WO2020026784A1 - 流量制御システム及び流量測定方法 - Google Patents

流量制御システム及び流量測定方法 Download PDF

Info

Publication number
WO2020026784A1
WO2020026784A1 PCT/JP2019/027880 JP2019027880W WO2020026784A1 WO 2020026784 A1 WO2020026784 A1 WO 2020026784A1 JP 2019027880 W JP2019027880 W JP 2019027880W WO 2020026784 A1 WO2020026784 A1 WO 2020026784A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
flow
value
temperature
Prior art date
Application number
PCT/JP2019/027880
Other languages
English (en)
French (fr)
Inventor
正明 永瀬
哲 山下
将慈 河嶋
昌彦 滝本
西野 功二
池田 信一
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to SG11202100784RA priority Critical patent/SG11202100784RA/en
Priority to CN201980043297.0A priority patent/CN112470093A/zh
Priority to JP2020533395A priority patent/JP7244940B2/ja
Priority to KR1020207038086A priority patent/KR102545945B1/ko
Priority to US17/264,173 priority patent/US11519769B2/en
Publication of WO2020026784A1 publication Critical patent/WO2020026784A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • G01F1/88Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with differential-pressure measurement to determine the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Definitions

  • the present invention relates to a flow rate control system and a flow rate measurement method used for a gas supply device used in a semiconductor manufacturing facility, a chemical manufacturing device, a chemical plant, or the like.
  • Mass flow controllers thermo mass flow controllers
  • pressure flow control systems are known as gas flow control devices.
  • a flow rate measurement by a build-up method is used as a flow rate measurement method.
  • the build-up method is a method of measuring a flow rate by detecting a pressure per unit time flowing into a known volume (build-up volume).
  • a gas is caused to flow in a pipe or tank having a constant volume (V) provided downstream of a flow controller, and a pressure rise rate ( ⁇ P / ⁇ t) and a temperature (T) at that time are measured.
  • V constant volume
  • T temperature
  • Patent Document 1 describes a gas supply device that discloses an example of flow measurement using a build-up method.
  • Patent Document 2 describes a flow calculation method related to a calibration method of a flow controller using a build-up method. It has been disclosed.
  • the pressure is detected by sending gas into a pipe or a tank having a fixed build-up capacity.
  • the build-up pressure is constant (for example, 100 Torr). Therefore, there is no need to change the build-up capacity.
  • the flow rate to be measured needs to be measured with a flow rate controller in a width of, for example, 1 sccm to 2000 sccm.
  • a flow rate controller in a width of, for example, 1 sccm to 2000 sccm.
  • an object of the present invention is to provide a flow rate control system and a flow rate measurement method capable of accurately measuring a flow rate even when a build-up pressure is changed due to a change in a measured flow rate.
  • a flow control system includes: A first valve provided downstream of the flow controller, a pressure sensor provided downstream of the first valve, a temperature sensor, and a flow measurement device having a second valve provided downstream of both sensors; A control unit for controlling the opening and closing operation of the first valve and the second valve, The control unit is a recording unit that records the measured values of the pressure sensor and the temperature sensor, A storage unit that stores a volume value from the first valve to the second valve according to the measurement value of the pressure sensor; The first valve and the second valve are opened to flow gas, the first valve and the second valve are simultaneously closed while the gas is flowing, and the first pressure value and the first temperature value measured thereafter, The first valve and the second valve are opened to flow gas, the second valve is closed while the gas is flowing, and then, after a predetermined time has elapsed, the second pressure measured after closing the first valve A calculation unit that calculates the flow rate based on the volume value between the first valve and the second valve according to the value and the second temperature
  • a flow rate measuring method includes a first valve provided downstream of a flow controller, a pressure sensor provided downstream of the first valve, Performed in a fluid control system including a temperature sensor and a flow measurement device having a second valve provided downstream of both sensors, and a control unit that controls the opening and closing operations of the first valve and the second valve, A first step of opening the first valve and the second valve to flow gas, closing the first and second valves simultaneously while the gas is flowing, and then measuring pressure and temperature; The first valve and the second valve are opened to allow gas to flow, the second valve is closed while the gas is flowing, and then the pressure and temperature are measured after the first valve is closed after a predetermined time has elapsed. A second step, A third step of calculating a flow rate based on the pressure and temperature measured in the first step, the pressure and temperature measured in the second step, and a build-up volume that varies according to the pressure measured in the second step. .
  • a stable flow rate calculation can be performed even when the pressure measured in the second step that is the build-up pressure is changed.
  • the flow control system includes a third valve that is always open downstream of the flow controller and the first valve and upstream of the pressure sensor and the temperature sensor, and after the pressure measurement and the temperature measurement in the second step,
  • the pressure measured in the third step when the third valve is closed and the second valve is opened and closed in a short time, and the pressure measured after the third valve is opened in the state where the second valve is further closed in the third step It can be used for calculation. Thereby, the influence of the pipe temperature can be eliminated.
  • a wide range of flow rates for example, a flow rate of 1 sccm to 2000 sccm, can be measured in a short time and with high accuracy.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of a flow control system according to an embodiment of the present invention. It is the schematic which shows one Example of the flow controller used for the same flow control system. 1 shows an outline of a flow control system and a flow measurement method according to an embodiment of the present invention, wherein (a) is a schematic diagram in which the schematic diagram of FIG. 1 is simplified into one system, and (b) is a timing chart relating to the measurement method. is there. It is a graph which shows the relationship between a build-up pressure and a build-up volume, and shows the volume at each build-up pressure as a ratio when the volume at the build-up pressure of 100 Torr is 100%.
  • Embodiment 1 is a flow control system according to the present invention.
  • the flow control system 1 includes a first valve V1 provided downstream of a flow controller 10 and a pressure sensor P provided downstream of the first valve V1 (see FIG. Although two pressure sensors Pa and Pb are provided, they are collectively referred to as a pressure sensor P), a temperature sensor T, and a pressure sensor P, and a second valve V2 provided downstream of the temperature sensor T.
  • a control unit 3 for controlling the opening and closing operations of the first valve V1 and the second valve V2, wherein the control unit 3 includes a pressure sensor P and a temperature sensor T.
  • the second pressure value P2 and the second temperature value T2 measured after closing the first valve V1
  • a calculation unit 33 for calculating the flow rate based on the volume value V from the first valve V1 to the second valve V2 according to the second pressure value P2.
  • One of the pressure sensor Pa and the pressure sensor Pb functions for high pressure and the other functions for low pressure.
  • a pressure gauge of the same range may be attached and used for double check. Further, the number of pressure sensors may be two or more or one.
  • WO2018 / 147354 by the present applicant discloses that the first pressure value P1 after the first valve V1 and the second valve V2 are simultaneously closed as described above, and the second valve V2 is closed.
  • a method of calculating the flow rate based on the second pressure value P2 after closing the first valve after a predetermined time ⁇ t has elapsed is disclosed. According to this method, the substance amount (mol number) of the gas at the time of sealing when the valves are simultaneously closed can be obtained from the first pressure value P1, and this can be obtained by using the substance of the gas that has flowed in the conventional build-up method. By subtracting from the amount, the line dependency of the measured flow rate can be reduced.
  • the gas supply source 4 is connected to the upstream side of the flow controller 10.
  • gases from a plurality of gas supply sources 4 are controlled via flow controllers 10 provided for the respective gas supply sources 4.
  • the flow rate is supplied to a process chamber 5 of a semiconductor manufacturing apparatus or the like.
  • the flow rates of the fluids controlled by the respective flow controllers 10 may be the same, but in the present embodiment, each of the flow controllers 10 controls the flow rate in a range of, for example, 1 sccm to 2000 sccm or more. Configure to control.
  • P2 is the second pressure value P2 described above
  • P1 is the first pressure value P1 described above
  • R is a gas constant
  • the flow control system 1 includes a gas supply line L1 to which a plurality of gas supply sources 4 can be connected, a flow controller 10 interposed in the gas supply line L1, and each flow controller A first valve V1 is provided downstream of the gas supply line 10, and a common gas supply line L2 is provided downstream of the gas supply line L1.
  • the flow rate measuring device 2 used in the flow rate control system 1 of the present embodiment shown in FIG. 1 is branched from the common gas supply line L2 leading to the process chamber 5, but it is arranged from the gas supply source 4 to the process chamber. 5 (see FIG. 3A).
  • the on / off valve V4 provided in the flow path branched to the flow measurement device 2 is closed and provided in the flow path leading to the process chamber 5.
  • the opened / closed valve V5 is opened, and any one of the target first valves V1 is opened.
  • the third valve V3 is used instead of the on-off valve V4 to open and close.
  • the valve V4 can be omitted.
  • the flow controller 10 is not particularly limited, but in the present embodiment, a well-known pressure type flow controller shown in FIG. 2 is used.
  • the pressure type flow controller (flow controller 10) includes a throttle unit 11 (for example, an orifice plate) having a fine opening (orifice), a control valve 14 provided upstream of the throttle unit 11, and a throttle unit 11.
  • a pressure sensor 12 and a temperature sensor 13 are provided between the control valve 14 and the control valve 14.
  • a critical nozzle or a sonic nozzle can be used in addition to the orifice member.
  • the diameter of the orifice or nozzle is set to, for example, 10 ⁇ m to 500 ⁇ m.
  • the control valve 14 includes a valve 14a and a driving unit 14b (for example, a piezo actuator) of the valve 14a.
  • the pressure sensor 12 and the temperature sensor 13 are connected to the control circuit 15 via an AD converter.
  • the control circuit 15 is also connected to the drive unit 14b of the control valve 14, generates a control signal based on the output of the pressure sensor 12 and the temperature sensor 13, and controls the operation of the control valve 14 according to the control signal.
  • the control circuit 15 is provided in one pressure-type flow control device.
  • a control circuit 15 common to a plurality of pressure-type flow control devices is provided outside. It may be configured.
  • the critical expansion condition P U / P D ⁇ about 2 (where P U : gas pressure upstream of the throttle (upstream pressure), P D : gas pressure downstream of the throttle (downstream pressure) , and the time about 2 to meet the case of nitrogen gas), the flow rate of gas passing through the throttle portion 11 is fixed to the speed of sound, flow rate utilizes the principle that determined by the upstream pressure P U regardless of the downstream pressure P D Flow rate control is performed.
  • the flow rate can be calculated even when the difference between the upstream pressure P U and the downstream pressure P D is small and the critical expansion condition is not satisfied, and the flow rate is measured by each pressure sensor.
  • a predetermined formula Q K 2 ⁇ P D m (P U -P D ) n (where K 2 is a constant dependent on the type of fluid and the fluid temperature, m and n are indices derived based on the actual flow rate), and the flow rate Q can be calculated.
  • the flow rate is obtained from K 2 ⁇ P D m (P U -P D ) n by calculation, and the control valve 14 is feedback-controlled so that this flow rate approaches the input set flow rate.
  • the flow rate obtained by the calculation may be displayed on an external monitor as a flow rate output value.
  • the open / close valve V ⁇ b> 4 is opened, the open / close valve V ⁇ b> 5 is closed, and any one of the target valves is opened.
  • One of the first valves V1 is opened.
  • the flow rate is measured by the build-up method using the flow path between the first valve V1 and the second valve V2 (portion indicated by a thick line in FIG. 1) as a reference capacity (build-up capacity).
  • the flow rate controller 10 is calibrated based on the flow rate measurement result by the build-up method.
  • the third valve V3 (valve on the upstream side of the pressure sensor) provided in the flow measurement device 2 is kept open at least during flow measurement by the build-up method.
  • an on-off valve is preferably used, but a valve whose opening can be adjusted may be used.
  • a fluid operation valve such as AOV (Air Operated Valve) or an electric operation such as a solenoid valve or an electric valve. Valves can be used.
  • the first valve V1 may be an on-off valve built in the flow controller 10.
  • the flow control characteristics may change, or the relationship between the upstream pressure and the flow may change due to changes in the shape of the throttle portion due to long-term use. is there.
  • the flow rate can be accurately measured at an arbitrary timing even after the flow rate control device 1 is incorporated into the flow control system 1 by the build-up method using the flow rate measurement device 2. A precision of 10 can be guaranteed.
  • the flow control system 1 includes the first valve V1 provided on the downstream side of the flow controller 10 and the pressure sensor P, the temperature sensor T, and the pressure provided on the downstream side of the first valve V1. It includes a flow measuring device 2 having a second valve V2 provided downstream of the sensor P and the temperature sensor T, and a control unit 3 for controlling opening and closing of the first valve V1 and the second valve V2. Then, as a first step, the first valve V1 and the second valve V2 are opened to flow gas, and the first valve V1 and the second valve V2 are simultaneously closed at the time t1 while the gas is flowing.
  • the pressure and temperature are measured (pressure value P1, temperature value T1).
  • the first valve V1 and the second valve V2 are opened to flow gas at the timing of time t2, and the second valve V2 is closed at the timing of time t3 from the state where the gas is flowing.
  • the first valve V1 is closed at the timing of time t4 after the elapse of the predetermined time ⁇ t, and the subsequent pressure and temperature are measured (pressure value P2, temperature value T2).
  • the flow rate is calculated based on the build-up volume V. That is, the arithmetic unit 33 of the control unit 3 stores the pressure values P1, P2 and the temperature values T1, T2 measured in the state of the seal 1 and the seal 2 in the time chart shown in FIG.
  • the calculation unit 33 calculates the flow rate Q based on the value of the volume V from the first valve V1 to the second valve V2 corresponding to the pressure value P2 stored in the.
  • the calculated flow rate Q is displayed on the display device 34.
  • the up capacity, R is a gas constant, and ⁇ t is a predetermined time (build-up time) from closing the second valve V2 to closing the first valve V1 in the second step.
  • the above equation corresponds to an equation when the pressure values P1 and P2 are given in the unit Torr.
  • the value of the volume from the first valve V1 to the second valve V2 stored in the storage unit 32 varies depending on the gas supply line L1, for example, as shown in FIG. Have.
  • This relational expression (typically, an expression of an approximate linear function) is stored in the storage unit 32, and the value of the volume is uniquely determined according to the measured pressure value P2. Further, according to experiments performed by the present inventors, it was found that this value slightly changed depending on the temperature. If the calculation of the flow rate is more accurate but has a smaller effect than the pressure change, a volume value V that takes into account not only the pressure value P2 but also the temperature value T2 can be used.
  • a volume value V (a value obtained from the pressure value P2) at a reference temperature (for example, 30 ° C.) is stored in the storage unit 32 in advance.
  • the volume value V may be corrected using a correction coefficient based on the difference between the stored reference temperature and the measured temperature.
  • a table describing the relationship between the plurality of pressure values P2 and the corresponding volume value V May be stored in the storage unit 32, and the volume value V may be determined using this table.
  • the reason why the volume value V differs according to the build-up pressure (pressure value P2) is that, as described above, the diaphragm in the pressure sensor is deformed by the pressing force having the magnitude corresponding to the build-up pressure, or the strain gauge system is used. It is considered that a space volume inside the pressure sensor connected to the flow path fluctuates due to the occurrence of internal deflection in the pressure sensor. In this case, the above-mentioned relational expression between the build-up pressure and the volume value V may be different depending on the configuration, size, number of the pressure sensors, and the like.
  • the pressure sensor used in the present embodiment for example, a pressure sensor having a diaphragm forming a pressure detection surface and incorporating a silicon single crystal sensor chip is exemplified.
  • the flow rate measurement using the flow rate measurement device 2 of the present invention is performed at the time of equipment installation, periodic inspection, inspection according to the usage time, and others, at various timings when changing the used fluid, and the like.
  • the accuracy of the flow controller 10 can be maintained.
  • the pressure value P2 of the gas after build-up is obtained.
  • the mode of performing the step of measuring the temperature value T2 (second step) has been described, the present invention is not limited to this.
  • the order of performing the first step and the second step may be reversed. However, it is preferable that the pressure corresponding to the set flow rate at the start in the first step and the second step is the same.
  • the pressure values P1, P2, the temperature values T1, T2, and the volume value V determined based on the pressure value P2 are determined.
  • a step (third step) of calculating the flow rate using the above method can be performed.
  • the second embodiment is a flow control system according to the present invention.
  • the configuration of the device is the same as that of the first embodiment, and a detailed description is omitted.
  • the on-off valve V4 is opened and the on-off valve V5 is closed.
  • the sealing steps from sealing 1 to sealing 4 in the time chart shown in FIG. 3B are performed, and the pressure value measured in the state of sealing 3 and sealing 4 P3 and P4 and temperature values T3 and T4 are measured.
  • the second valve V2 is opened for a shorter time than the predetermined time while the first valve V1 is closed, and the second valve V2 is opened.
  • the third pressure value P3 and the third temperature value T3 measured by closing the third valve V3 at the same time as or immediately before the opening, and the fourth pressure value P4 and the fourth temperature value measured by opening the third valve V3.
  • the flow rate is calculated in consideration of the temperature value T4.
  • the third valve V3 is a valve interposed in a flow path between the first valve V1 and the second valve V2, as shown in FIGS. 1 and 3A, and typically, measures a flow rate.
  • the pressure value P2 in the state of the seal 2, which is a build-up pressure may be changed depending on a difference in the flow rate sent from the flow rate controller 10. Also in this case, the relationship between the volume value V and the pressure value P2, for example, a value (relational expression) that fluctuates in a linear relationship shown in FIG. An appropriate volume value V can be obtained. Therefore, even if the pressure value P2 serving as the build-up pressure is changed, the calculation result is not affected.
  • the calculation formula for performing the sealing 3 and the sealing 4 performed in order to suppress the influence of the pipe temperature and the like is defined as the volume Va in the pipe connecting the first valve V1 and the third valve V3, and the second valve V2. This will be described below as a volume Vb in the pipe connecting the third valve V3 (see FIG. 3A).
  • Vst and Tst are the volume and temperature from the flow controller 10 to the valve element of the first valve V1, and Tst is substituted by Tb because no thermometer is provided on the circuit.
  • constant values are used as Vb and Vst.
  • the value of the volume related to the calculation formula in this embodiment is Vb, that is, only the volume between the second valve V2 and the third valve V3. It is the volume in the pipe, and is small in this embodiment.
  • the ratio of the volume change due to the diaphragm deformation of the two pressure sensors Pa and Pb used in the present embodiment is a maximum of 0.8% as shown in FIG.
  • the correction rate of the influence of the error generated in the calculation is larger than that of the calculation.
  • the flow rate control system and the flow rate measuring method of the present invention can accurately calculate the flow rate even if the build-up pressure is changed when changing the flow rate of the fluid to be measured.
  • it can be suitably used for the flow rate calibration of a thermal mass flow controller.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)

Abstract

流量制御システム1の制御部3は、圧カセンサP及び温度センサTの計測値を記録する記録部31と、圧力センサPの計測値に応じた第1バルブV1から第2バルブV2までの容積を記憶する記憶部32と、第1バルブV1と第2バルブV2とを開放してガスを流し、ガスが流れている状態で第1バルブV1と第2バルブV2とを同時に閉鎖した後に計測した第1圧力値P1及び第1温度値T1、第1バルブV1と第2バルブV2とを開放してガスを流し、ガスが流れている状態で第2バルブV2を閉鎖し、所定時間Δtが経過後、第1バルブV1を閉鎖した後に計測した第2圧力値P2及び第2温度値T2、第2圧力値P2に応じた第1バルブV1から第2バルブV2までの容積値Vに基づいて流量を演算する演算部33とを備える。

Description

流量制御システム及び流量測定方法
 本発明は、半導体製造設備、薬品製造装置又は化学プラント等に用いるガス供給装置に使用される流量制御システム及び流量測定方法に関する。
 半導体製造設備又は化学プラント等においては、ガスを精度よく供給することが要求される。ガス流量の制御装置として、マスフローコントローラ(熱式質量流量制御器)や圧力式流量制御システムが知られている。
 これらの流量制御システムにおいて、流量は高精度で管理する必要があり、随時、流量精度の確認や校正を行うことが好ましい。流量測定の方法として、一般的にビルドアップ法による流量測定が用いられている。ビルドアップ法は、既知容量内(ビルドアップ容量)に流れ込む単位時間当たりの圧力を検出することによって流量を測定する方法である。
 ビルドアップ法は、流量制御器の下流に設けられた一定容積(V)の配管内又はタンク内にガスを流し、そのときの圧力上昇率(ΔP/Δt)と温度(T)とを測定することで、気体定数をRとしたとき、例えば、Q=22.4×(ΔP/Δt)×V/RTから流量Qを求めるようにしている。
 特許文献1には、ビルドアップ法を用いた流量測定の一例が開示されたガス供給装置が記載され、特許文献2には、ビルドアップ法を用いた流量制御器の校正方法に関する流量計算方法が開示されている。
特開2006-337346号公報 特開2012-32983号公報
 従来のビルドアップ法では、一定のビルドアップ容量の配管内やタンク内にガスを送って圧力を検出するもので、測定する流量の幅が小さい場合、ビルドアップ圧力は一定(例えば、100Torr)とすることでビルドアップ容量を変化させる必要はない。
 しかし、通常、流量制御器を複数並列に配設し、チャンバに対して異なる流量の流体を供給することが望まれている。このような場合、ビルドアップ法における流量測定において、測定する流量の幅が流量制御器によって、例えば、1sccm~2000sccm等の幅で流量計測を行う必要が生じる。2000sccmを計測する際、ビルドアップ圧力を100Torrとしたときに、ビルドアップ圧力まで圧力を上昇させるのに数秒で済むところ、1sccm等小流量の流量計測を行おうとした場合、ビルドアップ圧力を2000sccmと同じ100Torrとすると、圧力を上昇させるために必要な時間が数時間かかる場合がある。
 このように圧力上昇に長時間かかることは、実際の装置においては現実的ではないため、ビルドアップ圧力を下げ、圧力上昇時間が短時間となるように、例えば、流量1sccmを計測する場合は、ビルドアップ圧力を4Torrに低下させることで圧力上昇時間の問題を解消するようにしている。ビルドアップ圧力を変動させるとビルドアップ圧力を計測する圧力計が内部にダイヤフラムを備えた静電容量方式の場合にはダイヤフラムの変形量が異なることとなり、歪みゲージ方式の圧力計の場合にも内部でのたわみが発生し、係る部分での容積が微量ながら変動する。そして、ビルドアップ容積が配管を利用する等、小さい容積の場合、圧力計内の容積の変動はビルドアップ容積全体に対して無視することのできないものとなり、流量測定結果に影響を及ぼすという問題が生じることが分かった。
 本発明は、係る点に鑑み、計測流量の変更に伴うビルドアップ圧力を変更しても正確な流量測定が可能な流量制御システム及び流量測定方法を提供することを目的とする。
 上記目的を達成するために、本発明の実施形態に係る流量制御システムは、
 流量制御器の下流側に設けられた第1バルブと、第1バルブの下流側に設けられた圧カセンサ、温度センサ及び両センサの下流側に設けられた第2バルブを有する流量測定装置と、第1バルブ及び第2バルブの開閉動作を制御する制御部とを備え、
 制御部は、圧カセンサ及び温度センサの計測値を記録する記録部と、
 圧力センサの計測値に応じた第1バルブから第2バルブまでの容積値を記憶する記憶部と、
 第1バルブと第2バルブとを開放してガスを流し、ガスが流れている状態で第1バルブと第2バルブとを同時に閉鎖し、その後に計測した第1圧力値及び第1温度値、第1バルブと第2バルブとを開放してガスを流し、ガスが流れている状態で第2バルブを閉鎖し、その後、所定時間が経過後、第1バルブを閉鎖した後に計測した第2圧力値及び第2温度値、並びに、記憶部から得られる第2圧力値に応じた第1バルブから第2バルブまでの容積値に基づいて流量を演算する演算部とを有している。
 上記の流量制御システムによれば、ビルドアップ圧力となる第2圧力値の変動によるビルドアップ容量の変化による流量計算の影響を防止することができる。
 また、同じ目的を達成するために、本発明の実施形態に係る流量測定方法は、流量制御器の下流側に設けられた第1バルブと、第1バルブの下流側に設けられた圧カセンサ、温度センサ及び両センサの下流側に設けられた第2バルブを有する流量測定装置と、第1バルブ及び第2バルブの開閉動作を制御する制御部とを備える流体制御システムにおいて行われ、
 第1バルブと第2バルブとを開放してガスを流し、ガスが流れている状態で第1及び第2バルブを同時に閉鎖し、その後圧力及び温度を測定する第1ステップと、
 第1バルブと第2バルブとを開放してガスを流し、ガスが流れている状態で第2バルブを閉鎖し、その後、所定時間が経過後に第1バルブを閉鎖した後の圧力及び温度を測定する第2ステップと、
 第1ステップで測定した圧力及び温度、第2ステップで測定した圧力及び温度、並びに、第2ステップで測定した圧力に応じて変動するビルドアップ容積に基づいて流量を演算する第3ステップとを含む。
 本発明の実施形態に係る流量制御システムおよび流量測定方法によれば、ビルドアップ圧力となる第2ステップで測定した圧力を変動させても安定した流量計算をすることができる。
 また、この場合において、
 流量制御システムが、流量制御器及び第1バルブの下流側で、かつ、圧カセンサ及び温度センサの上流側に常時開放状態の第3バルブを備え、第2ステップの圧力測定及び温度測定の後、第3バルブを閉鎖するとともに、第2バルブを短時間で開閉させた後に測定した圧力と、その後さらに第2バルブを閉鎖した状態で第3バルブを開放した後に計測した圧力を第3ステップの流量演算に用いるようにすることができる。これによって配管温度の影響を解消することができる。
 本発明の流量制御システム及び流量測定方法によれば、広範囲の流量、例えば、1sccm~2000sccmの流量を短時間で、かつ、高精度に測定することができる。
本発明の実施の形態に係る流量制御システムの概略構成を示す模式図である。 同流量制御システムに用いる流量制御器の一実施例を示す概略図である。 本発明の実施の形態に係る流量制御システム及び流量測定方法の概要を示し、(a)は図1の模式図を1系統に簡略化した概略図、(b)は、測定方法に関するタイミングチャートである。 ビルドアップ圧力とビルドアップ容積との関係を示すグラフであり、ビルドアップ圧力100Torrのときの容積を100%としたときの各ビルドアップ圧力における容積を比率で示す。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
<実施形態1>
 本実施形態1は、本発明に係る流量制御システムである。この流量制御システム1は、図1に示すように、流量制御器10の下流側に設けられた第1バルブV1と、この第1バルブV1の下流側に設けられた圧力センサP(図例、圧力センサは圧力センサPa及びPbの2基配設しているが総称して圧力センサPという)、温度センサT、及び、圧力センサP、温度センサTの下流側に設けられた第2バルブV2を有する流量測定装置2と、第1バルブV1及び第2バルブV2の開閉動作を制御する制御部3とを備える流量制御システム1であって、制御部3は、圧力センサP及び温度センサTの計測値を記録する記録部31と、圧力センサPの計測値に応じた第1バルブV1から第2バルブV2までの容積を記憶する記憶部32と、第1バルブV1と第2バルブV2とを開放してガスを流し、ガスが流れている状態で第1バルブV1と第2バルブV2とを同時に閉鎖し、その後に計測した第1圧力値P1及び第1温度値T1、第1バルブV1と第2バルブV2とを開放してガスを流し、ガスが流れている状態で第2バルブV2を閉鎖し、その後、所定時間Δtが経過後、第1バルブV1を閉鎖した後に計測した第2圧力値P2及び第2温度値T2、並びに第2圧力値P2に応じた第1バルブV1から第2バルブV2までの容積値Vとに基づいて流量を演算する演算部33とを備えている。なお、圧力センサPa及び圧力センサPbは、一方が高圧用、他方が低圧用として機能する他、同レンジの圧力計を取り付け、ダブルチェック用に使用するように構成しても構わない。また、圧力センサの数は2基以上、または1基であっても構わない。
 なお、本出願人による国際公開第2018/147354号には、上記のように第1バルブV1と第2バルブV2とを同時に閉鎖した後の第1圧力値P1と、第2バルブV2を閉鎖した後に所定時間Δt経過後に第1バルブを閉鎖した後の第2圧力値P2とに基づいて、流量を演算する方法が開示されている。この方法によれば、バルブを同時閉鎖したときの封止時におけるガスの物質量(モル数)を第1圧力値P1から求めることができ、これを従来のビルドアップ法における流れ込んだガスの物質量から差し引くことによって、計測流量のライン依存性の低減を図ることができる。
 流量制御器10の上流側にはガス供給源4が接続されている。図1に示すように、本実施形態の流量制御システム1は、複数のガス供給源4からのガスを、それぞれのガス供給源4に対して設けられた流量制御器10を介して制御された流量で半導体製造装置等のプロセスチャンバ5に供給するように構成されている。それぞれの流量制御器10が制御する流体の流量は同一流量であっても構わないが、本実施形態ではそれぞれの流量制御器10が、例えば、1sccm~2000sccmの範囲又はそれ以上の範囲の流量を制御するように構成する。
 本出願人が以前に採用していた態様におけるビルドアップ法での計算式である、Q=22.4×((P2-P1)/(760×R・Δt))×V/T(以下、ビルドアップ一般式という)においては、容積Vは一定で計算するようにしている。しかし、図4のグラフのように、ビルドアップ圧力となるP2(グラフにおける封止圧力)の値が、例えば、100Torrから4Torrに変わると、ビルドアップ容積によって異なるものの、低圧用高圧用2基の圧力計のダイヤフラムの変形による容積変化の影響は計算式において無視できない影響となる。なお、上記のビルドアップ一般式において、P2は、上述の第2圧力値P2であり、P1は上述の第1圧力値P1であり、Rは気体定数であり、Δtはビルドアップ工程において第2バルブV2を閉鎖して圧力上昇が開始したときから第1バルブV1を閉鎖するまでの時間である。また、上記式は、T1=T2=Tと仮定したときの一般式である。
 再び図1を参照して、流量制御システム1は、複数のガス供給源4が接続可能となっているガス供給ラインL1と、ガス供給ラインL1に介在する流量制御器10と、各流量制御器10の下流側に設置された第1バルブV1と、ガス供給ラインL1の下流側の共通ガス供給ラインL2とを備えている。図1に示す本実施形態の流量制御システム1に用いられる流量測定装置2は、プロセスチャンバ5へと通じる共通ガス供給ラインL2からは分岐して配置されているが、ガス供給源4からプロセスチャンバ5に通じるガス流路の途中に介在するように配置(図3(a)参照)しても構わない。そして、図1に示す流量制御システム1においてプロセスチャンバ5に流体を供給するときは、流量測定装置2に分岐する流路に設けられた開閉弁V4を閉鎖、プロセスチャンバ5に通じる流路に設けられた開閉弁V5を開放し、対象となる何れか1つの第1バルブV1を開放する。ただし、図1に示すように流量測定装置2が温度センサT及び圧力センサPの上流側に第3バルブV3を有している場合、第3バルブV3を開閉弁V4の代わりに用いて、開閉弁V4を省略することもできる。なお、プロセスチャンバ5に流体を供給するとき、プロセスチャンバ5に接続された真空ポンプ6を用いてチャンバ内および第1バルブV1の下流側の流路内を減圧することができる。
 流量制御器10は、特に限定するものではないが、本実施形態においては、図2に示す周知の圧力式流量制御装置を使用する。この圧力式流量制御装置(流量制御器10)は、微細開口(オリフィス)を有する絞り部11(例えばオリフィスプレート)と、絞り部11の上流側に設けられたコントロールバルブ14と、絞り部11とコントロールバルブ14との間に設けられた圧力センサ12及び温度センサ13とを備えている。絞り部11としては、オリフィス部材の他に臨界ノズルまたは音速ノズルを用いることもできる。オリフィスまたはノズルの口径は、例えば10μm~500μmに設定される。コントロールバルブ14は、バルブ14a及びバルブ14aの駆動部14b(例えばピエゾアクチュエータ)とから構成されている。
 圧力センサ12及び温度センサ13は、ADコンバータを介して制御回路15に接続されている。制御回路15は、コントロールバルブ14の駆動部14bにも接続されており、圧力センサ12及び温度センサ13の出力などに基づいて制御信号を生成し、この制御信号によってコントロールバルブ14の動作を制御する。本実施形態では、制御回路15は、1つの圧力式流量制御装置に設けられているが、他の態様において、複数の圧力式流量制御装置に対して共通の制御回路15を外部に設けるように構成しても構わない。
 圧力式流量制御装置では、臨界膨張条件PU/PD≧約2(ただし、PU:絞り部上流側のガス圧力(上流圧力)、PD:絞り部下流側のガス圧力(下流圧力)であり、約2は窒素ガスの場合)を満たすとき、絞り部11を通過するガスの流速は音速に固定され、流量は下流圧力PDによらず上流圧力PUによって決まるという原理を利用して流量制御が行われる。臨界膨張条件を満たすとき、絞り部下流側の流量Qは、Q=K1・PU(K1は流体の種類と流体温度に依存する定数)によって与えられ、流量Qは上流圧力PUに比例する。また、下流圧力センサを備える場合、上流圧力PUと下流圧力PDとの差が小さく、臨界膨張条件を満足しない場合であっても流量を算出することができ、各圧力センサによって測定された上流圧力PUおよび下流圧力PDに基づいて、所定の計算式Q=K2・PD m(PU-PDn(ここでK2は流体の種類と流体温度に依存する定数、m、nは実際の流量を元に導出される指数)から流量Qを算出することができる。
 流量制御を行うために、設定流量が制御回路15に入力され、制御回路15は、圧力センサ12の出力(上流圧力PU)などに基づいて、上記のQ=K1・PU又はQ=K2・PD m(PU-PDnから流量を演算により求め、この流量が入力された設定流量に近づくようにコントロールバルブ14をフィードバック制御する。演算により求められた流量は、流量出力値として外部のモニタに表示するようにしてもよい。
 再び図1を参照して、本実施形態の流量制御システム1では、流量測定または流量制御器10の校正を行うとき、開閉弁V4を開放、開閉弁V5を閉鎖し、対象となる何れか1つの第1バルブV1を開放する。これによって、第1バルブV1と第2バルブV2との間の流路(図1において太線で示す部分)を基準容量(ビルドアップ容量)として用いて、ビルドアップ法によって流量測定を行う。そして、ビルドアップ法による流量測定結果に基づいて流量制御器10を校正するようにしている。なお、本実施形態では、流量測定装置2に設けられた第3バルブV3(圧力センサ上流側のバルブ)は、少なくともビルドアップ法による流量測定中は、開放状態に維持される。
 上記の第1バルブV1、第2バルブV2、第3バルブV3としては、開閉弁(遮断弁)が好適に用いられるが、開度調整可能な弁を用いてもよい。第1バルブV1、第2バルブV2、第3バルブV3、開閉弁V4、開閉弁V5としては、例えば、AOV(Air Operated Valve)などの流体動作弁や、電磁弁または電動弁などの電気的動作弁を用いることができる。第1バルブV1は、流量制御器10に内蔵された開閉弁であってもよい。
 流量制御器10は、流量制御システム1に組み込んだ後に、流量制御特性が変化したり、また、長年の使用によって絞り部の形状が変化して上流圧力と流量との関係性が変化する場合がある。これに対して、本実施形態の流量制御システム1では、流量測定装置2を用いてビルドアップ法により流量制御システム1に組み込んだ後にも任意のタイミングで流量を精度よく測定できるので、流量制御器10の精度を保証することができる。
 本実施形態の流量制御システム1による流量測定方法を詳細に説明する。上述したように、流量制御システム1は、流量制御器10の下流側に設けられた第1バルブV1と、この第1バルブV1の下流側に設けられた、圧力センサP、温度センサT及び圧力センサPと温度センサTの下流側に設けられた第2バルブV2を有する流量測定装置2と、第1バルブV1及び第2バルブV2の開閉を制御する制御部3とを含んでいる。そして、第1ステップとして、第1バルブV1と第2バルブV2とを開放してガスを流し、ガスが流れている状態で第1バルブV1及び第2バルブV2を時刻t1のタイミングで同時に閉鎖し、その後圧力及び温度を測定(圧力値P1、温度値T1)する。次に、第2ステップとして、時刻t2のタイミングで第1バルブV1と第2バルブV2とを開放してガスを流し、ガスが流れている状態から時刻t3のタイミングで第2バルブV2を閉鎖し、その後、所定時間Δtが経過後した時刻t4のタイミングで第1バルブV1を閉鎖し、その後の圧力及び温度を測定(圧力値P2、温度値T2)する。そして、第3ステップとして、第1ステップで測定した圧力値P1、温度値T1、第2ステップで測定した圧力値P2、温度値T2並びに第2ステップで測定した圧力値P2に応じて決定されるビルドアップ容積Vとに基づいて流量を演算するようにしている。つまり、制御部3の演算部33では、図3(b)に示すタイムチャートの封止1及び封止2の状態で計測される圧力値P1、P2、温度値T1、T2と、記憶部32に記憶されている圧力値P2に応じた第1バルブV1から第2バルブV2までの容積Vの値とに基づいて演算部33が流量Qを演算する。演算した流量Qは表示装置34に表示される。流量Qは、例えば、Q=22.4×V×(P2/T2-P1/T1)/(760×R・Δt)によって求められ、ここで、Vは圧力値P2に応じて決定されるビルドアップ容量、Rは気体定数、Δtは第2ステップにおいて第2バルブV2を閉じてから第1バルブV1を閉じるまでの所定時間(ビルドアップ時間)である。なお、上記式は、圧力値P1、P2が単位Torrで与えられたときの式に対応する。
 記憶部32に記憶される第1バルブV1から第2バルブV2までの容積の値は、ガス供給ラインL1によって異なるが、例えば、図4に示すように容積内の圧力に対して強い線形関係を有している。記憶部32にはこの関係式(典型的には近似的な一次関数の式)が記憶され、計測した圧力値P2に応じて一意に容積の値が決定する。また、本発明者らの実験によると、この値は温度によっても多少の変化があることが分かった。圧力変化に比べて小さい影響ではあるが、より精度の高い流量計算が必要な場合には、圧力値P2のみならず温度値T2を加味した容積値Vを使用することができる。この場合、計測した温度値T2と最も近い温度のグラフを利用する他、例えば、基準温度(例えば、30℃)における容積値V(圧力値P2から求めた値)に対し、予め記憶部32に記憶させておいた基準温度と計測温度との差に基づく修正係数を用いて容積値Vを修正するように構成することもできる。また、上記には圧力値P2と容積値Vとの関係式を記憶しておく態様を説明したが、これに限られず、複数の圧力値P2と対応する容積値Vとの関係を記載したテーブルを記憶部32に記憶しておき、このテーブルを用いて容積値Vを決定するようにしてもよい。
 容積値Vがビルドアップ圧力(圧力値P2)に応じて異なる理由は、上述したように、ビルドアップ圧力に応じた大きさの加圧力によって圧力センサ内のダイヤフラムが変形したり、歪みゲージ方式の圧力センサでは内部たわみが発生したりすることで、流路に接続されている圧力センサの内部での空間容積が変動するからであると考えられる。この場合、上記のビルドアップ圧力と容積値Vとの関係式は、圧力センサの構成、サイズ、設置数などによって異なるものとなり得る。このため、実際の態様では、流量制御システムに備えられた圧力センサの態様に従って適切な関係式等を選択し、そのシステムにおける容積値Vを適切に求めることが好ましい。なお、本実施形態で用いられる圧力センサとしては、例えば、圧力検知面を形成するダイヤフラムを有しシリコン単結晶センサチップを内蔵するタイプのものなどが挙げられる。
 本発明の流量測定装置2を使った流量測定は、機器据え付けの際に行う他、定期検査、使用時間に応じた検査、その他、使用流体を変更するの際等に種々のタイミングで行われ、流量制御器10の精度を維持することができる。
 また、上記には、第1バルブV1と第2バルブV2とを同時に閉じた後の圧力値P1および温度値T1を測定する工程(第1ステップ)の後に、ビルドアップ後のガスの圧力値P2および温度値T2を測定する工程(第2ステップ)の行う態様を説明したが、これに限られない。第1ステップと第2ステップとを行う順番は逆であってもよい。ただし、第1ステップと第2ステップとで、開始時の設定流量に対応する圧力は、同じであることが好適である。順序を問わず第1ステップと第2ステップとを行った後であれば、圧力値P1、P2と、温度値T1、T2と、さらに、圧力値P2に基づいて決定される容積値Vとを用いて流量を算出する工程(第3ステップ)を行うことができる。
<実施形態2>
 本実施形態2は、本発明に係る流量制御システムであり、機器の構成は実施形態1と同様であり詳細な説明を省略する。本実施形態2においても、図1に示した流量制御システム1において流量計測を行う時は、開閉弁V4を開放し、開閉弁V5を閉鎖する。
 実施形態2の流量制御システムでは、図3(b)に示すタイムチャートの封止1~封止4までの封止工程を実施し、封止3及び封止4の状態で計測される圧力値P3、P4、温度値T3、T4を計測する。具体的には、第2圧力値P2及び第2温度値T2を計測後、第1バルブV1を閉鎖した状態で第2バルブV2を前記所定時間よりも短時間開放すると共に、第2バルブV2の開放と同時又は開放の直前に第3バルブV3を閉鎖して計測した第3圧力値P3及び第3温度値T3、その後、第3バルブV3を開放して計測した第4圧力値P4及び第4温度値T4を加味して流量を演算するようにしている。この封止3及び封止4での圧力及び温度を測定し、演算することで分圧法によるモル数補正を行うことができ、第1バルブV1から第3バルブV3までの配管温度等の影響を抑えることができる。なお、第3バルブV3は、図1および図3(a)に示すように、第1バルブV1と第2バルブV2との間の流路に介在するバルブであり、典型的には、流量測定装置2に内蔵されて圧力センサPおよび温度センサTの上流側に設けられるバルブである。第2バルブV2と第3バルブとの両方が流量測定装置2に内蔵されている場合、第2バルブV2と第3バルブとの間の流路容積を正確に求めやすいという利点が得られる。
 本実施形態の流量制御システム1においても、流量制御器10から送りだす流量の違いによって、ビルドアップ圧力となる封止2の状態における圧力値P2を変更することがある。この場合にも、容積値Vと圧力値P2との関係、例えば図4に示す線形関係で変動する値(関係式)を記憶部32に予め記録しておくことにより、圧力値P2に応じた適切な容積値Vを得ることができる。このため、ビルドアップ圧力となる圧力値P2を変動させても演算結果に影響が出ることはない。
 配管温度等の影響を抑えるために行う、封止3、封止4を行うことによる計算式を、第1バルブV1と第3バルブV3とを結ぶ配管内の容積Vaとし、第2バルブV2と第3バルブV3とを結ぶ配管内の容積Vbとして(図3(a)参照)、以下に説明する。
 封止2の後、第2バルブV2を短時間だけ開閉するとともに第3バルブV3を閉鎖することによって第2バルブV2と第3バルブV3との間の圧力はP2からP3に低下する。ただし、封止3において圧力値P2が圧力値P3となるのは第2バルブV2と第3バルブV3とを結ぶ配管内だけであって、第1バルブV1と第3バルブV3とを結ぶ配管内の圧力は圧力値P2のまま維持される。そして、封止4によって、第3バルブV3を開放することで、第1バルブV1と第2バルブV2とを結ぶ配管内の圧力が均一に圧力値P4となる。なお、封止3と封止4とにおいて、第1バルブV1と第2バルブV2とはいずれも閉鎖状態に維持されているので、第1バルブV1と第2バルブV2との間のガスの物質量は一定に維持されている。
 この関係をボイルシャルルの法則で表わせば、(P2・Va)/Ta+(P3・Vb)/T3=(P4・Va)/Ta+(P4・Vb)/T4で表わされる。Taは第1バルブV1と第3バルブV3とを結ぶ配管内の温度の値である。また、T3≒T4であり、次式でTb≒T3≒T4として計算する。
 ビルドアップ一般式と上式から、測定が困難であるVaおよびTaを消去するようにすると、Q=22.4×((P2-P1)/(760×R×Δt))×(Vb/Tb×(P2-P3)/(P2-P4)+Vst/Tst)となる。Vst及びTstは、流量制御器10から第1バルブV1の弁体までの容積及び温度であり、Tstは回路上温度計を備えないためTbで代用される。この計算式を用いて計算する時も従来ではVb及びVstとして一定の値を利用していたが、本実施形態2の流量制御システム1及び流量計測方法においては、ビルドアップ圧力となるP2に応じたVbの値を利用することで正確な流量を計算するようにしている。実施形態1と比べ、本実施形態においては計算式に関係する容積の値はVb、つまり第2バルブV2と第3バルブV3の間の容積だけであり、この容積は、流量測定装置2の内部配管内の容積であり本実施形態においては少量である。これに対し、本実施形態で使用する2つの圧力センサPa、Pbのダイヤフラム変形による容積変化の比率は、図4に示すように最大0.8%となり、大きな影響を及ぼすもので、実施形態1よりも計算上生じる誤差影響の修正率が大きいものとなる。
 以上説明したように、本発明の流量制御システム及び流量測定方法は、測定する流体の流量を変更する際にビルドアップ圧力を変更しても正確に流量を計算することができるから、圧力式流量制御装置の他、熱式質量流量制御装置の流量校正の用途に好適に用いることができる。
1  流量制御システム
10 流量制御器
11 絞り部
12 圧力センサ
13 温度センサ
14 コントロール弁
15 制御回路
2  流量測定装置
3  制御部
31 記録部
32 記憶部
33 演算部
34 表示部
4  ガス供給源
5  チャンバ
6  真空ポンプ
P  圧カセンサ
T  温度センサ
V1 第1バルブ
V2 第2バルブ
P1 第1圧力値
T1 第1温度値
P2 第2圧力値
T2 第2温度値
Δt 所定時間
V  容積値

Claims (4)

  1.  流量制御器の下流側に設けられた第1バルブと、前記第1バルブの下流側に設けられた圧カセンサ、温度センサ及び両センサの下流側に設けられた第2バルブを有する流量測定装置と、第1バルブ及び第2バルブの開閉動作を制御する制御部とを備える流量制御システムであって、
     前記制御部は、前記圧カセンサ及び温度センサの計測値を記録する記録部と、
     前記圧力センサの計測値に応じた第1バルブから第2バルブまでの容積値を記憶する記憶部と、
      第1バルブと第2バルブとを開放してガスを流し、ガスが流れている状態で第1バルブと第2バルブとを同時に閉鎖し、その後に計測した第1圧力値及び第1温度値、
      第1バルブと第2バルブとを開放してガスを流し、ガスが流れている状態で第2バルブを閉鎖し、その後、所定時間が経過後、第1バルブを閉鎖した後に計測した第2圧力値及び第2温度値、並びに、
      前記記憶部から得られる前記第2圧力値に応じた第1バルブから第2バルブまでの容積値、に基づいて流量を演算する演算部と、
    を備えた流量制御システム。
  2.  前記第1バルブと前記第2バルブとの間に配置された第3バルブをさらに備え、
     前記演算部は、
      前記第2圧力値及び第2温度値を計測後、第1バルブを閉鎖した状態で第2バルブを前記所定時間よりも短時間開放すると共に、第2バルブの開放と同時又は開放の直前に前記第3バルブを閉鎖し、前記第2バルブと前記第3バルブとを閉鎖した状態で計測した第3圧力値及び第3温度値、および、
      前記第3圧力値及び第3温度値を計測した後、前記第1バルブと前記第2バルブとを閉鎖したまま第3バルブを開放して計測した第4圧力値及び第4温度値
     を加味して流量を演算する請求項1に記載の流量制御システム。
  3.  流量制御器の下流側に設けられた第1バルブと、前記第1バルブの下流側に設けられた圧カセンサ、温度センサ及び両センサの下流側に設けられた第2バルブを有する流量測定装置と、第1バルブ及び第2バルブの開閉動作を制御する制御部とを備える流量制御システムにおいて行われる流量測定方法であって、
     第1バルブと第2バルブとを開放してガスを流し、ガスが流れている状態で第1及び第2バルブを同時に閉鎖し、その後圧力及び温度を測定する第1ステップと、
     第1バルブと第2バルブとを開放してガスを流し、ガスが流れている状態で第2バルブを閉鎖し、その後、所定時間が経過後に第1バルブを閉鎖した後の圧力及び温度を測定する第2ステップと、
     第1ステップで測定した圧力及び温度、第2ステップで測定した圧力及び温度、並びに、第2ステップで測定した圧力に応じて変動するビルドアップ容積に基づいて流量を演算する第3ステップとを含む流量測定方法。
  4.  前記流量制御システムが、流量制御器及び第1バルブの下流側で、かつ、圧カセンサ及び温度センサの上流側に配置された第3バルブを備え、前記第3バルブは、前記第1ステップおよび前記第2ステップを行う間は開かれており、
     前記第2ステップの圧力測定及び温度測定の後、前記第3バルブを閉鎖するとともに、第2バルブを短時間で開閉させた後に測定した圧力と、その後さらに第2バルブを閉鎖した状態で第3バルブを開放した後に計測した圧力を第3ステップの流量演算に用いるようにした請求項3に記載の流量測定方法。
PCT/JP2019/027880 2018-07-30 2019-07-16 流量制御システム及び流量測定方法 WO2020026784A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11202100784RA SG11202100784RA (en) 2018-07-30 2019-07-16 Flow rate control system and flow rate measurement method
CN201980043297.0A CN112470093A (zh) 2018-07-30 2019-07-16 流量控制系统和流量测定方法
JP2020533395A JP7244940B2 (ja) 2018-07-30 2019-07-16 流量制御システム及び流量測定方法
KR1020207038086A KR102545945B1 (ko) 2018-07-30 2019-07-16 유량 제어 시스템 및 유량 측정 방법
US17/264,173 US11519769B2 (en) 2018-07-30 2019-07-16 Flow rate control system and flow rate measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018143005 2018-07-30
JP2018-143005 2018-07-30

Publications (1)

Publication Number Publication Date
WO2020026784A1 true WO2020026784A1 (ja) 2020-02-06

Family

ID=69231614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027880 WO2020026784A1 (ja) 2018-07-30 2019-07-16 流量制御システム及び流量測定方法

Country Status (7)

Country Link
US (1) US11519769B2 (ja)
JP (1) JP7244940B2 (ja)
KR (1) KR102545945B1 (ja)
CN (1) CN112470093A (ja)
SG (1) SG11202100784RA (ja)
TW (1) TWI719552B (ja)
WO (1) WO2020026784A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326921B2 (en) * 2017-02-10 2022-05-10 Fujikin Incorporated Flow rate measuring method and flow rate measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111989635A (zh) * 2018-04-27 2020-11-24 株式会社富士金 流量控制方法以及流量控制装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337346A (ja) * 2005-06-06 2006-12-14 Ckd Corp 流量制御機器絶対流量検定システム
JP2012032983A (ja) * 2010-07-30 2012-02-16 Fujikin Inc ガス供給装置用流量制御器の校正方法及び流量計測方法
JP2012141254A (ja) * 2011-01-06 2012-07-26 Fujikin Inc ガス供給装置用流量制御器の流量測定装置及び流量測定方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7174263B2 (en) * 2005-03-25 2007-02-06 Mks Instruments, Inc. External volume insensitive flow verification
KR101233632B1 (ko) * 2006-03-07 2013-02-15 씨케이디 가부시키 가이샤 가스유량 검정유닛
JP5346628B2 (ja) * 2009-03-11 2013-11-20 株式会社堀場エステック マスフローコントローラの検定システム、検定方法、検定用プログラム
JP5502616B2 (ja) * 2010-06-24 2014-05-28 東京瓦斯株式会社 流量計測装置および流量計測方法
KR101205122B1 (ko) 2010-09-29 2012-11-26 현대제철 주식회사 상자 소둔 방식을 적용한 440MPa급 고장력 강판 및 그 제조 방법
JP5286430B2 (ja) * 2012-03-13 2013-09-11 株式会社フジキン 圧力制御式流量基準器を構成する基準圧力式流量制御器用の耐食性圧力式流量制御器。
JP5797246B2 (ja) * 2013-10-28 2015-10-21 株式会社フジキン 流量計及びそれを備えた流量制御装置
JP6047540B2 (ja) * 2014-11-05 2016-12-21 Ckd株式会社 流量検定ユニット
JP6600568B2 (ja) * 2015-09-16 2019-10-30 東京エレクトロン株式会社 流量制御器の出力流量を求める方法
CN105526996B (zh) * 2015-10-13 2018-10-12 辽宁省计量科学研究院 高精度pVTt法气体流量标准装置
JP6871636B2 (ja) 2016-03-29 2021-05-12 株式会社フジキン 圧力式流量制御装置及び流量自己診断方法
JP6929566B2 (ja) 2017-02-10 2021-09-01 株式会社フジキン 流量測定方法および流量測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337346A (ja) * 2005-06-06 2006-12-14 Ckd Corp 流量制御機器絶対流量検定システム
JP2012032983A (ja) * 2010-07-30 2012-02-16 Fujikin Inc ガス供給装置用流量制御器の校正方法及び流量計測方法
JP2012141254A (ja) * 2011-01-06 2012-07-26 Fujikin Inc ガス供給装置用流量制御器の流量測定装置及び流量測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326921B2 (en) * 2017-02-10 2022-05-10 Fujikin Incorporated Flow rate measuring method and flow rate measuring device

Also Published As

Publication number Publication date
US11519769B2 (en) 2022-12-06
KR102545945B1 (ko) 2023-06-21
TWI719552B (zh) 2021-02-21
SG11202100784RA (en) 2021-02-25
KR20210015971A (ko) 2021-02-10
US20210310844A1 (en) 2021-10-07
JPWO2020026784A1 (ja) 2021-08-02
CN112470093A (zh) 2021-03-09
JP7244940B2 (ja) 2023-03-23
TW202032098A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
KR101930304B1 (ko) 유량계
JP4788920B2 (ja) 質量流量制御装置、その検定方法及び半導体製造装置
US9910448B2 (en) Pressure-based gas flow controller with dynamic self-calibration
JP5727596B2 (ja) 流量モニタ付圧力式流量制御装置の実ガスモニタ流量初期値のメモリ方法及び実ガスモニタ流量の出力確認方法
JP4086057B2 (ja) 質量流量制御装置及びこの検定方法
TWI642910B (zh) 流量控制機器、流量控制機器的流量校正方法、流量測定機器及使用流量測定機器的流量測定方法
WO2019107215A1 (ja) 流量制御装置
US20110108126A1 (en) Method and apparatus for gas flow control
JP2015087110A5 (ja)
WO2019107216A1 (ja) 流量制御装置の自己診断方法
WO2020026784A1 (ja) 流量制御システム及び流量測定方法
KR102250969B1 (ko) 유체 제어 시스템 및 유량 측정 방법
WO2018147354A1 (ja) 流量測定方法および流量測定装置
JP7488524B2 (ja) 流量測定器
JP7249030B2 (ja) 流量測定装置内の容積測定方法および流量測定装置
JP4784338B2 (ja) 質量流量制御装置
JP2023163311A (ja) 流量測定装置、流量測定方法および流量制御装置の校正方法
JP2023109268A (ja) 圧力式流量制御装置
JP2023018246A (ja) 圧力式流量制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533395

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207038086

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843183

Country of ref document: EP

Kind code of ref document: A1