WO2014065271A1 - 組換え細胞、並びに、イソプレンの生産方法 - Google Patents
組換え細胞、並びに、イソプレンの生産方法 Download PDFInfo
- Publication number
- WO2014065271A1 WO2014065271A1 PCT/JP2013/078558 JP2013078558W WO2014065271A1 WO 2014065271 A1 WO2014065271 A1 WO 2014065271A1 JP 2013078558 W JP2013078558 W JP 2013078558W WO 2014065271 A1 WO2014065271 A1 WO 2014065271A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- isoprene
- recombinant cell
- nucleic acid
- recombinant
- mevalonate pathway
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/007—Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0008—Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/07—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with an iron-sulfur protein as acceptor (1.2.7)
- C12Y102/07004—Carbon-monoxide dehydrogenase (ferredoxin) (1.2.7.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/99—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with other acceptors (1.2.99)
- C12Y102/99002—Carbon-monoxide dehydrogenase (acceptor) (1.2.99.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/03—Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
- C12Y402/03027—Isoprene synthase (4.2.3.27)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the present invention relates to a recombinant cell capable of producing isoprene from a specific C1 compound such as carbon monoxide, and a method for producing isoprene using the recombinant cell.
- Isoprene is a monomer raw material for synthetic polyisoprene, and is an especially important material in the tire industry.
- development and commercialization of technology for converting from the production process of basic chemical products that depend on petroleum to the production process from renewable resources such as plant resources has been steadily progressing.
- isoprene for example, a production technique using recombinant Escherichia coli using sugar as a raw material is known (Patent Documents 1 and 2).
- Synthesis gas (Synthesis gas, Syngas) is a mixed gas composed mainly of carbon monoxide, carbon dioxide, and hydrogen, which is efficiently obtained from waste, natural gas, and coal by the action of a metal catalyst at high temperature and high pressure. It is.
- Synthesis gas Synthesis gas
- a process has been developed for producing liquid chemicals such as methanol, formic acid and formaldehyde at low cost and in large quantities.
- Patent Document 3 discloses a technique for producing isopropanol using a recombinant Escherichia coli. In this technique, a plurality of CO metabolizing enzyme genes are introduced into Escherichia coli to impart syngas assimilation ability, and isopropanol is produced from syngas. However, this technique does not produce isoprene.
- an object of the present invention is to provide a series of techniques capable of producing isoprene from synthesis gas or the like.
- nucleic acid encoding isoprene synthase is introduced into a host cell having the ability to synthesize isopentenyl diphosphate by a non-mevalonate pathway,
- the present invention relates to a recombinant cell capable of producing isoprene.
- the recombinant cell of the present invention is obtained by introducing a nucleic acid encoding isoprene synthase into a host cell having “the ability to synthesize isopentenyl diphosphate by a non-mevalonate pathway”, and the nucleic acid is a host cell. Expressed within.
- isoprene can be produced from at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol.
- isopentenyl diphosphate (IPP) can be synthesized from the aforementioned C1 compound, and further, the synthesized IPP can be converted to isoprene.
- isoprene can be produced from the aforementioned C1 compound.
- isoprene can be produced from synthesis gas containing carbon monoxide and carbon dioxide.
- the biosynthetic pathway of isoprenoids is roughly divided into a mevalonate pathway (also referred to as MVA pathway) and a non-mevalonate pathway (also referred to as MEP pathway).
- the non-mevalonate pathway is a pathway that finally produces isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP) from glyceraldehyde 3-phosphate and pyruvate.
- IPP isopentenyl diphosphate
- DMAPP dimethylallyl diphosphate
- the host cell used in the present invention has an ability to synthesize isopentenyl diphosphate by a non-mevalonate pathway.
- a nucleic acid encoding isoprene synthase is introduced into a host cell having a function of synthesizing acetyl CoA from methyltetrahydrofolate, carbon monoxide, and CoA, and the nucleic acid is converted into the host cell.
- a recombinant cell that is capable of producing isoprene from at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol.
- the recombinant cell of the present invention is obtained by introducing a nucleic acid encoding isoprene synthase into a host cell having “a function of synthesizing acetyl CoA from methyltetrahydrofolate, carbon monoxide, and CoA”, and The nucleic acid is expressed in the host cell.
- isoprene can be produced from at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol.
- IPP can be synthesized from the above-mentioned C1 compound, and further, the synthesized IPP can be converted to isoprene.
- isoprene can be produced from the aforementioned C1 compound.
- isoprene can be produced from synthesis gas containing carbon monoxide and carbon dioxide.
- An anaerobic microorganism having an acetyl CoA pathway (Wood-Ljungdahl pathway) and a methanol pathway (Methanol pathway) shown in FIG. 1 is used as a cell having “function of synthesizing acetyl CoA from methyltetrahydrofolate, carbon monoxide, and CoA”. Is exemplified.
- it has carbon monoxide dehydrogenase.
- Carbon monoxide dehydrogenase (EC 1.2.99.2/1.2.7.4) (carbon monoxide dehydrogenase, CODH) generates carbon dioxide and protons from carbon monoxide and water And the reverse reaction, the action of generating carbon monoxide and water from carbon dioxide and protons.
- Carbon monoxide dehydrogenase is one of the enzymes that acts in the acetyl-CoA pathway (FIG. 1).
- the host cell is a Clostridium bacterium or a Moorella bacterium.
- a nucleic acid encoding an enzyme group that acts in the mevalonate pathway is further introduced, and further has an ability to synthesize isopentenyl diphosphate by the mevalonate pathway.
- IPP serving as a substrate for isoprene synthase is synthesized from both the mevalonate pathway and the non-mevalonate pathway, and the supply of IPP is performed efficiently.
- the recombinant cell of the present invention has a higher isoprene-producing ability.
- the mevalonate pathway is a yeast mevalonate pathway.
- the mevalonate pathway is a prokaryotic mevalonate pathway.
- the mevalonate pathway is an actinomycete mevalonate pathway.
- a nucleic acid encoding at least one enzyme acting in the non-mevalonate pathway is further introduced and the nucleic acid is expressed in the host cell.
- Such a configuration enhances the ability to synthesize IPP through the non-mevalonate pathway.
- the recombinant cell of the present invention has a higher isoprene-producing ability.
- the non-mevalonate pathway is a non-mevalonate pathway other than host cells.
- the isoprene synthase is derived from a plant.
- the nucleic acid encoding the isoprene synthase encodes the following protein (a), (b) or (c).
- the nucleic acid introduced into the host cell has a modified codon.
- the introduced nucleic acid (foreign gene) can be more efficiently expressed in the host cell.
- the nucleic acid introduced into the host cell is integrated into the genome of the host cell.
- the nucleic acid introduced into the host cell is incorporated into a plasmid.
- the recombinant cell is cultured using at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol as a carbon source, and the recombinant cell is cultured.
- This is a method for producing isoprene in which cells produce isoprene.
- the present invention relates to a method for producing isoprene.
- isoprene is produced in the recombinant cells by culturing the above-described recombinant cells using at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol as a carbon source.
- C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol
- isoprene can be produced from synthesis gas containing carbon monoxide and carbon dioxide, formic acid, and methanol.
- the recombinant cell is contacted with at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol, and the recombinant cell is contacted with the C1 compound.
- Isoprene is produced from the isoprene.
- the above-described recombinant cell is contacted with at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol, and isoprene is produced from the C1 compound.
- isoprene can be produced from synthesis gas containing carbon monoxide and carbon dioxide, formic acid and methanol.
- a gas mainly composed of carbon monoxide and hydrogen or a gas mainly composed of carbon dioxide and hydrogen is provided to the recombinant cell.
- Providing gas to recombinant cells means giving gas to recombinant cells as a carbon source or bringing gas into contact with recombinant cells.
- the recombinant cells are those having Clostridium bacteria or Moorella bacteria as host cells, and isoprene released outside the recombinant cells is recovered.
- Bicarbonate may be used instead of carbon dioxide.
- isoprene can be produced from carbon monoxide, carbon dioxide, formic acid, or methanol.
- isoprene from synthesis gas containing carbon monoxide and carbon dioxide.
- isoprene of the present invention can be produced from carbon monoxide, carbon dioxide, formic acid, or methanol.
- a recombinant cell according to one aspect of the present invention is obtained by introducing a nucleic acid encoding an isoprene synthase into a host cell having the ability to synthesize isopentenyl diphosphate (IPP) by a non-mevalonate pathway. It is expressed in the host cell and can produce isoprene from at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol.
- IPP isopentenyl diphosphate
- the host cell in the recombinant cell of this aspect has “IPP synthesis ability by non-mevalonate pathway”.
- IPP synthesis route by non-mevalonate pathway.
- MVA pathway mevalonate pathway
- MEP pathway non-mevalonate pathway
- the mevalonate pathway is provided by eukaryotes and starts from acetyl CoA.
- Enzymes acting in the mevalonate pathway include, in order from the upstream, acetyl CoA acetyltransferase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, 5-phosphomevalonate kinase, diphosphomevalonate decarboxylase, isopentenyl diphosphate isomerase Is mentioned.
- the non-mevalonate pathway is provided by prokaryotes, chloroplasts, and plastids, and starts with glyceraldehyde 3-phosphate and pyruvate.
- Enzymes acting in the non-mevalonate pathway include, in order from the upstream, DOXP synthase, DOXP reductoisomerase, 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase, 4-diphosphoditidyl-2-C-methyl-D- Examples include erythritol kinase, 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, HMB-PP synthase, and HMB-PP reductase.
- a recombinant cell is a nucleic acid encoding isoprene synthase introduced into a host cell having a function of synthesizing acetyl CoA from methyltetrahydrofolate, carbon monoxide, and CoA.
- the nucleic acid is expressed in the host cell, and isoprene can be produced from at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol.
- the recombinant cell of the present invention preferably further has carbon monoxide dehydrogenase (CODH).
- CODH carbon monoxide dehydrogenase
- a cell that grows mainly by carbon monoxide metabolism, that is, by the function of carbon monoxide dehydrogenase to generate carbon dioxide and protons from carbon monoxide and water is preferable.
- Examples of such cells include anaerobic microorganisms having an acetyl-CoA pathway (Wood-Ljungdahl pathway) and a methanol pathway (Methanol pathway) shown in FIG.
- the anaerobic microorganisms include Clostridium ljungdahlii, Clostridium autoethanogenumn, Clostridium carboxidivorans, Clostridium ragsdalei (Kopke M. et al., Appl. Environ. Microbiol. 2011, 77 (15), 5467-5475), Moorella thermoacetica (same as Clostridium thermoacetic ) (Pierce EG. Et al., Environ. Microbiol. 2008, 10, 2550-2573) and the like, typical examples include Clostridium bacteria or Moorella bacteria.
- Clostridium bacteria have established host-vector systems and culture methods and are suitable as host cells in the present invention.
- the above five kinds of Clostridium bacteria or Moorella bacteria are known as representative examples of syngas assimilating microorganisms.
- Clostridium bacteria and Moorella bacteria Carboxydocella sporoducens sp. Nov. (Slepova TV. Et al., Inter. J. Sys. Evol. Microbiol. 2006, 56, . Bacteriol. 1983, 155 (3), 956-965), Eubacterium limosum (Roh H. et al., J. Bacteriol. 2011, 193 (1), 307-308), Butyribacterium methylotrophicum (Lynd, LH. Et al Bacteriol. 1983, 153 (3), 1415-1423) can be used as host cells.
- the above-mentioned bacterial growth and CODH activity are all oxygen-sensitive, but oxygen-insensitive CODH is also known.
- Oligotropha carboxidovorans Schott al., J. Bacteriol., 1995, 2197-2203
- Bradyrhizobium japonicum Lirite MJ. Et al., Appl. Environ. Microbiol., 2000, 66 (5), 1871
- oxygen-insensitive CODH exists (King GM et al., Appl. Environ. Microbiol. 2003, 69 (12), 7257-7265).
- CODH oxygen-insensitive CODH
- genus Ralsotonia which is an aerobic hydrogen-oxidizing bacterium
- bacteria having CODH exist widely, and a host cell used in the present invention can be appropriately selected from them.
- CO, CO / H 2 a gas containing CO and H 2 as main components
- CO / CO 2 / H 2 a gas containing CO, CO 2 and H 2 as main components
- a selective medium as an energy source bacteria having CODH that can be used as host cells can be isolated under anaerobic, microaerobic, or aerobic conditions.
- the isoprene synthase is not particularly limited as long as it can exhibit its enzyme activity in recombinant cells.
- the nucleic acid encoding isoprene synthase may be modified to a codon that is easily transcribed in the host cell. For example, if the host cell is a Clostridium bacterium, the codon of the nucleic acid to be introduced can be modified based on the information on the codon usage of the Clostridium bacterium.
- Isoprene synthase is found in many plants. Specific examples of isoprene synthase include those derived from Populus nigra (GenBank Accession No .: AM410988.1). In addition, those derived from Bacillus subtilis (Sivy TL. Et al., Biochem. Biophys. Res. Commu. 2002, 294 (1), 71-5) can be mentioned.
- SEQ ID NO: 1 shows the amino acid sequence corresponding to the nucleotide sequence of the nucleic acid (DNA) encoding the poplar-derived isoprene synthase
- SEQ ID NO: 2 shows only the amino acid sequence.
- DNA having the base sequence represented by SEQ ID NO: 1 is an example of a nucleic acid encoding isoprene synthase.
- the nucleic acid encoding isoprene synthase includes at least a nucleic acid encoding the following protein (a), (b) or (c).
- the homology of the amino acid sequence in (c) is more preferably 80% or more, further preferably 90% or more, and particularly preferably 95% or more.
- nucleic acid may be further introduced in addition to the nucleic acid encoding isoprene synthase.
- a nucleic acid encoding an enzyme group that acts in the mevalonate pathway is further introduced, and further has an ability to synthesize IPP through the mevalonate pathway. According to this configuration, since IPP is synthesized from both the mevalonate pathway and the non-mevalonate pathway, the ability to synthesize IPP is enhanced, resulting in more efficient isoprene production.
- enzymes acting in the mevalonate pathway include acetyl CoA acetyltransferase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, 5-phosphomevalonate kinase, diphosphomevalonate decarboxylase, isopentenyl dilin Acid isomerase is mentioned.
- an enzyme group consisting of HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, 5-phosphomevalonate kinase, diphosphomevalonate decarboxylase, and isopentenyl diphosphate isomerase is expressed in the host cell.
- the nucleic acid to be introduced may be selected. These nucleic acids can also be modified into codons that are easily transcribed in the host cell.
- the mevalonate pathway is possessed by all eukaryotes, but has also been found in prokaryotes.
- Prokaryotes that have a mevalonate pathway include Streptomyces sp. Strain CL190 (Takagi M. et al., J. Bacteriol. 2000, 182 (15), 4153-7), Streptomyces griseolosporeus MF730-N6 (Hamano Y. et al., Biosci. Biotechnol. Biochem. 2001, 65 (7), 1627-35).
- Examples of bacteria include Lactobacillus helvecticus (Smeds A et al., DNA seq.
- Aeropyrum genus In the archaea, Aeropyrum genus, Sulfolobus genus, Desulfurococcus genus, Thermoproteus genus, Halobacterium genus, Methanococcus genus, Thermococcus genus, Pyrococcus genus, Methanopyrus genus, Thermoplasma genus, etc. (Lombard J. et al., Mol. Biol. Evol. 2010, 28 (1), 87-99).
- the origin of the enzyme group acting in the mevalonate pathway is not particularly limited, but the enzyme group acting in the mevalonate pathway of yeast is preferable.
- enzymes that act in the mevalonate pathway of actinomycetes are also preferably employed.
- a nucleic acid encoding at least one enzyme that acts in the non-mevalonate pathway is further introduced and the nucleic acid is expressed in the host cell. Also in this embodiment, the ability to synthesize IPP is enhanced, and as a result, isoprene production is performed more efficiently.
- the nucleic acid to be introduced may be only one kind or two or more kinds.
- enzymes that act in the non-mevalonate pathway include DOXP synthase, DOXP reductoisomerase, 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase, 4-diphosphoditidyl-2-C-methyl-D.
- one or more enzymes may be selected from these enzyme groups and a nucleic acid encoding the enzyme may be introduced into the host cell.
- the enzyme that acts in the non-mevalonate pathway is preferably derived from sources other than the host cell. With this configuration, reaction suppression due to the reaction product can be avoided.
- These nucleic acids can also be modified into codons that are easily transcribed in the host cell.
- These enzymes acting in the mevalonate pathway or the non-mevalonate pathway may be naturally occurring or a modified form of each enzyme.
- it may be an amino acid substitution mutant of each enzyme or a polypeptide that is a partial fragment of each enzyme and has the same enzyme activity.
- the method for introducing a nucleic acid into a host cell is not particularly limited, and may be appropriately selected depending on the type of the host cell.
- a vector that can be introduced into a host cell and can express an integrated nucleic acid can be used.
- the vector is a promoter that can replicate autonomously in the host cell or can be integrated into a chromosome and can transcribe the inserted nucleic acid (DNA). What is contained can be used.
- the shuttle vector pIMP1 (Mermelstein LD et al., Bio / technology 1992, 10, 190) -195) can be used.
- This shuttle vector is a fusion vector of pUC9 (ATCC 37252) and pIM13 (Projan SJ et al., J. Bacteriol. 1987, 169 11 (11), 5131-5139) isolated from Bacillus subtilis. It is held stably even within.
- Escherichia coli carrying pAN1ER (Mermelstein LD et al., Apply. Environ. Microbiol. 1993, 59 (4), 1077-1081) in which the methyltransferase gene derived from Bacillus subtilis phage ⁇ 3T1 is retained, such as ER2275 strain, It is preferable that the vector derived from pIMP1 is once amplified and methylated and then recovered from E. coli and used for transformation by electroporation.
- Clostridium acetobuthylicum lacking the Cac824I gene has been developed, and non-methylated vectors are also possible stably (Dong H. et al., PLoS ONE 2010, 5 (2), e9038) .
- promoters for heterologous gene expression in Clostridium bacteria include thl ⁇ ⁇ ⁇ (thiolase) promoter (Perret ⁇ ⁇ ⁇ ⁇ ⁇ S et al., J. Bacteriol. 2004, 186 (1), 253-257), Dha (glycerol dehydratase) promoter (Raynaud C Et al., PNAS 2003, 100 (9), 5010-5015), ptb (phosphotransbutyrylase) promoterryl (Desai RP et al., Appl. Environ. Microbiol. 1999, 65 (3), 936-945), adc ( acetoacetate decarboxylase) promoter (Lee J et al., Appl. Environ. Microbiol. 2012, 78 (5), 1416-1423).
- the present invention is not limited thereto, and promoter region sequences used in various metabolic operons found in host cells and the like can be used.
- each nucleic acid when a plurality of types of nucleic acids are introduced into a host cell using a vector, each nucleic acid may be incorporated into one vector or may be incorporated into separate vectors. Furthermore, when incorporating a plurality of nucleic acids into one vector, each nucleic acid may be expressed under a common promoter or may be expressed under separate promoters.
- each nucleic acid in addition to “nucleic acid encoding isoprene synthase”, “nucleic acid encoding an enzyme group acting in the mevalonate pathway” or “at least one acting in the non-mevalonate pathway” The aspect which introduce
- the foreign nucleic acid may be incorporated into the genome of the host cell or may be incorporated into a plasmid.
- the above-described recombinant cells are cultured using at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol as a carbon source. And isoprene is produced in the recombinant cell.
- C1 compounds used as a carbon source only one may be used and it may be used in combination of 2 or more.
- the method for culturing the recombinant cell of the present invention is not particularly limited, and can be appropriately performed according to the type of the host cell.
- the recombinant cell is a Clostridium genus bacterium (absolute anaerobic), for example, it is cultured under nutrient conditions consisting of inorganic salts necessary for growth and synthetic gas. Culturing is preferably performed under a pressure of about 0.2 to 0.3 MPa (absolute pressure).
- a small amount of organic substances such as vitamins, yeast extract, corn steep liquor, and bacto tryptone may be added to improve the initial growth and the reached cell density.
- the recombinant cell is aerobic or obligately anaerobic, for example, aeration and agitation culture using a liquid medium can be performed.
- the above recombinant cell is contacted with at least one C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol, and the recombinant cell is contacted.
- C1 compound selected from the group consisting of carbon monoxide, carbon dioxide, formic acid, and methanol
- isoprene can be produced by contacting the aforementioned C1 compound with a recombinant cell.
- the above-described C1 compound can be continuously supplied to the immobilized recombinant cells to continuously produce isoprene.
- about these C1 compounds only one may be used and it may be used in combination of 2 or more. Further, it is preferable to simultaneously contact hydrogen (H 2 ) as an energy source.
- a gas mainly composed of carbon monoxide and hydrogen or a gas mainly composed of carbon dioxide and hydrogen is provided to the recombinant cell. That is, recombinant cells are cultured using these gases as a carbon source, or these gases are brought into contact with recombinant cells to produce isoprene from carbon monoxide or carbon dioxide in the gases. Again, hydrogen is used as an energy source.
- Formic acid and / or methanol can be provided to recombinant cells, and isoprene can also be produced from formic acid and / or methanol.
- isoprene in addition to carbon monoxide or carbon dioxide, or by culturing recombinant cells using formic acid or methanol as a carbon source, or by contacting formic acid or methanol with recombinant cells, Can also produce isoprene.
- the produced isoprene is accumulated inside the cell or released outside the cell.
- purified isoprene can be obtained by collecting, isolating and purifying isoprene released outside the cells using recombinant cells using the above-mentioned Clostridium bacteria or Moorella bacteria as host cells. .
- bicarbonate may be used instead of carbon dioxide. That is, Clostridium bacteria and related species are known to have carbonic anhydrase (CA) (EC 4.2.1.1: H 2 O + CO 2 ⁇ HCO 3 ⁇ + H + ). (Braus-Stromeyer SA et al., J. Bacteriol. 1997, 179 (22), 7197-7200), a bicarbonate such as NaHCO 3 serving as an HCO 3 ⁇ source can be used as the CO 2 source.
- CA carbonic anhydrase
- methanol pathway methanol pathway
- Fig. 1 is the acetyl-CoA pathway (Wood-Ljungdahl It can be explained that it participates as a methyl group donor in pathway).
- the forward activity may be imparted by gene modification such as mutagenesis, foreign gene introduction, or genome shuffling.
- isoprene when the host cell has an acetyl CoA pathway and a methanol pathway, isoprene can be produced using the following gas or liquid.
- the recombinant cells of the present invention are cultured not exclusively for isoprene production but exclusively for the purpose of increasing cells, it is not necessary to use carbon monoxide or carbon dioxide as a carbon source.
- the recombinant cells may be cultured using other carbon sources such as sugars and glycerin.
- the synthetic DNA represented by SEQ ID NO: 5 and SEQ ID NO: 6 was introduced into the BamHI / EcoRI site of Clostridium / E. Coli shuttle vector pIMP1 (Mermelstein LD et al., Bio / technology 1992, 10, 190-195) The cloning site was improved and pIM1A was constructed. Furthermore, the synthetic DNA represented by SEQ ID NO: 7 and SEQ ID NO: 8 was introduced into the PstI / BamHI site of pIM1A to construct pIM1B.
- the IspS gene was recovered and introduced into the BamHI site of pIM1B to construct a poplar-derived IspS expression vector pIMBIS.
- This expression vector has a promoter and terminator region derived from pSOS95 (Mingardon F et al., Appi. Environ. Microbiol. 2005, 71 (3), 1215-1222) before and after the IspS gene.
- isoprene can be produced from synthesis gas by culturing a recombinant Clostridium ljungdahlii introduced with a poplar-derived isoprene synthase gene.
- This nucleic acid includes gene clusters encoding mevalonate kinase, mevalonate diphosphate decarboxylase, Phosphomevalonate kinase, IPP isomerase, HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (HMGR), and HMG-CoA synthase. ing. The obtained amplified DNA fragment was cloned into the pT7-Blue T vector to construct pT7SMV.
- a DNA fragment containing the poplar-derived IspS gene was amplified using the pT7IS prepared in Example 1 as a template and the primers represented by SEQ ID NO: 3 and SEQ ID NO: 12. This DNA fragment was cloned into the pT7-Blue T vector to construct pT7IS2.
- Double-stranded DNA composed of the oligo DNAs of SEQ ID NO: 13 and SEQ ID NO: 14 was introduced into the BamHI / EcoRI site of pIM1B prepared in Example 1 to construct pIM1C.
- pT7IS2 was cleaved with BamHI and KpnI to recover a DNA fragment containing the IspS gene. This DNA fragment was introduced into the BamHI / KpnI site of pIM1C to construct pIMCIS.
- pT7SMV was cleaved with KpnI, and the inserted DNA fragment was recovered. This DNA fragment was introduced into the KpnI site of pIMCIS to construct pIMCISMV.
- pIMCISMV has a gene encoding the isoprene synthase derived from poplar and the above mevalonate pathway enzyme group derived from Streptomyces, and the gene is pSOS95 (Mingardon F et al., Appl. Envirion. Microbiol. 2005, 71 (3) , 1215-1222), and gene expression is controlled by a promoter and terminator.
- IspS isoprene synthase
- the codon-modified IDI-IspS operon synthesis gene (SEQ ID NO: 15, indicated by the sense strand) was introduced into the PstI / BamHI site of pIM1A prepared in Example 1 to construct an expression vector pIMAIS1.
- an expression vector pIMAIS2 into which the IDI-IspS operon synthesis gene without codon modification was introduced was also constructed.
- the portion of base numbers 165 to 713 corresponds to the E. coli-derived IDI gene whose codon has been modified, and the portion of base numbers 780 to 2567 corresponds to the poplar-derived IspS gene whose codon has been modified.
- the base sequence of the E. coli-derived IDI gene before codon modification is shown in SEQ ID NO: 16.
- the base sequence of the poplar-derived IspS gene before codon modification is as shown in SEQ ID NO: 1.
- IspS isoprene synthase
- IDI isopentenyl diphosphate isomerase
- the gene sequences of Populus alba-derived IspS (Genbank accession no. Q50L36) and yeast-derived IDI were codon optimized (SEQ ID NO: 17).
- codon-optimized IspS (SEQ ID NO: 17) and IDI gene were cloned into the Escherichia coli / Clostridium shuttle vector pSCi01 (SEQ ID NO: 18).
- the IspS and IDI genes were inserted between the inducible tetracycline promoter and the fdx transcription terminator (Nariya H. et al., Appl. Environ.
- an expression vector pSCi :: idi-isps (SEQ ID NO: 19) in which the expression of IspS and IDI is induced by anhydrotetracycline was constructed.
- the plasmid was amplified using E. coli NEB Express (NEB). By amplifying with this host (DCM ⁇ , DAM + ), the plasmid shows the correct methylation pattern and can thus be efficiently transformed with C. ljungdahlii.
- C. ljungdahlii (DSMZ No. 13528) is used in YTF medium (16 g tryptone, 10 g yeast extract, 4 g NaCl, 2 mM Cysteine and 5 g fructose / L, pH 5.9-6) under strict anaerobic conditions. Incubated.
- YTF medium 16 g tryptone, 10 g yeast extract, 4 g NaCl, 2 mM Cysteine and 5 g fructose / L, pH 5.9-6
- pSCi idi-ispS vector into C.
- the cells were grown in YTF medium supplemented with 40 mM D, L-threonine to an OD600 of 0.2-0.3, It was washed with SMP buffer (270 mM sucrose, 1 mM MgCl 2 , 7 mM sodium phosphate, pH 6) and resuspended in 0.5 mL SMP buffer containing 10% DMSO.
- SMP buffer 270 mM sucrose, 1 mM MgCl 2 , 7 mM sodium phosphate, pH 6
- SMP buffer 270 mM sucrose, 1 mM MgCl 2 , 7 mM sodium phosphate, pH 6
- resuspended in 0.5 mL SMP buffer containing 10% DMSO for electroporation, 3 ⁇ g of pSCi :: idi-ispS plasmid DNA was used.
- the BioRad Micropulser TM electroporator system (Bio-Rad Laboratory) was set up as follows: cuvette size 0.1 mm, voltage 0.625 kV, resistance 600 ⁇ , capacitance 25 ⁇ F. After regeneration in 1 mL YTF medium for 12 hours, cells were transplanted into 25 mL YTF medium containing 4 ⁇ g / mL clarithromycin and 4 ⁇ g / mL thiamphenicol. As the next step, 5-10 mL of cell suspension was mixed with 20 mL of molten YTF agar (1.5% agar) and incubated for 3-5 days until colonies formed. Each clone was isolated from the agar plate and cultured in liquid in YTF medium (containing 4 ⁇ g / mL clarithromycin and 4 ⁇ g / mL thiamphenicol).
- synthesis gas (60% CO, 10% CO 2 , 30% H 2 ) in ATCC1754 medium (containing 4 ⁇ g / mL clarithromycin and 4 ⁇ g / mL thiamphenicol).
- the reaction was carried out in 2 mL (absolute pressure) of synthesis gas in a 50 mL culture solution in a 200 mL sealed glass bottle under medium conditions with a reduced carbon source and energy.
- GC / MS / MS-system TQ8030 (Shimazu) equipped with SPME (solid-phase-micro-extraction) analysis system manufactured by Gerstel was used for the analysis of isoprene production.
- CAR / PDMS fiber 75 ⁇ m CAR / PDMS fiber (Supelco ⁇ Sigma Aldrich) was used for sampling from 200 mL bottle cultures. Sampling was performed at 22 ° C. for 30 minutes. After fiber injection into KAS 6 (Gerstel), thermal desorption was performed at 200 ° C. for 30 seconds. A Phenomenex A ZB-624 column (length 30 m; ID 0.25 mm ID; film thickness 1.4 ⁇ m) was used to separate the gas components. The analytical parameters for GC / MS / MS were set as follows.
- the fiber was treated at 300 ° C. for 30 minutes before next use.
- the mass analyzer was operated in MRM (multiple reaction monitoring) mode. Two transitions were selected for isoprene: 68.1 m / z-67.0 m / z and 67.1 m / z-41.0 m / z, and argon was used as a CID (collision induced induced dissociation) gas. Isoprene (Sigma Aldrich; cat no. 19551: purity 99%) was used as the isoprene standard.
- the isoprene standard product showed a retention time of 2.7 minutes, and characteristic transition patterns of 68.1 mm / z-67.0 mm / z and 67.1 mm / z-41.0 mm / z.
- the headspace was collected and analyzed by GC / MS / MS.
- FIG. 3 shows the results of GC / MS / MS analysis on C. ljungdahlii carrying the pSCi01 plasmid.
- FIG. 4 shows the results of GC / MS / MS analysis on C. ljungdahlii carrying the pSCi :: idi-ispS plasmid.
- the design of the isoprene synthesis gene cluster of plasmid pSCi :: MVA-IspS-idi is shown in FIG. 5 and SEQ ID NO: 20.
- the accession number, abbreviation, and origin of each codon optimized gene are shown in the table below.
- the inducible expression system by anhydrotetracycline was constructed by inserting the MVA-IspS-idi gene cluster between the inducible tetracycline promoter and the fdx transcription terminator. Correct expression of the transgene derived from the constructed expression vector was assessed by targeted proteomics.
- the plasmid was amplified in E. coli strain NEB Express (NEB).
- C. ljungdahlii (DSMZ No. 13528) is used in YTF medium (16 g tryptone, 10 g yeast extract, 4 g NaCl, 2 mM Cysteine and 5 g fructose / L, pH 5.9-6) under strict anaerobic conditions. Incubated.
- YTF medium 16 g tryptone, 10 g yeast extract, 4 g NaCl, 2 mM Cysteine and 5 g fructose / L, pH 5.9-6
- the cells were grown to OD600 of 0.2-0.3 in YTF medium supplemented with 40 mM D, L-threonine Then, it was washed with SMP buffer (270 mM sucrose, 1 mM MgCl 2 , 7 mM sodium phosphate, pH 6) and resuspended in 0.5 mL SMP buffer containing 10% DMSO. 3 ⁇ g of pSCi :: MVA-IspS-idi plasmid DNA was used for electroporation.
- the BioRad Micropulser TM electroporator system (Bio-Rad Laboratory) was set up as follows: cuvette size 0.1 mm, voltage 0.625 kV, resistance 600 ⁇ , capacitance 25 ⁇ F. After regeneration in 1 mL YTF medium for 12 hours, cells were transplanted into 25 mL YTF medium containing 4 ⁇ g / mL clarithromycin and 4 ⁇ g / mL thiamphenicol. As the next step, 5-10 mL of cell suspension was mixed with 20 mL of molten YTF agar (1.5% agar) and incubated for 3-5 days until colonies formed. Each clone was isolated from the agar plate and cultured in liquid in YTF medium (containing 4 ⁇ g / mL clarithromycin and 4 ⁇ g / mL thiamphenicol).
- synthesis gas (60% CO, 10% CO 2 , 30% H 2 ) in ATCC1754 medium (containing 4 ⁇ g / mL clarithromycin and 4 ⁇ g / mL thiamphenicol).
- the reaction was carried out in 2 mL (absolute pressure) of synthesis gas in a 50 mL culture solution in a 200 mL sealed glass bottle under the medium conditions of carbon source and energy source. Forty-eight hours after the start of the synthesis gas fermentation, the headspace was collected in the same manner as in Example 4, and analyzed by GC / MS / MS under the same conditions as in Example 4.
- ATCC medium The composition of 1754 PETC medium is shown below.
- NH 4 Cl 1.0 g KCl 0.1 g MgSO 4 ⁇ 7H 2 O 0.2 g NaCl 0.8 g KH 2 PO 4 0.1 g CaCl 2 ⁇ 2H 2 O 20.0 mg
- Yeast extract 1.0 g Trace Elements (see below) 10.0 mL Wolfe's Vitamin Solution (see below) 10.0 mL NaHCO 3 2.0 g Reducing Agent (see below) 10.0 mL Distilled water 980.0 mL Final pH 5.9
- Nitrilotriacetic acid 2.0 g MnSO 4 H 2 O 1.0 g Fe (SO 4 ) 2 (NH 4 ) 2 ⁇ 6H 2 O 0.8 g CoCl 2 ⁇ 6H 2 O 0.2 g ZnSO 4 ⁇ 7H 2 O 0.2 mg CuCl 2 ⁇ 2H 2 O 20.0 mg NiCl 2 ⁇ 6H 2 O 20.0 mg Na 2 MoO 4 ⁇ 2H 2 O 20.0 mg Na 2 SeO 4 20.0 mg Na 2 WO 4 20.0 mg Distilled water 1.0 L
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
Abstract
Description
(a)配列番号2で表されるアミノ酸配列からなるタンパク質、
(b)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
(c)配列番号2で表されるアミノ酸配列と60%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。
上述したように、一般に、IPPの合成経路はメバロン酸経路(MVA経路)と非メバロン酸経路(MEP経路)の2つに大別される。メバロン酸経路は真核生物が備えているものであり、アセチルCoAを出発物質としている。メバロン酸経路で作用する酵素としては、上流から順に、アセチルCoAアセチルトランスフェラーゼ、HMG-CoAシンターゼ、HMG-CoAレダクターゼ、メバロン酸キナーゼ、5-ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼ、イソペンテニル二リン酸イソメラーゼが挙げられる。
上記5種のClostridium属細菌又はMoorella属細菌は、合成ガス資化性微生物の代表例として知られている。
このように、CODHを有する細菌は広く存在しており、その中から本発明で用いる宿主細胞を適宜選択することができる。例えば、CO、CO/H2(COとH2を主成分とするガス)、もしくはCO/CO2/H2(COとCO2とH2を主成分とするガス)を唯一の炭素源かつエネルギー源とした選択培地を用い、嫌気、微好気、もしくは好気的条件で、宿主細胞として利用できるCODHを有する細菌を分離することができる。
配列番号1に上記ポプラ由来イソプレン合成酵素をコードする核酸(DNA)の塩基配列と対応のアミノ酸配列、配列番号2にアミノ酸配列のみを示す。配列番号1で表される塩基配列を有するDNAは、イソプレン合成酵素をコードする核酸の一例となる。
(a)配列番号2で表されるアミノ酸配列からなるタンパク質、
(b)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
(c)配列番号2で表されるアミノ酸配列と60%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。
なお(c)におけるアミノ酸配列の相同性については、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。
細菌では、Lactobacillus helvecticus (Smeds A et al., DNA seq. 2001, 12(3), 187-190)、Corynebacterium amycolatum、Mycobacterium marinum、Bacillus coagulans、Enterococcus faecalis、Streptococuss agalactiae、Myxococcus xanthus等が挙げられる(Lombard J. et al., Mol. Biol. Evol. 2010, 28(1), 87-99)。
アーキアでは、Aeropyrum属、Sulfolobus属、Desulfurococcus属、Thermoproteus属、Halobacterium属、Methanococcus属、Thermococcus属、Pyrococcus属、Methanopyrus属、Thermoplasma属等が挙げられる(Lombard J. et al., Mol. Biol. Evol. 2010, 28(1), 87-99)。
上述したように、非メバロン酸経路で作用する酵素としては、DOXPシンターゼ、DOXPレダクトイソメラーゼ、4-ジホスホシチジル-2-C-メチル-D-エリトリトールシンターゼ、4-ジホスホヂチジル-2-C-メチル-D-エリトリトールキナーゼ、2-C-メチル-D-エリトリトール-2,4-シクロ二リン酸シンターゼ、HMB-PPシンターゼ、HMB-PPレダクターゼ、が挙げられる。例えば、これらの酵素群から1又は2以上の酵素を選択し、当該酵素をコードする核酸を宿主細胞に導入すればよい。
また、非メバロン酸経路で作用する酵素は、宿主細胞以外の由来であることが好ましい。かかる構成により、反応生成物による反応抑制を避けることができる。
これらの核酸についても、宿主細胞で転写されやすいコドンに改変したものを採用することができる。
例えば、宿主細胞が細菌等の原核生物の場合には、当該ベクターとして、宿主細胞において自立複製可能ないしは染色体中への組み込みが可能で、挿入された上記核酸(DNA)を転写できる位置にプロモーターを含有しているものを用いることができる。例えば、当該ベクターを用いて、プロモーター、リボソーム結合配列、上記核酸(DNA)、および転写終結配列からなる一連の構成を宿主細胞内で構築することが好ましい。
また、エネルギー源として水素(H2)を同時に提供することが好ましい。
本様相においても、これらのC1化合物については、1つのみを用いてもよいし、2つ以上を組み合わせて用いてもよい。また、エネルギー源として水素(H2)を同時に接触させることが好ましい。
・CO
・CO2
・CO/H2
・CO2/H2
・CO/CO2/H2
・CO/HCOOH
・CO2/HCOOH
・CO/CH3OH
・CO2/CH3OH
・CO/H2/HCOOH
・CO2/H2/HCOOH
・CO/H2/CH3OH
・CO2/H2/CH3OH
・CO/CO2/H2/HCOOH
・CO/CO2/H2/CH3OH
・CH3OH/H2
・HCOOH/H2
・CH3OH
・HCOOH
ポプラ(Populus nigra)の葉由来の全RNAを鋳型とし、配列番号3と配列番号4で表されるプライマーを使用したRT-PCRによって、ポプラ由来イソプレン合成酵素(IspS)をコードする核酸(ポプラ由来IspS遺伝子、配列番号1、GenBank Accession No.: AM410988.1)を増幅した。得られた増幅DNA断片をpT7-Blue T ベクター(タカラバイオ社)へクローニングし、pT7ISを構築した。
上記(1)で作製したpIMBISで、Bacillus subtilisファージφ3TI由来メチルトランスフェラーゼ遺伝子をコードするpAN1(Mermelstein LD et al., Appl. Environ. Microbiol., 1993, 59(4), 1077-1081)が導入されたE. coli ER2275(NEB社)を形質転換することで、in vivoメチル化を行った。形質転換されたE. coli ER2275からメチル化されたpIMBISを回収した。「BIO/TECHNOLOGY 1992, VOL. 10, 190-195」記載の方法に従い、エレクトロポレーションによって、メチル化されたpIMBISでClostridium ljungdahlii(DSM13528/ATCC55383)を形質転換し、組換え体を取得した。
上記(2)で取得したC. ljungdahliiの組換え体を、37℃、嫌気条件下で培養した。培地として、5μg/mLのClarithromycin及び20μg/mLのThiamphenicolを含有するATCC medium 1754 PETC培地(ただし、フルクトース及び酵母エキスを非含有)を用いた。100mL容の密閉可能なガラス容器に10mLの培地を仕込み、酸素非含有ガスを2.5気圧(絶対圧)のガス圧で充填し、アルミキャップで密封した後、振とう培養した。酸素非含有ガスとして、(a)CO/H2=50/50%、(b)CO/CO2/H2=33/33/34%、(c)CO2/H2=50/50%(いずれも体積比)の3種の混合ガスを用いた。
コントロールとして、pIMBISに代えてpIMB1が導入された組換え体を用いて、同様に培養した。
培養終了後の気相成分についてGC/MSで分析した。
以上より、ポプラ由来イソプレン合成酵素遺伝子が導入されたClostridium ljungdahliiの組換え体を培養することで、合成ガスからイソプレンを生産できることが示された。
Streptomyces griseolosporeus (Kitasatospora griseola)のゲノムDNAを鋳型とし、配列番号10と配列番号11で表されるプライマーを使用したPCRによって、S. griseolosporeusのメバロン酸経路酵素をコードする核酸(配列番号9)を増幅した。この核酸には、Mevalonate kinase、Mevalonate diphosphate decarboxylase、Phosphomevalonate kinase、IPP isomerase、HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (HMGR)、及びHMG-CoA synthaseをコードする遺伝子クラスターが含まれている。得られた増幅DNA断片をpT7-Blue T ベクターへクローニングし、pT7SMVを構築した。
さらに、pT7SMVをKpnIで切断し、挿入DNA断片を回収した。このDNA断片をpIMCISのKpnI部位に導入し、pIMCISMVを構築した。pIMCISMVは、ポプラ由来イソプレン合成酵素、及びStreptomyces由来の上記メバロン酸経路酵素群をコードする遺伝子を有し、当該遺伝子がpSOS95(Mingardon F et al., Appl. Envirion. Microbiol. 2005, 71(3), 1215-1222)由来のプロモーター及びターミネーターによる遺伝子発現制御を受ける。
実施例1と同様にして、メチル化処理が施されたpIMCISMVでClostridium ljungdahlii(DSM13528/ATCC55383)を形質転換し、組換え体を取得した。
実施例1と同様にして、3種の混合ガスを用いて、pIMCISMVで形質転換した上記組換え体を培養した。
コントロールとして、pIMCISMVに代えてpIM1Cが導入された組換え体、並びに、実施例1で作製したpIMBISを有する組換え体を同様にして培養した。
培養終了後の気相成分についてGC/MSで分析した。
以上より、イソプレン合成酵素遺伝子に加えてメバロン酸経路酵素遺伝子を導入することにより、組換え体のイソプレンの生産量を増強できることが示された。
本実施例では、コドン改変された大腸菌由来イソペンテニル二リン酸イソメラーゼ(IDI)遺伝子及びポプラ由来イソプレン合成酵素(IspS)遺伝子の両遺伝子が導入されたClostridium ljungdahliiによるイソプレンの生産を試みた。コドン改変にはClostridium kluyveri (DSM 555)のCodon Usage Table (http://www.kazusa.or.jp/codon/cgi-bin/spsearch.cgi?species=clostridium&c=i)を参考にした。
なお、配列番号15において、塩基番号165~713の部分がコドン改変された大腸菌由来IDI遺伝子、塩基番号780~2567の部分がコドン改変されたポプラ由来IspS遺伝子に相当する。
コドン改変前の大腸菌由来IDI遺伝子の塩基配列を配列番号16に示す。コドン改変前のポプラ由来IspS遺伝子の塩基配列は配列番号1に示したとおりである。
実施例1と同様にして、メチル化処理が施されたpIMAIS1及びpIMAIS2でClostridium ljungdahlii(DSM13528)を形質転換し、組換え体IS1及びIS2をそれぞれ取得した。
実施例1と同様にして、3種の混合ガスを用いて、組換え体IS1及びIS2を培養した。培養終了後の気相成分についてGC/MSで分析した。
NH4Cl 1.0 g
KCl 0.1 g
MgSO4・7H2O 0.2 g
NaCl 0.8 g
KH2PO4 0.1 g
CaCl2・2H2O 20.0 mg
Yeast extract 1.0 g
Trace Elements (下記参照) 10.0 mL
Wolfe's Vitamin Solution (下記参照) 10.0 mL
NaHCO3 2.0 g
Reducing Agent (下記参照) 10.0 mL
Distilled water 980.0 mL
Final pH 5.9
Nitrilotriacetic acid 2.0 g
MnSO4 H2O 1.0 g
Fe(SO4)2(NH4)2・6H2O 0.8 g
CoCl2・6H2O 0.2 g
ZnSO4・7H2O 0.2 mg
CuCl2・2H2O 20.0 mg
NiCl2・ 6H2O 20.0 mg
Na2MoO4・2H2O 20.0 mg
Na2SeO4 20.0 mg
Na2WO4 20.0 mg
Distilled water 1.0 L
滅菌されたready-to-use溶液としてATCCより入手可能(Vitamin Supplement, catalog no. MD-VS)
Biotin 2.0 mg
Folic acid 2.0 mg
Pyridoxine hydrochloride 10.0 mg
Thiamine・HCl 5.0 mg
Riboflavin 5.0 mg
Nicotinic acid 5.0 mg
Calcium D-(+)-pantothenate 5.0 mg
Vitamin B12 0.1 mg
p-Aminobenzoic acid 5.0 mg
Thioctic acid 5.0 mg
Distilled water 1.0 L
NaOH 0.9 g
L-Cysteine・HCl 4.0 g
Na2S・9H2O 4.0 g
Distilled water 100.0 mL
Claims (20)
- 非メバロン酸経路によるイソペンテニル二リン酸合成能を有する宿主細胞に、イソプレン合成酵素をコードする核酸が導入されてなり、当該核酸が前記宿主細胞内で発現し、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能である組換え細胞。
- メチルテトラヒドロ葉酸、一酸化炭素、及びCoAからアセチルCoAを合成する機能を有する宿主細胞に、イソプレン合成酵素をコードする核酸が導入されてなり、当該核酸が前記宿主細胞内で発現し、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能である組換え細胞。
- 一酸化炭素脱水素酵素を有するものである請求項1又は2に記載の組換え細胞。
- 前記宿主細胞は、Clostridium属細菌又はMoorella属細菌である請求項1~3のいずれかに記載の組換え細胞。
- メバロン酸経路で作用する酵素群をコードする核酸がさらに導入され、メバロン酸経路によるイソペンテニル二リン酸合成能をさらに有する請求項1~4のいずれかに記載の組換え細胞。
- 前記メバロン酸経路は、酵母のメバロン酸経路である請求項5に記載の組換え細胞。
- 前記メバロン酸経路は、原核生物のメバロン酸経路である請求項5に記載の組換え細胞。
- 前記メバロン酸経路は、放線菌のメバロン酸経路である請求項5に記載の組換え細胞。
- 非メバロン酸経路で作用する少なくとも1つの酵素をコードする核酸がさらに導入され、当該核酸が宿主細胞内で発現する請求項1~8のいずれかに記載の組換え細胞。
- 前記非メバロン酸経路は、宿主細胞以外の非メバロン酸経路である請求項9に記載の組換え細胞。
- 前記イソプレン合成酵素は、植物由来のものである請求項1~10のいずれかに記載の組換え細胞。
- 前記イソプレン合成酵素をコードする核酸は、下記(a)、(b)又は(c)のタンパク質をコードするものである請求項1~11のいずれかに記載の組換え細胞。
(a)配列番号2で表されるアミノ酸配列からなるタンパク質、
(b)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
(c)配列番号2で表されるアミノ酸配列と60%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。 - 宿主細胞に導入された核酸は、コドンが改変されたものである請求項1~12のいずれかに記載の組換え細胞。
- 宿主細胞に導入された核酸は、宿主細胞のゲノムに組み込まれている請求項1~13のいずれかに記載の組換え細胞。
- 宿主細胞に導入された核酸は、プラスミドに組み込まれている請求項1~13のいずれかに記載の組換え細胞。
- 請求項1~15のいずれかに記載の組換え細胞を、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物を炭素源として用いて培養し、当該組換え細胞にイソプレンを生産させるイソプレンの生産方法。
- 請求項1~15のいずれかに記載の組換え細胞に、一酸化炭素、二酸化炭素、ギ酸、及びメタノールからなる群より選ばれた少なくとも1つのC1化合物を接触させ、当該組換え細胞に前記C1化合物からイソプレンを生産させるイソプレンの生産方法。
- 一酸化炭素と水素とを主成分とするガス、あるいは二酸化炭素と水素とを主成分とするガスを、前記組換え細胞に提供する請求項16又は17に記載のイソプレンの生産方法。
- 組換え細胞はClostridium属細菌又はMoorella属細菌を宿主細胞とするものであり、組換え細胞の細胞外に放出されたイソプレンを回収する請求項16~18のいずれかに記載のイソプレンの生産方法。
- 二酸化炭素に代えて、重炭酸塩を用いる請求項16~19のいずれかに記載のイソプレンの生産方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/437,034 US9783828B2 (en) | 2012-10-23 | 2013-10-22 | Recombinant cell, and method for producing isoprene |
EP13848830.9A EP2913392B1 (en) | 2012-10-23 | 2013-10-22 | Recombinant cell and production method for isoprene |
KR1020157010718A KR102056250B1 (ko) | 2012-10-23 | 2013-10-22 | 재조합 세포, 및 이소프렌의 생산 방법 |
CN201380062508.8A CN104919038A (zh) | 2012-10-23 | 2013-10-22 | 重组细胞以及异戊二烯的生产方法 |
JP2014543301A JP6375227B2 (ja) | 2012-10-23 | 2013-10-22 | 組換え細胞、並びに、イソプレンの生産方法 |
CA2886137A CA2886137C (en) | 2012-10-23 | 2013-10-22 | Recombinant cell, and method for producing isoprene |
EP23169866.3A EP4234704A3 (en) | 2012-10-23 | 2013-10-22 | Recombinant cell and production method for isoprene |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012233571 | 2012-10-23 | ||
JP2012-233571 | 2012-10-23 | ||
JP2013-132423 | 2013-06-25 | ||
JP2013132423 | 2013-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014065271A1 true WO2014065271A1 (ja) | 2014-05-01 |
Family
ID=50544650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/078558 WO2014065271A1 (ja) | 2012-10-23 | 2013-10-22 | 組換え細胞、並びに、イソプレンの生産方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9783828B2 (ja) |
EP (2) | EP4234704A3 (ja) |
JP (1) | JP6375227B2 (ja) |
KR (1) | KR102056250B1 (ja) |
CN (2) | CN104919038A (ja) |
CA (1) | CA2886137C (ja) |
WO (1) | WO2014065271A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016059314A (ja) * | 2014-09-17 | 2016-04-25 | 積水化学工業株式会社 | 組換え細胞、並びに、有機化合物の生産方法 |
JP2016059313A (ja) * | 2014-09-17 | 2016-04-25 | 積水化学工業株式会社 | 組換え細胞、並びに、イソプレン又は環式イソプレノイドの生産方法 |
WO2017094053A1 (ja) * | 2015-11-30 | 2017-06-08 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、有機化合物の生産方法 |
WO2018079619A1 (ja) * | 2016-10-28 | 2018-05-03 | 積水化学工業株式会社 | 組換え細胞、並びに、イソプレン又はテルペンの生産方法 |
WO2018155272A1 (ja) | 2017-02-27 | 2018-08-30 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法 |
JP2018153152A (ja) * | 2017-03-21 | 2018-10-04 | 積水化学工業株式会社 | 有機化合物生産システム、並びに、有機化合物の生産方法 |
CN114480242A (zh) * | 2022-03-04 | 2022-05-13 | 中国科学院合肥物质科学研究院 | 一种用于MK-n生产的大肠杆菌工程菌及其构建方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2895094C (en) * | 2012-12-27 | 2021-11-16 | Sekisui Chemical Co., Ltd. | Recombinant cell and method for producing isoprene |
CN106554933A (zh) * | 2015-09-30 | 2017-04-05 | 中国科学院上海生命科学研究院 | 异戊二烯基因工程生产菌及其应用 |
WO2018064105A1 (en) * | 2016-09-30 | 2018-04-05 | Invista North America S.A.R.L. | Methods, synthetic hosts and reagents for the biosynthesis of isoprene and derivatives thereof |
WO2019006257A1 (en) | 2017-06-30 | 2019-01-03 | Invista North America .S.A.R.L. | METHODS, SYNTHETIC HOSTS AND REAGENTS FOR HYDROCARBON BIOSYNTHESIS |
WO2019006255A1 (en) * | 2017-06-30 | 2019-01-03 | Invista North America S.A.R.L. | METHODS, MATERIALS, SYNTHETIC HOSTS AND REAGENTS FOR HYDROCARBON BIOSYNTHESIS AND DERIVATIVES |
US11505809B2 (en) | 2017-09-28 | 2022-11-22 | Inv Nylon Chemicals Americas Llc | Organisms and biosynthetic processes for hydrocarbon synthesis |
CN109097378B (zh) * | 2018-08-13 | 2021-08-03 | 中国科学院青岛生物能源与过程研究所 | 一种异戊二烯合酶和其编码基因、表达载体、工程菌以及生产异戊二烯的方法及应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011505841A (ja) | 2007-12-13 | 2011-03-03 | ダニスコ・ユーエス・インク | イソプレンを産出する組成物及び方法 |
JP2011509691A (ja) | 2008-01-22 | 2011-03-31 | ジェノマティカ, インコーポレイテッド | 合成ガスまたは他のガス状炭素源およびメタノールを利用するための方法および生物体 |
JP2011512869A (ja) * | 2008-03-12 | 2011-04-28 | ランザテク・ニュージーランド・リミテッド | 微生物によるアルコール製造プロセス |
JP2011518564A (ja) | 2008-04-23 | 2011-06-30 | ダニスコ・ユーエス・インク | 改良された微生物によるイソプレン産出用のイソプレンシンターゼ変異体 |
JP2011524933A (ja) * | 2008-06-20 | 2011-09-08 | イネオス ユーエスエイ リミテッド ライアビリティ カンパニー | ガス化発酵により二酸化炭素をアルコールに隔離する方法 |
WO2012058494A2 (en) * | 2010-10-27 | 2012-05-03 | Danisco Us Inc. | Isoprene synthase variants for improved production of isoprene |
JP2012147682A (ja) * | 2011-01-17 | 2012-08-09 | Daicel Corp | 気体資源から有機物を製造する方法、及び装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8592190B2 (en) | 2009-06-11 | 2013-11-26 | Ineos Bio Limited | Methods for sequestering carbon dioxide into alcohols via gasification fermentation |
EP2582649A1 (en) * | 2010-06-17 | 2013-04-24 | Danisco US Inc. | Fuel compositions comprising isoprene derivatives |
CA2807558A1 (en) * | 2010-08-06 | 2012-02-09 | Danisco Us Inc. | Production of isoprene under neutral ph conditions |
JP6101275B2 (ja) | 2011-10-27 | 2017-03-22 | ダニスコ・ユーエス・インク | イソプレン産生時の溶解度が向上されたイソプレン合成酵素変異体 |
US20130323820A1 (en) * | 2012-06-01 | 2013-12-05 | Lanzatech New Zealand Limited | Recombinant microorganisms and uses therefor |
WO2013181647A2 (en) * | 2012-06-01 | 2013-12-05 | Danisco Us Inc. | Compositions and methods of producing isoprene and/or industrrial bio-products using anaerobic microorganisms |
-
2013
- 2013-10-22 US US14/437,034 patent/US9783828B2/en not_active Expired - Fee Related
- 2013-10-22 CA CA2886137A patent/CA2886137C/en active Active
- 2013-10-22 EP EP23169866.3A patent/EP4234704A3/en active Pending
- 2013-10-22 WO PCT/JP2013/078558 patent/WO2014065271A1/ja active Application Filing
- 2013-10-22 CN CN201380062508.8A patent/CN104919038A/zh active Pending
- 2013-10-22 KR KR1020157010718A patent/KR102056250B1/ko active IP Right Grant
- 2013-10-22 EP EP13848830.9A patent/EP2913392B1/en active Active
- 2013-10-22 CN CN202010073970.XA patent/CN111621453A/zh active Pending
- 2013-10-22 JP JP2014543301A patent/JP6375227B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011505841A (ja) | 2007-12-13 | 2011-03-03 | ダニスコ・ユーエス・インク | イソプレンを産出する組成物及び方法 |
JP2011509691A (ja) | 2008-01-22 | 2011-03-31 | ジェノマティカ, インコーポレイテッド | 合成ガスまたは他のガス状炭素源およびメタノールを利用するための方法および生物体 |
JP2011512869A (ja) * | 2008-03-12 | 2011-04-28 | ランザテク・ニュージーランド・リミテッド | 微生物によるアルコール製造プロセス |
JP2011518564A (ja) | 2008-04-23 | 2011-06-30 | ダニスコ・ユーエス・インク | 改良された微生物によるイソプレン産出用のイソプレンシンターゼ変異体 |
JP2011524933A (ja) * | 2008-06-20 | 2011-09-08 | イネオス ユーエスエイ リミテッド ライアビリティ カンパニー | ガス化発酵により二酸化炭素をアルコールに隔離する方法 |
WO2012058494A2 (en) * | 2010-10-27 | 2012-05-03 | Danisco Us Inc. | Isoprene synthase variants for improved production of isoprene |
JP2012147682A (ja) * | 2011-01-17 | 2012-08-09 | Daicel Corp | 気体資源から有機物を製造する方法、及び装置 |
Non-Patent Citations (37)
Title |
---|
BIO/TECHNOLOGY, vol. 10, 1992, pages 190 - 195 |
BRAUS-STROMEYER SA ET AL., J. BACTERIOL., vol. 179, no. 22, 1997, pages 7197 - 7200 |
DESAI RP ET AL., APPL. ENVIRON. MICROBIOL., vol. 65, no. 3, 1999, pages 936 - 945 |
DONG H. ET AL., PLOS ONE, vol. 5, no. 2, 2010, pages E9038 |
DURRE P. ET AL., PNAS, vol. 107, no. 29, 2010, pages 13087 - 13092 |
GENTHNER BRS. ET AL., APPL. ENVIRON. MICROBIOL., vol. 53, no. 3, 1987, pages 471 - 476 |
HAMANO Y. ET AL., BIOSCI. BIOTECHNOL. BIOCHEM., vol. 65, no. 7, 2001, pages 1627 - 35 |
KEAMY JJ ET AL., J. BACTERIOL., vol. 109, no. 1, 1972, pages 152 - 161 |
KERBY R ET AL., J. BATERIOL., vol. 169, no. 12, 1987, pages 5605 - 5609 |
KERBY R. ET AL., J. BACTERIOL., vol. 169, no. 12, 1987, pages 5605 - 5609 |
KINGGM ET AL., APPL. ENVIRON. MICROBIOL., vol. 69, no. 12, 2003, pages 7257 - 7265 |
KOPKE M. ET AL., APPL. ENVIRON. MICROBIOL., vol. 77, no. 15, 2011, pages 5467 - 5475 |
LEE J ET AL., APPL. ENVIRON. MICROBIOL., vol. 78, no. 5, 2012, pages 1416 - 1423 |
LIU CL ET AL., J. BACTERIOL., vol. 159, no. 1, 1984, pages 375 - 380 |
LOMBARD J. ET AL., MOL. BIOL. EVOL., vol. 28, no. 1, 2010, pages 87 - 99 |
LORITE MJ. ET AL., APPL. ENVIRON. MICROBIOL., vol. 66, no. 5, 2000, pages 1871 - 1876 |
LYND, LH. ET AL., J. BACTERIOL., vol. 153, no. 3, 1983, pages 1415 - 1423 |
MERMELSTEIN LD ET AL., APPL. ENVIRON. MICROBIOL., vol. 59, no. 4, 1993, pages 1077 - 1081 |
MERMELSTEIN LD ET AL., APPLY. ENVIRON. MICROBIOL., vol. 59, no. 4, 1993, pages 1077 - 1081 |
MERMELSTEIN LD ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 190 - 195 |
MINGARDON F ET AL., APPI. ENVIRON. MICROBIOL., vol. 71, no. 3, 2005, pages 1215 - 1222 |
MINGARDON F ET AL., APPL. ENVIRION. MICROBIOL., vol. 71, no. 3, 2005, pages 1215 - 1222 |
NARIYA H. ET AL., APPL. ENVIRON. MICROBIOL., 2011, pages 1375 |
PERRET S ET AL., J. BACTERIOL., vol. 186, no. 1, 2004, pages 253 - 257 |
PIERCE E. ET AL., ENVIRON. MICROBIOL., vol. 10, no. 10, 2008, pages 2550 - 2573 |
PIERCE EG. ET AL., ENVIRON. MICROBIOL., vol. 10, 2008, pages 2550 - 2573 |
PROJAN SJ ET AL., J. BACTERIOL., vol. 169, no. 11, 1987, pages 5131 - 5139 |
RAGSDALE SW ET AL., B.B.R.C., vol. 1784, no. 12, 2008, pages 1873 - 1898 |
RAYNAUD C. ET AL., PNAS, vol. 100, no. 9, 2003, pages 5010 - 5015 |
ROH H. ET AL., J. BACTERIOL., vol. 193, no. 1, 2011, pages 307 - 308 |
SCHUBEL, U. ET AL., J. BACTERIOL., 1995, pages 2197 - 2203 |
SIVY TL. ET AL., BIOCHEM. BIOPHYS. RES. COMMU., vol. 294, no. 1, 2002, pages 71 - 5 |
SLEPOVA TV. ET AL., INTER. J. SYS. EVOL. MICROBIOL., vol. 56, 2006, pages 797 - 800 |
SMEDS A ET AL., DNA SEQ., vol. 12, no. 3, 2001, pages 187 - 190 |
TAKAGI M. ET AL., J. BACTERIOL., vol. 182, no. 15, 2000, pages 4153 - 7 |
UFFEN RL, J. BACTERIOL., vol. 155, no. 3, 1983, pages 956 - 965 |
YANG, J. ET AL.: "Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli", BIORESOURCE TECHNOLOGY, vol. 104, 20 October 2011 (2011-10-20), pages 642 - 647, XP028351244 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016059314A (ja) * | 2014-09-17 | 2016-04-25 | 積水化学工業株式会社 | 組換え細胞、並びに、有機化合物の生産方法 |
JP2016059313A (ja) * | 2014-09-17 | 2016-04-25 | 積水化学工業株式会社 | 組換え細胞、並びに、イソプレン又は環式イソプレノイドの生産方法 |
WO2017094053A1 (ja) * | 2015-11-30 | 2017-06-08 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、有機化合物の生産方法 |
WO2018079619A1 (ja) * | 2016-10-28 | 2018-05-03 | 積水化学工業株式会社 | 組換え細胞、並びに、イソプレン又はテルペンの生産方法 |
WO2018155272A1 (ja) | 2017-02-27 | 2018-08-30 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法 |
JPWO2018155272A1 (ja) * | 2017-02-27 | 2019-12-19 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法 |
US11261450B2 (en) | 2017-02-27 | 2022-03-01 | Sekisui Chemical Co., Ltd. | Recombinant cell, method for producing recombinant cell, and method for producing isoprene or terpene |
JP7397665B2 (ja) | 2017-02-27 | 2023-12-13 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法 |
JP2018153152A (ja) * | 2017-03-21 | 2018-10-04 | 積水化学工業株式会社 | 有機化合物生産システム、並びに、有機化合物の生産方法 |
CN114480242A (zh) * | 2022-03-04 | 2022-05-13 | 中国科学院合肥物质科学研究院 | 一种用于MK-n生产的大肠杆菌工程菌及其构建方法 |
CN114480242B (zh) * | 2022-03-04 | 2023-04-25 | 中国科学院合肥物质科学研究院 | 一种用于MK-n生产的大肠杆菌工程菌及其构建方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2913392A1 (en) | 2015-09-02 |
US9783828B2 (en) | 2017-10-10 |
EP4234704A3 (en) | 2024-01-03 |
KR20150072410A (ko) | 2015-06-29 |
CA2886137C (en) | 2021-10-19 |
JP6375227B2 (ja) | 2018-08-15 |
JPWO2014065271A1 (ja) | 2016-09-08 |
KR102056250B1 (ko) | 2019-12-16 |
US20150284742A1 (en) | 2015-10-08 |
CA2886137A1 (en) | 2014-05-01 |
EP2913392B1 (en) | 2023-06-07 |
EP4234704A2 (en) | 2023-08-30 |
CN104919038A (zh) | 2015-09-16 |
CN111621453A (zh) | 2020-09-04 |
EP2913392A4 (en) | 2016-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6375227B2 (ja) | 組換え細胞、並びに、イソプレンの生産方法 | |
CA2995872C (en) | Recombinant clostridium bacterium and uses thereof in acetone production | |
JP7304859B2 (ja) | エチレングリコールの生物生産のための微生物および方法 | |
CA2874832C (en) | Recombinant microorganisms and uses therefor | |
AU2011318676B2 (en) | Production of butanol from carbon monoxide by a recombinant microorganism | |
JP5395063B2 (ja) | イソプロパノール生産能を有するコリネ型細菌の形質転換体 | |
Wang et al. | Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2, 3-butanediol formation in Klebsiella pneumoniae | |
JP6862349B2 (ja) | 発酵経路を経由するフラックスの増大を示す組み換え微生物体 | |
US9365868B2 (en) | Fermentation process for producing isopropanol using a recombinant microorganism | |
US9834795B2 (en) | Recombinant microorganisms and uses therefor | |
BR112021011629A2 (pt) | Via de coprodução de derivados de 3-hp e acetil-coa a partir de malonato semialdeído | |
JP5252940B2 (ja) | コリネ型細菌形質転換体及びそれを用いるブタノールの製造方法 | |
JP5243748B2 (ja) | ブタノール生産能を有する形質転換体 | |
EP3385378A1 (en) | Recombinant cell, method for producing recombinant cell, and method for producing organic compound | |
JP2016059313A (ja) | 組換え細胞、並びに、イソプレン又は環式イソプレノイドの生産方法 | |
JP6470532B2 (ja) | 組換え細胞、並びに、有機化合物の生産方法 | |
JP6325862B2 (ja) | 組換え細胞、並びに、環式モノテルペンの生産方法 | |
JP6309304B2 (ja) | 組換え細胞、並びに、1,4−ブタンジオールの生産方法 | |
JP2014161252A (ja) | 組換え細胞 | |
JP2017055702A (ja) | 組換え細胞、組換え細胞の製造方法、並びに、ショウブノールの生産方法 | |
NZ614459B2 (en) | Recombinant microorganisms and uses therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13848830 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2886137 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2014543301 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14437034 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157010718 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013848830 Country of ref document: EP |