WO2014065316A1 - 焼結軸受 - Google Patents
焼結軸受 Download PDFInfo
- Publication number
- WO2014065316A1 WO2014065316A1 PCT/JP2013/078686 JP2013078686W WO2014065316A1 WO 2014065316 A1 WO2014065316 A1 WO 2014065316A1 JP 2013078686 W JP2013078686 W JP 2013078686W WO 2014065316 A1 WO2014065316 A1 WO 2014065316A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- sintered
- iron
- bearing
- sintered bearing
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/103—Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
- F16C33/104—Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/10—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/121—Use of special materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/128—Porous bearings, e.g. bushes of sintered alloy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/14—Special methods of manufacture; Running-in
- F16C33/145—Special methods of manufacture; Running-in of sintered porous bearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/10—Alloys based on copper
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/60—Ferrous alloys, e.g. steel alloys
Definitions
- the present invention relates to a sintered bearing.
- Sintered bearings are porous bodies having innumerable internal pores, and are usually used in a state in which internal pores are impregnated with a lubricating fluid (for example, lubricating oil).
- a lubricating fluid for example, lubricating oil
- the lubricating oil retained in the internal pores of the sintered bearing oozes into the inner peripheral surface (bearing surface) of the sintered bearing as the temperature rises. put out.
- the oozed lubricating oil forms an oil film in the bearing gap between the bearing surface of the sintered bearing and the outer peripheral surface of the shaft, and the shaft is supported so as to be relatively rotatable.
- Patent Document 1 copper and iron-based sintered bearings mainly composed of iron and copper are coated with 10% by mass or more and less than 30% by mass of copper, and the particle size is 80%.
- a powdered and sintered copper-coated iron powder having a mesh or less is described.
- an object of the present invention is to provide a sintered bearing having high rotational accuracy and less rotational fluctuation.
- the vibration motor described above functions as a vibrator for notifying an incoming call or mail reception in a portable terminal such as a cellular phone, and usually has one end of the shaft 3 as shown in FIG.
- a weight (eccentric weight) W attached to the motor unit M, the entire mobile terminal is vibrated.
- FIG. 1 conceptually shows the main part of the vibration motor 1 when the sintered bearing 4 (41, 42) is used.
- both sides of the shaft 3 protruded on both sides in the axial direction of the motor part M. Is rotatably supported by a cylindrical sintered bearing 4 (41, 42).
- the sintered bearing 41 on the weight W side is disposed between the weight W and the motor unit M.
- the sintered bearing 41 on the weight W side is thicker than the sintered bearing 42 on the opposite side of the weight W. And it is formed in a large diameter.
- Each of the two sintered bearings 4 (41, 42) has a bearing surface 4a on the inner periphery, and is fixed to the inner periphery of the housing 2 made of, for example, a metal material by means such as press fitting.
- the shaft 3 rotates in the vibration motor 1
- the shaft 3 rotates while swinging along the entire surface of the bearing surface 4a under the influence of the weight W. That is, in the sintered bearing for normal use, the shaft 3 rotates while being eccentric in the direction of gravity.
- the sintered bearing 4 (41, 42) for the vibration motor as shown in FIG.
- the shaft 3 rotates in a state where the shaft center Oa is decentered not only in the gravity direction but also in all directions.
- the present inventors In the process of studying such a sintered bearing for a vibration motor, the present inventors frequently rotate the shaft around the entire bearing surface at high speed rotation, and the bearing surface frequently moves on the shaft due to unbalanced load. It was found that the bearing surface is more easily worn than a sintered bearing for normal use because it is struck (the shaft frequently makes sliding contact with the bearing surface). Also, in order to ensure rotational accuracy, the bearing surface accuracy is important, and it is not sufficient to simply improve the bearing surface accuracy. When the sintered bearing is press-fitted into the inner circumference of the housing, the bearing surface It has also been found that deformation following the shape of the inner peripheral surface of the housing also affects the rotational accuracy of the shaft.
- the sintered bearing of the present invention was created based on the above knowledge. Specifically, it is a sintered bearing having a bearing surface that forms a bearing gap with the shaft to be supported on the inner periphery. It consists of a sintered body formed by sintering a raw material powder containing a partially diffused alloy powder obtained by partially diffusing copper powder into iron powder, a low melting point metal powder, and a solid lubricant powder. Is 300 MPa or more.
- melts by sintering after shape
- the neck strength between the phase and the copper phase can be further increased. From these facts, it becomes possible to obtain a high-strength sintered body (sintered bearing) that is excellent in wear resistance of the bearing surface even at low temperature sintering and has a crushing strength of 300 MPa or more.
- the sintered bearing does not have sufficient crushing strength, and the bearing surface is deformed by press-fitting into the inner periphery of the housing, and the accuracy of the bearing surface, particularly roundness and cylindricity, is reduced. When it decreases, it is necessary to additionally execute shape correction processing such as sizing and finish the bearing surface to an appropriate shape. Furthermore, if the sintered bearing (sintered body) does not have sufficient crushing strength, a product (for example, a mobile phone) incorporating the sintered bearing will drop and a large impact load will be applied. The surface may be deformed.
- the sintered body has a crushing strength of 300 MPa or more, it is possible to prevent the above-described various problems as much as possible. From the above, it is possible to provide a sintered bearing that achieves both high durability and rotational accuracy at low cost.
- copper powder having an average particle size of 5 ⁇ m or more and less than 20 ⁇ m is partially diffused on the surface of the iron powder as the partial diffusion alloy powder included in the raw material powder, and Cu is 10-30 It is preferable to use a material containing mass%.
- the raw material powder contains a partially diffused alloy powder having a large particle size exceeding the average particle size of 106 ⁇ m, rough air holes are easily formed inside the sintered body, As a result, it has been found that there are cases in which the required wear resistance of the bearing surface, the crushing strength, and the like cannot be ensured. Accordingly, it is preferable to use a partially diffused alloy powder having an average particle size of 145 mesh or less (average particle size of 106 ⁇ m or less). By using such an alloy powder, it is possible to stably obtain a sintered body in which the sintered metal structure (porous structure) is made uniform and the generation of rough atmospheric pores in the metal structure is suppressed. it can. Thereby, it becomes possible to stably obtain a sintered bearing in which the wear resistance of the bearing surface and the crushing strength of the bearing are further improved.
- tin powder can be used as the low melting point metal powder
- graphite powder can be used as the solid lubricant powder.
- the sintered body contains 10 to 30% by mass of Cu, 0.5 to 3.0% by mass of Sn, 0.3 to 1.5% by mass of C, and the balance is made of iron and inevitable impurities. Shall be.
- initial conformability and quietness of the bearing surface can be improved.
- most of the sintered bearing is composed of iron (iron structure), it has excellent mechanical strength. Further, expensive materials such as nickel (Ni) and molybdenum (Mo) are not used. Accordingly, it is possible to provide a sintered bearing with improved mechanical strength and wear resistance of the bearing surface at a low cost.
- the iron structure of the sintered body mainly with a soft ferrite phase By configuring the iron structure of the sintered body mainly with a soft ferrite phase, the aggressiveness of the bearing surface against the shaft can be weakened, and the shaft wear can be suppressed.
- An iron structure mainly composed of a ferrite phase can be obtained, for example, by firing a green compact at a temperature of 900 ° C. or less at which iron and carbon do not react.
- the iron structure mainly composed of the ferrite phase includes an iron structure in which a pearlite phase harder than the ferrite phase is present at the grain boundary of the ferrite phase in addition to a structure in which all of the ferrite phase is formed.
- a pearlite phase at the grain boundary of the ferrite phase, it is possible to improve the wear resistance of the bearing surface as compared with the case where the iron structure is composed only of the ferrite phase.
- the proportions of ferrite phase ( ⁇ Fe) and pearlite phase ( ⁇ Fe) in the iron structure are 80 to 95% and 5 to 20%, respectively.
- reduced iron powder can be used as the iron powder constituting the partial diffusion alloy powder (Fe—Cu partial diffusion alloy powder).
- the iron powder for example, atomized iron powder can be used in addition to the reduced iron powder.
- the reduced iron powder has a spongy shape (porous shape) having internal pores, it is compared with the atomized iron powder.
- the powder is soft and excellent in compression moldability. Therefore, the green compact strength can be increased even at low density, and chipping and cracking of the green compact can be prevented.
- reduced iron powder makes a spongy shape as described above, it also has an advantage of superior oil retention as compared with atomized iron powder.
- the porosity of the surface layer portion is preferably 5 to 20%.
- the surface layer portion is a region from the surface to a depth of 100 ⁇ m.
- the sintered body (within its internal pores) can be impregnated with a lubricating oil, and a lubricating oil having a kinematic viscosity at 40 ° C. in the range of 10 to 50 mm 2 / s is preferably used. This is to suppress the increase in rotational torque while ensuring the rigidity of the oil film formed in the bearing gap.
- the oil impregnated in the sintered body may be a liquid grease based on an oil (lubricating oil) having a kinematic viscosity at 40 ° C. in the range of 10 to 50 mm 2 / s.
- this sintered bearing is particularly suitable for use in supporting a main shaft of a vibration motor.
- FIG. 2 is a cross-sectional view taken along line AA shown in FIG. It is a microscope picture of the X section in FIG. It is a figure which shows a partial diffusion alloy powder typically. It is a schematic sectional drawing which shows a compacting process. It is a schematic sectional drawing which shows a compacting process. It is a figure which shows a part of green compact conceptually. It is a figure which shows typically the metal structure of a sintered compact. It is a microscope picture of the bearing surface vicinity of the sintered bearing which concerns on a prior art.
- the main part of the vibration motor 1 including the sintered bearing 4 according to the embodiment of the present invention will be described with reference to FIG.
- the shaft 3 having a diameter of 2 mm or less (for example, 0.6 mm) is rotationally driven by the motor unit M at a rotational speed of 10,000 rpm or more.
- the vibration motor 1 includes a metal or resin housing 2 formed in a substantially cylindrical shape, and a ring-shaped sintered bearing 4 disposed on both axial sides of the motor portion M and press-fitted and fixed to the inner periphery of the housing 2.
- the gap width of (bearing gap) is set to about 4 ⁇ m on one side (radius value).
- the shaft 3 is formed of stainless steel or the like, and a weight W is provided integrally or separately at one end thereof.
- the weight W of the present embodiment is attached and fixed to one end of the shaft 3 so that the center thereof is eccentric with respect to the center of the shaft 3.
- the inner pores of the sintered bearing 4, the oil is in the range lubricating oil kinematic viscosity of 40 ° C. is within the range of 10 ⁇ 50mm 2 / s, or a kinematic viscosity of 40 ° C. is 10 ⁇ 50mm 2 / s Impregnated with liquid grease as base oil.
- the lubricating oil retained in the internal pores of the sintered bearing 4 oozes out to the bearing surface 4a as the temperature rises. Due to the oozed lubricating oil, an oil film is formed in the bearing gap between the outer peripheral surface 3a of the opposed shaft 3 and the bearing surface 4a of the sintered bearing 4, and the shaft 3 is supported by the sintered bearing 4 so as to be relatively rotatable. Is done.
- the bearing unit 1 has an opening of the housing 2.
- a sealing member for sealing may be provided.
- the sintered bearing 4 described above is manufactured mainly through (A) a raw material powder production step, (B) a compacting step, and (C) a sintering step in this order.
- A) a raw material powder production step (B) a compacting step, and (C) a sintering step in this order.
- each step (A) to (C) will be described in detail.
- the two sintered bearings 4 (41, 42) arranged on both sides of the motor part M are different from each other only in the axial dimension (the area of the bearing surface 4a) and the radial thickness. Are substantially the same and are manufactured through the same manufacturing process.
- the raw material powder used in the present embodiment is a mixed powder in which a partial diffusion alloy powder is used as a main raw material, and a low melting point metal powder and a solid lubricant powder are blended therein. You may add various shaping
- molding adjuvants for example, lubricant for a mold release improvement
- Fe—Cu partial diffusion alloy powder obtained by partially diffusing the copper powder 13 on the surface of the iron powder 12 is used.
- FIG. As schematically shown, Fe—Cu partial diffusion alloy powder in which a large number of copper powders 13 having an average particle size smaller than that of the iron powder 12 are partially diffused is used on the surface of the iron powder 12.
- the diffusion portion of the partial diffusion alloy powder 11 forms an Fe—Cu alloy, and as shown in the partial enlarged view of FIG. 4, the alloy portion is formed by binding iron atoms 12a and copper atoms 13a to each other. It has a crystal structure.
- the partial diffusion alloy powder 11 only particles that can pass through a 145 mesh screen, that is, particles having an average particle size of 145 mesh or less (average particle size of 106 ⁇ m or less) are used.
- the powder becomes lighter as the particle size becomes smaller and becomes more likely to float, if the partially diffused alloy powder 11 having a small particle size is contained in the raw material powder, a molding metal is formed in the compacting process described later. Fillability of the raw material powder into the mold (cavity) is lowered, and it becomes difficult to stably obtain a green compact having a predetermined shape and density.
- the present inventors have found that the above problem is likely to occur when the partially diffused alloy powder 11 having a particle size of 45 ⁇ m or less is contained in an amount of 25 mass% or more. Therefore, as the partial diffusion alloy powder 11, one having an average particle size of 145 mesh or less (average particle size of 106 ⁇ m or less) and not containing 25% by mass or more of particles having an average particle size of 350 mesh (average particle size of 45 ⁇ m) or less is selectively used. Is desirable.
- the average particle size is determined by irradiating a particle group with laser light, and calculating the particle size distribution from the intensity distribution pattern of diffraction / scattered light emitted from the particle group. (SALD31000 manufactured by Seisakusho is used).
- the iron powder 12 constituting the partial diffusion alloy powder 11 known iron powders such as reduced iron powder and atomized iron powder can be used, but reduced iron powder is used in this embodiment.
- the reduced iron powder has an irregular shape that approximates a spherical shape and has a sponge shape (porous shape) having internal pores, and is also referred to as sponge iron powder.
- the iron powder 12 used preferably has an average particle size of 20 ⁇ m to 106 ⁇ m, and more preferably an average particle size of 38 ⁇ m to 75 ⁇ m.
- the copper powder 13 constituting the partial diffusion alloy powder 11 a widely used irregular shape or dendritic copper powder can be widely used.
- electrolytic copper powder, atomized copper powder, or the like is used.
- an atomized copper powder having a large number of irregularities on the surface, an irregular shape that approximates a spherical shape as a whole particle, and excellent in formability is used.
- the copper powder 13 to be used has a smaller particle diameter than the iron powder 12, and specifically, an average particle diameter of 5 ⁇ m to 20 ⁇ m (preferably less than 20 ⁇ m) is used.
- the ratio of Cu in each of the partial diffusion alloy powders 11 is 10 to 30% by mass (preferably 22 to 26% by mass), and the copper content (strictly, in the sintered body 4 ′′ obtained in the sintering process) Is the same as the copper content in the case where the sintered body 4 ′′ does not contain Sn or C). That is, in this embodiment, no single copper powder or iron powder is blended in the raw material powder.
- the raw material powder may be blended with a single copper powder or iron powder, but when a single copper powder is blended, it is difficult to increase the strength of the bearing surface 4a. Therefore, for example, when the bearing surface 4a is hit by the shaft 3 as the shaft 3 rotates, an indentation (dent) is easily formed on the bearing surface 4a. Further, when a single iron powder is blended, it becomes difficult to obtain a sintered body 4 ′′ (sintered bearing 4) having a desired crushing strength. Therefore, a single copper powder or iron powder is blended into the raw material powder. Preferably not.
- Low melting point metal powder a metal powder having a melting point of 700 ° C. or less, for example, a powder of tin, zinc, phosphorus or the like is used.
- tin powder 14 (see FIG. 6) with little transpiration during sintering, particularly atomized tin powder, is used.
- the tin powder (atomized tin powder) 14 those having an average particle diameter of 5 to 63 ⁇ m are preferably used, and those having an average particle diameter of 20 to 45 ⁇ m are more preferably used.
- Solid lubricant As the solid lubricant, one kind or two or more kinds of powders such as graphite, molybdenum disulfide, and zinc stearate can be used. In the present embodiment, graphite powder, particularly scaly graphite powder is used in consideration of cost.
- FIGS. 5 (a) and 5 (b) Compacting Step
- the raw material powder 10 is compressed using a molding die 20 as shown in FIGS. 5 (a) and 5 (b), whereby the sintered bearing shown in FIG. A green compact 4 ′ having a shape approximate to 4 (substantially finished product shape) is obtained.
- the molding die 20 has a core 21, upper and lower punches 22 and 23, and a die 24 that are coaxially arranged as main components.
- the molding die 20 is set in a die set of a cam type molding press, for example.
- the raw powder 10 is filled in the cavity 25 defined by the core 21, the lower punch 23 and the die 24, and then the upper punch 22 is moved closer to the lower punch 23.
- the green compact 4 ′ is formed.
- the upper punch 22 is moved up and the lower punch 23 is moved up, and the green compact 4 ′ is discharged out of the cavity 25.
- the partial diffusion alloy powder 11, tin powder 14, and graphite powder are uniformly dispersed.
- the partial diffusion alloy powder 11 used in the present embodiment uses reduced iron powder as the iron powder 12, the powder is softer than the partial diffusion alloy powder using atomized iron powder, and the compression moldability is improved. Excellent. Therefore, the strength of the green compact 4 ′ can be increased even at a low density, and chipping or cracking of the green compact 4 ′ can be prevented.
- (C) Sintering step In the sintering step, the green compact 4 'is sintered to obtain a sintered body.
- the sintering conditions are such that carbon contained in graphite (graphite powder) does not react with iron (carbon does not diffuse). In the iron-carbon equilibrium state, there is a transformation point at 723 ° C., and beyond this, the reaction between iron and carbon is initiated and a pearlite phase ( ⁇ Fe) is generated in the iron structure. After that, the reaction between carbon (graphite) and iron begins, and a pearlite phase ( ⁇ Fe) is generated.
- the pearlite phase ( ⁇ Fe) has high hardness (HV300 or higher) and is highly aggressive against the mating material, if the pearlite phase ( ⁇ Fe) is excessively present in the iron structure of the sintered bearing 4, the wear of the shaft 3 may be advanced.
- endothermic gas RX gas
- endothermic gas carbon may diffuse and the surface of the green compact may be cured, and the same problem as described above is likely to occur.
- the green compact 4 ′ is heated at 900 ° C. or lower, specifically 700 ° C. (preferably 760 ° C.) or higher and 840 ° C. or lower (low temperature sintering).
- the sintering atmosphere is a gas atmosphere containing no carbon (hydrogen gas, nitrogen gas, argon gas, etc.) or a vacuum. Under such sintering conditions, the reaction between carbon and iron does not occur in the raw material powder, and therefore the iron structure after sintering becomes a soft ferrite phase (HV200 or less).
- various forming aids such as a fluid lubricant are included in the raw material powder, the forming aid is volatilized with sintering.
- the iron structure can also have a two-phase structure of a ferrite phase ⁇ Fe and a pearlite phase ⁇ Fe.
- the pearlite phase ⁇ Fe harder than the ferrite phase ⁇ Fe contributes to the improvement of the wear resistance of the bearing surface, and the wear of the bearing surface under high surface pressure can be suppressed to improve the bearing life.
- the pearlite phase ⁇ Fe is present in an excessive proportion and becomes equal to the ferrite phase ⁇ Fe, the aggressiveness of the pearlite against the shaft 3 increases and the shaft 3 is likely to wear. In order to prevent this, as shown in FIG.
- the pearlite phase ⁇ Fe is suppressed to the extent that it exists (is scattered) at the grain boundary of the ferrite phase ⁇ Fe.
- the term “grain boundary” as used herein means both a grain boundary formed between powder particles and a crystal grain boundary formed in the powder particle.
- the growth rate of the pearlite phase ⁇ Fe mainly depends on the sintering temperature. Therefore, in order to allow the pearlite phase ⁇ Fe to be present at the grain boundary of the ferrite phase ⁇ Fe in the above-described manner, the sintering temperature is raised to about 820 ° C. to 900 ° C., and the gas containing carbon as the furnace atmosphere, such as natural gas, Sintering is performed using an endothermic gas (RX gas). As a result, carbon contained in the gas diffuses into iron during sintering, and pearlite phase ⁇ Fe can be formed. As described above, when the green compact 4 ′ is sintered at a temperature exceeding 900 ° C., carbon in the graphite powder reacts with iron to form a pearlite phase ⁇ Fe. Sintering is preferred below.
- the sintered body 4 ′′ is sized, and the sintered body 4 ′′ is finished to a finished shape and size, and then the internal pores of the sintered body 4 ′′ are impregnated with a lubricating oil by a technique such as vacuum impregnation. 1 is completed.
- the lubricating oil impregnated in the internal pores of the sintered body 4 ′′ has a low viscosity, specifically, a kinematic viscosity at 40 ° C. is 10 to 50 mm 2 / s. (For example, a synthetic hydrocarbon-based lubricating oil) is used. This is to suppress the increase in rotational torque while ensuring the rigidity of the oil film formed in the bearing gap.
- the internal pores of the sintered body 4 ′′ may be impregnated with a liquid grease based on a lubricating oil having a kinematic viscosity at 40 ° C. of 10 to 50 mm 2 / s.
- a liquid grease based on a lubricating oil having a kinematic viscosity at 40 ° C. of 10 to 50 mm 2 / s.
- the step of impregnating the lubricating oil may be omitted, and a sintered bearing used without oil supply may be used.
- Cu is 10 to 30% by mass (preferably 22 to 26% by mass) and Sn is 0.5 to 3.0% by mass (preferably 1. 0 to 3.0% by mass), 0.3 to 1.5% by mass (preferably 0.5 to 1.0% by mass) of C, and the balance consisting of iron and inevitable impurities.
- Sn is 0.5 to 3.0% by mass (preferably 1. 0 to 3.0% by mass), 0.3 to 1.5% by mass (preferably 0.5 to 1.0% by mass) of C, and the balance consisting of iron and inevitable impurities.
- the sintering conditions of the powder 4 ′ are 900 ° C. or lower, which is much lower than the melting point of copper (1083 ° C.)
- the powder 4 ′ is included in the green compact 4 ′ (partial diffusion alloy powder 11). Therefore, the copper powder 13 does not melt and therefore copper does not diffuse into the iron (iron structure) with the sintering.
- an iron structure containing iron as a main component and a copper structure containing copper as a main component are formed.
- an iron powder alone or a copper powder alone is added to the raw material powder.
- the entire iron structure and copper structure of the sintered body 4 ′′ are formed mainly of the partial diffusion alloy powder 11.
- the tin powder 14 in the green compact 4 ′ is melted and wets the surface of the copper powder 13 constituting the partial diffusion alloy powder 11.
- liquid phase sintering proceeds between tin (Sn) and copper (Cu), and as shown in FIG. 7, the iron structure and copper structure of adjacent partial diffusion alloy powders 11 or between copper structures A bronze phase ( ⁇ Cu—Sn) 16 is formed.
- molten Sn is diffused and Fe—Cu is diffused in a part where a part of the copper powder 13 is diffused on the surface of the iron powder 12 to form an Fe—Cu alloy. Since the Sn alloy (alloy phase) 17 is formed, the neck strength between the iron structure and the copper structure is further increased. Therefore, a high crushing strength, specifically, a crushing strength of 300 MPa or more can be obtained even at the low temperature sintering as described above.
- the bearing surface 4a can be hardened to improve the wear resistance of the bearing surface 4a.
- the ferrite phase ⁇ Fe, the pearlite phase ⁇ Fe, and the like are represented by shades of color. Specifically, the colors are darkened in the order of ferrite phase ⁇ Fe ⁇ bronze phase 16 ⁇ Fe—Cu—Sn alloy (alloy phase) 17 ⁇ pearlite phase ⁇ Fe.
- the porous structure of the sintered body 4 ′′ is made uniform to prevent the formation of rough atmospheric pores. Therefore, the sintered body 4 ′′ can be densified to further enhance the crushing strength and the wear resistance of the bearing surface 4a.
- the sintered body 4 ′′ of this embodiment has a crushing strength of 300 MPa or more, and the value of this crushing strength is more than twice that of an existing copper-iron-based sintered body.
- the density of the sintered body 4 "of the present embodiment is 6.8 ⁇ 0.3g / cm 3, and the than the density of existing iron copper-based sintered body (about 6.6 g / cm 3) Will also be dense.
- Even existing iron-copper-based sintered bodies can be densified by high compression in the green compact molding process, but this will prevent the internal fluid lubricant from burning during sintering. Because of gasification, the pores in the surface layer portion become coarse. In the present invention, it is not necessary to perform high compression at the time of forming the green compact, and such a problem can be prevented.
- the oil content can be increased to 15 vol% or more, and an oil content comparable to that of an existing iron-copper sintered bearing can be secured.
- the iron powder 12 constituting the partial diffusion alloy powder 11 is spongy and uses reduced iron powder excellent in oil retaining property.
- lubrication impregnated in the sintered body 4 ′′ The oil is held not only in the pores formed between the particles of the sintered structure, but also in the pores of the reduced iron powder.
- the coarse air holes are particularly likely to occur in the surface layer portion (region from the sintered body surface to a depth of 100 ⁇ m) of the sintered body 4 ′′, but if the sintered body 4 ′′ obtained as described above is used, As described above, it is possible to prevent the formation of rough air holes in the surface layer portion and increase the density of the surface layer portion.
- the porosity of the surface layer portion can be 5 to 20%. This porosity can be obtained, for example, by image analysis of the area ratio of the pores in an arbitrary cross section of the sintered body 4 ′′.
- the surface aperture ratio of the bearing surface 4a is also reduced.
- the surface aperture ratio of the bearing surface 4a is set within a range of 5% to 20%. can do.
- the surface area ratio is less than 5%, it becomes difficult to exude a necessary and sufficient amount of lubricating oil into the bearing gap (insufficient oil film forming ability), and a merit as a sintered bearing can be obtained. Can not.
- the raw material powder for obtaining this sintered body 4 ′′ since the main raw material is the partial diffusion alloy powder 11 in which the copper powder 13 is partially diffused on the surface of the iron powder 12, the existing powder is used. It is possible to prevent segregation of copper, which is a problem with ferrous copper-based sintered bearings.
- mechanical strength can be increased without using expensive metal powders such as Ni and Mo. Since it can improve, the cost reduction of the sintered bearing 4 is also achieved.
- the sintered bearing 4 according to the present invention has a high crushing strength (crushing strength of 300 MPa or more), even when press-fitted and fixed to the inner periphery of the housing 2 as shown in FIG. 4a does not deform following the shape of the inner peripheral surface of the housing 2, and the roundness and cylindricity of the bearing surface 4a can be stably maintained even after the mounting. Therefore, after press-fitting and fixing the sintered bearing 4 to the inner periphery of the housing 2, a desired roundness (for example, sizing) is additionally performed without finishing processing (for example, sizing) for finishing the bearing surface 4a to an appropriate shape and accuracy. For example, a roundness of 3 ⁇ m or less can be ensured.
- the vibration motor 1 incorporating the sintered bearing 4 may drop and the like. Even when a large impact load is applied to the surface 4a, deformation of the bearing surface 4a is prevented as much as possible. Furthermore, since the bearing surface 4a is hardened and has high wear resistance, even if the shaft 3 swings around the entire surface of the bearing surface 4a or the shaft 3 frequently collides with the bearing surface 4a, the bearing surface 4a. Wear and damage can be suppressed. Therefore, according to the present invention, the sintered bearing 4 suitable for supporting the vibration motor can be provided at low cost.
- the green compact 4 ′ when the green compact 4 ′ is compression-molded, a so-called warm molding method in which at least one of the molding die 20 and the raw material powder 10 is heated and the green compact 4 ′ is compression-molded, A die lubrication molding method may be employed in which the green compact 4 ′ is compression molded in a state where a lubricant is applied to the molding surface of the mold 20 (the defined surface of the cavity 25). By adopting such a method, the green compact 4 ′ can be molded with higher accuracy.
- the sintered bearing 4 according to the present invention can be widely used not only as a vibration motor but also as a bearing for rotatably supporting a shaft, including a main shaft support application of a motor having a high unbalance load at a high speed.
- the bearing surface 4 a of the sintered bearing 4 can be provided with a dynamic pressure generating portion such as a dynamic pressure groove. In this way, since the rigidity of the oil film formed in the bearing gap can be increased, the rotational accuracy can be further increased.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacturing & Machinery (AREA)
- Sliding-Contact Bearings (AREA)
- Powder Metallurgy (AREA)
Abstract
本発明は、高い回転精度を有し、かつ回転変動が少ない焼結軸受を提供するものである。この軸受は、軸受面4aを有するもので、鉄粉12の表面に銅粉13を部分拡散させてなる部分拡散合金粉11と、低融点金属粉としての錫粉14と、固体潤滑剤粉としての黒鉛粉とを含む原料粉末10を成形し、焼結した焼結体4"からなり、300MPa以上の圧環強度を有する。
Description
本発明は、焼結軸受に関する。
焼結軸受は、無数の内部気孔を有する多孔質体であり、通常は、内部気孔に潤滑流体(例えば、潤滑油)を含浸させた状態で使用される。この場合、焼結軸受およびその内周に挿入した軸の相対回転時には、焼結軸受の内部気孔に保持された潤滑油が温度上昇に伴って焼結軸受の内周面(軸受面)に滲み出す。そして、この滲み出した潤滑油によって、焼結軸受の軸受面と軸の外周面との間の軸受隙間に油膜が形成され、軸が相対回転自在に支持される。
例えば、下記の特許文献1には、鉄および銅を主成分とする銅鉄系の焼結軸受として、鉄粉に対し10質量%以上30質量%未満の銅を被覆してなり、粒度を80メッシュ以下とした銅被覆鉄粉を圧粉・焼結したものが記載されている。
しかしながら、本発明者らが検証したところ、特許文献1の技術手段を適用した焼結軸受を振動モータに使用した場合には、回転変動が大きくなることが明らかになった。これは、銅被覆鉄粉を圧粉・焼結して得られた焼結軸受では、鉄相(鉄組織)と銅相(銅組織)のネック強度が低いため、軸受面が早期に摩耗したことに起因すると考えられる。
このような実情に鑑み、本発明は、高い回転精度を有し、かつ回転変動が少ない焼結軸受を提供することを目的とする。
ところで、上記の振動モータとは、例えば携帯電話等の携帯端末において、電話の着信やメールの受信等を報知するバイブレータとして機能するものであり、通常は、図1に示すように軸3の一端に取り付けた錘(偏芯錘)Wをモータ部Mで回転させることにより、携帯端末全体に振動を発生させる構成になっている。近年では、振動モータ(の主軸)を支持する軸受としてコンパクトで静粛性に優れた焼結軸受を使用することが検討されている。図1は、焼結軸受4(41,42)を使用した場合の振動モータ1の要部を概念的に示すもので、図示例ではモータ部Mの軸方向両側に突出させた軸3の両側を円筒状の焼結軸受4(41,42)により回転自在に支持している。錘W側の焼結軸受41は、錘Wとモータ部Mの間に配置されており、この錘W側の焼結軸受41は、錘Wと反対側の焼結軸受42よりも厚肉でかつ大径に形成されている。二つの焼結軸受4(41,42)は、何れも内周に軸受面4aを有しており、例えば金属材料で形成されたハウジング2の内周に圧入等の手段で固定されている。
この振動モータ1において軸3が回転すると、錘Wの影響を受けて軸3が軸受面4aの全面に沿って振れ回りながら回転する。すなわち、通常用途の焼結軸受では、軸3は重力方向に偏芯した状態で回転するが、振動モータ用の焼結軸受4(41,42)では、図2に示すように、軸受中心Obに対して軸中心Oaを重力方向だけでなくあらゆる方向に偏芯させた状態で軸3が回転することになる。
近年、いわゆるスマートフォン等への搭載を考慮して、振動モータにはさらなる小型化が要請されている。振動モータを小型化した場合、モータパワーの増大には限界がある。そのような状況下でも所定の振動性能を確保するために、モータを高速回転化(10000rpm以上)し、あるいは錘Wのアンバランス荷重を増大させることで対処しようとしており、振動モータ用焼結軸受4の使用条件はより過酷化する傾向にある。
本発明者らは、かかる振動モータ用焼結軸受を検討する過程において、この種の軸受では、高速回転で軸が軸受面全面にわたって振れ回ること、およびアンバランス荷重により軸受面が軸に頻繁に叩かれる(軸受面に対して軸が頻繁に摺動接触する)ことから、軸受面が通常用途の焼結軸受よりも摩耗し易いことを見出した。また回転精度を確保するためには、軸受面の精度が重要であること、さらに軸受面の精度を単に向上させるだけでは不十分で、焼結軸受をハウジング内周に圧入した際に軸受面がハウジングの内周面形状に倣って変形することも軸の回転精度に影響することも見出した。
本発明の焼結軸受は、以上の知見に基づいて創作されたものであり、具体的には、支持すべき軸との間に軸受隙間を形成する軸受面を内周に有する焼結軸受であって、鉄粉に銅粉を部分拡散させてなる部分拡散合金粉と、低融点金属粉と、固体潤滑剤粉とを含む原料粉末を成形し、焼結した焼結体からなり、圧環強度が300MPa以上であることを特徴とする。
部分拡散合金粉では、銅粉の一部が鉄粉に拡散しているため、銅被覆鉄粉を使用する場合よりも焼結後の鉄組織と銅組織の間で高いネック強度が得られる。また、上記の構成によれば、原料粉末を成形(圧縮成形)した後の焼結により、圧粉体に含まれる低融点金属粉が溶融する。低融点金属は銅に対して高いぬれ性を持つので、液相焼結により、隣り合う部分拡散合金粉の鉄相と銅相、あるいは銅相同士を強固に結合させることができる。また、個々の部分拡散合金粉のうち、鉄粉の表面に銅粉の一部が拡散してFe-Cu合金が形成された部分には、溶融した低融点金属が拡散していくため、鉄相と銅相間のネック強度を一層高めることができる。これらのことから、低温焼結でも軸受面の耐摩耗性に優れ、かつ300MPa以上の圧環強度を有する高強度の焼結体(焼結軸受)を得ることが可能となる。
このように軸受面の耐摩耗性が向上することで、回転変動を防止することができる。また、焼結軸受(焼結体)が十分な圧環強度を具備しておらず、ハウジング内周への圧入に伴って軸受面が変形し、軸受面の精度、特に真円度や円筒度が低下すると、サイジング等の形状修正加工を追加的に実行し、軸受面を適正形状に仕上げる必要がある。さらに、焼結軸受(焼結体)が十分な圧環強度を具備していないと、当該焼結軸受を組み込んだ製品(例えば携帯電話)が落下等し大きな衝撃加重が付加された場合に、軸受面が変形するおそれがある。これに対し、焼結体が300MPa以上の圧環強度を有していれば、上述の各種不具合が生じるのを可及的に防止することができる。以上から、高い耐久性と回転精度とを両立した焼結軸受を低コストに提供することが可能となる。
上記の焼結軸受(焼結体)を得るには、原料粉末に含める部分拡散合金粉として、平均粒径5μm以上20μm未満の銅粉が鉄粉表面に部分拡散し、かつCuを10~30質量%含有するものを使用するのが好ましい。
本発明者らが鋭意検討を重ねた結果、原料粉末中に平均粒径106μmを超える大粒径の部分拡散合金粉が含まれていると、焼結体の内部に粗大気孔が形成され易く、その結果、必要とされる軸受面の耐摩耗性や圧環強度等を確保できない場合があることが判明した。従って、部分拡散合金粉は、平均粒度145メッシュ以下(平均粒径106μm以下)のものを使用するのが好ましい。このような合金粉を使用することで、焼結後の金属組織(多孔質組織)が均一化され、金属組織中での粗大気孔の発生が抑制された焼結体を安定的に得ることができる。これにより、軸受面の耐摩耗性や軸受の圧環強度が一層向上した焼結軸受を安定的に得ることが可能となる。
この焼結軸受では、低融点金属粉として錫粉、固体潤滑剤粉として黒鉛粉を使用することができる。この場合、焼結体は、Cuを10~30質量%、Snを0.5~3.0質量%、Cを0.3~1.5質量%含有し、残部が鉄および不可避的不純物からなるものとする。この構成では、焼結体の金属組織中に一定量の銅が含まれるので、軸受面の初期なじみ性や静粛性を向上させることができる。その一方で、この焼結軸受は、その大部分が鉄(鉄組織)で構成されるので機械的強度にも優れる。また、ニッケル(Ni)やモリブデン(Mo)等の高価な材料も使用していない。従って、機械的強度および軸受面の耐摩耗性が高められた焼結軸受を低コストに提供することができる。
焼結体の鉄組織を、軟質なフェライト相を主体として構成することで、軸受面の軸に対する攻撃性を弱くすることができ、軸の摩耗を抑制することが可能となる。フェライト相を主体とした鉄組織は、例えば鉄と炭素が反応しない900℃以下の温度で圧粉体を焼成することにより得ることができる。
フェライト相を主体とする鉄組織には、その全てをフェライト相とした組織の他、フェライト相の粒界にフェライト相よりも硬質のパーライト相を存在させたような鉄組織も含まれる。このように、フェライト相の粒界にパーライト相を形成することで、鉄組織をフェライト相だけで構成する場合と比べ、軸受面の耐摩耗性を向上させることができる。軸の摩耗抑制と軸受面の耐摩耗性向上とを両立させるには、鉄組織に占めるフェライト相(αFe)およびパーライト相(γFe)の割合を、それぞれ、80~95%および5~20%とする(αFe:γFe=80~95%:5~20%)のが好適である。なお、上記の割合は、例えば、焼結体の任意断面におけるフェライト相およびパーライト相それぞれの面積比率で求めることができる。
部分拡散合金粉(Fe-Cu部分拡散合金粉)を構成する鉄粉としては、還元鉄粉を使用することができる。鉄粉としては、還元鉄粉以外にも、例えばアトマイズ鉄粉を使用することもできるが、還元鉄粉は内部気孔を有する海綿状(多孔質状)をなすことから、アトマイズ鉄粉に比べて粉末が柔らかく、圧縮成形性に優れる。そのため、低密度でも圧粉体強度を高めることができ、圧粉体の欠けや割れの発生を防止することができる。また、還元鉄粉は、上記のとおり海綿状をなすことから、アトマイズ鉄粉に比べて保油性に優れる利点も有する。
上記構成において、表層部の気孔率、特に軸受面を含む表層部の気孔率は5~20%とするのが好ましい。なお、ここでいう表層部とは、表面から深さ100μmに至るまでの領域である。
焼結体(の内部気孔)には潤滑油を含浸させることができ、潤滑油としては、40℃の動粘度が10~50mm2/sの範囲内にあるものが好ましく使用される。軸受隙間に形成される油膜の剛性を確保しつつ、回転トルクの上昇を抑えるためである。なお、焼結体に含浸させる油としては、40℃の動粘度が10~50mm2/sの範囲内にある油(潤滑油)を基油とした液状グリースを採用しても良い。
以上に示すように、本発明によれば、高い回転精度を有し、かつ回転変動の少ない焼結軸受を提供することができる。かかる特性から、この焼結軸受は、特に振動モータの主軸支持用途に適したものとなる。
以下、本発明の実施の形態を図面に基づいて説明する。
図1を援用して、本発明の実施形態に係る焼結軸受4を備えた振動モータ1の要部を説明する。この振動モータ1では、直径2mm以下(例えば0.6mm)の軸3がモータ部Mによって10000rpm以上の回転数で回転駆動される。振動モータ1は、略円筒状に形成された金属製又は樹脂製のハウジング2と、モータ部Mの軸方向両側に配置され、ハウジング2の内周に圧入固定されたリング状の焼結軸受4(41,42)と、焼結軸受4(41,42)の内周に挿入された軸3とを備えており、軸3と焼結軸受4の軸受面4aとの間に形成される隙間(軸受隙間)の隙間幅は、片側(半径値)で4μm程度に設定されている。軸3はステンレス鋼等で形成され、その一端に錘Wが一体又は別体に設けられている。本実施形態の錘Wは、その中心を軸3の中心に対して偏心させるようにして軸3の一端に取り付け固定されている。焼結軸受4の内部気孔には、40℃の動粘度が10~50mm2/sの範囲内にある潤滑油、もしくは40℃の動粘度が10~50mm2/sの範囲内にある油を基油とした液状グリースが含浸されている。
以上の構成を有する軸受ユニット1において、軸3が焼結軸受4に対して相対回転すると、焼結軸受4の内部気孔に保持された潤滑油が温度上昇に伴って軸受面4aに滲み出す。この滲み出した潤滑油によって、対向する軸3の外周面3aと焼結軸受4の軸受面4aとの間の軸受隙間に油膜が形成され、軸3が焼結軸受4によって相対回転自在に支持される。
なお、図示は省略するが、焼結軸受4の内部気孔に含浸させた潤滑油がハウジング2の外部に漏れ出し、あるいは飛散するのを防止するため、軸受ユニット1にはハウジング2の開口部をシールするシール部材を設けても良い。
以上で説明した焼結軸受4は、主に(A)原料粉末生成工程、(B)圧粉工程、および(C)焼結工程、を順に経て製造される。以下、上記(A)~(C)の各工程について詳細に説明する。なお、モータ部Mの両側に配置される二つの焼結軸受4(41,42)は、軸方向寸法(軸受面4aの面積)および径方向の厚さが相互に異なるだけで、その他の構造は実質的に同一であり、同じ製造工程を経て製造される。
(A)原料粉末生成工程
この工程では、後述する複数種の粉末を混合することにより、焼結軸受4の作製用材料である原料粉末を生成する。本実施形態で使用する原料粉末は、部分拡散合金粉を主原料とし、これに低融点金属粉および固体潤滑剤粉を配合した混合粉末である。この原料粉末には、必要に応じて各種成形助剤(例えば、離型性向上のための潤滑剤)を添加しても良い。以下、上記の各粉末について詳細に述べる。
この工程では、後述する複数種の粉末を混合することにより、焼結軸受4の作製用材料である原料粉末を生成する。本実施形態で使用する原料粉末は、部分拡散合金粉を主原料とし、これに低融点金属粉および固体潤滑剤粉を配合した混合粉末である。この原料粉末には、必要に応じて各種成形助剤(例えば、離型性向上のための潤滑剤)を添加しても良い。以下、上記の各粉末について詳細に述べる。
[部分拡散合金粉]
部分拡散合金粉(Partially Pre-Alloyed Powder)11としては、鉄粉12の表面に銅粉13を部分拡散させたFe-Cu部分拡散合金粉が使用され、特に、本実施形態では、図4に模式的に示すように、鉄粉12の表面に、鉄粉12よりも平均粒径が小さい多数の銅粉13を部分拡散させたFe-Cu部分拡散合金粉が使用される。部分拡散合金粉11の拡散部分はFe-Cu合金を形成しており、図4中の部分拡大図に示すように、合金部分は鉄原子12aと銅原子13aとが相互に結合し、配列した結晶構造を有する。部分拡散合金粉11は、145メッシュの篩の網目を通過可能な粒子、すなわち平均粒度145メッシュ以下(平均粒径106μm以下)の粒子のみが使用される。なお、粉末はその粒径が小さくなるほど軽量になり、浮遊し易くなることから、原料粉末中に小粒径の部分拡散合金粉11が多く含まれていると、後述する圧粉工程において成形金型(キャビティ)に対する原料粉末の充填性が低下し、所定形状・密度の圧粉体を安定的に得ることが難しくなる。具体的には、粒径45μm以下の部分拡散合金粉11が25質量%以上含まれていると、上記の問題が生じ易くなることを本発明者らは見出した。従って、部分拡散合金粉11としては、平均粒度145メッシュ以下(平均粒径106μm以下)で、かつ平均粒度350メッシュ(平均粒径45μm)以下の粒子を25質量%以上含まないものを選択使用するのが望ましい。平均粒径は、粒子群にレーザ光を照射し、そこから発せられる回析・散乱光の強度分布パターンから計算によって粒度分布、さらには平均粒径を求めるレーザ回析散乱法(例えば株式会社島津製作所製のSALD31000を用いる)により測定することができる。
部分拡散合金粉(Partially Pre-Alloyed Powder)11としては、鉄粉12の表面に銅粉13を部分拡散させたFe-Cu部分拡散合金粉が使用され、特に、本実施形態では、図4に模式的に示すように、鉄粉12の表面に、鉄粉12よりも平均粒径が小さい多数の銅粉13を部分拡散させたFe-Cu部分拡散合金粉が使用される。部分拡散合金粉11の拡散部分はFe-Cu合金を形成しており、図4中の部分拡大図に示すように、合金部分は鉄原子12aと銅原子13aとが相互に結合し、配列した結晶構造を有する。部分拡散合金粉11は、145メッシュの篩の網目を通過可能な粒子、すなわち平均粒度145メッシュ以下(平均粒径106μm以下)の粒子のみが使用される。なお、粉末はその粒径が小さくなるほど軽量になり、浮遊し易くなることから、原料粉末中に小粒径の部分拡散合金粉11が多く含まれていると、後述する圧粉工程において成形金型(キャビティ)に対する原料粉末の充填性が低下し、所定形状・密度の圧粉体を安定的に得ることが難しくなる。具体的には、粒径45μm以下の部分拡散合金粉11が25質量%以上含まれていると、上記の問題が生じ易くなることを本発明者らは見出した。従って、部分拡散合金粉11としては、平均粒度145メッシュ以下(平均粒径106μm以下)で、かつ平均粒度350メッシュ(平均粒径45μm)以下の粒子を25質量%以上含まないものを選択使用するのが望ましい。平均粒径は、粒子群にレーザ光を照射し、そこから発せられる回析・散乱光の強度分布パターンから計算によって粒度分布、さらには平均粒径を求めるレーザ回析散乱法(例えば株式会社島津製作所製のSALD31000を用いる)により測定することができる。
上記の部分拡散合金粉11を構成する鉄粉12としては、還元鉄粉、アトマイズ鉄粉等、公知の鉄粉を使用することができるが、本実施形態では還元鉄粉を使用する。還元鉄粉は、球形に近似した不規則形状で、かつ内部気孔を有する海綿状(多孔質状)であるから、海綿鉄粉とも称される。使用する鉄粉12は、平均粒径20μm~106μmのものが好ましく、平均粒径38μm~75μmのものが一層好ましい。
また、部分拡散合金粉11を構成する銅粉13としては、汎用されている不規則形状や樹枝状の銅粉が広く使用可能であり、例えば、電解銅粉、アトマイズ銅粉等が用いられる。本実施形態では、表面に多数の凹凸を有すると共に、粒子全体として球形に近似した不規則形状をなし、成形性に優れたアトマイズ銅粉を使用している。使用する銅粉13は、鉄粉12よりも小粒径のものが使用され、具体的には平均粒径5μm以上20μm以下(好ましくは20μm未満)のものが使用される。なお、個々の部分拡散合金粉11におけるCuの割合は10~30質量%(好ましくは22~26質量%)であり、焼結工程で得られる焼結体4”における銅の含有量(厳密には、焼結体4”がSnやCを含まないとした場合における銅の含有量)と同じである。すなわち、本実施形態において、原料粉末には単体の銅粉や鉄粉を配合しない。原料粉末には、単体の銅粉や鉄粉を配合しても構わないが、単体の銅粉を配合すると、軸受面4aを高強度化することが難しくなる。そのため、例えば軸3が回転するのに伴って軸受面4aが軸3に叩かれた際などに、軸受面4aに圧痕(凹み)が形成され易くなる。また、単体の鉄粉を配合すると、所望の圧環強度を有する焼結体4”(焼結軸受4)を得ることが難しくなる。従って、原料粉末には、単体の銅粉や鉄粉を配合しないのが好ましい。
[低融点金属粉]
低融点金属粉としては、融点が700℃以下の金属粉、例えば錫、亜鉛、リン等の粉末が使用される。本実施形態では、これらの中でも焼結時の蒸散が少ない錫粉14(図6参照)、特にアトマイズ錫粉を使用する。錫粉(アトマイズ錫粉)14としては、平均粒径5~63μmのものが好ましく使用され、平均粒径20~45μmのものが一層好ましく使用される。
低融点金属粉としては、融点が700℃以下の金属粉、例えば錫、亜鉛、リン等の粉末が使用される。本実施形態では、これらの中でも焼結時の蒸散が少ない錫粉14(図6参照)、特にアトマイズ錫粉を使用する。錫粉(アトマイズ錫粉)14としては、平均粒径5~63μmのものが好ましく使用され、平均粒径20~45μmのものが一層好ましく使用される。
[固体潤滑剤]
固体潤滑剤としては、黒鉛、二硫化モリブデン、ステアリン酸亜鉛等の粉末を一種又は二種以上使用することができる。本実施形態では、コストを考えて黒鉛粉、特に鱗片状黒鉛粉を使用する。
固体潤滑剤としては、黒鉛、二硫化モリブデン、ステアリン酸亜鉛等の粉末を一種又は二種以上使用することができる。本実施形態では、コストを考えて黒鉛粉、特に鱗片状黒鉛粉を使用する。
(B)圧粉工程
圧粉工程では、図5(a)(b)に示すような成形金型20を使用して上記の原料粉末10を圧縮することにより、図1等に示す焼結軸受4に近似した形状(略完成品形状)の圧粉体4’を得る。成形金型20は、主要な構成として、同軸配置されたコア21、上下パンチ22,23およびダイ24を有する。成形金型20は、例えばカム式成形プレス機のダイセットにセットされる。
圧粉工程では、図5(a)(b)に示すような成形金型20を使用して上記の原料粉末10を圧縮することにより、図1等に示す焼結軸受4に近似した形状(略完成品形状)の圧粉体4’を得る。成形金型20は、主要な構成として、同軸配置されたコア21、上下パンチ22,23およびダイ24を有する。成形金型20は、例えばカム式成形プレス機のダイセットにセットされる。
上記構成の成形金型20において、コア21、下パンチ23およびダイ24で画成されるキャビティ25内に原料粉末10を充填してから、上パンチ22を下パンチ23に対して相対的に接近移動させ、原料粉末10を適当な加圧力(成形すべき圧粉体の形状や大きさに応じて設定される)で圧縮すると、圧粉体4’が成形される。そして、上パンチ22を上昇移動させると共に下パンチ23を上昇移動させ、圧粉体4’をキャビティ25外に排出する。図6に模式的に示すように、圧粉体4’では、部分拡散合金粉11、錫粉14および黒鉛粉(図示せず)が均一に分散している。本実施形態で使用している部分拡散合金粉11は、鉄粉12として還元鉄粉を使用しているため、アトマイズ鉄粉を使用した部分拡散合金粉に比べて粉末が柔らかく、圧縮成形性に優れる。そのため、低密度でも圧粉体4’の強度を高めることができ、圧粉体4’の欠けや割れの発生を防止することができる。
(C)焼結工程
焼結工程では、圧粉体4’を焼結し、焼結体を得る。焼結条件は、黒鉛(黒鉛粉)に含まれる炭素が鉄と反応しない(炭素の拡散が生じない)条件とする。鉄-炭素の平衡状態では、723℃に変態点があり、これを超えると鉄と炭素の反応が開始されて鉄組織中にパーライト相(γFe)が生成されるが、焼結では900℃を超えてから炭素(黒鉛)と鉄の反応が始まり、パーライト相(γFe)が生成される。パーライト相(γFe)は高硬度(HV300以上)で相手材に対する攻撃性が強いため、焼結軸受4の鉄組織中に過剰にパーライト相(γFe)が存在すると、軸3の摩耗を進行させるおそれがある。また、一般的な焼結軸受の製造工程では、ブタン、プロパン等の液化石油ガスと空気を混合してNi触媒で熱分解させた吸熱型ガス(RXガス)の雰囲気下で圧粉体を加熱・焼結させる場合が多い。しかしながら、吸熱型ガスでは炭素が拡散して圧粉体の表面を硬化させるおそれがあり、上記同様の問題が生じ易くなる。
焼結工程では、圧粉体4’を焼結し、焼結体を得る。焼結条件は、黒鉛(黒鉛粉)に含まれる炭素が鉄と反応しない(炭素の拡散が生じない)条件とする。鉄-炭素の平衡状態では、723℃に変態点があり、これを超えると鉄と炭素の反応が開始されて鉄組織中にパーライト相(γFe)が生成されるが、焼結では900℃を超えてから炭素(黒鉛)と鉄の反応が始まり、パーライト相(γFe)が生成される。パーライト相(γFe)は高硬度(HV300以上)で相手材に対する攻撃性が強いため、焼結軸受4の鉄組織中に過剰にパーライト相(γFe)が存在すると、軸3の摩耗を進行させるおそれがある。また、一般的な焼結軸受の製造工程では、ブタン、プロパン等の液化石油ガスと空気を混合してNi触媒で熱分解させた吸熱型ガス(RXガス)の雰囲気下で圧粉体を加熱・焼結させる場合が多い。しかしながら、吸熱型ガスでは炭素が拡散して圧粉体の表面を硬化させるおそれがあり、上記同様の問題が生じ易くなる。
以上の観点から、圧粉体4’は900℃以下、具体的には700℃(好ましくは760℃)以上840℃以下で加熱する(低温焼結)。また、焼結雰囲気は、炭素を含有しないガス雰囲気(水素ガス、窒素ガス、アルゴンガス等)あるいは真空とする。このような焼結条件であれば、原料粉末で炭素と鉄の反応が生じず、従って、焼結後の鉄組織は全て軟質のフェライト相(HV200以下)となる。原料粉末に流体潤滑材等の各種成形助剤を含めていた場合、成形助剤は、焼結に伴って揮散する。
鉄組織は、その全てをフェライト相(αFe)で形成する他、図7に示すように、フェライト相αFeとパーライト相γFeの二相組織にすることもできる。これにより、フェライト相αFeよりも硬質のパーライト相γFeが軸受面の耐摩耗性向上に寄与し、高面圧下での軸受面の摩耗を抑制して軸受寿命を向上させることができる。但し、パーライト相γFeの存在割合が過剰となり、フェライト相αFeと同等の割合になると、パーライトによる軸3に対する攻撃性が増して軸3が摩耗しやすくなる。これを防止するため、図7に示すように、パーライト相γFeはフェライト相αFeの粒界に存在(点在)する程度に抑える。ここでいう「粒界」は、粉末粒子間に形成される粒界の他、粉末粒子中に形成される結晶粒界の双方を意味する。鉄組織をフェライト相αFeとパーライト相γFeの二相組織で形成する場合、鉄組織に占めるフェライト相αFeおよびパーライト相γFeの割合は、焼結体の任意断面における面積比で、それぞれ、80~95%および5~20%(αFe:γFe=80~95%:5~20%)程度とするのが望ましい。これにより、軸3の摩耗抑制と軸受面4aの耐摩耗性向上とを両立させることができる。
パーライト相γFeの成長速度は、主に焼結温度に依存する。従って、上記の態様でパーライト相γFeをフェライト相αFeの粒界に存在させるためには、焼結温度を820℃~900℃程度に上げ、かつ炉内雰囲気として炭素を含むガス、例えば天然ガスや吸熱型ガス(RXガス)を用いて焼結する。これにより、焼結時にはガスに含まれる炭素が鉄に拡散し、パーライト相γFeを形成することができる。なお、上記のとおり、900℃を超える温度で圧粉体4’を焼結すると、黒鉛粉中の炭素が鉄と反応してパーライト相γFeが形成されるので、圧粉体4’は900℃以下で焼結するのが好ましい。
焼結後、焼結体4”にサイジングを施し、焼結体4”を仕上がり形状・寸法に仕上げた後、この焼結体4”の内部気孔に真空含浸等の手法で潤滑油を含浸させると、図1に示す焼結軸受4が完成する。焼結体4”の内部気孔に含浸させる潤滑油は低粘度のもの、具体的には40℃の動粘度が10~50mm2/sのもの(例えば合成炭化水素系潤滑油)が使用される。軸受隙間に形成される油膜の剛性を確保しつつ、回転トルクの上昇を抑えるためである。なお、焼結体4”の内部気孔には、40℃の動粘度が10~50mm2/sの潤滑油を基油とした液状グリースを含浸させても良い。また、サイジングは必要に応じて施せば足り、必ずしも施す必要はない。また、用途によっては潤滑油の含浸工程を省略し、無給油下で使用する焼結軸受とすることもできる。
本実施形態の焼結体4”(焼結軸受4)は、Cuを10~30質量%(好ましくは22~26質量%)、Snを0.5~3.0質量%(好ましくは1.0~3.0質量%)、Cを0.3~1.5質量%(好ましくは0.5~1.0質量%)を含有し、残部が鉄および不可避的不純物からなる。そして、圧粉体4’の焼結温度を銅の融点(1083℃)よりも遥かに低温の900℃以下とした上記の焼結条件であれば、圧粉体4’に含まれる(部分拡散合金粉11を構成する)銅粉13は溶融せず、従って、焼結に伴って銅が鉄(鉄組織)中に拡散しない。そのため、この焼結体4”の表面(軸受面4a)には適量の銅組織が露出している。また、焼結体4”の表面には遊離黒鉛も露出している。そのため、軸3との初期なじみ性が良好で、軸受面4aの摩擦係数も小さい焼結軸受4を得ることができる。Snの配合量を増やせば焼結体4”の機械的強度が高まるが、Snの量が過剰となると粗大気孔が増えるため、上記の配合割合(Cuの配合割合に対して10%程度の配合割合)としている。
焼結体4”には、鉄を主成分とする鉄組織および銅を主成分とする銅組織が形成される。本実施形態では、原料粉末に鉄粉単体や銅粉単体が添加されておらず、添加されているにしても微量であるので、焼結体4”の全ての鉄組織および銅組織が部分拡散合金粉11を主体として形成される。部分拡散合金粉では、銅粉の一部が鉄粉に拡散しているため、焼結後の鉄組織と銅組織の間で高いネック強度を得ることができる。また、焼結時には、圧粉体4’中の錫粉14は溶融し、部分拡散合金粉11を構成する銅粉13の表面を濡らす。これに伴い、錫(Sn)と銅(Cu)との間で液相焼結が進行し、図7に示すように、隣り合う部分拡散合金粉11の鉄組織と銅組織、あるいは銅組織同士を結合する青銅相(αCu-Sn)16が形成される。また、個々の部分拡散合金粉11のうち、鉄粉12の表面に銅粉13の一部が拡散してFe-Cu合金が形成された部分には、溶融したSnが拡散してFe-Cu-Sn合金(合金相)17が形成されるため、鉄組織と銅組織の間のネック強度が一層高くなる。そのため、上述したような低温焼結でも高い圧環強度、具体的には300MPa以上の圧環強度を得ることができる。また、軸受面4aを硬くして軸受面4aの耐摩耗性を向上させることもできる。なお、図7においては、フェライト相αFeやパーライト相γFeなどを色の濃淡で表現している。具体的には、フェライト相αFe→青銅相16→Fe-Cu-Sn合金(合金相)17→パーライト相γFeの順に色を濃くしている。
また、部分拡散合金粉11として、平均粒度145メッシュ以下(平均粒径106μm以下)の粉末を使用しているので、焼結体4”の多孔質組織を均一化して粗大気孔の生成を防止することができる。そのため、焼結体4”を高密度化して圧環強度や軸受面4aの耐摩耗性をさらに高めることができる。
以上に示すように、本実施形態の焼結体4”は300MPa以上の圧環強度を有しており、この圧環強度の値は、既存の銅鉄系焼結体のそれに比べて2倍以上の値である。また、本実施形態の焼結体4”の密度は6.8±0.3g/cm3となり、既存の鉄銅系焼結体の密度(6.6g/cm3程度)よりも高密度となる。既存の鉄銅系焼結体でも圧粉体の成形工程で高圧縮することで高密度化することは可能であるが、このようにすると、内部の流体潤滑剤が焼結時に燃焼できずにガス化するため、表層部の気孔が粗大化してしまう。本発明では圧粉体の成形時に高圧縮する必要はなく、そのような不具合を防止することができる。
このように焼結体4”を高密度化させる一方で、含油率を15vol%以上にすることができ、既存の鉄銅系焼結軸受と同程度の含油率を確保できる。これは、主に部分拡散合金粉11を構成する鉄粉12として、海綿状をなし、保油性に優れた還元鉄粉を使用していることに由来する。この場合、焼結体4”に含浸させた潤滑油は、焼結組織の粒子間に形成された気孔だけでなく、還元鉄粉が有する気孔にも保持される。
粗大気孔は特に焼結体4”の表層部(焼結体表面から深さ100μmに至るまでの領域)で生じやすいが、以上のようにして得られた焼結体4”であれば、上記のように表層部における粗大気孔の発生を防止して表層部の高密度化を図ることができる。具体的には、表層部の気孔率を、5~20%にすることができる。この気孔率は、例えば焼結体4”の任意断面における気孔部の面積比率を画像解析することで求めることができる。
このように表層部が高密度化されることで軸受面4aの表面開孔率も小さくなり、具体的には、軸受面4aの表面開孔率を5%以上20%以下の範囲内に設定することができる。なお、表面開孔率が5%を下回ると、軸受隙間に必要十分量の潤滑油を滲み出させることが難しくなり(油膜形成能力が不十分となり)、焼結軸受としてのメリットを得ることができない。
また、この焼結体4”を得るための原料粉末として、鉄粉12の表面に銅粉13を部分拡散させた部分拡散合金粉11を主原料としたものを使用しているため、既存の鉄銅系焼結軸受で問題となる銅の偏析を防止することができる。また、この焼結体4”であれば、NiやMo等の高価な金属粉末を使用することなく機械的強度を向上させることができるので、焼結軸受4の低コスト化も達成される。
以上で説明したように、本発明に係る焼結軸受4は高い圧環強度(300MPa以上の圧環強度)を有するため、図1に示すようにハウジング2の内周に圧入固定した場合でも、軸受面4aがハウジング2の内周面形状に倣って変形することがなく、取り付け後も軸受面4aの真円度や円筒度等を安定的に維持することができる。そのため、ハウジング2の内周に焼結軸受4を圧入固定した後、軸受面4aを適正形状・精度に仕上げるための加工(例えばサイジング)を追加的に実行することなく、所望の真円度(例えば3μm以下の真円度)を確保することができる。また、焼結軸受4が300MPa以上の圧環強度を有していれば、この焼結軸受4を組み込んだ振動モータ1(ひいてはこの振動モータ1を備えた携帯端末等)が落下等することにより軸受面4aに大きな衝撃加重が付加された場合でも、軸受面4aの変形が可及的に防止される。さらに、軸受面4aが高硬度化されて高い耐摩耗性を有するため、たとえ軸受面4aの全面を軸3が振れ回り、あるいは軸3が軸受面4aに頻繁に衝突したとしても、軸受面4aの摩耗や損傷が抑えられる。従って、本発明によれば、振動モータの支持に適合した焼結軸受4を低コストに提供することができる。
ここで、参考までに、特許文献1に記載の技術手段に係る焼結軸受(以下、「銅被覆鉄粉軸受」という)の表層部の顕微鏡写真を図8に示す。図8と、本実施形態に係る焼結軸受4の表層部の顕微鏡写真(図3参照)とを比較すると、本実施形態に係る焼結軸受4は、銅被覆鉄粉軸受に比べて表層部の多孔質組織が均一化され、緻密であることが理解される。実際、本実施形態に係る焼結軸受4の表層部の気孔率は、13.6%だったのに対し、銅被覆鉄粉軸受の表層部の気孔率は、25.5%程度であった。このような差を生じた要因として、銅被覆鉄粉では鉄粉に銅膜が密着しているにすぎず、鉄相と銅相の間のネック強度が不足していることが挙げられる。
以上、本発明の一実施形態に係る焼結軸受について説明を行ったが、本発明の実施の形態は上述のものに限られない。
例えば、圧粉体4’を圧縮成形する際には、成形金型20および原料粉末10の少なくとも一方を加熱した状態で圧粉体4’を圧縮成形する、いわゆる温間成形法や、成形金型20の成形面(キャビティ25の画成面)に潤滑剤を塗布した状態で圧粉体4’を圧縮成形する金型潤滑成形法を採用しても良い。このような方法を採用すれば、圧粉体4’を一層精度良く成形することができる。
また、本発明に係る焼結軸受4は、振動モータに限らず、高速でアンバランス荷重の大きいモータの主軸支持用途をはじめ、軸を回転自在に支持する軸受として広く使用することができる。本実施形態では、軸3を回転させる場合を説明したが、これとは逆に軸受4を回転させる用途にも使用することができる。また、焼結軸受4の軸受面4aには、動圧溝等の動圧発生部を設けることもできる。このようにすれば、軸受隙間に形成される油膜の剛性を高めることができるので回転精度を一層高めることができる。
Claims (10)
- 支持すべき軸との間に軸受隙間を形成する軸受面を内周に有する焼結軸受であって、
鉄粉に銅粉を部分拡散させてなる部分拡散合金粉と、低融点金属粉と、固体潤滑剤粉とを含む原料粉末を成形し、焼結した焼結体からなり、圧環強度が300MPa以上である焼結軸受。 - 部分拡散合金粉は、平均粒径5μm以上20μm未満の銅粉が鉄粉に部分拡散し、かつCuを10~30質量%含有するものである請求項1記載の焼結軸受。
- 平均粒度145メッシュ以下の部分拡散合金粉を使用した請求項1又は2に記載の焼結軸受。
- 低融点金属粉として錫粉、固体潤滑剤粉として黒鉛粉が使用され、焼結体が、Cuを10~30質量%、Snを0.5~3.0質量%、Cを0.3~1.5質量%含有し、残部が鉄および不可避的不純物からなる請求項1~3の何れか一項に記載の焼結軸受。
- 焼結体の鉄組織がフェライト相を主体としている請求項4記載の焼結軸受。
- 鉄組織をフェライト相と、フェライト相の粒界に存在するパーライト相とで形成した請求項5記載の焼結軸受。
- 前記鉄粉が還元鉄粉である請求項1~6の何れか一項に記載の焼結軸受。
- 焼結体の表層部の気孔率が5~20%である請求項1~7の何れか一項に記載の焼結軸受。
- 焼結体に、40℃の動粘度が10~50mm2/sの潤滑油を含浸させた請求項1~8の何れか一項に記載の焼結軸受。
- 振動モータに組み込んで使用される請求項1~9の何れか一項に記載の焼結軸受。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/435,533 US10590990B2 (en) | 2012-10-24 | 2013-10-23 | Sintered bearing |
CN201380055147.4A CN104755775B (zh) | 2012-10-24 | 2013-10-23 | 烧结轴承 |
EP13849722.7A EP2913546B1 (en) | 2012-10-24 | 2013-10-23 | Manufacturing process of a sintered bearing |
US16/129,258 US11248653B2 (en) | 2012-10-24 | 2018-09-12 | Sintered bearing |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-234805 | 2012-10-24 | ||
JP2012234805 | 2012-10-24 | ||
JP2013-040712 | 2013-03-01 | ||
JP2013040712A JP5442145B1 (ja) | 2012-10-24 | 2013-03-01 | 焼結軸受 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/435,533 A-371-Of-International US10590990B2 (en) | 2012-10-24 | 2013-10-23 | Sintered bearing |
US16/129,258 Division US11248653B2 (en) | 2012-10-24 | 2018-09-12 | Sintered bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014065316A1 true WO2014065316A1 (ja) | 2014-05-01 |
Family
ID=50396775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/078686 WO2014065316A1 (ja) | 2012-10-24 | 2013-10-23 | 焼結軸受 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10590990B2 (ja) |
EP (1) | EP2913546B1 (ja) |
JP (1) | JP5442145B1 (ja) |
CN (2) | CN104755775B (ja) |
WO (1) | WO2014065316A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016065638A (ja) * | 2014-09-24 | 2016-04-28 | Ntn株式会社 | 摺動部材およびその製造方法 |
WO2016114065A1 (ja) * | 2015-01-14 | 2016-07-21 | Ntn株式会社 | 軸受基材およびその製造方法、並びにすべり軸受 |
WO2024048202A1 (ja) * | 2022-09-01 | 2024-03-07 | Ntn株式会社 | 焼結含油軸受 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10536048B2 (en) | 2013-03-25 | 2020-01-14 | Ntn Corporation | Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same |
JP6625321B2 (ja) * | 2014-11-28 | 2019-12-25 | Ntn株式会社 | 動圧軸受及びその製造方法 |
WO2016158373A1 (ja) * | 2015-03-27 | 2016-10-06 | Ntn株式会社 | 焼結軸受及びその製造方法 |
CN108367347B (zh) * | 2015-09-29 | 2021-02-26 | 霍加纳斯股份有限公司 | 新型铁基复合粉末 |
CN105715474B (zh) * | 2016-01-27 | 2017-09-29 | 河北工程大学 | 一种柱塞液压泵 |
JP6812113B2 (ja) * | 2016-02-25 | 2021-01-13 | Ntn株式会社 | 焼結含油軸受及びその製造方法 |
JP6817094B2 (ja) * | 2016-07-29 | 2021-01-20 | 株式会社ダイヤメット | 鉄銅基焼結含油軸受及びその製造方法 |
US10697495B2 (en) | 2016-07-29 | 2020-06-30 | Diamet Corporation | Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same |
US11073178B2 (en) * | 2016-12-22 | 2021-07-27 | Diamet Corporation | Oil-impregnated sintered bearing and method for manufacturing the same |
CN110475982B (zh) * | 2017-03-30 | 2021-05-07 | Ntn株式会社 | 烧结轴承及其制造方法 |
WO2018181706A1 (ja) * | 2017-03-30 | 2018-10-04 | Ntn株式会社 | 焼結軸受およびその製造方法 |
EP3686307B1 (en) | 2017-09-20 | 2022-11-09 | Diamet Corporation | Sintered oil-retaining bearing |
JP6514421B1 (ja) * | 2017-10-30 | 2019-05-15 | Tpr株式会社 | 鉄基焼結合金製バルブガイドおよびその製造方法 |
JP2019167569A (ja) * | 2018-03-22 | 2019-10-03 | Ntn株式会社 | 機械部品およびその製造方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01225749A (ja) * | 1988-03-03 | 1989-09-08 | Isamu Kikuchi | 含油軸受用焼結材およびその製造法 |
JPH1096001A (ja) * | 1996-08-02 | 1998-04-14 | Kawasaki Steel Corp | 部分拡散合金化鋼粉の製造方法 |
JP2002173704A (ja) * | 2000-12-01 | 2002-06-21 | Nikko Materials Co Ltd | 粉末冶金用複合金属粉末、同粉末を焼結して得た焼結体及び同焼結体からなる軸受 |
JP2004149708A (ja) * | 2002-10-31 | 2004-05-27 | Idemitsu Kosan Co Ltd | 焼結含油軸受油組成物及び焼結含油軸受ユニット |
JP3613569B2 (ja) | 1997-08-07 | 2005-01-26 | ポーライト株式会社 | 焼結軸受用複合金属粉末および焼結含油軸受 |
JP2009155696A (ja) * | 2007-12-27 | 2009-07-16 | Hitachi Powdered Metals Co Ltd | 摺動部材用鉄基焼結合金 |
JP2010071350A (ja) * | 2008-09-17 | 2010-04-02 | Nippon Densan Corp | 流体動圧軸受機構、モータ、記録ディスク駆動装置およびスリーブの製造方法 |
JP2010077474A (ja) * | 2008-09-25 | 2010-04-08 | Hitachi Powdered Metals Co Ltd | 鉄系焼結軸受およびその製造方法 |
JP2010514935A (ja) * | 2006-12-29 | 2010-05-06 | ホガナス アクチボラゲット | 粉末、部品の製造方法および部品 |
JP2011094167A (ja) * | 2009-10-27 | 2011-05-12 | Diamet:Kk | 鉄銅系焼結摺動部材およびその製造方法 |
JP2012031965A (ja) * | 2010-08-02 | 2012-02-16 | Porite Corp | 流体動圧軸受の製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE408435B (sv) * | 1976-11-03 | 1979-06-11 | Hoeganaes Ab | Sett att framstella ett kopparhaltigt jernpulver |
JPS613569A (ja) | 1984-06-18 | 1986-01-09 | Nippon Denki Kanji Syst Kk | ランレングス符号化方法 |
JPH01275735A (ja) * | 1988-04-27 | 1989-11-06 | Isamu Kikuchi | 焼結合金材およびその製造法 |
JP3484674B2 (ja) * | 1994-09-21 | 2004-01-06 | 同和鉄粉工業株式会社 | 粉末冶金用鉄基銅複合粉末の製造方法 |
GB2353844B (en) * | 1996-08-29 | 2001-04-11 | Matsushita Electric Ind Co Ltd | Vibrator holding device |
JP4234865B2 (ja) * | 1999-10-28 | 2009-03-04 | オイレス工業株式会社 | 鉄系焼結摺動部材ならびにその製造方法 |
JP2002349575A (ja) * | 2001-05-29 | 2002-12-04 | Asmo Co Ltd | 焼結含油軸受及びその製造方法 |
JP4048758B2 (ja) * | 2001-07-18 | 2008-02-20 | Nokクリューバー株式会社 | 潤滑グリース組成物 |
JP4380274B2 (ja) * | 2003-09-10 | 2009-12-09 | 日立粉末冶金株式会社 | 鉄銅系焼結含油軸受用合金の製造方法 |
JP2006207753A (ja) * | 2005-01-31 | 2006-08-10 | Nidec Sankyo Corp | 軸受装置及びスピンドルモータ |
WO2006080554A1 (ja) | 2005-01-31 | 2006-08-03 | Komatsu Ltd. | 焼結材料、Fe系の焼結摺動材料及びその製造方法、摺動部材及びその製造方法、連結装置 |
JP4886545B2 (ja) * | 2007-02-22 | 2012-02-29 | 日立粉末冶金株式会社 | 焼結含油軸受およびその製造方法 |
CN101918162B (zh) * | 2008-01-04 | 2014-11-12 | Gkn烧结金属有限公司 | 预合金铜粉锻造的连接杆 |
US10536048B2 (en) * | 2013-03-25 | 2020-01-14 | Ntn Corporation | Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same |
US20160223016A1 (en) * | 2013-10-03 | 2016-08-04 | Ntn Corporation | Sintered bearing and manufacturing process therefor |
-
2013
- 2013-03-01 JP JP2013040712A patent/JP5442145B1/ja not_active Expired - Fee Related
- 2013-10-23 CN CN201380055147.4A patent/CN104755775B/zh active Active
- 2013-10-23 US US14/435,533 patent/US10590990B2/en active Active
- 2013-10-23 EP EP13849722.7A patent/EP2913546B1/en active Active
- 2013-10-23 WO PCT/JP2013/078686 patent/WO2014065316A1/ja active Application Filing
- 2013-10-23 CN CN201810907132.0A patent/CN109014218B/zh active Active
-
2018
- 2018-09-12 US US16/129,258 patent/US11248653B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01225749A (ja) * | 1988-03-03 | 1989-09-08 | Isamu Kikuchi | 含油軸受用焼結材およびその製造法 |
JPH1096001A (ja) * | 1996-08-02 | 1998-04-14 | Kawasaki Steel Corp | 部分拡散合金化鋼粉の製造方法 |
JP3613569B2 (ja) | 1997-08-07 | 2005-01-26 | ポーライト株式会社 | 焼結軸受用複合金属粉末および焼結含油軸受 |
JP2002173704A (ja) * | 2000-12-01 | 2002-06-21 | Nikko Materials Co Ltd | 粉末冶金用複合金属粉末、同粉末を焼結して得た焼結体及び同焼結体からなる軸受 |
JP2004149708A (ja) * | 2002-10-31 | 2004-05-27 | Idemitsu Kosan Co Ltd | 焼結含油軸受油組成物及び焼結含油軸受ユニット |
JP2010514935A (ja) * | 2006-12-29 | 2010-05-06 | ホガナス アクチボラゲット | 粉末、部品の製造方法および部品 |
JP2009155696A (ja) * | 2007-12-27 | 2009-07-16 | Hitachi Powdered Metals Co Ltd | 摺動部材用鉄基焼結合金 |
JP2010071350A (ja) * | 2008-09-17 | 2010-04-02 | Nippon Densan Corp | 流体動圧軸受機構、モータ、記録ディスク駆動装置およびスリーブの製造方法 |
JP2010077474A (ja) * | 2008-09-25 | 2010-04-08 | Hitachi Powdered Metals Co Ltd | 鉄系焼結軸受およびその製造方法 |
JP2011094167A (ja) * | 2009-10-27 | 2011-05-12 | Diamet:Kk | 鉄銅系焼結摺動部材およびその製造方法 |
JP2012031965A (ja) * | 2010-08-02 | 2012-02-16 | Porite Corp | 流体動圧軸受の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2913546A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016065638A (ja) * | 2014-09-24 | 2016-04-28 | Ntn株式会社 | 摺動部材およびその製造方法 |
WO2016114065A1 (ja) * | 2015-01-14 | 2016-07-21 | Ntn株式会社 | 軸受基材およびその製造方法、並びにすべり軸受 |
WO2024048202A1 (ja) * | 2022-09-01 | 2024-03-07 | Ntn株式会社 | 焼結含油軸受 |
Also Published As
Publication number | Publication date |
---|---|
EP2913546B1 (en) | 2020-02-19 |
US11248653B2 (en) | 2022-02-15 |
CN104755775A (zh) | 2015-07-01 |
US20150285300A1 (en) | 2015-10-08 |
JP5442145B1 (ja) | 2014-03-12 |
EP2913546A1 (en) | 2015-09-02 |
CN109014218A (zh) | 2018-12-18 |
US10590990B2 (en) | 2020-03-17 |
US20190010984A1 (en) | 2019-01-10 |
EP2913546A4 (en) | 2016-07-20 |
CN109014218B (zh) | 2021-06-04 |
CN104755775B (zh) | 2018-08-28 |
JP2014101994A (ja) | 2014-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5442145B1 (ja) | 焼結軸受 | |
US10907685B2 (en) | Sintered bearing and manufacturing process therefor | |
WO2014156856A1 (ja) | 焼結軸受の製造方法、焼結軸受、およびそれを備えた振動モータ | |
JP6816079B2 (ja) | 振動モータ | |
JP6921046B2 (ja) | 焼結軸受の製造方法 | |
JP6302259B2 (ja) | 焼結軸受の製造方法 | |
JP6741730B2 (ja) | 焼結軸受およびその製造方法 | |
WO2014017456A1 (ja) | 焼結軸受 | |
WO2015050200A1 (ja) | 焼結軸受、およびその製造方法 | |
JP6571230B2 (ja) | 焼結軸受 | |
JP6548952B2 (ja) | 焼結軸受及びその製造方法 | |
JP6701319B2 (ja) | 焼結軸受 | |
JP6759389B2 (ja) | 焼結軸受 | |
JP6487957B2 (ja) | 焼結軸受 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13849722 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14435533 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013849722 Country of ref document: EP |