WO2014061678A1 - ジエチルカーボネートの製造方法 - Google Patents

ジエチルカーボネートの製造方法 Download PDF

Info

Publication number
WO2014061678A1
WO2014061678A1 PCT/JP2013/078012 JP2013078012W WO2014061678A1 WO 2014061678 A1 WO2014061678 A1 WO 2014061678A1 JP 2013078012 W JP2013078012 W JP 2013078012W WO 2014061678 A1 WO2014061678 A1 WO 2014061678A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reactive distillation
distillation column
catalyst
raw material
Prior art date
Application number
PCT/JP2013/078012
Other languages
English (en)
French (fr)
Inventor
井伊 宏文
龍也 内藤
和毅 山本
勝義 工藤
彰 日野
允昭 金子
誉将 宮崎
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2014542152A priority Critical patent/JP5958549B2/ja
Priority to KR1020157009417A priority patent/KR101668571B1/ko
Priority to CN201380053531.0A priority patent/CN104718183B/zh
Priority to US14/434,153 priority patent/US9656942B2/en
Publication of WO2014061678A1 publication Critical patent/WO2014061678A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • C07C68/065Preparation of esters of carbonic or haloformic acids from organic carbonates from alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation

Definitions

  • the present invention relates to a method for producing diethyl carbonate in a high yield by reacting dimethyl carbonate and ethanol at a high reaction conversion rate in the presence of a transesterification catalyst.
  • the present invention relates to a method for industrially producing a large amount of diethyl carbonate, which is performed by separating a target product and a by-product by a continuous reactive distillation method using a reactive distillation column.
  • Patent Document 1 As an industrial production method of diethyl carbonate, a transesterification reaction between a cyclic carbonate and ethanol is generally widely known (see, for example, Patent Document 1 and Patent Document 2).
  • Patent Document 1 For example, in Patent Document 1, propylene carbonate is used as a cyclic carbonate, a mixture of propylene glycol, which is a reaction byproduct, and dimethyl carbonate, which is a target product, is obtained, and dimethyl carbonate is further separated from the obtained mixture by distillation. And how to get it has been reported.
  • Patent Document 2 reports a method for producing a symmetric dialkyl carbonate and an asymmetric dialkyl carbonate by using ethylene carbonate as a cyclic carbonate and subjecting it to two or more alcohols in the same reactor to undergo an ester exchange reaction. ing.
  • Patent Document 2 after the reaction, a low-boiling fraction mainly composed of a target symmetric dialkyl carbonate and asymmetric dialkyl carbonate and a production raw material alcohol, a production raw material alkylene carbonate, and a reaction byproduct alkylene glycol. And a method of distilling and separating into a high-boiling fraction containing as a main component.
  • glycol ethers such as ethyl glycol ether by-produced in the reaction are mixed in the low boiling point component, and these alkyls Since glycol ether is azeotropic with the target alkyl carbonate and is difficult to separate by distillation, it is described that purification is performed by newly incorporating a means of extraction separation.
  • Non-Patent Document 1 discloses several industrial production methods of diethyl carbonate by transesterification using dimethyl carbonate (DMC) as a production raw material.
  • Non-Patent Document 1 reports that diethyl carbonate is synthesized by reacting dimethyl carbonate and ethanol using a Lewis acidic compound such as yttrium triflate or samarium triflate as a transesterification catalyst. .
  • the target dialkyl carbonate such as diethyl carbonate is used together with the alcohol, the by-product alcohol, and the target product. Since it was obtained as a low-boiling component in the form of a mixture with glycol ether, which is a by-product, which easily produces boiling compounds, separation and purification from these by-products can then be performed when obtaining high-purity diethyl carbonate. In many cases, it was difficult or complicated operations were required for separation and purification.
  • Non-Patent Document 1 has a DEC selectivity of 87.2% (Table 5) at the maximum, so it is difficult to say that it is an industrially suitable manufacturing method.
  • EMC ethyl methyl carbonate
  • the target DEC, the raw material DMC, and the reaction intermediate EMC It was also a problem that it was very complicated to separate them.
  • the DMC conversion rate is 91.6% at the maximum (DEC selectivity 80.7%, EMC selectivity 16.2%, Table 1).
  • DEC selectivity 80.7%, EMC selectivity 16.2%, Table 1 In order to increase the yield, it is necessary to use a large excess of ethanol, which is still not an industrially sufficient production method from the economical aspect such as raw material cost.
  • the present invention provides a transesterification reaction of dimethyl carbonate using ethanol with a high conversion rate without distilling dimethyl carbonate as an azeotrope with methanol outside the reaction system.
  • An object of the present invention is to provide an industrially suitable production method for obtaining diethyl carbonate with high selectivity. More specifically, in the presence of a transesterification catalyst, a reactive distillation method in which dimethyl carbonate and ethanol are continuously supplied into the reactive distillation column at specific intervals, and the transesterification and distillation are simultaneously performed in the column.
  • Another object of the present invention is to provide a method for designing a reactive distillation column suitable for the method for producing diethyl carbonate.
  • the present invention includes the following embodiments [1] to [8].
  • Diethyl carbonate is produced by a reactive distillation method in which dimethyl carbonate and ethanol are continuously fed into a reactive distillation column, and in the presence of a transesterification catalyst, transesterification and distillation are simultaneously performed in the reactive distillation column.
  • the transesterification reaction is a counter-current reaction mode in which the transesterification catalyst is contacted with dimethyl carbonate and ethanol;
  • the reactive distillation column is a multistage reactive distillation column having a tower top, a reactive distillation part having an internal portion, and a concentrating part, and the reactive distillation part is below the catalyst inlet and the catalyst inlet on the side thereof.
  • a raw material inlet located in (C) the transesterification catalyst is supplied from the catalyst inlet;
  • (D) dimethyl carbonate and ethanol are supplied from the raw material inlet;
  • (E) The transesterification catalyst is used in an amount of 1 to 250 mmol per 1 mol of dimethyl carbonate;
  • (F) The ratio of the space volume between the catalyst inlet and the raw material inlet to the spatial volume of the reactive distillation section is 0.1 to 0.9;
  • the reflux ratio of the reactive distillation column is 0.5 to 10;
  • H A method for producing diethyl carbonate, characterized in that the temperature at the top of the column and the reactive distillation section is 60 to 100 ° C.
  • the required reaction distance ⁇ L defined by the distance between the catalyst inlet and the raw material inlet satisfies the following formula (W): A method for producing diethyl carbonate.
  • W A method for producing diethyl carbonate.
  • ⁇ L required reaction distance (m)
  • v 0 total supply amount of dimethyl carbonate, ethanol and transesterification catalyst to the reactive distillation column per unit time (L ⁇ h ⁇ 1 )
  • d hold-up amount per meter (L ⁇ m ⁇ 1 ) in the region between the catalyst inlet and the raw material inlet of the reactive distillation column
  • Conv reaction conversion rate of dimethyl carbonate
  • c catalyst supply amount into the reactive distillation column (mol ⁇ h ⁇ 1 )
  • B Amount extracted from the bottom of the reactive distillation column (L ⁇ h ⁇ 1 )
  • r reflux ratio
  • D Amount extracted from the top of the reactive distillation column (L ⁇ h ⁇ 1 )
  • T Tower temperature
  • transesterification catalyst is at least one selected from the group consisting of an alkali metal hydroxide, an alkali metal carbonate compound, an alkali metal methoxide, and an alkali metal ethoxide.
  • the production method of the present invention in the presence of a transesterification catalyst, dimethyl carbonate and ethanol are continuously fed into a reactive distillation column at specific intervals, and a synthesis reaction of diethyl carbonate is performed in the column.
  • a reactive distillation method in which purification is performed simultaneously, for example, the transesterification catalyst supply position, the dimethyl carbonate and / or ethanol supply position, the transesterification catalyst usage amount, the dimethyl carbonate and ethanol usage ratio into the reactive distillation column
  • the production raw material dimethyl carbonate is prevented from forming an azeotrope with methanol and distilling out of the reactive distillation tower, and dimethyl carbonate is reacted at a good reaction conversion rate.
  • diethyl carbonate can be obtained with better reaction selectivity.
  • the production method of the present invention in a reactive distillation column having trays or packing materials, it is necessary to be defined by the interval between the supply position of dimethyl carbonate and / or ethanol and the supply position of the transesterification catalyst.
  • the number of reaction stages or the required reaction distance can be optimized using a predetermined formula, and industrial large scale diethyl carbonate can be produced continuously.
  • the target diethyl carbonate is obtained as a high-boiling component, there is almost no influence of various by-products found in the above-mentioned patent documents and non-patent documents. That is, according to the production method of the present invention, it is possible to obtain highly pure diethyl carbonate by a very simple method.
  • the mixture of ethanol and methanol separated and recovered as a low boiling point component in the production method of the present invention can be recycled and reused as a raw material for producing diethyl carbonate, for example.
  • the alkali metal compound used as the transesterification catalyst is a compound that is inexpensive and easily available, unlike a resin-supported catalyst prepared by a special method as in Patent Document 2.
  • this embodiment provides a manufacturing method that is economically advantageous (cost-wise), has little waste, and has a reduced environmental impact. can do.
  • One embodiment of the present invention relates to a method for continuously producing diethyl carbonate by transesterification of dimethyl carbonate and ethanol in a reactive distillation column.
  • the production method of the present invention is a method in which dimethyl carbonate and ethanol are reacted in the reactive distillation column illustrated in FIG. 1 in the presence of a transesterification catalyst. More specifically, dimethyl carbonate and ethanol, which are manufacturing raw materials, and a transesterification catalyst are continuously supplied into a reactive distillation column, and in the column, a transesterification reaction and a separation operation by distillation are simultaneously performed. Low-boiling compounds having a boiling point of 80 ° C. or less, including certain ethanol (boiling point 78.3 ° C., atmospheric pressure), methanol produced by the reaction (boiling point 64.7 ° C., atmospheric pressure), etc. are selectively and continuously from the top of the column. And distillatively separating and selectively separating and obtaining diethyl carbonate as a target product from the bottom of the column.
  • the reaction of the present invention is a chemical equilibrium type reaction performed by a transesterification reaction between dimethyl carbonate and ethanol. Therefore, in the production method of the present invention, the reaction equilibrium can be biased toward the production direction of diethyl carbonate by continuously recovering methanol produced in the reaction as a low boiling point compound from the top of the column, and as a result, more efficient. Thus, the objective diethyl carbonate can be produced continuously. Since dimethyl carbonate as a raw material for production is known to form an azeotrope with methanol, in the production method of the present invention, for example, in order to prevent this azeotrope from being distilled off as a low boiling point component, for example The structure of the reactive distillation column, the reaction conditions in the reactive distillation column, etc. are designed.
  • the production method of diethyl carbonate of the present invention is a production apparatus capable of continuous production having, for example, a reactive distillation column having a tray (tray) or a packing as an internal, as shown in FIG. Is done using.
  • a reactive distillation column 10 has a reflux part RR, a reactive distillation part RD, and a concentrating part RC, and the reactive distillation part RD is internal.
  • a second raw material inlet (not shown) may be further provided below the catalyst inlet.
  • N 1 to n stages of shelves are shown as internal, but the internal may be constituted by packing, or the internal may be constituted by a combination of shelves and filling.
  • N with respect to the internal part constituted by the packing means the number of theoretical plates.
  • X, Y, and Z represent the top of the column, the top of the bottom of the column, and the bottom of the bottom of the column
  • D1 and D2 represent the inner diameters of the reactive distillation unit and the concentrating unit, respectively
  • Each length is indicated
  • L3 indicates an interval between the shelves.
  • the reactive distillation column of the present invention is preferably a distillation column having a tray and / or packing as an internal.
  • the term “internal” as used in the present invention means a portion where the gas-liquid contact is actually performed in the distillation column. Examples of such trays include foam trays, perforated plate trays, ripple trays, ballast trays, valve trays, counterflow trays, uniflux trays, super flack trays, max flack trays, dual flow trays, grid plate trays, turbo Grid plate trays, kittel trays, Older show type perforated plates, etc.
  • n is the sum of the number of trays and the number of theoretical plates.
  • the internal of the reactive distillation section of the reactive distillation column is a tray, and specifically, the tray has a porous plate portion and a downcomer portion. It is more preferable because it is excellent in relation to the equipment cost.
  • the perforated plate tray is preferably a perforated plate tray having 150 to 1200 holes per 1 m 2 area of the perforated plate portion, more preferably 200 to 1100 holes per 1 m 2 area.
  • a perforated plate tray particularly preferably a perforated plate tray having 250 to 1000 holes per 1 m 2 of area.
  • the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm 2 / hole, more preferably 0.7 to 4 cm 2 / hole, particularly preferably 0.9 to 3 cm 2 / hole.
  • the material constituting the reactive distillation column and the tray used in the present invention is mainly a metal material such as carbon steel and stainless steel, but in terms of the stability of the quality of diethyl carbonate, which is the object, stainless steel is used. It is preferred to use steel.
  • the reactive distillation column of the present invention is required to have a function of separating diethyl carbonate continuously and stably for a long period of time from a large amount of reaction mixture with a predetermined separation efficiency.
  • the reactive distillation column used in the method for producing diethyl carbonate of the present invention satisfies any of the design conditions shown in [1] and [2] below, or a combination thereof.
  • the reaction format is a counter-current reaction format in which a liquid or solid (including slurry) transesterification catalyst and a liquid or gaseous production raw material are brought into contact in the tower.
  • the raw material supply positions of dimethyl carbonate and ethanol, which are production raw materials, are both lower (to the tower bottom side) than the catalyst supply position for supplying the transesterification catalyst.
  • the dimethyl carbonate and ethanol may be introduced from the same stage of the distillation tower or from a different stage if they are below the feed position of the transesterification catalyst (bottom side). There may be.
  • the effect of the present invention is due to a single effect of the above-described design conditions or a composite effect brought about by appropriately combining the above.
  • ⁇ Required reaction space in the reactive distillation column (required reaction stage number: ⁇ N, required reaction distance: ⁇ L)>
  • the supply position of the raw material dimethyl carbonate and / or ethanol (raw material inlet: 16 in FIG. 1) and the position of supplying the transesterification catalyst (catalyst inlet: 14 in FIG. 1)
  • the position interval between them becomes a necessary reaction space.
  • This required reaction space is a packed reaction in which the internal of the reactive distillation column is, for example, the required number of reaction stages: ⁇ N in a tray-type reactive distillation column partitioned by a reaction stage (tray) or the internal is packed. In a distillation column, it can be calculated as a required reaction distance: ⁇ L.
  • the required reaction space in the production apparatus of the present invention is “continuous” as shown in FIG. 2, in which the space from the catalyst inlet: 14 to the raw material inlet: 16 of the reactive distillation column shown in FIG. It is calculated by analyzing the “tank reactor” as a reaction model.
  • the necessary reaction space is defined as a space (V in FIG. 2) in which dimethyl carbonate (DMC) as a raw material reacts at a predetermined DMC conversion rate.
  • DMC dimethyl carbonate
  • the reaction conditions when the whole was assumed to be a reactor of one tank were determined, and an equation for calculating the required number of reaction stages: ⁇ N was specified using this.
  • the transesterification reaction according to the present invention is represented by the following reaction formula ⁇ I> in which dimethyl carbonate (DMC) and ethanol (EtOH) react with each other in the presence of a transesterification catalyst to convert to ethyl methyl carbonate (EMC).
  • DMC dimethyl carbonate
  • EtOH ethanol
  • EMC ethyl methyl carbonate
  • the first step of transesterification of the chemical equilibrium type is carried out, in which methanol (MeOH) is by-produced.
  • Reaction formula ⁇ I> (In the formula, k 1 represents the reaction rate constant of the EMC synthesis reaction, and k ⁇ 1 represents the reaction rate constant of the reverse reaction of the EMC synthesis reaction.)
  • DMC conversion rate: Conv is related to DMC consumption rate: -r DMC .
  • DMC consumption rate: -r DMC is represented by the following formula (A).
  • Reaction formula ⁇ II> (Wherein, k 2 represents the reaction rate constant of DEC synthesis reaction, k -2 represents a reaction rate constant of the reverse reaction of DEC synthesis reaction.)
  • reaction formula ⁇ I> the reaction rate constant k ⁇ 1 of the reverse reaction can be regarded as almost zero.
  • k ⁇ 1 ⁇ 0 the formula (A) is expressed by the formula (B).
  • the raw material supply amount to the reactive distillation column: v 0 (L ⁇ h ⁇ 1 ) indicates the total amount of the raw material (DMC and EtOH, and the reaction catalyst) supplied per unit time.
  • the reaction model of FIG. 1 is regarded as one reactor from the catalyst inlet: 14 to the raw material inlet: 16 in the reactive distillation column shown in FIG. 1, the catalyst inlet and the raw material inlet are in the same reaction stage. Therefore, v 0 is the total amount of the raw materials (DMC and EtOH, and the reaction catalyst) supplied.
  • V represents the amount of liquid in the reaction distillation column (L).
  • the amount of liquid in the column: V in the reaction model of FIG. 2 corresponds to the amount of liquid existing between the catalyst inlet: 14 and the raw material inlet: 16 of the reactive distillation column shown in FIG.
  • [DMC] 0 represents the DMC concentration (mol ⁇ L ⁇ 1 ) in the raw material supplied to the reactive distillation column, and is a value set during the reaction.
  • [DMC] indicates the concentration (mol ⁇ L ⁇ 1 ) of the effluent DMC flowing out from the bottom of the reactive distillation column, and can be experimentally determined from the effluent.
  • Conv is represented by the following formula (G) from the concentration [DMC] 0 of DMC supplied to the reactive distillation column and the concentration [DMC] of the effluent DMC flowing out from the bottom of the reactive distillation column. . Note that Conv is a real number from 0 to 1, and is not a numerical value expressed as a percentage (%).
  • reaction rate constant (k 1 ) The reaction rate constant: k 1 is represented by the following equation (J) using a general Arrhenius equation.
  • the frequency factor: A and the activation energy: E can be determined by appropriately sampling the reaction solution during the reaction and measuring the progress of the reaction calculated from the consumption of DMC.
  • a and E were determined from the results obtained by the method shown in Example 6 as follows.
  • a and E are invariant constants in the reaction for producing DEC by reacting DMC and EtOH.
  • the apparent reaction rate constant: k 01 can be calculated using a numerical value obtained by experiments (Conv, tau and [Cat]). More specifically, for example, using Conv, ⁇ , and [Cat] of the data shown in Table 1 of the example, k 01 can be calculated from the formula (I). In this case, k 01 is preferably calculated by the least square method so that the sum of squares of errors between the measured value of DMC conversion rate: Conv of the raw material and the calculated value of DMC conversion rate is minimized (for example, FIG. 3). Further, when k 01 is calculated, the amount of reaction liquid (hold-up amount: V h ) per reaction stage (tray) can be obtained from the design value of the reaction stage (tray) when the scale of the reaction apparatus is large.
  • V h the reaction liquid amount per stage of the reaction stage (tray): V h by actual measurement, for example, the reaction solution collected in the reaction stage (tray) after the completion of the reaction is recovered, and the mass is determined. It may be calculated by weighing and dividing by the reaction stage used. Therefore, using this method, V h was also calculated for the apparatus used in Example 1 described later in the present invention. Further, the reaction liquid of the reaction space of the reaction distillation column (hold-up volume: V H) was calculated as V h ⁇ stages.
  • k 01 can be expressed by the equation (L) that depends on the temperature: T. For example, when the temperature in the tower changes due to the influence of the operating pressure, This equation can be applied.
  • the catalyst concentration in the reactive distillation column: [Cat] is the catalyst supply amount to the reactive distillation column: c, the extraction amount from the bottom of the reactive distillation column: B, the reflux ratio: r, and the reactive distillation column Using the amount D extracted from the top of the column: D, it is represented by the following formula (Q).
  • the required reaction space of the production apparatus for performing the reaction of the present invention can be expressed by the following formula (R) as the required number of reaction stages: ⁇ N. Furthermore, it can represent as a formula (R ') using k01 of a formula (K).
  • B (amount extracted from the bottom of the reactive distillation column), D (amount extracted from the top of the reactive distillation column) and V h (hold per reaction stage) (Up amount) and from the reaction conditions, v 0 (feed amount of DMC, EtOH and transesterification catalyst), c (catalyst feed amount into the reactive distillation column), T (temperature in the column), r (reflux) Ratio) and setting the target DMC reaction conversion rate: Conv to Formula (S), the required number of reaction stages when performing the production method of the present invention using a plate-type reactive distillation apparatus: ⁇ N can be calculated.
  • the present invention is a reaction required for the production of DEC using a plate-type reactive distillation apparatus by setting the design value of the reactive distillation column, the reaction conditions, and the target reaction conversion rate of DMC.
  • Number of stages Also includes a method of calculating ⁇ N.
  • the present invention sets the design value of the reactive distillation column, the reaction conditions, and the required number of reaction stages: ⁇ N, so that the reaction conversion rate of DMC when producing DEC using a shelf-type reactive distillation apparatus can be obtained.
  • the calculation method is also included.
  • DEC can be produced at a DMC reaction conversion rate of 88.5% or more.
  • the required number of reaction stages: ⁇ N can be set from the formula (S 88.5%, 78 ° C. ).
  • ⁇ Necessary reaction distance ⁇ L>
  • T the distance between the catalyst inlet and the raw material inlet of the reactive distillation column: ⁇ L is in the region between the catalytic inlet and the raw material inlet of the reactive distillation column. It is represented by the following formula (T) using a hold-up amount per meter: d.
  • ⁇ in the reaction space of DMC supplied into the reactive distillation column is expressed as the equation (E).
  • B (amount extracted from the bottom of the reactive distillation column), D (amount extracted from the top of the reactive distillation column), and d (catalyst introduction of the reactive distillation column) Specify the hold-up amount per meter in the region between the mouth and the raw material introduction port, and v 0 (feed amount of DMC, EtOH and transesterification catalyst), c (catalyst into the reactive distillation column) from the reaction conditions Supply amount), T (temperature in the tower), r (reflux ratio) are set, and the target reaction conversion rate of DMC: Conv is substituted into the formula (W).
  • ⁇ L can be calculated.
  • the present invention provides the reaction distance required for the production of DEC using a packed reactive distillation apparatus by setting the design value of the reactive distillation column, the reaction conditions, and the target reaction conversion rate of DMC. : A method for calculating ⁇ L is also included.
  • the present invention uses a reactive distillation apparatus other than a plate-type reactive distillation apparatus such as a packed reactive distillation apparatus by setting the design value of the reactive distillation column, the reaction conditions, and the required reaction distance: ⁇ L. And a method for calculating the reaction conversion rate of DMC when DEC is produced.
  • DEC can be produced at a DMC reaction conversion rate of 88.5% or more.
  • Required reaction distance: ⁇ L can be set from the formula (W 88.5%, 78 ° C. ).
  • the reactive distillation column of the present invention is required to have a function of separating diethyl carbonate continuously and stably for a long period of time from a large amount of reaction mixture with a predetermined separation efficiency.
  • the reactive distillation column used in the method for producing diethyl carbonate of the present invention further satisfies any one or combination of design conditions shown in the following [3] to [10].
  • n is usually 1 to 100, preferably 10 to 75, more preferably 30 to 75, more preferably 33 to 50, especially in terms of the actual number. Preferably 33 to 40 stages.
  • n is usually 1 to 100 stages, preferably 32 to 75 stages, more preferably 33 to 60 stages, more preferably 33 to 50 stages, and particularly preferably 33 to 50 stages in terms of theoretical plate number. There are 40 stages.
  • the reaction can be carried out in the same manner even when the number of plates: n (converted to the actual plate number or converted into the theoretical plate number) is 100 plates or more, but the reaction distillation column used increases with the number of plates.
  • the length of the reactive distillation section is increased.
  • the pressure difference between the top and bottom of the column becomes too large, and the temperature at the bottom of the column needs to be increased, which is not economical. Therefore, when the number of stages is increased, the design is made in consideration of the height limit, equipment cost, utility cost, etc. when manufacturing the reactor.
  • Interval between the raw material inlet and the catalyst inlet: ⁇ N is, for example, usually 1 to 50, preferably 5 to 35, more preferably 10 to 35 when the total number of shelves is 1 to 100. More preferably, it is 10 to 30 stages, particularly preferably 15 to 30 stages.
  • dimethyl carbonate can be reacted in a good reaction yield without forming an azeotrope with methanol, and further, the separation efficiency between the low boiling point compound and the target product can be ensured. And the production amount can be achieved. Further, in the production method of the present invention, it is possible to carry out the reaction with the same effect even if the distance between the raw material inlet and the catalyst inlet is 50 or more in terms of the actual stage number or the theoretical stage number. As the column length of the reactive distillation column used increases, the pressure difference between the upper and lower sides of the column becomes too large.This not only makes long-term stable operation difficult, but also increases the temperature at the bottom of the column. This is not economical.
  • the raw material inlet is lower than the 15th stage (for example, between the 14th and 15th stages) from the top of the tower (for example, between the 14th and 15th stages). Is particularly preferred.
  • the ratio of the space volume (m 3 ) (RH in FIG. 1) between the raw material supply position and the catalyst supply position to the empty volume (space volume (m 3 ) in the reactive distillation section; RD in FIG. 1) is Usually, 0.01 to 1.00, preferably 0.1 to 0.9, more preferably 0.2 to 0.8, more preferably 0.25 to 0.75, and particularly preferably 0.5 to 0.75.
  • One embodiment of the present invention relates to a method for continuously producing diethyl carbonate by transesterification of dimethyl carbonate and ethanol in a reactive distillation column.
  • the dimethyl carbonate used as a production raw material in the present invention can be purchased from commercial products.
  • carbon monoxide and nitrous acid in the presence of a solid catalyst with reference to JP-A-3-141243.
  • Those obtained by reacting an ester with a gas phase or those obtained by reacting carbon dioxide with an alcohol in the presence of a solid catalyst with reference to JP-A-2006-176212 are known.
  • Various dimethyl carbonates produced by the process can be used.
  • Ethanol used as a production raw material in the present invention can be a commercially available product as it is, but the water content is 0.20 mass% or less (2000 ppm or less) so as not to affect the transesterification reaction of the present invention. Preference is given to using ethanol.
  • the water content is removed by a dehydrating operation with a desiccant such as molecular sieve, anhydrous magnesium sulfate and / or calcium oxide, for example.
  • the amount of ethanol used is preferably 1.8 to 10 mol, more preferably 2.0 to 8.0 mol, more preferably 2.0 to 6.0 mol, particularly preferably 1 mol per mol of dimethyl carbonate. 2.0 to 5.0 moles. If the amount of ethanol is too small, the reaction will not proceed efficiently. On the other hand, if it is used too much, the complexity of removal after the reaction will increase, and it is not preferable from the viewpoint of economy (cost). If it is the usage-amount of the said range, the reaction of this invention can be performed favorably and it is economically suitable.
  • the transesterification catalyst used in the present invention is preferably at least one transesterification catalyst selected from the group consisting of alkali metal hydroxides, alkali metal carbonate compounds, alkali metal methoxides, and alkali metal ethoxides, more preferably At least one transesterification catalyst selected from the group consisting of lithium hydroxide, potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, alkali metal methoxide, and alkali metal ethoxide, more preferably alkali metal methoxide, and alkali metal At least one transesterification catalyst selected from the group consisting of ethoxide, particularly preferably lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide; At least one transesterification catalyst is used selected from the group consisting of. These transesterification catalysts may be used alone or in combination of two or more, and may
  • transesterification catalysts can be used as homogeneous catalysts when, for example, they are dissolved in ethanol, which is a raw material for production, or methanol, which is a reaction by-product, and when partially dissolved or dispersed in ethanol or methanol. Can be used as a slurry catalyst.
  • the amount of the transesterification catalyst used is usually 0.5 to 1000 mmol, preferably 1 to 250 mmol, more preferably 2 to 50 mmol, more preferably 2 to 25 mmol, particularly preferably 1 mol of dimethyl carbonate. 2 to 15 mmol. If the amount of the transesterification catalyst is too small, the reaction does not proceed efficiently. On the other hand, if it is used too much, the complexity of removal after the reaction increases, and it is not preferable from the viewpoint of economy (cost). If it is the usage-amount of the said range, the reaction of this invention can be performed favorably and it is economically suitable.
  • the reactive distillation using the reactive distillation column used in the present invention needs to have a function of continuously and stably separating diethyl carbonate from a large amount of reaction mixture with a predetermined separation efficiency.
  • the reaction conditions in the reactive distillation column satisfy any one or a combination of various conditions shown in the following [12] to [16].
  • the method for supplying dimethyl carbonate and ethanol to the reactive distillation column is not particularly limited, and dimethyl carbonate and ethanol can be supplied in a liquid, gaseous or gas-liquid mixed state.
  • dimethyl carbonate and ethanol can be intermittently or continuously supplied to the reactive distillation column at a position below the supply position of the transesterification catalyst.
  • Methanol and / or methyl ethyl carbonate may be contained in the production raw material containing dimethyl carbonate and ethanol.
  • the method for supplying the transesterification catalyst to the reactive distillation column is not particularly limited.
  • the transesterification catalyst may be supplied in liquid form, and supplied as a solution or slurry dissolved or suspended in ethanol or methanol. May be.
  • the transesterification catalyst may contain, for example, methanol and / or ethanol, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and the like.
  • the transesterification catalyst can be intermittently or continuously supplied to the reactive distillation column at a position above the supply position of the production raw material.
  • the temperature in the column varies depending on the pressure, and is not particularly limited.
  • the temperature at the top of the column: X and the reactive distillation unit: RD is preferably 60 to 100 ° C. (that is, ethanol boiling point (78 ° C) ⁇ 20 ° C, more preferably 65-95 ° C (ethanol boiling point (78 ° C) ⁇ about 15 ° C), particularly preferably 70-90 ° C (ethanol boiling point (78 ° C) ⁇ about 10 ° C).
  • Concentration part: RC temperature is preferably 105 to 150 ° C.
  • thermopoint of diethyl carbonate (° C.) ⁇ about 20 ° C. more preferably 110 to 145 ° C. (boiling point of diethyl carbonate (° C.) ⁇ 15 ° C.), particularly preferably Is 115 to 140 ° C. (boiling point of diethyl carbonate (° C.) ⁇ about 10 ° C.).
  • the temperature conditions vary depending on the internal shape and number of stages of the reactive distillation column, the type and composition and amount of the low boiling point reaction mixture to be supplied, the purity of diethyl carbonate to be separated, etc. be able to.
  • the column pressure varies depending on the column top pressure, column composition and / or column temperature, but the column top: X and concentration: RC pressure is preferably normal pressure to 1000 kPa (absolute Pressure).
  • the reflux ratio r of the reactive distillation column is preferably in the range of 0.5 to 10, more preferably in the range of 0.8 to 5, and further preferably in the range of 1.5 to 4.0. It is.
  • dimethyl carbonate and ethanol which are production raw materials, are supplied to the reactive distillation column according to the present invention, so that dimethyl carbonate, which is the production raw material, is converted into an azeotropic mixture with methanol produced by the reaction.
  • dimethyl carbonate which is the production raw material
  • diethyl carbonate can be produced in a high reaction yield in a reaction space where the conversion rate of dimethyl carbonate is preferably 90% or more, more preferably 95% or more.
  • Diethyl carbonate produced by the present invention is obtained as a reaction concentrate together with a transesterification catalyst or the like in the concentrating part: RC in FIG.
  • High purity diethyl carbonate can be obtained by separating and removing the transesterification catalyst contained in the obtained reaction concentrate by performing a simple operation such as water washing or distillation using a thin film distillation apparatus, for example.
  • the diethyl carbonate thus obtained is, for example, a transparent liquid having a hue (APHA value) of 10 or less, and is usually 97% by mass or more, preferably 99% by mass or more, more preferably 99.9% by mass or more. It can be obtained as an ultra-high purity product.
  • the content of reaction by-products such as ether compounds and aldehyde compounds is also 1% by mass or less, preferably 0.5% by mass or less, more preferably 0.1% by mass or less, and still more preferably diethyl carbonate. Is 0.05 mass% or less.
  • the content of metal impurities Na, K, Ca, Fe, Al, Mg, Cu, Pb is also usually 0.5 ppm or less, preferably 0.1 ppm or less, particularly preferably 1 ppb or less.
  • the diethyl carbonate of the present invention thus obtained is used, for example, as a raw material for producing dyes, pigments, medical and agrochemical products, and organic materials (for example, polycarbonate, etc.) in the electric / electronic field, and as a solvent for synthesis thereof.
  • it can be used as a printing cleaning agent, an additive for a soil modifier, a constituent of a battery electrolyte, and the like.
  • the production apparatus used in the examples was the reactive distillation tower shown in FIG. 1 and having the dimensions shown below.
  • a reactive distillation column having a column diameter (D1 in FIG. 1) of 34 mm, a shelf interval (L3 in FIG. 1) of 30 mm, and an actual plate number (n in FIG. 1) of 40 plates was used.
  • an old show type perforated plate (tray diameter 32 mm, hole diameter 0.8 mm, opening ratio 5.2%, manufactured by Asahi Seisakusho) was used.
  • the reaction conditions of the reactive distillation column are as follows: normal pressure, tower top temperature 69 to 71 ° C., tower temperature 71 to 78 ° C. (measurement site: 25th stage from the tower top), tower bottom temperature 105 to 120 Reactive distillation was continuously performed at a reflux ratio of 2.7C.
  • DMC dimethyl carbonate
  • EtOH ethanol
  • the reaction conditions of the reactive distillation column are as follows: normal pressure, tower top temperature of 69 to 72 ° C., tower temperature of 72 to 78 ° C. (25th stage), tower bottom temperature of 105 to 120 ° C., reflux ratio: r Was 2.1, and continuous reactive distillation was performed.
  • Example 3 a packed reactive distillation column having the following dimensions was used.
  • Reactive distillation with a tower diameter of 30 mm, a concentrating part filling height of 550 mm, and a recovery part filling height of 330 mm (in this embodiment, the sum of the concentrating part filling height and the recovery part filling height corresponds to L1 in FIG. 1).
  • a tower was used.
  • the catalyst inlet was provided at the top of the reactive distillation column, and was continuously fed at 25.2 g / hr.
  • the same reactive distillation column as in Example 1 was used.
  • the reaction conditions of the reactive distillation column are as follows: normal pressure, tower top temperature of 69 to 72 ° C., tower temperature of 72 to 78 ° C. (space of the 24th and 25th stages), tower bottom temperature of 105 to 120 C., reflux ratio: r was 2.4, and continuous reactive distillation was performed.
  • Example 5 Production of diethyl carbonate [Manufacturing equipment] The same reactive distillation column as described in Example 1 was used.
  • DMC dimethyl carbonate
  • EtOH ethanol
  • reaction conditions of the reactive distillation column are as follows: normal pressure, column top temperature 69-73 ° C., column temperature 73-78 ° C. (25th stage), column bottom temperature 105-120 ° C., reflux ratio: r Was 2.8, and the reaction and distillation were continuously performed.
  • the reactive distillation column is continuously reactive distillation under normal pressure at a column top temperature of 64 to 65 ° C., a column internal temperature of 66 to 75 ° C. (25th stage), a column bottom temperature of 80 to 100 ° C., and a reflux ratio: r. Went.
  • Table 1 shows a list of experimental results of Examples 1 to 5 and Comparative Example 1 above.
  • reaction time was 0 second.
  • reaction solution was sampled as appropriate, the DMC consumption at each reaction time was calculated from gas chromatography measurement (internal standard method), and the rate constant at each measurement temperature (3 points) was calculated.
  • Example 7 Calculation of apparent reaction rate constant (k 01 )
  • the apparent reaction rate constant: k01 is represented by the formula (K).
  • the apparent reaction rate constant: k 01 can be calculated from the formula (I) by using Conv, ⁇ , and [Cat] of the data shown in Table 1 of Examples (excluding Comparative Example 1). it can.
  • the reaction liquid amount (hold-up amount: V h ) per one reaction stage was measured by the reaction distillation apparatus used in Example 1, and the reaction liquid amount in the reaction space in the reaction distillation column ( The hold-up amount: V H ) was V h ⁇ stage number.
  • k 01 was calculated by the least square method so that the sum of squares of errors between the measured value of DMC conversion rate: Conv of the raw material and the calculated value of DMC conversion rate was minimized. The results are shown in FIG.
  • Diethyl carbonate obtained by the production method of the present invention includes, for example, dyes, pigment intermediates, agricultural chemical intermediates, pharmaceutical intermediates, organic material intermediates in the electronic / electronic field, solvents for their synthesis, and printing detergents. It is useful as an additive for soil modifiers, a raw material for producing polycarbonate, and a raw material for battery electrolyte.
  • diethyl carbonate obtained by the production method of the present invention for example, in addition to the above-mentioned by-products, has a very reduced content of halogen ions and metal ions, an intermediate of dye or pigment, an intermediate of agricultural chemicals , Pharmaceutical intermediates, organic material intermediates in the electronic and electronic fields, and their synthesis solvents, printing detergents, soil modifier additives, polycarbonate raw materials (monomers), and battery electrolytes Useful as a component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

ジメチルカーボネートとエタノールとをエステル交換反応させて、ジエチルカーボネートを高収率で取得する方法を提供する。触媒導入口と触媒導入口より下方に位置する原料導入口を備える多段反応蒸留塔内で、エステル交換反応と蒸留を同時に行う反応蒸留法によりジエチルカーボネートを製造する方法において、(a)エステル交換触媒とジメチルカーボネート及びエタノールとを接触させる向流型の反応形式であり、(e)ジメチルカーボネート1モルに対し触媒使用量が1~250ミリモルであり、(f)反応蒸留部の空間体積に対する、触媒導入口と原料導入口との間の空間体積の比が0.1~0.9であり、(g)反応蒸留塔の還流比が0.5~10であり、(h)塔頂部及び反応蒸留部の温度が60~100℃であることを特徴とする、ジエチルカーボネートの製造方法が提供される。

Description

ジエチルカーボネートの製造方法
 本発明は、エステル交換触媒の存在下、ジメチルカーボネートとエタノールとを高い反応転化率で反応させて、収率よくジエチルカーボネートを製造する方法に関する。
 さらに詳しくは、本発明は、反応蒸留塔を用いた連続的な反応蒸留法により、目的物と副生物を分離しながら行う、工業的に大量のジエチルカーボネートを製造する方法に関する。
 ジエチルカーボネートの工業的な製造方法としては、環状カーボネートとエタノールとのエステル交換反応が、一般的に広く知られている(例えば、特許文献1及び特許文献2参照)。
 例えば、特許文献1では、環状カーボネートとしてプロピレンカーボネートを使用し、反応副生物であるプロピレングリコールと目的物であるジメチルカーボネートの混合物を取得し、得られた混合物から、ジメチルカーボネートを更に蒸留にて分離して取得する方法が報告されている。また、特許文献2では、環状カーボネートとしてエチレンカーボネートを用い、これと2種以上のアルコールとを同一の反応器内でエステル交換反応させて、対称ジアルキルカーボネートと非対称ジアルキルカーボネートを製造する方法が報告されている。さらに、特許文献2では、反応後、目的物である対称ジアルキルカーボネート及び非対称ジアルキルカーボネートと製造原料のアルコールとを主成分とする低沸点留分と、製造原料のアルキレンカーボネートと反応副生物のアルキレングリコールとを主成分とする高沸点留分に蒸留分離する方法が記載されている。ここで、前記低沸点成分には目的とする対称ジアルキルカーボネート及び非対称ジアルキルカーボネート以外に、例えば、反応で副生するエチルグリコールエーテル等の様々なアルキルグリコールエーテルが混入しており、しかも、これらのアルキルグリコールエーテルは、目的とするアルキルカーボネートと共沸関係にあり蒸留分離は困難であるという理由から、新たに抽出分離という手段を取り入れて精製を行なうことが記載されている。
 一方、製造原料にジメチルカーボネート(DMC)を用いたエステル交換反応によるジエチルカーボネートの工業的な製造方法についてもこれまでにいくつか報告されている(例えば、非特許文献1参照)。
 例えば、非特許文献1では、イットリウムトリフラートやサマリウムトリフラート等のルイス酸性化合物をエステル交換触媒として使用して、ジメチルカーボネートとエタノールとを反応させて、ジエチルカーボネートを合成していることが報告されている。
 環状カーボネートやジメチルカーボネート(DMC)を製造原料としたジエチルカーボネートを製造する方法の多くは、化学平衡反応を利用したエステル交換反応である。そこで、この反応を効率的に進行させるために、反応副生物のアルキレングリコールやメタノールを留去する方法が行われている。しかしながら、例えば、DMCはメタノールと大気圧において、70%のメタノールと30%のDMCとの概略組成を有する共沸混合物を形成すること、そして、この種のエステル交換反応を実施する場合、DMCを完全に反応させることは実質的に不可能であることから、実際の反応では、メタノールとともにDMCも反応系外に留去されてしまい、その結果、DMC転化率が不十分であった、或いは工業的な再現性が低かった。そのため、別途、DMCとメタノールとの共沸混合物からメタノールを分離除去する方法が必要であることが記載されている(例えば、特許文献3参照)。
国際公開第2007/096343号パンフレット(特表2010―516729号公報) 特開2010-168365号公報 特開平7-196584号公報
Kinetics and Catalysis,2009,Vol.50,No.5,pp.666-670
 上記先行文献に記載されたように、環状カーボネートを使用したジエチルカーボネート(DEC)の製造方法としては、特許文献1のような反応蒸留塔を用いた製造方法が一般的であるが、沸点127℃のジエチルカーボネートをエチレングリコール(沸点198℃)やプロピレングリコール(沸点188℃)と分離するには、高い蒸留温度や過剰な蒸留段数等の煩雑な条件を必要とするため、経済的に不利であった。また、例えば、特許文献2に記載の環状カーボネートを使用した従来の方法では、反応後、例えば、ジエチルカーボネート等の目的とするジアルキルカーボネートを、製造原料のアルコール、副生するアルコール、目的物と共沸化合物を作り易い副生するグリコールエーテル等との混合物の状態で低沸点成分としてまとめて得ていたため、その後、高純度のジエチルカーボネートを取得するときに、これらの副生物との分離・精製が困難な場合や、分離・精製に煩雑な操作が必要な場合が多かった。
 例えば、非特許文献1に記載の方法は、DEC選択率は最大でも87.2%(表5)であることから、工業的に好適な製造方法とは言い難かった。また、この方法では、反応中間体であるエチルメチルカーボネート(EMC)が、13.6%もの選択率で生成するため、反応終了後、目的物のDECと、原料のDMC及び反応中間体のEMCとを分離することは非常に煩雑であることも問題であった。さらに、反応触媒の最適化を行ったとしても、DMC転化率は最大でも91.6%(DEC選択率80.7%、EMC選択率16.2%、表1)であることから、DEC取得収率を高めるために大過剰のエタノールを使用する必要があり、原料コストなどの経済的な面からみて工業的に依然十分な製造方法ではなかった。
 一方、ジメチルカーボネートは、メタノールと共沸混合物を作ることがよく知られている。そのため、ジメチルカーボネートのエステル交換反応によるジエチルカーボネートの製造方法において、副生するメタノールを留去させる際に、反応の進行に伴って、原料であるジメチルカーボネートの一部がメタノールとの共沸混合物を作って反応系外に留出してしまうため、この留出損失分に起因してDMC転化率及びDEC取得収率が低くなるという大きな問題があった。特に、工業的に効率的な方法のひとつである、反応蒸留塔を用いた反応蒸留法での製造を行う場合、反応蒸留塔内の温度変化や圧力変化等の変動要因が、各蒸留段中の反応の進行度や気液組成変化に大きく影響する。従って、DMCをほぼ完全に転化させて、目的物であるDEC取得収率を上げる反応を連続的に行うジエチルカーボネートの製造方法の確立は非常に困難であった。その結果、従来のジエチルカーボネートの製造方法では、上記の共沸混合物の問題により、反応転化率が不十分となり、反応後の混合物から目的物であるジエチルカーボネートを選択的に分離・取得することに困難さを伴う製造方法が多かった。つまり、上記の共沸混合物の問題が大きな障害となり、ジメチルカーボネートを高転化率で反応させて、ジエチルカーボネートを高収率で取得するという課題を解決した、大量生産が可能なDECの連続的製造方法を確立することは技術的に非常に困難であった。
 そこで、上記課題に鑑みて、本発明は、エタノールを用いたジメチルカーボネートのエステル交換反応において、ジメチルカーボネートをメタノールとの共沸混合物として反応系外に留出させることなく高転化率で反応させて、ジエチルカーボネートを高選択率で取得する工業的に好適な製造方法を提供することを課題とする。より詳しくは、エステル交換触媒の存在下、反応蒸留塔内に特定の間隔をあけてジメチルカーボネートとエタノールとをそれぞれ連続的に供給し、該塔内でエステル交換反応と蒸留を同時に行う反応蒸留法によって、高収率、高選択率、高生産性、そして長期間安定的に工業的大量規模のジエチルカーボネートを製造する方法を提供することにある。また、本発明は、上記ジエチルカーボネートの製造方法に適した反応蒸留塔の設計方法を提供することも課題とする。
 本発明は、下記〔1〕から〔8〕の実施態様を含む。
 〔1〕反応蒸留塔内に連続的にジメチルカーボネートとエタノールとを供給し、エステル交換触媒の存在下、前記反応蒸留塔内でエステル交換反応と蒸留を同時に行う反応蒸留法によってジエチルカーボネートを製造する方法において、
(a)エステル交換反応が、エステル交換触媒とジメチルカーボネート及びエタノールとを接触させる向流型の反応形式であり;
(b)反応蒸留塔が多段反応蒸留塔であって、塔頂部、インターナルを有する反応蒸留部及び濃縮部を有し、前記反応蒸留部はその側面に触媒導入口及び前記触媒導入口より下方に位置する原料導入口を備え;
(c)前記エステル交換触媒が前記触媒導入口から供給され;
(d)ジメチルカーボネート及びエタノールが前記原料導入口から供給され;
(e)ジメチルカーボネート1モルに対する、前記エステル交換触媒の使用量が、1~250ミリモルであり;
(f)前記反応蒸留部の空間体積に対する、前記触媒導入口と前記原料導入口との間の空間体積の比が、0.1~0.9であり;
(g)前記反応蒸留塔の還流比が、0.5~10であり;
(h)前記塔頂部及び前記反応蒸留部の温度が、60~100℃である
ことを特徴とする、ジエチルカーボネートの製造方法。
 〔2〕前記インターナルが多孔板トレイで仕切られている、前記〔1〕に記載のジエチルカーボネートの製造方法。
 〔3〕前記反応蒸留塔の段数が30~75段である、前記〔2〕に記載のジエチルカーボネートの製造方法。
 〔4〕前記原料導入口と前記触媒導入口の間隔が1~50段である、前記〔2〕又は〔3〕に記載のジエチルカーボネートの製造方法。
 〔5〕前記反応蒸留塔において、前記触媒導入口と前記原料導入口との間の段数で定義される必要反応段数:ΔNが、下記式(S)を満足する、前記〔1〕から〔4〕のいずれか一項に記載のジエチルカーボネートの製造方法。
Figure JPOXMLDOC01-appb-M000003
(式中、
ΔN:必要反応段数、
:単位時間あたりの反応蒸留塔へのジメチルカーボネート、エタノール及びエステル交換触媒の合計供給量(L・h-1)、
:反応段一段あたりのホールドアップ量(L/段数)、
Conv:ジメチルカーボネートの反応転化率、
c:反応蒸留塔内への触媒供給量(mol・h-1)、
B:反応蒸留塔の塔底からの抜き出し量(L・h-1)、
r:還流比、
D:反応蒸留塔の塔頂からの抜き出し量(L・h-1)、
T:塔内温度(K)
を表す。)
 〔6〕前記反応蒸留塔において、前記触媒導入口と前記原料導入口との間の距離で定義される必要反応距離:ΔLが、下記式(W)を満足する、前記〔1〕に記載のジエチルカーボネートの製造方法。
Figure JPOXMLDOC01-appb-M000004
(式中、
ΔL:必要反応距離(m)、
:単位時間あたりの反応蒸留塔へのジメチルカーボネート、エタノール及びエステル交換触媒の合計供給量(L・h-1)、
d:反応蒸留塔の触媒導入口と原料導入口の間の領域における1mあたりのホールドアップ量(L・m-1)、
Conv:ジメチルカーボネートの反応転化率、
c:反応蒸留塔内への触媒供給量(mol・h-1)、
B:反応蒸留塔の塔底からの抜き出し量(L・h-1)、
r:還流比、
D:反応蒸留塔の塔頂からの抜き出し量(L・h-1)、
T:塔内温度(K)
を表す。)
 〔7〕前記塔頂部及び前記濃縮部の圧力が常圧~1000kPaである、前記〔1〕から〔6〕のいずれか一項に記載のジエチルカーボネートの製造方法。
 〔8〕前記エステル交換触媒が、アルカリ金属水酸化物、アルカリ金属炭酸塩化合物、アルカリ金属メトキシド、及びアルカリ金属エトキシドからなる群から選ばれる少なくとも1種である、前記〔1〕から〔7〕のいずれか一項に記載のジエチルカーボネートの製造方法。
 本発明の製造方法によれば、エステル交換触媒の存在下、反応蒸留塔内に特定の間隔をあけてジメチルカーボネートとエタノールとをそれぞれ連続的に供給し、該塔内でジエチルカーボネートの合成反応と精製を同時に行う反応蒸留法により、例えば、反応蒸留塔内への、エステル交換触媒の供給位置、ジメチルカーボネート及び/又はエタノールの供給位置、エステル交換触媒の使用量、ジメチルカーボネートとエタノールの使用量比、塔内温度等を制御することで、製造原料のジメチルカーボネートがメタノールとの共沸混合物を作って反応蒸留塔外に留出することを抑制し、良好な反応転化率でジメチルカーボネートを反応させ、その結果、より良好な反応選択性でジエチルカーボネートを得ることができる。特に、本発明の製造方法によれば、棚段(トレイ)又は充填物等を有する反応蒸留塔において、ジメチルカーボネート及び/又はエタノールの供給位置とエステル交換触媒の供給位置の間隔で規定される必要反応段数又は必要反応距離を、所定の式を用いて最適化することができ、工業的大量規模のジエチルカーボネートを連続的に製造することができる。
 また、本発明の製造方法によれば、目的物であるジエチルカーボネートは、高沸点成分として得られるため、例えば、上記特許文献、非特許文献などに見られる様々な副生物の影響がほとんどない。つまり、本発明の製造方法によれば、非常に簡便な方法で高純度のジエチルカーボネートを取得することが可能である。
 さらに、本発明の製造方法において低沸点成分として分離・回収されたエタノールとメタノールの混合物は、例えば、再度、ジエチルカーボネートを製造するための原料としてリサイクル使用することができる。また、本発明の一実施態様において、エステル交換触媒として使用するアルカリ金属化合物は、特許文献2のように特殊な方法で調製された樹脂担持型触媒とは異なり、安価で入手し易い化合物であり、その上、その使用量も非常に少ないことから、この実施態様によれば、経済的(コスト的)にも有利で、廃棄物が少なく、環境への負荷がより低減された製造方法を提供することができる。
本発明の一実施態様による反応蒸留塔の構造を示した模式図である。 本発明の棚段式反応蒸留塔を連続槽型(1槽)反応器と仮定した場合の模式図である。 実施例の表1に示したデータ(実測値)と計算値(理論値)との相関を示した図である。
 以下、本発明について具体的に説明する。本発明の一実施態様は、反応蒸留塔内にて、ジメチルカーボネートとエタノールとのエステル交換反応により、ジエチルカーボネートを連続的に生成する方法に関する。
<本発明の製造方法>
 本発明の製造方法は、エステル交換触媒の存在下、ジメチルカーボネートとエタノールを、図1に例示される反応蒸留塔内にて反応させる方法である。より具体的には、製造原料であるジメチルカーボネート及びエタノールとエステル交換触媒とを反応蒸留塔内に連続的に供給し、該塔内でエステル交換反応と蒸留による分離操作を同時に行い、製造原料であるエタノール(沸点78.3℃、大気圧)、反応で生成するメタノール(沸点64.7℃、大気圧)等を含む沸点が80℃以下の低沸点化合物を塔頂部より選択的かつ連続的に蒸留分離し、塔底部より目的物であるジエチルカーボネートを選択的に分離して取得することを含む。
 本発明の反応は、ジメチルカーボネートとエタノールとのエステル交換反応によって行われる化学平衡型の反応である。従って、本発明の製造方法では、反応で生成するメタノールを低沸点化合物として塔頂より連続的に回収することで、反応平衡をジエチルカーボネートの生成方向へ偏らせることができ、その結果、より効率的に目的とするジエチルカーボネートを連続的に製造することができる。なお、製造原料のジメチルカーボネートはメタノールと共沸混合物を作ることが知られているため、本発明の製造方法では、この共沸混合物が低沸点成分として留去されることがないように、例えば、反応蒸留塔の構造、反応蒸留塔における反応条件等が設計される。
(本発明の製造装置)
 本発明のジエチルカーボネートの製造方法は、例えば、図1に示すような、内部にインターナルとして、例えば、棚段(トレイ)又は充填物を有する反応蒸留塔を有する連続的生産が可能な製造装置を使用して行なわれる。
 例えば、図1に示すような、本発明の一実施態様による反応蒸留塔:10は、還流部:RR、反応蒸留部:RD及び濃縮部:RCを有し、反応蒸留部:RDはインターナルを有する。反応蒸留塔:10の塔頂部には塔頂留分回収口:12、塔底部には塔底留分回収口:18がそれぞれ設けられ、反応蒸留部:RDの側面に触媒導入口:14および触媒導入口:14より下方に位置する原料導入口:16が設けられている。第2の原料導入口(不図示)が触媒導入口の下方にさらに設けられていてもよい。図1ではインターナルとしてN=1~n段目の棚段が示されているが、充填物でインターナルを構成してもよく、或いは棚段と充填物の組み合わせでインターナルを構成してもよい。充填物によって構成されるインターナルの部分に関するNは理論段数を意味する。図1のX、Y及びZは塔頂部、塔底上部及び塔底下部をそれぞれ示し、D1及びD2は反応蒸留部及び濃縮部の内径をそれぞれ示し、L1及びL2は反応蒸留部及び濃縮部の長さをそれぞれ示し、L3は棚段の間隔を示す。
(蒸留塔内のインターナル)
 本発明の反応蒸留塔は、インターナルとしてトレイ(棚段)及び/又は充填物を有する蒸留塔であることが好ましい。本発明でいうインターナルとは、蒸留塔において実際に気液の接触を行わせる部分のことを意味する。このようなトレイとしては、例えば泡鍾トレイ、多孔板トレイ、リップルトレイ、バラストトレイ、バルブトレイ、向流トレイ、ユニフラックストレイ、スーパーフラックトレイ、マックスフラックトレイ、デュアルフロートレイ、グリッドプレートトレイ、ターボグリッドプレートトレイ、キッテルトレイ、オールダーショウ型多孔板等が好ましく、充填物としては、ラシヒリング、レッシングリング、ポールリング、ベルルサドル、インタロックスサドル、ディクソンパッキング、マクマホンパッキング、ヘリパック等の不規則充填物やメラパック、ジェムパック、テクノパック、フレキシパック、スルザーパッキング、グッドロールパッキング、グリッチグリッド等の規則充填物が好ましい。また、本発明では、トレイ部と充填物の充填された部分とを合わせ持つ反応蒸留塔も用いることができる。なお、本発明で用いる用語「インターナルの段数:n」とは、トレイの場合は、トレイの数を意味し、充填物の場合は、理論段数を意味する。したがって、トレイ部と充填物の充填された部分とを合わせ持つ反応蒸留塔の場合、nはトレイの数と理論段数の合計である。
 本発明においては、図1に示すように、反応蒸留塔の反応蒸留部のインターナルがトレイであって、具体的には、該トレイが多孔板部とダウンカマー部を有する多孔板トレイが機能と設備費との関係で優れているためより好ましい。
 前記多孔板トレイは、好ましくは該多孔板部の面積1mあたりの孔数が150~1200個である多孔板トレイであり、より好ましくは該面積1mあたりの孔数が200~1100個である多孔板トレイであり、特により好ましくは該面積1mあたりの孔数が250~1000個である多孔板トレイである。また、該多孔板トレイの孔1個あたりの断面積は、好ましくは0.5~5cm/孔であり、より好ましくは0.7~4cm/孔であり、特に好ましくは0.9~3cm/孔である。
 本発明で用いられる反応蒸留塔及び使用するトレイを構成する材料は、主に炭素鋼、ステンレススチールなどの金属材料であるが、目的物であるジエチルカーボネートの品質の安定性の面からは、ステンレススチールを使用することが好ましい。
 本発明の反応蒸留塔は、大量の反応混合物から所定の分離効率でジエチルカーボネートを、連続的かつ長期間安定的に分離する機能を有することが必要である。本発明のジエチルカーボネートの製造方法に使用する反応蒸留塔は、下記[1]、[2]に示す設計条件のいずれか、又はその組み合わせを満足する。
 [1]反応形式は、塔内で、液状又は固体状(スラリー状を含む)のエステル交換触媒と液状又はガス状の製造原料を接触させる向流型の反応形式である。
 [2]製造原料であるジメチルカーボネート及びエタノールの原料供給位置は、いずれも、エステル交換触媒を供給する触媒供給位置よりも下部(塔底側)である。エステル交換触媒の供給位置よりも下部(塔底側)であれば、ジメチルカーボネートとエタノールは、それぞれ、該蒸留塔の同じ段から導入しても、又は別の段から導入しても、いずれであってもよい。
 本発明の効果は、上記の設計条件の単独効果、又はそれぞれが適宜組み合わさってもたらされる複合効果によるものである。上記[1]、[2]を満たす反応条件で実施することによって、従来問題となっていた、製造原料のジメチルカーボネートがメタノールとの共沸混合物を作ることなく、良好な反応収率で反応させることができ、さらに低沸点化合物と目的物との分離効率が確保できるため、目的のスペックと製造量を達成することができる。
<反応蒸留塔における必要反応空間(必要反応段数:ΔN、必要反応距離:ΔL)>
 本発明の製造方法では、製造原料であるジメチルカーボネート及び/又はエタノールの供給位置(図1の原料導入口:16)とエステル交換触媒を供給する位置(図1の触媒導入口:14)との間の位置間隔が、必要反応空間となる。この必要反応空間は、反応蒸留塔のインターナルが、例えば、反応段(トレイ)で仕切られた棚段式反応蒸留塔では必要反応段数:ΔNとして、あるいはインターナルが充填物である充填式反応蒸留塔では必要反応距離:ΔLとして算出することができる。
[1.反応モデルの仮定]
 本発明の製造装置における必要反応空間は、図1に示す反応蒸留塔の触媒導入口:14から原料導入口:16までの間を1つの反応器とみなした、図2に示すような「連続槽型反応器」を反応モデルとして解析することで算出される。この場合、前記必要反応空間は、原料であるジメチルカーボネート(DMC)が所定のDMC転化率で反応する空間(図2のV)として定義される。
 本発明において、棚段式反応蒸留塔については、まず全体を1槽の反応装置として仮定した場合の反応条件を決定し、これを用いて必要反応段数:ΔNの算出を行う式を特定した。
[2.DMC転化率の算出]
(2-1:DMCの消費速度(-rDMC)の算出)
 本発明に係るエステル交換反応は、エステル交換触媒の存在下でジメチルカーボネート(DMC)とエタノール(EtOH)とが反応してエチルメチルカーボネート(EMC)へと転化する、下記反応式<I>で表される化学平衡型の第一段階のエステル交換反応を含み、このときメタノール(MeOH)が副生する。
反応式<I>:
Figure JPOXMLDOC01-appb-C000005
(式中、kはEMC合成反応の反応速度定数を表し、k-1はEMC合成反応の逆反応の反応速度定数を表す。)
 上記エステル交換反応において、DMC転化率:ConvはDMCの消費速度:-rDMCと関係がある。DMCの消費速度:-rDMCは下記式(A)で表される。
式(A):
Figure JPOXMLDOC01-appb-M000006
(式中、-rDMCはDMCの消費速度(mol・L-1・h-1)を表し、kはEMC合成反応の反応速度定数(L・mol-2・h-1)、k-1はEMC合成反応の逆反応の反応速度定数(L・mol-2・h-1)を表す。[Cat]は反応蒸留塔内の触媒濃度(mol・L-1)、[DMC]は反応蒸留塔内のDMCの濃度(mol・L-1)、[EtOH]は反応蒸留塔内のEtOHの濃度(mol・L-1)、[EMC]は反応蒸留塔内のEMCの濃度(mol・L-1)、及び[MeOH]は反応蒸留塔内のMeOHの濃度(mol・L-1)をそれぞれ表す。)
 本発明の製造方法では、DMCに対して大過剰のEtOHを使用することから、反応式<I>で生成したEMCは、下記反応式<II>で表される第二段階のエステル交換反応を経て速やかにジエチルカーボネート(DEC)に転化するとみなすことができる。
反応式<II>:
Figure JPOXMLDOC01-appb-C000007
(式中、kはDEC合成反応の反応速度定数を表し、k-2はDEC合成反応の逆反応の反応速度定数を表す。)
 すなわち、反応式<I>において逆反応の反応速度定数:k-1をほぼ0とみなすことができる。k-1≒0とすると、式(A)は式(B)で表される。
式(B):
Figure JPOXMLDOC01-appb-M000008
(式中、-rDMC、k、[Cat]、[DMC]及び[EtOH]は上記のとおりである。)
 本発明の製造方法では、EtOHの一部は、還流により塔頂部より留去されるため、反応蒸留塔内に残留する正味のEtOH濃度をその供給量から決定することができない。従って、EtOHの留去量を考慮した見かけの反応速度定数をk01とし、下記式(C)のように速度定数:kと[EtOH]の積として定義することとした。そこで、このk01を式(B)に代入すると式(D)となる。
式(C):
Figure JPOXMLDOC01-appb-M000009
(式中、k01は見かけの反応速度定数(L・mol-1・h-1)を表す。k及び[EtOH]は上記のとおりである。)
式(D):
Figure JPOXMLDOC01-appb-M000010
(式中、-rDMC、k01、[Cat]及び[DMC]は上記のとおりである。)
(2-2:反応空間内でのDMCの滞留時間(τ)の算出)
 ここで、図2のような連続槽型反応器において、反応が反応塔への流入量と反応塔からの流出量が同一である定常状態で行われるものとすると、反応空間内の反応溶液の滞留時間:τは、反応蒸留塔内に単位時間あたり供給される原料(DMC及びEtOH、並びに反応触媒)の量(原料供給量:v)と反応蒸留塔内に滞留する反応液量(塔内液量:V)の比として、下記式(E)のように表される(参照文献:基礎化学工学 50ページ 数式(2.61)、編者(社)化学工学会、発行所培風館、1999年1月22日)。さらに、当該反応空間内の滞留時間τは、DMCの減少量とDMCの消費速度:-rDMCから、下記式(E)としても表される。
式(E):
(式中、τは、図2より反応空間内の滞留時間(h)、vは、図2より単位時間あたりの反応蒸留塔への原料供給量(L・h-1)、Vは反応蒸留塔内の塔内液量(L)を表す。[DMC]は反応蒸留塔へ供給した原料中のDMC濃度(mol・L-1)、[DMC]は、反応蒸留塔の塔底から流出する流出DMCの濃度(mol・L-1)を表す。-rDMCは上記のとおりである。)
 ここで、反応蒸留塔への原料供給量:v(L・h-1)とは、単位時間当たりの原料(DMC及びEtOH、並びに反応触媒)の供給量の総量を示す。例えば、図1に示すような棚段式反応蒸留塔を用いた実際の製造方法では、DMC及びEtOHと反応触媒とは、別々の箇所から供給(Feed)されるが、図2の反応モデルは、図1に示す反応蒸留塔の触媒導入口:14から原料導入口:16までの間を1つの反応器とみなしているため、触媒導入口と原料導入口が同一の反応段になる。従って、vは、原料(DMC及びEtOH、並びに反応触媒)の供給量の総量となる。
 また、Vとは反応蒸留塔内の塔内液量(L)を表す。図2の反応モデルにおける塔内液量:Vは、図1に示す反応蒸留塔の触媒導入口:14から原料導入口:16までの間に存在する液量に相当する。
 さらに、[DMC]は、反応蒸留塔へ供給する原料中のDMC濃度(mol・L-1)を示し、反応時に設定される値である。[DMC]は、反応蒸留塔の塔底から流出する流出DMCの濃度(mol・L-1)を示し、流出液から実験的に決定することができる。
 次に、式(E)に式(D)を代入すると、滞留時間:τは式(F)として示される。
式(F):
Figure JPOXMLDOC01-appb-M000012
(式中、τ、[DMC]、[DMC]、k01及び[Cat]は上記のとおりである。)
(2-3:DMC転化率の算出)
 原料のDMC転化率:Convは、反応蒸留塔へ供給したDMCの濃度[DMC]と反応蒸留塔の塔底から流出する流出DMCの濃度[DMC]から、下記式(G)で表される。なお、Convは、0~1の実数であって、百分率(%)で表す数値ではない。
式(G):
Figure JPOXMLDOC01-appb-M000013
(式中、Convは原料であるDMCの反応転化率を表す。[DMC]及び[DMC]は上記のとおりである。)
 式(F)を変形すると式(H)となり、式(H)を式(G)に代入すると式(I)となる。
式(H):
Figure JPOXMLDOC01-appb-M000014
(式中、[DMC]、[DMC]、k01、[Cat]及びτは上記のとおりである。)
式(I):
Figure JPOXMLDOC01-appb-M000015
(式中、Conv、k01、[Cat]及びτは上記のとおりである。)
[3.反応速度定数(k)の算出]
 反応速度定数:kは、一般的なアレニウスの式を用いて、下記式(J)のように表される。
式(J):
Figure JPOXMLDOC01-appb-M000016
(式中、Aは頻度因子(L・mol-2・s-1)、Eは活性化エネルギー(J・mol-1)、Rは気体定数(8.314 J・mol-1・K-1)、Tは温度(K:ケルビン温度)を表す。)
 頻度因子:A及び活性化エネルギー:Eは、反応中に反応溶液を適宜サンプリングし、DMCの消費量から算出される反応の進行度を測定して決定することができる。例えば、本発明では実施例6に示す方法により、得られた結果から、以下のようにA及びEが決定された。
 A=2.66×10
 E=4.16×10
 なお、A及びEは、DMCとEtOHとを反応させてDECを製造する反応において、不変的な定数である。
[4.見かけの反応速度定数(k01)の算出]
 次に、見かけの反応速度定数:k01は、式(J)及び式(C)を用いてk01で表される下記式(K)に変形できる。
式(K):
Figure JPOXMLDOC01-appb-M000017
(式中、A、E、R、T及び[EtOH]は上記のとおりである。)
 ここで、見かけの反応速度定数:k01は、実験を行って得られる数値(Conv、τ及び[Cat])を用いて算出することができる。より詳しくは、例えば、実施例の表1に示したデータのConv、τ及び[Cat]を用いると、式(I)からk01を算出することができる。その際、k01は、最小二乗法により、原料のDMC転化率:Convの実測値とDMCの転化率の計算値との誤差の二乗和が最小となるようにして算出することが好ましい(例えば、図3参照)。また、k01の計算を行う際、反応段(トレイ)一段あたりの反応液量(ホールドアップ量:V)は、反応装置の規模が大きい場合、反応段(トレイ)の設計値から得られるが、反応装置が小さい場合、又は反応段(トレイ)の設計情報が無い場合は実測する必要がある。ここで、実測にて反応段(トレイ)一段あたりの反応液量:Vを決定する方法としては、例えば、反応終了後に反応段(トレイ)に溜まった反応溶液を回収して、その質量を量り、使用した反応段で割ることによって算出することが挙げられる。そこで、この方法を用いて、本発明においても、後述の実施例1で使用した装置について、Vを算出した。また、反応蒸留塔内の反応空間の反応液量(ホールドアップ量:V)は、V×段数として算出した。
 その結果、比較例3を除いた、還流比:rが0.5~10である場合、本発明の製造方法による見かけの反応速度定数:k01は、6442L・mol-1・h-1(1.79L・mol-1・s-1)と決定された。
 さらに、エステル交換反応の反応温度を常圧下のEtOHの沸点である78℃とすると、実施例の結果から先に算出したk01を用いて式(K)から[EtOH]を算出することができる。このようにして[EtOH]=10.38mol・L-1が得られた。
 式(K)にA、E、R、及び得られた[EtOH]を代入すると、見かけの反応速度定数:k01は、反応温度Tとの関係式として式(L)で表すことができる。
式(L):
Figure JPOXMLDOC01-appb-M000018
(式中、k01及びTは上記のとおりである。)
 ここで重要なことは、見かけの反応速度定数:k01は、温度:Tに依存する式(L)で表すことができるため、例えば、操作圧力の影響による塔内温度変化が生じた場合もこの式を適用することができる。
[5.必要反応段数:ΔNの算出]
 必要反応段数:ΔN(段数)は、反応蒸留塔内の反応空間の反応液量(ホールドアップ量:V)と、反応段一段あたりの反応液量(ホールドアップ量:V)から、下記式(M)のように表される。
式(M):
Figure JPOXMLDOC01-appb-M000019
(式中、ΔNは必要反応段数(段数)を表し、V、Vは上記のとおりである。)
 ここで、図2の反応モデルにおけるVと反応蒸留塔内の反応空間の反応液量(ホールドアップ量:V)は、同じものを示すことから、V=Vとして、式(E)及び式(M)から、τを用いてΔNを下記式(N)のように表すことができる。
式(N):
Figure JPOXMLDOC01-appb-M000020
(式中、ΔN、τ、V及びVは上記のとおりである。)
 式(I)より、τは下記式(O)のように表される。
式(O):
Figure JPOXMLDOC01-appb-M000021
(式中、τ、Conv、k01及び[Cat]は上記のとおりである。)
 式(N)と式(O)より、ΔNは下記式(P)のように表される。
式(P):
Figure JPOXMLDOC01-appb-M000022
(式中、ΔN、Conv、v、V、k01及び[Cat]は上記のとおりである。)
 次に、反応蒸留塔内の触媒濃度:[Cat]は、反応蒸留塔内への触媒供給量:c、反応蒸留塔の塔底からの抜き出し量:B、還流比:r、及び反応蒸留塔の塔頂からの抜き出し量:Dを用いて、下記式(Q)のように表される。
式(Q):
Figure JPOXMLDOC01-appb-M000023
(式中、[Cat]は上記のとおりである。cは反応蒸留塔内への触媒供給量(mol・h-1)、Bは反応蒸留塔の塔底からの抜き出し量(L・h-1)、rは還流比(無次元)、Dは反応蒸留塔の塔頂からの抜き出し量(L・h-1)を表す。)
[6.必要反応空間(必要反応段数:ΔN、必要反応距離:ΔL)の算出]
 <必要反応段数:ΔN>
 式(P)及び式(Q)より、本発明の反応を行う製造装置の必要反応空間を必要反応段数:ΔNとして下記式(R)で表すことができる。さらに、式(K)のk01を用いて式(R’)として表すことができる。
式(R):
Figure JPOXMLDOC01-appb-M000024
(式中、ΔN、v、V、Conv、k01、c、B、r、及びDは上記のとおりである。)
式(R’):
Figure JPOXMLDOC01-appb-M000025
(式中、ΔN、v、V、Conv、A、E、R、T、[EtOH]、c、B、r、及びDは上記のとおりである。)
 ここで、式(L)の見かけの反応速度定数:k01を式(R)に代入すると、棚段式反応蒸留装置を使用して本発明の製造方法を行う場合の必要反応段数:ΔNは、下記式(S)のように表される。
式(S):
Figure JPOXMLDOC01-appb-M000026
(式中、ΔN、v、V、T、c、B、r、D、及びConvは上記のとおりである。)
 式(S)より、通常はエステル交換反応が常圧下、EtOHの還流条件下で行われるとしてEtOHの沸点(78℃=351K)を代入すると、下記式(S’)となる。
式(S’):
Figure JPOXMLDOC01-appb-M000027
(式中、ΔN、v、V、c、B、r、D、及びConvは上記のとおりである。)
 実際に使用する反応蒸留塔の設計(仕様)よりB(反応蒸留塔の塔底からの抜き出し量)、D(反応蒸留塔の塔頂からの抜き出し量)及びV(反応段一段あたりのホールドアップ量)を特定し、かつ反応条件より、v(DMC、EtOH及びエステル交換触媒の供給量)、c(反応蒸留塔内への触媒供給量)、T(塔内温度)、r(還流比)を設定し、目標とするDMCの反応転化率:Convを式(S)に代入することで、棚段式反応蒸留装置を使用して本発明の製造方法を行う場合の必要反応段数:ΔNを算出することができる。
 上記より、本発明は、反応蒸留塔の設計値、反応条件及び目標とするDMCの反応転化率を設定することで、棚段式反応蒸留装置を使用してDECの製造を行う場合の必要反応段数:ΔNを算出する方法も含む。
 また、本発明は、反応蒸留塔の設計値、反応条件及び必要反応段数:ΔNを設定することで、棚段式反応蒸留装置を使用してDECの製造を行う場合のDMCの反応転化率を算出する方法も含む。
 具体例として、DMCの反応転化率が88.5%以上(Conv≧0.885)のとき、式(S)は、下記式(S88.5%)のように表される。
式(S88.5%):
Figure JPOXMLDOC01-appb-M000028
(式中、ΔN、v、V、T、c、B、r、及びDは上記のとおりである。)
 さらに、塔内温度Tが、EtOHの沸点(78℃=351K)のとき、式(S)は、下記式(S88.5%、78℃)のように表される。
式(S88.5%、78℃):
Figure JPOXMLDOC01-appb-M000029
(式中、ΔN、v、V、c、B、r、及びDは上記のとおりである。)
 従って、式(S88.5%、78℃)より、反応装置の規模と使用する原料の供給量及び還流比が設定されれば、DMC反応転化率88.5%以上でDECを製造することが可能な必要反応段数:ΔNは、式(S88.5%、78℃)より設定することができる。
<必要反応距離:ΔL>
 反応蒸留塔として充填式の反応蒸留塔を使用する場合、反応蒸留塔の触媒導入口と原料導入口の間の距離:ΔLは、反応蒸留塔の触媒導入口と原料導入口の間の領域における1mあたりのホールドアップ量:dを用いて下記式(T)で表される。
式(T):
Figure JPOXMLDOC01-appb-M000030
(式中、ΔLは反応蒸留塔の触媒導入口と原料導入口の間の距離(m)、dは反応蒸留塔の触媒導入口と原料導入口の間の領域における1mあたりのホールドアップ量(L・m-1)を表す。Vは上記のとおりである。)
 反応蒸留塔内に供給されたDMCの反応空間内での滞留時間:τは、式(E)として表される。ここで、図2の反応モデルにおけるVと反応蒸留塔内の反応空間の反応液量(ホールドアップ量:V)は、同じものを示すことから、V=Vとして、式(E)、式(O)及び式(T)から、τを用いてΔLを式(U)のように表すことができる。
式(U):
Figure JPOXMLDOC01-appb-M000031
(式中、ΔL、Conv、τ、v、d、k01及び[Cat]は上記のとおりである。)
 式(U)に対して式(Q)を代入し、式(K)のk01を用いると、必要反応距離:ΔLを下記式(V)で表すことができる。
式(V):
Figure JPOXMLDOC01-appb-M000032
(式中、ΔL、v、d、A、E、R、T、c、B、r、D、Conv、及び[EtOH]は上記のとおりである。)
 ここで、式(L)の見かけの反応速度定数:k01を式(V)に代入すると、必要反応距離:ΔLは、下記式(W)のように表される。
式(W):
Figure JPOXMLDOC01-appb-M000033
(式中、ΔL、v、d、T、c、B、r、D、及びConvは上記のとおりである。)
 式(W)より、通常はエステル交換反応が常圧下、EtOHの還流条件下で行われるとしてEtOHの沸点(78℃=351K)を代入すると、下記式(W’)となる。
式(W’):
Figure JPOXMLDOC01-appb-M000034
(式中、ΔL、v、d、c、B、r、D、及びConvは上記のとおりである。)
 実際に使用する反応蒸留塔の設計(仕様)より、B(反応蒸留塔の塔底からの抜き出し量)、D(反応蒸留塔の塔頂からの抜き出し量)及びd(反応蒸留塔の触媒導入口と原料導入口の間の領域における1mあたりのホールドアップ量)を特定し、かつ反応条件より、v(DMC、EtOH及びエステル交換触媒の供給量)、c(反応蒸留塔内への触媒供給量)、T(塔内温度)、r(還流比)を設定し、目標とするDMCの反応転化率:Convを式(W)に代入することで、充填式反応蒸留装置を使用して本発明の製造方法を行う場合の必要反応距離:ΔLを算出することができる。
 上記より、本発明は、反応蒸留塔の設計値、反応条件及び目標とするDMCの反応転化率を設定することで、充填式反応蒸留装置を使用してDECの製造を行う場合の必要反応距離:ΔLを算出する方法も含む。
 また、本発明は、反応蒸留塔の設計値、反応条件及び必要反応距離:ΔLを設定することで、例えば、充填式反応蒸留装置などの棚段式反応蒸留装置以外の反応蒸留装置を使用してDECの製造を行う場合のDMCの反応転化率を算出する方法も含む。
 具体例として、DMCの反応転化率が88.5%以上(Conv≧0.885)のとき、式(W)は、下記式(W88.5%)のように表される。
式(W88.5%):
Figure JPOXMLDOC01-appb-M000035
(式中、ΔL、v、d、T、c、B、r、及びDは上記のとおりである。)
 さらに、塔内温度:Tが、EtOHの沸点(78℃=351K)のとき、式(W)は、下記式(W88.5%、78℃)のように表される。
式(W88.5%、78℃):
Figure JPOXMLDOC01-appb-M000036
(式中、ΔL、v、d、c、B、r、及びDは上記のとおりである。)
 従って、式(W88.5%、78℃)より、反応装置の規模と使用する原料の供給量及び還流比が設定されれば、DMC反応転化率88.5%以上でDECを製造することが可能な必要反応距離:ΔLは、式(W88.5%、78℃)より設定することができる。
 本発明の反応蒸留塔は、大量の反応混合物から所定の分離効率でジエチルカーボネートを、連続的かつ長期間安定的に分離する機能を有することが必要である。本発明のジエチルカーボネートの製造方法に使用する反応蒸留塔は、さらに下記[3]~[10]に示す設計条件のいずれか又は組み合わせを満足する。
 [3]棚段式反応蒸留塔を使用し、還流比:rが0.5~10であり、必要反応段数:ΔNが下記式(S)を満足する。
式(S):
Figure JPOXMLDOC01-appb-M000037
(式中、ΔN、v、V、T、c、B、r、D、及びConvは上記のとおりである。)
 [4]棚段式反応蒸留塔を使用し、還流比:rが0.5~10であり、塔内温度:TがEtOHの常圧での沸点であり、必要反応段数:ΔNが下記式(S’)を満足する。
式(S’):
Figure JPOXMLDOC01-appb-M000038
(式中、ΔN、v、V、c、B、r、D、及びConvは上記のとおりである。)
 [5]棚段式反応蒸留塔を使用する場合に、式(R’)より必要反応段数:ΔNを決定する。
式(R’):
Figure JPOXMLDOC01-appb-M000039
(式中、ΔN、v、V、Conv、A、E、R、T、[EtOH]、c、B、r、及びDは上記のとおりである。)
 [6]棚段式反応蒸留塔の段数:nは、実段数換算で、通常1~100段、好ましくは10~75段、さらに好ましくは30~75段、より好ましくは33~50段、特に好ましくは33~40段である。
 充填式反応蒸留塔の段数:nは、理論段数換算で、通常1~100段、好ましくは32~75段、さらに好ましくは33~60段、より好ましくは33~50段、特に好ましくは33~40段である。
 本発明の製造方法では、段数:n(実段数換算又は理論段数換算)を100段以上にしても、同様に反応を行うことは可能であるが、段数の増加に伴い使用する反応蒸留塔の反応蒸留部の長さが大きくなり、その結果、塔の上下における圧力差が大きくなりすぎ、また塔下部での温度を高くする必要も生じ経済的ではない。従って、段数を多くする場合には、反応器を製造する際の高さ制限や設備費、ユーティリティー費等を考慮に入れて設計される。
 [7]原料導入口と触媒導入口の間隔:ΔNは、例えば、全棚段数を1~100段とした場合、通常1~50段、好ましくは5~35段、さらに好ましくは10~35段、より好ましくは10~30段、特に好ましくは15~30段である。
 上記条件であれば、ジメチルカーボネートがメタノールと共沸混合物を作ることなく、良好な反応収率で反応させることができ、さらに低沸点化合物と目的物との分離効率が確保できるため、目的のスペックと製造量を達成することができる。また、本発明の製造方法では、原料導入口と触媒導入口の間隔を実段数換算又は理論段数換算で50段以上にしても、同様の効果をもって反応を行うことは可能であるが、段数の増加に伴い使用する反応蒸留塔の塔長が大きくなり、その結果、塔の上下における圧力差が大きくなりすぎるため、長期安定運転が困難となるだけでなく、塔下部での温度を高くしなければならないため、経済的ではない。例えば、本発明の製造装置の全棚段数が100段を超えない場合、原料導入口は、塔頂部から数えて15段目(例えば14段目と15段目の間)より下部(塔底側)であることが特に好ましい。
 [8]充填式反応蒸留塔を使用し、還流比:rが0.5~10であり、必要反応距離:ΔLが下記式(W)を満足する。
式(W):
Figure JPOXMLDOC01-appb-M000040
(式中、ΔL、v、d、T、c、B、r、D、及びConvは上記のとおりである。)
 [9]充填式反応蒸留塔を使用し、還流比:rが0.5~10であり、塔内温度:TがEtOHの常圧での沸点であり、必要反応距離:ΔLが下記式(W’)を満足する。
式(W’):
Figure JPOXMLDOC01-appb-M000041
(式中、ΔL、v、d、c、B、r、D、及びConvは上記のとおりである。)
 [10]充填式反応蒸留塔を使用する場合に、式(V)より必要反応距離:ΔLを決定する。
式(V):
Figure JPOXMLDOC01-appb-M000042
(式中、ΔL、v、d、A、E、R、T、c、B、r、D、Conv、及び[EtOH]は上記のとおりである。)
 [11]空塔容積(反応蒸留部の空間体積(m);図1のRD)に対する原料供給位置と触媒供給位置との間の空間体積(m)(図1のRH)の比が、通常、0.01~1.00、好ましくは0.1~0.9、さらに好ましくは0.2~0.8、より好ましくは0.25~0.75、特に好ましくは0.5~0.75である。
 本発明の一実施態様は、反応蒸留塔内にて、ジメチルカーボネートとエタノールとのエステル交換反応により、ジエチルカーボネートを連続的に製造する方法に関する。
<ジメチルカーボネート>
 本発明で製造原料として使用されるジメチルカーボネートは、市販品を購入して使用することもできるが、例えば、特開平3-141243号公報を参考に固体触媒の存在下、一酸化炭素と亜硝酸エステルとを気相接触反応させることによっても得られたものや、特開2006-176412号公報を参考に固体触媒の存在下、二酸化炭素とアルコールとを反応させて得られたもの等、公知の方法で製造された様々なジメチルカーボネートを使用することができる。
<エタノール>
 本発明で製造原料として使用されるエタノールは、市販品をそのまま使用することもできるが、本発明のエステル交換反応に影響しないように、含有水分量が0.20質量%以下(2000ppm以下)のエタノールを使用することが好ましい。ここで、含有水分の除去は、例えば、モレキュラーシーブ、無水硫酸マグネシウム及び/又は酸化カルシウム等の乾燥剤で脱水操作等にて行なわれる。
 エタノールの使用量は、ジメチルカーボネート1モルに対して、好ましくは1.8~10モル、さらに好ましくは2.0~8.0モル、より好ましくは2.0~6.0モル、特に好ましくは2.0~5.0モルである。エタノールは、少なすぎると反応が効率的に進行しなくなり、一方、使用し過ぎると反応後に除去する煩雑さが増え、また経済性(コスト面)からも好ましくない。上記範囲の使用量であれば、本発明の反応を良好に行うことができ、かつ経済的にも好適である。
<エステル交換触媒>
 本発明で使用されるエステル交換触媒として、好ましくはアルカリ金属水酸化物、アルカリ金属炭酸塩化合物、アルカリ金属メトキシド、及びアルカリ金属エトキシドからなる群より選ばれる少なくとも1種のエステル交換触媒、さらに好ましくは水酸化リチウム、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、アルカリ金属メトキシド、及びアルカリ金属エトキシドからなる群より選ばれる少なくとも1種のエステル交換触媒、より好ましくはアルカリ金属メトキシド、及びアルカリ金属エトキシドからなる群より選ばれる少なくとも1種のエステル交換触媒、特に好ましくはリチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシドからなる群より選ばれる少なくとも1種のエステル交換触媒が使用される。これらのエステル交換触媒は、単独で使用しても、又は2種類以上を混合して使用してもよく、さらに市販品をそのまま使用しても、又は別途常法により精製して使用してもよい。
 これらのエステル交換触媒は、例えば、製造原料であるエタノール又は反応副生物であるメタノールなどに溶解する場合には均一系触媒として用いることができ、エタノール又はメタノールに部分的に溶解又は分散する場合には、スラリー系触媒として用いることができる。
 エステル交換触媒の使用量は、ジメチルカーボネート1モルに対して、通常0.5~1000ミリモル、好ましくは1~250ミリモル、さらに好ましくは2~50ミリモル、より好ましくは2~25ミリモル、特に好ましくは2~15ミリモルである。エステル交換触媒は、少なすぎると反応が効率的に進行しなくなり、一方、使用し過ぎると反応後に除去する煩雑さが増え、また経済性(コスト面)からも好ましくない。上記範囲の使用量であれば、本発明の反応を良好に行うことができ、かつ経済的にも好適である。
 本発明で使用される反応蒸留塔を使用した反応蒸留は、大量の反応混合物から所定の分離効率でジエチルカーボネートを、連続的かつ長期間安定的に分離する機能を有することが必要である。本発明のジエチルカーボネートの製造方法において、反応蒸留塔内の反応条件は、下記[12]~[16]に示す種々の条件のいずれか又は組み合わせを満足する。
 [12](ジメチルカーボネート及びエタノールの供給方法)
 本発明において、反応蒸留塔にジメチルカーボネート及びエタノールを供給する方法は特に制限されず、ジメチルカーボネート及びエタノールを液状、ガス状又は気液混合状態で供給することができる。
 本発明において、ジメチルカーボネート及びエタノールは、エステル交換触媒の供給位置よりも下方の位置で反応蒸留塔に断続的又は連続的に供給することができる。ジメチルカーボネート及びエタノールを含む製造原料中に、メタノール及び/又はメチルエチルカーボネートが含まれていても構わない。
 [13](エステル交換触媒の供給方法)
 本発明において、反応蒸留塔にエステル交換触媒を供給する方法は特に制限されず、例えば、エステル交換触媒を液状で供給してもよく、エタノール又はメタノールに溶解又は懸濁させた溶液又はスラリーとして供給してもよい。さらに、エステル交換触媒中に、例えば、メタノール及び/又はエタノール、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどが含まれていても構わない。
 本発明において、エステル交換触媒は、製造原料の供給位置よりも上方の位置で反応蒸留塔に断続的又は連続的に供給することができる。
 [14](塔内温度)
 本発明の反応蒸留において、塔内温度は圧力によって変動するため、特に制限されないが、例えば、塔頂部:X及び反応蒸留部:RDの温度は、好ましくは60~100℃(すなわちエタノール沸点(78℃)±20℃)、より好ましくは65~95℃(エタノール沸点(78℃)±約15℃)、特に好ましくは70~90℃(エタノール沸点(78℃)±約10℃)である。濃縮部:RCの温度は、好ましくは105~150℃(ジエチルカーボネートの沸点(℃)±約20℃)、より好ましくは110~145℃(ジエチルカーボネートの沸点(℃)±15℃)、特に好ましくは115~140℃(ジエチルカーボネートの沸点(℃)±約10℃)である。前記温度条件は、反応蒸留塔のインターナルの形状や段数、供給される低沸点反応混合物の種類と組成と量、分離されるジエチルカーボネートの純度などによって異なるため、上記の温度範囲で適宜調整することができる。
 [15](塔内圧力)
 本発明の反応蒸留において、塔内圧力は、塔頂圧力、塔内組成及び/又は塔内温度によって異なるが、塔頂部:X及び濃縮部:RCの圧力が、好ましくは常圧~1000kPa(絶対圧)である。
 [16](還流比)
 本発明の反応蒸留において、反応蒸留塔の還流比:rは、0.5~10の範囲が好ましく、より好ましくは0.8~5の範囲であり、さらに好ましくは1.5~4.0である。
 本発明では、上記のように製造原料であるジメチルカーボネート及びエタノールを本発明に係る反応蒸留塔に供給することで、製造原料であるジメチルカーボネートを、反応で生成するメタノールとの共沸混合物として塔頂部より失うことはほとんどなく、ジメチルカーボネートの転化率が、好ましくは90%以上、より好ましくは95%以上となるような反応空間で、ジエチルカーボネートを高い反応収率で製造することができる。
<本発明で製造されるジエチルカーボネート>
 本発明の反応蒸留塔を使用して製造されたジエチルカーボネートは、図1の濃縮部:RCに、エステル交換触媒等と共に反応濃縮液として取得される。得られた反応濃縮液に含まれるエステル交換触媒を、例えば、水洗浄や薄膜蒸留装置による蒸留等の簡便な操作を行って分離除去することで、高純度のジエチルカーボネートを得ることができる。このようにして得られたジエチルカーボネートは、例えば、色相(APHA値)が10以下の透明液体であり、通常、97質量%以上、好ましくは99質量%以上、より好ましくは99.9質量%以上の超高純度品として得ることができる。
 また、例えば、エーテル化合物やアルデヒド化合物等の反応副生物の含有量についても、ジエチルカーボネートの1質量%以下、好ましくは0.5質量%以下、より好ましくは0.1質量%以下、さらにより好ましくは0.05質量%以下である。更に、金属不純物(Na,K,Ca,Fe,Al,Mg,Cu,Pb)含有率も通常0.5ppm以下、好ましくは0.1ppm以下、特に好ましくは1ppb以下である。
 このように、本発明の製造方法によれば、通常、97質量%以上、好ましくは99質量%以上、より好ましくは99.9質量%以上の超高純度品のジエチルカーボネートを最終的に容易に得ることができる。
 このようにして得られた本発明のジエチルカーボネートは、例えば、染料、顔料、医農薬品、及び電気・電子分野の有機材料(例えば、ポリカーボネートなど)の製造原料及びこれらの合成用溶媒としての使用のみならず、印刷用洗浄剤、土壌改質剤の添加物、電池用電解液の構成成分等として使用することができる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 本実施例中、製造原料のジメチルカーボネートの消費量及び目的物であるジエチルカーボネートの生成量等についての定性及び定量分析(内標物質エチルベンゼン)は全てガスクロマトグラフィー(GC)を使用して行った(GC-2014:島津製作所社製、GCカラム:TC-WAX 30m×0.53mm、GC検出器:FID)。また、製造原料のジメチルカーボネートの反応転化率、並びに目的物であるジエチルカーボネートの反応選択率及び反応収率は、それぞれ、次の式(III)から(V)を用いてそれぞれ算出した。
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000045
(実施例1:ジエチルカーボネートの製造:ΔN=30)
[製造装置]
 実施例で使用した製造装置は、図1に示される反応蒸留塔であって、以下示される寸法のものを用いた。
 塔径(図1のD1)34mm、棚段間隔(図1のL3)30mm、実段数(図1のn)40段の反応蒸留塔を用いた。
 また、前記塔内のインターナルとして、オールダーショウ型多孔板(トレイ径32mm、孔径0.8mm、開孔比5.2%、旭製作所社製)を用いた。
[反応方法]
 ジメチルカーボネート(DMC)とエタノール(EtOH)とからなる製造原料(質量比:EtOH(質量%)/DMC(質量%)=49.86/50.14)を、反応蒸留塔の塔頂から32段目と33段目のトレイの間の原料導入口(図1のM)から、87.3g/hrの供給速度にて連続的に供給した。
 また同時に、エステル交換触媒としてナトリウムメトキシド(MeONa)溶液(質量比:MeONa(質量%)/MeOH(質量%)/EtOH(質量%)=1.32/3.40/95.28)を、反応蒸留塔の塔頂から2段目と3段目のトレイの間の触媒導入口(図1のC)より、27.1g/hrの供給速度にて連続的に供給した。
 上記供給速度にて、反応蒸留塔の反応条件を、常圧下、塔頂温度69~71℃、塔内温度71~78℃(測定部位:塔頂から25段目)、塔底温度105~120℃、還流比2.7として、連続的に反応蒸留を行った。
 上記反応を連続的に6時間行った後、反応蒸留塔の塔頂留出口(図1のT)より58.0g/hrで連続的に留出している液を回収し内容物の分析を行ったところ、メタノール52.3質量%、エタノール42.6質量%、ジメチルカーボネート1.9質量%(原料供給量に対して、2.5質量%)、エチルメチルカーボネート2.7質量%、その他0.5質量%であった(ジメチルカーボネートの反応転化率:97%)。また、反応蒸留塔の塔底部(図1のB)より56.4g/hrで連続的に抜出している液を回収し内容物の分析を行ったところ、エタノール4.0質量%、エチルメチルカーボネート1.8質量%、ジエチルカーボネート93.7質量%、その他0.5質量%であった(ジエチルカーボネートの反応収率:92%)。
(実施例2:ジエチルカーボネートの製造:ΔN=20)
[製造装置]
 実施例1と同じ反応蒸留塔を使用した。
<反応方法>
 ジメチルカーボネート(DMC)とエタノール(EtOH)からなる製造原料(質量比:EtOH(質量%)/DMC(質量%)=49.47/50.53)を、反応蒸留塔の塔頂から32段目と33段目のトレイの間の反応蒸留塔の原料導入口(図1のM)より、90.0g/hrにて連続的に供給した。
 また同時に、エステル交換触媒としてナトリウムメトキシド(MeONa)溶液(質量比:MeONa(質量%)/MeOH(質量%)/EtOH(質量%)=0.72/1.86/97.42)についても、反応蒸留塔の塔頂から12段目と13段目のトレイの間の触媒導入口(図1のC)より、27.6g/hrにて連続的に供給した。
 上記供給速度にて、反応蒸留塔の反応条件を、常圧下、塔頂温度69~72℃、塔内温度72~78℃(25段目)、塔底温度105~120℃、還流比:rが2.1で、連続的に反応蒸留を行った。
 上記反応を連続的に6時間行った後、反応蒸留塔の塔頂留出口(図1のT)より63.5g/hrで連続的に留出している液を回収し内容物の分析を行ったところ、メタノール46.1質量%、エタノール45.2質量%、ジメチルカーボネート4.5質量%(原料供給量に対して、6.3質量%)、エチルメチルカーボネート4.0質量%、その他0.2質量%であった(ジメチルカーボネートの反応転化率:94%)。また、反応蒸留塔の塔底部(図1のB)より54.1g/hrで連続的に抜出している液を回収し内容物の分析を行ったところ、エタノール2.3質量%、エチルメチルカーボネート3.5質量%、ジエチルカーボネート93.7質量%、その他0.5質量%であった(ジエチルカーボネートの反応収率:86%)。
(実施例3:ジエチルカーボネートの製造:ΔL=0.55m)
[製造装置]
 実施例3では、以下の寸法の充填式反応蒸留塔を用いた。
 塔径が30mm、濃縮部充填高さが550mm、回収部充填高さが330mm(この実施例では濃縮部充填高さと回収部充填高さの合計が図1のL1に相当する。)の反応蒸留塔を用いた。
 インターナルとして規則充填物であるSluzer laboratory packing EX(Sluzer Chemtech社)を用いた。
[反応方法]
 ジメチルカーボネート(DMC)とエタノール(EtOH)からなる製造原料(質量比:EtOH(質量%)/DMC(質量%)=49.95/50.05)を、反応蒸留塔の濃縮部と回収部の間に原料導入口を設け、ここより、82.6g/hrにて連続的に供給した。
 また同時に、エステル交換触媒としてナトリウムメトキシド(MeONa)溶液(質量比:MeONa(質量%)/MeOH(質量%)/EtOH(質量%)=0.68/1.76/97.56)についても、反応蒸留塔の塔頂に触媒導入口を設け、ここより、25.2g/hrにて連続的に供給した。
 上記供給速度にて、反応蒸留塔の反応条件を、常圧下、塔頂温度69~75℃、塔内温度75~78℃(製造原料導入部)、塔底温度100~120℃、還流比:rが3.2で、連続的に反応蒸留を行った。
 上記反応を連続的に6時間行った後、反応蒸留塔の塔頂留出口より59.4g/hrで連続的に留出している液を回収し内容物の分析を行ったところ、メタノール43.6wt%、エタノール44.0wt%、ジメチルカーボネート5.8wt%(原料供給量に対して、8.3質量%)、エチルメチルカーボネート6.0wt%、その他0.6wt%であった(ジメチルカーボネートの反応転化率:92%)。また、反応蒸留塔の塔底部より48.1g/hrで連続的に抜出している液を回収し内容物の分析を行ったところ、エタノール6.2wt%、エチルメチルカーボネート2.0wt%、ジエチルカーボネート91.6wt%、その他0.2wt%であった(ジエチルカーボネートの反応収率:83%)。
(実施例4:ジエチルカーボネートの製造:ΔN=10)
[製造装置]
 実施例1と同じ反応蒸留塔を使用した。
[反応方法]
 ジメチルカーボネート(DMC)とエタノール(EtOH)とからなる製造原料(質量比:EtOH(質量%)/DMC(質量%)=49.47/50.53)を、反応蒸留塔の塔頂から32段目と33段目のトレイの間の原料導入口(図1のM)より、89.3g/hrにて連続的に供給した。
 また同時に、エステル交換触媒としてナトリウムメトキシド(MeONa)溶液(質量比:MeONa(質量%)/MeOH(質量%)/EtOH(質量%)=0.72/1.86/97.42)についても、反応蒸留塔の塔頂から22段目と23段目のトレイの間の触媒導入口(図1のC)より、より、27.5g/hrにて連続的に供給した。
 上記供給速度にて、反応蒸留塔の反応条件を、常圧下、塔頂温度69~72℃、塔内温度72~78℃(24段目と25段目の空間)、塔底温度105~120℃、還流比:rが2.4で、連続的に反応蒸留を行った。
 上記反応を連続的に6時間行った後、反応蒸留塔の塔頂留出口(図1のT)より64.6g/hrで連続的に留出している液を回収し内容物の分析を行ったところ、メタノール42.0質量%、エタノール44.2質量%、ジメチルカーボネート8.2質量%、(原料供給量に対して、12質量%)エチルメチルカーボネート5.6質量%であった(ジメチルカーボネートの反応転化率:88%)。また、反応蒸留塔の塔底部(図1のB)より52.2g/hrで連続的に抜出している液を回収し内容物の分析を行ったところ、エタノール7.8質量%、エチルメチルカーボネート2.9質量%、ジエチルカーボネート88.8質量%、その他0.5質量%であった(ジエチルカーボネートの反応収率:78%)。
(実施例5:ジエチルカーボネートの製造)
[製造装置]
 実施例1に記載したものと同一の反応蒸留塔を使用した。
[反応方法]
 ジメチルカーボネート(DMC)とエタノール(EtOH)からなる製造原料(質量比:EtOH(質量%)/DMC(質量%)=49.86/50.14)を、反応蒸留塔の塔頂から32段目と33段目のトレイの間の原料導入口(図1のM)より、88.7g/hrにて連続的に供給した。
 また同時に、エステル交換触媒としてナトリウムメトキシド(MeONa)溶液(質量比:MeONa(質量%)/MeOH(質量%)/EtOH(質量%)=0.22/0.57/99.21)についても、反応蒸留塔の塔頂から2段目と3段目のトレイの間の触媒導入口(図1のC)より、25.1g/hrにて連続的に供給した。
 上記供給速度にて、反応蒸留塔の反応条件を、常圧下、塔頂温度69~73℃、塔内温度73~78℃(25段目)、塔底温度105~120℃、還流比:rが2.8で、連続的に反応・蒸留を行った。
 上記反応を連続的に6時間行った後、反応蒸留塔の塔頂留出口(図1のT)より68.7g/hrで連続的に留出している液を回収し内容物の分析を行ったところ、メタノール36.1質量%、エタノール48.1質量%、ジメチルカーボネート10.4質量%(原料供給量に対して、16質量%)、エチルメチルカーボネート5.2質量%、その他0.2wt%であった(ジメチルカーボネートの反応転化率:84%)。また、反応蒸留塔の塔底部(図1のB)より45.1g/hrで連続的に抜出している液を回収し内容物の分析を行ったところ、エタノール1.4質量%、エチルメチルカーボネート5.1質量%、ジエチルカーボネート93.2質量%、その他0.3質量%であった(ジエチルカーボネートの反応収率:73%)。
(比較例1:ジエチルカーボネートの製造)
[製造装置]
 実施例1と同じ反応蒸留塔を使用した。
[反応方法]
 ジメチルカーボネート(DMC)とエタノール(EtOH)からなる製造原料(質量比:EtOH(質量%)/DMC(質量%)=51.57/48.43)を、反応蒸留塔の塔頂から32段目と33段目のトレイの間の原料導入口(図1のM)より、88.0g/hrにて連続的に供給した。
 また同時に、エステル交換触媒としてナトリウムメトキシド(MeONa)溶液(質量比:MeONa(質量%)/MeOH(質量%)/EtOH(質量%)=0.85/2.18/96.97)についても、反応蒸留塔の塔頂から2段目と3段目のトレイの間の触媒導入口(図1のC)より、25.7g/hrにて連続的に供給した。
 反応蒸留塔は、常圧下、塔頂温度64~65℃、塔内温度66~75℃(25段目)、塔底温度80~100℃、還流比:rが12で、連続的に反応蒸留を行った。
 上記反応を連続的に6時間行った後、反応蒸留塔の塔頂留出口(図1のT)より33.6g/hrで連続的に留出している液を回収し内容物の分析を行ったところ、メタノール60.9質量%、エタノール6.2質量%、ジメチルカーボネート32.7質量%(原料供給量に対して、25.8質量%)、エチルメチルカーボネート0.1質量%、その他0.1質量%であった(ジメチルカーボネートの反応転化率:74%)。また、反応蒸留塔の塔底部(図1のB)より80.1g/hrで連続的に抜出している液を回収し内容物の分析を行ったところ、エタノール47.1質量%、エチルメチルカーボネート4.7質量%、ジエチルカーボネート46.2質量%、その他2.0質量%であった(ジエチルカーボネートの反応収率:66%)。
 上記実施例1~5および比較例1の実験結果一覧を表1に示す。
Figure JPOXMLDOC01-appb-T000046
(実施例6:反応速度定数(k)の算出)
(6-1:EtOH/DMC=5(mol)、測定温度:70℃、50℃、30℃)
 容量100mLのガラス製の三口フラスコに、ジメチルカーボネート18g(DMC;0.2mol)、エタノール43g(EtOH;0.93mol)を窒素雰囲気下、攪拌しながら混合し、各測定温度(3点:70℃、50℃、30℃)まで昇温を行った。その後、エタノール3g(0.07mol)、ナトリウムメチラート0.12g(500ppm、28%メタノール溶液)を加え、反応速度実験を開始した(投入終了時を反応時間0秒とした)。反応開始後、適宜この反応溶液をサンプリングし、ガスクロマトグラフィー測定(内標法)から、各反応時間でのDMC消費量を算出し、各測定温度(3点)での速度定数を算出した。
(6-2:EtOH/DMC=1(mol)測定温度:15℃、10℃、5℃)
 次いで、EtOHとDMCの使用量比を、EtOH/DMC=1(mol)とし、ナトリウムメチラートの使用量を1000ppmとし、上記(6-1)と同様に実験を行い、各反応温度(3点:15℃、10℃、5℃)での反応速度定数を算出した。
(6-3:頻度因子A、及び活性化エネルギーEの算出)
 上記(6-1)及び(6-2)より得られた結果を一般的なアレニウスの式である式(J)を用いて算出すると、A及びEは以下のとおりになった。
 A=2.66×10
 E=4.16×10
(実施例7:見かけの反応速度定数(k01)の算出]
 見かけの反応速度定数:k01は、式(K)で表される。ここで、見かけの反応速度定数:k01は、実施例の表1に示したデータ(比較例1を除く)のConv、τ及び[Cat]を用いると、式(I)から算出することができる。k01の算出を行う際、反応段一段あたりの反応液量(ホールドアップ量:V)は実施例1で使用した反応蒸留装置を実測し、反応蒸留塔内の反応空間の反応液量(ホールドアップ量:V)は、V×段数とした。
 k01は、最小二乗法により、原料のDMC転化率:Convの実測値とDMCの転化率の計算値との誤差の二乗和が最小となるように算出した。結果を図3に示す。
 図3より、本発明の実施例による見かけの反応速度定数:k01(図3中の直線の傾き)は、6442L・mol-1・h-1(1.79L・mol-1・s-1)と算出された。
(参考例1:必要反応段数の算出)
 本発明の反応が、例えば、常圧下で行われたとし、その反応温度がEtOHの沸点(常圧下)である78℃とすると、実施例7の結果から算出したk01を用いて式(K)から、[EtOH]=10.38mol・L-1が算出された。
 従って、式(S’)又は(W’)より、反応蒸留塔の設計(使用)と使用する原料の供給量及び還流比、及びDMCの目標反応転化率を設定すれば、良好な収率でDECを製造することが可能な必要反応段数:ΔN及び必要反応距離:ΔLを算出することができる。
 本発明の製造方法で得られたジエチルカーボネートは、例えば、染料、顔料中間体、農薬中間体、医薬中間体、電子・電子分野における有機材料中間体、及びこれらの合成用溶媒、印刷用洗浄剤、土壌改質剤の添加物、並びにポリカーボネート製造用原料、電池用電解液原料として有用である。
 また、本発明の製造方法で得られたジエチルカーボネートは、例えば、上記副生物以外にも、ハロゲンイオンや金属イオンの含有量が非常に低減されており、染料又は顔料の中間体、農薬中間体、医薬中間体、電子・電子分野における有機材料中間体、及びこれらの合成用溶媒、印刷用洗浄剤、土壌改質剤の添加物、並びにポリカーボネート製造用原料(モノマー)、電池用電解液の構成成分等として有用である。
 10  反応蒸留塔
 12  塔頂留分回収口
 14  触媒導入口
 16  原料導入口
 18  塔底留分回収口
 C  触媒
 M  原料
 T  塔頂留分(低沸点成分)
 B  塔底留分(高沸点成分)
 RD  反応蒸留部
 RC  濃縮部
 RR  還流部
 RH  原料供給位置と触媒供給位置との間の空間体積
 X  塔頂部
 Y  塔底上部
 Z  塔底下部
 D1  反応蒸留部の内径
 D2  濃縮部の内径
 L1  反応蒸留部の長さ
 L2  濃縮部の長さ
 L3  棚段の間隔
 N  インターナルのN段目
 n  インターナルの段数
 ΔN  反応段数

Claims (8)

  1.  反応蒸留塔内に連続的にジメチルカーボネートとエタノールとを供給し、エステル交換触媒の存在下、前記反応蒸留塔内でエステル交換反応と蒸留を同時に行う反応蒸留法によってジエチルカーボネートを製造する方法において、
    (a)エステル交換反応が、エステル交換触媒とジメチルカーボネート及びエタノールとを接触させる向流型の反応形式であり;
    (b)反応蒸留塔が多段反応蒸留塔であって、塔頂部、インターナルを有する反応蒸留部及び濃縮部を有し、前記反応蒸留部はその側面に触媒導入口及び前記触媒導入口より下方に位置する原料導入口を備え;
    (c)前記エステル交換触媒が前記触媒導入口から供給され;
    (d)ジメチルカーボネート及びエタノールが前記原料導入口から供給され;
    (e)ジメチルカーボネート1モルに対する、前記エステル交換触媒の使用量が、1~250ミリモルであり;
    (f)前記反応蒸留部の空間体積に対する、前記触媒導入口と前記原料導入口との間の空間体積の比が、0.1~0.9であり、
    (g)前記反応蒸留塔の還流比が、0.5~10であり;
    (h)前記塔頂部及び前記反応蒸留部の温度が、60~100℃である
    ことを特徴とする、ジエチルカーボネートの製造方法。
  2.  前記インターナルが多孔板トレイで仕切られている、請求項1に記載のジエチルカーボネートの製造方法。
  3.  前記反応蒸留塔の段数が30~75段である、請求項2に記載のジエチルカーボネートの製造方法。
  4.  前記原料導入口と前記触媒導入口の間隔が1~50段である、請求項2又は3に記載のジエチルカーボネートの製造方法。
  5.  前記反応蒸留塔において、前記触媒導入口と前記原料導入口との間の段数で定義される必要反応段数:ΔNが、下記式(S)を満足する、請求項1から4のいずれか一項に記載のジエチルカーボネートの製造方法。
    Figure JPOXMLDOC01-appb-M000001
    (式中、
    ΔN:必要反応段数、
    :単位時間あたりの反応蒸留塔へのジメチルカーボネート、エタノール及びエステル交換触媒の合計供給量(L・h-1)、
    :反応段一段あたりのホールドアップ量(L/段)、
    Conv:ジメチルカーボネートの反応転化率、
    c:反応蒸留塔内への触媒供給量(mol・h-1)、
    B:反応蒸留塔の塔底からの抜き出し量(L・h-1)、
    r:還流比、
    D:反応蒸留塔の塔頂からの抜き出し量(L・h-1)、
    T:塔内温度(K)
    を表す。)
  6.  前記反応蒸留塔において、前記触媒導入口と前記原料導入口との間の距離で定義される必要反応距離:ΔLが、下記式(W)を満足する、請求項1に記載のジエチルカーボネートの製造方法。
    Figure JPOXMLDOC01-appb-M000002
    (式中、
    ΔL:必要反応距離(m)、
    :単位時間あたりの反応蒸留塔へのジメチルカーボネート、エタノール及びエステル交換触媒の合計供給量(L・h-1)、
    d:反応蒸留塔の触媒導入口と原料導入口の間の領域における1mあたりのホールドアップ量(L・m-1)、
    Conv:ジメチルカーボネートの反応転化率、
    c:反応蒸留塔内への触媒供給量(mol・h-1)、
    B:反応蒸留塔の塔底からの抜き出し量(L・h-1)、
    r:還流比、
    D:反応蒸留塔の塔頂からの抜き出し量(L・h-1)、
    T:塔内温度(K)
    を表す。)
  7.  前記塔頂部及び前記濃縮部の圧力が常圧~1000kPaである、請求項1から6のいずれか一項に記載のジエチルカーボネートの製造方法。
  8.  前記エステル交換触媒が、アルカリ金属水酸化物、アルカリ金属炭酸塩化合物、アルカリ金属メトキシド、及びアルカリ金属エトキシドからなる群から選ばれる少なくとも1種である、請求項1から7のいずれか一項に記載のジエチルカーボネートの製造方法。
PCT/JP2013/078012 2012-10-15 2013-10-15 ジエチルカーボネートの製造方法 WO2014061678A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014542152A JP5958549B2 (ja) 2012-10-15 2013-10-15 ジエチルカーボネートの製造方法
KR1020157009417A KR101668571B1 (ko) 2012-10-15 2013-10-15 디에틸카보네이트의 제조 방법
CN201380053531.0A CN104718183B (zh) 2012-10-15 2013-10-15 碳酸二乙酯的制造方法
US14/434,153 US9656942B2 (en) 2012-10-15 2013-10-15 Method of manufacturing diethyl carbonate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012228457 2012-10-15
JP2012-228457 2012-10-15

Publications (1)

Publication Number Publication Date
WO2014061678A1 true WO2014061678A1 (ja) 2014-04-24

Family

ID=50488239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078012 WO2014061678A1 (ja) 2012-10-15 2013-10-15 ジエチルカーボネートの製造方法

Country Status (5)

Country Link
US (1) US9656942B2 (ja)
JP (1) JP5958549B2 (ja)
KR (1) KR101668571B1 (ja)
CN (1) CN104718183B (ja)
WO (1) WO2014061678A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016170117A (ja) * 2015-03-13 2016-09-23 東ソー株式会社 触媒寿命予測方法と触媒寿命解析装置
JP2016170116A (ja) * 2015-03-13 2016-09-23 東ソー株式会社 触媒性能の経時変化解析方法および触媒性能の経時変化解析装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220052926A (ko) 2019-08-30 2022-04-28 쉘 인터내셔날 리써취 마트샤피지 비.브이. 유기 카보네이트 제조 방법
TWI745931B (zh) * 2020-04-16 2021-11-11 國立清華大學 碳酸二甲酯的製造裝置及製造方法
KR20220073559A (ko) 2020-11-26 2022-06-03 롯데케미칼 주식회사 촉매 필터링 단계가 도입된 이종 선형 카보네이트를 제조하는 방법
KR102644180B1 (ko) 2020-11-26 2024-03-05 롯데케미칼 주식회사 우수한 용해도를 가지는 촉매를 이용한 이종 선형 카보네이트를 제조하는 방법
KR20220073560A (ko) 2020-11-26 2022-06-03 롯데케미칼 주식회사 아민계 화합물 촉매를 사용하여 이종 선형 카보네이트를 제조하는 방법
KR102644181B1 (ko) * 2020-11-27 2024-03-05 롯데케미칼 주식회사 염기성 이온교환수지를 이용한 이종 선형 카보네이트의 제조 방법
KR102644183B1 (ko) * 2020-11-27 2024-03-05 롯데케미칼 주식회사 산성 이온교환수지를 이용한 이종 선형 카보네이트 제조방법
CN113636935B (zh) * 2021-09-18 2023-09-22 凯瑞环保科技股份有限公司 一种碳酸甲乙酯的制备方法
KR20230077543A (ko) 2021-11-25 2023-06-01 롯데케미칼 주식회사 카보네이트의 제조 방법
KR20230079840A (ko) * 2021-11-29 2023-06-07 롯데케미칼 주식회사 카보네이트의 제조 방법
KR20230080590A (ko) * 2021-11-30 2023-06-07 롯데케미칼 주식회사 카보네이트의 제조 방법
KR20230080683A (ko) 2021-11-30 2023-06-07 롯데케미칼 주식회사 카보네이트의 제조 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825961B2 (ja) 1989-10-24 1996-03-13 宇部興産株式会社 炭酸ジエステルの製造法
DE4342713A1 (de) 1993-12-15 1995-06-22 Bayer Ag Verfahren zur Abtrennung von Methanol aus einem Gemisch von Dimethylcarbonat und Methanol
CN1150158C (zh) * 2001-04-03 2004-05-19 华东理工大学 一种连续生产碳酸二乙酯的方法
EA010425B1 (ru) * 2004-10-14 2008-08-29 Асахи Касеи Кемикалз Корпорейшн Способ получения диарилкарбоната высокой чистоты
JP2006176412A (ja) 2004-12-21 2006-07-06 Asahi Kasei Chemicals Corp 炭酸エステルの製造方法
TWI314549B (en) * 2005-12-26 2009-09-11 Asahi Kasei Chemicals Corp Industrial process for separating out dialkyl carbonate
TWI383976B (zh) 2006-02-22 2013-02-01 Shell Int Research 製備碳酸二烷酯及烷二醇的方法
JP2010168365A (ja) 2008-12-26 2010-08-05 Mitsubishi Chemicals Corp 対称ジアルキルカーボネート及び非対称ジアルキルカーボネートの製造方法
KR101525192B1 (ko) * 2011-04-20 2015-06-05 재단법인 포항산업과학연구원 디알킬카보네이트의 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ENGINEERING JOURNAL, vol. 180, January 2012 (2012-01-01), pages 309 - 322 *
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 46, 2007, pages 3709 - 3719 *
JOURNAL OF PROCESS CONTROL, vol. 21, no. 8, 2011, pages 1193 - 1207 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016170117A (ja) * 2015-03-13 2016-09-23 東ソー株式会社 触媒寿命予測方法と触媒寿命解析装置
JP2016170116A (ja) * 2015-03-13 2016-09-23 東ソー株式会社 触媒性能の経時変化解析方法および触媒性能の経時変化解析装置

Also Published As

Publication number Publication date
US9656942B2 (en) 2017-05-23
CN104718183A (zh) 2015-06-17
KR20150055022A (ko) 2015-05-20
CN104718183B (zh) 2016-06-08
US20150291504A1 (en) 2015-10-15
KR101668571B1 (ko) 2016-10-21
JP5958549B2 (ja) 2016-08-02
JPWO2014061678A1 (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
JP5958549B2 (ja) ジエチルカーボネートの製造方法
Zhang et al. Synthesis of methylal by catalytic distillation
JPWO2007088782A1 (ja) 高純度ジオールを工業的に製造する方法
KR20080105088A (ko) 알케인디올 및 디알킬 카보네이트의 제조 방법
UA119769C2 (uk) Спосіб спільного одержання оцтової кислоти і диметилового ефіру
CN102911046A (zh) Co偶联合成草酸二甲酯的过程中草酸二甲酯的提纯方法
JP4986866B2 (ja) 高純度ジオールの工業的製造法
KR20080104145A (ko) 알케인디올 및 디알킬 카보네이트의 제조 방법
WO2007086326A1 (ja) ジオールの工業的製造方法
WO2007114130A9 (ja) 二酸化炭素回収利用、移送用混合物
CN105032473B (zh) 一种采用硫酸改性处理纳米级hzsm‑5催化剂制备二烷氧基甲烷的方法
JP2557099B2 (ja) ジメチルカーボネートの分離方法
KR101467648B1 (ko) 아릴옥시티탄 조성물의 제조 방법 및 아릴옥시티탄 조성물
JP6693424B2 (ja) 炭酸エステルの精製方法、炭酸エステル溶液の製造方法、及び炭酸エステルの精製装置
JP2012140355A (ja) 炭酸エステルの製造方法
CN104024203B (zh) 生产甲酸的方法
US4108869A (en) Preparation of an acetal from a diol and acrolein
JP5888320B2 (ja) 3−ヒドロキシ−2,2−ジメチルプロパナール水溶液の濃縮方法
CN114555553B (zh) 用于制备碳酸二烷基酯和链烷二醇的方法
JP5088954B2 (ja) 高純度ジオールの工業的製造方法
JP4344846B2 (ja) ジメチルエーテルの製造方法及び装置
JP6753313B2 (ja) 炭酸エステルの精製方法、炭酸エステル溶液の製造方法、及び炭酸エステルの精製装置
EA032799B1 (ru) Способ получения метилформиата
KR20080023083A (ko) 3급 부탄올의 제조 방법
CN116265055A (zh) 一种co酯化制甲酸甲酯的产品分离精制装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014542152

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14434153

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157009417

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846877

Country of ref document: EP

Kind code of ref document: A1