WO2014065271A1 - 組換え細胞、並びに、イソプレンの生産方法 - Google Patents

組換え細胞、並びに、イソプレンの生産方法 Download PDF

Info

Publication number
WO2014065271A1
WO2014065271A1 PCT/JP2013/078558 JP2013078558W WO2014065271A1 WO 2014065271 A1 WO2014065271 A1 WO 2014065271A1 JP 2013078558 W JP2013078558 W JP 2013078558W WO 2014065271 A1 WO2014065271 A1 WO 2014065271A1
Authority
WO
WIPO (PCT)
Prior art keywords
isoprene
recombinant cell
nucleic acid
recombinant
mevalonate pathway
Prior art date
Application number
PCT/JP2013/078558
Other languages
English (en)
French (fr)
Inventor
昌弘 古谷
章太 上西
航一郎 岩佐
ステファン ジュナヴァイン
ライナー フィッシャー
Original Assignee
積水化学工業株式会社
フラウンホーファーーゲゼルシャフト ツァ フェルデルング デア アンゲヴァンテン フォルシュング エー.ファオ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50544650&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014065271(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水化学工業株式会社, フラウンホーファーーゲゼルシャフト ツァ フェルデルング デア アンゲヴァンテン フォルシュング エー.ファオ. filed Critical 積水化学工業株式会社
Priority to US14/437,034 priority Critical patent/US9783828B2/en
Priority to EP13848830.9A priority patent/EP2913392B1/en
Priority to KR1020157010718A priority patent/KR102056250B1/ko
Priority to CN201380062508.8A priority patent/CN104919038A/zh
Priority to JP2014543301A priority patent/JP6375227B2/ja
Priority to CA2886137A priority patent/CA2886137C/en
Priority to EP23169866.3A priority patent/EP4234704A3/en
Publication of WO2014065271A1 publication Critical patent/WO2014065271A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/07Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with an iron-sulfur protein as acceptor (1.2.7)
    • C12Y102/07004Carbon-monoxide dehydrogenase (ferredoxin) (1.2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/99Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with other acceptors (1.2.99)
    • C12Y102/99002Carbon-monoxide dehydrogenase (acceptor) (1.2.99.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03027Isoprene synthase (4.2.3.27)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a recombinant cell capable of producing isoprene from a specific C1 compound such as carbon monoxide, and a method for producing isoprene using the recombinant cell.
  • Isoprene is a monomer raw material for synthetic polyisoprene, and is an especially important material in the tire industry.
  • development and commercialization of technology for converting from the production process of basic chemical products that depend on petroleum to the production process from renewable resources such as plant resources has been steadily progressing.
  • isoprene for example, a production technique using recombinant Escherichia coli using sugar as a raw material is known (Patent Documents 1 and 2).
  • Synthesis gas (Synthesis gas, Syngas) is a mixed gas composed mainly of carbon monoxide, carbon dioxide, and hydrogen, which is efficiently obtained from waste, natural gas, and coal by the action of a metal catalyst at high temperature and high pressure. It is.
  • Synthesis gas Synthesis gas
  • a process has been developed for producing liquid chemicals such as methanol, formic acid and formaldehyde at low cost and in large quantities.
  • Patent Document 3 discloses a technique for producing isopropanol using a recombinant Escherichia coli. In this technique, a plurality of CO metabolizing enzyme genes are introduced into Escherichia coli to impart syngas assimilation ability, and isopropanol is produced from syngas. However, this technique does not produce isoprene.
  • an object of the present invention is to provide a series of techniques capable of producing isoprene from synthesis gas or the like.
  • nucleic acid encoding isoprene synthase is introduced into a host cell having the ability to synthesize isopentenyl diphosphate by a non-mevalonate pathway,
  • the present invention relates to a recombinant cell capable of producing isoprene.
  • the recombinant cell of the present invention is obtained by introducing a nucleic acid encoding isoprene synthase into a host cell having “the ability to synthesize isopentenyl diphosphate by a non-mevalonate pathway”, and the nucleic acid is a host cell. Expressed within.
  • isoprene can be produced from at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol.
  • isopentenyl diphosphate (IPP) can be synthesized from the aforementioned C1 compound, and further, the synthesized IPP can be converted to isoprene.
  • isoprene can be produced from the aforementioned C1 compound.
  • isoprene can be produced from synthesis gas containing carbon monoxide and carbon dioxide.
  • the biosynthetic pathway of isoprenoids is roughly divided into a mevalonate pathway (also referred to as MVA pathway) and a non-mevalonate pathway (also referred to as MEP pathway).
  • the non-mevalonate pathway is a pathway that finally produces isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP) from glyceraldehyde 3-phosphate and pyruvate.
  • IPP isopentenyl diphosphate
  • DMAPP dimethylallyl diphosphate
  • the host cell used in the present invention has an ability to synthesize isopentenyl diphosphate by a non-mevalonate pathway.
  • a nucleic acid encoding isoprene synthase is introduced into a host cell having a function of synthesizing acetyl CoA from methyltetrahydrofolate, carbon monoxide, and CoA, and the nucleic acid is converted into the host cell.
  • a recombinant cell that is capable of producing isoprene from at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol.
  • the recombinant cell of the present invention is obtained by introducing a nucleic acid encoding isoprene synthase into a host cell having “a function of synthesizing acetyl CoA from methyltetrahydrofolate, carbon monoxide, and CoA”, and The nucleic acid is expressed in the host cell.
  • isoprene can be produced from at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol.
  • IPP can be synthesized from the above-mentioned C1 compound, and further, the synthesized IPP can be converted to isoprene.
  • isoprene can be produced from the aforementioned C1 compound.
  • isoprene can be produced from synthesis gas containing carbon monoxide and carbon dioxide.
  • An anaerobic microorganism having an acetyl CoA pathway (Wood-Ljungdahl pathway) and a methanol pathway (Methanol pathway) shown in FIG. 1 is used as a cell having “function of synthesizing acetyl CoA from methyltetrahydrofolate, carbon monoxide, and CoA”. Is exemplified.
  • it has carbon monoxide dehydrogenase.
  • Carbon monoxide dehydrogenase (EC 1.2.99.2/1.2.7.4) (carbon monoxide dehydrogenase, CODH) generates carbon dioxide and protons from carbon monoxide and water And the reverse reaction, the action of generating carbon monoxide and water from carbon dioxide and protons.
  • Carbon monoxide dehydrogenase is one of the enzymes that acts in the acetyl-CoA pathway (FIG. 1).
  • the host cell is a Clostridium bacterium or a Moorella bacterium.
  • a nucleic acid encoding an enzyme group that acts in the mevalonate pathway is further introduced, and further has an ability to synthesize isopentenyl diphosphate by the mevalonate pathway.
  • IPP serving as a substrate for isoprene synthase is synthesized from both the mevalonate pathway and the non-mevalonate pathway, and the supply of IPP is performed efficiently.
  • the recombinant cell of the present invention has a higher isoprene-producing ability.
  • the mevalonate pathway is a yeast mevalonate pathway.
  • the mevalonate pathway is a prokaryotic mevalonate pathway.
  • the mevalonate pathway is an actinomycete mevalonate pathway.
  • a nucleic acid encoding at least one enzyme acting in the non-mevalonate pathway is further introduced and the nucleic acid is expressed in the host cell.
  • Such a configuration enhances the ability to synthesize IPP through the non-mevalonate pathway.
  • the recombinant cell of the present invention has a higher isoprene-producing ability.
  • the non-mevalonate pathway is a non-mevalonate pathway other than host cells.
  • the isoprene synthase is derived from a plant.
  • the nucleic acid encoding the isoprene synthase encodes the following protein (a), (b) or (c).
  • the nucleic acid introduced into the host cell has a modified codon.
  • the introduced nucleic acid (foreign gene) can be more efficiently expressed in the host cell.
  • the nucleic acid introduced into the host cell is integrated into the genome of the host cell.
  • the nucleic acid introduced into the host cell is incorporated into a plasmid.
  • the recombinant cell is cultured using at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol as a carbon source, and the recombinant cell is cultured.
  • This is a method for producing isoprene in which cells produce isoprene.
  • the present invention relates to a method for producing isoprene.
  • isoprene is produced in the recombinant cells by culturing the above-described recombinant cells using at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol as a carbon source.
  • C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol
  • isoprene can be produced from synthesis gas containing carbon monoxide and carbon dioxide, formic acid, and methanol.
  • the recombinant cell is contacted with at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol, and the recombinant cell is contacted with the C1 compound.
  • Isoprene is produced from the isoprene.
  • the above-described recombinant cell is contacted with at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol, and isoprene is produced from the C1 compound.
  • isoprene can be produced from synthesis gas containing carbon monoxide and carbon dioxide, formic acid and methanol.
  • a gas mainly composed of carbon monoxide and hydrogen or a gas mainly composed of carbon dioxide and hydrogen is provided to the recombinant cell.
  • Providing gas to recombinant cells means giving gas to recombinant cells as a carbon source or bringing gas into contact with recombinant cells.
  • the recombinant cells are those having Clostridium bacteria or Moorella bacteria as host cells, and isoprene released outside the recombinant cells is recovered.
  • Bicarbonate may be used instead of carbon dioxide.
  • isoprene can be produced from carbon monoxide, carbon dioxide, formic acid, or methanol.
  • isoprene from synthesis gas containing carbon monoxide and carbon dioxide.
  • isoprene of the present invention can be produced from carbon monoxide, carbon dioxide, formic acid, or methanol.
  • a recombinant cell according to one aspect of the present invention is obtained by introducing a nucleic acid encoding an isoprene synthase into a host cell having the ability to synthesize isopentenyl diphosphate (IPP) by a non-mevalonate pathway. It is expressed in the host cell and can produce isoprene from at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol.
  • IPP isopentenyl diphosphate
  • the host cell in the recombinant cell of this aspect has “IPP synthesis ability by non-mevalonate pathway”.
  • IPP synthesis route by non-mevalonate pathway.
  • MVA pathway mevalonate pathway
  • MEP pathway non-mevalonate pathway
  • the mevalonate pathway is provided by eukaryotes and starts from acetyl CoA.
  • Enzymes acting in the mevalonate pathway include, in order from the upstream, acetyl CoA acetyltransferase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, 5-phosphomevalonate kinase, diphosphomevalonate decarboxylase, isopentenyl diphosphate isomerase Is mentioned.
  • the non-mevalonate pathway is provided by prokaryotes, chloroplasts, and plastids, and starts with glyceraldehyde 3-phosphate and pyruvate.
  • Enzymes acting in the non-mevalonate pathway include, in order from the upstream, DOXP synthase, DOXP reductoisomerase, 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase, 4-diphosphoditidyl-2-C-methyl-D- Examples include erythritol kinase, 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, HMB-PP synthase, and HMB-PP reductase.
  • a recombinant cell is a nucleic acid encoding isoprene synthase introduced into a host cell having a function of synthesizing acetyl CoA from methyltetrahydrofolate, carbon monoxide, and CoA.
  • the nucleic acid is expressed in the host cell, and isoprene can be produced from at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol.
  • the recombinant cell of the present invention preferably further has carbon monoxide dehydrogenase (CODH).
  • CODH carbon monoxide dehydrogenase
  • a cell that grows mainly by carbon monoxide metabolism, that is, by the function of carbon monoxide dehydrogenase to generate carbon dioxide and protons from carbon monoxide and water is preferable.
  • Examples of such cells include anaerobic microorganisms having an acetyl-CoA pathway (Wood-Ljungdahl pathway) and a methanol pathway (Methanol pathway) shown in FIG.
  • the anaerobic microorganisms include Clostridium ljungdahlii, Clostridium autoethanogenumn, Clostridium carboxidivorans, Clostridium ragsdalei (Kopke M. et al., Appl. Environ. Microbiol. 2011, 77 (15), 5467-5475), Moorella thermoacetica (same as Clostridium thermoacetic ) (Pierce EG. Et al., Environ. Microbiol. 2008, 10, 2550-2573) and the like, typical examples include Clostridium bacteria or Moorella bacteria.
  • Clostridium bacteria have established host-vector systems and culture methods and are suitable as host cells in the present invention.
  • the above five kinds of Clostridium bacteria or Moorella bacteria are known as representative examples of syngas assimilating microorganisms.
  • Clostridium bacteria and Moorella bacteria Carboxydocella sporoducens sp. Nov. (Slepova TV. Et al., Inter. J. Sys. Evol. Microbiol. 2006, 56, . Bacteriol. 1983, 155 (3), 956-965), Eubacterium limosum (Roh H. et al., J. Bacteriol. 2011, 193 (1), 307-308), Butyribacterium methylotrophicum (Lynd, LH. Et al Bacteriol. 1983, 153 (3), 1415-1423) can be used as host cells.
  • the above-mentioned bacterial growth and CODH activity are all oxygen-sensitive, but oxygen-insensitive CODH is also known.
  • Oligotropha carboxidovorans Schott al., J. Bacteriol., 1995, 2197-2203
  • Bradyrhizobium japonicum Lirite MJ. Et al., Appl. Environ. Microbiol., 2000, 66 (5), 1871
  • oxygen-insensitive CODH exists (King GM et al., Appl. Environ. Microbiol. 2003, 69 (12), 7257-7265).
  • CODH oxygen-insensitive CODH
  • genus Ralsotonia which is an aerobic hydrogen-oxidizing bacterium
  • bacteria having CODH exist widely, and a host cell used in the present invention can be appropriately selected from them.
  • CO, CO / H 2 a gas containing CO and H 2 as main components
  • CO / CO 2 / H 2 a gas containing CO, CO 2 and H 2 as main components
  • a selective medium as an energy source bacteria having CODH that can be used as host cells can be isolated under anaerobic, microaerobic, or aerobic conditions.
  • the isoprene synthase is not particularly limited as long as it can exhibit its enzyme activity in recombinant cells.
  • the nucleic acid encoding isoprene synthase may be modified to a codon that is easily transcribed in the host cell. For example, if the host cell is a Clostridium bacterium, the codon of the nucleic acid to be introduced can be modified based on the information on the codon usage of the Clostridium bacterium.
  • Isoprene synthase is found in many plants. Specific examples of isoprene synthase include those derived from Populus nigra (GenBank Accession No .: AM410988.1). In addition, those derived from Bacillus subtilis (Sivy TL. Et al., Biochem. Biophys. Res. Commu. 2002, 294 (1), 71-5) can be mentioned.
  • SEQ ID NO: 1 shows the amino acid sequence corresponding to the nucleotide sequence of the nucleic acid (DNA) encoding the poplar-derived isoprene synthase
  • SEQ ID NO: 2 shows only the amino acid sequence.
  • DNA having the base sequence represented by SEQ ID NO: 1 is an example of a nucleic acid encoding isoprene synthase.
  • the nucleic acid encoding isoprene synthase includes at least a nucleic acid encoding the following protein (a), (b) or (c).
  • the homology of the amino acid sequence in (c) is more preferably 80% or more, further preferably 90% or more, and particularly preferably 95% or more.
  • nucleic acid may be further introduced in addition to the nucleic acid encoding isoprene synthase.
  • a nucleic acid encoding an enzyme group that acts in the mevalonate pathway is further introduced, and further has an ability to synthesize IPP through the mevalonate pathway. According to this configuration, since IPP is synthesized from both the mevalonate pathway and the non-mevalonate pathway, the ability to synthesize IPP is enhanced, resulting in more efficient isoprene production.
  • enzymes acting in the mevalonate pathway include acetyl CoA acetyltransferase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, 5-phosphomevalonate kinase, diphosphomevalonate decarboxylase, isopentenyl dilin Acid isomerase is mentioned.
  • an enzyme group consisting of HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, 5-phosphomevalonate kinase, diphosphomevalonate decarboxylase, and isopentenyl diphosphate isomerase is expressed in the host cell.
  • the nucleic acid to be introduced may be selected. These nucleic acids can also be modified into codons that are easily transcribed in the host cell.
  • the mevalonate pathway is possessed by all eukaryotes, but has also been found in prokaryotes.
  • Prokaryotes that have a mevalonate pathway include Streptomyces sp. Strain CL190 (Takagi M. et al., J. Bacteriol. 2000, 182 (15), 4153-7), Streptomyces griseolosporeus MF730-N6 (Hamano Y. et al., Biosci. Biotechnol. Biochem. 2001, 65 (7), 1627-35).
  • Examples of bacteria include Lactobacillus helvecticus (Smeds A et al., DNA seq.
  • Aeropyrum genus In the archaea, Aeropyrum genus, Sulfolobus genus, Desulfurococcus genus, Thermoproteus genus, Halobacterium genus, Methanococcus genus, Thermococcus genus, Pyrococcus genus, Methanopyrus genus, Thermoplasma genus, etc. (Lombard J. et al., Mol. Biol. Evol. 2010, 28 (1), 87-99).
  • the origin of the enzyme group acting in the mevalonate pathway is not particularly limited, but the enzyme group acting in the mevalonate pathway of yeast is preferable.
  • enzymes that act in the mevalonate pathway of actinomycetes are also preferably employed.
  • a nucleic acid encoding at least one enzyme that acts in the non-mevalonate pathway is further introduced and the nucleic acid is expressed in the host cell. Also in this embodiment, the ability to synthesize IPP is enhanced, and as a result, isoprene production is performed more efficiently.
  • the nucleic acid to be introduced may be only one kind or two or more kinds.
  • enzymes that act in the non-mevalonate pathway include DOXP synthase, DOXP reductoisomerase, 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase, 4-diphosphoditidyl-2-C-methyl-D.
  • one or more enzymes may be selected from these enzyme groups and a nucleic acid encoding the enzyme may be introduced into the host cell.
  • the enzyme that acts in the non-mevalonate pathway is preferably derived from sources other than the host cell. With this configuration, reaction suppression due to the reaction product can be avoided.
  • These nucleic acids can also be modified into codons that are easily transcribed in the host cell.
  • These enzymes acting in the mevalonate pathway or the non-mevalonate pathway may be naturally occurring or a modified form of each enzyme.
  • it may be an amino acid substitution mutant of each enzyme or a polypeptide that is a partial fragment of each enzyme and has the same enzyme activity.
  • the method for introducing a nucleic acid into a host cell is not particularly limited, and may be appropriately selected depending on the type of the host cell.
  • a vector that can be introduced into a host cell and can express an integrated nucleic acid can be used.
  • the vector is a promoter that can replicate autonomously in the host cell or can be integrated into a chromosome and can transcribe the inserted nucleic acid (DNA). What is contained can be used.
  • the shuttle vector pIMP1 (Mermelstein LD et al., Bio / technology 1992, 10, 190) -195) can be used.
  • This shuttle vector is a fusion vector of pUC9 (ATCC 37252) and pIM13 (Projan SJ et al., J. Bacteriol. 1987, 169 11 (11), 5131-5139) isolated from Bacillus subtilis. It is held stably even within.
  • Escherichia coli carrying pAN1ER (Mermelstein LD et al., Apply. Environ. Microbiol. 1993, 59 (4), 1077-1081) in which the methyltransferase gene derived from Bacillus subtilis phage ⁇ 3T1 is retained, such as ER2275 strain, It is preferable that the vector derived from pIMP1 is once amplified and methylated and then recovered from E. coli and used for transformation by electroporation.
  • Clostridium acetobuthylicum lacking the Cac824I gene has been developed, and non-methylated vectors are also possible stably (Dong H. et al., PLoS ONE 2010, 5 (2), e9038) .
  • promoters for heterologous gene expression in Clostridium bacteria include thl ⁇ ⁇ ⁇ (thiolase) promoter (Perret ⁇ ⁇ ⁇ ⁇ ⁇ S et al., J. Bacteriol. 2004, 186 (1), 253-257), Dha (glycerol dehydratase) promoter (Raynaud C Et al., PNAS 2003, 100 (9), 5010-5015), ptb (phosphotransbutyrylase) promoterryl (Desai RP et al., Appl. Environ. Microbiol. 1999, 65 (3), 936-945), adc ( acetoacetate decarboxylase) promoter (Lee J et al., Appl. Environ. Microbiol. 2012, 78 (5), 1416-1423).
  • the present invention is not limited thereto, and promoter region sequences used in various metabolic operons found in host cells and the like can be used.
  • each nucleic acid when a plurality of types of nucleic acids are introduced into a host cell using a vector, each nucleic acid may be incorporated into one vector or may be incorporated into separate vectors. Furthermore, when incorporating a plurality of nucleic acids into one vector, each nucleic acid may be expressed under a common promoter or may be expressed under separate promoters.
  • each nucleic acid in addition to “nucleic acid encoding isoprene synthase”, “nucleic acid encoding an enzyme group acting in the mevalonate pathway” or “at least one acting in the non-mevalonate pathway” The aspect which introduce
  • the foreign nucleic acid may be incorporated into the genome of the host cell or may be incorporated into a plasmid.
  • the above-described recombinant cells are cultured using at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol as a carbon source. And isoprene is produced in the recombinant cell.
  • C1 compounds used as a carbon source only one may be used and it may be used in combination of 2 or more.
  • the method for culturing the recombinant cell of the present invention is not particularly limited, and can be appropriately performed according to the type of the host cell.
  • the recombinant cell is a Clostridium genus bacterium (absolute anaerobic), for example, it is cultured under nutrient conditions consisting of inorganic salts necessary for growth and synthetic gas. Culturing is preferably performed under a pressure of about 0.2 to 0.3 MPa (absolute pressure).
  • a small amount of organic substances such as vitamins, yeast extract, corn steep liquor, and bacto tryptone may be added to improve the initial growth and the reached cell density.
  • the recombinant cell is aerobic or obligately anaerobic, for example, aeration and agitation culture using a liquid medium can be performed.
  • the above recombinant cell is contacted with at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol, and the recombinant cell is contacted.
  • C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol
  • isoprene can be produced by contacting the aforementioned C1 compound with a recombinant cell.
  • the above-described C1 compound can be continuously supplied to the immobilized recombinant cells to continuously produce isoprene.
  • about these C1 compounds only one may be used and it may be used in combination of 2 or more. Further, it is preferable to simultaneously contact hydrogen (H 2 ) as an energy source.
  • a gas mainly composed of carbon monoxide and hydrogen or a gas mainly composed of carbon dioxide and hydrogen is provided to the recombinant cell. That is, recombinant cells are cultured using these gases as a carbon source, or these gases are brought into contact with recombinant cells to produce isoprene from carbon monoxide or carbon dioxide in the gases. Again, hydrogen is used as an energy source.
  • Formic acid and / or methanol can be provided to recombinant cells, and isoprene can also be produced from formic acid and / or methanol.
  • isoprene in addition to carbon monoxide or carbon dioxide, or by culturing recombinant cells using formic acid or methanol as a carbon source, or by contacting formic acid or methanol with recombinant cells, Can also produce isoprene.
  • the produced isoprene is accumulated inside the cell or released outside the cell.
  • purified isoprene can be obtained by collecting, isolating and purifying isoprene released outside the cells using recombinant cells using the above-mentioned Clostridium bacteria or Moorella bacteria as host cells. .
  • bicarbonate may be used instead of carbon dioxide. That is, Clostridium bacteria and related species are known to have carbonic anhydrase (CA) (EC 4.2.1.1: H 2 O + CO 2 ⁇ HCO 3 ⁇ + H + ). (Braus-Stromeyer SA et al., J. Bacteriol. 1997, 179 (22), 7197-7200), a bicarbonate such as NaHCO 3 serving as an HCO 3 ⁇ source can be used as the CO 2 source.
  • CA carbonic anhydrase
  • methanol pathway methanol pathway
  • Fig. 1 is the acetyl-CoA pathway (Wood-Ljungdahl It can be explained that it participates as a methyl group donor in pathway).
  • the forward activity may be imparted by gene modification such as mutagenesis, foreign gene introduction, or genome shuffling.
  • isoprene when the host cell has an acetyl CoA pathway and a methanol pathway, isoprene can be produced using the following gas or liquid.
  • the recombinant cells of the present invention are cultured not exclusively for isoprene production but exclusively for the purpose of increasing cells, it is not necessary to use carbon monoxide or carbon dioxide as a carbon source.
  • the recombinant cells may be cultured using other carbon sources such as sugars and glycerin.
  • the synthetic DNA represented by SEQ ID NO: 5 and SEQ ID NO: 6 was introduced into the BamHI / EcoRI site of Clostridium / E. Coli shuttle vector pIMP1 (Mermelstein LD et al., Bio / technology 1992, 10, 190-195) The cloning site was improved and pIM1A was constructed. Furthermore, the synthetic DNA represented by SEQ ID NO: 7 and SEQ ID NO: 8 was introduced into the PstI / BamHI site of pIM1A to construct pIM1B.
  • the IspS gene was recovered and introduced into the BamHI site of pIM1B to construct a poplar-derived IspS expression vector pIMBIS.
  • This expression vector has a promoter and terminator region derived from pSOS95 (Mingardon F et al., Appi. Environ. Microbiol. 2005, 71 (3), 1215-1222) before and after the IspS gene.
  • isoprene can be produced from synthesis gas by culturing a recombinant Clostridium ljungdahlii introduced with a poplar-derived isoprene synthase gene.
  • This nucleic acid includes gene clusters encoding mevalonate kinase, mevalonate diphosphate decarboxylase, Phosphomevalonate kinase, IPP isomerase, HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (HMGR), and HMG-CoA synthase. ing. The obtained amplified DNA fragment was cloned into the pT7-Blue T vector to construct pT7SMV.
  • a DNA fragment containing the poplar-derived IspS gene was amplified using the pT7IS prepared in Example 1 as a template and the primers represented by SEQ ID NO: 3 and SEQ ID NO: 12. This DNA fragment was cloned into the pT7-Blue T vector to construct pT7IS2.
  • Double-stranded DNA composed of the oligo DNAs of SEQ ID NO: 13 and SEQ ID NO: 14 was introduced into the BamHI / EcoRI site of pIM1B prepared in Example 1 to construct pIM1C.
  • pT7IS2 was cleaved with BamHI and KpnI to recover a DNA fragment containing the IspS gene. This DNA fragment was introduced into the BamHI / KpnI site of pIM1C to construct pIMCIS.
  • pT7SMV was cleaved with KpnI, and the inserted DNA fragment was recovered. This DNA fragment was introduced into the KpnI site of pIMCIS to construct pIMCISMV.
  • pIMCISMV has a gene encoding the isoprene synthase derived from poplar and the above mevalonate pathway enzyme group derived from Streptomyces, and the gene is pSOS95 (Mingardon F et al., Appl. Envirion. Microbiol. 2005, 71 (3) , 1215-1222), and gene expression is controlled by a promoter and terminator.
  • IspS isoprene synthase
  • the codon-modified IDI-IspS operon synthesis gene (SEQ ID NO: 15, indicated by the sense strand) was introduced into the PstI / BamHI site of pIM1A prepared in Example 1 to construct an expression vector pIMAIS1.
  • an expression vector pIMAIS2 into which the IDI-IspS operon synthesis gene without codon modification was introduced was also constructed.
  • the portion of base numbers 165 to 713 corresponds to the E. coli-derived IDI gene whose codon has been modified, and the portion of base numbers 780 to 2567 corresponds to the poplar-derived IspS gene whose codon has been modified.
  • the base sequence of the E. coli-derived IDI gene before codon modification is shown in SEQ ID NO: 16.
  • the base sequence of the poplar-derived IspS gene before codon modification is as shown in SEQ ID NO: 1.
  • IspS isoprene synthase
  • IDI isopentenyl diphosphate isomerase
  • the gene sequences of Populus alba-derived IspS (Genbank accession no. Q50L36) and yeast-derived IDI were codon optimized (SEQ ID NO: 17).
  • codon-optimized IspS (SEQ ID NO: 17) and IDI gene were cloned into the Escherichia coli / Clostridium shuttle vector pSCi01 (SEQ ID NO: 18).
  • the IspS and IDI genes were inserted between the inducible tetracycline promoter and the fdx transcription terminator (Nariya H. et al., Appl. Environ.
  • an expression vector pSCi :: idi-isps (SEQ ID NO: 19) in which the expression of IspS and IDI is induced by anhydrotetracycline was constructed.
  • the plasmid was amplified using E. coli NEB Express (NEB). By amplifying with this host (DCM ⁇ , DAM + ), the plasmid shows the correct methylation pattern and can thus be efficiently transformed with C. ljungdahlii.
  • C. ljungdahlii (DSMZ No. 13528) is used in YTF medium (16 g tryptone, 10 g yeast extract, 4 g NaCl, 2 mM Cysteine and 5 g fructose / L, pH 5.9-6) under strict anaerobic conditions. Incubated.
  • YTF medium 16 g tryptone, 10 g yeast extract, 4 g NaCl, 2 mM Cysteine and 5 g fructose / L, pH 5.9-6
  • pSCi idi-ispS vector into C.
  • the cells were grown in YTF medium supplemented with 40 mM D, L-threonine to an OD600 of 0.2-0.3, It was washed with SMP buffer (270 mM sucrose, 1 mM MgCl 2 , 7 mM sodium phosphate, pH 6) and resuspended in 0.5 mL SMP buffer containing 10% DMSO.
  • SMP buffer 270 mM sucrose, 1 mM MgCl 2 , 7 mM sodium phosphate, pH 6
  • SMP buffer 270 mM sucrose, 1 mM MgCl 2 , 7 mM sodium phosphate, pH 6
  • resuspended in 0.5 mL SMP buffer containing 10% DMSO for electroporation, 3 ⁇ g of pSCi :: idi-ispS plasmid DNA was used.
  • the BioRad Micropulser TM electroporator system (Bio-Rad Laboratory) was set up as follows: cuvette size 0.1 mm, voltage 0.625 kV, resistance 600 ⁇ , capacitance 25 ⁇ F. After regeneration in 1 mL YTF medium for 12 hours, cells were transplanted into 25 mL YTF medium containing 4 ⁇ g / mL clarithromycin and 4 ⁇ g / mL thiamphenicol. As the next step, 5-10 mL of cell suspension was mixed with 20 mL of molten YTF agar (1.5% agar) and incubated for 3-5 days until colonies formed. Each clone was isolated from the agar plate and cultured in liquid in YTF medium (containing 4 ⁇ g / mL clarithromycin and 4 ⁇ g / mL thiamphenicol).
  • synthesis gas (60% CO, 10% CO 2 , 30% H 2 ) in ATCC1754 medium (containing 4 ⁇ g / mL clarithromycin and 4 ⁇ g / mL thiamphenicol).
  • the reaction was carried out in 2 mL (absolute pressure) of synthesis gas in a 50 mL culture solution in a 200 mL sealed glass bottle under medium conditions with a reduced carbon source and energy.
  • GC / MS / MS-system TQ8030 (Shimazu) equipped with SPME (solid-phase-micro-extraction) analysis system manufactured by Gerstel was used for the analysis of isoprene production.
  • CAR / PDMS fiber 75 ⁇ m CAR / PDMS fiber (Supelco ⁇ Sigma Aldrich) was used for sampling from 200 mL bottle cultures. Sampling was performed at 22 ° C. for 30 minutes. After fiber injection into KAS 6 (Gerstel), thermal desorption was performed at 200 ° C. for 30 seconds. A Phenomenex A ZB-624 column (length 30 m; ID 0.25 mm ID; film thickness 1.4 ⁇ m) was used to separate the gas components. The analytical parameters for GC / MS / MS were set as follows.
  • the fiber was treated at 300 ° C. for 30 minutes before next use.
  • the mass analyzer was operated in MRM (multiple reaction monitoring) mode. Two transitions were selected for isoprene: 68.1 m / z-67.0 m / z and 67.1 m / z-41.0 m / z, and argon was used as a CID (collision induced induced dissociation) gas. Isoprene (Sigma Aldrich; cat no. 19551: purity 99%) was used as the isoprene standard.
  • the isoprene standard product showed a retention time of 2.7 minutes, and characteristic transition patterns of 68.1 mm / z-67.0 mm / z and 67.1 mm / z-41.0 mm / z.
  • the headspace was collected and analyzed by GC / MS / MS.
  • FIG. 3 shows the results of GC / MS / MS analysis on C. ljungdahlii carrying the pSCi01 plasmid.
  • FIG. 4 shows the results of GC / MS / MS analysis on C. ljungdahlii carrying the pSCi :: idi-ispS plasmid.
  • the design of the isoprene synthesis gene cluster of plasmid pSCi :: MVA-IspS-idi is shown in FIG. 5 and SEQ ID NO: 20.
  • the accession number, abbreviation, and origin of each codon optimized gene are shown in the table below.
  • the inducible expression system by anhydrotetracycline was constructed by inserting the MVA-IspS-idi gene cluster between the inducible tetracycline promoter and the fdx transcription terminator. Correct expression of the transgene derived from the constructed expression vector was assessed by targeted proteomics.
  • the plasmid was amplified in E. coli strain NEB Express (NEB).
  • C. ljungdahlii (DSMZ No. 13528) is used in YTF medium (16 g tryptone, 10 g yeast extract, 4 g NaCl, 2 mM Cysteine and 5 g fructose / L, pH 5.9-6) under strict anaerobic conditions. Incubated.
  • YTF medium 16 g tryptone, 10 g yeast extract, 4 g NaCl, 2 mM Cysteine and 5 g fructose / L, pH 5.9-6
  • the cells were grown to OD600 of 0.2-0.3 in YTF medium supplemented with 40 mM D, L-threonine Then, it was washed with SMP buffer (270 mM sucrose, 1 mM MgCl 2 , 7 mM sodium phosphate, pH 6) and resuspended in 0.5 mL SMP buffer containing 10% DMSO. 3 ⁇ g of pSCi :: MVA-IspS-idi plasmid DNA was used for electroporation.
  • the BioRad Micropulser TM electroporator system (Bio-Rad Laboratory) was set up as follows: cuvette size 0.1 mm, voltage 0.625 kV, resistance 600 ⁇ , capacitance 25 ⁇ F. After regeneration in 1 mL YTF medium for 12 hours, cells were transplanted into 25 mL YTF medium containing 4 ⁇ g / mL clarithromycin and 4 ⁇ g / mL thiamphenicol. As the next step, 5-10 mL of cell suspension was mixed with 20 mL of molten YTF agar (1.5% agar) and incubated for 3-5 days until colonies formed. Each clone was isolated from the agar plate and cultured in liquid in YTF medium (containing 4 ⁇ g / mL clarithromycin and 4 ⁇ g / mL thiamphenicol).
  • synthesis gas (60% CO, 10% CO 2 , 30% H 2 ) in ATCC1754 medium (containing 4 ⁇ g / mL clarithromycin and 4 ⁇ g / mL thiamphenicol).
  • the reaction was carried out in 2 mL (absolute pressure) of synthesis gas in a 50 mL culture solution in a 200 mL sealed glass bottle under the medium conditions of carbon source and energy source. Forty-eight hours after the start of the synthesis gas fermentation, the headspace was collected in the same manner as in Example 4, and analyzed by GC / MS / MS under the same conditions as in Example 4.
  • ATCC medium The composition of 1754 PETC medium is shown below.
  • NH 4 Cl 1.0 g KCl 0.1 g MgSO 4 ⁇ 7H 2 O 0.2 g NaCl 0.8 g KH 2 PO 4 0.1 g CaCl 2 ⁇ 2H 2 O 20.0 mg
  • Yeast extract 1.0 g Trace Elements (see below) 10.0 mL Wolfe's Vitamin Solution (see below) 10.0 mL NaHCO 3 2.0 g Reducing Agent (see below) 10.0 mL Distilled water 980.0 mL Final pH 5.9
  • Nitrilotriacetic acid 2.0 g MnSO 4 H 2 O 1.0 g Fe (SO 4 ) 2 (NH 4 ) 2 ⁇ 6H 2 O 0.8 g CoCl 2 ⁇ 6H 2 O 0.2 g ZnSO 4 ⁇ 7H 2 O 0.2 mg CuCl 2 ⁇ 2H 2 O 20.0 mg NiCl 2 ⁇ 6H 2 O 20.0 mg Na 2 MoO 4 ⁇ 2H 2 O 20.0 mg Na 2 SeO 4 20.0 mg Na 2 WO 4 20.0 mg Distilled water 1.0 L

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)

Abstract

 合成ガス等からイソプレンを生産することができる一連の技術を提供することを目的とする。 非メバロン酸経路によるイソペンテニル二リン酸合成能を有する宿主細胞に、イソプレン合成酵素をコードする核酸が導入されてなり、当該核酸が前記宿主細胞内で発現し、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能である組換え細胞が提供される。宿主細胞としてClostridium属細菌又はMoorella属細菌が例示される。当該組換え細胞を用いたイソプレンの生産方法も提供される。

Description

組換え細胞、並びに、イソプレンの生産方法
 本発明は、一酸化炭素等の特定のC1化合物からイソプレンを生産可能な組換え細胞、及び当該組換え細胞を用いるイソプレンの生産方法に関する。
 イソプレンは合成ポリイソプレンのモノマー原料であり、特にタイヤ業界において重要な素材である。近年、石油に依存した基幹化学品の生産プロセスから、植物資源等の再生可能資源からの生産プロセスへの転換技術の開発と実用化が、着実に進んでいる。イソプレンに関しても、例えば、糖を原料とした組換え大腸菌による生産技術が知られている(特許文献1,2)。
 再生可能資源からの生産プロセスについて、その従来技術のほとんどは、上記イソプレン生産技術を含めて、有機物、特に糖、グリセロールもしくは油成分等に依存した、微生物による生産法である。しかし、石油に由来する数多くの基幹化学品の世界的な生産量を賄うには、植物資源等に由来する現状使用可能な糖質、グリセリンや油成分の量では、微生物の炭素源として不足するのは必須である。すなわち、糖質や油成分に依存する微生物による基幹化学品の生産量は、将来に渡っても限定的である。また、このようなプロセスは、食との競合も懸念される。
 合成ガス(Synthesis gas, Syngas)は、廃棄物、天然ガス、及び石炭から高温・高圧下で金属触媒の作用によって効率よく得られる、一酸化炭素、二酸化炭素、及び水素を主成分とする混合ガスである。合成ガスを起点とする金属触媒によるC1ケミストリーの分野では、メタノール、ギ酸、ホルムアルデヒド等の液状の化学品を安価かつ大量に生産するプロセスが開発されている。
 そして、一酸化炭素、二酸化炭素、及び水素は、廃棄物由来の合成ガスや工場排ガス、天然ガス、または石炭由来の合成ガスに含まれており、ほぼ永久的に利用可能である。しかしながら、合成ガスをはじめとするC1炭素源とした、微生物による化学品生産の例は、極めて少ないのが現状である。現在のところ、開発が進んでいるのは、合成ガスからのエタノール、2,3-ブタンジオール等の生産のみである。特に、組換え体による合成ガス資化性物の利用に関する報告は少ない。特許文献3には、大腸菌の組換え体によるイソプロパノールの生産技術が開示されている。この技術では、大腸菌に複数のCO代謝酵素遺伝子を導入して合成ガス資化能を付与し、合成ガスからイソプロパノールを生産している。ただし、この技術はイソプレンを生産するものではない。
特表2011-505841号公報 特表2011-518564号公報 特表2011-509691号公報
 上記現状に鑑み、本発明は、合成ガス等からイソプレンを生産することができる一連の技術を提供することを目的とする。
 上記した課題を解決するための本発明の1つの様相は、非メバロン酸経路によるイソペンテニル二リン酸合成能を有する宿主細胞に、イソプレン合成酵素をコードする核酸が導入されてなり、当該核酸が前記宿主細胞内で発現し、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能である組換え細胞である。
 本発明はイソプレンを生産可能な組換え細胞に係るものである。本発明の組換え細胞は、「非メバロン酸経路によるイソペンテニル二リン酸合成能」を有する宿主細胞に、イソプレン合成酵素をコードする核酸が導入されてなるものであり、かつ当該核酸が宿主細胞内で発現する。そして、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物から、イソプレンを生産可能なものである。本発明の組換え細胞によれば、前記したC1化合物からイソペンテニル二リン酸(IPP)を合成し、さらに、合成されたIPPをイソプレンに変換することができる。その結果、前記したC1化合物からイソプレンを生産することができる。本発明の組換え細胞を用いることにより、例えば、一酸化炭素や二酸化炭素を含む合成ガスからイソプレンを生産することができる。
 イソプレノイドの生合成経路はメバロン酸経路(MVA経路ともいう)と非メバロン酸経路(MEP経路ともいう)に大別される。非メバロン酸経路は、グリセルアルデヒド3-リン酸とピルビン酸から、最終的にイソペンテニル二リン酸(IPP)又はジメチルアリル二リン酸(DMAPP)を生成する経路である。本発明で用いる宿主細胞は、非メバロン酸経路によるイソペンテニル二リン酸合成能を有するものである。
 本発明の他の様相は、メチルテトラヒドロ葉酸、一酸化炭素、及びCoAからアセチルCoAを合成する機能を有する宿主細胞に、イソプレン合成酵素をコードする核酸が導入されてなり、当該核酸が前記宿主細胞内で発現し、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能である組換え細胞である。
 本発明の組換え細胞は、「メチルテトラヒドロ葉酸、一酸化炭素、及びCoAからアセチルCoAを合成する機能」を有する宿主細胞に、イソプレン合成酵素をコードする核酸が導入されてなるものであり、かつ当該核酸が宿主細胞内で発現する。そして、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物から、イソプレンを生産可能なものである。本発明の組換え細胞によっても、前記したC1化合物からIPPを合成し、さらに、合成されたIPPをイソプレンに変換することができる。その結果、前記したC1化合物からイソプレンを生産することができる。本発明の組換え細胞を用いることにより、例えば、一酸化炭素や二酸化炭素を含む合成ガスからイソプレンを生産することができる。
 「メチルテトラヒドロ葉酸、一酸化炭素、及びCoAからアセチルCoAを合成する機能」を有する細胞としては、図1に示すアセチルCoA経路(Wood-Ljungdahl pathway)及びメタノール経路(Methanol pathway)を有する嫌気性微生物が例示される。
 好ましくは、一酸化炭素脱水素酵素を有するものである。
 一酸化炭素脱水素酵素(EC 1.2.99.2/1.2.7.4)(一酸化炭素デヒドロゲナーゼ、CO dehydrogenase、CODH)は、一酸化炭素と水から二酸化炭素とプロトンを生成させる作用、及びその逆反応である、二酸化炭素とプロトンから一酸化炭素と水を生成させる作用、を有する。一酸化炭素脱水素酵素は、アセチルCoA経路(図1)で作用する酵素の1つである。
 好ましくは、前記宿主細胞は、Clostridium属細菌又はMoorella属細菌である。
 好ましくは、メバロン酸経路で作用する酵素群をコードする核酸がさらに導入され、メバロン酸経路によるイソペンテニル二リン酸合成能をさらに有する。
 かかる構成により、イソプレン合成酵素の基質となるIPPが、メバロン酸経路と非メバロン酸経路の両方から合成され、IPPの供給が効率的に行われる。その結果、本発明の組換え細胞は、イソプレン生産能がさらに高いものとなる。
 好ましくは、前記メバロン酸経路は、酵母のメバロン酸経路である。
 好ましくは、前記メバロン酸経路は、原核生物のメバロン酸経路である。
 好ましくは、前記メバロン酸経路は、放線菌のメバロン酸経路である。
 好ましくは、非メバロン酸経路で作用する少なくとも1つの酵素をコードする核酸がさらに導入され、当該核酸が宿主細胞内で発現する。
 かかる構成により、非メバロン酸経路によるIPP合成能が増強される。その結果、本発明の組換え細胞は、イソプレン生産能がさらに高いものとなる。
 好ましくは、前記非メバロン酸経路は、宿主細胞以外の非メバロン酸経路である。
 好ましくは、前記イソプレン合成酵素は、植物由来のものである。
 好ましくは、前記イソプレン合成酵素をコードする核酸は、下記(a)、(b)又は(c)のタンパク質をコードするものである。
(a)配列番号2で表されるアミノ酸配列からなるタンパク質、
(b)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
(c)配列番号2で表されるアミノ酸配列と60%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。
 好ましくは、宿主細胞に導入された核酸は、コドンが改変されたものである。
 かかる構成により、導入された核酸(外来遺伝子)を宿主細胞内でより効率的に発現させることが可能となる。
 好ましくは、宿主細胞に導入された核酸は、宿主細胞のゲノムに組み込まれている。
 好ましくは、宿主細胞に導入された核酸は、プラスミドに組み込まれている。
 本発明の他の様相は、上記の組換え細胞を、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物を炭素源として用いて培養し、当該組換え細胞にイソプレンを生産させるイソプレンの生産方法である。
 本発明はイソプレンの生産方法に係るものである。本発明では、上記した組換え細胞を一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物を炭素源として培養することにより、当該組換え細胞にイソプレンを生産させる。本発明によれば、一酸化炭素や二酸化炭素を含む合成ガスや、ギ酸、メタノールからイソプレンを生産することができる。
 本発明の他の様相は、上記の組換え細胞に、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物を接触させ、当該組換え細胞に前記C1化合物からイソプレンを生産させるイソプレンの生産方法である。
 本発明では、上記した組換え細胞に、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物を接触させ、当該C1化合物からイソプレンを生産させる。本発明によっても、一酸化炭素や二酸化炭素を含む合成ガスや、ギ酸、メタノールからイソプレンを生産することができる。
 好ましくは、一酸化炭素と水素とを主成分とするガス、あるいは二酸化炭素と水素とを主成分とするガスを、前記組換え細胞に提供する。
 「組換え細胞にガスを提供する」とは、炭素源等としてガスを組換え細胞に与える、あるいは、組換え細胞にガスを接触させる、という意味である。
 好ましくは、組換え細胞はClostridium属細菌又はMoorella属細菌を宿主細胞とするものであり、組換え細胞の細胞外に放出されたイソプレンを回収する。
 二酸化炭素に代えて、重炭酸塩を用いてもよい。
 本発明の組換え細胞によれば、一酸化炭素、二酸化炭素、ギ酸、又はメタノールからイソプレンを生産することができる。例えば、一酸化炭素や二酸化炭素を含む合成ガスからイソプレンを生産することが可能となる。
 本発明のイソプレンの生産方法についても同様であり、一酸化炭素、二酸化炭素、ギ酸、又はメタノールからイソプレンを生産することができる。
アセチルCoA経路とメタノール経路を表す説明図である。 イソプレン標準品のガスクロマトグラムである。 コントロールベクターpSCi01プラスミドを保持するC. ljungdahliiの合成ガス発酵気相成分のガスクロマトグラムである。 pSCi::idi-ispSプラスミドを保持するC. ljungdahliiの合成ガス発酵気相成分のガスクロマトグラムである。 プラスミドpSCi::MVA-IspS-idiのイソプレン合成遺伝子クラスターの構成を表す説明図である。 プラスミドpSCi::MVA-IspS-idiを保持するC. ljungdahliiの合成ガス発酵気相成分のガスクロマトグラムである。
 本発明の1つの様相に係る組換え細胞は、非メバロン酸経路によるイソペンテニル二リン酸(IPP)合成能を有する宿主細胞に、イソプレン合成酵素をコードする核酸が導入されてなり、当該核酸が前記宿主細胞内で発現し、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能なものである。
 本様相の組換え細胞における宿主細胞は、「非メバロン酸経路によるIPP合成能」を有するものである。
 上述したように、一般に、IPPの合成経路はメバロン酸経路(MVA経路)と非メバロン酸経路(MEP経路)の2つに大別される。メバロン酸経路は真核生物が備えているものであり、アセチルCoAを出発物質としている。メバロン酸経路で作用する酵素としては、上流から順に、アセチルCoAアセチルトランスフェラーゼ、HMG-CoAシンターゼ、HMG-CoAレダクターゼ、メバロン酸キナーゼ、5-ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼ、イソペンテニル二リン酸イソメラーゼが挙げられる。
 一方、非メバロン酸経路は原核生物や葉緑体・色素体が備えているものであり、グリセルアルデヒド3-リン酸とピルビン酸を出発物質としている。非メバロン酸経路で作用する酵素としては、上流から順に、DOXPシンターゼ、DOXPレダクトイソメラーゼ、4-ジホスホシチジル-2-C-メチル-D-エリトリトールシンターゼ、4-ジホスホヂチジル-2-C-メチル-D-エリトリトールキナーゼ、2-C-メチル-D-エリトリトール-2,4-シクロ二リン酸シンターゼ、HMB-PPシンターゼ、HMB-PPレダクターゼ、が挙げられる。
 また本発明の他の様相に係る組換え細胞は、メチルテトラヒドロ葉酸、一酸化炭素、及びCoAからアセチルCoAを合成する機能を有する宿主細胞に、イソプレン合成酵素をコードする核酸が導入されてなり、当該核酸が前記宿主細胞内で発現し、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能なものである。
 本発明の組換え細胞は、さらに、一酸化炭素脱水素酵素(CODH)を有するものであることが好ましい。詳細には、主に一酸化炭素代謝、すなわち一酸化炭素脱水素酵素の働きにより、一酸化炭素と水から二酸化炭素とプロトンを発生する機能によって生育する細胞が好ましい。そのような細胞の例としては、図1に示すアセチルCoA経路(Wood-Ljungdahl pathway)とメタノール経路(Methanol pathway)を有する嫌気性微生物が挙げられる。
 当該嫌気性微生物として、Clostridium ljungdahlii、Clostridium autoethanogenumn、Clostridium carboxidivorans、Clostridium ragsdalei(Kopke M. et al., Appl. Environ. Microbiol. 2011, 77(15), 5467-5475)、Moorella thermoacetica(Clostridium thermoaceticumと同じ) (Pierce EG. Et al., Environ. Microbiol. 2008, 10, 2550-2573)等のClostridium属細菌又はMoorella属細菌が代表例として挙げられる。特に、Clostridium属細菌は、宿主-ベクター系や培養方法が確立しており、本発明における宿主細胞として好適である。
 上記5種のClostridium属細菌又はMoorella属細菌は、合成ガス資化性微生物の代表例として知られている。
 Clostridium属細菌、Moorella属細菌以外では、Carboxydocella sporoducens sp. Nov. (Slepova TV. et al., Inter. J. Sys. Evol. Microbiol. 2006, 56, 797-800)、Rhodopseudomonas gelatinosa(Uffen RL, J. Bacteriol. 1983, 155(3), 956-965)、Eubacterium limosum (Roh H. et al., J. Bacteriol. 2011, 193(1), 307-308),Butyribacterium methylotrophicum (Lynd, LH. Et al., J. Bacteriol. 1983, 153(3), 1415-1423)等の細菌を宿主細胞として用いることができる。
 なお、上記した細菌の増殖及びCODH活性は全て酸素感受性であるが、酸素非感受性のCODHも知られている。例えば、Oligotropha carboxidovorans (Schubel, U. et al., J. Bacteriol., 1995, 2197-2203)、Bradyrhizobium japonicum (Lorite MJ. Et al., Appl. Environ. Microbiol., 2000, 66(5), 1871-1876)を始め、その他のバクテリア種には酸素非感受性のCODHが存在する(King GM et al., Appl. Environ. Microbiol. 2003, 69 (12), 7257-7265)。好気性水素酸化細菌であるRalsotonia属菌にも酸素非感受性のCODHが存在する (NCBI Gene ID: 4249199, 8019399)。
 このように、CODHを有する細菌は広く存在しており、その中から本発明で用いる宿主細胞を適宜選択することができる。例えば、CO、CO/H2(COとH2を主成分とするガス)、もしくはCO/CO2/H2(COとCO2とH2を主成分とするガス)を唯一の炭素源かつエネルギー源とした選択培地を用い、嫌気、微好気、もしくは好気的条件で、宿主細胞として利用できるCODHを有する細菌を分離することができる。
 イソプレン合成酵素としては、組換え細胞内でその酵素活性を発揮できるものであれば特に限定はない。イソプレン合成酵素をコードする核酸(遺伝子)についても同様であり、組換え細胞内で正常に転写・翻訳されるものであれば特に限定はない。また、イソプレン合成酵素をコードする核酸は、宿主細胞で転写されやすいコドンに改変したものであってもよい。例えば、宿主細胞がClostridium属細菌であれば、Clostridium属細菌のコドン使用頻度の情報を基に、導入する核酸のコドンを改変することができる。
 イソプレン合成酵素は、多くの植物で見出されている。イソプレン合成酵素の具体例としては、ポプラ(Populus nigra)由来のもの(GenBank Accession No.: AM410988.1)が挙げられる。その他、Bacillus subtilis由来のもの(Sivy TL. et al., Biochem. Biophys. Res. Commu. 2002, 294(1), 71-5)が挙げられる。
 配列番号1に上記ポプラ由来イソプレン合成酵素をコードする核酸(DNA)の塩基配列と対応のアミノ酸配列、配列番号2にアミノ酸配列のみを示す。配列番号1で表される塩基配列を有するDNAは、イソプレン合成酵素をコードする核酸の一例となる。
 さらに、イソプレン合成酵素をコードする核酸には、少なくとも、下記(a)、(b)又は(c)のタンパク質をコードする核酸が含まれる。
(a)配列番号2で表されるアミノ酸配列からなるタンパク質、
(b)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
(c)配列番号2で表されるアミノ酸配列と60%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。
 なお(c)におけるアミノ酸配列の相同性については、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。
 本発明の組換え細胞においては、イソプレン合成酵素をコードする核酸に加えて、他の核酸がさらに導入されていてもよい。1つの実施形態では、メバロン酸経路で作用する酵素群をコードする核酸がさらに導入され、メバロン酸経路によるIPP合成能をさらに有する。かかる構成によれば、メバロン酸経路と非メバロン酸経路の両方からIPPが合成されるので、IPP合成能が増強され、結果としてイソプレン生産がより効率的に行われる。
 上述したように、メバロン酸経路で作用する酵素群としては、アセチルCoAアセチルトランスフェラーゼ、HMG-CoAシンターゼ、HMG-CoAレダクターゼ、メバロン酸キナーゼ、5-ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼ、イソペンテニル二リン酸イソメラーゼが挙げられる。このうち、例えば、HMG-CoAシンターゼ、HMG-CoAレダクターゼ、メバロン酸キナーゼ、5-ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼ、及びイソペンテニル二リン酸イソメラーゼからなる酵素群が宿主細胞内で発現するように、導入する核酸を選択すればよい。これらの核酸についても、宿主細胞で転写されやすいコドンに改変したものを採用することができる。
 なお、メバロン酸経路は全ての真核生物が保有しているが、原核生物でも見出されている。原核生物でメバロン酸経路を有するものとしては、放線菌では、Streptomyces sp. Strain CL190 (Takagi M. et al., J. Bacteriol. 2000, 182 (15), 4153-7)、Streptomyces griseolosporeus MF730-N6 (Hamano Y. et al., Biosci. Biotechnol. Biochem. 2001, 65(7), 1627-35)が挙げられる。
 細菌では、Lactobacillus helvecticus (Smeds A et al., DNA seq. 2001, 12(3), 187-190)、Corynebacterium amycolatum、Mycobacterium marinum、Bacillus coagulans、Enterococcus faecalis、Streptococuss agalactiae、Myxococcus xanthus等が挙げられる(Lombard J. et al., Mol. Biol. Evol. 2010, 28(1), 87-99)。
 アーキアでは、Aeropyrum属、Sulfolobus属、Desulfurococcus属、Thermoproteus属、Halobacterium属、Methanococcus属、Thermococcus属、Pyrococcus属、Methanopyrus属、Thermoplasma属等が挙げられる(Lombard J. et al., Mol. Biol. Evol. 2010, 28(1), 87-99)。
 上記メバロン酸経路で作用する酵素群の由来としては特に限定はないが、酵母のメバロン酸経路で作用する酵素群が好ましい。その他、放線菌のメバロン酸経路で作用する酵素群も好ましく採用される。
 別の実施形態では、非メバロン酸経路で作用する少なくとも1つの酵素をコードする核酸がさらに導入され、当該核酸が宿主細胞内で発現する。本実施形態においても、IPP合成能が増強され、結果としてイソプレン生産がより効率的に行われる。導入される当該核酸は1種のみでもよいし、2種以上でもよい。
 上述したように、非メバロン酸経路で作用する酵素としては、DOXPシンターゼ、DOXPレダクトイソメラーゼ、4-ジホスホシチジル-2-C-メチル-D-エリトリトールシンターゼ、4-ジホスホヂチジル-2-C-メチル-D-エリトリトールキナーゼ、2-C-メチル-D-エリトリトール-2,4-シクロ二リン酸シンターゼ、HMB-PPシンターゼ、HMB-PPレダクターゼ、が挙げられる。例えば、これらの酵素群から1又は2以上の酵素を選択し、当該酵素をコードする核酸を宿主細胞に導入すればよい。
 また、非メバロン酸経路で作用する酵素は、宿主細胞以外の由来であることが好ましい。かかる構成により、反応生成物による反応抑制を避けることができる。
 これらの核酸についても、宿主細胞で転写されやすいコドンに改変したものを採用することができる。
 メバロン酸経路あるいは非メバロン酸経路で作用するこれらの酵素については、天然に存在するものの他、各酵素の改変体でもよい。例えば、各酵素のアミノ酸置換変異体や、各酵素の部分断片であって同様の酵素活性を有するポリペプチドでもよい。
 宿主細胞に核酸を導入する方法としては特に限定はなく、宿主細胞の種類等によって適宜選択すればよい。例えば、宿主細胞に導入可能でかつ組み込まれた核酸を発現可能なベクターを用いることができる。
 例えば、宿主細胞が細菌等の原核生物の場合には、当該ベクターとして、宿主細胞において自立複製可能ないしは染色体中への組み込みが可能で、挿入された上記核酸(DNA)を転写できる位置にプロモーターを含有しているものを用いることができる。例えば、当該ベクターを用いて、プロモーター、リボソーム結合配列、上記核酸(DNA)、および転写終結配列からなる一連の構成を宿主細胞内で構築することが好ましい。
 宿主細胞がClostridium属細菌(Moorella属細菌のような近縁種を含む)の場合について説明すると、Clostridium属細菌と大腸菌とのシャトルベクターpIMP1(Mermelstein LD et al., Bio/technology 1992, 10, 190-195)を用いることができる。本シャトルベクターは、pUC9 (ATCC 37252)とBacillus subtilisから分離されたpIM13 (Projan SJ et al., J. Bacteriol. 1987, 169 (11), 5131-5139)との融合ベクターであり、Clostridium属細菌内でも安定的に保持される。
 なお、Clostridium属細菌への遺伝子導入には、通常、エレクトロポレーション法が使用されるが、遺伝子導入直後の導入された外来プラスミドは制限酵素Cac824I等による分解を受けやすく極めて不安定である。そのため、Bacillus subtilis ファージΦ3T1由来メチルトランスフェラーゼ遺伝子が保持されたpAN1 (Mermelstein LD et al., Apply. Environ. Microbiol. 1993, 59(4), 1077-1081)を保有する大腸菌、例えばER2275株等で、pIMP1に由来するベクターを一旦増幅し、メチル化処理を行ってから、これを大腸菌から回収しエレクトロポレーションによる形質転換に使用することが好ましい。なお最近では、Cac824I遺伝子が欠損したClostridium acetobuthylicumが開発されており、メチル化処理されていないベクターも安定的に可能である(Dong H. et al., PLoS ONE 2010, 5 (2), e9038)。
 Clostridium属細菌における異種遺伝子発現のプロモーターとしては、例えばthl (thiolase)プロモーター(Perret S et al., J. Bacteriol. 2004, 186(1), 253-257)、Dha (glycerol dehydratase)プロモーター(Raynaud C. et al., PNAS 2003, 100(9), 5010-5015)、ptb (phosphotransbutyrylase)プロモーター (Desai RP et al., Appl. Environ. Microbiol. 1999, 65(3), 936-945)、adc (acetoacetate decarboxylase)プロモーター(Lee J et al., Appl. Environ. Microbiol. 2012, 78 (5), 1416-1423)等がある。ただし、本発明ではこれらに限定されることなく、宿主細胞等に見出される様々な代謝系のオペロンに使用されているプロモーター領域の配列が使用可能である。
 また、ベクターを用いて複数種の核酸を宿主細胞に導入する場合、各核酸を1つのベクターに組み込んでもよいし、別々のベクターに組み込んでもよい。さらに1つのベクターに複数の核酸を組み込む場合には、各核酸を共通のプロモーターの下で発現させてもよいし、別々のプロモーターの下で発現させてもよい。複数種の核酸を導入する例としては、「イソプレン合成酵素をコードする核酸」に加えて、「メバロン酸経路で作用する酵素群をコードする核酸」や「非メバロン酸経路で作用する少なくとも1つの酵素をコードする核酸」を導入する態様が挙げられる。
 上記のような外来核酸導入に加え、突然変異やゲノムシャッフリングをさらに施すことで、イソプレンの生産性が格段向上した菌株を育種することも可能である。
 すなわち、本発明においては、外来核酸を宿主細胞のゲノムに組み込んでもよいし、プラスミドに組み込んでもよい。
 本発明のイソプレンの生産方法の1つの様相では、上記した組換え細胞を、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物を炭素源として用いて培養し、当該組換え細胞にイソプレンを生産させる。炭素源として用いるこれらのC1化合物については、1つのみを用いてもよいし、2つ以上を組み合わせて用いてもよい。また、これらのC1化合物は、主たる炭素源として用いることが好ましく、唯一の炭素源であることがより好ましい。
 また、エネルギー源として水素(H2)を同時に提供することが好ましい。
 本発明の組換え細胞を培養する方法としては特に限定はなく、宿主細胞の種類等に応じて適宜行うことができる。組換え細胞がClostridium属細菌(絶対嫌気性)の場合には、例えば、生育に必要な無機塩類及び、合成ガスからなる栄養条件で培養する。好ましくは0.2~0.3MPa(絶対圧)程度の加圧状態で培養する。さらには、初期増殖及び到達細胞密度を良好にするためには、ビタミン、酵母エキス、コーンスティープリカー、バクトトリプトン等の有機物を少量加えてよい。
 なお、組換え細胞が好気性や偏性嫌気性の場合には、例えば、液体培地を用いた通気・撹拌培養を行うことができる。
 本発明のイソプレンの生産方法の別の様相では、上記した組換え細胞に、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物を接触させ、当該組換え細胞に前記C1化合物からイソプレンを生産させる。すなわち、細胞分裂(細胞増殖)を伴うか否かにかかわらず、組換え細胞に前記したC1化合物を接触させて、イソプレンを生産させることができる。例えば、固定化した組換え細胞に前記したC1化合物を連続的に供給し、イソプレンを連続的に生産させることができる。
 本様相においても、これらのC1化合物については、1つのみを用いてもよいし、2つ以上を組み合わせて用いてもよい。また、エネルギー源として水素(H2)を同時に接触させることが好ましい。
 好ましい実施形態では、一酸化炭素と水素とを主成分とするガス、あるいは二酸化炭素と水素とを主成分とするガスを、前記組換え細胞に提供する。すなわち、これらのガスを炭素源として用いて組換え細胞を培養したり、あるいは、これらのガスを組換え細胞に接触させて、ガス中の一酸化炭素又は二酸化炭素からイソプレンを生産させる。この場合も、水素はエネルギー源として使用される。
 ギ酸及び/又はメタノールを組換え細胞に提供し、ギ酸及び/又はメタノールからもイソプレンを生産することもできる。すなわち、一酸化炭素や二酸化炭素に加えて、もしくは単独で、ギ酸やメタノールを炭素源として用いて組換え細胞を培養したり、ギ酸やメタノールを組換え細胞に接触させることにより、ギ酸やメタノールからもイソプレンを生産することができる。
 生産されたイソプレンは、細胞内に蓄積されるか、細胞外に放出される。例えば、上述したClostridium属細菌又はMoorella属細菌を宿主細胞とした組換え細胞を用い、細胞外に放出されたイソプレンを回収し、単離精製することにより、純化されたイソプレンを取得することができる。
 なお、二酸化炭素に代えて重炭酸塩を用いることができる場合がある。すなわち、Clostridium属細菌及びその近縁種は、炭酸脱水素酵素(Carbonic anhydrase, CA)(EC 4.2.1.1: H2O+CO2 ⇔ HCO3 -+H+)を有することが知られており(Braus-Stromeyer SA et al., J. Bacteriol. 1997, 179(22), 7197-7200)、CO2源として、HCO3 -源となるNaHCO3等の重炭酸塩を用いることができる。
 ここで、宿主細胞がアセチルCoA経路とメタノール経路(図1)を有している場合において、組換え細胞に提供され得る一酸化炭素、二酸化炭素、ギ酸、及びメタノールの組み合わせについて説明する。
 アセチルCoA経路によるアセチルCoA合成では、メチルトランスフェラーゼ(Methyltransferase)、Corrinoid iron-sulfur protein (CoFeS-P)、アセチルCoAシンターゼ(Acetyl-CoA synthase、ACS)、及びCODHの作用による、CoA、メチルテトラヒドロ葉酸(methyltetrahydrofolate、[CH3]-THF)、及びCOからのアセチルCoAの合成過程が必須である(Ragsdale SW et al., B.B.R.C. 2008, 1784(12), 1873-1898)。
 一方、Butyribacterium methylotrophicumの培養において、炭素源としてCOやCO2以外にギ酸やメタノールを添加することは、CO代謝すなわち、アセチルCoA経路のMethyl branchにおけるテトラヒドロ葉酸(tetrahydrofolate)含量、及び、CO代謝で必要とされるCODH、ギ酸デヒドロゲナーゼ(formate dehydrogenase、FDH)及びヒドロゲナーゼ(hydrogenase)の活性を増大させることが知られている(Kerby R. et al., J. Bacteriol. 1987, 169(12), 5605-5609)。Eubacterium limosum等においても、嫌気条件下CO2及びメタノールを炭素源とした場合でも、高い増殖を得ることが示されている(Genthner BRS. et al., Appl. Environ. Microbiol., 1987, 53(3), 471-476)。
 これらのメタノールの合成ガス資化性微生物へ影響、及びMoorella thermoacetica(Clostridium thermoaceticum)及びClostridium ljungdahlii等のゲノム解析(Pierce E. et al., Environ. Microbiol. 2008, 10(10), 2550-2573; Durre P. et al., PNAS 2010, 107(29), 13087-13092)の結果から、これらの微生物種では、図1に示されるようなメタノール経路(methanol pathway)がアセチルCoA経路(Wood-Ljungdahl pathway)にメチル基のドナーとして関与することが説明できる。
 また実際に、いくつかのClostridium属菌ではギ酸デヒドロゲナーゼ(FDH)(EC 1.2.1.2/1.2.1.43:Formate+NAD(P)+ ⇔ CO2+NAD(P)H)の正方向の活性(FormateからのCO2形成)が確認されている(Liu CL et al., J. Bacteriol. 1984, 159(1), 375-380; Keamy JJ et al., J. Bacteriol. 1972, 109(1), 152-161)。このことから、これらの株ではCO2やCOが欠乏状態にある場合、部分的にメタノール(CH3OH)やギ酸(HCOOH)からCO2の生成方向の反応が働くことができる(図1)。このことは、前述したCH3OHを加えることによる、ギ酸ヒドロゲナーゼ(formatede hydrogenase)活性、及びCODHの活性増大の現象 (Kerby R et al., J. Bateriol. 1987, 169(12), 5605-5609)からも説明できる。すなわち、ギ酸(HCOOH)もしくはメタノール(CH3OH)を唯一の炭素源としても増殖可能である。
 宿主細胞が、元々、ギ酸デヒドロゲナーゼの正方向の活性を有しない株であっても、変異導入、外来遺伝子導入、もしくはゲノムシャッフリングのような遺伝子改変によって、正方向の活性を付与させればよい。
 以上のことから、宿主細胞がアセチルCoA経路とメタノール経路を有している場合には、以下のガスや液体を用いて、イソプレンを生産することができる。
・CO
・CO2
・CO/H2
・CO2/H2
・CO/CO2/H2
・CO/HCOOH
・CO2/HCOOH
・CO/CH3OH
・CO2/CH3OH
・CO/H2/HCOOH
・CO2/H2/HCOOH
・CO/H2/CH3OH
・CO2/H2/CH3OH
・CO/CO2/H2/HCOOH
・CO/CO2/H2/CH3OH
・CH3OH/H2
・HCOOH/H2
・CH3OH
・HCOOH
 なお、本発明の組換え細胞について、イソプレン生産を目的とせず、専ら細胞を増やす目的で培養する場合には、一酸化炭素や二酸化炭素を炭素源として用いる必要はない。例えば糖類やグリセリンといった他の炭素源を用いて、組換え細胞を培養すればよい。
 以下、実施例をもって本発明をさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
(1)ポプラ由来イソプレン合成酵素遺伝子の単離と発現ベクターの構築
 ポプラ(Populus nigra)の葉由来の全RNAを鋳型とし、配列番号3と配列番号4で表されるプライマーを使用したRT-PCRによって、ポプラ由来イソプレン合成酵素(IspS)をコードする核酸(ポプラ由来IspS遺伝子、配列番号1、GenBank Accession No.: AM410988.1)を増幅した。得られた増幅DNA断片をpT7-Blue T ベクター(タカラバイオ社)へクローニングし、pT7ISを構築した。
 一方、Clostridium/E. coli シャトルベクターpIMP1(Mermelstein LD et al., Bio/technology 1992, 10, 190-195)のBamHI/EcoRI部位に、配列番号5及び配列番号6で表される合成DNAを導入し、クローニングサイトを改良し、pIM1Aを構築した。さらにpIM1AのPstI/BamHI部位に、配列番号7及び配列番号8で表される合成DNAを導入し、pIM1Bを構築した。上記pT7ISをBamHIで切断することにより、IspS遺伝子を回収し、これをpIM1BのBamHI部位へ導入することで、ポプラ由来IspSの発現ベクターpIMBISを構築した。本発現ベクターは、pSOS95(Mingardon F et al., Appi. Environ. Microbiol. 2005, 71(3), 1215-1222)由来のプロモーター及びターミネーター領域をIspS遺伝子の前後に有する。
(2)イソプレン生産能を有する組換え体の作製
 上記(1)で作製したpIMBISで、Bacillus subtilisファージφ3TI由来メチルトランスフェラーゼ遺伝子をコードするpAN1(Mermelstein LD et al., Appl. Environ. Microbiol., 1993, 59(4), 1077-1081)が導入されたE. coli ER2275(NEB社)を形質転換することで、in vivoメチル化を行った。形質転換されたE. coli ER2275からメチル化されたpIMBISを回収した。「BIO/TECHNOLOGY 1992, VOL. 10, 190-195」記載の方法に従い、エレクトロポレーションによって、メチル化されたpIMBISでClostridium ljungdahlii(DSM13528/ATCC55383)を形質転換し、組換え体を取得した。
(3)組換え体によるイソプレン生産
 上記(2)で取得したC. ljungdahliiの組換え体を、37℃、嫌気条件下で培養した。培地として、5μg/mLのClarithromycin及び20μg/mLのThiamphenicolを含有するATCC medium 1754 PETC培地(ただし、フルクトース及び酵母エキスを非含有)を用いた。100mL容の密閉可能なガラス容器に10mLの培地を仕込み、酸素非含有ガスを2.5気圧(絶対圧)のガス圧で充填し、アルミキャップで密封した後、振とう培養した。酸素非含有ガスとして、(a)CO/H2=50/50%、(b)CO/CO2/H2=33/33/34%、(c)CO2/H2=50/50%(いずれも体積比)の3種の混合ガスを用いた。
 コントロールとして、pIMBISに代えてpIMB1が導入された組換え体を用いて、同様に培養した。
 培養終了後の気相成分についてGC/MSで分析した。
 その結果、pIMBISが導入された組換え体では、いずれの混合ガスを用いた場合でも、イソプレンが検出された。一方、コントロールの組換え体では、いずれもイソプレンは検出されなかった。
 以上より、ポプラ由来イソプレン合成酵素遺伝子が導入されたClostridium ljungdahliiの組換え体を培養することで、合成ガスからイソプレンを生産できることが示された。
(1)メバロン酸経路酵素遺伝子とイソプレン合成酵素遺伝子が導入された発現ベクターの構築
 Streptomyces griseolosporeus (Kitasatospora griseola)のゲノムDNAを鋳型とし、配列番号10と配列番号11で表されるプライマーを使用したPCRによって、S. griseolosporeusのメバロン酸経路酵素をコードする核酸(配列番号9)を増幅した。この核酸には、Mevalonate kinase、Mevalonate diphosphate decarboxylase、Phosphomevalonate kinase、IPP isomerase、HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (HMGR)、及びHMG-CoA synthaseをコードする遺伝子クラスターが含まれている。得られた増幅DNA断片をpT7-Blue T ベクターへクローニングし、pT7SMVを構築した。
 一方、実施例1で作製したpT7ISを鋳型とし、配列番号3と配列番号12で表されるプライマーを使用して、ポプラ由来IspS遺伝子を含むDNA断片を増幅した。このDNA断片をpT7-Blue T ベクターへクローニングし、pT7IS2を構築した。
 実施例1で作製したpIM1BのBamHI/EcoRI部位に、配列番号13と配列番号14のオリゴDNAで構成された二本鎖DNAを導入し、pIM1Cを構築した。一方、pT7IS2をBamHIとKpnIで切断してIspS遺伝子を含むDNA断片を回収した。このDNA断片をpIM1CのBamHI/KpnI部位に導入し、pIMCISを構築した。
 さらに、pT7SMVをKpnIで切断し、挿入DNA断片を回収した。このDNA断片をpIMCISのKpnI部位に導入し、pIMCISMVを構築した。pIMCISMVは、ポプラ由来イソプレン合成酵素、及びStreptomyces由来の上記メバロン酸経路酵素群をコードする遺伝子を有し、当該遺伝子がpSOS95(Mingardon F et al., Appl. Envirion. Microbiol. 2005, 71(3), 1215-1222)由来のプロモーター及びターミネーターによる遺伝子発現制御を受ける。
(2)イソプレン生産能を有する組換え体の作製
 実施例1と同様にして、メチル化処理が施されたpIMCISMVでClostridium ljungdahlii(DSM13528/ATCC55383)を形質転換し、組換え体を取得した。
(3)組換え体によるイソプレン生産
 実施例1と同様にして、3種の混合ガスを用いて、pIMCISMVで形質転換した上記組換え体を培養した。
 コントロールとして、pIMCISMVに代えてpIM1Cが導入された組換え体、並びに、実施例1で作製したpIMBISを有する組換え体を同様にして培養した。
 培養終了後の気相成分についてGC/MSで分析した。
 その結果、pIMCISMVが導入された組換え体(本実施例)とpIMBISが導入された組換え体(実施例1)では、いずれの混合ガスを用いた場合でもイソプレンが検出された。イソプレンの生産量に関しては、pIMCISMVが導入された組換え体(本実施例)の方が、pIMBISが導入された組換え体(実施例1)と比較して2~4倍のイソプレンを生産していた。なお、pIM1Cが導入された組換え体では、イソプレンは検出されなかった。
 以上より、イソプレン合成酵素遺伝子に加えてメバロン酸経路酵素遺伝子を導入することにより、組換え体のイソプレンの生産量を増強できることが示された。
(1)コドン改変されたイソペンテニル二リン酸イソメラーゼ(Isopentenyl diphosphate isomerase(IDI))遺伝子及びイソプレン合成酵素(IspS)遺伝子が導入された発現ベクターの構築
 本実施例では、コドン改変された大腸菌由来イソペンテニル二リン酸イソメラーゼ(IDI)遺伝子及びポプラ由来イソプレン合成酵素(IspS)遺伝子の両遺伝子が導入されたClostridium ljungdahliiによるイソプレンの生産を試みた。コドン改変にはClostridium kluyveri (DSM 555)のCodon Usage Table (http://www.kazusa.or.jp/codon/cgi-bin/spsearch.cgi?species=clostridium&c=i)を参考にした。
 実施例1で作製したpIM1AのPstI/BamHI部位に、コドン改変されたIDI-IspSオペロン合成遺伝子(配列番号15、センス鎖で表示)を導入し、発現ベクターpIMAIS1を構築した。同様の方法でコドン改変されていないIDI-IspSオペロン合成遺伝子が導入された発現ベクターpIMAIS2も構築した。
 なお、配列番号15において、塩基番号165~713の部分がコドン改変された大腸菌由来IDI遺伝子、塩基番号780~2567の部分がコドン改変されたポプラ由来IspS遺伝子に相当する。
 コドン改変前の大腸菌由来IDI遺伝子の塩基配列を配列番号16に示す。コドン改変前のポプラ由来IspS遺伝子の塩基配列は配列番号1に示したとおりである。
(2)イソプレン生産能を有する組換え体の作製
 実施例1と同様にして、メチル化処理が施されたpIMAIS1及びpIMAIS2でClostridium ljungdahlii(DSM13528)を形質転換し、組換え体IS1及びIS2をそれぞれ取得した。
(3)組換え体によるイソプレン生産
 実施例1と同様にして、3種の混合ガスを用いて、組換え体IS1及びIS2を培養した。培養終了後の気相成分についてGC/MSで分析した。
 その結果、IS1のイソプレン生産量は、いずれのガス組成においてもIS2のそれの1.8~3.0倍であった。このことから、大腸菌由来IDI及びポプラ由来IspSの両酵素遺伝子のコドンを改変することで、C. ljungdahliiでのイソプレン生産性を向上させることが可能であることがわかった。
 Popilus alba由来イソプレン合成酵素(IspS)と酵母由来isopentenyl diphosphate isomerase (IDI)を発現する組換えC. ljungdahliiの作製と、これによるイソプレンの生成
 C. acetobutylicumのコドン頻度パターンを用いて、Populus alba由来IspS(Genbank accession no. Q50L36)及び酵母由来IDIの遺伝子配列が、コドン最適化された(配列番号17)。Clostridium属における外来遺伝子発現のために、コドン最適化されたIspS(配列番号17)とIDI遺伝子が、Escherichia coli/ClostridiumシャトルベクターpSCi01(配列番号18)にクローニングされた。IspS遺伝子及びIDI遺伝子は、誘導型のテトラサイクリンプロモーターとfdx転写ターミネーター(Nariya H. et al., Appl. Environ. Microbiol., 2011 (77), 1375)の間に挿入された。これにより、anhydrotetracyclineによってIspS及びIDIの発現が誘導される発現ベクターpSCi::idi-isps(配列番号19)が構築された。プラスミドは、大腸菌NEB Express(NEB社)を用いて増幅した。本宿主(DCM-, DAM+)で増幅することによって、プラスミドは正しいメチル化パターンを示し、これによってC. ljungdahliiで効率的に形質転換され得る。
 C. ljungdahlii (DSMZ No. 13528)は、厳密な嫌気条件下でYTF培地(16 g tryptone, 10 g yeast extract, 4 g NaCl, 2 mM Cysteine and 5 g fructose / L, pH 5.9-6)にて培養された。エレクトロポレーションによるpSCi::idi-ispS ベクターのC. ljungdahliiへの導入のために、細胞は40 mM D,L-threonine が補充されたYTF培地にてOD600が0.2-0.3まで増殖された後、SMP緩衝液 (270 mM sucrose, 1 mM MgCl2, 7 mM sodium phosphate, pH 6) で洗浄され、10% DMSOを含有する0.5mLのSMP緩衝液に再懸濁された。エレクトロポレーションには、3μgのpSCi::idi-ispS プラスミドDNAが使用された。BioRad MicropulserTM electroporator system(Bio-Rad Laboratory社)は、以下のようにセッテイングされた;キュベットサイズ 0.1 mm, 電圧 0.625 kV, 抵抗値 600 Ω, 電気容量 25 μF。12時間の1 mLのYTF培地中での再生後、細胞は4 μg/mL clarithromycin 及び4 μg/mL thiamphenicolを含有する25 mLのYTF培地中に移植された。次のステップとして、5-10 mLの細胞懸濁液は、20 mLの融解状態のYTF寒天(1.5% 寒天)と混合し、コロニーが形成されるまで、3-5日間培養された。寒天プレートよりそれぞれのクローンは分離され、YTF培地(4 μg/mL clarithromycin and 4 μg/mL thiamphenicolを含む)にて液体培養された。
 合成ガス発酵を行うために、細胞は、ATCC1754培地(4 μg/mL clarithromycin and 4 μg/mL thiamphenicolを含む)にて、合成ガス(60% CO, 10% CO2, 30% H2)を唯一の炭素源及びエネルギー減とする培地条件下で、200mLの密閉されたガラスボトル内で50 mLの培養液中で、合成ガス2気圧(絶対圧)下で行われた。イソプレン生成の分析は、Gerstel 社製のSPME (solid-phase-micro-extraction) 分析システムが装着されたGC/MS/MS-システムTQ8030(Shimazu社)が使用された。200 mLボトル培養からのサンプリングには、75 μm CAR/PDMS fiber (Supelco≡Sigma Aldrich社) が使用された。サンプリングは22℃下で30分間行った。KAS 6(Gerstel社)へのファイバーインジェクションの後、熱脱着は、200℃で30秒間行われた。Phenomenex社製 A ZB-624 カラム (長さ30 m ; 内径0.25 mm I.D.;フィルム厚み1.4 μm)がガス成分の分離に使用された。GC/MS/MS の分析パラメーターは以下の様に設定された。
Figure JPOXMLDOC01-appb-T000001
 熱脱着後、ファイバーは次の使用までに300℃で30分間処理された。質量分析器はMRM (multiple reaction monitoring)モードで作動された。イソプレンには68.1 m/z - 67.0 m/z 及び 67.1 m/z - 41.0 m/zの2種のトランジションが選択され、アルゴンがCID(collision induced dissociation)ガスとして使用された。イソプレン標準品としてイソプレン(Sigma Aldrich 社; cat no. 19551 :純度99%)が使用された。
 図2に示すように、イソプレン標準品は、2.7分のリテンションタイム、及び特徴的な68.1 m/z-67.0 m/z 及び 67.1 m/z-41.0 m/zのトランジションパターンを示した。合成ガス発酵開始48時間後、ヘッドスペースは採取され、GC/MS/MSによって分析された。図3はpSCi01プラスミドを保持するC. ljungdahliiでのGC/MS/MS分析の結果を示す。図4はpSCi::idi-ispSプラスミドを保持するC. ljungdahliiでのGC/MS/MS分析の結果を示す。
 以上の結果より、pSCi::idi-ispSを保持するC. ljungdahliiは、イソプレンを生成することがわかった。
 Populus alba由来IspS、Escherichia coli由来IDI、及び微生物由来MVA(mevalonate)経路遺伝子が導入された組換えC. ljungdahliiの作製と、これによるイソプレンの生成
 プラスミドpSCi::MVA-IspS-idi のイソプレン合成遺伝子クラスターの設計を、図5及び配列番号20に示した。コドン最適化された各遺伝子のaccession number、略語、及び由来生物は以下の表に示した。
Figure JPOXMLDOC01-appb-T000002
 MVA-IspS-idi遺伝子クラスターは、誘導型テトラサイクリンプロモーター及びfdx転写ターミネーターの間に挿入されることにより、anhydrotetracyclineによる誘導発現系が構築された。構築された発現ベクターに由来する導入遺伝子の正しい発現は、標的されたプロテオミクスによって評価された。プラスミドは大腸菌株 NEB Express(NEB社)において増幅された。
 C. ljungdahlii (DSMZ No. 13528)は、厳密な嫌気条件下でYTF培地(16 g tryptone, 10 g yeast extract, 4 g NaCl, 2 mM Cysteine and 5 g fructose / L, pH 5.9-6)にて培養された。エレクトロポレーションによるpSCi:: MVA-IspS-idi ベクターのC. ljungdahliiへの導入のために、細胞は40 mM D,L-threonine が補充されたYTF培地にてOD600が0.2-0.3まで増殖された後、SMP緩衝液 (270 mM sucrose, 1 mM MgCl2, 7 mM sodium phosphate, pH 6) で洗浄され、10%のDMSOを含有する0.5mLのSMP緩衝液に再懸濁された。エレクトロポレーションには3 μgのpSCi:: MVA-IspS-idiプラスミドDNAが使用された。BioRad MicropulserTM electroporator system (Bio-Rad Laboratory社)は以下のようにセッテイングされた;キュベットサイズ 0.1 mm, 電圧 0.625 kV, 抵抗値 600 Ω, 電気容量 25 μF。12時間の1 mLのYTF培地中での再生後、細胞は4 μg/mL clarithromycin 及び4 μg/mL thiamphenicolを含有する25 mLのYTF培地中に移植された。次のステップとして、5-10 mLの細胞懸濁液は、20 mLの融解状態のYTF寒天(1.5% 寒天)と混合し、コロニーが形成されるまで、3-5日間培養された。寒天プレートよりそれぞれのクローンは分離され、YTF培地(4 μg/mL clarithromycin and 4 μg/mL thiamphenicolを含む)にて液体培養された。
 合成ガス発酵を行うために、細胞は、ATCC1754培地(4 μg/mL clarithromycin and 4 μg/mL thiamphenicolを含む)にて、合成ガス(60% CO, 10% CO2, 30% H2)を唯一の炭素源及びエネルギー源とする培地条件下で、200 mLの密閉されたガラスボトル内で50 mLの培養液中で、合成ガス2気圧(絶対圧)下で行われた。合成ガス発酵開始48時間後、ヘッドスペースは実施例4と同様の方法で採取され、実施例4と同一条件下でGC/MS/MSによって分析された。
 図6に示すように、pSCi::MVA-idi-ispS ベクターを保持するC. ljungdahliiがイソプレンを生成していることが示された。
 ATCC medium: 1754 PETC培地の組成を以下に示す。
NH4Cl                 1.0 g
KCl                  0.1 g
MgSO4・7H2O               0.2 g
NaCl                  0.8 g
KH2PO4                 0.1 g
CaCl2・2H2O              20.0 mg
Yeast extract             1.0 g
Trace Elements (下記参照)       10.0 mL
Wolfe's Vitamin Solution (下記参照)  10.0 mL
NaHCO3                 2.0 g
Reducing Agent (下記参照)       10.0 mL
Distilled water           980.0 mL
Final pH 5.9
(Trace Elements)
Nitrilotriacetic acid       2.0 g
MnSO4 H2O              1.0 g
Fe(SO4)2(NH4)2・6H2O         0.8 g
CoCl2・6H2O             0.2 g
ZnSO4・7H2O             0.2 mg
CuCl2・2H2O            20.0 mg
NiCl2・ 6H2O            20.0 mg
Na2MoO4・2H2O           20.0 mg
Na2SeO4              20.0 mg
Na2WO4              20.0 mg
Distilled water          1.0 L
(Wolfe's Vitamin Solution)
滅菌されたready-to-use溶液としてATCCより入手可能(Vitamin Supplement, catalog no. MD-VS)
Biotin              2.0 mg
Folic acid            2.0 mg
Pyridoxine hydrochloride    10.0 mg
Thiamine・HCl          5.0 mg
Riboflavin            5.0 mg
Nicotinic acid          5.0 mg
Calcium D-(+)-pantothenate    5.0 mg
Vitamin B12           0.1 mg
p-Aminobenzoic acid       5.0 mg
Thioctic acid          5.0 mg
Distilled water         1.0 L
(Reducing Agent)
NaOH                0.9 g
L-Cysteine・HCl          4.0 g
Na2S・9H2O             4.0 g
Distilled water         100.0 mL

Claims (20)

  1.  非メバロン酸経路によるイソペンテニル二リン酸合成能を有する宿主細胞に、イソプレン合成酵素をコードする核酸が導入されてなり、当該核酸が前記宿主細胞内で発現し、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能である組換え細胞。
  2.  メチルテトラヒドロ葉酸、一酸化炭素、及びCoAからアセチルCoAを合成する機能を有する宿主細胞に、イソプレン合成酵素をコードする核酸が導入されてなり、当該核酸が前記宿主細胞内で発現し、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能である組換え細胞。
  3.  一酸化炭素脱水素酵素を有するものである請求項1又は2に記載の組換え細胞。
  4.  前記宿主細胞は、Clostridium属細菌又はMoorella属細菌である請求項1~3のいずれかに記載の組換え細胞。
  5.  メバロン酸経路で作用する酵素群をコードする核酸がさらに導入され、メバロン酸経路によるイソペンテニル二リン酸合成能をさらに有する請求項1~4のいずれかに記載の組換え細胞。
  6.  前記メバロン酸経路は、酵母のメバロン酸経路である請求項5に記載の組換え細胞。
  7.  前記メバロン酸経路は、原核生物のメバロン酸経路である請求項5に記載の組換え細胞。
  8.  前記メバロン酸経路は、放線菌のメバロン酸経路である請求項5に記載の組換え細胞。
  9.  非メバロン酸経路で作用する少なくとも1つの酵素をコードする核酸がさらに導入され、当該核酸が宿主細胞内で発現する請求項1~8のいずれかに記載の組換え細胞。
  10.  前記非メバロン酸経路は、宿主細胞以外の非メバロン酸経路である請求項9に記載の組換え細胞。
  11.  前記イソプレン合成酵素は、植物由来のものである請求項1~10のいずれかに記載の組換え細胞。
  12.  前記イソプレン合成酵素をコードする核酸は、下記(a)、(b)又は(c)のタンパク質をコードするものである請求項1~11のいずれかに記載の組換え細胞。
    (a)配列番号2で表されるアミノ酸配列からなるタンパク質、
    (b)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
    (c)配列番号2で表されるアミノ酸配列と60%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。
  13.  宿主細胞に導入された核酸は、コドンが改変されたものである請求項1~12のいずれかに記載の組換え細胞。
  14.  宿主細胞に導入された核酸は、宿主細胞のゲノムに組み込まれている請求項1~13のいずれかに記載の組換え細胞。
  15.  宿主細胞に導入された核酸は、プラスミドに組み込まれている請求項1~13のいずれかに記載の組換え細胞。
  16.  請求項1~15のいずれかに記載の組換え細胞を、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物を炭素源として用いて培養し、当該組換え細胞にイソプレンを生産させるイソプレンの生産方法。
  17.  請求項1~15のいずれかに記載の組換え細胞に、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物を接触させ、当該組換え細胞に前記C1化合物からイソプレンを生産させるイソプレンの生産方法。
  18.  一酸化炭素と水素とを主成分とするガス、あるいは二酸化炭素と水素とを主成分とするガスを、前記組換え細胞に提供する請求項16又は17に記載のイソプレンの生産方法。
  19.  組換え細胞はClostridium属細菌又はMoorella属細菌を宿主細胞とするものであり、組換え細胞の細胞外に放出されたイソプレンを回収する請求項16~18のいずれかに記載のイソプレンの生産方法。
  20.  二酸化炭素に代えて、重炭酸塩を用いる請求項16~19のいずれかに記載のイソプレンの生産方法。
PCT/JP2013/078558 2012-10-23 2013-10-22 組換え細胞、並びに、イソプレンの生産方法 WO2014065271A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/437,034 US9783828B2 (en) 2012-10-23 2013-10-22 Recombinant cell, and method for producing isoprene
EP13848830.9A EP2913392B1 (en) 2012-10-23 2013-10-22 Recombinant cell and production method for isoprene
KR1020157010718A KR102056250B1 (ko) 2012-10-23 2013-10-22 재조합 세포, 및 이소프렌의 생산 방법
CN201380062508.8A CN104919038A (zh) 2012-10-23 2013-10-22 重组细胞以及异戊二烯的生产方法
JP2014543301A JP6375227B2 (ja) 2012-10-23 2013-10-22 組換え細胞、並びに、イソプレンの生産方法
CA2886137A CA2886137C (en) 2012-10-23 2013-10-22 Recombinant cell, and method for producing isoprene
EP23169866.3A EP4234704A3 (en) 2012-10-23 2013-10-22 Recombinant cell and production method for isoprene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012233571 2012-10-23
JP2012-233571 2012-10-23
JP2013-132423 2013-06-25
JP2013132423 2013-06-25

Publications (1)

Publication Number Publication Date
WO2014065271A1 true WO2014065271A1 (ja) 2014-05-01

Family

ID=50544650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078558 WO2014065271A1 (ja) 2012-10-23 2013-10-22 組換え細胞、並びに、イソプレンの生産方法

Country Status (7)

Country Link
US (1) US9783828B2 (ja)
EP (2) EP4234704A3 (ja)
JP (1) JP6375227B2 (ja)
KR (1) KR102056250B1 (ja)
CN (2) CN104919038A (ja)
CA (1) CA2886137C (ja)
WO (1) WO2014065271A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059314A (ja) * 2014-09-17 2016-04-25 積水化学工業株式会社 組換え細胞、並びに、有機化合物の生産方法
JP2016059313A (ja) * 2014-09-17 2016-04-25 積水化学工業株式会社 組換え細胞、並びに、イソプレン又は環式イソプレノイドの生産方法
WO2017094053A1 (ja) * 2015-11-30 2017-06-08 積水化学工業株式会社 組換え細胞、組換え細胞の製造方法、並びに、有機化合物の生産方法
WO2018079619A1 (ja) * 2016-10-28 2018-05-03 積水化学工業株式会社 組換え細胞、並びに、イソプレン又はテルペンの生産方法
WO2018155272A1 (ja) 2017-02-27 2018-08-30 積水化学工業株式会社 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法
JP2018153152A (ja) * 2017-03-21 2018-10-04 積水化学工業株式会社 有機化合物生産システム、並びに、有機化合物の生産方法
CN114480242A (zh) * 2022-03-04 2022-05-13 中国科学院合肥物质科学研究院 一种用于MK-n生产的大肠杆菌工程菌及其构建方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2895094C (en) * 2012-12-27 2021-11-16 Sekisui Chemical Co., Ltd. Recombinant cell and method for producing isoprene
CN106554933A (zh) * 2015-09-30 2017-04-05 中国科学院上海生命科学研究院 异戊二烯基因工程生产菌及其应用
WO2018064105A1 (en) * 2016-09-30 2018-04-05 Invista North America S.A.R.L. Methods, synthetic hosts and reagents for the biosynthesis of isoprene and derivatives thereof
WO2019006257A1 (en) 2017-06-30 2019-01-03 Invista North America .S.A.R.L. METHODS, SYNTHETIC HOSTS AND REAGENTS FOR HYDROCARBON BIOSYNTHESIS
WO2019006255A1 (en) * 2017-06-30 2019-01-03 Invista North America S.A.R.L. METHODS, MATERIALS, SYNTHETIC HOSTS AND REAGENTS FOR HYDROCARBON BIOSYNTHESIS AND DERIVATIVES
US11505809B2 (en) 2017-09-28 2022-11-22 Inv Nylon Chemicals Americas Llc Organisms and biosynthetic processes for hydrocarbon synthesis
CN109097378B (zh) * 2018-08-13 2021-08-03 中国科学院青岛生物能源与过程研究所 一种异戊二烯合酶和其编码基因、表达载体、工程菌以及生产异戊二烯的方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505841A (ja) 2007-12-13 2011-03-03 ダニスコ・ユーエス・インク イソプレンを産出する組成物及び方法
JP2011509691A (ja) 2008-01-22 2011-03-31 ジェノマティカ, インコーポレイテッド 合成ガスまたは他のガス状炭素源およびメタノールを利用するための方法および生物体
JP2011512869A (ja) * 2008-03-12 2011-04-28 ランザテク・ニュージーランド・リミテッド 微生物によるアルコール製造プロセス
JP2011518564A (ja) 2008-04-23 2011-06-30 ダニスコ・ユーエス・インク 改良された微生物によるイソプレン産出用のイソプレンシンターゼ変異体
JP2011524933A (ja) * 2008-06-20 2011-09-08 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー ガス化発酵により二酸化炭素をアルコールに隔離する方法
WO2012058494A2 (en) * 2010-10-27 2012-05-03 Danisco Us Inc. Isoprene synthase variants for improved production of isoprene
JP2012147682A (ja) * 2011-01-17 2012-08-09 Daicel Corp 気体資源から有機物を製造する方法、及び装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8592190B2 (en) 2009-06-11 2013-11-26 Ineos Bio Limited Methods for sequestering carbon dioxide into alcohols via gasification fermentation
EP2582649A1 (en) * 2010-06-17 2013-04-24 Danisco US Inc. Fuel compositions comprising isoprene derivatives
CA2807558A1 (en) * 2010-08-06 2012-02-09 Danisco Us Inc. Production of isoprene under neutral ph conditions
JP6101275B2 (ja) 2011-10-27 2017-03-22 ダニスコ・ユーエス・インク イソプレン産生時の溶解度が向上されたイソプレン合成酵素変異体
US20130323820A1 (en) * 2012-06-01 2013-12-05 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2013181647A2 (en) * 2012-06-01 2013-12-05 Danisco Us Inc. Compositions and methods of producing isoprene and/or industrrial bio-products using anaerobic microorganisms

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505841A (ja) 2007-12-13 2011-03-03 ダニスコ・ユーエス・インク イソプレンを産出する組成物及び方法
JP2011509691A (ja) 2008-01-22 2011-03-31 ジェノマティカ, インコーポレイテッド 合成ガスまたは他のガス状炭素源およびメタノールを利用するための方法および生物体
JP2011512869A (ja) * 2008-03-12 2011-04-28 ランザテク・ニュージーランド・リミテッド 微生物によるアルコール製造プロセス
JP2011518564A (ja) 2008-04-23 2011-06-30 ダニスコ・ユーエス・インク 改良された微生物によるイソプレン産出用のイソプレンシンターゼ変異体
JP2011524933A (ja) * 2008-06-20 2011-09-08 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー ガス化発酵により二酸化炭素をアルコールに隔離する方法
WO2012058494A2 (en) * 2010-10-27 2012-05-03 Danisco Us Inc. Isoprene synthase variants for improved production of isoprene
JP2012147682A (ja) * 2011-01-17 2012-08-09 Daicel Corp 気体資源から有機物を製造する方法、及び装置

Non-Patent Citations (37)

* Cited by examiner, † Cited by third party
Title
BIO/TECHNOLOGY, vol. 10, 1992, pages 190 - 195
BRAUS-STROMEYER SA ET AL., J. BACTERIOL., vol. 179, no. 22, 1997, pages 7197 - 7200
DESAI RP ET AL., APPL. ENVIRON. MICROBIOL., vol. 65, no. 3, 1999, pages 936 - 945
DONG H. ET AL., PLOS ONE, vol. 5, no. 2, 2010, pages E9038
DURRE P. ET AL., PNAS, vol. 107, no. 29, 2010, pages 13087 - 13092
GENTHNER BRS. ET AL., APPL. ENVIRON. MICROBIOL., vol. 53, no. 3, 1987, pages 471 - 476
HAMANO Y. ET AL., BIOSCI. BIOTECHNOL. BIOCHEM., vol. 65, no. 7, 2001, pages 1627 - 35
KEAMY JJ ET AL., J. BACTERIOL., vol. 109, no. 1, 1972, pages 152 - 161
KERBY R ET AL., J. BATERIOL., vol. 169, no. 12, 1987, pages 5605 - 5609
KERBY R. ET AL., J. BACTERIOL., vol. 169, no. 12, 1987, pages 5605 - 5609
KINGGM ET AL., APPL. ENVIRON. MICROBIOL., vol. 69, no. 12, 2003, pages 7257 - 7265
KOPKE M. ET AL., APPL. ENVIRON. MICROBIOL., vol. 77, no. 15, 2011, pages 5467 - 5475
LEE J ET AL., APPL. ENVIRON. MICROBIOL., vol. 78, no. 5, 2012, pages 1416 - 1423
LIU CL ET AL., J. BACTERIOL., vol. 159, no. 1, 1984, pages 375 - 380
LOMBARD J. ET AL., MOL. BIOL. EVOL., vol. 28, no. 1, 2010, pages 87 - 99
LORITE MJ. ET AL., APPL. ENVIRON. MICROBIOL., vol. 66, no. 5, 2000, pages 1871 - 1876
LYND, LH. ET AL., J. BACTERIOL., vol. 153, no. 3, 1983, pages 1415 - 1423
MERMELSTEIN LD ET AL., APPL. ENVIRON. MICROBIOL., vol. 59, no. 4, 1993, pages 1077 - 1081
MERMELSTEIN LD ET AL., APPLY. ENVIRON. MICROBIOL., vol. 59, no. 4, 1993, pages 1077 - 1081
MERMELSTEIN LD ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 190 - 195
MINGARDON F ET AL., APPI. ENVIRON. MICROBIOL., vol. 71, no. 3, 2005, pages 1215 - 1222
MINGARDON F ET AL., APPL. ENVIRION. MICROBIOL., vol. 71, no. 3, 2005, pages 1215 - 1222
NARIYA H. ET AL., APPL. ENVIRON. MICROBIOL., 2011, pages 1375
PERRET S ET AL., J. BACTERIOL., vol. 186, no. 1, 2004, pages 253 - 257
PIERCE E. ET AL., ENVIRON. MICROBIOL., vol. 10, no. 10, 2008, pages 2550 - 2573
PIERCE EG. ET AL., ENVIRON. MICROBIOL., vol. 10, 2008, pages 2550 - 2573
PROJAN SJ ET AL., J. BACTERIOL., vol. 169, no. 11, 1987, pages 5131 - 5139
RAGSDALE SW ET AL., B.B.R.C., vol. 1784, no. 12, 2008, pages 1873 - 1898
RAYNAUD C. ET AL., PNAS, vol. 100, no. 9, 2003, pages 5010 - 5015
ROH H. ET AL., J. BACTERIOL., vol. 193, no. 1, 2011, pages 307 - 308
SCHUBEL, U. ET AL., J. BACTERIOL., 1995, pages 2197 - 2203
SIVY TL. ET AL., BIOCHEM. BIOPHYS. RES. COMMU., vol. 294, no. 1, 2002, pages 71 - 5
SLEPOVA TV. ET AL., INTER. J. SYS. EVOL. MICROBIOL., vol. 56, 2006, pages 797 - 800
SMEDS A ET AL., DNA SEQ., vol. 12, no. 3, 2001, pages 187 - 190
TAKAGI M. ET AL., J. BACTERIOL., vol. 182, no. 15, 2000, pages 4153 - 7
UFFEN RL, J. BACTERIOL., vol. 155, no. 3, 1983, pages 956 - 965
YANG, J. ET AL.: "Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli", BIORESOURCE TECHNOLOGY, vol. 104, 20 October 2011 (2011-10-20), pages 642 - 647, XP028351244 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059314A (ja) * 2014-09-17 2016-04-25 積水化学工業株式会社 組換え細胞、並びに、有機化合物の生産方法
JP2016059313A (ja) * 2014-09-17 2016-04-25 積水化学工業株式会社 組換え細胞、並びに、イソプレン又は環式イソプレノイドの生産方法
WO2017094053A1 (ja) * 2015-11-30 2017-06-08 積水化学工業株式会社 組換え細胞、組換え細胞の製造方法、並びに、有機化合物の生産方法
WO2018079619A1 (ja) * 2016-10-28 2018-05-03 積水化学工業株式会社 組換え細胞、並びに、イソプレン又はテルペンの生産方法
WO2018155272A1 (ja) 2017-02-27 2018-08-30 積水化学工業株式会社 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法
JPWO2018155272A1 (ja) * 2017-02-27 2019-12-19 積水化学工業株式会社 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法
US11261450B2 (en) 2017-02-27 2022-03-01 Sekisui Chemical Co., Ltd. Recombinant cell, method for producing recombinant cell, and method for producing isoprene or terpene
JP7397665B2 (ja) 2017-02-27 2023-12-13 積水化学工業株式会社 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法
JP2018153152A (ja) * 2017-03-21 2018-10-04 積水化学工業株式会社 有機化合物生産システム、並びに、有機化合物の生産方法
CN114480242A (zh) * 2022-03-04 2022-05-13 中国科学院合肥物质科学研究院 一种用于MK-n生产的大肠杆菌工程菌及其构建方法
CN114480242B (zh) * 2022-03-04 2023-04-25 中国科学院合肥物质科学研究院 一种用于MK-n生产的大肠杆菌工程菌及其构建方法

Also Published As

Publication number Publication date
EP2913392A1 (en) 2015-09-02
US9783828B2 (en) 2017-10-10
EP4234704A3 (en) 2024-01-03
KR20150072410A (ko) 2015-06-29
CA2886137C (en) 2021-10-19
JP6375227B2 (ja) 2018-08-15
JPWO2014065271A1 (ja) 2016-09-08
KR102056250B1 (ko) 2019-12-16
US20150284742A1 (en) 2015-10-08
CA2886137A1 (en) 2014-05-01
EP2913392B1 (en) 2023-06-07
EP4234704A2 (en) 2023-08-30
CN104919038A (zh) 2015-09-16
CN111621453A (zh) 2020-09-04
EP2913392A4 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP6375227B2 (ja) 組換え細胞、並びに、イソプレンの生産方法
CA2995872C (en) Recombinant clostridium bacterium and uses thereof in acetone production
JP7304859B2 (ja) エチレングリコールの生物生産のための微生物および方法
CA2874832C (en) Recombinant microorganisms and uses therefor
AU2011318676B2 (en) Production of butanol from carbon monoxide by a recombinant microorganism
JP5395063B2 (ja) イソプロパノール生産能を有するコリネ型細菌の形質転換体
Wang et al. Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2, 3-butanediol formation in Klebsiella pneumoniae
JP6862349B2 (ja) 発酵経路を経由するフラックスの増大を示す組み換え微生物体
US9365868B2 (en) Fermentation process for producing isopropanol using a recombinant microorganism
US9834795B2 (en) Recombinant microorganisms and uses therefor
BR112021011629A2 (pt) Via de coprodução de derivados de 3-hp e acetil-coa a partir de malonato semialdeído
JP5252940B2 (ja) コリネ型細菌形質転換体及びそれを用いるブタノールの製造方法
JP5243748B2 (ja) ブタノール生産能を有する形質転換体
EP3385378A1 (en) Recombinant cell, method for producing recombinant cell, and method for producing organic compound
JP2016059313A (ja) 組換え細胞、並びに、イソプレン又は環式イソプレノイドの生産方法
JP6470532B2 (ja) 組換え細胞、並びに、有機化合物の生産方法
JP6325862B2 (ja) 組換え細胞、並びに、環式モノテルペンの生産方法
JP6309304B2 (ja) 組換え細胞、並びに、1,4−ブタンジオールの生産方法
JP2014161252A (ja) 組換え細胞
JP2017055702A (ja) 組換え細胞、組換え細胞の製造方法、並びに、ショウブノールの生産方法
NZ614459B2 (en) Recombinant microorganisms and uses therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2886137

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014543301

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14437034

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157010718

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013848830

Country of ref document: EP