WO2017188129A1 - 流体制御装置、流体制御装置の制御方法、および、流体制御システム - Google Patents

流体制御装置、流体制御装置の制御方法、および、流体制御システム Download PDF

Info

Publication number
WO2017188129A1
WO2017188129A1 PCT/JP2017/015974 JP2017015974W WO2017188129A1 WO 2017188129 A1 WO2017188129 A1 WO 2017188129A1 JP 2017015974 W JP2017015974 W JP 2017015974W WO 2017188129 A1 WO2017188129 A1 WO 2017188129A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
control module
fluid control
processor
fluid
Prior art date
Application number
PCT/JP2017/015974
Other languages
English (en)
French (fr)
Inventor
薫 平田
勝幸 杉田
洋平 澤田
昌彦 滝本
西野 功二
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to KR1020187015780A priority Critical patent/KR102079988B1/ko
Priority to JP2018514553A priority patent/JP6910652B2/ja
Priority to US16/094,252 priority patent/US11137779B2/en
Priority to CN201780005089.2A priority patent/CN109074104B/zh
Publication of WO2017188129A1 publication Critical patent/WO2017188129A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/005Electrical or magnetic means for measuring fluid parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25312Pneumatic, hydraulic modules, controlled valves

Definitions

  • the present invention relates to a fluid control device, a control method for the fluid control device, and a fluid control system, and more particularly, to a fluid control device corresponding to miniaturization, a control method therefor, and a fluid control system including the fluid control device.
  • the pressure type flow rate control device can control the flow rates of various fluids with high accuracy by a relatively simple mechanism in which a piezo element drive type control valve and a throttle (for example, an orifice plate or a critical nozzle) are combined. Widely used because it can.
  • the critical expansion condition P1 / P2 ⁇ about 2 P1: gas pressure upstream of the throttle unit, P2: gas pressure downstream of the throttle unit
  • the flow rate of the gas passing through the throttle unit is The fluid control is performed using the principle that it is determined by the upstream pressure P1 regardless of the downstream pressure P2.
  • the critical expansion conditions depend on the gas type and temperature.
  • the flow rate Qc is given by the following equation, for example.
  • a pressure type flow control device in which a pressure sensor is provided not only on the upstream side of the throttle unit but also on the downstream side of the throttle unit.
  • the flow rate Qc can be calculated based on n (where K is a proportional constant depending on the type of fluid and the fluid temperature, and m and n are indices derived based on the actual flow rate).
  • Patent Document 1 discloses a flow rate control system in which a control device that collectively manages a plurality of flow rate measuring devices is attached.
  • a part of the configuration of a plurality of flow rate measuring devices is made common and given to the control device, thereby reducing the thickness of each flow rate measuring device.
  • each flow meter stores relevant flow calculation related data, and the control device calculates flow measurement values using the flow calculation related data and measurement data acquired from the storage unit of the flow meter. ing.
  • the installation space may not be sufficiently reduced if a control device connected thereto is provided in the vicinity of the semiconductor manufacturing device.
  • a control device connected thereto is provided in the vicinity of the semiconductor manufacturing device.
  • the pressure-type flow rate control device provided with the upstream pressure sensor and the downstream pressure sensor described above there is a limit to downsizing the internal elements, so it is easy to secure a space for control equipment in the vicinity of the semiconductor manufacturing device. is not.
  • the present invention has been made in order to solve the above-described problems, and has as its main object to provide a fluid control device, a control method thereof, and a fluid control system including the fluid control device that can be reduced in size and thickness. .
  • a fluid control device is a fluid control device including a fluid control module and an external control module, and the fluid control module includes a flow path, a control valve on the flow path, and the control valve.
  • a valve driving circuit for driving, a fluid measuring device provided on the flow path, and a first processor for processing a signal output from the fluid measuring device, wherein the external control module includes the first control module.
  • a second processor for processing a signal output by the processor, wherein the second processor outputs a valve control signal in response to a signal of the fluid measuring device output from the first processor,
  • the valve control signal is directly input to the valve driving circuit without going through the first processor, and the valve driving circuit receives the valve from the second processor. And it outputs a driving voltage for driving the control valve in response to a control signal.
  • the signal from the fluid measuring device is A / D converted before being output to the external control module.
  • the second processor generates a PWM signal as a valve control signal
  • the valve drive circuit generates a drive voltage according to a duty ratio of the PWM signal
  • control valve is a piezo element drive type valve
  • valve drive circuit steps up or down a piezo actuator based on the valve control signal.
  • the fluid control module and the external control module each include a differential transmission interface unit, and are digitally communicated by a differential transmission method via a plurality of cables.
  • the second processor is configured to receive an information signal from an external device, communication between the external control module and the external device is performed by EtherCAT, and the external control module includes An RJ45 connector is provided.
  • a memory is provided in the fluid control module, and individual information associated with the fluid control module is stored in the memory, and the second processor reads the individual information. Is possible.
  • the fluid measuring device is a flow sensor or a pressure sensor.
  • the fluid measuring device includes a throttle portion provided on the flow path, a first pressure sensor provided upstream of the throttle portion and downstream of the control valve, and downstream of the throttle portion. And a second pressure sensor provided on the side.
  • the fluid control module further includes a temperature sensor for measuring a gas temperature between the control valve and the throttle unit.
  • the fluid control module includes an orifice built-in valve including an orifice member as the restrictor, an electromagnetic valve connected to the orifice built-in valve, and a drive circuit for the solenoid valve
  • the external control module includes The signal for controlling the opening and closing of the solenoid valve is output directly to the drive circuit of the solenoid valve without going through the first processor.
  • a plurality of gas supply lines are provided in parallel to one common gas supply line, and each of the plurality of gas supply lines includes any one of the fluid control devices described above.
  • the fluid control module and the external control module are provided in a one-to-one relationship.
  • the fluid control device includes a flow path, a control valve for fluid control, a valve drive circuit that controls the degree of opening and closing of the control valve, a fluid measuring device provided on the flow path, A fluid control module having a first processor for receiving an output from the fluid meter; and an external unit disposed separately from the fluid control module and communicatively connected to the fluid control module via a plurality of cables.
  • a control module having a second processor configured to receive a signal from the first processor and outputting an information signal generated by the second processor to an external device, or external An external control module configured to input an information signal from a device to the second processor, wherein the second processor Receiving a signal of the fluid measuring device from one processor and generating a valve control signal based on the signal of the fluid measuring device, and the valve control signal is transmitted to the valve driving circuit without passing through the first processor.
  • the control valve is driven by being directly input and converted into a drive voltage in the valve drive circuit.
  • a control method of a fluid control apparatus is a control method of a fluid control apparatus including a fluid control module having a first processor and an external control module having a second processor, wherein the fluid control A step of outputting a flow rate signal from a flow rate measuring device provided in the module; and a step of outputting the flow rate signal output from the flow rate measuring device to the second processor via the first processor; A step in which a second processor outputs a valve control signal based on the output flow rate signal; and the output valve control signal is arranged in the fluid control module without going through the first processor. A step of outputting to the valve drive circuit, and based on the valve control signal, the valve drive circuit outputs a drive voltage, And a step of driving the located control valve.
  • FIG. 1 shows a fluid control system incorporating a fluid control apparatus according to an embodiment of the present invention.
  • n gas supply lines 2 are provided in parallel to one common gas supply line connected to the process chamber 3 of the semiconductor manufacturing apparatus.
  • N fluid control devices 10 corresponding to the line 2 are provided.
  • each of the gas supply lines 2 gas (raw material gas, etching gas, etc.) from the gas source 1 is supplied to the process chamber 3 with the flow rate and pressure controlled by the fluid control device 10.
  • a vacuum pump 4 is connected to the process chamber 3, and the inside of the process chamber 3 can be evacuated during the semiconductor manufacturing process.
  • Each gas supply line 2 is provided with a downstream valve (open / close valve) Vn, and only the necessary gas is supplied to the process chamber 3 through the opened downstream valve Vn.
  • each of the plurality of fluid control devices 10 includes the fluid control module FCn and the external control module En in a one-to-one relationship.
  • the fluid control module FCn and the external control module En are arranged separately from each other, and are connected by a high-speed digital communication cable Cn.
  • the cable Cn has a length of 0.5 m to 3 m, for example, so that the external control module En can be installed at a position away from the fluid control module FCn installed in the vicinity of the process chamber 3. It becomes possible.
  • the external control modules E1 to En are connected to the information processing apparatus (external apparatus) 5 via the network by EtherCAT (registered trademark).
  • the external control modules E1 to En are provided with an RJ45 connector 10a corresponding to EtherCAT, and can communicate with the information processing apparatus 5 via an EtherCAT cable connected thereto.
  • the information processing device 5 may be, for example, a general-purpose computer equipped with a user input device.
  • FIG. 2 is a diagram showing a pair of fluid control module FC and external control module E.
  • the fluid control module FC and the external control module E are connected by a digital communication cable Cn. More specifically, the LVDS (Low voltage differential) provided in each of the fluid control module FC and the external control module E is provided. Signaling) Digital signals are communicated by the differential transmission method via the interface units 25 and 35.
  • LVDS Low voltage differential
  • LVDS has a feature that high-speed data transmission can be performed, and further has a feature that long-distance transmission can be performed while suppressing noise. For this reason, when LVDS is used, even when the fluid control module FC and the external control module E are provided apart from each other, it is possible to realize high-speed communication with high reliability between them.
  • the fluid control module FC has the gas flow path 11, the throttle part 14 interposed in the gas flow path, the first pressure sensor P1 and the temperature sensor T provided on the upstream side of the throttle part 14. And a control valve 12 provided on the upstream side of the first pressure sensor P1, and a second pressure sensor P2 provided on the downstream side of the throttle portion.
  • the first pressure sensor P1 can measure the pressure in the flow path between the control valve 12 and the throttle unit 14, and the second pressure sensor P2 is downstream of the throttle unit 14 (for example, the throttle unit 14 and the downstream valve).
  • the pressure of the flow path between Vn (see FIG. 1) can be measured.
  • the fluid control module FC has the same configuration as the pressure type flow rate control device, and includes a first pressure sensor P1 and a second pressure sensor P2 as fluid measuring devices provided in the flow path. Yes.
  • the fluid control module FC is not limited to this, and the fluid control module FC may be replaced with the first and second pressure sensors P1 or in addition to the first and second pressure sensors P1, and may have other forms of fluid measuring devices (for example, It may have a configuration including a flow rate sensor.
  • the illustrated fluid control module FC is provided with an orifice built-in valve 16 formed integrally with the throttle portion 14, and an electromagnetic valve 18 is connected to the orifice built-in valve 16.
  • the orifice built-in valve 16 is typically an on-off valve composed of a fluid operation valve (AOV or the like), and controls the supply of operating (driving) fluid to the orifice built-in valve 16 using an electromagnetic valve 18.
  • the orifice built-in valve 16 is opened and closed.
  • the orifice built-in valve 16 can achieve, for example, an intermittent gas flow or a high-speed and reliable gas shut-off operation to the process chamber.
  • the throttle unit 14 is realized by an orifice member included in the orifice built-in valve 16, but is not limited thereto, and a throttle unit such as an orifice plate or a critical nozzle is independent of the valve instead of the orifice built-in valve 16. It may be an aspect provided.
  • the flow path may be formed as a hole provided in a metal block in addition to the one formed by piping.
  • the first pressure sensor P1 and the second pressure sensor P2 may be, for example, pressure sensors that incorporate a silicon single crystal sensor chip and a diaphragm.
  • the temperature sensor may be a thermistor, for example.
  • the control valve 12 may be, for example, a piezo drive type valve composed of a metal diaphragm valve 12a and a piezo actuator 12b as a drive unit.
  • the fluid control module FC has a circuit board.
  • the circuit board includes an A / D converter (A / D conversion circuit) 22, a small processor (first processor) 20, and a memory (for example, an EEPROM). 24, an LVDS interface unit 25 is provided.
  • a / D converter A / D conversion circuit
  • first processor first processor
  • memory for example, an EEPROM
  • an LVDS interface unit 25 is provided.
  • the outputs of the first pressure sensor P1, the second pressure sensor P2, and the temperature sensor T that is, the output of the fluid measuring device
  • the small processor 20 can output the data signal SD to the external control module E via the LVDS interface unit 25 and the first cable L1.
  • the output of the fluid measuring device includes not only a signal such as a digital signal but also a voltage and the like, and includes all output from the fluid measuring device.
  • FIG. 2 shows a mode in which the A / D converter 22 and the small processor 20 are separated, but the A / D converter 22 may be built in the small processor 20. In this case, the output from the fluid measuring device is input to the processing unit as a digital signal via the A / D converter in the small processor.
  • the circuit board of the fluid control module FC is provided with a valve driving circuit 26 for controlling the control valve 12 and an electromagnetic valve driving circuit 28 for controlling the electromagnetic valve 18.
  • the valve drive circuit 26 and the electromagnetic valve drive circuit 28 are not connected to the small processor 20, and receive the digital valve control signals SV1 and SV2 directly from the external control module E as will be described later. It is configured as follows.
  • the circuit board of the external control module E has a communication / control processor (second processor) 30 configured to receive a digital data signal SD from the small processor 20 of the fluid control module FC via the LVDS interface unit 35. And an EtherCAT communication circuit 32.
  • the external control module E is also provided with a power supply circuit 34 connected to an external power supply (for example, DC 24V).
  • FIG. 3 is a diagram showing a specific circuit configuration example on the substrate in the fluid control module FC and the external control module E shown in FIG.
  • an A / D converter (A / D conversion circuit) 22 22
  • a small processor (first processor) 20 20
  • a memory 24 24
  • an LVDS interface unit 25 25
  • a communication / control processor 30 30
  • an EtherCAT communication circuit 32 32
  • an LVDS interface unit 35 35
  • a power supply circuit 34 are provided.
  • the fluid control module FC and the external control module E are connected by a plurality of digital communication cables L1 to L3 and a power cable L4.
  • a first cable L1 for transmitting a data signal between the small processor 20 and the communication / control processor 30, and a valve drive circuit (here, a piezo drive circuit) 26 from the communication / control processor 30.
  • a second cable L2 for transmitting a flow rate control signal to the power source, a third cable L3 for transmitting an open / close signal from the communication / control processor 30 to the solenoid valve drive circuit 28, and a fluid control module from the power circuit 34.
  • the FC is connected by a power cable L4 for supplying power at a predetermined voltage.
  • the communication / control processor 30 can receive a digital pressure signal or temperature signal from the small processor 20 via the first cable L1.
  • the communication / control processor 30 can also receive the fluid control module individual information stored in the memory (here, the EEPROM) 24 of the fluid control module FC via the small processor 20 and the first cable L1.
  • the first cable L1 for example, an appropriate cable having a length of 0.5 to 3 m can be used in order to perform bidirectional high-speed digital communication.
  • the fluid control module individual information stored in the memory 24 and read from the communication / control processor 30 under the control of the processor 20 includes, for example, a serial number, a flow rate range, a flow rate correction, a temperature characteristic of the pressure sensor, and the like. included.
  • the communication / control processor 30 can appropriately calculate the current flow rate using the read fluid control module individual information.
  • the communication / control processor 30 generates a digital flow control signal based on the received pressure signal, temperature signal, and fluid control module individual information. More specifically, the communication / control processor 30 first calculates the current flow rate based on input data signals such as a pressure signal and a temperature signal. For example, the flow rate is determined based on the upstream pressure and the gas temperature when the critical expansion condition is satisfied, and based on the upstream pressure, the downstream pressure and the gas temperature when the critical expansion condition is not satisfied. Can be sought. By performing correction using the fluid control module individual information in this calculation process, the flow rate in the fluid control module can be calculated more accurately.
  • the communication / control processor 30 receives a set flow rate signal from an external device via the EtherCAT communication circuit 32, compares the calculated current flow rate (calculated flow rate) with the set flow rate, and generates a valve control signal so as to eliminate the difference. To do.
  • the communication / control processor 30 generates a PWM signal which is a pulse width modulated digital signal as a valve control signal.
  • the PWM signal can be generated by adjusting the duty ratio of the PWM signal by feedback control such that the set flow rate and the calculated flow rate match based on the comparison between the set flow rate and the calculated flow rate.
  • the generated PWM signal is transmitted to the fluid control module FC through the LVDS interface unit 35 by the second cable L2, and is input to the valve drive circuit 26 through the LVDS interface unit 25.
  • the valve control signal (PWM signal) is directly input to the valve drive circuit 26 through the second cable L2 different from the first cable L1 without going through the small processor 25.
  • the second cable L2 for example, an appropriate cable having a length of 0.5 to 3 m can be used.
  • the valve drive circuit 26 performs step-up / step-down of the piezo actuator based on the received valve control signal.
  • FIG. 4 is a circuit diagram showing a configuration example of the valve drive circuit 26.
  • the valve drive circuit 26 is configured by a chopper type step-up / step-down converter.
  • the boosting transistor (FET1) when the boosting transistor (FET1) is turned on while the power supply transistor (FET0) is maintained in the on state and the power is supplied, energy is stored in the reactor (L). Sometimes the stored energy is superimposed on the input voltage and output. Then, the capacitor of the piezo actuator is charged by the output voltage, and the drive voltage is set according to the amount of charge.
  • a PWM signal as a valve control signal is input to the gate of the boosting transistor (FET1), and the amount of energy stored in the reactor increases as the duty ratio of the PWM signal increases.
  • the boosting transistor (FET1) is repeatedly turned on and off, and the boosting according to the duty ratio is realized, and the driving voltage of the piezo actuator increases.
  • the piezo actuator can be stepped down in accordance with the duty ratio by inputting a PWM signal having a small duty ratio to the gate of the step-down transistor (FET2) shown in the figure. it can.
  • FIG. 5 is a graph showing the relationship between the duty ratio of the PWM signal output from the external control module E and received by the valve drive circuit 26, and the drive voltage applied to the piezo actuator.
  • the drive voltage of the piezo actuator is set to be substantially proportional to the duty ratio of the PWM signal. Therefore, the external control module E directly controls the opening / closing operation of the control valve 12 by outputting a PWM signal having a duty ratio corresponding to the driving voltage of the desired piezoelectric actuator (that is, the degree of opening / closing of the piezoelectric driving valve). can do.
  • the valve drive circuit 26 is an analog circuit, and the relationship between the duty ratio of the PWM signal and the valve drive voltage may be different depending on the individual fluid control module FC. For this reason, information indicating the above relationship may also be stored in the memory 24 as individual information and read by the external control module E as necessary.
  • control / communication processor 30 of the external control module E of the present embodiment directly outputs the digital open / close signal SV2 to the solenoid valve drive circuit 28 via the third cable L3. Output to. That is, the opening / closing operation of the electromagnetic valve 18 is directly controlled by the external control module E without using the small processor 20 provided in the fluid control module FC.
  • the small processor 25 of the fluid control module FC controls the transmission of outputs from the first and second pressure sensors and the temperature sensor, and transmits the individual information stored in the memory. Control is enough. For this reason, it is possible to reduce the size of the circuit board and thus the fluid control module FC. Further, since an analog circuit including individual differences is mounted on the fluid control module FC side and individual information is stored in the memory, for example, when the external control module E fails, it is replaced with a new external control module E. However, it is possible to easily perform highly accurate fluid control only by reading the individual information from the fluid control module FC.
  • valve control is performed in the fluid control module FC
  • the fluid control module FC side is designed so that control can be performed without permission, and therefore control may run out of control. is there.
  • the fluid control device 10 of the present embodiment even if the fluid control module FC and the external control module E are disconnected, the control of the control valve and the electromagnetic valve is performed by the external control module E. Therefore, control is stopped and it is safe.
  • the fluid control module FC can be reduced in size, for example, can be configured to have a width of 10 mm or less, and further, a hard wire that connects the fluid control module FC and the external control module E. Therefore, the installation space in the vicinity of the semiconductor manufacturing apparatus can be greatly reduced.
  • the external control module E arranged separately from the fluid control module FC and the cable may have a larger size than the fluid control module FC, so that it is possible to provide an RJ45 connector for EtherCAT communication. It is possible to correspond to high-speed communication with an external device.
  • FIG. 6 is a plan view showing a connector and the like provided on the exterior (end face) of the external control module E.
  • the external control module E is provided with an RJ45 connector 10a, a display device 10b, a rotary switch 10c for address setting of the external control module E, a pilot lamp 10d indicating a normal / abnormal state, etc. as shown in the figure. Good.
  • the external control module E may be provided at a position separated from the semiconductor manufacturing apparatus, and since there is no size limitation, the RJ45 connector 10a having a lateral width d of about 13.5 mm can be easily mounted.
  • the flow rate is measured using the pressure sensor, but it is needless to say that the flow rate may be measured using the flow sensor.
  • the fluid control device is preferably used for fluid control by being connected to a gas supply line for semiconductor manufacturing, for example.

Abstract

流体制御装置は、流体制御モジュールと外部制御モジュールとを備えており、流体制御モジュールは、流路上の制御バルブと、制御バルブを駆動するバルブ駆動回路と、流路上の流体測定器と、流体測定器から出力される信号を処理する第1のプロセッサとを有し、外部制御モジュールは、第1のプロセッサが出力した信号を処理する第2のプロセッサを有し、第2のプロセッサは、第1のプロセッサから出力される流体測定器の信号に応じてバルブ制御信号を出力し、バルブ制御信号は第1のプロセッサを介さずにバルブ駆動回路に直接入力され、バルブ駆動回路は第2プロセッサからのバルブ制御信号に応じて制御バルブを駆動する駆動電圧を出力する。

Description

流体制御装置、流体制御装置の制御方法、および、流体制御システム
 本発明は、流体制御装置、流体制御装置の制御方法、および流体制御システムに関し、特に、小型化に対応した流体制御装置およびその制御方法ならびにそれを備えた流体制御システムに関する。
 半導体製造装置や化学プラントにおいて、原料ガスやエッチングガス等の流体を制御するために、種々のタイプの流量計や圧力計および流体制御装置が利用されている。このなかで圧力式流量制御装置は、ピエゾ素子駆動型の制御弁と絞り部(例えばオリフィスプレートや臨界ノズル)とを組み合せた比較的簡単な機構によって各種流体の流量を高精度に制御することができるので広く利用されている。
 圧力式流量制御装置では、臨界膨張条件P1/P2≧約2(P1:絞り部上流側のガス圧力、P2:絞り部下流側のガス圧力)を満たすとき、絞り部を通過するガスの流量は、下流圧力P2によらず上流圧力P1によって決まるという原理を利用して流体制御を行っている。臨界膨張条件はガスの種類や温度によって異なる。臨界膨張条件を満たすとき、流量Qcは、例えば次の式によって与えられる。
   Qc=S・C・P1/T11/2
 ここで、Sはオリフィス断面積、Cはガス物性によって決まる定数(フローファクタ)、T1は上流ガス温度である。上記式から、流量Qcは上流圧力P1に比例することがわかる。このため、オリフィス上流側に設けた制御弁の開閉調整等により上流圧力P1を制御するだけで、下流に流れるガスの流量を高精度に制御することができる。
 また、絞り部上流側だけでなく、絞り部下流側にも圧力センサを設けた圧力式流量制御装置が知られている。このような圧力式流量制御装置では、上流圧力P1と下流圧力P2との差が小さく、上記の臨界膨張条件を満足しない場合であっても、所定の計算式Qc=KP2m(P1-P2)n(ここでKは流体の種類と流体温度に依存する比例定数、m、nは実際の流量を元に導出される指数)に基づいて流量Qcを算出することが可能である。
特開2012-107871号公報 特開2016-21219号公報
 半導体製造に用いられるプロセスガスの種類は年々増加する傾向にあり、これに伴って、ガス供給ラインの数および用いられる流体制御装置の数も多くなってきている。しかし、半導体製造装置には種々の機器が接続されており、半導体製造装置の近傍に多数の流体制御装置を設置するスペースを確保することが困難である。そこで、近年、従来に比べて大幅にスリム化した極薄型(例えば10mm幅程度)の流体制御装置の開発が進められている。
 特許文献1には、複数の流量計測器に対して、これらをまとめて管理する制御機器が取り付けられた流量制御システムが開示されている。特許文献1に記載の流量制御システムにおいては、複数の流量計測器の構成の一部を共通化して制御機器に持たせることによって、流量計測器それぞれの厚さを薄くしている。また、流量計測器のそれぞれには関連する流量算出関連データが格納されており、流量計測器の格納部から取得した流量算出関連データと計測データとを用いて制御機器が流量測定値を算出している。
 また、特許文献2には、流量制御装置の小型化を実現するために、流量制御装置とユーザ情報処理装置との間に介在する中継器を介して、診断用データを診断用装置に送信する構成が記載されている。
 しかし、流量制御装置を可能な限り薄型化したとしても、これに接続される制御機器を半導体製造装置の近傍に設けると、設置スペースを十分に削減できないことがある。例えば、上述した上流圧力センサと下流圧力センサとを備えた圧力式流量制御装置では、内部素子の小型化に限界があるため、半導体製造装置の近傍に制御機器用のスペースまで確保することが容易ではない。
 本発明は、上記課題を解決するためになされたものであり、小型・薄型化に対応可能な流体制御装置およびその制御方法ならびにそれを備えた流体制御システムを提供することをその主たる目的とする。
 本発明の実施形態による流体制御装置は、流体制御モジュールと外部制御モジュールとを備える流体制御装置であって、前記流体制御モジュールは、流路と、前記流路上の制御バルブと、前記制御バルブを駆動するバルブ駆動回路と、前記流路上に設けられる流体測定器と、前記流体測定器から出力される信号を処理する第1のプロセッサと、を有し、前記外部制御モジュールは、前記第1のプロセッサが出力した信号を処理する第2のプロセッサ、を有し、前記第2のプロセッサは、前記第1のプロセッサから出力される前記流体測定器の信号に応じてバルブ制御信号を出力し、前記バルブ制御信号は前記第1のプロセッサを介することなく前記バルブ駆動回路に直接入力され、前記バルブ駆動回路は前記第2プロセッサからの前記バルブ制御信号に応じて前記制御バルブを駆動する駆動電圧を出力する。
 ある実施形態において、前記流体測定器からの信号は、前記外部制御モジュールへ出力される前にA/D変換されている。
 ある実施形態において、前記第2のプロセッサは、バルブ制御信号としてPWM信号を生成し、前記バルブ駆動回路は、前記PWM信号のデューティー比に応じた駆動電圧を生成する。
 ある実施形態において、前記制御バルブはピエゾ素子駆動型バルブであり、前記バルブ駆動回路は前記バルブ制御信号に基づいてピエゾアクチュエータを昇圧または降圧させる。
 ある実施形態において、前記流体制御モジュールと、前記外部制御モジュールとは、それぞれ、差動伝送インターフェース部を備えており、複数のケーブルを介して差動伝送方式でデジタル通信される。
 ある実施形態において、前記第2のプロセッサは、外部装置からの情報信号を受け取るように構成されており、前記外部制御モジュールと前記外部装置との通信はEtherCATによって行われ、前記外部制御モジュールにはRJ45コネクタが設けられている。
 ある実施形態において、前記流体制御モジュールにはメモリが設けられており、前記メモリには前記流体制御モジュールに関連付けられた個体情報が格納されており、前記第2のプロセッサは、前記個体情報を読み出し可能である。
 ある実施形態において、前記流体測定器は、流量センサ、または、圧力センサである。
 ある実施形態において、前記流体測定器は、前記流路上に設けられた絞り部と、前記絞り部の上流側かつ前記制御バルブの下流側に設けられた第1圧力センサと、前記絞り部の下流側に設けられた第2圧力センサとを含む。
 ある実施形態において、前記流体制御モジュールは、前記制御バルブと前記絞り部との間のガス温度を測定するための温度センサをさらに備える。
 ある実施形態において、前記流体制御モジュールは、前記絞り部としてのオリフィス部材を含むオリフィス内蔵弁と、前記オリフィス内蔵弁に接続された電磁弁および前記電磁弁の駆動回路を含み、前記外部制御モジュールは、前記電磁弁の開閉を制御する信号を前記第1のプロセッサを介さずに直接的に前記電磁弁の駆動回路に出力する。
 本発明の実施形態による流体制御システムにおいて、1つの共通ガス供給ラインに対して複数のガス供給ラインが並列に設けられ、前記複数のガス供給ラインのそれぞれに、上記いずれかの流体制御装置が、前記流体制御モジュールと前記外部制御モジュールとが1対1の関係をなすようにして設けられている。
 また、ある実施形態において、流体制御装置は、流路と、流体制御用の制御バルブと、前記制御バルブの開閉度を制御するバルブ駆動回路と、前記流路上に設けられた流体測定器と、前記流体測定器からの出力を受け取る第1のプロセッサとを有する流体制御モジュールと、前記流体制御モジュールと分離して配置され、前記流体制御モジュールと複数のケーブルを介して通信可能に接続された外部制御モジュールであって、前記第1のプロセッサからの信号を受け取るように構成された第2のプロセッサを有し、前記第2のプロセッサによって生成された情報信号を外部装置に出力する、または、外部装置からの情報信号を前記第2のプロセッサに入力するように構成された外部制御モジュールとを備え、前記第2のプロセッサは、前記第1のプロセッサから前記流体測定器の信号を受け取り、前記流体測定器の前記信号に基づいてバルブ制御信号を生成し、前記バルブ制御信号は、前記第1のプロセッサを介することなく前記バルブ駆動回路に直接的に入力され、前記バルブ駆動回路において駆動電圧に変換されて前記制御バルブが駆動される。
 本発明の実施形態による流体制御装置の制御方法は、第1のプロセッサを有する流体制御モジュールと、第2のプロセッサを有する外部制御モジュールとを備える流体制御装置の制御方法であって、前記流体制御モジュールに設けられた流量測定器から、流量の信号を出力するステップと、前記流量測定器から出力された流量の信号を、前記第1のプロセッサを介して前記第2のプロセッサに出力するステップと、前記出力された流量の信号に基づいて第2のプロセッサがバルブ制御信号を出力するステップと、前記出力されたバルブ制御信号を前記第1のプロセッサを介さずに前記流体制御モジュールに配置されたバルブ駆動回路に出力するステップと、前記バルブ制御信号に基づいて、前記バルブ駆動回路が駆動電圧を出力し、流路上に設置された制御バルブを駆動するステップとを含む。
 本発明の実施形態によれば、小型薄型化に対応した流体制御装置を提供することができ、また、制御の安全性が確保された安全設計の流体制御装置が提供される。
本発明の実施形態による流体制御装置が半導体製造装置に接続された態様を示す図である。 本発明の実施形態による流体制御装置の構成を示す図である。 本発明の実施形態による流体制御装置を示す回路図である。 本発明の実施形態によるピエゾ駆動回路の一例を示す図である。 ピエゾ駆動回路に与えられるパルス信号(デジタル信号)のデューティー比と、ピエゾ素子に印加される駆動電圧との関係を示すグラフである。 本発明の実施形態による流体制御装置を構成する外部制御モジュールの外装に設けられたコネクタなどを示す平面図である。
 以下、図面を参照しながら本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。
 図1は、本発明の実施形態による流体制御装置が組み込まれた流体制御システムを示す。図1に示す流体制御システムでは、半導体製造装置のプロセスチャンバ3に接続された1つの共通ガス供給ラインに対して、n本のガス供給ライン2が並列に設けられており、n本のガス供給ライン2に対応するn個の流体制御装置10が設けられている。
 ガス供給ライン2のそれぞれにおいて、ガスソース1からのガス(原料ガスやエッチングガスなど)が、流体制御装置10によって流量や圧力が制御されてプロセスチャンバ3へと供給される。プロセスチャンバ3には真空ポンプ4が接続されており、半導体製造プロセス時にはプロセスチャンバ3内を真空引きすることができる。また、ガス供給ライン2のそれぞれには下流弁(開閉弁)Vnが設けられており、開状態にされた下流弁Vnを介して必要なガスだけがプロセスチャンバ3へと供給される。
 本実施形態において、複数の流体制御装置10のそれぞれは、流体制御モジュールFCnと、外部制御モジュールEnとを1対1の関係で備えている。流体制御モジュールFCnと外部制御モジュールEnとは互いに分離して配置されており、これらは高速デジタル通信用ケーブルCnによって接続されている。ケーブルCnは、例えば0.5m~3mの長さを有しており、これにより、プロセスチャンバ3の近傍に設置された流体制御モジュールFCnと離れた位置に、外部制御モジュールEnを設置することが可能になる。
 また、外部制御モジュールE1~Enは、情報処理装置(外部装置)5に対してEtherCAT(登録商標)によってネットワーク接続されている。外部制御モジュールE1~Enには、EtherCATに対応したRJ45コネクタ10aが設けられており、これに接続されたEtherCATケーブルを介して情報処理装置5と通信を行うことができる。情報処理装置5は、例えば、ユーザ入力装置を備えた汎用のコンピュータなどであってよい。
 図2は、一対の流体制御モジュールFCおよび外部制御モジュールEを示す図である。流体制御モジュールFCと外部制御モジュールEとは、図1を参照して説明したように、デジタル通信用ケーブルCnによって接続されており、より具体的には、それぞれに設けられたLVDS(Low voltage differential signaling)インターフェース部25、35を介して、差動伝送方式でデジタル信号の通信を行っている。
 LVDSは、高速なデータ伝送を行うことができるという特長を有し、さらに、長距離伝送をノイズを抑制しながら行うことができるという特長を有している。このため、LVDSを用いれば、流体制御モジュールFCと外部制御モジュールEとを離して設けたときにも、相互間で信頼性高く高速な通信を実現することができる。
 上記の構成において、流体制御モジュールFCはガス流路11を有しており、ガス流路に介在する絞り部14と、絞り部14の上流側に設けられた第1圧力センサP1および温度センサTと、第1圧力センサP1の上流側に設けられた制御バルブ12と、絞り部14の下流側に設けられた第2圧力センサP2とを備える。第1圧力センサP1は、制御バルブ12と絞り部14との間の流路の圧力を測定することができ、第2圧力センサP2は、絞り部14の下流側(例えば絞り部14と下流バルブVn(図1参照)との間の流路)の圧力を測定することができる。
 本実施形態では、流体制御モジュールFCが圧力式流量制御装置と同様の構成を有しており、流路に設けられた流体測定器として、第1圧力センサP1および第2圧力センサP2を備えている。ただし、これに限られず、流体制御モジュールFCは、第1および第2圧力センサP1に代えて、あるいは、第1および第2圧力センサP1に追加して、他の態様の流体測定器(例えば、流量センサ)を備える構成を有していもよい。
 また、図示する流体制御モジュールFCには、絞り部14と一体的に形成されたオリフィス内蔵弁16が設けられており、オリフィス内蔵弁16には電磁弁18が接続されている。オリフィス内蔵弁16は、典型的には流体動作弁(AOVなど)から構成される開閉弁であり、電磁弁18を用いてオリフィス内蔵弁16への作動(駆動)流体の供給を制御することによってオリフィス内蔵弁16が開閉される。オリフィス内蔵弁16によって、例えば、間歇的なガスフローを達成したり、プロセスチャンバへの高速確実なガス遮断動作を行うことが可能である。本実施形態では、絞り部14は、オリフィス内蔵弁16が有するオリフィス部材によって実現されているが、これに限られず、オリフィス内蔵弁16に代えてオリフィスプレートや臨界ノズルなどの絞り部が弁と独立して設けられた態様であってもよい。
 流体制御モジュールFCにおいて、流路は配管によって形成されるものの他に、金属製ブロックに設けられた孔として形成されていてよい。第1圧力センサP1および第2圧力センサP2は、例えば、シリコン単結晶のセンサチップとダイヤフラムとを内蔵する圧力センサであってよい。温度センサは、例えばサーミスタであってよい。制御バルブ12は、例えば金属製ダイヤフラムバルブ12aと、駆動部としてのピエゾアクチュエータ12bとから構成されるピエゾ駆動型バルブであってよい。
 また、流体制御モジュールFCは回路基板を有しており、この回路基板には、A/D変換器(A/D変換回路)22、小型プロセッサ(第1のプロセッサ)20、メモリ(例えばEEPROM)24、LVDSインターフェイス部25が設けられている。この構成において、第1圧力センサP1、第2圧力センサP2および温度センサTの出力(すなわち、流体測定器の出力)がA/D変換器22に入力され、デジタル信号に変換されて小型プロセッサ20に入力される。小型プロセッサ20は、LVDSインターフェイス部25および第1ケーブルL1を介して、データ信号SDを外部制御モジュールEに出力することが可能である。
 なお、流体測定器は種々の構成を取り得るが、本明細書において、流体測定器の出力とは、デジタル信号等の信号の他、電圧等も含み、流体測定器から出される全てを含むものとする。また、図2にはA/D変換器22と小型プロセッサ20とが分けられた態様を示しているが、A/D変換器22は小型プロセッサ20に内蔵されていてもよい。この場合、流体測定器からの出力は、小型プロセッサ内のA/D変換器を介してデジタル信号として処理部に入力される。
 また、流体制御モジュールFCの回路基板には、制御バルブ12を制御するためのバルブ駆動回路26と、電磁弁18を制御するための電磁弁駆動回路28とが設けられている。ただし、バルブ駆動回路26および電磁弁駆動回路28は、上記の小型プロセッサ20には接続されておらず、後述するように外部制御モジュールEから、直接的にデジタルのバルブ制御信号SV1、SV2を受け取るように構成されている。
 一方、外部制御モジュールEの回路基板には、流体制御モジュールFCの小型プロセッサ20からLVDSインターフェイス部35を介してデジタルデータ信号SDを受け取るように構成された通信/制御プロセッサ(第2のプロセッサ)30と、EtherCAT通信回路32とが設けられている。また、図示するように、外部制御モジュールEには、外部電源(例えば、DC24V)に接続される電源回路34も設けられている。
 図3は、図2に示した流体制御モジュールFCおよび外部制御モジュールEにおける基板上の具体的な回路構成例を示す図である。流体制御モジュールFCの回路基板において、A/D変換器(A/D変換回路)22、小型プロセッサ(第1のプロセッサ)20、メモリ24、LVDSインターフェイス部25が設けられ、外部制御モジュールEの回路基板において、通信/制御プロセッサ30、EtherCAT通信回路32、LVDSインターフェイス部35、電源回路34が設けられている。
 図2および図3を参照してわかるように、本実施形態の流体制御装置10において、流体制御モジュールFCと外部制御モジュールEとは、複数のデジタル通信用ケーブルL1~L3および電源ケーブルL4によって接続されている。より具体的には、小型プロセッサ20と通信/制御プロセッサ30との間でデータ信号の伝送を行うための第1ケーブルL1と、通信/制御プロセッサ30からバルブ駆動回路(ここではピエゾ駆動回路)26への流量制御信号の伝送を行うための第2ケーブルL2と、通信/制御プロセッサ30から電磁弁駆動回路28への開閉信号の伝送を行うの第3ケーブルL3と、電源回路34から流体制御モジュールFCに所定電圧での電力供給を行うための電源ケーブルL4とによって接続されている。
 この構成において、通信/制御プロセッサ30は、第1ケーブルL1を介して小型プロセッサ20からデジタルの圧力信号や温度信号を受け取ることができる。また、通信/制御プロセッサ30は、流体制御モジュールFCのメモリ(ここではEEPROM)24に格納された流体制御モジュール個体情報も小型プロセッサ20および第1ケーブルL1を介して受け取ることができる。第1ケーブルL1としては、双方向高速デジタル通信を行うために、例えば、長さ0.5~3mの適宜のケーブルを用いることができる。
 なお、メモリ24に格納され、プロセッサ20の制御のもとに通信/制御プロセッサ30から読み出される流体制御モジュール個体情報には、例えば、シリアルナンバー、流量レンジ、流量補正、圧力センサの温度特性等が含まれる。通信/制御プロセッサ30は、読み出した流体制御モジュール個体情報を用いて、現在流量を適切に算出することができる。
 通信/制御プロセッサ30は、受け取った圧力信号、温度信号、流体制御モジュール個体情報に基づいて、デジタルの流量制御信号を生成する。より具体的には、通信/制御プロセッサ30は、まず、圧力信号、温度信号などの入力されたデータ信号に基づいて現在の流量を算出する。流量は、例えば、臨界膨張条件を満たしているときには上流圧力およびガス温度に基づいて、臨界膨張条件を満たしていないるときには上流圧力、下流圧力およびガス温度に基づいて、上述した所定の計算式により求めることができる。この算出過程で、流体制御モジュール個体情報を用いて補正を行うことで、当該流体制御モジュールにおける流量をより正確に算出することができる。
 通信/制御プロセッサ30は、EtherCAT通信回路32を介して外部装置から設定流量信号を受け取り、算出した現在流量(演算流量)と設定流量とを比較し、その差分をなくすようにバルブ制御信号を生成する。
 ここで、通信/制御プロセッサ30は、バルブ制御信号として、パルス幅変調されたデジタル信号であるPWM信号を生成する。PWM信号は、設定流量と演算流量との比較に基づいて、設定流量と演算流量とが一致するようなフィードバック制御により、PWM信号のデューティー比を調節する、というようにして生成することができる。
 生成されたPWM信号は、LVDSインターフェース部35を介して、第2ケーブルL2によって流体制御モジュールFCに伝送され、LVDSインターフェース部25を経てバルブ駆動回路26に入力される。このように、バルブ制御信号(PWM信号)は、小型プロセッサ25を介することなく、また、第1ケーブルL1とは異なる第2ケーブルL2によってバルブ駆動回路26に直接的に入力される。第2ケーブルL2としては、例えば、長さ0.5~3mの適宜のケーブルを用いることができる。
 バルブ駆動回路26は、受け取ったバルブ制御信号に基づいてピエゾアクチュエータの昇圧/降圧を行う。図4は、バルブ駆動回路26の構成例を示す回路図であり、本実施形態では、バルブ駆動回路26は、チョッパ式昇圧/降圧コンバータによって構成されている。
 チョッパ式昇圧コンバータでは、電源用トランジスタ(FET0)がオン状態に維持されて電力供給されている状態で、昇圧用トランジスタ(FET1)がオンの時、リアクトル(L)にエネルギーが蓄えられ、オフのときに蓄えられたエネルギーが入力電圧に重畳して出力される。そして、出力された電圧によってピエゾアクチュエータのコンデンサが充電され、この充電量に応じた駆動電圧に設定される。
 上記回路において、昇圧用トランジスタ(FET1)のゲートにバルブ制御信号としてのPWM信号が入力され、このPWM信号のデューティー比が大きいほど、リアクトルに蓄積されるエネルギーの量が多くなる。その結果、昇圧用トランジスタ(FET1)のオン-オフ繰り返しとともにデューティー比に応じた昇圧が実現され、ピエゾアクチュエータの駆動電圧が上昇する。同様に、ピエゾアクチュエータの駆動電圧を低下させたいときには、デューティー比の小さいPWM信号を図示する降圧用トランジスタ(FET2)のゲートに入力することによって、デューティー比に応じたピエゾアクチュエータの降圧を行うことができる。
 図5は、外部制御モジュールEから出力されバルブ駆動回路26で受け取られるPWM信号のデューティー比と、ピエゾアクチュエータに印加される駆動電圧との関係を示すグラフである。図5からわかるように、PWM信号のデューティー比に略比例するようピエゾアクチュエータの駆動電圧が設定されることがわかる。したがって、所望するピエゾアクチュエータの駆動電圧(すなわち、ピエゾ駆動バルブの開閉度)に対応するデューティー比を有するPWM信号を出力することにより、外部制御モジュールEが制御バルブ12の開閉動作を直接的に制御することができる。なお、バルブ駆動回路26はアナログ回路であり、PWM信号のディーティー比とバルブ駆動電圧との関係も流体制御モジュールFCの個体によって違うものであり得る。このため、上記関係を示す情報も個体情報としてメモリ24に格納しておき、必要に応じて外部制御モジュールEが読み出すようにしてもよい。
 再び図2および図3を参照して、本実施形態の外部制御モジュールEの制御/通信プロセッサ30は、第3ケーブルL3を介して、電磁弁駆動回路28に対しデジタルの開閉信号SV2を直接的に出力する。すなわち、電磁弁18の開閉動作は、流体制御モジュールFCに設けられた小型プロセッサ20を介さずに、外部制御モジュールEによって直接的に制御される。
 以上のように構成された流体制御装置10において、流体制御モジュールFCの小型プロセッサ25は、第1および第2圧力センサや温度センサからの出力の伝送制御や、メモリに格納された個体情報の伝送制御を行えば足りる。このため、回路基板ひいては流体制御モジュールFCを小型化することができる。また、個体差を含むアナログ回路を流体制御モジュールFC側に実装し、メモリに個体情報を格納しているので、例えば、外部制御モジュールEが故障したときに新たな外部制御モジュールEと取り換えるときにも、流体制御モジュールFCから個体情報を読み出すだけで、容易に高精度の流体制御を行うことが可能になる。
 また、流体制御モジュールFCにおいてバルブ制御を行う態様であると、外部制御モジュールEとの通信が断線した際、流体制御モジュールFC側が勝手に制御を行い得る設計であるので、制御が暴走するおそれがある。これに対して、本実施形態の流体制御装置10においては、流体制御モジュールFCと外部制御モジュールEとが断線したとしても、制御バルブや電磁弁の制御は外部制御モジュールEが行っているので強制的に制御が停止し安全である。
 このようにして流体制御モジュールFCの小型化を進めることができ、例えば、10mm以下の幅を有するように構成することもでき、さらに、流体制御モジュールFCと外部制御モジュールEとを接続するハードワイヤの本数を減らすことができるので、半導体製造装置の近傍における設置スペースを大きく削減することができる。
 また、流体制御モジュールFCとケーブルにより分離して配置される外部制御モジュールEは、流体制御モジュールFCよりも大きいサイズを有していてよいので、EtherCAT通信用のRJ45コネクタを設けることが可能であり、外部装置との高速通信に対応させることができる。
 図6は、外部制御モジュールEの外装(端面)に設けられたコネクタなどを示す平面図である。外部制御モジュールEには、図示するように、RJ45コネクタ10aや、表示機器10b、外部制御モジュールEのアドレス設定用のロータリスイッチ10c、正常/異常状態を示すパイロットランプ10dなどが設けられていてもよい。外部制御モジュールEは、半導体製造装置から離した位置に設けられていてもよく、サイズの制限がないので、横幅dが13.5mm程度であるRJ45コネクタ10aも容易に搭載することができる。
 以上、本発明の実施形態を説明したが、種々の改変が可能である。例えば、通信方式の異なる外部制御モジュールに付け替えることにより、同じ流体制御モジュールを用いる場合であっても、様々な通信方式に対応する事が出来る。通信方式としては、上述したEtherCAT通信の他に、Devicenet通信や、RS485通信などを採用することができる。
 また、実施例においては、圧力センサを用いて流量の計測を行っているが、流量センサを用いて流量の計測を行っても良い事はもちろんである。
 本発明の実施形態による流体制御装置は、例えば、半導体製造のガス供給ラインに接続されて流体制御を行うために好適に利用される。
 1 ガスソース
 2 ガス供給ライン
 3 プロセスチャンバ
 4 真空ポンプ
 5 情報処理装置
 10 流体制御装置
 12 制御バルブ
 12a ダイアフラム弁
 12b ピエゾアクチュエータ
 14 絞り部
 16 オリフィス内蔵弁
 18 電磁弁
 FC 流体制御モジュール
 E 外部制御モジュール
 P1 上流圧力センサ
 P2 下流圧力センサ
 T 温度センサ

Claims (13)

  1.  流体制御モジュールと外部制御モジュールとを備える流体制御装置であって、
     前記流体制御モジュールは、
      流路と、
      前記流路上の制御バルブと、
      前記制御バルブを駆動するバルブ駆動回路と、
      前記流路上に設けられる流体測定器と、
      前記流体測定器から出力される信号を処理する第1のプロセッサと、を有し、
     前記外部制御モジュールは、前記第1のプロセッサが出力した信号を処理する第2のプロセッサ、を有し、
     前記第2のプロセッサは、前記第1のプロセッサから出力される前記流体測定器の信号に応じてバルブ制御信号を出力し、前記バルブ制御信号は前記第1のプロセッサを介することなく前記バルブ駆動回路に直接入力され、前記バルブ駆動回路は前記第2プロセッサからの前記バルブ制御信号に応じて前記制御バルブを駆動する駆動電圧を出力する、流体制御装置。
  2.  前記流体測定器からの信号は、前記外部制御モジュールへ出力される前にA/D変換されている、請求項1に記載の流体制御装置。
  3.  前記第2のプロセッサは、前記バルブ制御信号としてPWM信号を生成し、
     前記バルブ駆動回路は、前記PWM信号のデューティー比に応じた駆動電圧を生成する、請求項1または2に記載の流体制御装置。
  4.  前記制御バルブはピエゾ素子駆動型バルブであり、前記バルブ駆動回路は前記バルブ制御信号に基づいてピエゾアクチュエータを昇圧または降圧させる、請求項3に記載の流体制御装置。
  5.  前記流体制御モジュールと、前記外部制御モジュールとは、それぞれ、差動伝送インターフェース部を備えており、複数のケーブルを介して差動伝送方式でデジタル通信される、請求項1から4のいずれかに記載の流体制御装置。
  6.  前記第2のプロセッサは、外部装置からの情報信号を受け取るように構成されており、前記外部制御モジュールと前記外部装置との通信はEtherCATによって行われ、前記外部制御モジュールにはRJ45コネクタが設けられている、請求項1から5のいずれかに記載の流体制御装置。
  7.  前記流体制御モジュールにはメモリが設けられており、前記メモリには前記流体制御モジュールに関連付けられた個体情報が格納されており、前記第2のプロセッサは、前記個体情報を読み出し可能である、請求項1から6のいずれかに記載の流体制御装置。
  8.  前記流体測定器は、流量センサ、または、圧力センサである、請求項1から7のいずれかに記載の流体制御装置。
  9.  前記流体測定器は、前記流路上に設けられた絞り部と、前記絞り部の上流側かつ前記制御バルブの下流側に設けられた第1圧力センサと、前記絞り部の下流側に設けられた第2圧力センサとを含む、請求項1から8のいずれかに記載の流体制御装置。
  10.  前記流体制御モジュールは、前記制御バルブと前記絞り部との間のガス温度を測定するための温度センサをさらに備える、請求項9に記載の流体制御装置。
  11.  前記流体制御モジュールは、前記絞り部としてのオリフィス部材を含むオリフィス内蔵弁と、前記オリフィス内蔵弁に接続された電磁弁および前記電磁弁の駆動回路とを含み、前記外部制御モジュールは、前記電磁弁の開閉を制御する信号を前記第1のプロセッサを介さずに直接的に前記電磁弁の駆動回路に出力する、請求項9または10に記載の流体制御装置。
  12.  1つの共通ガス供給ラインと、前記1つの共通ガス供給ラインに対して並列に配置された複数のガス供給ラインとを備え、前記複数のガス供給ラインのそれぞれに、請求項1から11のいずれかに記載の流体制御装置が、前記流体制御モジュールと前記外部制御モジュールとが1対1の関係をなすようにして設けられている、流体制御システム。
  13.  第1のプロセッサを有する流体制御モジュールと、第2のプロセッサを有する外部制御モジュールとを備える流体制御装置の制御方法であって、
     前記流体制御モジュールに設けられた流量測定器から、流量の信号を出力するステップと、
     前記流量測定器から出力された流量の信号を、前記第1のプロセッサを介して前記第2のプロセッサに出力するステップと、
     前記出力された流量の信号に基づいて第2のプロセッサがバルブ制御信号を出力するステップと、
     前記出力されたバルブ制御信号を前記第1のプロセッサを介さずに前記流体制御モジュールに配置されたバルブ駆動回路に出力するステップと、
     前記バルブ制御信号に基づいて、前記バルブ駆動回路が駆動電圧を出力し、流路上に設置された制御バルブを駆動するステップと、を含む、流体制御装置の制御方法。
PCT/JP2017/015974 2016-04-28 2017-04-21 流体制御装置、流体制御装置の制御方法、および、流体制御システム WO2017188129A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187015780A KR102079988B1 (ko) 2016-04-28 2017-04-21 유체 제어 장치, 유체 제어 장치의 제어 방법, 및 유체 제어 시스템
JP2018514553A JP6910652B2 (ja) 2016-04-28 2017-04-21 流体制御システムおよび流体制御装置の制御方法
US16/094,252 US11137779B2 (en) 2016-04-28 2017-04-21 Fluid control device, method for controlling fluid control device, and fluid control system
CN201780005089.2A CN109074104B (zh) 2016-04-28 2017-04-21 流体控制系统以及流体控制装置的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016090508 2016-04-28
JP2016-090508 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017188129A1 true WO2017188129A1 (ja) 2017-11-02

Family

ID=60160381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015974 WO2017188129A1 (ja) 2016-04-28 2017-04-21 流体制御装置、流体制御装置の制御方法、および、流体制御システム

Country Status (6)

Country Link
US (1) US11137779B2 (ja)
JP (1) JP6910652B2 (ja)
KR (1) KR102079988B1 (ja)
CN (1) CN109074104B (ja)
TW (1) TWI651606B (ja)
WO (1) WO2017188129A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228555A1 (ja) * 2022-05-26 2023-11-30 株式会社フジキン 流体制御装置、流体制御システムおよびバルブ制御装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6786096B2 (ja) * 2016-07-28 2020-11-18 株式会社フジキン 圧力式流量制御装置
JP7216425B2 (ja) * 2017-11-30 2023-02-01 株式会社フジキン 流量制御装置
JP7042134B2 (ja) * 2018-03-29 2022-03-25 東京エレクトロン株式会社 基板処理システム及びガスの流量を求める方法
CN108490844B (zh) * 2018-05-11 2023-05-26 湖南众源科技有限公司 一种高精度恒压强闭环控制仪
US20230160488A1 (en) * 2020-03-04 2023-05-25 Ham-Let (Israel-Canada) Ltd Apparatus, processing device and methods for relieving pressure and system having the apparatus
CN113552909A (zh) * 2020-04-26 2021-10-26 长鑫存储技术有限公司 阀控制系统及阀控制方法
CN112593216B (zh) * 2020-11-24 2022-09-16 北京北方华创微电子装备有限公司 一种气体传输管路升温方法、半导体工艺设备
KR20230000975A (ko) * 2021-06-25 2023-01-03 가부시키가이샤 호리바 에스텍 유체 제어 장치, 유체 제어 시스템, 유체 제어 장치용 프로그램 및 유체 제어 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0049242A1 (en) * 1980-04-07 1982-04-14 SAMEK, Stefan Refrigeration method and apparatus using heat
JP2013088946A (ja) * 2011-10-14 2013-05-13 Horiba Stec Co Ltd 流量制御装置、流量制御装置に用いられる診断装置及び診断用プログラム
JP2015138338A (ja) * 2014-01-21 2015-07-30 株式会社フジキン 圧力式流量制御装置及びその流量制御開始時のオーバーシュート防止方法。
JP2016021219A (ja) * 2014-06-20 2016-02-04 株式会社堀場エステック 中継器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1245144B (it) * 1991-02-08 1994-09-13 Dropsa Spa Impianto per la distribuzione di lubrificazione a piu' utenze con distributori connessi ad una stessa linea di mandata o distribuzione del lubrificante e controllati a distanza
JP3522535B2 (ja) * 1998-05-29 2004-04-26 忠弘 大見 圧力式流量制御装置を備えたガス供給設備
US6389364B1 (en) * 1999-07-10 2002-05-14 Mykrolis Corporation System and method for a digital mass flow controller
US6539968B1 (en) * 2000-09-20 2003-04-01 Fugasity Corporation Fluid flow controller and method of operation
US6843139B2 (en) * 2003-03-12 2005-01-18 Rosemount Inc. Flow instrument with multisensors
KR101501426B1 (ko) * 2006-06-02 2015-03-11 어플라이드 머티어리얼스, 인코포레이티드 차압 측정들에 의한 가스 유동 제어
JP5082989B2 (ja) * 2008-03-31 2012-11-28 日立金属株式会社 流量制御装置、その検定方法及び流量制御方法
US8594852B2 (en) * 2010-02-22 2013-11-26 Eaton Corporation Device and method for controlling a fluid actuator
JP5864849B2 (ja) 2010-10-20 2016-02-17 株式会社堀場エステック 流体計測システム
US9603990B2 (en) * 2012-04-05 2017-03-28 Stryker Corporation Cassette for a surgical fluid management pump system
JP5616416B2 (ja) 2012-11-02 2014-10-29 株式会社フジキン 集積型ガス供給装置
TWM467525U (zh) * 2013-05-17 2013-12-11 Tien-Ho Chung 兩進口三出口的流體控制裝置
CN104076830B (zh) * 2014-06-12 2018-05-01 北京七星华创电子股份有限公司 用于气体集成输送系统的质量流量控制装置、系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0049242A1 (en) * 1980-04-07 1982-04-14 SAMEK, Stefan Refrigeration method and apparatus using heat
JP2013088946A (ja) * 2011-10-14 2013-05-13 Horiba Stec Co Ltd 流量制御装置、流量制御装置に用いられる診断装置及び診断用プログラム
JP2015138338A (ja) * 2014-01-21 2015-07-30 株式会社フジキン 圧力式流量制御装置及びその流量制御開始時のオーバーシュート防止方法。
JP2016021219A (ja) * 2014-06-20 2016-02-04 株式会社堀場エステック 中継器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228555A1 (ja) * 2022-05-26 2023-11-30 株式会社フジキン 流体制御装置、流体制御システムおよびバルブ制御装置

Also Published As

Publication number Publication date
JP6910652B2 (ja) 2021-07-28
CN109074104B (zh) 2021-07-16
CN109074104A (zh) 2018-12-21
TW201807525A (zh) 2018-03-01
KR20180079426A (ko) 2018-07-10
US11137779B2 (en) 2021-10-05
TWI651606B (zh) 2019-02-21
US20190129452A1 (en) 2019-05-02
KR102079988B1 (ko) 2020-02-21
JPWO2017188129A1 (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
WO2017188129A1 (ja) 流体制御装置、流体制御装置の制御方法、および、流体制御システム
KR102250967B1 (ko) 압력식 유량 제어 장치 및 유량 제어 방법
KR101707877B1 (ko) 유량 모니터 부착 유량 제어 장치
JP5754853B2 (ja) 半導体製造装置のガス分流供給装置
EP3117137B1 (en) System for monitoring flow through mass flow controllers in real time
US10073469B2 (en) Flow meter and flow control device provided therewith
JP6771772B2 (ja) 圧力式流量制御装置及びその異常検知方法
JP5665794B2 (ja) 半導体製造装置のガス分流供給装置
JP2011233841A (ja) 半導体製造装置用のガス供給装置
KR20130040742A (ko) 유량 제어 장치, 유량 측정 기구, 또는 당해 유량 측정 기구를 구비한 유량 제어 장치에 이용되는 진단 장치 및 진단용 프로그램이 기록된 기록 매체
KR20170071426A (ko) 가스 유량 감시 방법 및 가스 유량 감시 장치
KR101407978B1 (ko) 방폭 설비용 공기압 유지 시스템
US20200225686A1 (en) Valve and fluid supply line
JP5934412B2 (ja) 中継器
JP5752521B2 (ja) 診断装置及びその診断装置を備えた流量制御装置
CN109844675A (zh) 流体控制阀用诊断装置、流体控制装置以及流体控制阀用诊断程序
WO2020026784A1 (ja) 流量制御システム及び流量測定方法
US20200285256A1 (en) Fluid supply line and motion analysis system
US20170219412A1 (en) Method and a system for metering flow through a fluid conduit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514553

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187015780

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789412

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789412

Country of ref document: EP

Kind code of ref document: A1