WO2014064929A1 - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
WO2014064929A1
WO2014064929A1 PCT/JP2013/006259 JP2013006259W WO2014064929A1 WO 2014064929 A1 WO2014064929 A1 WO 2014064929A1 JP 2013006259 W JP2013006259 W JP 2013006259W WO 2014064929 A1 WO2014064929 A1 WO 2014064929A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
transparent conductive
texture structure
thickness
conductive layer
Prior art date
Application number
PCT/JP2013/006259
Other languages
English (en)
French (fr)
Inventor
謙太 松山
崇良 曽根
藤田 和範
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014543149A priority Critical patent/JP6308438B2/ja
Publication of WO2014064929A1 publication Critical patent/WO2014064929A1/ja
Priority to US14/692,016 priority patent/US20150228814A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a solar cell.
  • Patent Document 1 discloses a solar cell having a transparent conductive layer on a semiconductor substrate on which a texture structure which is a surface uneven structure for reducing light reflection is formed.
  • the thickness of the transparent conductive layer 101 in the valley 100 of the texture structure is not constant, and the transparency is closer to the deepest portion 100 p of the valley 100.
  • the thickness of the conductive layer 101 was thick.
  • the solar cell according to the present invention includes a photoelectric conversion unit having a semiconductor substrate on which a texture structure is formed, and a transparent conductive layer formed on the photoelectric conversion unit and having a substantially constant thickness at a valley of the texture structure.
  • a solar cell having excellent photoelectric conversion characteristics can be provided.
  • the solar cell 10 which is an example of the embodiment according to the present invention will be described in detail below with reference to the drawings, but the application of the present invention is not limited to this.
  • the drawings referred to in the embodiments are schematically described, and the dimensional ratios of the components drawn in the drawings may be different from the actual products. Specific dimensional ratios and the like should be determined in consideration of the following description.
  • a second member for example, a transparent conductive layer
  • a first member for example, a photoelectric conversion portion
  • FIG. 1 is a plan view of the solar cell 10 as viewed from the light receiving surface side.
  • FIG. 2 is a diagram showing a part of a cross section taken along line AA of FIG. 1, and the solar cell 10 is cut in the thickness direction along a direction orthogonal to the finger portions of the first electrode 12 and the second electrode 13. A cross section is shown.
  • the solar cell 10 includes a photoelectric conversion unit 11 that generates sunlight by receiving sunlight, a first electrode 12 that is a light-receiving surface electrode formed on the light-receiving surface of the photoelectric conversion unit 11, and a photoelectric conversion unit 11. And a second electrode 13 which is a back electrode formed on the back surface. In the solar cell 10, carriers generated by the photoelectric conversion unit 11 are collected by the first electrode 12 and the second electrode 13.
  • the “light-receiving surface” means a surface on which light mainly enters from the outside of the solar cell 10. For example, more than 50% to 100% of the light incident on the solar cell 10 enters from the light receiving surface side.
  • the “back surface” means a surface opposite to the light receiving surface.
  • the light receiving surface and the back surface are collectively referred to as “main surface”.
  • the photoelectric conversion unit 11 includes a semiconductor substrate 20 (hereinafter referred to as “substrate 20”), an amorphous semiconductor layer 21 formed on the light receiving surface side of the substrate 20, and an amorphous layer formed on the back side of the substrate 20. Quality semiconductor layer 22. Furthermore, the photoelectric conversion unit 11 includes a transparent conductive layer 23 formed on the amorphous semiconductor layer 21 and a transparent conductive layer 24 formed on the amorphous semiconductor layer 22.
  • the substrate 20 is made of a semiconductor material such as crystalline silicon (c-Si) or polycrystalline silicon (poly-Si). Of these, single crystal silicon is preferable, and n-type single crystal silicon is particularly preferable.
  • a texture structure 25 which is a surface uneven structure is formed.
  • the texture structure 25 may be formed only on the light receiving surface of the substrate 20, for example, but is preferably formed on both the light receiving surface and the back surface. Details of the texture structure 25 will be described later.
  • the amorphous semiconductor layer 21 has a layer structure in which, for example, an i-type amorphous silicon layer and a p-type amorphous silicon layer are sequentially formed from the substrate 20 side.
  • the amorphous semiconductor layer 22 has a layer structure in which, for example, an i-type amorphous silicon layer and an n-type amorphous silicon layer are sequentially formed from the substrate 20 side.
  • the amorphous semiconductor layers 21 and 22 are formed on the texture structure 25.
  • an i-type amorphous silicon layer and an n-type amorphous silicon layer are sequentially formed on the light receiving surface of the substrate 20, and the i-type amorphous silicon layer is formed on the back surface of the substrate 20,
  • a structure in which a p-type amorphous silicon layer is sequentially formed may be employed.
  • the transparent conductive layers 23 and 24 are made of, for example, a transparent conductive oxide obtained by doping a metal oxide such as indium oxide (In 2 O 3 ) or zinc oxide (ZnO) with tin (Sn) or antimony (Sb). Composed.
  • the transparent conductive layers 23 and 24 are formed on the texture structure 25 through the amorphous semiconductor layers 21 and 22, respectively.
  • the transparent conductive layers 23 and 24 are formed in a region excluding the edge on the amorphous semiconductor layer from the viewpoint of productivity and the like.
  • the first electrode 12 is a metal electrode that collects carriers through the transparent conductive layer 23.
  • the first electrode 12 includes, for example, a plurality of (for example, 50) finger portions formed on the transparent conductive layer 23 by filling the valleys 27 of the texture structure 25, and a plurality of (for example, for example) extending in a direction intersecting the finger portions. 2) bus bar portions.
  • the finger portion is a thin wire electrode formed over a wide area on the transparent conductive layer 23.
  • a bus-bar part is an electrode which collects a carrier from a finger part, Comprising: For example, a width
  • the first electrode 12 has a structure in which a conductive filler such as silver (Ag) is dispersed in a binder resin, or a structure made of only a metal such as nickel (Ni), copper (Cu), silver (Ag).
  • a conductive filler such as silver (Ag) is dispersed in a binder resin, or a structure made of only a metal such as nickel (Ni), copper (Cu), silver (Ag).
  • the former is formed by screen printing using a conductive paste, and the latter is formed by electrolytic plating, vapor deposition, sputtering, or the like.
  • the first electrode 12 is formed on the texture structure 25 via the transparent conductive layer 23 and the like, filling a valley portion 26 (see FIG. 3 described later) of the texture structure 25.
  • the second electrode 13 includes a plurality of finger portions formed on the transparent conductive layer 24 by filling the valleys 26 of the texture structure 25, and a plurality of bus bar portions intersecting with the finger portions. Is preferred. However, the second electrode 13 is preferably formed in a larger area than the first electrode 12, and for example, more finger portions are formed than in the case of the first electrode 12 (for example, 250). The second electrode 13 may be a metal layer formed on substantially the entire area on the transparent conductive layer 24.
  • FIG. 3 and 4 are enlarged sectional views of the texture structure 25 on the light-receiving surface side, the transparent conductive layer 23 formed on the structure, and the like.
  • FIG. 3 shows the valley 26 of the texture structure 25
  • FIG. 4 shows the tip 27 of the texture structure 25.
  • the structure on the light receiving surface side is illustrated, but the structure on the back surface side is the same as that on the light receiving surface side.
  • the texture structure 25 is a surface uneven structure having a function of suppressing light surface reflection and increasing the light absorption amount of the photoelectric conversion unit 11.
  • Such a structure includes a number of substantially quadrangular pyramidal convex portions, and adjacent convex portions are in contact with each other. Some of the convex parts are distorted and do not look like a quadrangular pyramid, but at least half of the convex parts have a flat slope whose area decreases toward the upper end, with the apex at the upper end. It has a substantially quadrangular pyramid shape with a certain tip 27p.
  • the valley portion 26 of the texture structure 25 means a concave portion sandwiched between a plurality of adjacent convex portions. More specifically, as shown in FIG. 5, a range that is 1/3 of the height h of the convex portion that forms the concave portion is defined as the valley portion 26 from the valley bottom 26 p that is the deepest portion of the concave portion.
  • the hatching of the amorphous semiconductor layer 21, the transparent conductive layer 23, and the substrate 20 is omitted for clarity.
  • the height h of the convex portion means the length along the thickness direction of the substrate 20 from the tip 27p which is the highest portion of the convex portion to the deepest valley bottom 26p among the surrounding valley bottoms 26p. That is, the height h of the convex portion corresponds to the depth of the concave portion.
  • the front end portion 27 of the texture structure 25 is defined as a range of 1/3 of the height h of the convex portion from the front end 27p.
  • the size of the texture structure 25 (hereinafter sometimes referred to as “Tx size”) is about 1 ⁇ m to 15 ⁇ m, preferably about 1.5 ⁇ m to 5 ⁇ m.
  • the Tx size means a dimension in a state where the main surface of the substrate 20 is viewed in plan and can be measured using a scanning electron microscope (SEM) or a laser microscope.
  • SEM scanning electron microscope
  • each convex portion of the texture structure 25 is regarded as a square in a state where the main surface of the substrate 20 is viewed in plan, and one side thereof is defined as the Tx size.
  • the Tx size means a median value measured for about 200 convex portions.
  • the height h of the convex portion of the texture structure 25 is, for example, about 1 ⁇ m to 10 ⁇ m, preferably about 1.5 ⁇ m to 5 ⁇ m. Since the thickness of the amorphous semiconductor layer 21 and the transparent conductive layer 23 is about several nanometers to several hundred nanometers as will be described later, the texture structure 25 also appears on these thin film layers. In other words, the amorphous semiconductor layer 21 and the transparent conductive layer 23 are formed following the shape of the texture structure 25.
  • the valley portion 26 of the texture structure 25 is formed in a V shape, and the valley bottom 26p is pointed. That is, the flat slopes of adjacent convex portions are directly connected to form a valley portion 26, and a flat portion along the surface direction of the main surface (a direction orthogonal to the thickness direction of the substrate 20) on the valley bottom 26 p. Does not exist.
  • the curvature radius of the texture structure 25 at the valley bottom 26p (hereinafter referred to as “curvature radius r 26 ”) is extremely small, for example, less than 10 nm.
  • the radius of curvature r 26 is smaller than the thickness of the transparent conductive layer 23 and further the thickness of the amorphous semiconductor layer 21.
  • the thickness of the transparent conductive layer 23 is substantially constant. “Substantially constant” includes a range that can be regarded as substantially equivalent, and specifically means that the difference between the maximum thickness and the minimum thickness is within 10%. Preferably, the difference is within 5%. That is, the thickness t 1 in the vicinity of the valley bottom 26p is equal to the thickness t 2 in the upper portion of the valley portion 26, and the difference between them is within 10%.
  • the thickness of the transparent conductive layer 23 is the length from the upper end surface to the slope of the convex portion, and is the length along the direction orthogonal to the upper end surface (the same applies to the amorphous semiconductor layer). The thickness of the transparent conductive layer 23 can be measured by cross-sectional observation using SEM.
  • the thickness of the transparent conductive layer 23 is preferably about 30 nm to 200 nm, and particularly preferably about 40 nm to 100 nm.
  • the thickness t 1 is 70 nm
  • the thickness t 2 is also 70 nm, which is the same as t 1 , or about 70 nm ⁇ 7 nm even if there is a difference.
  • the thickness of the amorphous semiconductor layer 21 is also substantially constant.
  • the difference between the two is within 10%, preferably within 5%.
  • the thickness of the amorphous semiconductor layer 21 is preferably about 1 nm to 20 nm, and particularly preferably about 5 nm to 15 nm.
  • the tip portion 27 of the texture structure 25 is rounded in more than half of the many convex portions, and the tip 27p is not sharp. That is, the cross-sectional shape of the tip 27p has a substantially arc shape.
  • the radius of curvature of the texture structure 25 at the tip 27p (hereinafter referred to as “curvature radius r 27 ”) is larger than the radius of curvature r 26 , for example, 50 nm to 500 nm.
  • the curvature radius r 27 is preferably 5 times or more, more preferably 10 times or more, and particularly preferably 50 times or more of the curvature radius r 26 .
  • the radius of curvature r 27 is larger than the thickness of the transparent conductive layer 23 and further the thickness of the amorphous semiconductor layer 21.
  • the thickness of the transparent conductive layer 23 may be substantially constant over the entire area of the texture structure 25 including not only the valley portion 26 but also the tip portion 27 of the convex portion, but is thick in the vicinity of the tip 27p. Is preferred. In other words, it is preferable that the thickness of the transparent conductive layer 23 is substantially constant over the entire area on the texture structure 25 excluding the vicinity of the tip 27p of the convex portion. The same applies to the amorphous semiconductor layer 21.
  • the thickness t 3 of the transparent conductive layer 23 at the tip portion 27 is thicker than the thicknesses t 1 and t 2 at the valley portion 26.
  • the thickness of the transparent conductive layer 23 at the tip portion 27 is preferably increased as it approaches the tip 27p (t 3 > t 4 > t 5 ), and the thickness of the transparent conductive layer 23 is preferably maximized at the tip 27p.
  • the amorphous semiconductor layer 21 also shows the same tendency as the transparent conductive layer 23, and the tip portion 27 is thicker than the valley portion 26.
  • the texture structure 25 can be formed by etching the substrate 20 using an etching solution.
  • an alkaline solution such as a sodium hydroxide (NaOH) solution or a potassium hydroxide (KOH) solution can be exemplified.
  • the concentration of the alkaline solution is preferably about 1% to 10% by weight.
  • the solvent is, for example, an aqueous solvent containing water as a main component, and contains about 1% by weight to 10% by weight of an additive.
  • Additives include alcohol solvents such as isopropyl alcohol, cyclohexanediol, octanol, 4-propylbenzoic acid, 4-t-butylbenzoic acid, 4-n-butylbenzoic acid, 4-pentylbenzoic acid, 4-butoxybenzoic acid
  • alcohol solvents such as isopropyl alcohol, cyclohexanediol, octanol, 4-propylbenzoic acid, 4-t-butylbenzoic acid, 4-n-butylbenzoic acid, 4-pentylbenzoic acid, 4-butoxybenzoic acid
  • organic acids such as acid, 4-n-octylbenzenesulfonic acid, caprylic acid and lauric acid.
  • the Tx size can be adjusted by changing the concentration, temperature, composition ratio, processing time, etc. of the substrate 20 or the etching solution to be used.
  • the texture structure 25 can also be formed using an etching gas.
  • a cleaning process step for the substrate 20 may be provided.
  • a chemical solution that further etches the substrate 20 for example, a mixed solution of hydrofluoric acid (HF) and nitric acid (HNO 3 ). It is preferable not to use (hydrofluoric acid).
  • the amorphous semiconductor layers 21 and 22 can be formed by chemical vapor deposition (CVD) or sputtering.
  • CVD chemical vapor deposition
  • a source gas obtained by diluting silane (SiH 4 ) with hydrogen (H 2 ) is used.
  • SiH 4 diluting silane
  • H 2 hydrogen
  • a source gas diluted with hydrogen (H 2 ) by adding diborane (B 2 H 6 ) to silane can be used.
  • a source gas diluted with hydrogen (H 2 ) by adding phosphine (PH 3 ) to silane can be used.
  • the transparent conductive layers 23 and 24 can also be formed by CVD or sputtering. Since film formation by CVD is performed under a temperature condition of about 200 ° C. to 300 ° C., TCO is crystallized by such heat and conductivity is improved.
  • the thickness of the transparent conductive layers 23 and 24 in the valley portions 26 of the texture structure 25 is substantially constant.
  • the thickness of the amorphous semiconductor layers 21 and 22 is also substantially constant.
  • the area of the valley portion 26 on the main surface of the solar cell 10 is larger than the area of the tip portion 27, and the structure of the valley portion 26 greatly affects the photoelectric conversion characteristics. For this reason, it is important to reduce the non-uniformity of the thickness of the transparent conductive layers 23, 24, etc. in the valley portion 26.
  • the structure of the tip 27 is less likely to affect the photoelectric conversion characteristics than the valley 26. For this reason, at the tip portion 27, the transparent conductive layers 23, 24 can be thickened to protect the tip portion 27, and loss of the tip portion 27 at the time of manufacturing or using the solar cell 10 can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Weting (AREA)

Abstract

 太陽電池10は、テクスチャ構造25が形成された半導体基板20と、基板20上に形成され、テクスチャ構造25の谷部26における厚みが略一定である透明導電層23,24とを備える。

Description

太陽電池
 本発明は、太陽電池に関する。
 特許文献1には、光の反射を低減するための表面凹凸構造であるテクスチャ構造が形成された半導体基板上に透明導電層を有する太陽電池が開示されている。
国際公開第98/43304号パンフレット
 上記特許文献1の太陽電池を含む従来の技術では、図6に示すように、テクスチャ構造の谷部100における透明導電層101の厚みが一定ではなく、谷部100の最深部100pに近づくほど透明導電層101の厚みが厚くなっていた。太陽電池の光電変換特性を高めるためには、谷部における透明導電層の厚みの不均一性を低減することが好ましい。
 本発明に係る太陽電池は、テクスチャ構造が形成された半導体基板を有する光電変換部と、光電変換部上に形成され、テクスチャ構造の谷部における厚みが略一定である透明導電層とを備える。
 本発明によれば、光電変換特性に優れた太陽電池を提供できる。
本発明に係る実施形態の一例である太陽電池を受光面側から見た平面図である。 図1のA‐A線断面の一部を示す図である。 図2に示すテクスチャ構造の谷部の拡大図である。 図2に示すテクスチャ構造の先端部の拡大図である。 本発明に係る実施形態の一例であるテクスチャ構造(谷部・先端部)を説明するための図である。 従来のテクスチャ構造の谷部を拡大して示す断面図である。
 図面を参照しながら、本発明に係る実施形態の一例である太陽電池10について以下詳細に説明するが、本発明の適用はこれに限定されない。実施形態で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 本明細書では、「第1の部材(例えば、光電変換部)上に、第2の部材(例えば、透明導電層)が形成される」との記載は、特に限定を付さない限り、第1及び第2の部材が直接接触して形成される場合のみを意図しない。即ち、この記載は、第1及び第2の部材の間に、その他の部材が存在する場合を含むものである。
 図1は、太陽電池10を受光面側から見た平面図である。図2は、図1のA‐A線断面の一部を示す図であって、第1電極12及び第2電極13のフィンガー部に直交する方向に沿って太陽電池10を厚み方向に切断した断面を示す。
 太陽電池10は、太陽光を受光することでキャリアを生成する光電変換部11と、光電変換部11の受光面上に形成された受光面電極である第1電極12と、光電変換部11の裏面上に形成された裏面電極である第2電極13とを備える。太陽電池10では、光電変換部11で生成されたキャリアが第1電極12及び第2電極13により収集される。
 「受光面」とは、太陽電池10の外部から光が主に入射する面を意味する。例えば、太陽電池10に入射する光のうち50%超過~100%が受光面側から入射する。「裏面」とは、受光面と反対側の面を意味する。以下、受光面及び裏面を総称して「主面」という。
 光電変換部11は、半導体基板20(以下、「基板20」とする)と、基板20の受光面側に形成された非晶質半導体層21と、基板20の裏面側に形成された非晶質半導体層22とを有する。さらに、光電変換部11は、非晶質半導体層21上に形成された透明導電層23と、非晶質半導体層22上に形成された透明導電層24とを有する。
 基板20は、例えば、結晶系シリコン(c‐Si)や多結晶シリコン(poly-Si)等の半導体材料からなる。これらのうち、単結晶シリコンが好適であり、n型単結晶シリコンが特に好適である。基板20上には、表面凹凸構造であるテクスチャ構造25が形成されている。テクスチャ構造25は、例えば、基板20の受光面のみに形成されてもよいが、受光面及び裏面の両方に形成されることが好適である。テクスチャ構造25の詳細については後述する。
 非晶質半導体層21は、例えば、i型非晶質シリコン層と、p型非晶質シリコン層とが基板20側から順に形成された層構造である。非晶質半導体層22は、例えば、i型非晶質シリコン層と、n型非晶質シリコン層とが基板20側から順に形成された層構造である。非晶質半導体層21,22は、テクスチャ構造25上に形成される。光電変換部11は、基板20の受光面上にi型非晶質シリコン層と、n型非晶質シリコン層とが順に形成され、基板20の裏面上にi型非晶質シリコン層と、p型非晶質シリコン層とが順に形成された構造であってもよい。
 透明導電層23,24は、例えば、酸化インジウム(In23)や酸化亜鉛(ZnO)等の金属酸化物に、錫(Sn)やアンチモン(Sb)等をドープした透明導電性酸化物から構成される。透明導電層23,24は、非晶質半導体層21,22をそれぞれ介してテクスチャ構造25上に形成されている。透明導電層23,24は、生産性等の観点から、非晶質半導体層上の端縁を除く領域に形成される。
 第1電極12は、透明導電層23を介してキャリアを集める金属電極である。第1電極12は、例えば、テクスチャ構造25の谷部27を埋めて透明導電層23上に形成された複数(例えば、50本)フィンガー部と、フィンガー部と交差する方向に延びる複数(例えば、2本)のバスバー部とを含む。フィンガー部は、透明導電層23上の広範囲に形成される細線状の電極である。バスバー部は、フィンガー部からキャリアを収集する電極であって、例えば、フィンガー部よりも幅が太く、太陽電池10をモジュール化する際に配線材が接続される。
 第1電極12は、バインダ樹脂中に銀(Ag)等の導電性フィラーが分散した構造、或いはニッケル(Ni)や銅(Cu)、銀(Ag)等の金属のみからなる構造を有する。例えば、前者は、導電性ペーストを用いたスクリーン印刷により形成され、後者は、電解めっき、蒸着又はスパッタ等により形成される。第1電極12は、テクスチャ構造25の谷部26(後述の図3参照)を埋めて、透明導電層23等を介してテクスチャ構造25上に形成されている。
 第2電極13は、第1電極12と同様に、テクスチャ構造25の谷部26を埋めて透明導電層24上に形成された複数のフィンガー部と、これに交差する複数のバスバー部とを含むことが好適である。但し、第2電極13は、第1電極12よりも大面積に形成されることが好ましく、例えば、フィンガー部は第1電極12の場合よりも多く形成される(例えば、250本)。第2電極13は、透明導電層24上の略全域に形成される金属層であってもよい。
 図3及び図4は、受光面側のテクスチャ構造25、及び該構造上に形成された透明導電層23等を拡大した断面図である。図3は、テクスチャ構造25の谷部26を示し、図4は、テクスチャ構造25の先端部27を示す。ここでは、受光面側の構造を例示するが、裏面側の構造も受光面側と同様である。
 テクスチャ構造25とは、光の表面反射を抑制し、光電変換部11の光吸収量を増大させる機能を有する表面凹凸構造である。かかる構造には、略四角錐状の凸状部が多数含まれ、隣り合う凸状部同士は互いに接している。凸状部の中には形が歪んで四角錐状に見えないものもあるが、少なくとも半数以上の凸状部は、上端に向かって面積が小さくなる平坦な斜面を有し、上端に頂点である先端27pが形成された略四角錐状を呈している。
 本明細書において、テクスチャ構造25の谷部26とは、隣接する複数の凸状部に挟まれた凹状部を意味する。より詳しくは、図5に示すように、凹状部の最も深い部分である谷底26pから、凹状部を形成する凸状部の高さhの1/3の範囲が谷部26と定義される。図5は、図面の明瞭化のため、非晶質半導体層21、透明導電層23、及び基板20のハッチングを省略している。凸状部の高さhは、凸状部の最も高い部分である先端27pから、周囲の谷底26pのうち最も深い谷底26pまでの基板20の厚み方向に沿った長さを意味する。即ち、凸状部の高さhは凹状部の深さに相当する。テクスチャ構造25の先端部27は、先端27pから凸状部の高さhの1/3の範囲と定義される。
 テクスチャ構造25のサイズ(以下、「Txサイズ」という場合がある)は、1μm~15μm、好ましくは1.5μm~5μm程度である。Txサイズとは、基板20の主面を平面視した状態における寸法を意味し、走査型電子顕微鏡(SEM)やレーザーマイクロスコープを用いて測定できる。Txサイズの定義は特に限定されないが、以下では、基板20の主面を平面視した状態でテクスチャ構造25の一つ一つの凸状部を正方形に見立てて、その一辺をTxサイズとする。Txサイズは、200個程度の凸状部について測定した中央値を意味するものとする。
 テクスチャ構造25の凸状部の高さhは、例えば、1μm~10μm、好ましくは1.5μm~5μm程度である。非晶質半導体層21、透明導電層23の厚みは、後述するように、数nm~数百nm程度であるから、これら薄膜層の上にもテクスチャ構造25が現れる。換言すると、非晶質半導体層21、透明導電層23は、テクスチャ構造25の形状に追従して形成される。
 テクスチャ構造25の谷部26は、V字状に形成されており、谷底26pは尖っている。即ち、隣り合う凸状部の平坦な斜面同士が直接繋がって谷部26が形成されており、谷底26pに主面の面方向(基板20の厚み方向に直交する方向)に沿った平らな部分は存在しない。谷底26pにおけるテクスチャ構造25の曲率半径(以下、「曲率半径r26」という)は、極めて小さく、例えば、10nm未満である。曲率半径r26は、透明導電層23の厚み、さらには非晶質半導体層21の厚みよりも小さい。谷部26をV字状に形成して谷底26pを尖らせることにより、入射した光が谷部26において効率良く多重反射し、光電変換部11の光吸収効率を向上させることができる。
 谷部26では、透明導電層23の厚みが略一定である。略一定とは、実質的に同等とみなすことができる範囲を含み、具体的には、最大厚みと最小厚みとの差異が10%以内であることを意味する。好ましくは、当該差異は5%以内である。即ち、谷底26pの近傍における厚みt1、谷部26の上部における厚みt2は、同等であり、それらの差異は10%の範囲内である。透明導電層23の厚みは、その上端面から凸状部の斜面までの長さであって、該上端面に直交する方向に沿った長さである(非晶質半導体層についても同様)。透明導電層23の厚みは、SEMを用いた断面観察により測定できる。
 透明導電層23の厚みは、30nm~200nm程度が好適であり、40nm~100nm程度が特に好適である。例えば、厚みt1が70nmである場合、厚みt2もt1と同じ70nmであるか、差異があったとしても70nm±7nm程度である。
 谷部26では、非晶質半導体層21の厚みも略一定である。谷部26に形成された非晶質半導体層21は、最大厚みと最小厚みが存在する場合、両者の差異が10%以内であり、好ましくは5%以内である。非晶質半導体層21の厚みは、1nm~20nm程度が好適であり、5nm~15nm程度が特に好適である。
 テクスチャ構造25の先端部27は、多数の凸状部のうち半数以上において、丸みを帯びており、先端27pが尖っていない。即ち、先端27pの断面形状は、略円弧形状を呈している。先端27pにおけるテクスチャ構造25の曲率半径(以下、「曲率半径r27」という)は、曲率半径r26よりも大きく、例えば、50nm~500nmである。曲率半径r27は、曲率半径r26の5倍以上が好ましく、10倍以上がより好ましく、50倍以上が特に好ましい。曲率半径r27は、透明導電層23の厚み、さらには非晶質半導体層21の厚みよりも大きい。先端部27を丸く形成することにより、太陽電池10の製造時や使用時に先端部27が欠損することを抑制できる。
 透明導電層23の厚みは、谷部26だけでなく、凸状部の先端部27を含むテクスチャ構造25上の全域に亘って略一定であってもよいが、先端27p付近において厚くなっていることが好適である。換言すると、凸状部の先端27p付近を除くテクスチャ構造25上の全域に亘って、透明導電層23の厚みが略一定であることが好適である。非晶質半導体層21についても同様である。
 つまり、先端部27における透明導電層23の厚みt3は、谷部26における厚みt1,t2よりも厚いことが好適である。例えば、先端部27における透明導電層23の厚みは、先端27pに近づくほど厚くし(t3>t4>t5)、透明導電層23の厚みは、先端27pにおいて最も厚くすることが好ましい。非晶質半導体層21についても透明導電層23と同様の傾向を示し、先端部27において谷部26よりも厚みが厚い。
 テクスチャ構造25は、エッチング液を用いて基板20をエッチングすることにより形成できる。好適なエッチング液としては、基板20が(100)面を有する単結晶シリコン基板である場合、水酸化ナトリウム(NaOH)溶液や水酸化カリウム(KOH)溶液等のアルカリ溶液が例示できる。アルカリ溶液の濃度は、1重量%~10重量%程度であることが好ましい。溶媒は、例えば、水を主成分とする水系溶媒であり、1重量%~10重量%程度の添加剤を含有する。添加剤としては、イソプロピルアルコール、シクロヘキサンジオール、オクタノール等のアルコール系溶媒、4-プロピル安息香酸、4-t-ブチル安息香酸、4-n-ブチル安息香酸、4-ペンチル安息香酸、4-ブトキシ安息香酸、4-n-オクチルベンゼンスルホン酸、カプリル酸、ラウリン酸等の有機酸などが例示できる。
 (100)面を有する単結晶シリコン基板をアルカリ溶液に浸漬すると、(111)面に沿って異方性エッチングされ、基板20の主面上に略四角錐状の凸状部が多数形成される。使用する基板20やエッチング液の濃度や温度、組成比、処理時間等を変更することにより、Txサイズを調整することが可能である。エッチングガスを用いて、テクスチャ構造25を形成することもできる。
 テクスチャ構造25の形成後に、基板20の洗浄処理工程を設けてもよいが、かかる工程では、基板20がさらにエッチングされるような薬液、例えばフッ酸(HF)と硝酸(HNO3)の混合溶液(フッ硝酸)を用いないことが好適である。
 非晶質半導体層21,22は、化学気相蒸着(CVD)やスパッタリングにより形成できる。CVDによるi型非晶質シリコン層の成膜には、例えば、シラン(SiH4)を水素(H2)で希釈した原料ガスを使用する。p型非晶質シリコン層の場合は、シランにジボラン(B26)を添加し、水素(H2)で希釈した原料ガスを使用することができる。n型非晶質シリコン層の場合は、シランにホスフィン(PH3)を添加し、水素(H2)で希釈した原料ガスを使用することができる。透明導電層23,24についても、CVDやスパッタリングにより形成できる。CVDによる成膜は、200℃~300℃程度の温度条件下でなされるため、かかる熱によりTCOが結晶化して導電性が向上する。
 以上のように、太陽電池10は、テクスチャ構造25の谷部26における透明導電層23,24の厚みが略一定である。また、谷部26では、非晶質半導体層21,22の厚みも略一定である。これにより、光電変換特性を好適化するための光学的設計、電気的設計を厳密に行なうことが可能となる。したがって、太陽電池10によれば、光電変換特性を向上させることができる。
 太陽電池10の主面上における谷部26の面積は、先端部27の面積よりも大きく、谷部26の構造は光電変換特性に大きく影響する。このため、谷部26における透明導電層23,24等の厚みの不均一性を低減することは重要である。
 先端部27の構造は、谷部26に比べると光電変換特性に影響し難い。このため、先端部27では、透明導電層23,24の厚みを厚くして先端部27を保護し、太陽電池10の製造時や使用時における先端部27の欠損を抑制することができる。
 10 太陽電池、11 光電変換部、12 第1電極、13 第2電極、20 基板、21,22 非晶質半導体層、23,24 透明導電層、25 テクスチャ構造、26 谷部、26p 谷底、27 先端部、27p 先端。

Claims (4)

  1.  テクスチャ構造を有する半導体基板と、
     前記半導体基板上に形成され、前記テクスチャ構造の谷部における厚みが略一定である透明導電層と、
     を備えた太陽電池。
  2.  請求項1に記載の太陽電池であって、
     前記透明導電層は、前記テクスチャ構造の先端部において前記谷部よりも厚みが厚い太陽電池。
  3.  請求項1又は2に記載の太陽電池であって、
     前記谷部の曲率半径は、前記テクスチャ構造の先端部の曲率半径よりも小さい太陽電池。
  4.  請求項1~3のいずれか1項に記載の太陽電池であって、
     前記半導体基板上に形成された非晶質半導体層を有し、
     前記非晶質半導体層は、前記谷部における厚みが略一定である太陽電池。
PCT/JP2013/006259 2012-10-23 2013-10-23 太陽電池 WO2014064929A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014543149A JP6308438B2 (ja) 2012-10-23 2013-10-23 太陽電池
US14/692,016 US20150228814A1 (en) 2012-10-23 2015-04-21 Solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012233821 2012-10-23
JP2012-233821 2012-10-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/692,016 Continuation US20150228814A1 (en) 2012-10-23 2015-04-21 Solar cell

Publications (1)

Publication Number Publication Date
WO2014064929A1 true WO2014064929A1 (ja) 2014-05-01

Family

ID=50544314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006259 WO2014064929A1 (ja) 2012-10-23 2013-10-23 太陽電池

Country Status (3)

Country Link
US (1) US20150228814A1 (ja)
JP (2) JP6308438B2 (ja)
WO (1) WO2014064929A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052635A1 (ja) * 2014-09-30 2016-04-07 株式会社カネカ 結晶シリコン系太陽電池の製造方法、及び太陽電池モジュールの製造方法
JP2016184616A (ja) * 2015-03-25 2016-10-20 株式会社カネカ 太陽電池および太陽電池モジュール

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9972743B1 (en) * 2016-08-02 2018-05-15 Aptos Energy, LLC Methods of producing photoelectric devices
US10205038B2 (en) * 2016-08-02 2019-02-12 Aptos Energy, LLC Photovoltaic devices including curved sub-layers
CN114649427B (zh) * 2021-09-14 2023-09-12 浙江晶科能源有限公司 太阳能电池及光伏组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043304A1 (fr) * 1997-03-21 1998-10-01 Sanyo Electric Co., Ltd. Element photovoltaique et procede de fabrication dudit element
JPH11220154A (ja) * 1997-10-29 1999-08-10 Canon Inc 光起電力素子および光起電力素子モジュール
JP2003101053A (ja) * 2001-09-27 2003-04-04 Sanyo Electric Co Ltd 太陽電池装置及びその製造方法
JP2008091531A (ja) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 太陽電池モジュール

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123781A (ja) * 1985-11-22 1987-06-05 Sharp Corp 光電変換素子
JPH0722632A (ja) * 1993-06-23 1995-01-24 Sharp Corp 多結晶シリコン太陽電池とその製造方法
JP3172365B2 (ja) * 1994-05-19 2001-06-04 三洋電機株式会社 光起電力装置及びその製造方法
JP4745614B2 (ja) * 2004-01-27 2011-08-10 三菱重工業株式会社 太陽光発電装置
JP2010074053A (ja) * 2008-09-22 2010-04-02 Toppan Printing Co Ltd 太陽電池モジュール
JP2011009548A (ja) * 2009-06-26 2011-01-13 Toppan Printing Co Ltd 反射保護シート及びこれを用いた半導体発電装置
FR2949276B1 (fr) * 2009-08-24 2012-04-06 Ecole Polytech Procede de texturation de la surface d'un substrat de silicium et substrat de silicium texture pour cellule solaire
JP2011117013A (ja) * 2009-11-30 2011-06-16 Sanyo Electric Co Ltd 成膜方法及び太陽電池の製造方法
WO2011074457A1 (ja) * 2009-12-15 2011-06-23 ソニー株式会社 光電変換素子および光電変換素子の製造方法
FR2955707B1 (fr) * 2010-01-27 2012-03-23 Commissariat Energie Atomique Procede de realisation d'une cellule photovoltaique avec preparation de surface d'un substrat en silicium cristallin
JP2012064839A (ja) * 2010-09-17 2012-03-29 Kaneka Corp 結晶シリコン系太陽電池およびその製造方法
US20120085397A1 (en) * 2010-10-11 2012-04-12 Choul Kim Solar cell
US20120295447A1 (en) * 2010-11-24 2012-11-22 Air Products And Chemicals, Inc. Compositions and Methods for Texturing of Silicon Wafers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043304A1 (fr) * 1997-03-21 1998-10-01 Sanyo Electric Co., Ltd. Element photovoltaique et procede de fabrication dudit element
JPH11220154A (ja) * 1997-10-29 1999-08-10 Canon Inc 光起電力素子および光起電力素子モジュール
JP2003101053A (ja) * 2001-09-27 2003-04-04 Sanyo Electric Co Ltd 太陽電池装置及びその製造方法
JP2008091531A (ja) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 太陽電池モジュール

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052635A1 (ja) * 2014-09-30 2016-04-07 株式会社カネカ 結晶シリコン系太陽電池の製造方法、及び太陽電池モジュールの製造方法
JPWO2016052635A1 (ja) * 2014-09-30 2017-07-13 株式会社カネカ 結晶シリコン系太陽電池の製造方法、及び太陽電池モジュールの製造方法
CN107078179A (zh) * 2014-09-30 2017-08-18 株式会社钟化 晶体硅太阳能电池的制造方法、及太阳能电池模块的制造方法
US9871161B2 (en) 2014-09-30 2018-01-16 Kaneka Corporation Method for making crystalline silicon-based solar cell, and method for making solar cell module
CN107078179B (zh) * 2014-09-30 2019-04-26 株式会社钟化 晶体硅太阳能电池的制造方法、及太阳能电池模块的制造方法
JP2016184616A (ja) * 2015-03-25 2016-10-20 株式会社カネカ 太陽電池および太陽電池モジュール

Also Published As

Publication number Publication date
US20150228814A1 (en) 2015-08-13
JPWO2014064929A1 (ja) 2016-09-08
JP6308438B2 (ja) 2018-04-11
JP2018107468A (ja) 2018-07-05
JP6598091B2 (ja) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6598091B2 (ja) 太陽電池
JP5868503B2 (ja) 太陽電池およびその製造方法
JP5879538B2 (ja) 光電変換装置及びその製造方法
JP5906459B2 (ja) 太陽電池及びその製造方法
JP5820988B2 (ja) 光電変換装置及びその製造方法
JP5705968B2 (ja) 光電変換装置及びその製造方法
US10181534B2 (en) Solar cell
US20100218821A1 (en) Solar cell and method for manufacturing the same
JP6277555B2 (ja) 太陽電池
JP6091458B2 (ja) 光電変換装置およびその製造方法
US20140020742A1 (en) Photoelectric conversion device and method for producing photoelectric conversion device
JP5884030B2 (ja) 光電変換装置の製造方法
JP5842173B2 (ja) 光電変換装置及び光電変換装置の製造方法
WO2012132766A1 (ja) 光電変換装置及び光電変換装置の製造方法
KR20150090606A (ko) 태양 전지 및 이의 제조 방법
KR20150104431A (ko) 태양 전지 및 이의 제조 방법
JP6502147B2 (ja) 太陽電池の製造方法および太陽電池モジュールの製造方法
US20170005208A1 (en) Solar cell
US20120234382A1 (en) Solar cell and method of manufacturing the same
WO2012132614A1 (ja) 光電変換装置
TW201523907A (zh) 光發電元件
CN118053927A (zh) 太阳能电池及其制备方法、光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849937

Country of ref document: EP

Kind code of ref document: A1