 and the second unit body U 2 are stacked in four stages as described above and fixed to each other. That is, since the gas inlet side block 12 and the gas outlet side block 13 are formed in a columnar body, the four gas supply units U are stacked and fixed in four stages by the gas inlet side block 12 and the gas outlet side block 13. Will be.
  • the gas flowing in from the process gas inlet joint 6 is divided into four in the gas inlet side block 12, and is discharged through the gas passages 28 of the inlet block 15, the flow controller main body block 14, the outlet block 16, and the gas outlet side block 13. They are merged in the on-off valve main body block 19 and supplied to the process chamber from the process gas outlet joint 8.
  • the process gas inlet joint 6 is provided at one place.
  • it is possible to increase the number of process gas outlet joints 8 by using the gas passages 28 of the outlet on / off valve body block 19 as independent passages.
  • the inlet on-off valve 1, the process gas inlet joint 6, the flow rate controller 3 and the like are made by the above-mentioned products of Fujikin Co., Ltd., and the inner diameter of each part of the gas passage 28 is 6.27 mm.
  • the total volume (16 systems) of the internal gas flow passages of the integrated gas supply device can be reduced to 53.4 CC, and in addition, the structure on the gas outlet side can be simplified.
  • FIG. 6 shows a second example of the pressure type flow rate controller 3 used in the first embodiment of the present invention, and only the point that the pressure detector 4a is provided in addition to the pressure detector 4 is the first example. It is different from the case of.
  • the pressure detector 4a By providing the pressure detector 4a, the pressure on the upstream side and the downstream side of the orifice 27 is detected, and the flow rate can be controlled with high accuracy even in a non-critical gas flow.
  • the pressure detector 4a itself according to the second example is known, the description thereof is omitted here.
  • FIGS. 8 to 12 show a second embodiment of the present invention.
  • the configuration of the stacked gas supply apparatus is that of the inlet side gas flow path portion of the gas inlet side block 12 and the outlet on / off valve main body block 19. Except for the difference in the configuration of the outlet side gas flow path, the configuration of the other parts is exactly the same as in the case of the first embodiment.
  • gas is simultaneously introduced from four process gas inlet joints 6 into four gas supply lines S of one gas supply unit U, and 4
  • the gas supply lines S derived from the respective gas supply units U are merged into four systems and are derived from the process gas outlet joints 8.
  • the configurations of the gas inlet side block 12 and the outlet on / off valve main body block 19 are different from those of the first embodiment as described above, and the gas inlet side block 12 of the second embodiment has a height H.
  • a columnar body is formed, and an inlet side gas passage portion including four gas passages 28 for supplying process gas or purge gas to the four gas supply units U stacked thereon is spaced in the height direction. 4 stages are formed.
  • the process gas flowing from each process gas inlet joint 6 is equally introduced into the four flow rate controllers 3 of each gas supply unit U.
  • the outlet on / off valve main body block 19 of the second embodiment is formed in an outlet side gas passage portion composed of four independent gas passages 28 respectively communicating with the four outlet on / off valves 5.
  • a process gas outlet joint 8 is provided in each of the gas passages 28.
  • the process gas outlet joints 8 of each of the four gas supply units U that are stacked are connected by a connecting pipe 29 so that gas is led out from the four process gas outlet joints 8. Yes. With this configuration, as shown in FIG. 8, a total of four gas supply lines S are merged from each gas supply unit U one by one and led out through the process gas outlet joint 8.
  • the connecting pipe 29 is required on the gas outlet side, which hinders downsizing of the apparatus. Therefore, the outlet on / off valve main body block 19 is formed into a columnar body having a height H, and four vertical gas passages (through holes) 25 are perforated therein, and are stacked on the outlet on / off valve main body block 19.
  • the four gas supply units U of the four independent gas passages 28 are formed in four stages on the outlet side gas passages at intervals in the height direction and stacked by the vertical gas passages (through holes) 25.
  • the process gas outlet joints 8 of the four gas supply units U may be connected to each other. In this case, the connecting pipe 29 is unnecessary and the apparatus can be further simplified.
  • the total volume (16 systems) of the internal gas flow passage is up to 63.8 CC.
  • the structure on the gas inlet side can be simplified.
  • FIGS. 13 and 14 show a third embodiment.
  • a gas supply port is separately provided on the downstream side of the inlet opening / closing valve 1. That is, in the third embodiment, as shown in FIG. 14, an inlet on / off valve main body block 18a is interposed between the gas inlet side block 12 and the inlet on / off valve main body block 18, and the inlet on / off valve main body block 18a is provided.
  • the inlet on-off valve 1a and the process gas inlet joint 6a are fixed to the back side and the front side of the main body block 18a to increase the number of process gas supply points.
  • the inlet on-off valve 1a and the process gas inlet joint Except for point 6a are the same as those in the first embodiment.
  • By adopting such a configuration it is possible to easily increase the number of supply points of process gas and the like without greatly increasing the internal volume of the gas flow passage inside the apparatus.
  • the number of gas supply units U to be stacked may be two, three, or four or more.
  • the four gas supply lines S are provided by fixing the first unit body U 1 and the second unit body U 2 having the two gas supply lines S so as to face each other horizontally.
  • the first unit body U 1 and the second unit body U 2 may each have one system or two or more systems of gas supply lines S.
  • the gas supply unit U may have two, three, or four or more gas supply lines S.
  • the present invention can be used not only for a semiconductor manufacturing apparatus but also as an integrated gas supply apparatus in various chemical apparatuses.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Valve Housings (AREA)
  • Flow Control (AREA)

Abstract

 本発明は、半導体製造装置用集積型ガス供給装置のガス供給ラインの増加、装置の小型化、装置内部のガス流路内容積の減少を図り、装置のガス置換性を高めると共に、設置スペースの削減、各機器類の保守管理の容易化を図る。平面視において間隔を置いて並置したガス入口側ブロック(12)及びガス出口側ブロック(13)に、複数の流量制御部を設けた2基の流量制御器(3)を対向状に組合せ固定すると共に、各流量制御器(3)に入口開閉弁(1)及び出口開閉弁(5)を設けることにより、少なくとも四つのガス供給ライン(S)を備えたガス供給ユニット(U)を形成し、当該ガス供給ユニット(U)を複数基積み重ね固定する。

Description

集積型ガス供給装置
 本発明は集積型ガス供給装置の改良に関するものであり、ガス供給ライン数の増加、集積型ガス供給装置の小型化、保守点検の容易化及びガス置換性の向上等を可能にした集積型ガス供給装置に関するものである。
 従前から、半導体製造装置等へのプロセスガスは、所謂集積型ガス供給装置を用いて供給されている。
 図15はその一例を示すものであり、二方開閉弁41A、41B、三方開閉弁42A,42B、流量制御装置43等を、ガス流路を設けたブロック体44、45、46、47、48を介して直列状に一体化して一つのガス供給ラインを形成し、当該ガス供給ラインをブロック体45、49を介して複数列並行状に配設固定することにより、集積型ガス供給装置が構成されている(特開平5-172165号等)。
 この種の集積型ガス供給装置は、各機器類をブロック体へ固定する固定用ボルトを上方から取外すことにより、各ガス供給ラインを形成する制御機器類を容易に交換することができるうえ、ガス供給ラインの増設等にも容易に対応することができると云う効用がある。
 しかし、必要とするガス供給ライン数が増加してくると、熱式流量制御装置(マスフローコントローラ)又は圧力式流量制御装置の厚みLが20~24mm程あるため、必然的に集積型ガス供給装置の奥行寸法Lが増加し、集積型ガス供給装置が大型化すると云う問題がある。
 また、近年、半導体製造装置では、複数の処理チャンバを設けて複数のウエハを並行して同時処理するマルチチャンバ方式や、一つの処理チャンバで複数のプロセスを連続的におこなうチャンバマルチプロセス方式が採用されており、そのため、集積型ガス供給装置にも、供給ガス種の増加に対応するため多数のガス供給ラインを備える必要が生じている。例えば、1チャンバマルチプロセス方式の半導体製造装置に用いる集積型ガス供給装置においては、16のガス供給ラインを必要とすることがある。
 しかし、ガス供給ライン数が増加すると、必然的に半導体製造装置が大型となり、設置場所が増加して高価なクリーンルームの容積が増大すると云う問題がある。
 更に、集積型ガス供給装置では、プロセスチャンバへ供給する各種の処理ガスを瞬時に切換え、且つ、所定流量の特定ガスをクリーンな状態で供給する必要がある。そのため、集積型ガス供給装置内部のガス流路容積を可能な限り少なくしてガス置換性を高めると共に、装置の保守管理、特に各種機器類の取替や調整が簡単におこなえ、接続部に漏洩を生じないようにすることが必要不可欠となる。
 しかし、現実には、集積型ガス供給装置内部のガス流路容積を少なくすることは困難であり、例えば、供給ライン数が16の集積型ガス供給装置では、定格ガス流量が1.0SLM、ガス流路内径が6.27mm(1/4インチ)の場合、内部のガス流路容積を120~150cc以下にすることが困難な状態にあり、結果として、ガス種の切換えが迅速に行なえず、平均して約5秒程度の時間が掛ることになり、半導体製造設備の生産性や製品品質の点に様々な問題が生ずることになる。
特開平5-172165号公報 特開2008-298180号公報 特開2002239797号公報 特開2004-100889号公報 特開2006-330851号公報
 本願発明は、従前のこの種の集積型ガス供給装置に於ける上述の如き問題、即ち、イ、従前の入口開閉弁やパージ用三方開閉弁、流量制御器、出口開閉弁等の各機器類を一列状(直列状)に連結して成るガス供給ラインSを、ベース板上に複数並列状に配設固定する構造の装置では、装置の小型化が困難であり、ガス供給ライン数の増加及び設置スペースの削減等の要求に対応できないこと、ロ、集積型ガス供給装置の内部の流体通路容積を減少させてガスの置換性を高めることが困難なこと、等の問題を解決せんとするものであり、流量制御器自体の構造や複数の流量供給ラインの組合せ構造に改良を加えることにより、例えばガス供給ライン数が16の集積型ガス供給装置において、装置の外形寸法を横幅W=240mm、奥行L=270mm、高さH=240mm以下にすると共に、ガス供給装置内部のガス通路容積の大幅な減少を図ることにより、クリーンルーム容積の減少及びガス置換性の大幅な向上が図れ、しかも、半導体製造装置等の天井部に設置しても保守点検が容易に行なえ、高精度な流量制御と安定したクリーンガスの供給等を可能とした集積型ガス供給装置を提供するものである。
 本願発明は、平面視において間隔を置いて並置したガス入口側ブロック12及びガス出口側ブロック13に、複数の流量制御部を設けた2基の流量制御器3を対向状に組合せ固定すると共に、各流量制御器3に入口開閉弁1及び出口開閉弁5を設けることにより、少なくとも4系統のガス供給ラインSを備えたガス供給ユニットUを形成し、複数基の当該ガス供給ユニットUを積み重ねて固定するようにしたことを発明の基本構成とするものである。
 前記流量制御器3は、二つの流量制御部を並列状に設けた圧力式流量制御器3とし、また、各流量制御器3の入口ブロック15をガス入口側ブロック12の側面へ、及び各流量制御器3の出口ブロック16をガス出口側ブロック13の側面へ夫々固定して各流量制御器3を対向状に組合せ固定するようにし、更に、前記ガス入口側ブロック12の右側に入口開閉弁1を、及びガス出口側ブロック13の左側に出口開閉弁5を固定し、且つ、ガス供給ユニットUの積み重ね数を複数基、例えば4基として、ガス供給ラインSの総数を基数×4、例えば16とするのが望ましい。例えば、積み重ね数を4基とした構成とすることにより、合計16のガス供給ラインSを有する集積型ガス供給装置を極めてコンパクトに形成することが出来る。
 また、前記ガス入口側ブロック12の右側面に入口開閉弁用本体ブロック18を、当該入口開閉弁用本体ブロック18の正面側及び背面側に両流量制御器3の入口開閉弁1を、前記ガス出口側ブロック13の左側面に出口開閉弁用本体ブロック19を、当該出口開閉弁用本体ブロック19の正面側及び背面側に両流量制御器3の出口開閉弁5を、夫々取付け固定するようにするのが望ましい。このような取付け構成とすることにより、集積型ガス供給装置のよりコンパクト化が可能となる。
 更に、前記入口開閉弁用本体ブロック18に設ける各流量制御器3用の入口開閉弁1を1基とし、一つのプロセスガス入口継手6又はパージガス入口継手7からプロセスガス又はパージガスを両流量制御器3の入口開閉弁1へ供給し、ガス入口側ブロック12のガス通路28及び圧力式流量制御器入口ブロック15のガス通路28を通して各流量制御器3へプロセスガス又はパージガスを供給するようにしても良い。このような構成とすることにより、4箇所のプロセスガス入口継手6から各ガス供給ユニットUへプロセスガスが供給されることになり、装置の運転管理が容易となる。
 また、前記出口開閉弁用本体ブロック19に設ける各流量制御器3用の出口開閉弁5を2基とし、合計4基の出口開閉弁5からプロセスガス又はパージガスを一つのプロセスガス出口継手8を通して供給するように出来る。当該構成とすることにより、図1に示すように、複数基、例えば4基の各ガス供給ユニットUからプロセスガスが合流され、プロセスガス出口継手8を通して供給される。
 前記ガス入口側ブロック12は、高さHの柱状体としてこれに複数個、例えば4個の縦方向のガス通路(貫通孔)25を穿孔し、当該縦方向ガス通路25により積み重ねした複数個、例えば4基のガス供給ユニットUの各ガス入口側ブロック12の4本のガス通路28から成る入口側ガス通路部を相互に連通させるようにしても良い。このような構成とすることにより、集積型ガス供給装置の内部のガス流通路容積をより少なくすることが出来ると共に、ガス入口側ブロック12を対向させた流量制御器3等の支持固定部材として活用することが可能となる。
 また、この場合には、図1に示すように、各プロセスガス入口継手6から流入したプロセスガスが複数基、例えば4基のガス供給ユニットUへ夫々均等に導入されることになる。
 また、前記ガス出口側ブロック13は、高さHの柱状体とし、これに積み重ねした複数基、例えば4基のガス供給ユニットUの4本のガス通路28からなる出口側ガス通路部を高さ方向に間隔を置いて形成する構成とするのが良い。当該構成とすることにより、対向させた流量制御器3等の各機器の固定がより容易になる。また、図1に示すように、各ガス供給ユニットUの四つのガス供給ラインSからのガスが合流され、プロセスガス出口継手8を通して供給さる。
 前記ガス入口側ブロック12を高さHの柱状体とし、当該ガス入口側ブロック12に積み重ねした複数基、例えば4基のガス供給ユニットUへプロセスガス又はパージガスを供給する4本のガス通路28からなる入口側ガス通路部を高さ方向に間隔を置いて形成する構成としても良い。この場合には、図8に示すように、各プロセスガス入口継手6から流入したプロセスガスが1基のガス供給ユニットUの4基の流量制御器3へ夫々均等に導入されることになる。
 前記出口開閉弁用本体ブロック19を4基の出口開閉弁5に夫々連通した4本の独立のしたガス通路28からなる出口側ガス通路部として各ガス通路28の夫々にプロセスガス出口継手8を設け、積み重ねした複数基、例えば4基のガス供給ユニットUの各プロセスガス出口継手8同士を連結管29により連結する構成とすることも可能である。当該構成とすることにより、図8に示すように、各ガス供給ユニットUから一つのガス供給ラインSが合流され、プロセスガス出口継手8を通して供給される。
 また、前記出口開閉弁用本体ブロック19を高さHの柱状体とし、これに複数個、例えば4個の縦方向の縦方向ガス通路(貫通孔)25を穿孔すると共に、当該出口開閉弁用本体ブロック19に積み重ねした複数基、例えば4基のガス供給ユニットUの4本の独立したガス通路28からなる出口側ガス通路部を高さ方向に間隔を置いて形成し、前記縦方向ガス通路(貫通孔)25により、積み重ねした複数基、例えば4基のガス供給ユニットUの各出口側ガス通路部のガス通路28同士を相互に連結するようにすることも可能である。このような構成とすることにより、前記連結管29が不用となって装置をより簡素化することが出来る。
 更に、前記ガス入口側ブロック12と入口開閉弁用本体ブロック18との間に入口開閉弁用本体ブロック18aを介設すると共に、入口開閉弁用本体ブロック18aの背面側及び正面側に入口開閉弁1a及びプロセスガス入口継手6aを固定してプロセスガスの供給箇所を増加する構成とすることも可能である。当該構成とすることにより、プロセスガス等の供給箇所の増加がより簡単に図れる。
 本願発明に於いては、平面視において間隔を置いて並置したガス入口側ブロック12及びガス出口側ブロック13に、複数の流量制御部を設けた2基の流量制御器3を対向状に組合せ固定すると共に、各流量制御器3に入口開閉弁1及び出口開閉弁5を設けることにより、少なくとも4系統のガス供給ラインSを備えたガス供給ユニットUを形成し、複数基の当該ガス供給ユニットUを積み重ね固定する構成としている。
 その結果、ガス供給ラインSが増加した場合でも、集積型ガス供給装置は大幅に大型化することがなく、例えば、4基のガス供給ユニットUを積層し、ガス供給ラインSが16、各ラインの制御流量1LMの場合に、集積型ガス供給装置の寸法を高さ240mm、横幅240mm、奥行450mm以内に抑えることができ、大幅な小型化が可能となる。
 また、上記構成とすることにより、集積型ガス供給装置内部のガス流通路容積を大幅に減少させることができ、特に、間隔を置いて並置したガス入口側ブロック12及びガス出口側ブロック13に、複数の流量制御部を設けた2基の流量制御器3を対向状に組合せ固定すると共に、各流量制御器3に入口開閉弁1及び出口開閉弁5を設ける構成とすることにより、ガス流通路内径6.27mm、ガス供給ライン数16、各ラインの制御流量1LMの場合に、装置内部のガス通路容積を60~70CC程度とすることができ、従前の集積型ガス供給装置の内部ガス通路容積のほぼ1/3以下に低減することが出来る。
 その結果、所謂ガスの置換性が著しく向上し、従前の同一制御容量の集積型ガス供給装置に比較して、ガス置換に要する時間を約30~40%短縮させることが出来る。
 更に、本発明の集積型ガス供給装置は小型、軽量であるため、半導体製造装置の天井面上でも容易に設置することができ、クリーンルームのフットプリントの小型化が図れると共に、集積化ガス供給装置を構成する各機器類を全て装置の側方より取外し又は取付けすることができて装置の保守管理が極めて容易となる。
本発明の第1実施例に係る半導体製造装置用集積型ガス供給装置のガス供給系統図である。 本発明の第1実施例に係る半導体製造装置用集積型ガス供給装置の正面図である。 本発明の第1実施例で使用するガス供給ユニットの横断面概要図(図2のイ-イ視断面概要図)である 図2のイ-イ視の拡大した断面概要図である。 図4のガス出口部の左側面図である。 本発明の第1実施例で使用する第2例に係るガス供給ユニットの断面概要図である。 図6のガス出口部の左側面図である。 本発明の第2実施例に係る半導体製造装置用集積型ガス供給装置のガス供給系統図である。 第2実施例に係る半導体製造装置用集積型ガス供給装置の正面図である。 図9のロ-ロ視の断面概要図である。 図9のロ-ロ視の拡大した断面概要図である。 図11のガス出口部の左側面図である。 第3実施例に係る半導体製造装置用集積型ガス供給装置のガス供給系統図である。 第3実施例に係るガス供給ユニットUのガス入口部分の断面概要図である。 従前の集積化ガス供給装置の一例を示す斜面図である(特開平5-172165号)。
 以下、図面に基づいて本発明の各実施形態を説明する。
  [第1実施形態]
 図1乃至図7は、本発明の第1実施例に係る半導体製造装置用集積型ガス供給装置を示すものであり、本第1実施例に於いては、図1のガス供給系統図に示されているように、プロセスガス入口継手6へ供給された4種のガス種が、16のガス供給ラインS及び4個のプロセスガス通路10の何れかを通してプロセスガス出口継手8より、プロセス処理装置(図示省略)へ供給される。
 即ち、本実施例では、総計16のガス供給ラインSは四つのグループに分けられており、各プロセスガス入口継手6から流入したガスが4つのグループの夫々へ導入されると共に、四つの各グループから引き出した4系統分のガス供給ラインSが一つに合流され、プロセスガス通路10から夫々プロセス処理装置(図示省略)へ供給される構成となっている。
 尚、図1において、1は入口開閉弁、2は弁駆動部、3は流量制御器、5は出口開閉弁、6はプロセスガス入口継手、7はパージガス入口継手、8はプロセスガス出口継手、9はパージガス通路、10はプロセスガス通路10である。
 また、以下の説明においては、上記4系統のガス供給ラインSから成るグループをガス供給ユニットUと呼ぶ。
 図2は、本発明の第1実施例に係る半導体製造装置用の集積型ガス供給装置の正面図であり、当該集積型ガス供給装置は、上記4系統のガス供給ラインSから成る4基のガス供給ユニットUを、縦方向に積層して相互に固定することにより形成されており、当該集積型ガス供給装置は高さH=85~90mm、横幅W=202~210mm、奥行L=420~424mmの各寸法を有している。
 また、以下の説明においては、図2の出口開閉弁5側を左側面、入口開閉弁1側を右側面、正面と対抗する奥側を背面(奥行Lの奥部)、高さHの下方を底面、上方を上面と呼ぶ。
 図3は、図2のイーイ視断面概要図であり、各ガス供給ユニットUの横断面概要図に対応するものである。当該ガス供給ユニットUは、後述するように、平面視において間隔を置いてガス入口側ブロック12及びガス出口側ブロック13を平行状に縦向きに配置し、このガス入口側ブロック12に入口開閉弁用本体ブロック18を及びガス出口側ブロック13に出口開閉弁用本体ブロック19を固定すると共に、これ等の部材の正面側と背面側に、入口開閉弁1、流量制御器3,出口開閉弁5等を夫々対向状に固定することにより形成されている。
 即ち、前記の各流量制御器3は圧力式流量制御器入口ブロック15及び圧力式流量制御器出口ブロック16を介してガス入口側ブロック12及びガス出口側ブロック13に固定されており、ガス入口側ブロック12及びガス出口側ブロック13の正面側と背面側に、入口開閉弁1、流量制御器3、出口開閉弁5等からなる2系統のガス供給ラインSを有する第1ユニット体U1と第2ユニット体Uとを水平に対向させて固定することにより、4系統のガス供給ラインSを有する1基のガス供給ユニットUが形成されている。
 尚、図2及び図3において、14は流量制御器本体ブロック、20は固定用ボルト、21aは流量制御器のコントロール弁、28はガス通路である。
  (第1例)
 図4は、第1実施例で使用しているガス供給ユニットUの構成を示すものであり、当該第1例に係るガス供給ユニットUは、一定の間隔を置いて縦向きに平行に配置したガス入口側ブロック12とガス出口側ブロック13の正面側及び背面側に、同じ構成の第1ユニット体U1及び第2ユニット体U2を水平状に対向させて組み付けすることにより形成されている。
 即ち、第1ユニット体U1は、ガス入口側ブロック12の右側側面に気密に固定した四角状の入口開閉弁用本体ブロック18と、ガス出口側ブロック13の左側側面に気密に固定した四角状の出口開閉弁用本体ブロック19と、ガス入口側ブロック12及びガス出口側ブロック13の背面側に圧力式流量制御器入口ブロック15及び圧力式流量制御器出口ブロック16を介して気密に固定した2組のピエゾ素子駆動部21を平行状に設けた流量制御器3と、入口開閉弁用本体ブロック18の背面側に固定した入口開閉弁1と、出口開閉弁用本体ブロック19の背面側に並列状に固定し2個の出口開閉弁5等から形成されている。尚、21aは、ピエゾ素子駆動部21により駆動されるコントロール弁である。
 同様に、第2ユニット体U2は、ガス入口側ブロック12の右側側面に気密に固定した四角状の入口開閉弁用本体ブロック18と、ガス出口側ブロック13の左側側面に気密に固定した四角状の出口開閉弁用本体ブロック19と、ガス入口側ブロック12及びガス出口側ブロック13の正面側に入口ブロック15及び出口ブロック16を介して気密に固定した2組のピエゾ素子駆動部21を平行状に設けた流量制御器3と、入口開閉弁用本体ブロック18の正面側に固定した入口開閉弁1と、出口開閉弁用本体ブロック19の正面側に並列状に固定し2個の出口開閉弁5等から形成されており、入口開閉弁用本体ブロック18の右側側面にプロセスガス入口継手6及びパージガス入口継手7が、また、出口開閉弁用本体ブロック19の左側側面にプロセスガス出口継手8が夫々固定されている。
 前記入口開閉弁用本体ブロック18は、厚さ約20~21mm程度の四角状のブロック体であり、その正面側及び背面側に入口開閉弁1の取付用凹部24が設けられ、ここに入口開閉弁1の弁室が形成されている。尚、本実施例では、メタルダイヤフラムを弁体とする構造の入口開閉弁1が用いられており、プロセスガス入口継手6及びパージガス入口継手7に連通するガス通路やガス入口側ブロック12に連通するガス通路28が設けられている。また、各入口開閉弁1及び出口開閉弁5は弁取付用凹部24内へねじ込み方式により固定されている。
 前記ガス入口側ブロック12は、高さHが約85~90mmの四角柱体であり、その高さ方向に4本の縦方向ガス通路(貫通孔)25が穿孔されており、また、この4本の縦方向ガス通路(貫通孔)25に連通する水平方向のガス通路28が設けられている。尚、当該4本の縦方向ガス通路(貫通孔)25に連通する水平方向のガス通路28から成る流入側ガス通路部は、ガス入口側ブロック12の高さ方向に一定の間隔を置いて4段設けられており、この各段のガス通路28に各ユニット体Uの入口開閉弁用本体ブロック18のガス通路28が連通される。
 前記入口ブロック15は、流量制御器3の流量制御器本体ブロック14とガス入口側ブロック12間を連結すると共に、流量制御器3をガス入口側ブロック12へ固定用ボルト20により固定するためのものであり、固定用ボルト20によりシール部材23を介設して気密に固定されている。
 尚、この入口ブロック15には2本のガス通路28が設けられている。又、前記シール材23には、株式会社フジキン製の「Wシール」が使用されており、更に、プロセスガス入口継手6、パージガス入口継手7及びプロセスガス出口継手8には、株式会社フジキン製のUPG継手(HEX14)が使用されている。しかし、これら以外のシール部材や継手を使用しても良いのは勿論である。
 前記流量制御器3は、熱式流量制御器であっても、或いは圧力式流量制御器であっても良いが、本実施例では圧力式流量制御器が使用されている。
 当該圧力式流量制御器は特開2006-330851号等により公知のものであり、特開2008-239002号等に開示されている公知のメタルダイヤフラム式ピエゾ素子駆動型制御弁を用いてオリフィス上流側の圧力を調整することにより、オリフィスを流通するガス流量を制御するものである。
 即ち、圧力式流量制御器3は、2系統分のガス通路28を設けた略四角状の流量制御器本体ブロック14と、流量制御器本体ブロック14の一側面に平行状に設けた二つの弁取付用凹部24と、各弁取付用凹部24に平行に配列固定したピエゾ素子駆動部21と、二つの制御回路制御回路22と、流量制御器本体ブロック14の他側面に平行状に設けた二つの圧力検出器取付用凹部26と、各圧力検出器取付用凹部26内に固定した圧力検出器4と、各ガス通路28の流体出口側に設けたオリフィス27と、カバー体30等から形成されており、二組のピエゾ素子駆動部21及び制御回路22を有機的に組み合わせて流量制御部を一体的化することにより、2系統分の圧力式流量制御器を備えた薄型構造としたことを特徴とするものである。
 上記、第1例においては、圧力式流量制御器として株式会社フジキン製のピエゾ素子駆動型流量制御弁を用いた流量制御器を使用しているが、圧力式流量制御器そのものは公知であるため、ここではその詳細な説明は省略する。また、20は固定用ボルトである。
 前記出口ブロック16は流量制御器本体ブロック14をガス出口側ブロック13へ固定するためのものであり、四角状のブロック体に形成されていて、2本のガス通路28が設けられている。
 前記ガス出口側ブロック13は、ガス入口側ブロック12と同様に高さHが約85~90mmの四角柱体であり、一つのガス供給ユニットUに対して合計4本のガス通路28から成る出口側ガス通路部が形成されている。尚、この出口側ガス通路部を形成する4本のガス通路28は、2本づつが高さ方向に位置を違えて穿孔されており、当該4本のガス通路28から成る出口側ガス通路部が、高さ方向に約20~21mmの間隔を置いて各ガス供給ユニットUに対応するよう4段形成されている。
 前記出口開閉弁用本体ブロック19は、前記入口開閉弁用本体ブロック18と同様に、厚さ約20~21mm程度の四角状のブロック体であり、その正面側及び背面側に2個の出口開閉弁5の取付け用凹部弁取付用凹部24が並列状に設けられており、夫々に出口開閉弁5の弁室が形成されている。尚、本実施例では、メタルダイヤフラムを弁体とする構造の出口開閉弁5が用いられており、出口開閉弁用本体ブロック19には、出口開閉弁5相互間及び出口開閉弁5とガス出口側ブロック13のガス通路28間並びに出口開閉弁5とプロセスガス出口継手8間を連通するガス通路ガス通路28が、夫々設けられている。
 上記ガス供給ユニットUを構成する入口開閉弁用本体ブロック18,ガス入口側ブロック12,入口ブロック15、流量制御器本体ブロック14、出口ブロック16、ガス出口側ブロック13及び出口開閉弁用本体ブロック19相互間は、固定用ボルト20(一部は図示省略)によりシール部材23及びオリフィス27を介設して気密に固定されており、ガス供給ユニットUはガス入口側ブロック12及びガス出口側ブロック13の部分を除いて、厚さ約20mm程度に仕上げられている。
 上記第1ユニット体U1と第2ユニット体U2から成る4系統のガス供給ラインSを備えたガス供給ユニットU は、前述の通り4段に積層され、相互に固定される。即ち、ガス入口側ブロック12及びガス出口側ブロック13が柱状体に形成されているため、このガス入口側ブロック12及びガス出口側ブロック13によって、4基のガス供給ユニットUが4段に積層固定されることになる。
 プロセスガス入口継手6より流入したガスは、ガス入口側ブロック12において四つに分流され、入口ブロック15、流量制御器本体ブロック14、出口ブロック16,ガス出口側ブロック13の各ガス通路28を通して出口開閉弁用本体ブロック19において合流され、プロセスガス出口継手8よりプロセスチャンバへ供給されて行く。
 尚、図4の第1例では、プロセスガス入口継手6を1箇所としているが、入口開閉弁1を増やしてプロセスガス入口継手6を増加させることも可能である。同様に、出口開閉弁用本体ブロック19のガス通路28をそれそれ独立した通路として、プロセスガス出口継手8の数を増やすことも可能である。
 上記第1実施例に於いては、入口開閉弁1、プロセスガス入口継手6,流量制御器3等を上述した株式会社フジキン製の製品とすると共に、各部のガス通路28の内径を6.27mmとしたとき、集積型ガス供給装置の内部ガス流通路の合計容積(16系統)を53.4CCにまで減少させることができ、加えて、ガスの出口側の構造を単純にすることが出来る。
 (第2例)
 図6は、本発明の第1実施例で使用する圧力式流量制御器3の第2例を示すものであり、圧力検出器4の他に圧力検出器4aを設けた点のみが第1例の場合と異なっている。
 当該圧力検出器4aを設けることにより、オリフィス27の上流側と下流側の圧力が検出され、非臨界状態のガス流であっても高精度で、流量制御をすることが可能となる。
 尚、第2例に係る圧力検出器4aそのものは公知であるため、ここではその説明を省略する。
  [第2実施例]
 図8~図12は、本発明の第2実施例を示すものであり、積層型ガス供給装置の構成は、ガス入口側ブロック12の入口側ガス流路部及び出口開閉弁用本体ブロック19の出口側ガス流路部の構成が異なる点を除いて、その他の部分の構成は、前記第1実施例の場合と全く同様である。
 即ち、当該第2実施例では、図8に示すように、1箇所のプロセスガス入口継手6から1基のガス供給ユニットUの4系統のガス供給ラインSへ同時にガスが導入されると共に、4基の各ガス供給ユニットUから導出されたガス供給ラインSが4系統分合流され、各プロセスガス出口継手8から導出される構成になっている。
 そのため、ガス入口側ブロック12及び出口開閉弁用本体ブロック19の構成が前述のように第1実施例の場合と異なっており、当該第2実施例のガス入口側ブロック12は、高さHの柱状体とし、これに、積重ねした4基のガス供給ユニットUへプロセスガス又はパージガスを供給する4本の相互に連通したガス通路28からなる入口側ガス通路部を、高さ方向に間隔を置いて4段形成する構成としている。これにより、図8に示すように、各プロセスガス入口継手6から流入したプロセスガスが各ガス供給ユニットUの4系統の流量制御器3へ夫々均等に導入されることになる。
 また、当該第2実施例の出口開閉弁用本体ブロック19は、四つの出口開閉弁5に夫々連通した4本の独立のしたガス通路28からなる出口側ガス通路部に形成されており、各ガス通路28の夫々にプロセスガス出口継手8が設けられている。そして、積重ねした4基のガス供給ユニットUの各1系統のプロセスガス出口継手8同士を連結管29により連結することにより、4個のプロセスガス出口継手8よりガスを導出するように構成されている。当該構成とすることにより、図8に示すように、各ガス供給ユニットUから1系統ずつ合計4系統のガス供給ラインSが合流され、プロセスガス出口継手8を通して導出されることになる。
 尚、前記第2実施例では、ガスの導出側に前記連結管29を必要とし、装置の小型化を阻害することになる。そのため、出口開閉弁用本体ブロック19を高さHの柱状体とし、これに4個の縦方向の縦方向ガス通路(貫通孔)25を穿孔すると共に、当該出口開閉弁用本体ブロック19に積重ねした4基のガス供給ユニットUの4本の独立したガス通路28からなる出口側ガス通路部を高さ方向に間隔を置いて4段形成し、縦方向ガス通路(貫通孔)25により積重ねた4基のガス供給ユニットUの各プロセスガス出口継手8同士を相互に連結するようにしても良い。この場合には、前記連結管29が不用となって装置をより簡素化できる。
 当該第2実施例に係る集積型ガス供給装置では、ガス通路内径等の条件が第1実施例の場合と同一の場合に、内部ガス流通路の合計容積(16系統)を63.8CCにまで減少させることができ、加えて、ガスの入口側の構造を単純にすることが出来る。
  [第3実施例]
 図13及び図14は第3実施例を示すものであり、第1実施例のガス供給ユニットUにおいて、入口開閉弁1の下流側にガス供給口を別途に設ける構成としたものである。
 即ち、当該第3実施例では、図14に示すように、ガス入口側ブロック12と入口開閉弁用本体ブロック18との間に入口開閉弁用本体ブロック18aを介設すると共に、入口開閉弁用本体ブロック18aの背面側及び正面側に入口開閉弁1a及びプロセスガス入口継手6aを固定して、プロセスガスの供給箇所を増加する構成としたものであり、当該入口開閉弁1a及びプロセスガス入口継手6aの点を除いて、その他の構成は前記第1実施例の場合と同一である。
 当該構成とすることにより、装置内部のガス流通路の内容積を大きく増加させることなしに、プロセスガス等の供給箇所を容易に増加することが出来る。
 尚、前記各実施例においては、4基のガス供給ユニットUを積層する構成としているが、積層するガス供給ユニットUの数は2基又は3基若しくは4基以上としても良いことは勿論である。
 また、前記各実施例においては、2系統のガス供給ラインSを有する第1ユニット体U1と第2ユニット体Uとを水平に対向させて固定することにより、4系統のガス供給ラインSを有する1基のガス供給ユニットUが形成されている構成としているが、第1ユニット体U1、第2ユニット体Uはそれぞれ1系統あるいは2系統以上のガス供給ラインSを有しても良いし、ガス供給ユニットUが2系統又は3系統若しくは4系統以上のガス供給ラインSを有しても良いことは勿論である。
 本発明は半導体製造装置用のみならず、各種の化学装置等に於ける集積型ガス供給装置としても利用できるものである。
W 集積型ガス供給装置の横幅寸法
L 集積型ガス供給装置の奥行寸法
H 集積型ガス供給装置の高さ寸法
S ガス供給ライン
U ガス供給ユニット
 第1ガス供給ユニット
 第2ガス供給ユニット
1 入口開閉弁
1a 入口開閉弁
2 弁駆動部
3 流量制御器(圧力式流量制御器)
4 圧力検出器
4a 圧力検出器
5 出口開閉弁
6 プロセスガス入口継手
6a プロセスガス入口継手
7 パージガス入口継手
8 プロセスガス出口継手
9 パージガス通路
10 プロセスガス通路
11 入出力接続具(ケーブルコネクタ)
12 ガス入口側ブロック
13 ガス出口側ブロック
14 流量制御器本体ブロック
15 入口ブロック
16 出口ブロック
17 圧力検出器取付ブロック
18 入口開閉弁用本体ブロック
18a 入口開閉弁用本体ブロック
19 出口開閉弁用本体ブロック
20 固定用ボルト
21 ピエゾ素子駆動部
21a コントロール弁
22 制御回路
23 シール部材
24 弁取付用凹部
25 縦方向のガス流路
26 圧力検出器取付用凹部
27 オリフィス
28 ガス通路
29 連結管
30 カバー体

Claims (12)

  1.  平面視において間隔を置いて並置したガス入口側ブロック(12)及びガス出口側ブロック(13)に、複数の流量制御部を設けた2基の流量制御器(3)を対向状に組合せ固定すると共に、各流量制御器(3)に入口開閉弁(1)及び出口開閉弁(5)を設けることにより、少なくとも4系統のガス供給ライン(S)を備えたガス供給ユニット(U)を形成し、複数基の当該ガス供給ユニット(U)を積み重ね固定する構成としたことを特徴とする集積型ガス供給装置。
  2.  流量制御器(3)を二つの流量制御部を並列状に設けた2系統のガス供給ラインを有する圧力式流量制御器(3)とし、また、各流量制御器(3)の入口ブロック(15)をガス入口側ブロック(12)の側面へ、及び各流量制御器(3)の出口ブロック(16)をガス出口側ブロック(13)の側面へ夫々固定して各流量制御器(3)を対向状に組合せ固定し、更に、前記ガス入口側ブロック(12)の右側に入口開閉弁(1)を、及びガス出口側ブロック(13)の左側に出口開閉弁(5)を固定し、且つ、ガス供給ユニット(U)の積み重ね数を複数基とするようにした請求項1に記載の集積型ガス供給装置。
  3.  ガス入口側ブロック(12)の右側面に入口開閉弁用本体ブロック(18)を固定し、当該入口開閉弁用本体ブロック(18)の正面側及び背面側に両流量制御器(3)の入口開閉弁(1)を固定し、また、ガス出口側ブロック(13)の左側面に出口開閉弁用本体ブロック(19)を固定し、当該出口開閉弁用本体ブロック(19)の正面側及び背面側に両流量制御器(3)の出口開閉弁(5)を固定するようにした請求項1または2に記載の集積型ガス供給装置。
  4.  入口開閉弁用本体ブロック(18)に設ける各流量制御器(3)用の入口開閉弁(1)を1基とし、一つのプロセスガス入口継手(6)又はパージガス入口継手(7)からプロセスガス又はパージガスを両流量制御器(3)の入口開閉弁(1)へ供給し、ガス入口側ブロック(12)のガス通路(28)及び流量制御器(3)の入口ブロック(15)のガス通路(28)を通して各流量制御器(3)へプロセスガス又はパージガスを供給するようにした請求項1または2に記載の集積型ガス供給装置。
  5.  出口開閉弁用本体ブロック(19)に設ける各流量制御器(3)用の出口開閉弁(5)を2基とし、合計4基の出口開閉弁(5)からプロセスガス又はパージガスを一つのプロセスガス出口継手(8)を通して供給するようにした請求項1または2に記載の集積型ガス供給装置。
  6.  ガス入口側ブロック(12)を高さHの柱状体とすると共に、これに複数個の縦方向のガス通路(25)を穿孔し、当該縦方向のガス通路(25)を通して積み重ねた複数基のガス供給ユニット(U)の各ガス入口側ブロック(12)の4本のガス通路(28)から成る入口側ガス通路部を相互に連通させるようにした請求項1または2に記載の集積型ガス供給装置。
  7.  ガス出口側ブロック(13)を高さHの柱状体とすると共に、当該ガス出口側ブロック(13)に、積み重ねした複数基のガス供給ユニット(U)の4本のガス通路(28)からなる出口側ガス通路部を高さ方向に間隔を置いて形成するようにした請求項1または2に記載の集積型ガス供給装置。
  8.  ガス入口側ブロック(12)を高さHの柱状体とし、当該ガス入口側ブロック(12)に、積み重ねた複数基のガス供給ユニット(U)へプロセスガス又はパージガスを供給する4本のガス通路(28)からなる入口側ガス通路部を高さ方向に間隔を置いて形成するようにした請求項1または2に記載の集積型ガス供給装置。
  9.  出口開閉弁用本体ブロック(19)に、4基の出口開閉弁(5)に夫々連通する4本の独立のしたガス通路(28)からなる出口側ガス通路部を設けると共に、各ガス通路(28)の夫々にプロセスガス出口継手(8)を設け、積み重ねた複数基のガス供給ユニット(U)の各プロセスガス出口継手(8)同士を連結管(29)により連結する構成とした請求項1または2に記載の集積型ガス供給装置。
  10.  出口開閉弁用本体ブロック(19)を高さHの柱状体とし、これに複数個の縦方向のガス通路(25)を穿孔すると共に、当該出口開閉弁用本体ブロック(19)に積み重ねた複数基のガス供給ユニット(U)の4本の独立したガス通路(28)からなる出口側ガス通路部を高さ方向に間隔を置いて形成し、前記縦方向ガス通路(25)により積み重ねた複数基のガス供給ユニット(U)の出口側ガス通路部のガス通路(28)同士を相互に連結するようにした請求項9に記載の集積型ガス供給装置。
  11.  ガス入口側ブロック(12)と入口開閉弁用本体ブロック(18)との間に入口開閉弁本体用ブロック(18a)を介設すると共に、入口開閉弁用本体ブロック(18a)の背面側及び正面側に入口開閉弁(1a)及びプロセスガス入口継手(6a)を固定してプロセスガスの供給箇所を増加するようにした請求項1または2に記載の集積型ガス供給装置。
  12.  ガス供給ユニット(U)の積み重ね基数を4基とするようにした請求項2、請求項6、請求項7、請求項8、請求項9又は請求項10に記載の集積型ガス供給装置。
PCT/JP2013/006184 2012-11-02 2013-10-18 集積型ガス供給装置 WO2014068886A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201501475PA SG11201501475PA (en) 2012-11-02 2013-10-18 Integrated type gas supplying apparatus
KR1020157004553A KR101800684B1 (ko) 2012-11-02 2013-10-18 집적형 가스 공급 장치
US14/425,790 US9471065B2 (en) 2012-11-02 2013-10-18 Integrated type gas supplying apparatus
CN201380057366.6A CN104737086B (zh) 2012-11-02 2013-10-18 集成型气体供给装置
IL237344A IL237344A (en) 2012-11-02 2015-02-22 Integrated type gas supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012243041A JP5616416B2 (ja) 2012-11-02 2012-11-02 集積型ガス供給装置
JP2012-243041 2012-11-02

Publications (1)

Publication Number Publication Date
WO2014068886A1 true WO2014068886A1 (ja) 2014-05-08

Family

ID=50626838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006184 WO2014068886A1 (ja) 2012-11-02 2013-10-18 集積型ガス供給装置

Country Status (8)

Country Link
US (1) US9471065B2 (ja)
JP (1) JP5616416B2 (ja)
KR (1) KR101800684B1 (ja)
CN (1) CN104737086B (ja)
IL (1) IL237344A (ja)
SG (1) SG11201501475PA (ja)
TW (1) TWI564502B (ja)
WO (1) WO2014068886A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170032982A1 (en) * 2015-07-30 2017-02-02 Lam Research Corporation Gas delivery system
US10147588B2 (en) 2016-02-12 2018-12-04 Lam Research Corporation System and method for increasing electron density levels in a plasma of a substrate processing system
US10192751B2 (en) 2015-10-15 2019-01-29 Lam Research Corporation Systems and methods for ultrahigh selective nitride etch
US10410832B2 (en) 2016-08-19 2019-09-10 Lam Research Corporation Control of on-wafer CD uniformity with movable edge ring and gas injection adjustment
US10438833B2 (en) 2016-02-16 2019-10-08 Lam Research Corporation Wafer lift ring system for wafer transfer
US10651015B2 (en) 2016-02-12 2020-05-12 Lam Research Corporation Variable depth edge ring for etch uniformity control
US10699878B2 (en) 2016-02-12 2020-06-30 Lam Research Corporation Chamber member of a plasma source and pedestal with radially outward positioned lift pins for translation of a substrate c-ring
US10825659B2 (en) 2016-01-07 2020-11-03 Lam Research Corporation Substrate processing chamber including multiple gas injection points and dual injector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10087959B2 (en) * 2015-11-10 2018-10-02 Stella Maris, Llc Hydraulic manifold control assembly
WO2017188129A1 (ja) 2016-04-28 2017-11-02 株式会社フジキン 流体制御装置、流体制御装置の制御方法、および、流体制御システム
US10927459B2 (en) 2017-10-16 2021-02-23 Asm Ip Holding B.V. Systems and methods for atomic layer deposition
JP7262745B2 (ja) * 2018-12-27 2023-04-24 株式会社フジキン マスフローコントローラ
GB2615414A (en) * 2022-12-22 2023-08-09 Anaero Tech Limited Fluid flow control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312900A (ja) * 1995-05-19 1996-11-26 Ckd Corp ガス供給集積ユニット
JPH10184966A (ja) * 1996-12-27 1998-07-14 Ckd Corp 流体圧制御機器ブロック
JPH11353030A (ja) * 1998-06-08 1999-12-24 Hitachi Metals Ltd マスフローコントローラ
JP2006234110A (ja) * 2005-02-25 2006-09-07 Ckd Corp ガス供給ユニット及びガス供給システム
WO2008023711A1 (fr) * 2006-08-23 2008-02-28 Horiba Stec, Co., Ltd. Appareil à tableau de distribution de gaz intégré
WO2013046660A1 (ja) * 2011-09-30 2013-04-04 株式会社フジキン ガス供給装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731080B2 (ja) 1991-05-31 1998-03-25 株式会社本山製作所 ガス制御装置
US6293310B1 (en) * 1996-10-30 2001-09-25 Unit Instruments, Inc. Gas panel
DE19645695A1 (de) * 1996-11-06 1998-05-07 Deutsch Zentr Luft & Raumfahrt Gasmeßgerät-Kalibrierungsvorrichtung für Wasserstoff-Sauerstoff-Gemische
US6231260B1 (en) * 1997-07-11 2001-05-15 Insync Systems, Inc. Mounting plane for integrated gas panel
US6068016A (en) * 1997-09-25 2000-05-30 Applied Materials, Inc Modular fluid flow system with integrated pump-purge
US6158454A (en) * 1998-04-14 2000-12-12 Insync Systems, Inc. Sieve like structure for fluid flow through structural arrangement
US6260581B1 (en) * 1998-06-12 2001-07-17 J. Gregory Hollingshead Apparatus for assembling modular chemical distribution substrate blocks
JP2002089798A (ja) * 2000-09-11 2002-03-27 Ulvac Japan Ltd 流体制御装置およびこれを用いたガス処理装置
US6349744B1 (en) * 2000-10-13 2002-02-26 Mks Instruments, Inc. Manifold for modular gas box system
JP2002349797A (ja) 2001-05-23 2002-12-04 Fujikin Inc 流体制御装置
JP2004100889A (ja) 2002-09-12 2004-04-02 Fujikin Inc 多段アクチュエータ
US7072743B2 (en) * 2004-03-09 2006-07-04 Mks Instruments, Inc. Semiconductor manufacturing gas flow divider system and method
JP4572139B2 (ja) 2005-05-23 2010-10-27 株式会社フジキン 改良型圧力式流量制御装置
JP4814706B2 (ja) * 2006-06-27 2011-11-16 株式会社フジキン 流量比可変型流体供給装置
JP4933936B2 (ja) 2007-03-30 2012-05-16 株式会社フジキン 圧電素子駆動式制御弁
JP5127304B2 (ja) 2007-05-31 2013-01-23 株式会社フジキン 流体制御装置
JP5457021B2 (ja) * 2008-12-22 2014-04-02 東京エレクトロン株式会社 混合ガスの供給方法及び混合ガスの供給装置
WO2010101077A1 (ja) * 2009-03-04 2010-09-10 株式会社堀場エステック ガス供給装置
US8291935B1 (en) * 2009-04-07 2012-10-23 Novellus Systems, Inc. Flexible gas mixing manifold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312900A (ja) * 1995-05-19 1996-11-26 Ckd Corp ガス供給集積ユニット
JPH10184966A (ja) * 1996-12-27 1998-07-14 Ckd Corp 流体圧制御機器ブロック
JPH11353030A (ja) * 1998-06-08 1999-12-24 Hitachi Metals Ltd マスフローコントローラ
JP2006234110A (ja) * 2005-02-25 2006-09-07 Ckd Corp ガス供給ユニット及びガス供給システム
WO2008023711A1 (fr) * 2006-08-23 2008-02-28 Horiba Stec, Co., Ltd. Appareil à tableau de distribution de gaz intégré
WO2013046660A1 (ja) * 2011-09-30 2013-04-04 株式会社フジキン ガス供給装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170032982A1 (en) * 2015-07-30 2017-02-02 Lam Research Corporation Gas delivery system
US10957561B2 (en) * 2015-07-30 2021-03-23 Lam Research Corporation Gas delivery system
US10192751B2 (en) 2015-10-15 2019-01-29 Lam Research Corporation Systems and methods for ultrahigh selective nitride etch
US10825659B2 (en) 2016-01-07 2020-11-03 Lam Research Corporation Substrate processing chamber including multiple gas injection points and dual injector
US10147588B2 (en) 2016-02-12 2018-12-04 Lam Research Corporation System and method for increasing electron density levels in a plasma of a substrate processing system
US10651015B2 (en) 2016-02-12 2020-05-12 Lam Research Corporation Variable depth edge ring for etch uniformity control
US10699878B2 (en) 2016-02-12 2020-06-30 Lam Research Corporation Chamber member of a plasma source and pedestal with radially outward positioned lift pins for translation of a substrate c-ring
US11342163B2 (en) 2016-02-12 2022-05-24 Lam Research Corporation Variable depth edge ring for etch uniformity control
US10438833B2 (en) 2016-02-16 2019-10-08 Lam Research Corporation Wafer lift ring system for wafer transfer
US10410832B2 (en) 2016-08-19 2019-09-10 Lam Research Corporation Control of on-wafer CD uniformity with movable edge ring and gas injection adjustment
US11424103B2 (en) 2016-08-19 2022-08-23 Lam Research Corporation Control of on-wafer cd uniformity with movable edge ring and gas injection adjustment

Also Published As

Publication number Publication date
US9471065B2 (en) 2016-10-18
CN104737086A (zh) 2015-06-24
TW201433733A (zh) 2014-09-01
KR101800684B1 (ko) 2017-11-23
CN104737086B (zh) 2017-06-30
JP2014092929A (ja) 2014-05-19
SG11201501475PA (en) 2015-05-28
IL237344A (en) 2017-12-31
IL237344A0 (en) 2015-04-30
TWI564502B (zh) 2017-01-01
JP5616416B2 (ja) 2014-10-29
KR20150036740A (ko) 2015-04-07
US20150234390A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP5616416B2 (ja) 集積型ガス供給装置
US9556966B2 (en) Gas supplying apparatus
US8950433B2 (en) Manifold system for gas and fluid delivery
JP2002349797A (ja) 流体制御装置
US20080023088A1 (en) Fluid delivery system
KR20170085969A (ko) 부가적으로 제작된 가스 분배 매니폴드
JP2007078005A (ja) 流体制御装置
KR101560962B1 (ko) 퍼지 라인 변경용 블록 조인트 및 유체 제어 장치
US20120097266A1 (en) Apparatus for controlling gas distribution using orifice ratio conductance control
TWI683195B (zh) 分流系統、使用該分流系統的流體控制系統、及流體控制系統的製造方法
US20100132808A1 (en) Fluid control apparatus and method for assembling the same
US9982795B2 (en) Modular fluid control system
KR20130018147A (ko) 유체 제어 장치
KR20080107432A (ko) 가스공급유닛 및 가스공급시스템
JP4092164B2 (ja) ガス供給ユニット
TWI782308B (zh) 閥裝置及流體控制裝置
JP7425462B2 (ja) 流体制御装置および半導体製造装置
JP2006242222A (ja) 集積化ガス制御装置と集積化ガス制御方法
JP2016048110A (ja) マニホールドバルブおよび流体制御装置
JP2014152874A (ja) プロセスガス分流供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 237344

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 20157004553

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14425790

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850565

Country of ref document: EP

Kind code of ref document: A1