WO2014061597A1 - ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス - Google Patents

ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス Download PDF

Info

Publication number
WO2014061597A1
WO2014061597A1 PCT/JP2013/077788 JP2013077788W WO2014061597A1 WO 2014061597 A1 WO2014061597 A1 WO 2014061597A1 JP 2013077788 W JP2013077788 W JP 2013077788W WO 2014061597 A1 WO2014061597 A1 WO 2014061597A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
layer
barrier layer
film
gas
Prior art date
Application number
PCT/JP2013/077788
Other languages
English (en)
French (fr)
Inventor
秀敏 江連
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US14/436,231 priority Critical patent/US20150247241A1/en
Priority to CN201380054591.4A priority patent/CN104736336B/zh
Priority to JP2014542112A priority patent/JP6156388B2/ja
Publication of WO2014061597A1 publication Critical patent/WO2014061597A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/24Organic non-macromolecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED

Definitions

  • the present invention relates to a gas barrier film, a production method thereof, and an electronic device using the same, and more specifically, is mainly used for an electronic device such as an organic electroluminescence (hereinafter, abbreviated as “organic EL”) element.
  • organic EL organic electroluminescence
  • the present invention relates to a gas barrier film, a production method thereof, and an electronic device using the gas barrier film.
  • a gas barrier film formed by laminating a plurality of layers including a thin film of a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide on the surface of a plastic substrate or film is used for various gases such as water vapor and oxygen. It is widely used for packaging of articles that need to be blocked, for example, packaging for preventing deterioration of food, industrial products, pharmaceuticals, and the like.
  • an organic silicon compound typified by tetraethoxysilane (hereinafter abbreviated as TEOS) is used and formed on a substrate while being oxidized with oxygen plasma under reduced pressure.
  • Gas phase such as chemical deposition method (plasma CVD method: Chemical Vapor Deposition), and physical deposition method (vacuum deposition method or sputtering method) that deposits metal Si by vapor deposition on a substrate in the presence of oxygen using a semiconductor laser.
  • plasma CVD method Chemical Vapor Deposition
  • physical deposition method vacuum deposition method or sputtering method
  • Patent Document 1 discloses a manufacturing method for producing a gas barrier laminated film having a level of 1 ⁇ 10 ⁇ 4 g / m 2 ⁇ day by a roll-to-roll method using the plasma CVD apparatus described in FIG. A method is disclosed.
  • the gas barrier film manufactured by the method described in Patent Document 1 has an adhesion property and flexibility with a base material by applying a plasma CVD method in which many carbon atoms can be arranged around the base material. Although it has been improved, under severe use environment of high temperature and high humidity such as outdoor use, it may be insufficient as gas barrier property, adhesion and flexibility in electronic device applications including organic EL elements. found.
  • Patent Document 2 discloses a method for producing a gas barrier film having a gas barrier layer to which a coating method having superior properties in terms of productivity and cost is applied.
  • the method described in Patent Literature 2 uses polysilazane as an inorganic precursor compound, and irradiates a coating film formed by coating and drying with vacuum ultraviolet light (hereinafter also referred to as “VUV light”). This is a method for forming a gas barrier layer.
  • Patent Document 3 discloses a gas barrier film provided with a conductive layer on the surface opposite to the surface provided with a gas barrier layer for the purpose of imparting an antistatic function.
  • the methods described in Patent Documents 2 and 3 make no mention of the combination with the plasma CVD method, the effects obtained by the method, and the like.
  • the present invention has been made in view of the above-mentioned problems, and its solution is to have gas barrier properties necessary for electronic device use even under high-temperature and high-humidity environments such as outdoors, and flexibility. It is to provide a gas barrier film excellent in (flexibility) and adhesiveness, a method for producing the same, and an electronic device using the same.
  • the present inventors applied a discharge plasma chemical vapor deposition method that forms a discharge plasma space between rollers to which a magnetic field was applied, A gas barrier layer containing carbon atoms, silicon atoms, and oxygen atoms as constituent elements is formed on the resin base material using a source gas containing an organosilicon compound and an oxygen gas as a film forming gas, and the resin base material
  • a conductive layer having a specific surface resistivity value at 23 ° C. and 50% RH is formed on a surface opposite to the surface on which the gas barrier layer is formed. Even if it is used in such a high temperature and high humidity environment, the gas barrier film that maintains the gas barrier properties necessary for electronic device applications and has excellent flexibility (flexibility) and adhesion Leading to found the present invention that it is possible to realize a production method.
  • a gas barrier layer containing a carbon atom, a silicon atom and an oxygen atom is provided on one surface of the resin base material, and a conductive layer is provided on a surface opposite to the surface having the gas barrier layer of the resin base material.
  • a method for producing a gas barrier film Using a source gas containing an organosilicon compound and oxygen gas, the gas barrier layer is formed on one surface of the resin substrate by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied.
  • the surface specific resistance value in the environment of 23 ° C. and 50% RH is 1 ⁇ 10 3 to 1 ⁇ 10 10 ⁇ / ⁇ on the surface of the resin substrate opposite to the surface having the gas barrier layer.
  • a method for producing a gas barrier film comprising forming a conductive layer in the range of.
  • the carbon atom ratio of the gas barrier layer continuously changes in the film thickness direction corresponding to the distance from the surface within a distance range from the surface of the gas barrier layer to 89% of the layer thickness. .
  • the maximum value of the carbon atom ratio of the gas barrier layer is less than 20 at% within the distance range from the surface of the gas barrier layer to 89% of the layer thickness in the film thickness direction.
  • the carbon atom ratio of the gas barrier layer is within a distance range of 90 to 95% of the layer thickness from the surface of the gas barrier layer in the film thickness direction (5 to 10% from the surface adjacent to the resin substrate). Within the range), it increases continuously.
  • the maximum value of the carbon atom ratio of the gas barrier layer is within a distance range of 90 to 95% of the layer thickness from the surface of the gas barrier layer in the film thickness direction (5 to 5 from the surface adjacent to the resin substrate). In the range of 10%), it is 20 at% or more.
  • a gas barrier layer containing a carbon atom, a silicon atom and an oxygen atom is provided on one surface of the resin base material, and a conductive layer is provided on a surface opposite to the surface having the gas barrier layer of the resin base material.
  • a gas barrier film The gas formed on one surface of the resin substrate by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied, using a source gas containing an organosilicon compound and oxygen gas
  • a surface specific resistance value in the environment of 23 ° C. and 50% RH is 1 ⁇ 10 3 to 1 ⁇ 10 10 on the surface opposite to the surface having the gas barrier layer of the resin substrate.
  • Item 6 The gas barrier film according to Item 5, which satisfies all the following conditions (1) to (4).
  • the carbon atom ratio of the gas barrier layer continuously changes in the film thickness direction corresponding to the distance from the surface within a distance range from the surface of the gas barrier layer to 89% of the layer thickness. To do.
  • the maximum value of the carbon atom ratio of the gas barrier layer is less than 20 at% within the distance range from the surface of the gas barrier layer to 89% of the layer thickness in the film thickness direction.
  • the carbon atom ratio of the gas barrier layer is within a distance range of 90 to 95% of the layer thickness from the surface of the gas barrier layer in the film thickness direction (5 to 10% from the surface adjacent to the resin substrate). Within the range), it increases continuously.
  • the maximum value of the carbon atom ratio of the gas barrier layer is within a distance range of 90 to 95% of the layer thickness from the surface of the gas barrier layer in the film thickness direction (5 to 5 from the surface adjacent to the resin substrate). In the range of 10%), it is 20 at% or more.
  • An electronic device comprising the gas barrier film according to item 5 or 6.
  • a gas barrier film having gas barrier properties necessary for electronic device use and having excellent flexibility (flexibility) and adhesion even under high-temperature and high-humidity environments such as outdoor use. And a gas barrier film can be provided.
  • a resin base material having a specific surface specific resistance that is, a surface specific resistance value in the range of 1 ⁇ 10 3 to 1 ⁇ 10 10 ⁇ / ⁇ .
  • the adhesiveness is due to having a specific range of conductivity in the resin substrate. , Which affects the magnetic field of the plasma discharge generated between the rollers, and is improved by arranging more carbon atom components that are relatively close in polarity to the resin substrate on the resin substrate side of the gas barrier layer. I guess.
  • the flexibility and gas barrier properties are estimated to be effects due to the continuous change in the concentration gradient of the carbon atom component in the gas barrier layer formed by the plasma discharge generated between the rollers. The combined effect of the arrangement of carbon atom components around the material is estimated to be effective even under severe conditions.
  • CVD with plasma discharge using a flat electrode (horizontal conveyance) type does not cause a continuous change in the concentration gradient of the carbon atom component around the resin substrate, so adhesion, flexibility, and gas barrier properties are It is not compatible and does not become a problem.
  • the effect of the present invention is that adhesion and flexibility occur when the concentration gradient of the carbon atom component continuously changes in the gas barrier layer formed by inter-roller discharge plasma chemical vapor deposition with a magnetic field applied. This is a problem for achieving both gas barrier properties.
  • a coating film is formed on the gas barrier layer formed above by using a polysilazane-containing liquid by a coating method, and then subjected to a modification treatment by irradiation with vacuum ultraviolet light (VUV) having a wavelength of 200 nm or less.
  • VUV vacuum ultraviolet light
  • the method for producing a gas barrier film of the present invention comprises a gas barrier layer containing a carbon atom, a silicon atom and an oxygen atom on one surface of a resin substrate, and the surface having the gas barrier layer of the resin substrate
  • the gas barrier layer is formed by a discharge plasma chemical vapor deposition method having a discharge space between the rollers to which is applied, and on the surface of the resin substrate opposite to the surface having the gas barrier layer,
  • a conductive layer having a surface specific resistance value in a range of 1 ⁇ 10 3 to 1 ⁇ 10 10 ⁇ / ⁇ in an environment of 50% RH is formed.
  • the distance from the surface of the gas barrier layer to 89% of the layer thickness in the film thickness direction is the carbon atom ratio of the gas barrier layer. Within the range, it continuously changes corresponding to the distance from the surface, and (2) the maximum value of the carbon atom ratio of the gas barrier layer is the thickness of the gas barrier layer from the surface in the film thickness direction. Within a distance range of up to 89%, it is less than 20 at%, and (3) the distance from the surface of the gas barrier layer to 90 to 95% of the layer thickness in the film thickness direction in the gas barrier layer.
  • the maximum value of the carbon atom ratio of the gas barrier layer is the above in the film thickness direction. Is it the surface of the gas barrier layer? Within a distance range of 90 to 95% of the layer thickness (within a range of 5 to 10% from the surface adjacent to the resin base material), it should be 20 at% or more to further improve flexibility (flexibility) and adhesion. It is preferable from the viewpoint that an excellent gas barrier film can be obtained. Moreover, it is preferable that the conductive layer has a configuration containing a resin and a metal oxide because the carbon content can be highly controlled under desired conditions.
  • a polysilazane-containing liquid is applied and dried on the gas barrier layer, and the formed coating film is irradiated with vacuum ultraviolet light having a wavelength of 200 nm or less to form a second gas barrier layer. It is preferable from the viewpoint that a higher degree of gas barrier properties can be achieved by filling minute defects remaining in the CVD-generated barrier layer with a gas barrier component of polysilazane from above.
  • an electronic device having excellent gas barrier performance, flexibility (flexibility) and adhesion even under high-temperature and high-humidity outdoor environments. It can be realized and is preferable.
  • the “gas barrier property” as used in the present invention is a water vapor permeability (temperature: 60 ⁇ 0.5 ° C., relative humidity (RH): 90 ⁇ 2%) measured by a method according to JIS K 7129-1992. ) Is 3 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 mL / (m 2 ⁇ 24 h ⁇ atm. ) Means the following.
  • vacuum ultraviolet light specifically mean light having a wavelength of 100 to 200 nm.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • FIG. 1 is a schematic cross-sectional view showing an example of the basic structure of the gas barrier film of the present invention.
  • the gas barrier film 1 of the present invention has a resin base material 2 as a support and a conductive layer 3 on one surface side of the resin base material 2, and the conductivity of the resin base material 2.
  • the surface opposite to the surface having the layer 3 has a gas barrier layer 4 formed by an inter-roller discharge plasma chemical vapor deposition method. Further, a polysilazane coating film is formed on the gas barrier layer as necessary.
  • a second gas barrier layer 5 formed by vacuum ultraviolet irradiation (VUV) treatment is disposed.
  • Resin base material The resin base material constituting the gas barrier film of the present invention is not particularly limited as long as it is formed of an organic material capable of holding the gas barrier layer having the above gas barrier properties. It is not limited.
  • Examples of the resin material constituting the resin base material applicable to the present invention include methacrylate ester, polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC), polyarylate, Each resin film such as polystyrene (abbreviation: PS), aromatic polyamide, polyetheretherketone, polysulfone, polyethersulfone, polyimide, polyetherimide, and further a laminated film formed by laminating two or more layers of the above-mentioned resins. be able to.
  • polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC), and the like are preferably used.
  • the thickness of the resin base material is preferably in the range of 5 to 500 ⁇ m, more preferably in the range of 25 to 250 ⁇ m.
  • the resin base material according to the present invention is preferably transparent. Since the resin base material is transparent and the layer formed on the resin base material is also transparent, it becomes possible to make a transparent gas barrier film, and as a transparent substrate for electronic devices (for example, organic EL) It is also possible to apply.
  • the resin base material using the resin material described above may be an unstretched film or a stretched film.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • a phase difference etc. can also be adjusted by extending
  • the resin substrate according to the present invention can be manufactured by a conventionally known general film forming method.
  • an unstretched resin substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • an unstretched film that is substantially amorphous and not oriented by dissolving the material resin in an organic solvent, casting (casting) it onto an endless metal or resin support, drying, and peeling. It is also possible to produce a resinous substrate.
  • Unstretched resin base material is conveyed in the direction of the resin base material (vertical axis, MD) by a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc.
  • a stretched resin substrate can be produced by stretching in the width (horizontal axis, TD) direction perpendicular to the conveying direction of the resin substrate.
  • the draw ratio in this case can be appropriately selected according to the resin used as the raw material of the resin base material, but within a range of 2 to 10 times in the vertical axis direction (MD direction) and the horizontal axis direction (TD direction). It is preferable to stretch.
  • the resin base material according to the present invention may be subjected to relaxation treatment or offline heat treatment in terms of dimensional stability.
  • the relaxation treatment is preferably carried out in the process from the heat setting in the stretching film forming step in the above-described film forming method to the winding in the transverse stretching tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature in the range of 80 to 200 ° C., and more preferably at a treatment temperature in the range of 100 to 180 ° C.
  • it does not specifically limit as a method of off-line heat processing For example, the method of conveying by the roller conveyance method by a several roller group, the air conveyance which blows and blows air to a film, etc.
  • the conveyance tension of the heat treatment is made as low as possible to promote thermal shrinkage, thereby providing a resin substrate with good dimensional stability.
  • the treatment temperature is preferably in the temperature range of Tg + 50 to Tg + 150 ° C. Tg here refers to the glass transition temperature of the resin substrate.
  • the undercoat layer can be formed by applying the undercoat layer coating solution inline on one side or both sides in the course of film formation.
  • such undercoating during the film forming process is referred to as in-line undercoating.
  • Resins used for preparing the undercoat layer coating solution useful in the present invention include polyester resins, acrylic-modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, polyethyleneimine resins, polyvinyl Alcohol resin, modified polyvinyl alcohol resin, gelatin and the like can be mentioned, and any of them can be preferably used.
  • the undercoat layer coating solution can be formed using a known wet coating method such as roller coating, gravure coating, knife coating, dip coating, or spray coating.
  • the coating amount of the undercoat layer coating solution is preferably adjusted so that the solid content after drying is in the range of 0.01 to 2 g / m 2 (dry state).
  • Conductive layer In the gas barrier film of the present invention, measurement was performed in an environment of 23 ° C. and 50% RH on the surface of the resin substrate opposite to the surface on which the gas barrier layer according to the present invention was formed.
  • a conductive layer having a surface specific resistance value in the range of 1 ⁇ 10 3 to 1 ⁇ 10 10 ⁇ / ⁇ is formed, more preferably 1 ⁇ 10 8 to 1 ⁇ 10 10 ⁇ / ⁇ . This is a conductive layer that falls within the range of the surface specific resistance value.
  • the surface specific resistance of the conductive layer is 1 ⁇ 10 3 ⁇ / ⁇ or more, plasma discharge in the inter-roller plasma CVD process is stabilized and a homogeneous gas barrier layer can be formed when the gas barrier layer is formed. Moreover, if the surface specific resistance of the conductive layer is 1 ⁇ 10 10 ⁇ / ⁇ or less, a gas barrier layer having a desired element profile can be formed due to a decrease in conductivity.
  • a portion close to the resin substrate by disposing the conductivity having the surface specific resistance value defined above on the surface opposite to the surface on which the gas barrier layer is formed, and forming the gas barrier layer by an inter-roller plasma CVD method.
  • Many carbon atom components can be oriented, and as a result, the adhesion between the resin substrate and the gas barrier layer can be improved, and the gas barrier property can also be improved.
  • the surface specific resistance value in the conductive layer is 1 ⁇ 10 3 ⁇ / ⁇ or more, the conductive layer has sufficient conductivity, and stable discharge can be obtained when the gas barrier layer is formed by the plasma CVD method between rollers.
  • the carbon atom component in the periphery of the material can be controlled to a predetermined condition, and as a result, excellent adhesion and barrier properties can be realized.
  • the surface specific resistance value is 1 ⁇ 10 10 ⁇ / ⁇ or less, similarly, the carbon atom component around the resin base material can be controlled to a predetermined amount, and as a result, adhesion and barrier properties are improved. improves.
  • the surface specific resistance value in the present invention is measured under the conditions of an applied voltage of 100 V, a measurement environment of 23 ° C., and 50% RH using a digital ultrahigh electrical resistance meter (R8340A) manufactured by Advantest.
  • the conductive layer according to the present invention is not particularly limited as long as it has the above surface specific resistance value, but it preferably has a structure containing a resin and a metal oxide.
  • a conductive layer it is preferable from a viewpoint which can adjust to the desired surface specific resistance value by adjusting suitably the structural ratio of resin and a metal oxide, and the electroconductivity of each structural material.
  • the gas barrier film of the present invention is manufactured by a plasma chemical vapor deposition method under vacuum, the metal oxide has a low humidity dependency so that the conductivity can be stably expressed even under vacuum. It is preferable to use a product.
  • Resins examples include, for example, an epoxy resin, an acrylic resin, a urethane resin, a polyester resin, a silicone resin, and ethylene vinyl acetate (abbreviation: EVA).
  • resins include resins.
  • the light transmittance of the resin composition can be further increased.
  • a photo-curing type or a thermosetting resin type is preferable. From the viewpoints of film hardness, smoothness, transparency and the like of the conductive layer to be obtained, an ultraviolet curable resin is preferable.
  • the ultraviolet curable resin can be used without limitation as long as it is a resin that is cured by ultraviolet irradiation to form a transparent resin composition, and particularly preferably, from the viewpoint of the hardness, smoothness, and transparency of the obtained conductive layer. Therefore, it is preferable to use an acrylic resin, a urethane resin, a polyester resin, or the like.
  • acrylic resin composition examples include acrylate compounds having a radical reactive unsaturated bond, mercapto compounds having an acrylate compound and a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, glycerol methacrylate, and the like. What dissolved the polyfunctional acrylate monomer etc. are mentioned. Moreover, it is also possible to use it as a mixture which mixed the above resin compositions in arbitrary ratios, and resin containing the reactive monomer which has one or more photopolymerizable unsaturated bonds in a molecule
  • photopolymerization initiator known ones can be used, and one kind or a combination of two or more kinds can be used.
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • AZO aluminum-doped zinc oxide
  • GZO Gallium-doped zinc oxide
  • the average particle diameter of the particles is preferably in the range of 1 to 300 nm, and in the range of 5 to 100 nm. More preferably, it is more preferably within the range of 10 to 80 nm. If the average particle size is 1 nm or more, the production of the conductive oxide fine particle dispersion and the transparent conductive film forming coating solution becomes stable and easy, and the surface specific resistance value of the obtained conductive layer is controlled within a desired range. can do.
  • the dispersion stability of the conductive oxide fine particles can be secured in the conductive oxide fine particle dispersion or the transparent conductive film forming coating solution, and the sedimentation of the particles can be prevented.
  • the transmittance and the surface resistivity can be achieved at the same time.
  • the metal oxide fine particles used in the present invention are mixed with a resin by a known technique.
  • the resin is dissolved to form a solution, and the metal oxide fine particles are mixed into the resin solution while stirring using a stirrer.
  • the dispersant and other additives that may be added at the time of stirring are added before and after or simultaneously with the addition of the metal oxide fine particles and stirred as necessary.
  • an organic solvent or the like may be added as appropriate. If the dispersion is not easy, the metal oxide fine particles, the resin binder, and the solvent are added and mixed uniformly using a mixer with high shearing force such as a Henschel mixer or a super mixer.
  • the content of the metal oxide with respect to the total mass of the conductive layer according to the present invention is not particularly limited as long as the surface specific resistance value described above is reached, but from the viewpoint of dispersibility of metal oxide particles, transparency, and film strength of the resin
  • the content of the metal oxide is preferably in the range of 3 to 80% by volume, more preferably in the range of 5 to 50% by volume, based on the total mass of the conductive layer.
  • the conductive layer according to the present invention is obtained by using a composition (coating liquid for forming a conductive layer) using the above-described resin and metal oxide, for example, a doctor blade method or a spin coat method. , Dipping method, table coating method, spray method, applicator method, curtain coating method, die coating method, ink jet method, dispenser method, etc. It can be formed by curing.
  • an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp or the like is used as an ultraviolet irradiation light source, and a range of 100 to 400 nm emitted from these light sources.
  • the irradiation can be performed by irradiating ultraviolet rays in a wavelength region within a range of 200 to 400 nm or irradiating an electron beam in a wavelength region of 100 nm or less emitted from a scanning or curtain type electron beam accelerator.
  • the thickness of the conductive layer according to the present invention is not particularly limited, but is preferably in the range of 0.1 to 10 ⁇ m, particularly preferably in the range of 0.5 to 5 ⁇ m.
  • the conductive layer may have two or more layers.
  • additives such as an antioxidant, a plasticizer, a matting agent, and a thermoplastic resin can be added as necessary.
  • distributed resin in the solvent It selects from a conventionally well-known organic solvent suitably, and uses it. be able to.
  • the conductive layer according to the present invention preferably has a surface roughness Ra value in the range of 0.3 to 5.0 nm, more preferably in the range of 0.5 to 3.0 nm.
  • the surface roughness of the conductive layer is 0.3 nm or more, the surface of the conductive layer has an appropriate roughness, the roller transportability during the formation of the gas barrier layer is stable, and the formation of the gas barrier layer by CVD is accurate. It can be carried out. On the other hand, if it is 5.0 nm or less, it is possible to obtain an appropriate close-conveyance property with the roller, and a gas barrier layer having a desired gas barrier property and adhesiveness is formed without affecting the discharge. Can be preferred.
  • the surface roughness (Ra) of the conductive layer according to the present invention can be measured by the following method.
  • the surface roughness Ra can be calculated from an uneven sectional curve continuously measured with a detector having a stylus with a minimum tip radius using, for example, DI3100 manufactured by Digital Instruments as an AFM (atomic force microscope). Specifically, the surface roughness Ra is obtained as a roughness related to the amplitude of fine irregularities by measuring the inside of a section having a measurement direction of several tens of ⁇ m many times with a stylus having a very small tip radius.
  • Gas barrier layer The gas barrier layer according to the present invention is applied with a discharge plasma chemical vapor deposition method in which a discharge space is formed between rollers to which a magnetic field is applied, and an organic silicon compound is used as a film forming gas for the gas barrier layer. It is characterized in that it is formed on a resin base material using a source gas containing oxygen and oxygen gas, and contains carbon atoms, silicon atoms and oxygen atoms as constituent elements of the gas barrier layer.
  • the surface of the resin substrate opposite to the surface having the conductive layer is wound between a pair of film forming rollers (roller electrodes), and a film forming gas is supplied between the pair of film forming rollers.
  • a gas barrier layer is formed on the resin substrate by plasma chemical vapor deposition using plasma discharge.
  • the gas barrier layer according to the present invention uses a raw material gas containing an organosilicon compound and an oxygen gas as a film forming gas, contains carbon, silicon and oxygen as constituent elements of the gas barrier layer, and includes the following (1) to It is a more preferable aspect to satisfy all the conditions of the carbon atom distribution profile defined in (4).
  • the carbon atom ratio of the gas barrier layer continuously changes in the film thickness direction corresponding to the distance from the surface within a distance range from the surface of the gas barrier layer to 89% of the layer thickness. To do.
  • the maximum value of the carbon atom ratio of the gas barrier layer is less than 20 at% within the distance range from the surface of the gas barrier layer to 89% of the layer thickness in the film thickness direction.
  • the carbon atom ratio of the gas barrier layer is within a distance range of 90 to 95% of the layer thickness from the surface of the gas barrier layer in the film thickness direction (5 to 10% from the surface adjacent to the resin substrate). Within the range), it increases continuously.
  • the maximum value of the carbon atom ratio of the gas barrier layer is within a distance range of 90 to 95% of the layer thickness from the surface of the gas barrier layer in the film thickness direction (5 to 5 from the surface adjacent to the resin substrate). In the range of 10%), it is 20 at% or more.
  • the average value of the content ratio of carbon atoms in the gas barrier layer according to the present invention can be determined by measuring an XPS depth profile described later.
  • the gas barrier layer according to the present invention contains carbon atoms, silicon atoms, and oxygen atoms as constituent elements of the gas barrier layer, and from the surface in the film thickness direction of the gas barrier layer.
  • the carbon atom content profile is the above (1) to By satisfying all the conditions of the item (4), a gas barrier film having further excellent flexibility (flexibility) and adhesion can be obtained.
  • the carbon atom ratio has a configuration in which the carbon atom ratio continuously changes with a concentration gradient in a specific region of the gas barrier layer from the viewpoint of achieving both gas barrier properties and flexibility.
  • the carbon distribution curve in the layer has at least one extreme value. Furthermore, it is more preferable to have at least two extreme values, and it is particularly preferable to have at least three extreme values.
  • the carbon distribution curve does not have an extreme value, the gas barrier property when the obtained film of the gas barrier film is bent is insufficient.
  • the gas in the film thickness direction of the gas barrier layer at one extreme value and the extreme value adjacent to the extreme value that the carbon distribution curve has.
  • the absolute value of the difference in distance from the surface of the barrier layer is preferably 200 nm or less, and more preferably 100 nm or less.
  • the extreme value means the maximum value or the minimum value of the atomic ratio of each element.
  • the maximum value is a point where the value of the atomic ratio of an element changes from increasing to decreasing when the distance from the surface of the gas barrier layer is changed.
  • the atomic ratio value of the element at a position where the distance from the point in the thickness direction of the gas barrier layer to the surface of the gas barrier layer is further changed by 20 nm from the point is 3 at%. This is the point that decreases.
  • the minimum value is a point where the value of the atomic ratio of the element changes from decrease to increase when the distance from the surface of the gas barrier layer is changed, and the value of the atomic ratio of the element at that point Rather, it means that the atomic ratio value of the element at a position where the distance from the surface of the gas barrier layer in the film thickness direction of the gas barrier layer is further changed by 20 nm increases by 3 at% or more.
  • the ratio of carbon elements in the gas barrier layer is in the range of 89% in the vertical direction from the surface defined in the above item (1) according to the present invention. Having a concentration gradient and a region where the concentration continuously changes, and in the range of 90 to 95% in the vertical direction from the surface defined in the item (3) according to the present invention, in other words, a resin group. It is a preferred embodiment that the carbon element ratio continuously increases in the range of 5 to 10% in the layer thickness direction from the surface adjacent to the material toward the surface portion.
  • the concentration gradient of the carbon element ratio changes continuously means that the carbon distribution curve does not include a portion where the carbon atom ratio changes discontinuously, specifically, the etching rate.
  • the gas barrier layer according to the present invention is characterized by containing carbon atoms, silicon atoms and oxygen atoms as constituent elements, and the ratio of each atom, Preferred embodiments for the maximum and minimum values are described below.
  • the absolute value of the difference between the maximum value and the minimum value of the carbon atom ratio in the carbon distribution curve is 5 at. % Or more is preferable.
  • the absolute value of the difference between the maximum value and the minimum value of the carbon atom ratio is more preferably 6 at% or more, and particularly preferably 7 at% or more.
  • the absolute value of the difference between the maximum value and the minimum value in the oxygen distribution curve is at% or more. Preferably, it is 6 at% or more, more preferably 7 at% or more.
  • the absolute value is 5 at% or more, when the obtained gas barrier film is bent, the occurrence of cracks or the like on the film surface can be prevented, and the bending resistance is sufficient.
  • the absolute value of the difference between the maximum value and the minimum value in the silicon distribution curve may be less than 5 at%. Preferably, it is less than 4 at%, more preferably less than 3 at%. When the absolute value is less than 5 at%, the gas barrier performance and mechanical strength of the obtained gas barrier film are sufficient.
  • the oxygen-carbon total distribution curve also referred to as oxygen-carbon distribution curve
  • the absolute value of the difference between the maximum value and the minimum value of the ratio is preferably less than 5 at%, more preferably less than 4 at%, and particularly preferably less than 3 at%. If the absolute value is less than 5 at%, the gas barrier performance of the obtained gas barrier film is sufficient.
  • the total amount of silicon atoms, oxygen atoms and carbon atoms means silicon.
  • the total number of atoms (at number) of atoms, oxygen atoms and carbon atoms is meant, and “amount of carbon atoms” means the number of carbon atoms.
  • the term “at%” in the present invention means the atomic ratio (number of atoms%) of each atom when the total number of silicon atoms, oxygen atoms and carbon atoms is 100%.
  • XPS Depth Profile The silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen-carbon total distribution curve in the film barrier direction of the gas barrier layer are measured by X-ray photoelectron spectroscopy (XPS: Xray). It can be created by so-called XPS depth profile measurement in which the surface composition analysis is sequentially performed while exposing the inside of the sample by using the measurement of Photoelectron Spectroscopy and the rare gas ion sputtering such as argon in combination.
  • XPS X-ray photoelectron spectroscopy
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time generally correlates with the distance from the surface of the gas barrier layer in the film thickness direction of the gas barrier layer in the film thickness direction.
  • etching rate is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
  • the gas barrier layer is in the film surface direction (direction parallel to the surface of the gas barrier layer). Is substantially uniform.
  • that the gas barrier layer is substantially uniform in the film surface direction means that the oxygen distribution curve, the carbon distribution curve, and the carbon distribution curve at any two measurement points on the film surface of the gas barrier layer by XPS depth profile measurement.
  • the gas barrier film of the present invention preferably has at least one gas barrier layer that satisfies all of the above (1) to (4) defined in the present invention. It may have more than one layer. Further, when two or more such gas barrier layers are provided, the materials between the plurality of gas barrier layers may be the same or different. Further, when two or more such gas barrier layers are provided, such a gas barrier layer may be formed on one surface of the resin base material, and on both surfaces of the resin base material. It may be formed. Moreover, as such a plurality of gas barrier layers, a gas barrier layer not necessarily having a gas barrier property may be included.
  • the silicon atom ratio, the oxygen atom ratio, and the carbon atom ratio are expressed by the formula (2) in a region where 90% or more of the film thickness of the layer.
  • the ratio of silicon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 19 to 40 at%, and in the range of 30 to 40 at%. It is more preferable that The oxygen atom ratio with respect to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 33 to 67 at%, more preferably in the range of 41 to 62 at%.
  • the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 1 to 19 at%, and more preferably in the range of 3 to 19 at%.
  • the thickness of the gas barrier layer according to the present invention is preferably in the range of 5 to 3000 nm, more preferably in the range of 10 to 2000 nm, and more preferably in the range of 100 to 1000 nm. It is particularly preferable that it is within the range.
  • the gas barrier properties such as oxygen gas barrier property and water vapor barrier property are excellent, and the gas barrier property is not deteriorated by bending.
  • the total thickness of the gas barrier layers is usually in the range of 10 to 10,000 nm, and in the range of 10 to 5000 nm. It is preferably in the range of 100 to 3000 nm, more preferably in the range of 200 to 2000 nm.
  • gas barrier properties such as oxygen gas barrier properties and water vapor barrier properties are sufficient, and the gas barrier properties tend not to be lowered by bending.
  • the gas barrier layer according to the present invention is characterized in that it is formed on a resin substrate by an inter-roller discharge plasma chemical vapor deposition method to which a magnetic field is applied.
  • the gas barrier layer according to the present invention uses a discharge plasma processing apparatus that forms a discharge space between rollers to which a magnetic field is applied, winds a resin substrate around a pair of film forming rollers, and a pair of film forming rollers. It is a layer formed by plasma enhanced chemical vapor deposition by plasma discharge while supplying a deposition gas in between. Further, when discharging while applying a magnetic field between the pair of film forming rollers, it is preferable to reverse the polarity between the pair of film forming rollers alternately.
  • the gas barrier layer is preferably a layer formed by a continuous film forming process.
  • the gas barrier film of the present invention is formed by forming a gas barrier layer on the surface of a resin base material (if necessary, an intermediate layer may be provided) using an inter-roller discharge plasma processing apparatus to which a magnetic field is applied. To manufacture.
  • an inter-roller discharge plasma chemical vapor deposition method using a magnetic field is used to form a layer in which the carbon atom ratio has a concentration gradient and continuously changes in the layer. It is characterized by that.
  • the inter-roller discharge plasma chemical vapor deposition method (hereinafter also referred to as plasma CVD method) to which a magnetic field is applied according to the present invention
  • plasma CVD method when generating plasma, while applying a magnetic field between a plurality of film forming rollers, It is preferable to generate plasma discharge in the formed discharge space.
  • a pair of film forming rollers is used, and a resin base material is wound around each of the pair of film forming rollers, and the pair of film forming rollers is interposed between the pair of film forming rollers.
  • the plasma discharge space is preferably formed by generating a plasma by discharging in a state where a magnetic field is applied.
  • a pair of film forming rollers is used, a resin substrate is wound around the pair of film forming rollers, and plasma discharge is performed between the pair of film forming rollers.
  • a gas barrier layer in which the carbon atom ratio has a concentration gradient and the composition continuously changes in the layer.
  • the film formation rate can be doubled, and since a film having the same structure can be formed, it is possible to at least double the extreme value in the carbon distribution curve, A layer that satisfies all the above conditions (1) to (4) can be formed efficiently.
  • the gas barrier film of the present invention preferably has the gas barrier layer formed on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity.
  • an apparatus that can be used when producing a gas barrier film by such a plasma chemical vapor deposition method is not particularly limited, and a film forming roller including at least a pair of magnetic field applying apparatuses, And a plasma power source, and is preferably an apparatus capable of discharging between a pair of film forming rollers.
  • a gas barrier film can be continuously produced by a roll-to-roll method using a growth method.
  • FIG. 2 is a schematic view showing an example of an inter-roller discharge plasma CVD apparatus to which a magnetic field that can be suitably used for producing the gas barrier film of the present invention is applied.
  • the resin base material 1 in the following description refers to a resin base material having a conductive layer according to the present invention on the back surface.
  • An inter-roller discharge plasma CVD apparatus (hereinafter also referred to as a plasma CVD apparatus) to which a magnetic field shown in FIG. 2 is applied mainly includes a delivery roller 11, transport rollers 21, 22, 23 and 24, and a film formation roller 31. And 32, a film forming gas supply pipe 41, a plasma generation power source 51, magnetic field generators 61 and 62 installed inside the film forming rollers 31 and 32, and a winding roller 71. Further, in such a plasma CVD manufacturing apparatus, at least the film forming rollers 31 and 32, the film forming gas supply pipe 41, the plasma generating power source 51, and the magnetic field generating apparatuses 61 and 62 are not shown in a vacuum. Located in the chamber. Further, in such a plasma CVD manufacturing apparatus, a vacuum chamber (not shown) is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by this vacuum pump. Yes.
  • each film forming roller generates plasma so that a pair of film forming rollers (the film forming roller 31 and the film forming roller 32) can function as a pair of counter electrodes. It is connected to the power source 51 for use.
  • the power source 51 for use By supplying power to the pair of film forming rollers (the film forming roller 31 and the film forming roller 32) from the power source 51 for generating plasma, the space between the film forming roller 31 and the film forming roller 32 can be discharged.
  • plasma can be generated in a space (also referred to as a discharge space) between the film formation roller 31 and the film formation roller 32.
  • the film-forming roller 31 and the film-forming roller 32 are used as electrodes in this way, materials and designs that can be used as electrodes may be changed as appropriate.
  • the pair of film forming rollers (film forming rollers 31 and 32) be arranged so that their central axes are substantially parallel on the same plane.
  • the film forming roller 31 and the film forming roller 32 are characterized in that magnetic field generators 61 and 62 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
  • the film forming roller 31 and the film forming roller 32 known rollers can be appropriately used.
  • the film forming rollers 31 and 32 those having the same diameter are preferably used from the viewpoint of more efficiently forming a thin film.
  • the diameters of the film forming rollers 31 and 32 are preferably in the range of 300 to 1000 mm ⁇ , particularly in the range of 300 to 700 mm ⁇ , from the viewpoint of discharge conditions, chamber space, and the like. If the diameter is 300 mm ⁇ or more, it is preferable that the plasma discharge space is not reduced, the productivity is not deteriorated, the total amount of heat of the plasma discharge can be prevented from being applied to the film in a short time, and the residual stress is hardly increased.
  • a diameter of 1000 mm ⁇ or less is preferable because practicality can be maintained in terms of device design including uniformity of the plasma discharge space.
  • the winding roller 71 is not particularly limited as long as it can wind the resin base material 1 on which the gas barrier layer is formed, and a known roller can be used as appropriate.
  • the film forming gas supply pipe 41 one capable of supplying or discharging the source gas and the oxygen gas at a predetermined rate can be appropriately used.
  • the plasma generating power source 51 a conventionally known power source for a plasma generating apparatus can be used.
  • Such a power source 51 for generating plasma supplies power to the film forming roller 31 and the film forming roller 32 connected thereto, and makes it possible to use these as counter electrodes for discharge.
  • As such a plasma generating power source 51 it is possible to more efficiently carry out the plasma CVD method, so that the polarity of the pair of film forming rollers can be alternately reversed (AC power source or the like). Is preferably used.
  • the applied power can be in the range of 100 W to 10 kW, and the AC frequency is 50 Hz. More preferably, it can be in the range of -500 kHz.
  • the magnetic field generators 61 and 62 known magnetic field generators can be used as appropriate.
  • the gas barrier film of the present invention can be produced by appropriately adjusting the conveyance speed of the substrate. That is, using the plasma CVD apparatus shown in FIG. 2, a magnetic field is applied between a pair of film forming rollers (film forming rollers 31 and 32) while supplying a film forming gas (such as a source gas) into the vacuum chamber.
  • a film forming gas such as a source gas
  • the film forming gas (raw material gas or the like) is decomposed by plasma, and on the surface of the resin base material 1 on the film forming roller 31 and on the surface of the resin base material 1 on the film forming roller 32.
  • the gas barrier layer according to the present invention is formed by a plasma CVD method. In such film formation, the resin base material 1 is conveyed by the delivery roller 11, the film formation roller 31, and the like, respectively, so that the resin base material is subjected to a roll-to-roll type continuous film formation process. The gas barrier layer is formed on the surface of 1.
  • Source gas constituting the film forming gas used for forming the gas barrier layer according to the present invention is characterized by using an organosilicon compound containing at least silicon.
  • organosilicon compound applicable to the present invention examples include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, and trimethyl.
  • examples thereof include silane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling in film formation and gas barrier properties of the obtained gas barrier layer. Moreover, these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • the film forming gas contains oxygen gas as a reaction gas in addition to the source gas.
  • the oxygen gas is a gas that reacts with the raw material gas to become an inorganic compound such as an oxide.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon, or hydrogen gas can be used.
  • such a film forming gas contains a raw material gas containing an organosilicon compound containing silicon and an oxygen gas
  • the ratio of the raw material gas to the oxygen gas is such that the raw material gas and the oxygen gas are completely reacted. It is preferable that the oxygen gas ratio is not excessively higher than the theoretically required oxygen gas ratio. If the ratio of oxygen gas is excessive, it is difficult to obtain the target gas barrier layer in the present invention. Therefore, in order to obtain the desired performance as a barrier film, it is preferable that the total amount of the organosilicon compound in the film-forming gas is less than or equal to the theoretical oxygen amount necessary for complete oxidation.
  • a film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by a plasma CVD method to form silicon-oxygen.
  • HMDSO, (CH 3 ) 6 Si 2 O hexamethyldisiloxane
  • O 2 oxygen
  • a reaction represented by the following reaction formula (1) occurs by the film forming gas, and a thin film made of silicon dioxide SiO 2 is formed.
  • Reaction formula (1) (CH 3 ) 6 Si 2 O + 12O 2 ⁇ 6CO 2 + 9H 2 O + 2SiO 2
  • the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, when the film forming gas contains 12 moles or more of oxygen with respect to 1 mole of hexamethyldisiloxane and is completely reacted, a uniform silicon dioxide film is formed.
  • the ratio is controlled to a flow rate equal to or less than the raw material ratio of the complete reaction, which is the theoretical ratio, and the incomplete reaction is performed. That is, it is necessary to set the amount of oxygen to less than 12 moles of the stoichiometric ratio with respect to 1 mole of hexamethyldisiloxane.
  • the raw material hexamethyldisiloxane and the reaction gas, oxygen are supplied from the gas supply unit to the film formation region to form a film. Even if the molar amount (flow rate) is 12 times the molar amount (flow rate) of the starting hexamethyldisiloxane, the reaction cannot actually proceed completely, and oxygen content It is considered that the reaction is completed only when the amount is supplied in a large excess compared to the stoichiometric ratio.
  • the molar amount (flow rate) of oxygen may be about 20 times or more the molar amount (flow rate) of hexamethyldisiloxane as a raw material. Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. .
  • the lower limit of the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas is more than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane.
  • the amount is more than 0.5 times.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 to 100 Pa.
  • a plasma generating power source 51 is used to form a discharge space between the film formation rollers 31 and 32.
  • the power applied to the electrode drum connected to the electrode drum can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, and the like. Although it is possible and cannot be generally stated, it is preferably within a range of 0.1 to 10 kW. If the applied power is in such a range, no generation of particles (illegal particles) is observed, and the amount of heat generated during film formation is within the control range.
  • the conveyance speed (line speed) of the resin base material 1 can be appropriately adjusted according to the type of raw material gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is within the range of 0.5 to 20 m / min. When the line speed is within the above range, wrinkles due to the heat of the resin base material hardly occur, and the thickness of the formed gas barrier layer can be sufficiently controlled.
  • FIG. 3 shows an example of each element profile in the layer thickness direction based on the XPS depth profile of the gas barrier layer of the present invention formed as described above.
  • FIG. 3 is a graph showing an example of the silicon distribution curve, oxygen distribution curve and carbon distribution curve of the gas barrier layer of the present invention.
  • symbols A to D represent A as a carbon distribution curve, B as a silicon distribution curve, C as an oxygen distribution curve, and D as an oxygen carbon distribution curve.
  • the gas barrier layer according to the present invention has a maximum carbon element ratio in the range of 89% in the vertical direction from the surface as the carbon atom ratio of the gas barrier layer, which is less than 20 at%.
  • the carbon element ratio in the range of up to 89% in the vertical direction from the surface has a concentration gradient and has a structure in which the concentration changes continuously (as defined in the present invention (1 ) And (2))).
  • the maximum value of the carbon element ratio is 90 to 95% in the vertical direction (5 to 10% in the vertical direction adjacent to the resin base material) with respect to the surface. It can be seen that the carbon element ratio is 20 at% or more and the carbon element ratio continuously increases (corresponding to the items (3) and (4) defined in the present invention).
  • FIG. 4 is a graph showing an example of the carbon distribution curve A, silicon distribution curve B, and oxygen distribution curve of the gas barrier layer of the comparative example.
  • the gas barrier layer shows a carbon atom profile A, a silicon atom profile B, and an oxygen atom profile C in a gas barrier layer formed by using a flat electrode (horizontal transport) type plasma CVD discharge apparatus, and in particular, It can be seen that the profile does not cause a continuous change in the concentration gradient of the carbon atom component A.
  • Second gas barrier layer In the gas barrier film of the present invention, a polysilazane-containing liquid is applied and dried on the gas barrier layer according to the present invention by a wet coating method, and the formed coating film has a wavelength. It is preferable to form a second gas barrier layer by irradiating vacuum ultraviolet light (VUV light) of 200 nm or less and subjecting the formed coating film to a modification treatment.
  • VUV light vacuum ultraviolet light
  • the second gas barrier layer is formed on the gas barrier layer provided by the inter-roller discharge plasma CVD method to which the magnetic field according to the present invention is applied, thereby forming the already formed gas barrier layer.
  • the generated minute defect portion can be filled with the second gas barrier layer component composed of polysilazane applied from above, and gas purge and the like can be efficiently prevented, and further gas barrier properties and flexibility can be improved. It is preferable from the viewpoint.
  • the thickness of the second gas barrier layer is preferably in the range of 1.0 to 500 nm, more preferably in the range of 10 to 300 nm. If the thickness of the second gas barrier layer is 1 nm or more, the desired gas barrier performance can be exhibited, and if it is 500 nm or less, film quality degradation such as generation of cracks in a dense silicon oxynitride film can be achieved. Can be prevented.
  • the polysilazane according to the present invention is a polymer having a silicon-nitrogen bond in the molecular structure, and is a polymer that is a precursor of silicon oxynitride.
  • the applicable polysilazane Is preferably a compound having a structure represented by the following general formula (1).
  • R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • perhydropolysilazane (abbreviation: PHPS) in which all of R 1 , R 2 and R 3 are composed of hydrogen atoms is particularly preferable from the viewpoint of the denseness as the obtained second gas barrier layer. .
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6-membered and 8-membered rings, and its molecular weight is about 600 to 2000 in terms of number average molecular weight (Mn) (gel Polystyrene conversion by permeation chromatography), which is a liquid or solid substance.
  • Mn number average molecular weight
  • Polysilazane is commercially available in a solution state dissolved in an organic solvent, and a commercially available product can be used as it is as a polysilazane-containing coating solution.
  • Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials Co., Ltd.
  • the second gas barrier layer is formed by irradiating vacuum ultraviolet rays after applying and drying a coating liquid containing polysilazane on the first gas barrier layer formed by the inter-roller discharge plasma CVD method to which a magnetic field is applied. can do.
  • organic solvent for preparing a coating liquid containing polysilazane, it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane.
  • organic solvents include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers, and alicyclic ethers.
  • organic solvents such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • organic solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed.
  • the concentration of polysilazane in the second gas barrier layer-forming coating solution containing polysilazane varies depending on the film thickness of the second gas barrier layer and the pot life of the coating solution, but is preferably 0.2 to 35% by mass. Is within the range.
  • the second gas barrier layer forming coating solution contains an amine catalyst, a Pt compound such as Pt acetylacetonate, a Pd compound such as propionic acid Pd, Rh acetylacetonate, etc.
  • a metal catalyst such as an Rh compound can also be added.
  • Specific amine catalysts include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetramethyl-1 , 3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane and the like.
  • the amount of these catalysts added to the polysilazane is preferably in the range of 0.1 to 10% by mass, preferably in the range of 0.2 to 5% by mass with respect to the total mass of the second gas barrier layer forming coating solution. More preferably, it is more preferably in the range of 0.5 to 2% by mass.
  • any appropriate wet coating method can be appropriately selected and applied.
  • Specific examples include a roller coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the thickness of the coating film can be appropriately set according to the purpose.
  • the thickness of the coating film is preferably in the range of 50 nm to 2 ⁇ m as the thickness after drying, more preferably in the range of 70 nm to 1.5 ⁇ m, and in the range of 100 nm to 1 ⁇ m. Is more preferable.
  • perhydropolysilazane will be described as an example of a presumed mechanism in which the coating film containing polysilazane is modified in the vacuum ultraviolet irradiation process and becomes a specific composition of SiO x N y .
  • x and y are basically in the range of 2x + 3y ⁇ 4.
  • the coating film contains silanol groups, and there are cases where 2 ⁇ x ⁇ 2.5.
  • Si—H bonds and N—H bonds in perhydropolysilazane are relatively easily cleaved by excitation with vacuum ultraviolet irradiation and the like. It is considered that it is recombined as -N (an Si dangling bond may be formed). That is, it is cured as a SiN y composition without being oxidized. In this case, the polymer main chain is not broken. The breaking of Si—H bonds and N—H bonds is promoted by the presence of a catalyst and heating. The cut H is released out of the membrane as H 2 .
  • Si—O—Si Bonds by Hydrolysis and Dehydration Condensation Si—N bonds in perhydropolysilazane are hydrolyzed by water, and the polymer main chain is cleaved to form Si—OH.
  • Two Si—OH are dehydrated and condensed to form a Si—O—Si bond and harden. This is a reaction that occurs even in the atmosphere, but during vacuum ultraviolet irradiation in an inert atmosphere, it is considered that water vapor generated as outgas from the resin base material by the heat of irradiation becomes the main moisture source.
  • Si—OH that cannot be dehydrated and condensed remains, and a cured film having a low gas barrier property represented by a composition of SiO 2.1 to SiO 2.3 is obtained.
  • Adjustment of the composition of silicon oxynitride in the layer obtained by subjecting the polysilazane-containing layer to vacuum ultraviolet irradiation can be performed by appropriately controlling the oxidation state by appropriately combining the oxidation mechanisms (1) to (4) described above. .
  • the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane layer coating is preferably in the range of 30 to 200 mW / cm 2 , and in the range of 50 to 160 mW / cm 2. More preferably. If it is 30 mW / cm 2 or more, there is no concern about the reduction of the reforming efficiency, and if it is 200 mW / cm 2 or less, the coating film is not ablated and the substrate is not damaged.
  • Irradiation energy amount of the VUV in the polysilazane coating film surface is preferably in the range of 200 ⁇ 10000mJ / cm 2, and more preferably in a range of 500 ⁇ 5000mJ / cm 2. If it is 200 mJ / cm 2 or more, the modification can be sufficiently performed, and if it is 10000 mJ / cm 2 or less, it is not over-reformed and cracking and thermal deformation of the resin substrate can be prevented. .
  • a rare gas excimer lamp is preferably used as the vacuum ultraviolet light source.
  • a rare gas atom such as Xe, Kr, Ar, Ne, etc. is called an inert gas because it does not form a molecule by chemically bonding.
  • excited atoms of rare gases that have gained energy by discharge or the like can form molecules by combining with other atoms.
  • the rare gas is xenon, e + Xe ⁇ Xe * Xe * + 2Xe ⁇ Xe 2 * + Xe Xe 2 * ⁇ Xe + Xe + h ⁇ (172 nm)
  • excimer light of 172 nm is emitted.
  • ⁇ Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
  • Dielectric barrier discharge is a gas space created by placing a gas space between both electrodes via a dielectric such as transparent quartz and applying a high frequency high voltage of several tens of kHz to the electrode. This discharge is called a micro discharge, and when the micro discharge streamer reaches the tube wall (derivative), the electric charge accumulates on the dielectric surface, and the micro discharge disappears.
  • Electrodeless electric field discharge by capacitive coupling, also called RF discharge.
  • the lamp and electrodes and their arrangement may be basically the same as those of dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. Since the electrodeless field discharge can provide a spatially and temporally uniform discharge in this way, a long-life lamp without flickering can be obtained.
  • an electrode in which fine metal wires are meshed is used. Since this electrode uses as thin a line as possible so as not to block light, it is easily damaged by ozone generated by vacuum ultraviolet light in an oxygen atmosphere. In order to prevent this, it is necessary to provide an atmosphere of an inert gas such as nitrogen around the lamp, that is, the inside of the irradiation apparatus, and provide a synthetic quartz window to extract the irradiation light. Synthetic quartz windows are not only expensive consumables, but also cause light loss.
  • the outer diameter of the double-cylindrical lamp is about 25 mm, the difference in distance to the irradiation surface cannot be ignored directly below the lamp axis and on the side of the lamp, resulting in a large difference in illumination. Therefore, even if the lamps are closely arranged, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.
  • the biggest feature of the capillary excimer lamp is its simple structure.
  • the quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside.
  • the outer diameter of the tube of the thin tube lamp is about 6-12mm. If it is too thick, a high voltage is required for starting.
  • the electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
  • the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane layer can be modified in a short time.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • oxygen is required for the reaction at the time of ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to carry out in a low state. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably in the range of 10 to 10,000 ppm, more preferably in the range of 50 to 5000 ppm, and still more preferably in the range of 1000 to 4500 ppm.
  • the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • each functional layer In the gas barrier film of the present invention, each functional layer can be provided as necessary in addition to the above-described constituent layers.
  • Overcoat layer may be formed on the second gas barrier layer according to the present invention for the purpose of further improving flexibility.
  • the organic material used for forming the overcoat layer is preferably an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin layer using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group. Can be used.
  • These organic resins or organic-inorganic composite resins preferably have a polymerizable group or a crosslinkable group, contain these organic resins or organic-inorganic composite resins, and contain a polymerization initiator, a crosslinking agent, etc. as necessary. It is preferable to apply a light irradiation treatment or a heat treatment to the layer formed from the organic resin composition coating solution to be cured.
  • Anchor layer In the gas barrier film of the present invention, a conductive layer is provided on one side (back side) of the resin substrate, and a gas barrier layer is provided on the opposite side (front side). It is characterized by the formation of an anchor layer (clear hard coat layer (CHC layer) between the resin base material and the gas barrier layer for the purpose of improving the adhesion between the base material and the gas barrier layer. ))).
  • CHC layer cur hard coat layer
  • the anchor layer suppresses the phenomenon (so-called bleed-out phenomenon) that when the resin base material is heated, unreacted oligomers move from the resin base material to the surface and contaminate the contact surface. You can also.
  • the anchor layer is provided with a gas barrier layer thereon, the anchor layer is preferably smooth, and the surface roughness Ra is preferably in the range of 0.3 to 3 nm, more preferably 0.5. Within the range of ⁇ 1.5 nm. If the surface roughness Ra is 0.3 nm or more, the surface has appropriate smoothness, and can maintain roller smoothness and smoothness when forming a gas barrier layer by the plasma CVD method. On the other hand, when the thickness is 3 nm or less, formation of minute defects in the gas barrier layer can be prevented at the time of forming the gas barrier layer, and high-grade gas barrier properties and adhesion can be obtained.
  • thermosetting resin or a photocurable resin is preferable, and examples thereof include the same resins as those used for forming the conductive layer.
  • the thickness of the anchor layer is preferably in the range of 0.3 to 10 ⁇ m, more preferably in the range of 0.5 to 5 ⁇ m from the viewpoint of adjusting curl.
  • the gas barrier film of the present invention is provided as a film for an electronic device.
  • Examples of the electronic device of the present invention include an organic electroluminescence panel, an organic electroluminescence element, an organic photoelectric conversion element, and a liquid crystal display element.
  • the gas barrier film 1 of the present invention having the configuration shown in FIG. 1 is used as a sealing film for sealing solar cells, liquid crystal display elements, organic EL elements, and the like, for example. Can do.
  • FIG. 1 An example of an organic EL panel P that is an electronic device using the gas barrier film 1 as a sealing film is shown in FIG.
  • the organic EL panel P includes a gas barrier film 1, a transparent electrode 6 such as ITO formed on the gas barrier film 1, and the gas barrier film 1 via the transparent electrode 6.
  • the organic EL element 7 which is an electronic device main body formed in the above, and a counter film 9 disposed via an adhesive layer 8 so as to cover the organic EL element 7 are provided.
  • the transparent electrode 6 may form part of the organic EL element 7.
  • a transparent electrode 6 and an organic EL element 7 are formed on the surfaces of the gas barrier layer 4 and the second gas barrier layer 5 constituting the gas barrier film 1.
  • the organic EL element 7 is sealed so as not to be exposed to water vapor, and the organic EL element 7 is hardly deteriorated, so that the organic EL panel P can be used for a long time. Thus, the life of the organic EL panel P is extended.
  • the counter film 9 may be a gas barrier film according to the present invention in addition to a metal film such as an aluminum foil.
  • a gas barrier film is used as the counter film 9
  • the surface on which the gas barrier layer 4 is formed may be attached to the organic EL element 7 with the adhesive layer 8.
  • Anode Organic EL device The anode (transparent electrode 6) in 7 is preferably a material having a work function (4 eV or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material.
  • an electrode material examples include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (abbreviation: ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (abbreviation: ITO), SnO 2 , and ZnO.
  • ITO indium tin oxide
  • SnO 2 indium tin oxide
  • ZnO ZnO
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • the anode may be formed by depositing these electrode materials as a thin film by a method such as vapor deposition or sputtering, and the thin film may be formed into a pattern having a desired shape by a photolithography method.
  • the pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually in the range of 10 to 1000 nm, preferably in the range of 10 to 200 nm.
  • Electrode As a cathode constituting the organic EL element 7, a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as an electrode material. Things are used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this from the viewpoint of durability against electron injection and oxidation for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are suitable as the cathode.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the cathode is usually in the range of 10 nm to 5 ⁇ m, preferably in the range of 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element 7 is transparent or translucent, the light emission luminance is improved, which is convenient.
  • the transparent conductive material described in the description of the anode is formed thereon, thereby forming a transparent or translucent cathode.
  • the injection layer includes an electron injection layer and a hole injection layer.
  • the electron injection layer and the hole injection layer are provided as necessary, and between the anode and the light emitting layer or the hole transport layer, and It exists between a cathode and a light emitting layer or an electron carrying layer.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • Examples thereof include a phthalocyanine buffer layer typified by phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium Metal buffer layer typified by aluminum and aluminum, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. Is mentioned.
  • the buffer layer (injection layer) is preferably a very thin film, and although it depends on the material, the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m.
  • the light-emitting layer in the organic EL element 7 is a layer that emits light by recombination of electrons and holes injected from the electrode (cathode, anode) or electron transport layer and hole transport layer.
  • the light emitting portion may be in the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
  • the light emitting layer of the organic EL element 7 preferably contains the following dopant compound (light emitting dopant) and host compound (light emitting host). Thereby, the luminous efficiency can be further increased.
  • Light-Emitting Dopant There are two types of light-emitting dopants: a fluorescent dopant that emits fluorescence and a phosphorescent dopant that emits phosphorescence.
  • fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes. Stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
  • Typical examples of the phosphorescent dopant are preferably complex compounds containing metals of Group 8, Group 9, and Group 10 in the periodic table of elements, more preferably iridium compounds and osmium compounds, and most preferable among them. Is an iridium compound.
  • the light emitting dopant may be used by mixing a plurality of kinds of compounds.
  • Light-emitting host means a compound having the largest mixing ratio (mass) in a light-emitting layer composed of two or more compounds.
  • the other compounds are referred to as “dopant compounds (also simply referred to as dopants)”.
  • dopant compounds also simply referred to as dopants”.
  • the structure of the luminescent host is not particularly limited, but typically has a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, or an oligoarylene compound. Or a carboline derivative or a diazacarbazole derivative. Of these, carboline derivatives, diazacarbazole derivatives and the like are preferably used.
  • the diazacarbazole derivative represents one in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom.
  • the light emitting layer is formed by depositing the above compound by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir Brodgett method), an ink jet method or the like.
  • the film thickness of the light emitting layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the compound or the host compound may be a single layer structure composed of one or two or more layers, or may be a laminated structure composed of a plurality of layers having the same composition or different compositions.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. .
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can do.
  • the thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer is made of an electron transport material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • any one of conventionally known compounds can be selected and used. Nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) ) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc., and the central metal of these metal complexes Metal complexes replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • an inorganic semiconductor such as n-type-Si or n-type-SiC can also be used as the electron transport material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. .
  • the film thickness of the electron transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • organic EL element 7 a method for producing an organic EL element having a configuration of anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
  • a desired electrode material for example, a thin film made of an anode material is deposited to a thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm.
  • the anode is formed by a method such as plasma CVD.
  • organic compound thin films such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, which are constituent layers of the organic EL element, are formed thereon.
  • a method for forming this organic compound thin film there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method), etc., but a homogeneous film is easily obtained and pinholes are not easily generated. From the point of view, the vacuum deposition method, the spin coating method, the ink jet method, and the printing method are particularly preferable. Further, a different film formation method may be applied to each constituent layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C., and the degree of vacuum is 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10. -2 Pa, the deposition rate is in the range of 0.01 to 50 nm / second, the substrate temperature is in the range of -50 to 300 ° C., and the film thickness is in the range of 0.1 nm to 5 ⁇ m, preferably It is preferable to select appropriately within the range of 5 to 200 nm.
  • the cathode is formed on the cathode by a method such as vapor deposition or sputtering so that a thin film made of a cathode forming material has a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm.
  • a method such as vapor deposition or sputtering so that a thin film made of a cathode forming material has a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm.
  • this organic EL element For the production of this organic EL element, a process of producing from the anode and the hole injection layer to the cathode consistently by a single evacuation is preferable, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere. In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order.
  • a DC voltage is applied to a multicolor display device (organic EL panel) including the organic EL element obtained in this way, a voltage of about 2 to 40 V is applied with the positive polarity of the anode and the negative polarity of the cathode. Then luminescence can be observed.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • Example 1 ⁇ Preparation of resin base material>
  • a thermoplastic resin substrate (support) a polyester film having a thickness of 125 ⁇ m with easy adhesion processing on both surfaces (manufactured by Teijin DuPont Films, Ltd., polyethylene terephthalate, KDL86WA, Table 1 is abbreviated as “PET”). ) was used as a resin substrate as it was.
  • the surface roughness (based on JIS B 0601) measured for the resin substrate was 4 nm for Ra and 320 nm for Rz.
  • a UV-curable resin Unidic V-4025 manufactured by DIC Corporation is subjected to UV curing using NanoTekSlurry SnO 2 methyl isobutyl ketone (MIBK) dispersion manufactured by CI Kasei Co., Ltd. at a solid content ratio (volume%).
  • the resin base material 10 with the conductive layer is made of polyethylene terephthalate, and a polyester naphthalate film having a thickness of 125 ⁇ m and subjected to easy-adhesion processing on both sides (Q65FWA, manufactured by Teijin DuPont Films, Ltd. Is abbreviated as “PEN”.)
  • PEN polyester naphthalate film having a thickness of 125 ⁇ m and subjected to easy-adhesion processing on both sides
  • the resin base material 10 with a conductive layer is changed from polyethylene terephthalate to a polycarbonate film having a thickness of 50 ⁇ m (manufactured by Teijin Chemicals Ltd., WR-S148, abbreviated as “PC” in Table 1). Except having changed, the resin base material 13 with a conductive layer was produced similarly.
  • the resin base material 2 with conductive layer is prepared on the resin base surface (front surface) opposite to the surface on which the conductive layer is formed.
  • the used conductive layer forming coating solution 2 was applied and dried by the same method to form an anchor layer, and a resin base material 15 with a conductive layer was produced.
  • a gas barrier layer is formed on the surface side (surface opposite to the surface on which the conductive layer is formed) of the resin substrate with conductive layer 1 using the inter-roller discharge plasma CVD apparatus to which the magnetic field shown in FIG. 2 is applied. Thus, a gas barrier film 1 was produced.
  • This film forming method is abbreviated as “roller CVD method”.
  • the resin base material with a conductive layer 1 prepared above is mounted on an apparatus so that the formed conductive layer is on the side in contact with the film forming roller, and the resin base material is subjected to the following film forming conditions (plasma CVD conditions).
  • a gas barrier layer was formed thereon under the conditions of a thickness of 500 nm to produce a gas barrier film 1.
  • gas barrier film 4 Using a vacuum evaporation system, the resistance heating boat equipped with SiO 2 was energized and heated, and the deposition side was 1 to 2 nm / second, and the surface side of the resin substrate 2 with a conductive layer (opposite to the surface on which the conductive layer was formed) On the side surface), a gas barrier layer made of SiO 2 and having a thickness of 500 nm was formed to produce a gas barrier film 4.
  • a gas barrier layer having a thickness of 300 nm is formed on the surface side (surface opposite to the surface on which the conductive layer is formed) of the resin base material 2 with the conductive layer formed according to the PHPS-excimer method. Film 5 was produced. This film formation method is referred to as a PHPS-excimer method (in Table 1, simply described as “excimer method”).
  • the prepared polysilazane layer-forming coating solution is applied with a wireless bar so that the (average) film thickness after drying is 300 nm, and treated for 1 minute in an atmosphere at a temperature of 85 ° C. and a relative humidity of 55%. It was dried, and further kept in an atmosphere of a temperature of 25 ° C. and a relative humidity of 10% (dew point temperature ⁇ 8 ° C.) for 10 minutes to perform dehumidification, thereby forming a polysilazane layer.
  • gas barrier film 19 In the production of the gas barrier film 6, a gas barrier having a thickness of 300 nm was formed by the roller CVD method in the same manner except that the supply amount of oxygen gas in the roller CVD method was changed to 750 sccm and the film conveyance speed was changed to 2.5 m / min. The layer was formed and the gas barrier film 19 was produced.
  • gas barrier film 20 In the production of the gas barrier film 6, a gas barrier having a thickness of 1000 nm was formed by the roller CVD method in the same manner except that the supply amount of the source gas in the roller CVD method was changed to 75 sccm and the film conveyance speed was changed to 0.4 m / min. The layer was formed and the gas barrier film 20 was produced.
  • gas barrier film 21 In the production of the gas barrier film 15, a gas barrier having a thickness of 300 nm was formed by the roller CVD method in the same manner except that the oxygen gas supply amount in the roller CVD method was changed to 750 sccm and the film conveyance speed was changed to 2.5 m / min. The layer was formed and the gas barrier film 21 was produced.
  • gas barrier film 22 In the production of the gas barrier film 15, a gas barrier having a thickness of 1000 nm is formed by the roller CVD method in the same manner except that the supply amount of the source gas in the roller CVD method is changed to 75 sccm and the film conveyance speed is changed to 0.4 m / min. The layer was formed and the gas barrier film 22 was produced.
  • gas barrier film 24 Using the gas barrier film 17 prepared above, a second 300 nm thick second film was formed on the formed gas barrier layer by the PHPS-excimer method in the same manner as used in the production of the gas barrier film 5. A gas barrier film was formed by forming a gas barrier layer.
  • gas barrier film 25 Using the gas barrier film 17 produced above, a gas barrier layer (second gas barrier layer) having the same configuration is further laminated with a thickness of 500 nm on the formed gas barrier layer, so that the total thickness of the gas barrier layer is A gas barrier film 25 having a thickness of 1000 nm was produced.
  • gas barrier film 26 Using the gas barrier film 24 obtained by laminating the gas barrier layer and the second gas barrier layer prepared above, an overcoat layer is further formed on the second gas barrier layer according to the following method, and the gas barrier film is formed. 26 was produced.
  • gas barrier film 27 Using the gas barrier film 24 obtained by laminating the gas barrier layer and the second gas barrier layer prepared above, an overcoat layer is further formed on the second gas barrier layer according to the following method, and the gas barrier film is formed. 27 was produced.
  • a gas barrier film 28 was produced in the same manner as in the production of the gas barrier film 26 except that the resin substrate 12 with a conductive layer was changed to a resin substrate 14 with a conductive layer (with an anchor layer).
  • Table 1 shows the structure of each gas barrier film produced as described above.
  • PET Polyethylene terephthalate PEN: Polyethylene naphthalate
  • PC Polycarbonate (Back side conductive layer)
  • V-4025 DIC Corporation
  • UV curable resin Unidic V-4025 Z7501 UV curable resin Opstar Z7501 manufactured by JSR Corporation AS-H: manufactured by Shin-Etsu Polymer Co., Ltd.
  • ITO Indium tin oxide (overcoat layer)
  • MP6103 Washin Coat MP6103 manufactured by Washin Chemical Industry Co., Ltd. Glasca: JSR Co., Ltd.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval.
  • Table 1 shows the maximum at% of silicon atoms in the entire gas barrier layer, the maximum at% of oxygen atoms in the entire gas barrier layer, the maximum at% of carbon atoms in the region from the surface of the gas barrier layer to 89%, and the carbon element.
  • the presence or absence of a region where the ratio continuously changes, the maximum at% of carbon atoms in the range of 90 to 95% in the vertical direction with respect to the surface of the gas barrier layer (the range of 5 to 10% in the vertical direction adjacent to the resin base material) The presence or absence of a region where the carbon element ratio continuously increases is indicated.
  • the distance from the surface of the gas barrier layer is taken as an example of the silicon distribution curve, oxygen distribution curve, and carbon distribution curve on the horizontal axis.
  • the conductive film 15 is shown in FIG.
  • Vapor deposition equipment JEE-400 vacuum vapor deposition equipment manufactured by JEOL Ltd. Constant temperature and humidity oven: Yamato Humidic Chamber IG47M ⁇ raw materials> Metal that reacts with water and corrodes: Calcium (granular) Water vapor impermeable metal: Aluminum ( ⁇ 3-5mm, granular) (Preparation of water vapor barrier property evaluation sample) Using a vacuum vapor deposition apparatus (vacuum vapor deposition apparatus JEE-400 manufactured by JEOL Ltd.), calcium metal was deposited in a size of 12 mm ⁇ 12 mm through the mask on the gas barrier layer forming surface of each gas barrier film produced. At this time, the deposited film thickness was set to 80 nm.
  • the mask was removed in a vacuum state, and aluminum was vapor-deposited on the entire surface of one side of the sheet to perform temporary sealing.
  • the vacuum state is released, quickly transferred to a dry nitrogen gas atmosphere, and a quartz glass with a thickness of 0.2 mm is bonded to the aluminum deposition surface via an ultraviolet curing resin for sealing (manufactured by Nagase ChemteX).
  • a water vapor barrier property evaluation sample was prepared by irradiating ultraviolet rays to cure and adhere the resin to perform main sealing.
  • the obtained sample was stored under high temperature and high humidity of 60 ° C. and 90% RH, and the state of metallic calcium corroding with respect to the storage time was observed. Observation is performed every hour for up to 6 hours, every 3 hours for up to 24 hours, every 6 hours for up to 48 hours thereafter, and every 12 hours thereafter, a 12 mm x 12 mm metal
  • the area where metallic calcium corroded relative to the calcium deposition area was calculated in%.
  • the time when the area where the metal calcium corrodes becomes 1% is obtained by interpolating from the observation result by a straight line, and the metal calcium vapor deposition area, the amount of water vapor corroding the metal calcium for the area of 1%, and the time required for it. From the relationship, the water vapor transmission rate of each gas barrier film was calculated.
  • the number of cross-cuts peeled in the cross-cut test is 4 or less ⁇ ⁇ : The number of cross-cuts peeled off in the cross-cut test is in the range of 5 to 10 ⁇ : In the cross-cut test The number of peeled grids is in the range of 11-15. ⁇ : The number of grids peeled in the crosscut test is in the range of 16-20. X: The board peeled in the crosscut test. The number of meshes is in the range of 21 to 30. XX: The number of grids peeled off by the grid pattern test is 31 or more [Evaluation of durability] For each gas barrier film, as a first step, it was stored for 3000 hours in an environment of a temperature of 85 ° C. and a relative humidity of 85%, and a forced deterioration test was performed in a high temperature and high humidity environment.
  • a gas barrier film was further wound around a metal cylinder so that the gas barrier layer forming surface was on the outside, and then subjected to a flexibility test for 1 minute.
  • the water vapor transmission coefficient (WVTR) was measured and the adhesion was evaluated for the gas barrier film subjected to the above treatments by the same method as described above.
  • the radius of curvature R in the bending test corresponds to 1 ⁇ 2 of the diameter of the rod, but when the number of turns of the gas barrier film increases, 1 ⁇ 2 of the diameter when the film is wound is taken as the radius of curvature R. It was. R was subjected to a flexibility test at 8 mm.
  • Table 2 shows the results obtained as described above.
  • the gas barrier film having the structure defined in the present invention is superior in gas barrier property (water vapor barrier property) and adhesion to the comparative example, and is in a high temperature and high humidity environment. Even after bending storage, the gas barrier layer formed is not cracked or peeled off, and maintains excellent gas barrier properties and adhesion. .
  • Example 2 Production of organic EL element >> Using the gas barrier film produced in Example 1, as an example of an electronic device, organic EL elements 1 to 28 were produced according to the following method.
  • a low pressure mercury lamp with a wavelength of 184.9 nm is used as a cleaning surface modification treatment on both surfaces of the gas barrier film 1, and the irradiation intensity is 15 mW / cm 2 , distance. Conducted at 10 mm.
  • the charge removal treatment was performed using a static eliminator with weak X-rays.
  • PEDOT / PSS polystyrene sulfonate
  • Baytron P AI 4083 manufactured by Bayer
  • ⁇ Drying and heat treatment conditions After coating the hole transport layer forming coating solution, after removing the solvent at a height of 100 mm, a discharge wind speed of 1 m / s, a width of a wide wind speed of 5%, and a temperature of 100 ° C. with respect to the hole transport layer forming surface, Using a heat treatment apparatus, a back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. to form a hole transport layer.
  • the following coating solution for forming a white light emitting layer is applied by an extrusion coater under the following conditions, followed by drying and heat treatment under the following conditions to form a light emitting layer. did.
  • the white light emitting layer forming coating solution was applied under the condition that the thickness after drying was 40 nm.
  • a host material 1.0 g of the compound HA shown below, 100 mg of the following compound DA as the first dopant material, 0.2 mg of the following compound DB as the second dopant material, As a dopant material 3, 0.2 mg of the following compound DC was dissolved in 100 g of toluene to prepare a white light emitting layer forming coating solution.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more at a coating temperature of 25 ° C. and a coating speed of 1 m / min.
  • the following coating solution for forming an electron transport layer was applied by an extrusion coater under the following conditions, and then dried and heat-treated under the following conditions to form an electron transport layer.
  • the coating liquid for forming an electron transport layer was applied under the condition that the thickness after drying was 30 nm.
  • a coating solution for forming an electron transport layer was prepared by dissolving the following compound EA in 2,2,3,3-tetrafluoro-1-propanol to prepare a 0.5 mass% solution.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.
  • An electron injection layer was formed on the formed electron transport layer according to the following method.
  • the gas barrier film 1 formed up to the electron transport layer was put into a vacuum chamber and the pressure was reduced to 5 ⁇ 10 ⁇ 4 Pa.
  • the cesium fluoride previously loaded in the tantalum vapor deposition boat in the vacuum chamber was heated to form an electron injection layer having a thickness of 3 nm.
  • Formation of the second electrode 27 On the electron injection layer formed as described above, aluminum is used as the second electrode forming material under a vacuum of 5 ⁇ 10 ⁇ 4 Pa on the portion excluding the portion that becomes the extraction electrode of the first electrode, and the extraction electrode A mask pattern was formed by a vapor deposition method so that the light emission area was 50 mm square, and a second electrode having a thickness of 100 nm was laminated.
  • the laminate formed up to the second electrode was moved again to a nitrogen atmosphere and cut into a prescribed size using an ultraviolet laser, whereby the organic EL element 1 was produced.
  • Crimping conditions Crimping was performed at a temperature of 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), a pressure of 2 MPa, and 10 seconds.
  • sealing As a sealing member, a 30 ⁇ m thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) is laminated with a polyethylene terephthalate (PET) film (12 ⁇ m thickness) using a dry lamination adhesive (two-component reaction type urethane adhesive). (Adhesive layer thickness 1.5 ⁇ m) was prepared.
  • PET polyethylene terephthalate
  • thermosetting adhesive was uniformly applied to the aluminum surface of the prepared sealing member with a thickness of 20 ⁇ m along the adhesive surface (glossy surface) of the aluminum foil using a dispenser to form an adhesive layer.
  • thermosetting adhesive an epoxy adhesive mixed with the following (A) to (C) was used as the thermosetting adhesive.
  • a sealing member is closely attached and arranged so as to cover the joint between the take-out electrode and the electrode lead, and pressure bonding conditions using a pressure roller, pressure roller temperature 120 ° C., pressure 0. Close sealing was performed at 5 MPa and an apparatus speed of 0.3 m / min.
  • organic EL elements 2 to 28 were produced in the same manner except that the gas barrier films 2 to 28 produced in Example 1 were used in place of the gas barrier film 1.
  • Element deterioration tolerance rate (area of black spots generated in elements not subjected to accelerated deterioration processing / area of black spots generated in elements subjected to accelerated deterioration processing) ⁇ 100 (%)
  • the element deterioration resistance ratio is 45% or more and less than 60%.
  • X The element deterioration resistance ratio is less than 45%. Table 3 shows the results obtained as described above.
  • the organic EL device provided with the gas barrier film of the present invention has an element deterioration resistance rate of 60% or more and has good durability.
  • the element provided with the gas barrier film of the comparative example had an element deterioration resistance rate of less than 60%.
  • the gas barrier films of the examples of the present invention have very excellent gas barrier properties that can be used as sealing films for organic EL elements that are electronic devices.
  • the gas barrier film production method of the present invention has gas barrier properties necessary for electronic device applications even in high-temperature and high-humidity environments such as outdoor use, and excellent flexibility (flexibility) and adhesion.
  • a gas barrier film can be obtained, and can be suitably used as a sealing member for electronic devices such as organic electroluminescence panels, organic electroluminescence elements, organic photoelectric conversion elements, and liquid crystal display elements.

Abstract

 本発明の課題は、高温高湿の使用環境下でも優れたガスバリアー性を維持し、かつフレキシブル性(屈曲性)及び密着性に優れたガスバリアー性フィルムの製造方法及びガスバリアー性フィルムと、それを用いた電子デバイス素子を提供することである。 本発明のガスバリアー性フィルムの製造方法は、樹脂基材の一方の面上に、炭素原子、ケイ素原子及び酸素原子を含有するガスバリアー層を備え、該樹脂基材のガスバリアー層を有する面とは反対側の面上に導電層を有するガスバリアー性フィルムの製造方法であって、前記ガスバリアー層は、有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成し、前記導電層は、23℃、50%RHの環境下における表面比抵抗値が1×10~1×1010Ω/□の範囲内にあることを特徴とする。

Description

ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス
 本発明は、ガスバリアー性フィルムとその製造方法及びそれを用いた電子デバイスに関し、より詳しくは、主に有機エレクトロルミネッセンス(以下、「有機EL」と略記する。)素子等の電子デバイスに用いられるガスバリアー性フィルムとその製造方法、そのガスバリアー性フィルムを用いた電子デバイスに関するものである。
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を含む複数の層を積層して形成したガスバリアー性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、例えば、食品や工業用品および医薬品等の変質を防止するための包装用途に広く用いられている。
 包装用途以外にも、フレキシブル性を有する太陽電池素子、有機エレクトロルミネッセンス(EL)素子、液晶表示素子等のフレキシブル電子デバイスへの展開が要望され、多くの検討がなされている。しかし、これらフレキシブル電子デバイスにおいては、ガラス基材レベルの非常に高いガスバリアー性が要求されるため、現状では十分な性能を有するガスバリアー性フィルムは未だ得られていないのが現状である。
 この様なガスバリアー性フィルムを形成する方法としては、テトラエトキシシラン(以下、TEOSと略記する。)に代表される有機ケイ素化合物を用いて、減圧下、酸素プラズマで酸化しながら基板上に成膜する化学堆積法(プラズマCVD法:Chemical Vapor Deposition)や、半導体レーザーを用いて金属Siを蒸発させ酸素の存在下で基板上に堆積する物理堆積法(真空蒸着法やスパッタ法)といった気相法が知られている。
 特許文献1には、当該文献の図1に記載のプラズマCVD装置を用い、ロール・ツー・ロール方式で、1×10-4g/m・dayレベルのガスバリアー性積層フィルムを作製する製造方法が開示されている。特許文献1に記載された方法で製造されたガスバリアー性フィルムは、炭素原子を基材周辺に多く配置することができるプラズマCVD法を適用することにより、基材との密着性及び屈曲性を向上させているが、屋外使用のような高温高湿の過酷な使用環境下では、有機EL素子をはじめとする電子デバイス用途におけるガスバリアー性、密着性、屈曲性としては不十分であることが判明した。
 一方、特許文献2には、生産性やコスト面で優位な特性を備えた塗布方式を適用したガスバリアー層を有するガスバリアー性フィルムの製造方法が開示されている。特許文献2に記載されている方法は、無機前駆体化合物としてポリシラザンを用い、塗布及び乾燥して形成した塗膜に対し、真空紫外光(以下、「VUV光」ともいう。)を照射することにより、ガスバリアー層を形成する方法である。また、特許文献3には、帯電防止機能の付与を目的として、ガスバリアー層を設けた面とは反対面の面に、導電層を設けたガスバリアー性フィルムが開示されている。しかしながら、特許文献2及び3に記載されている方法では、プラズマCVD法との組み合わせやそれにより得られる効果等については、何ら言及がなされていない。
国際公開第2012/046767号 特開2011-143577号公報 特開2005-305801号公報
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、屋外のような高温及び高湿な使用環境下でも、電子デバイス用途に必要なガスバリアー性を有し、かつフレキシブル性(屈曲性)及び密着性に優れたガスバリアー性フィルム及びその製造方法と、それを用いた電子デバイスを提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について鋭意検討を進めた結果、磁場を印加したローラー間に、放電プラズマ空間を形成する放電プラズマ化学気相成長法を適用し、樹脂基材上に、成膜ガスとして、有機ケイ素化合物を含む原料ガスと酸素ガスとを用い、構成元素として炭素原子、ケイ素原子及び酸素原子を含むガスバリアー層を形成し、前記樹脂基材のガスバリアー層を形成した面とは反対の面に、23℃、50%RHで特定の表面比抵抗値を有する導電層を形成することを特徴とするガスバリアー性フィルムの製造方法によって、屋外のような高温高湿環境下で使用しても、電子デバイス用途として必要なガスバリアー性を維持し、かつフレキシブル性(屈曲性)及び密着性に優れたガスバリアー性フィルムの製造方法を実現することができることを見出し本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.樹脂基材の一方の面上に、炭素原子、ケイ素原子及び酸素原子を含有するガスバリアー層を備え、該樹脂基材のガスバリアー層を有する面とは反対側の面上に導電層を有するガスバリアー性フィルムの製造方法であって、
 有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により、前記樹脂基材の一方の面上に前記ガスバリアー層を形成し、前記樹脂基材のガスバリアー層を有する面とは反対側の面上に、23℃、50%RHの環境下における表面比抵抗値が1×10~1×1010Ω/□の範囲内にある導電層を形成することを特徴とするガスバリアー性フィルムの製造方法。
 2.前記ガスバリアー層が、下記(1)~(4)の全てを満たす条件で形成することを特徴とする第1項に記載のガスバリアー性フィルムの製造方法。
 (1)ガスバリアー層の炭素原子比率が、膜厚方向において、前記ガスバリアー層の表面から層厚の89%までの距離範囲内では、前記表面からの距離に対応して連続的に変化する。
 (2)ガスバリアー層の炭素原子比率の最大値が、膜厚方向において、前記ガスバリアー層の表面から層厚の89%までの距離範囲内では、20at%未満である。
 (3)ガスバリアー層の炭素原子比率が、膜厚方向において、前記ガスバリアー層の表面から層厚の90~95%までの距離範囲内(樹脂基材に隣接する面から5~10%の範囲内)では、連続的に増加する。
 (4)ガスバリアー層の炭素原子比率の最大値が、膜厚方向において、前記ガスバリアー層の表面から層厚の90~95%までの距離範囲内(樹脂基材に隣接する面から5~10%の範囲内)では、20at%以上である。
 3.前記導電層が、樹脂と金属酸化物を含有することを特徴とする第1項又は第2項に記載のガスバリアー性フィルムの製造方法。
 4.前記ガスバリアー層の上に、ポリシラザン含有液を塗布及び乾燥し、形成した塗膜に波長200nm以下の真空紫外光を照射して改質処理を施して第2のガスバリアー層を形成することを特徴とする第1項から第3項までのいずれか一項に記載のガスバリアー性フィルムの製造方法。
 5.樹脂基材の一方の面上に、炭素原子、ケイ素原子及び酸素原子を含有するガスバリアー層を備え、該樹脂基材のガスバリアー層を有する面とは反対側の面上に導電層を有するガスバリアー性フィルムであって、
 前記樹脂基材の一方の面上に、有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成された前記ガスバリアー層を有し、前記樹脂基材のガスバリアー層を有する面とは反対側の面上に、23℃、50%RHの環境下における表面比抵抗値が1×10~1×1010Ω/□の範囲内にある導電層を有することを特徴とするガスバリアー性フィルム。
 6.下記(1)~(4)の全ての条件を満たすことを特徴とする第5項に記載のガスバリアー性フィルム。
 (1)前記ガスバリアー層の炭素原子比率が、膜厚方向において、前記ガスバリアー層の表面から層厚の89%までの距離範囲内では、前記表面からの距離に対応して連続的に変化する。
 (2)ガスバリアー層の炭素原子比率の最大値が、膜厚方向において、前記ガスバリアー層の表面から層厚の89%までの距離範囲内では、20at%未満である。
 (3)ガスバリアー層の炭素原子比率が、膜厚方向において、前記ガスバリアー層の表面から層厚の90~95%までの距離範囲内(樹脂基材に隣接する面から5~10%の範囲内)では、連続的に増加する。
 (4)ガスバリアー層の炭素原子比率の最大値が、膜厚方向において、前記ガスバリアー層の表面から層厚の90~95%までの距離範囲内(樹脂基材に隣接する面から5~10%の範囲内)では、20at%以上である。
 7.第5項または第6項に記載のガスバリアー性フィルムを具備したことを特徴とする電子デバイス。
 本発明の上記手段により、屋外使用のような高温高湿の使用環境下でも電子デバイス用途に必要なガスバリアー性を有し、かつフレキシブル性(屈曲性)及び密着性に優れたガスバリアー性フィルムの製造方法及びガスバリアー性フィルムを提供することができる。
 すなわち、本発明者は、上記課題に鑑み鋭意検討を行った結果、特定の表面比抵抗を有する樹脂基材、すなわち、表面比抵抗値が1×10~1×1010Ω/□の範囲内である導電層を有する樹脂基板を用いて、磁場を印加したローラー間放電プラズマ化学気相成長法でガスバリアー層を形成するガスバリアー性フィルムの製造方法を適用することにより、屋外使用のような高温高湿の使用環境下でも電子デバイス用途に必要な非常に優れたガスバリアー性能とフレキシブル性(屈曲性)及び密着性を有するガスバリアー性フィルムを製造することができることを見出し、本発明に至った。
 本発明の構成により、本発明の目的とする効果が得られる技術的理由に関しては、その機構の詳細は全て解明されてはいないが、以下のように推測している。
 樹脂基材のガスバリアー層に設置する面と反対の面に、予め金属酸化物と樹脂で形成され、特定の表面比抵抗値に調整した導電層を形成して、磁場を印加したローラー間放電のプラズマ化学気相成長法によるガスバリアー層を形成することで、樹脂基材に近い部分に多くの炭素原子成分が配置され、その結果、樹脂基材とガスバリアー層との密着性が向上し、より厳しい使用条件である高温高湿下でも電デバイスに必要な非常に高度のガスバリアー性と屈曲性を十分に発揮させることができるものと考えられる。
 本発明で規定する構成により、密着性、屈曲性及びガスバリアー性を向上させることができたメカニズムに関しては不明であるが、密着性については、樹脂基材に特定範囲の導電性を有することにより、ローラー間に発生するプラズマ放電の磁場に影響を与え、樹脂基材と極性が比較的に近い炭素原子成分が、当該ガスバリアー層の樹脂基材側に多く配置されることにより向上したものと推測している。また、屈曲性及びガスバリアー性については、ローラー間に発生するプラズマ放電により、形成するガスバリアー層内の炭素原子成分の濃度勾配が連続的に変化することによる効果と推定するが、上記樹脂基材周辺の炭素原子成分の配置の組み合わせ効果で、厳しい条件下でも効果を発揮していると推定している。
 ちなみに、平坦電極(水平搬送)タイプを用いたプラズマ放電でのCVDでは、樹脂基材周辺の炭素原子成分の濃度勾配の連続的な変化が起こらないため、密着性と屈曲性、ガスバリアー性は両立せず、課題とならない。本発明による効果は、磁場を印加したローラー間放電プラズマ化学気相成長法で形成されるガスバリアー層内において、炭素原子成分の濃度勾配が連続的に変化する場合に生じる、密着性と屈曲性、ガスバリアー性を両立するために課題となるものである。
 更に、上記で形成したガスバリアー層上に、塗布方式によりポリシラザン含有液を用いて塗膜を形成した後、波長200nm以下の真空紫外光(VUV)を照射して改質処理することにより第2のガスバリアー層を設けることにより、CVDで設けたガスバリアー層に残存する微小な欠陥を、上部からポリシラザンのガスバリアー成分で埋めることができるため、高温高湿下でも電子デバイスに必要な非常に良好なガスバリアー性と屈曲性を十分に発揮させることができるものと推測される。
本発明のガスバリアー性フィルムの基本構成の一例を示す概略断面図 本発明に係る磁場を印加したローラー間放電プラズマCVD装置を用いたガスバリアー性フィルムの製造方法の一例を示す概略図 ガスバリアー層のケイ素分布曲線、酸素分布曲線及び炭素分布曲線の一例(本発明)を示すグラフ ガスバリアー層のケイ素分布曲線、酸素分布曲線及び炭素分布曲線の他の一例(比較例)を示すグラフ ガスバリアー性フィルムを具備した電子デバイスの模式図
 本発明のガスバリアー性フィルムの製造方法は、樹脂基材の一方の面上に、炭素原子、ケイ素原子及び酸素原子を含有するガスバリアー層を備え、該樹脂基材のガスバリアー層を有する面とは反対側の面上に導電層を有するガスバリアー性フィルムの製造方法であって、前記樹脂基材の一方の面上に、有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により、前記ガスバリアー層を形成し、前記樹脂基材のガスバリアー層を有する面とは反対側の面上に、23℃、50%RHの環境下における表面比抵抗値が1×10~1×1010Ω/□の範囲内である導電層を形成することを特徴とする。この特徴は、請求項1から請求項7までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、(1)前記ガスバリアー層の炭素原子比率が、膜厚方向において、前記ガスバリアー層の表面から層厚の89%までの距離範囲内では、前記表面からの距離に対応して連続的に変化すること、(2)ガスバリアー層の炭素原子比率の最大値が、膜厚方向において、前記ガスバリアー層の表面から層厚の89%までの距離範囲内では、20at%未満であること、(3)ガスバリアー層の炭素原子比率が、膜厚方向において、前記ガスバリアー層の表面から層厚の90~95%までの距離範囲内(樹脂基材に隣接する面から5~10%の範囲内)では、連続的に増加すること、及び(4)ガスバリアー層の炭素原子比率の最大値が、膜厚方向において、前記ガスバリアー層の表面から層厚の90~95%までの距離範囲内(樹脂基材に隣接する面から5~10%の範囲内)では、20at%以上であることが、更にフレキシブル性(屈曲性)及び密着性に優れたガスバリアー性フィルムを得ることができる観点から好ましい。また、前記導電層が、樹脂と金属酸化物を含有する構成であることが、所望の条件で炭素含有量を高度に制御できることから、好ましい。
 また、前記ガスバリアー層の上に、ポリシラザン含有液を塗布及び乾燥し、形成された塗膜に波長200nm以下の真空紫外光を照射して改質処理して第2のガスバリアー層を形成することが、CVDで形成したスバリアー層に残存する微小な欠陥を、上部からポリシラザンのガスバリアー成分で埋めることにより、より高度のガスバリアー性を達成することができる観点から好ましい。また、本発明のガスバリアー性フィルムを電子デバイスに具備させることにより、屋外において高温高湿の使用環境下でも非常に優れたガスバリアー性能とフレキシブル性(屈曲性)及び密着性を有する電子デバイスを実現することができ、好ましい。
 なお、本発明でいう「ガスバリアー性」とは、JIS K 7129-1992に準拠した方法により測定された水蒸気透過度(温度:60±0.5℃、相対湿度(RH):90±2%)が3×10-3g/(m・24h)以下であり、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/(m・24h・atm)以下であることを意味する。
 また、本発明において、「真空紫外線」、「真空紫外光」、「VUV」、「VUV光」とは、具体的には波長が100~200nmの光を意味する。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 《ガスバリアー性フィルム》
 図1は、本発明のガスバリアー性フィルムの基本構成の一例を示す概略断面図である。
 図1に示すように、本発明のガスバリアー性フィルム1は、支持体である樹脂基材2と、樹脂基材2の一方の面側に導電層3を有し、樹脂基材2の導電層3を有する面とは反対側の面に、ローラー間放電プラズマ化学気相成長法により形成されるガスバリアー層4を有し、更に、ガスバリアー層上には、必要に応じ、ポリシラザン塗膜を真空紫外線照射(VUV)処理してなる第2のガスバリアー層5が配置される。
 〔1〕樹脂基材
 本発明のガスバリアー性フィルムを構成する樹脂基材としては、前述のガスバリアー性を有するガスバリアー層を保持することができる有機材料で形成されたものであれば、特に限定されるものではない。
 本発明に適用可能な樹脂基材を構成する樹脂材料としては、例えば、メタクリル酸エステル、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)、ポリカーボネート(略称:PC)、ポリアリレート、ポリスチレン(略称:PS)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の各樹脂フィルム、更には上記樹脂を2層以上積層して成る積層フィルム等を挙げることができる。コストや入手の容易性の点では、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)、ポリカーボネート(略称:PC)などが好ましく用いられる。
 樹脂基材の厚さは、5~500μmの範囲内が好ましく、更に好ましくは25~250μmの範囲内である。
 また、本発明に係る樹脂基材は、透明であることが好ましい。樹脂基材が透明であり、樹脂基材上に形成する層も透明であることにより、透明なガスバリアー性フィルムとすることが可能となり、電子デバイス(例えば、有機EL等)等の透明基板として適用することも可能となるからである。
 また、上記に記載した樹脂材料を用いた樹脂基材は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。また、延伸により位相差等を調整することもできる。
 本発明に係る樹脂基材は、従来公知の一般的なフィルム成膜方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の樹脂基材を製造することができる。また、材料となる樹脂を有機溶媒に溶解し、無端の金属あるいは樹脂支持体上に流延(キャスト)して乾燥、剥離することにより、実質的に無定形で配向していない未延伸のフィルム状の樹脂基材を製造することもができる。
 未延伸の樹脂基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、樹脂基材の搬送(縦軸、MD)方向、又は樹脂基材の搬送方向と直角の幅手(横軸、TD)方向に延伸することにより、延伸樹脂基材を製造することができる。この場合の延伸倍率は、樹脂基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向(MD方向)及び横軸方向(TD方向)にそれぞれ2~10倍の範囲内で延伸することが好ましい。
 また、本発明に係る樹脂基材は、寸法安定性の点で弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は、前述の成膜方法における延伸成膜工程中の熱固定した後、横延伸のテンター内、またはテンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は、処理温度が80~200℃の範囲内で行われることが好ましく、より好ましくは、処理温度が100~180℃の範囲内である。オフライン熱処理の方法としては、特に限定されないが、例えば、複数のローラー群によるローラー搬送方法、空気をフィルムに吹き付けて浮揚させるエアー搬送などにより搬送させる方法(複数のスリットから加熱空気をフィルム面の片面あるいは両面に吹き付ける方法)、赤外線ヒーターなどによる輻射熱を利用する方法、フィルムを自重で垂れ下がらせ、下方で巻き等搬送方法等を挙げることが出来る。熱処理の搬送張力は、出来るだけ低くして熱収縮を促進することで、良好な寸法安定性の樹脂基材となる。処理温度としてはTg+50~Tg+150℃の温度範囲が好ましい。ここでいうTgとは、樹脂基材のガラス転移温度を表す。
 本発明に係る樹脂基材は、フィルム成膜の過程で、片面または両面にインラインで下引層塗布液を塗布して、下引層を形成することができる。本発明において、このような成膜工程中での下引塗布をインライン下引という。本発明に有用な下引層塗布液の調製に使用する樹脂としては、ポリエステル樹脂、アクリル変性ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリエチレンイミン樹脂、ポリビニルアルコール樹脂、変性ポリビニルアルコール樹脂及びゼラチン等を挙げることができ、いずれも好ましく用いることができる。これらの下引層塗布液には、従来公知の添加剤を加えることもできる。そして、上記下引層塗布液は、ローラーコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知のウェットコーティング方法を用いて形成することができる。上記の下引層塗布液の塗布量としては、乾燥後の固形分量として0.01~2g/m(乾燥状態)の範囲内となるように調整することが好ましい。
 〔2〕導電層
 本発明のガスバリアー性フィルムにおいて、樹脂基材の本発明に係るガスバリアー層を形成する面とは反対側の面側に、23℃、50%RHの環境下で測定したときの表面比抵抗値が1×10~1×1010Ω/□の範囲内となる導電層を形成することを特徴とし、更に好ましくは、1×10~1×1010Ω/□の表面比抵抗値の範囲内となる導電層である。導電層の表面比抵抗が1×10Ω/□以上であれば、ガスバリアー層形成時において、ローラー間プラズマCVD処理におけるプラズマ放電が安定し、均質のガスバリアー層を形成することができる。また、導電層の表面比抵抗が1×1010Ω/□以下であれば、導電性が低下することにより、所望の元素プロファイルを有するガスバリアー層を形成することができる。
 ガスバリアー層を形成する面とは反対の面に上記で規定する表面比抵抗値を有する導電性を配置し、ガスバリアー層をローラー間プラズマCVD法で形成することにより、樹脂基材に近い部分に多くの炭素原子成分を配向させることができ、その結果、樹脂基材とガスバリアー層との密着性が向上し、ガスバリアー性も向上させることができる。
 導電層における表面比抵抗値が1×10Ω/□以上であれば、十分な導電性を有し、ローラー間プラズマCVD法によるガスバリアー層形成時に安定した放電を得ることができ、樹脂基材周辺部における炭素原子成分を所定の条件に制御することができ、その結果、優れた密着性及びバリアー性を実現することができる。一方、表面比抵抗値が1×1010Ω/□以下であれば、同様に、樹脂基材周辺の炭素原子成分を所定の量に制御することができ、その結果、密着性及びバリアー性が向上する。
 本発明における表面比抵抗値は、アドバンテスト社製のデジタル超高電気抵抗計(R8340A)を用い、印加電圧100V、測定環境23℃、50%RHの条件にて測定したものである。
 本発明に係る導電層は、上記表面比抵抗値を備えていれば、その構成としては特に問わないが、樹脂と金属酸化物を含有する構成であることが好ましい。導電層においては、樹脂と金属酸化物の構成比率や、各々の構成材料の導電性を適宜調整することで、所望の表面比抵抗値に調整することができる観点から好ましい。また、本発明のガスバリアー性フィルムは、真空下でのプラズマ化学気相成長法により製造されることから、真空下においても導電性を安定して発現できるように、湿度依存性が少ない金属酸化物を使用することが好ましい。
 (2.1)樹脂
 本発明に係る導電層に適用可能な樹脂としては、例えば、エポキシ系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、シリコーン系樹脂、エチレンビニルアセテート(略称:EVA)樹脂等が挙げられる。これらを用いることにより、樹脂組成物の光透過性をより高めることができ、特に、上記樹脂群の中でも、光硬化型あるいは熱硬化型樹脂タイプが好ましいが、その中でも、特に、生産性、得られる導電層の膜硬度、平滑性、透明性等の観点から、紫外線硬化型樹脂が好ましい。
 紫外線硬化型樹脂としては、紫外線照射により硬化して、透明な樹脂組成物を形成する樹脂であれば、制限なく使用でき、特に好ましくは、得られる導電層の硬度、平滑性、透明性の観点から、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂等を用いることが好ましい。
 アクリル系樹脂組成物としては、ラジカル反応性不飽和結合を有するアクリレート化合物、アクリレート化合物とチオール基を有するメルカプト化合物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させたもの等が挙げられる。また、上記のような樹脂組成物を任意の比率で混合した混合物として使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している樹脂であれば特に制限はない。
 光重合開始剤としては、公知のものを使用することができ、1種又は2種以上を組み合わせて使用することができる。
 (2.2)金属酸化物
 本発明に係る導電層の形成に適用可能な金属酸化物としては、導電性を有していることが必要である。例えば、酸化インジウムスズ(略称:ITO)、フッ素ドープ酸化スズ(略称:FTO)、酸化スズ、酸化インジウム亜鉛(略称:IZO)、酸化亜鉛(略称:ZnO)、アルミニウムドープ酸化亜鉛(略称:AZO)、ガリウムドープ酸化亜鉛(略称:GZO)等が挙げられる。
 また、電子デバイス用途として、透明性や着色、散乱等を考慮すると、粒子形態であることが好ましく、粒子の平均粒径としては、1~300nmの範囲内が好ましく、5~100nmの範囲内がより好ましく、10~80nmの範囲内が更に好ましい。平均粒径が1nm以上であれば、導電性酸化物微粒子分散液や透明導電膜形成用塗布液の製造が安定し容易となり、また得られる導電層の表面比抵抗値を所望の範囲内に制御することができる。一方、平均粒径が300nm以下であれば、導電性酸化物微粒子分散液や透明導電膜形成用塗布液中で導電性酸化物微粒子の分散安定性を確保でき、粒子の沈降を防止することができると共に、透過率と表面比抵抗値を同時に達成することができる。
 本発明で用いられる金属酸化物微粒子は、樹脂に公知の技術で混合される。通常は、樹脂を溶解して溶液状態とし、この樹脂溶液に撹拌機を用いて撹拌しながら、金属酸化物微粒子を混合する。撹拌時に添加してもよい分散剤やその他の添加剤は、必要に応じて、金属酸化物微粒子の投入の前後または同時に添加されて撹拌される。樹脂バインダーが、高粘度である場合や固体状の場合には、適宜、有機溶媒等を添加してもよい。また、分散が容易でない場合は、金属酸化物微粒子と樹脂バインダーと溶媒を加え、ヘンシェルミキサーやスーパーミキサーなどの高剪断力による混合機を用いて均一に混合する。
 本発明に係る導電層の全質量に対する金属酸化物の含有量は、上記記載の表面比抵抗値になれば特に限定されないが、金属酸化物粒子の分散性、透明性、樹脂の膜強度の観点で、金属酸化物の含有量が、導電層の全質量の3~80体積%の範囲内であることが好ましく、特に、5~50体積%の範囲内であることが好ましい。
 (2.3)導電層の形成方法
 本発明に係る導電層は、上述した樹脂と金属酸化物とを用いた組成物(導電層形成用塗布液)を、例えば、ドクターブレード法、スピンコート法、ディッピング法、テーブルコート法、スプレー法、アプリケーター法、カーテンコート法、ダイコート法、インクジェット法、ディスペンサー法等により湿式塗布し、必要に応じて硬化剤を加え、加熱や紫外線照射して樹脂組成物を硬化することで形成することができる。
 紫外線を照射して紫外線硬化型樹脂を硬化させる方法としては、紫外線照射光源として超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等を用い、これらの光源から発せられる100~400nmの範囲、好ましくは200~400nmの範囲内の波長領域の紫外線を照射、又は走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより、行うことができる。
 本発明に係る導電層の厚さは、特に限定されないが、0.1~10μmの範囲内が好ましく、特に0.5~5μmの範囲内が好ましい。また、導電層は2層以上の構成になっていても良い。
 本発明に係る導電層には、必要に応じて、酸化防止剤、可塑剤、マット剤、熱可塑性樹脂等の添加剤を加えることができる。また、樹脂を溶媒に溶解又は分散させた導電層形成用塗布液を用いて導電層を形成する際に使用する溶媒としては、特に制限はなく、従来公知の有機溶媒より適宜選択して使用することができる。
 (2.4)導電層の表面粗さRa
 本発明に係る導電層は、表面粗さRa値が0.3~5.0nmの範囲内であることが好ましく、より好ましくは0.5~3.0nmの範囲内である。
 導電層の表面粗さが0.3nm以上であれば、導電層表面が適度な粗さを有し、ガスバリアー層形成時のローラー搬送性が安定し、CVDによるガスバリアー層の形成を精度よく行うことができる。一方、5.0nm以下であれば、ローラーとの適度な密着搬送性を得ることができ、放電に影響を与えることなく、所望のガスバリアー性や密着性等を備えたガスバリアー層を形成することができ、好ましい。
 本発明に係る導電層の表面粗さ(Ra)は、以下の方法で測定することができる。
 〈表面粗さ測定の方法;AFM測定〉
 表面粗さRaは、AFM(原子間力顕微鏡)として、例えば、Digital Instruments社製 DI3100を用い、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出することができ、具体的には、表面粗さRaは、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さとして求める。
 〔3〕ガスバリアー層
 本発明に係るガスバリアー層は、磁場を印加したローラー間に放電空間を形成する放電プラズマ化学気相成長法を適用し、ガスバリアー層の成膜ガスとして、有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、樹脂基材上に形成され、ガスバリアー層の構成元素としては、炭素原子、ケイ素原子及び酸素原子を含有することを特徴としている。
 具体的には、樹脂基材の導電層を有する面とは反対側の面に、一対の成膜ローラー(ローラー電極)間を巻き回し、当該一対の成膜ローラー間に成膜ガスを供給しながらプラズマ放電を行うプラズマ化学気相成長法によって、樹脂基材上にガスバリアー層を形成する方法である。
 本発明に係るガスバリアー層は、成膜ガスとして有機ケイ素化合物を含有する原料ガスと酸素ガスを用い、ガスバリアー層の構成元素として炭素、ケイ素及び酸素を含むと共に、下記に示す(1)~(4)で規定する炭素原子分布プロファイルの全ての条件を満たすことが、より好ましい態様である。
 (1)前記ガスバリアー層の炭素原子比率が、膜厚方向において、前記ガスバリアー層の表面から層厚の89%までの距離範囲内では、前記表面からの距離に対応して連続的に変化する。
 (2)ガスバリアー層の炭素原子比率の最大値が、膜厚方向において、前記ガスバリアー層の表面から層厚の89%までの距離範囲内では、20at%未満である。
 (3)ガスバリアー層の炭素原子比率が、膜厚方向において、前記ガスバリアー層の表面から層厚の90~95%までの距離範囲内(樹脂基材に隣接する面から5~10%の範囲内)では、連続的に増加する。
 (4)ガスバリアー層の炭素原子比率の最大値が、膜厚方向において、前記ガスバリアー層の表面から層厚の90~95%までの距離範囲内(樹脂基材に隣接する面から5~10%の範囲内)では、20at%以上である。
 本発明において、本発明に係るガスバリアー層内における炭素原子の含有比率の平均値は、後述するXPSデプスプロファイルの測定によって求めることができる。
 以下、本発明に係るガスバリアー層の詳細について更に説明する。
 (3.1)ガスバリアー層における炭素元素プロファイル
 本発明に係るガスバリアー層は、ガスバリアー層の構成元素として炭素原子、ケイ素原子及び酸素原子を含み、かつガスバリアー層の膜厚方向における表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量に対する炭素原子の量の比率(炭素原子比率)との関係を示す炭素分布曲線において、炭素原子含有量プロファイルが、上記(1)項~(4)項の全ての条件を満たすことにより、より一層可撓性(屈曲性)及び密着性に優れたガスバリアー性フィルムを得ることができる。
 また、炭素原子比率がガスバリアー層の特定の領域において、濃度勾配を有して連続的に変化する構成を有することが、ガスバリアー性と屈曲性を両立する観点から好ましい態様である。
 このような炭素原子分布プロファイルを有する本発明に係るガスバリアー層においては、層内における炭素分布曲線が少なくとも1つの極値を有することが好ましい。更に、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することが特に好ましい。前記炭素分布曲線が極値を有さない場合には、得られるガスバリアー性フィルムのフィルムを屈曲させた場合におけるガスバリアー性が不十分となる。また、このように少なくとも2つ又は3つの極値を有する場合においては、前記炭素分布曲線が有する一つの極値及び該極値に隣接する極値における前記ガスバリアー層の膜厚方向における前記ガスバリアー層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。
 なお、本発明において極値とは、各元素の原子比率の極大値又は極小値のことをいう。
 〈3.1.1〉極大値及び極小値
 本発明において極大値とは、ガスバリアー層の表面からの距離を変化させた場合に元素の原子比率の値が増加から減少に変わる点であって、かつその点の元素の原子比率の値よりも、該点からガスバリアー層の膜厚方向におけるガスバリアー層の表面からの距離を更に20nm変化させた位置の元素の原子比率の値が3at%以上減少する点のことをいう。
 さらに、本発明において極小値とは、ガスバリアー層の表面からの距離を変化させた場合に元素の原子比の値が減少から増加に変わる点であり、且つその点の元素の原子比率の値よりも、該点からガスバリアー層の膜厚方向におけるガスバリアー層の表面からの距離を更に20nm変化させた位置の元素の原子比の値が3at%以上増加する点のことをいう。
 本発明に係るガスバリアー層においては、本発明に係る前記(2)項で規定する表面(樹脂基材に接する面とは反対側の面)から垂直方向に89%までの範囲における炭素元素比率の最大値が20at%未満であること、及び本発明に係る前記(4)項で規定する表面に対し、垂直方向の90~95%範囲(樹脂基材に隣接する垂直方向5~10%の膜厚領域)における炭素元素比率の最大値が、20at%以上であること、が好ましい態様である。上記で規定するように、炭素元素比率を20at%とする具体的な方法としては、原料ガスとして、炭素原子数の多い化合物を選択することにより達成することができる。
 〈3.1.2〉濃度勾配の連続的変化
 本発明においては、ガスバリアー層が、本発明に係る前記(1)項で規定する表面から垂直方向に89%までの範囲において、炭素元素比率が濃度勾配を有し、かつ濃度が連続的に変化する領域を有すること、及び本発明に係る前記(3)項で規定する表面から垂直方向で90~95%の範囲、言い換えれば、樹脂基材に隣接する面から表面部に向かって層厚方向で5~10%の範囲内における炭素元素比率が連続的に増加することが、好ましい態様である。
 本発明でいう「炭素元素比率の濃度勾配が連続的に変化する」とは、炭素分布曲線における炭素原子比率が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される本発明に係るガスバリアー層の膜厚方向における表面からの距離(x、単位:nm)と、炭素原子比率(C、単位:at%)との関係において、下記式(F1)で表される条件を満たすことをいう。
 式(F1)
   (dC/dx)≦ 0.5
 (3.2)ガスバリアー層における各元素プロファイル
 本発明に係るガスバリアー層においては、構成元素として炭素原子、ケイ素原子及び酸素原子を含有することを特徴とするが、それぞれの原子の比率と、最大値及び最小値についての好ましい態様を、以下に説明する。
 〈3.2.1〉炭素原子比率の最大値と最小値の関係
 本発明に係るガスバリアー層では、更には、炭素分布曲線における炭素原子比率の最大値及び最小値の差の絶対値が5at%以上であることが好ましい。また、このようなガスバリアー層においては、炭素原子比率の最大値及び最小値の差の絶対値が6at%以上であることがより好ましく、7at%以上であることが特に好ましい。炭素原子比率の最大値及び最小値の差の絶対値を5at%以上とすることにより、作製したガスバリアー性フィルムを屈曲させた際に、膜面における亀裂等の発生を防止でき、折り曲げ耐性が十分となる。
 〈3.2.2〉酸素原子比率の最大値と最小値の関係
 本発明に係るガスバリアー層においては、酸素分布曲線における最大値及び最小値の差の絶対値がat%以上であることが好ましく、6at%以上であることがより好ましく、7at%以上であることが特に好ましい。前記絶対値が5at%以上では、得られるガスバリアー性フィルムを屈曲させた際に、膜面における亀裂等の発生を防止でき、折り曲げ耐性が十分となる。
 〈3.2.3〉ケイ素原子比率の最大値と最小値の関係
 本発明に係るガスバリアー層においては、ケイ素分布曲線における最大値及び最小値の差の絶対値が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることが特に好ましい。前記絶対値が5at%未満であれば、得られるガスバリアー性フィルムのガスバリアー性能及び機械的強度が十分となる。
 〈3.2.4〉酸素原子+炭素原子の合計量の比率
 本発明に係るガスバリアー層においては、膜厚方向におけるガスバリアー層表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量に対する酸素原子及び炭素原子の合計量の比率(酸素-炭素合計の原子比率という。)である酸素-炭素合計の分布曲線(酸素炭素分布曲線ともいう。)において、前記酸素-炭素合計の原子比率の最大値及び最小値の差の絶対値が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることが特に好ましい。前記絶対値が5at%未満であれば、得られるガスバリアー性フィルムのガスバリアー性能が十分となる。
 なお、図3及び図4に示すような炭素原子分布プロファイル(ケイ素分布曲線、酸素分布曲線及び炭素分布曲線)に関する上記説明において、「ケイ素原子、酸素原子及び炭素原子の合計量」とは、ケイ素原子、酸素原子及び炭素原子の合計の原子数(at数)を意味し、「炭素原子の量」とは、炭素原子数を意味する。本発明でいうat%とは、ケイ素原子、酸素原子及び炭素原子の総原子数を100%としたときの各原子の原子数比率(原子数%)を意味する。また、図3及び図4に示すようなケイ素分布曲線、酸素分布曲線及び酸素炭素分布曲線についての「ケイ素原子の量」及び「酸素原子の量」についても同様である。
 (3.3)XPSデプスプロファイルについて
 ガスバリアー層の膜厚方向におけるケイ素分布曲線、酸素分布曲線、及び炭素分布曲線、及び酸素-炭素合計の分布曲線等は、X線光電子分光法(XPS:Xray Phot oelectron Spectroscopy)の測定と、アルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。
 このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向における前記ガスバリアー層の膜厚方向における前記ガスバリアー層の表面からの距離におおむね相関することから、「ガスバリアー層の膜厚方向におけるガスバリアー層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリアー層の表面からの距離を採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。
 また、本発明においては、膜面全体において均一で、かつ優れたガスバリアー性を有するガスバリアー層を形成するという観点から、ガスバリアー層が膜面方向(ガスバリアー層の表面に平行な方向)において実質的に一様であることが好ましい。本発明において、ガスバリアー層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定によりガスバリアー層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線及び前記酸素-炭素合計の分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比率の最大値及び最小値の差の絶対値が、互いに同じであるかもしくは5at%以内の差であることをいう。
 本発明のガスバリアー性フィルムは、本発明で規定する前記(1)~(4)を全て満たすガスバリアー層を少なくとも1層有することが好ましいが、そのような条件を満たすガスバリアー層を、2層以上を備えていてもよい。さらに、このようなガスバリアー層を2層以上備える場合には、複数のガスバリアー層間の材質は、同一であってもよく、異なっていてもよい。また、このようなガスバリアー層を2層以上設ける場合には、このようなガスバリアー層を前記樹脂基材の一方の面上に形成されていてもよく、前記樹脂基材の両方の表面上に形成されていてもよい。また、このような複数のガスバリアー層としては、ガスバリアー性を必ずしも有しないガスバリアー層を含んでいてもよい。
 また、前記ケイ素分布曲線、前記酸素分布曲線及び前記炭素分布曲線において、ケイ素原子比率、酸素原子比率及び炭素原子比率が、該層の膜厚の90%以上の領域において前記式(2)で表される条件を満たす場合には、前記ガスバリアー層中におけるケイ素原子、酸素原子及び炭素原子の合計量に対するケイ素原子比率は、19~40at%の範囲であることが好ましく、30~40at%の範囲であることがより好ましい。また、前記ガスバリアー層中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する酸素原子比率は、33~67at%の範囲であることが好ましく、41~62at%の範囲であることがより好ましい。さらに、前記ガスバリアー層中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する炭素原子比率は、1~19at%の範囲であることが好ましく、3~19at%の範囲であることがより好ましい。
 (3.4)バリアー層の厚さ
 本発明に係るガスバリアー層の厚さは、5~3000nmの範囲内であることが好ましく、10~2000nmの範囲内であることより好ましく、100~1000nmの範囲内であることが特に好ましい。ガスバリアー層の厚さが前記範囲内であれば、酸素ガスバリアー性、水蒸気バリアー性等のガスバリアー性に優れ、屈曲によるガスバリアー性の低下がみられない。
 また、本発明のガスバリアー性フィルムが複数のガスバリアー層を備える場合には、それらのガスバリアー層の厚さのトータルの値は、通常10~10000nmの範囲であり、10~5000nmの範囲であることが好ましく、100~3000nmの範囲であることより好ましく、200~2000nmの範囲であることが特に好ましい。ガスバリアー層の厚さの合計値が前記範囲内であると、酸素ガスバリアー性、水蒸気バリアー性等のガスバリアー性が十分であり、屈曲によりガスバリアー性も低下しにくい傾向にある。
 (3.5)ガスバリアー層の製造方法
 本発明に係るガスバリアー層は、磁場を印加したローラー間放電プラズマ化学気相成長法により、樹脂基材上に形成することを特徴とする。
 より詳しくは、本発明に係るガスバリアー層は、磁場を印加したローラー間に放電空間を形成する放電プラズマ処理装置を用い、樹脂基材を一対の成膜ローラーに巻き回し、一対の成膜ローラー間に成膜ガスを供給しながらプラズマ放電してプラズマ化学気相成長法により形成される層である。また、このように一対の成膜ローラー間に磁場を印加しながら放電する際には、一対の成膜ローラー間の極性を交互に反転させることが好ましい。更に、このようなプラズマ化学気相成長法に用いる成膜ガスとしては、有機ケイ素化合物を含む原料ガスと酸素ガスとを用い、その成膜ガス中の酸素ガスの含有量は、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。また、本発明のガスバリアー性フィルムにおいては、ガスバリアー層が連続的な成膜プロセスにより形成された層であることが好ましい。
 次に、本発明のガスバリアー性フィルムの製造方法について説明する。
 本発明のガスバリアー性フィルムは、磁場を印加したローラー間放電プラズマ処理装置を用い、樹脂基材表面上(必要に応じ、中間層を設ける場合がある)に、ガスバリアー層を形成させることにより製造する。
 本発明に係るガスバリアー層においては、炭素原子比率が濃度勾配を有し、かつ層内で連続的に変化する層を形成するため、磁場を印加したローラー間放電プラズマ化学気相成長法を用いることを特徴としている。
 本発明に係る磁場を印加したローラー間放電プラズマ化学気相成長法(以下、プラズマCVD法ともいう。)においては、プラズマを発生させる際に、複数の成膜ローラー間に磁場を印加しながら、形成した放電空間にプラズマ放電を発生させることが好ましく、本発明では一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに樹脂基材を巻き回して、当該一対の成膜ローラー間に、磁場を印加した状態で放電してプラズマを発生させて、プラズマ放電空間を形成することが好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に樹脂基材を巻き回して、かかる一対の成膜ローラー間でプラズマ放電し、樹脂基材と成膜ローラーとの間の距離が変化することによって、前記炭素原子比率が濃度勾配を有し、かつ層内で連続的に組成が変化するようなガスバリアー層を形成することが可能となる。
 また、成膜時に一方の成膜ローラー上に存在する樹脂基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する樹脂基材の表面部分も同時に成膜することが可能となって効率よく薄膜を形成することができるばかりか、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記条件(1)~(4)を全て満たす層を形成することができる。
 また、本発明のガスバリアー性フィルムは、生産性の観点から、ロール・ツー・ロール方式で前記基材の表面上に前記ガスバリアー層を形成させることが好ましい。
 また、このようなプラズマ化学気相成長法によりガスバリアー性フィルムを製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の磁場を印加する装置を具備した成膜ローラーと、プラズマ電源とを備え、かつ一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いることにより、プラズマ化学気相成長法を利用しながらロール・ツー・ロール方式で、ガスバリアー性フィルムを、連続して製造することができる。
 以下、図2を参照しながら、プラズマ化学気相成長法により本発明のガスバリアー性フィルムを製造する方法について、より詳細に説明する。なお、図2は、本発明のガスバリアー性フィルムを製造するのに好適に利用することが可能な磁場を印加したローラー間放電プラズマCVD装置の一例を示す模式図である。以下の説明における樹脂基材1とは、本発明に係る導電層を裏面に有する樹脂基材をいう。
 図2に示す磁場を印加したローラー間放電プラズマCVD装置(以下、プラズマCVD装置ともいう。)は、主には、送り出しローラー11と、搬送ローラー21、22、23及び24と、成膜ローラー31及び32と、成膜ガス供給管41と、プラズマ発生用電源51と、成膜ローラー31及び32の内部に設置された磁場発生装置61及び62と、巻取りローラー71とを備えている。また、このようなプラズマCVD製造装置においては、少なくとも成膜ローラー31及び32と、成膜ガス供給管41と、プラズマ発生用電源51と、磁場発生装置61及び62とが、図示を省略した真空チャンバー内に配置されている。更に、このようなプラズマCVD製造装置において、真空チャンバー(不図示)は、真空ポンプ(不図示)に接続されており、この真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。
 このようなプラズマCVD製造装置においては、一対の成膜ローラー(成膜ローラー31と成膜ローラー32)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源51に接続されている。対の成膜ローラー(成膜ローラー31と成膜ローラー32)に、プラズマ発生用電源51より電力を供給することにより、成膜ローラー31と成膜ローラー32との間の空間に放電することが可能となり、これにより成膜ローラー31と成膜ローラー32との間の空間(放電空間ともいう。)にプラズマを発生させることができる。なお、このように、成膜ローラー31と成膜ローラー32を電極として利用することになるため、電極として利用可能な材質や設計を適宜変更すればよい。また、このようなプラズマCVD製造装置においては、一対の成膜ローラー(成膜ローラー31及び32)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー31及び32)を配置することにより、成膜速度を倍にでき、なおかつ、同じ構造の膜を成膜できるので、前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。
 また、成膜ローラー31及び成膜ローラー32の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置61及び62がそれぞれ設けられていることが特徴である。
 さらに、成膜ローラー31及び成膜ローラー32としては、適宜公知のローラーを用いることができる。成膜ローラー31及び32としては、より効率よく薄膜を形成することができる観点から、直径が同一のものを使うことが好ましい。また、成膜ローラー31及び32の直径としては、放電条件、チャンバーのスペース等の観点から、直径が300~1000mmφの範囲、特に300~700mmφの範囲が好ましい。直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量がフィルムにかかることを回避でき、残留応力が大きくなりにくく好ましい。一方、直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。
 また、このようなプラズマCVD製造装置に用いる送り出しローラー11及び搬送ローラー21、22、23及び24としては、公知のローラーを適宜選択して用いることができる。また、巻取りローラー71としても、ガスバリアー層を形成した樹脂基材1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。
 成膜ガス供給管41としては、原料ガス及び酸素ガスを所定の速度で供給又は排出することが可能なものを適宜用いることができる。さらに、プラズマ発生用電源51としては、従来公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源51は、これに接続された成膜ローラー31と成膜ローラー32に電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源51としては、より効率よくプラズマCVD法を実施することが可能となることから、一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源51としては、より効率よくプラズマCVD法を実施することが可能となることから、印加電力を100W~10kWの範囲とすることができ、かつ交流の周波数を50Hz~500kHzの範囲とすることが可能なものであることがより好ましい。また、磁場発生装置61及び62としては、適宜公知の磁場発生装置を用いることができる。
 図2に示すようなプラズマCVD装置を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、磁場発生装置の強度、真空チャンバー内の圧力、成膜ローラーの直径、並びに、樹脂基材の搬送速度を適宜調整することにより、本発明のガスバリアー性フィルムを製造することができる。すなわち、図2に示すプラズマCVD装置を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ローラー(成膜ローラー31及び32)間に、磁場を印加しながらプラズマ放電を発生させることにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー31上の樹脂基材1の表面上並びに成膜ローラー32上の樹脂基材1の表面上に、本発明に係るガスバリアー層がプラズマCVD法により形成される。なお、このような成膜に際しては、樹脂基材1が送り出しローラー11や成膜ローラー31等により、それぞれ搬送されることにより、ロール・ツー・ロール方式の連続的な成膜プロセスにより樹脂基材1の表面上に前記ガスバリアー層が形成される。
 〈3.5.1〉原料ガス
 本発明に係るガスバリアー層の形成に用いる成膜ガスを構成する原料ガスは、少なくともケイ素を含む有機ケイ素化合物を用いることを特徴とする。
 本発明に適用可能な有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。これらの有機ケイ素化合物の中でも、成膜での取り扱い及び得られるガスバリアー層のガスバリアー性等の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 また、前記成膜ガスには、原料ガスの他に、反応ガスとして酸素ガスを含有することを特徴とする。酸素ガスは、前記原料ガスと反応して酸化物等の無機化合物となるガスである。
 前記成膜ガスとしては、前記原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや水素ガスを用いることができる。
 このような成膜ガスが、ケイ素を含有する有機ケイ素化合物を含む原料ガスと酸素ガスを含有する場合、原料ガスと酸素ガスの比率としては、原料ガスと酸素ガスとを完全に反応させるために理論上必要となる酸素ガスの量の比率よりも、酸素ガスの比率を過剰にし過ぎないことが好ましい。酸素ガスの比率を過剰にし過ぎてしまうと、本発明で目的とするガスバリアー層が得られにくい。よって、所望したバリアー性フィルムとしての性能が得る上では、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下とすることが好ましい。
 以下、代表例として、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物、略称:HMDSO、(CHSiO)と、反応ガスである酸素(O)の系について説明する。
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスである酸素(O)とを含有する成膜ガスを、プラズマCVD法により反応させてケイ素-酸素系の薄膜を形成する場合、その成膜ガスにより下記反応式(1)で示される反応が起こり、二酸化ケイ素SiOからなる薄膜が形成される。
 反応式(1):(CHSiO+12O→6CO+9HO+2SiO
 このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対し、酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまうため、原料のガス流量比を理論比である完全反応の原料比以下の流量に制御して、非完全反応を遂行させる。すなわち、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なく設定する必要がある。
 なお、実際のプラズマCVD装置のチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスである酸素は、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる。例えば、CVD法により完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子がガスバリアー層中に取り込まれ、所望したガスバリアー層を形成することが可能となって、得られるガスバリアー性フィルムに優れたバリアー性及び耐屈曲性を発揮させることが可能となる。なお、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)が少なすぎると、酸化されなかった炭素原子や水素原子がガスバリアー層中に過剰に取り込まれることになる。この場合、バリアー膜の透明性が低下して、バリアーフィルムは、電子デバイス、例えば、有機ELデバイスや有機薄膜太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板には利用できなくなってしまう。このような観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。
 〈3.5.2〉真空度
 真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5~100Paの範囲内とすることが好ましい。
 〈3.5.3〉ローラー成膜
 図2に示すようなプラズマCVD装置等を用いたプラズマCVD法においては、成膜ローラー31及び32間に放電空間を形成するために、プラズマ発生用電源51に接続された電極ドラム(図2においては、成膜ローラー31及び32に設置されている。)に印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるものであり一概にいえるものでないが、0.1~10kWの範囲内とすることが好ましい。このような範囲の印加電力であれば、パーティクル(不正粒子)の発生も見られず、成膜時に発生する熱量も制御範囲内であるため、成膜時の基材表面温度の上昇による、樹脂基材の熱変形、熱による性能劣化や成膜時の皺の発生もない。また、熱で樹脂基材が溶けて、裸の成膜ローラー間に大電流の放電が発生することによる成膜ローラーに対する損傷等を防止することができる。
 樹脂基材1の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲内とすることが好ましく、0.5~20m/minの範囲内とすることがより好ましい。ライン速度が前記範囲内であれば、樹脂基材の熱に起因する皺も発生し難く、形成されるガスバリアー層の厚さも十分に制御可能となる。
 以上のようにして形成される本発明のガスバリアー層のXPSデプスプロファイルによる層の厚さ方向の各元素プロファイルの一例を、図3に示す。
 図3は、本発明のガスバリアー層のケイ素分布曲線、酸素分布曲線及び炭素分布曲線の一例を示すグラフである。
 図3において、符号A~Dは、Aが炭素分布曲線、Bがケイ素分布曲線、Cが酸素分布曲線、Dが酸素炭素分布曲線を表す。図3に示すグラフであるように、本発明に係るガスバリアー層が、当該ガスバリアー層の炭素原子比率として、表面から垂直方向に89%までの範囲における炭素元素比率の最大値が20at%未満であり、かつ表面から垂直方向に89%までの範囲における炭素元素比率が濃度勾配を有し、かつ濃度が連続的に変化する構造を有していることが分かる(本発明で規定する(1)項及び(2)項に該当する。)。
 また、当該ガスバリアー層の炭素原子比率として、表面に対し、垂直方向の90~95%範囲(樹脂基材に隣接する垂直方向5~10%の範囲)において、炭素元素比率の最大値が、20at%以上であり、かつ炭素元素比率が連続的に増加する特性を有していることが分かる(本発明で規定する(3)項及び(4)項に該当する。)。
 図4は、比較例のガスバリアー層の炭素分布曲線A、ケイ素分布曲線B及び酸素分布曲線の一例を示すグラフである。
 当該ガスバリアー層は、平型電極(水平搬送)タイプのプラズマCVD放電装置を用いて形成したガスバリアー層における炭素原子プロファイルA、ケイ素原子プロファイルB及び酸素原子プロファイルCを示したものであり、特に、炭素原子成分Aの濃度勾配の連続的な変化が起こらないプロファイルであることが分かる。
 〔4〕第2のガスバリアー層
 本発明のガスバリアー性フィルムにおいては、本発明に係るガスバリアー層の上に、ポリシラザン含有液を湿式塗布方式により塗布及び乾燥し、形成された塗膜に波長200nm以下の真空紫外光(VUV光)を照射し、形成した塗膜に改質処理を施して、第2のガスバリアー層を形成することが好ましい。
 本発明において、第2のガスバリアー層を、本発明に係る磁場を印加したローラー間放電プラズマCVD法で設けたガスバリアー層上に形成することにより、既に形成されているガスバリアー層の形成時に生じた微小な欠陥部分を、上部から付与するポリシラザンより構成される第2のガスバリアー層成分で埋めることができ、ガスパージ等を効率的に防止し、更なるガスバリアー性と屈曲性を向上できる観点で好ましい。
 第2のガスバリアー層の厚さは、1.0~500nmの範囲内であることが好ましく、より好ましくは10~300nmの範囲内である。第2のガスバリアー層の厚さが1nm以上であれば、所望のガスバリアー性能を発揮することができ、500nm以下であれば、緻密な酸窒化ケイ素膜でのクラックの発生等の膜質劣化を防止することができる。
 〈4.1〉ポリシラザン
 本発明に係るポリシラザンとは、分子構造内にケイ素-窒素結合を有するポリマーで、酸窒化ケイ素の前駆体となるポリマーであり、適用可能なポリシラザンとしては、特に制限はないが、下記一般式(1)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)において、R、R及びRは、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、又はアルコキシ基を表す。
 本発明では、得られる第2のガスバリアー層としての緻密性の観点からは、R、R及びRの全てが水素原子で構成されているパーヒドロポリシラザン(略称:PHPS)が特に好ましい。
 パーヒドロポリシラザンは、直鎖構造と6員環及び8員環を中心とする環構造が存在した構造と推定されており、その分子量は、数平均分子量(Mn)で約600~2000程度(ゲルパーミエーションクロマトグラフィによるポリスチレン換算)であり、液体又は固体の物質である。
 ポリシラザンは、有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、例えば、AZエレクトロニックマテリアルズ株式会社製のNN120-20、NAX120-20、NL120-20などが挙げられる。
 第2のガスバリアー層は、磁場を印加したローラー間放電プラズマCVD法で形成した第1のガスバリアー層上に、ポリシラザンを含む塗布液を塗布及び乾燥した後、真空紫外線を照射することにより形成することができる。
 ポリシラザンを含有する塗布液を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは避けることが好ましい。適用可能な有機溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用でき、具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの有機溶媒は、ポリシラザンの溶解度や有機溶媒の蒸発速度等の目的にあわせて選択し、複数の有機溶媒を混合しても良い。
 ポリシラザンを含有する第2のガスバリアー層形成用塗布液中のポリシラザンの濃度は、第2のガスバリアー層の膜厚や塗布液のポットライフによっても異なるが、好ましくは0.2~35質量%の範囲内である。
 酸窒化ケイ素への変性を促進するために、第2のガスバリアー層形成用塗布液にアミン触媒や、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒を添加することもできる。本発明においては、アミン触媒を用いることが特に好ましい。具体的なアミン触媒としては、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N′,N′-テトラメチル-1,3-ジアミノプロパン、N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン等が挙げられる。
 ポリシラザンに対するこれら触媒の添加量は、第2のガスバリアー層形成用塗布液全質量に対して0.1~10質量%の範囲内であることが好ましく、0.2~5質量%の範囲内であることがより好ましく、0.5~2質量%の範囲内であることが更に好ましい。触媒添加量を上記で規定する範囲内とすることにより、反応の急激な進行よる過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大のなどを避けることができる。
 ポリシラザンを含有する第2のガスバリアー層形成用塗布液を塗布する方法としては、任意の適切な湿式塗布方法を適宜選択して適用することができる。具体例としては、例えば、ローラーコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
 塗膜の厚さは、目的に応じて適切に設定することができる。例えば、塗膜の厚さは、乾燥後の厚さとして50nm~2μmの範囲内にあることが好ましく、より好ましくは70nm~1.5μmの範囲内にあり、100nm~1μmの範囲内にあることが更に好ましい。
 〈4.2〉エキシマ処理
 本発明に係る第2のガスバリアー層は、ポリシラザンを含む層に真空紫外線(VUV)を照射することにより、ポリシラザンの少なくとも一部が酸窒化ケイ素へと改質される。
 ここで、真空紫外線照射工程でポリシラザンを含む塗膜が改質され、SiOの特定組成となる推定メカニズムとして、パーヒドロポリシラザンを一例に説明する。
 パーヒドロポリシラザンは、「-(SiH-NH)-」の組成で示すことができる。SiOで示す場合、x=0、y=1である。x>0となるためには外部の酸素源が必要であるが、これは、
 (i)ポリシラザン塗布液に含まれる酸素や水分、
 (ii)塗布乾燥過程の雰囲気中から塗膜に取り込まれる酸素や水分、
 (iii)真空紫外線照射工程での雰囲気中から塗膜に取り込まれる酸素や水分、オゾン、一重項酸素、
 (iv)真空紫外線照射工程で印加される熱等により基材側からアウトガスとして塗膜中に移動してくる酸素や水分、
 (v)真空紫外線照射工程が非酸化性雰囲気で行われる場合には、その非酸化性雰囲気から酸化性雰囲気へと移動した際に、その雰囲気から塗膜に取り込まれる酸素や水分、
 などが酸素源となる。
 一方、yについては、Siの酸化よりも窒化が進行する条件は非常に特殊であると考えられるため、基本的には1が上限である。
 また、Si、O、Nの結合手の関係から、基本的には、x、yは2x+3y≦4の範囲にある。酸化が完全に進んだy=0の状態においては、塗膜中にシラノール基を含有するようになり、2<x<2.5の範囲となる場合もある。
 真空紫外線照射工程でパーヒドロポリシラザンから酸窒化ケイ素、さらには酸化ケイ素が生じると推定される反応機構について、以下に説明する。
 (1)脱水素、それに伴うSi-N結合の形成
 パーヒドロポリシラザン中のSi-H結合やN-H結合は、真空紫外線照射による励起等で比較的容易に切断され、不活性雰囲気下ではSi-Nとして再結合すると考えられる(Siの未結合手が形成される場合もある)。すなわち、酸化することなく、SiN組成として硬化する。この場合はポリマー主鎖の切断は生じない。Si-H結合やN-H結合の切断は触媒の存在や、加熱によって促進される。切断されたHはHとして膜外に放出される。
 (2)加水分解及び脱水縮合によるSi-O-Si結合の形成
 パーヒドロポリシラザン中のSi-N結合は水により加水分解され、ポリマー主鎖が切断されてSi-OHを形成する。二つのSi-OHが脱水縮合してSi-O-Si結合を形成して硬化する。これは大気中でも生じる反応であるが、不活性雰囲気下での真空紫外線照射中では、照射の熱によって樹脂基材からアウトガスとして生じる水蒸気が主な水分源となると考えられる。水分が過剰になると、脱水縮合しきれないSi-OHが残存し、SiO2.1~SiO2.3の組成で示されるガスバリアー性の低い硬化膜となる。
 (3)一重項酸素による直接酸化、Si-O-Si結合の形成
 真空紫外線照射中、雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNは、Oと置き換わってSi-O-Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えが生じる場合もあると考えられる。
 (4)真空紫外線照射及び励起によるSi-N結合切断を伴う酸化
 真空紫外線のエネルギーは、パーヒドロポリシラザン中のSi-Nの結合エネルギーよりも高いため、Si-N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると、酸化されてSi-O-Si結合やSi-O-N結合が生じると考えられる。ポリマー主鎖の切断により、結合の組み換えが生じる場合もあると考えられる。
 ポリシラザンを含有する層に真空紫外線照射を施した層の酸窒化ケイ素の組成の調整は、上述の(1)~(4)の酸化機構を適宜組み合わせて酸化状態を制御することで行うことができる。
 本発明における真空紫外線照射工程において、ポリシラザン層塗膜が受ける塗膜面での真空紫外線の照度は30~200mW/cmの範囲内であることが好ましく、50~160mW/cmの範囲内であることがより好ましい。30mW/cm以上であれば、改質効率の低下の懸念がなく、200mW/cm以下であれば、塗膜にアブレーションを生じることがなく、基材にダメージを与えないため好ましい。
 ポリシラザン層塗膜面における真空紫外線の照射エネルギー量は、200~10000mJ/cmの範囲内であることが好ましく、500~5000mJ/cmの範囲内であることがより好ましい。200mJ/cm以上であれば、改質を十分に行うことができ、10000mJ/cm以下であれば、過剰改質にならずクラック発生や、樹脂基材の熱変形を防止することができる。
 真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。Xe、Kr、Ar、Neなどの希ガスの原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。
 しかし、放電などによりエネルギーを得た希ガスの励起原子は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
  e+Xe→Xe
  Xe+2Xe→Xe +Xe
  Xe →Xe+Xe+hν(172nm)
 となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光を発光する。
 エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動及び再始動に時間を要さないので、瞬時の点灯点滅が可能である。
 エキシマ発光を得るには、誘電体バリアー放電を用いる方法が知られている。誘電体バリアー放電とは、両電極間に透明石英などの誘電体を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じ、雷に似た非常に細いマイクロディスチャージ(micro discharge)と呼ばれる放電であり、マイクロディスチャージのストリーマが管壁(誘導体)に達すると誘電体表面に電荷が溜まるため、マイクロディスチャージは消滅する。
 このマイクロディスチャージが管壁全体に広がり、生成・消滅を繰り返している放電である。このため、肉眼でも確認できる光のチラツキを生じる。また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。
 効率よくエキシマ発光を得る方法としては、誘電体バリアー放電以外に、無電極電界放電でも可能である。容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極及びその配置は基本的には誘電体バリアー放電と同じで良いが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られるため、チラツキが無い長寿命のランプが得られる。
 誘電体バリアー放電の場合は、マイクロディスチャージが電極間のみで生じるため、放電空間全体で放電を行わせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。
 このため、細い金属線を網状にした電極が用いられる。この電極は、光を遮らないようにできるだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾンなどにより損傷しやすい。これを防ぐためには、ランプの周囲、すなわち照射装置内を窒素などの不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。
 二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。したがって、仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば、酸素雰囲気中の距離を一様にでき、一様な照度分布が得られる。
 無電極電界放電を用いた場合には、外部電極を網状にする必要は無い。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。外部電極には通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリアー放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。
 細管エキシマランプの最大の特徴は、構造がシンプルなことにある。石英管の両端を閉じ、内部にエキシマ発光を行うためのガスを封入しているだけである。
 細管ランプの管の外径は6~12mm程度で、あまり太いと始動に高い電圧が必要になる。
 放電の形態は、誘電体バリアー放電及び無電極電界放電のいずれも使用できる。電極の形状はランプに接する面が平面であっても良いが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。
 Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。
 また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン層の改質を実現できる。
 したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板などへの照射を可能としている。
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
 紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10~10000ppmの範囲内とすることが好ましく、より好ましくは50~5000ppmの範囲内であり、更に好ましく1000~4500ppmの範囲内である。
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
 〔5〕各機能層
 本発明のガスバリアー性フィルムにおいては、上記説明した各構成層のほかに、必要に応じて、各機能層を設けることができる。
 〈5.1〉オーバーコート層
 本発明に係る第2ガスバリアー層の上には、屈曲性を更に改善する目的で、オーバーコート層を形成しても良い。オーバーコート層の形成に用いられる有機物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂層を好ましく用いることができる。これらの有機樹脂もしくは有機無機複合樹脂は、重合性基や架橋性基を有することが好ましく、これらの有機樹脂もしくは有機無機複合樹脂を含有し、必要に応じて重合開始剤や架橋剤等を含有する有機樹脂組成物塗布液から塗布形成した層に、光照射処理や熱処理を加えて硬化させることが好ましい。
 〈5.2〉アンカー層
 本発明のガスバリアー性フィルムにおいては、樹脂基材の一方の面側(裏面側)には導電層を設け、反対の面側(表面側)にはガスバリアー層を形成することを特徴としているが、必要に応じて、樹脂基材とガスバリアー層の間に、基材とガスバリアー層との密着性改良を目的として、アンカー層(クリアハードコート層(CHC層)ともいう。)を有してもよい。
 アンカー層には、樹脂基材を加熱した際に、樹脂基材中から未反応のオリゴマー等が表面に移動して、接触する面を汚染してしまう現象(いわゆる、ブリードアウト現象)を抑制することもできる。アンカー層は、その上にガスバリアー層を設置するため、平滑であることが好ましく、その表面粗さRaとしては、0.3~3nmの範囲内であることが好ましく、より好ましくは0.5~1.5nmの範囲内である。表面粗さRaが0.3nm以上であれば、表面が適度な平滑性を有し、ローラー搬送性及びプラズマCVD法によるガスバリアー層形成時の平滑性を維持することができる。一方、3nm以下であれば、ガスバリアー層形成時に、ガスバリアー層における微小な欠陥の形成を防止でき、高品位のガスバリアー性や密着性等を得ることができる。
 アンカー層の組成としては、平滑性が必要なことから、熱硬化系あるいは光硬化系の樹脂が好ましく、前述の導電層の形成に用いるのと同様の樹脂を挙げることができる。
 アンカー層の厚さとしては、カールを調整する観点から、0.3~10μmの範囲内が好ましく、さらに好ましくは、0.5~5μmの範囲内である。
 《電子デバイス》
 本発明のガスバリアー性フィルムは、電子デバイス用のフィルムとして具備することを特徴とする。
 本発明の電子デバイスとしては、例えば、有機エレクトロルミネッセンスパネル、有機エレクトロルミネッセンス素子、有機光電変換素子、液晶表示素子等が挙げられる。
 〔1〕電子デバイスとしての有機ELパネル
 図1に示す構成からなる本発明のガスバリアー性フィルム1は、例えば、太陽電池、液晶表示素子、有機EL素子等を封止する封止フィルムとして用いることができる。
 このガスバリアー性フィルム1を封止フィルムとして用いた電子デバイスである有機ELパネルPの一例を図5に示す。
 有機ELパネルPは、図5に示すように、ガスバリアー性フィルム1と、ガスバリアー性フィルム1上に形成されたITOなどの透明電極6と、透明電極6を介してガスバリアー性フィルム1上に形成された電子デバイス本体である有機EL素子7と、その有機EL素子7を覆うように接着剤層8を介して配設された対向フィルム9等を備えている。なお、透明電極6は、有機EL素子7の一部を成すこともある。
 ガスバリアー性フィルム1を構成するガスバリアー層4及び第2のガスバリアー層5側の表面には、透明電極6と有機EL素子7が形成されるようになっている。
 そして、有機ELパネルPにおいて、有機EL素子7は水蒸気に晒されないように封止されており、有機EL素子7は劣化し難くなっているので、有機ELパネルPを長く使用することが可能になり、有機ELパネルPの寿命が延びる。
 なお、対向フィルム9は、アルミ箔などの金属フィルムのほか、本発明に係るガスバリアー性フィルムを用いてもよい。対向フィルム9としてガスバリアー性フィルムを用いる場合、ガスバリアー層4が形成された面側を有機EL素子7に向けて、接着剤層8によって貼付するようにすればよい。
 〔2〕有機EL素子
 有機ELパネルPにおいて、ガスバリアー性フィルム1で封止される有機EL素子7について説明する。
 以下に、有機EL素子7の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
 (1)陽極/発光層/陰極
 (2)陽極/正孔輸送層/発光層/陰極
 (3)陽極/発光層/電子輸送層/陰極
 (4)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (5)陽極/陽極バッファー層(正孔注入層)/正孔輸送層/発光層/電子輸送層/陰極バッファー層(電子注入層)/陰極
 (2.1)陽極
 有機EL素子7における陽極(透明電極6)は、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましい。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(略称:ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜の作製が可能な材料を用いてもよい。
 陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜として形成し、その薄膜をフォトリソグラフィー法で所望の形状のパターンに形成してもよく、あるいはパターン精度をあまり必要としない場合は、100μm以上程度とし、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましい。また、陽極としてのシート抵抗は数百Ω/□以下が好ましい。また、陽極の膜厚は材料にもよるが、通常10~1000nmの範囲内であり、好ましくは10~200nmの範囲内で選ばれる。
 (2.2)陰極
 有機EL素子7を構成する陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第2金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が陰極として好適である。
 陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましい。また、陰極の膜厚は、通常10nm~5μmの範囲内であり、好ましくは50~200nmの範囲内で選ばれる。なお、発光した光を透過させるため、有機EL素子7の陽極又は陰極のいずれか一方が透明又は半透明であれば、発光輝度が向上し好都合である。
 また、陰極の説明で挙げた上記金属を1~20nmの範囲の膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
 (2.3)注入層
 注入層には電子注入層と正孔注入層があり、電子注入層と正孔注入層を必要に応じて設け、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させる。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、特開平9-260062号公報、特開平8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、特開平9-17574号公報、特開平10-74586号公報等にもその詳細が記載されており、具体的には、ストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0.1nm~5μmの範囲内が好ましい。
 (2.4)発光層
 有機EL素子7における発光層は、電極(陰極、陽極)又は電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
 有機EL素子7の発光層には、以下に示すドーパント化合物(発光ドーパント)とホスト化合物(発光ホスト)が含有されることが好ましい。これにより、より一層発光効率を高くすることができる。
 〈2.4.1〉発光ドーパント
 発光ドーパントは、大きく分けて蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの2種類がある。
 蛍光性ドーパントの代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
 リン光性ドーパントの代表例としては、好ましくは元素の周期表で8属、9属、10属の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物であり、中でも最も好ましいのはイリジウム化合物である。
 発光ドーパントは複数種の化合物を混合して用いてもよい。
 〈2.4.2〉発光ホスト
 発光ホスト(単にホストともいう)とは、2種以上の化合物で構成される発光層中にて混合比(質量)の最も多い化合物のことを意味し、それ以外の化合物については「ドーパント化合物(単に、ドーパントともいう)」という。例えば、発光層を化合物A、化合物Bという2種で構成し、その混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。更に発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。
 発光ホストは、その構造として特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、又はカルボリン誘導体やジアザカルバゾール誘導体等が挙げられる。中でも、カルボリン誘導体、ジアザカルバゾール誘導体等が好ましく用いられる。ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。
 そして、発光層は、上記化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)、インクジェット法等の公知の薄膜化法により成膜して形成することができる。発光層としての膜厚は、特に制限はないが、通常は5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内で設定される。この発光層は、ドーパント化合物やホスト化合物が1種又は2種以上からなる一層構造であってもよいし、あるいは同一組成又は異種組成の複数層からなる積層構造であってもよい。
 (2.5)正孔輸送層
 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内である。この正孔輸送層は、上記材料の1種又は2種以上からなる一層構造であってもよい。
 (2.6)電子輸送層
 電子輸送層は、電子を輸送する機能を有する電子輸送材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層又は複数層設けることができる。
 電子輸送材料は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、正孔注入層、正孔輸送層と同様に、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 電子輸送層は、上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。
 (2.7)有機EL素子の作製方法
 次いで、有機EL素子7の作製方法について説明する。
 ここでは、有機EL素子7の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極の構成からなる有機EL素子の作製方法について説明する。
 まず、本発明のバリアー性フィルム1上に、所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの範囲内の膜厚になるように、例えば、蒸着やスパッタリング、プラズマCVD法等の方法により形成させ、陽極を形成する。
 次に、その上に有機EL素子の構成層である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等の有機化合物薄膜を形成させる。この有機化合物薄膜の成膜方法としては、蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。また、構成層毎に異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度としては50~450℃の範囲、真空度としては1×10-6~1×10-2Paの範囲内、蒸着速度としては0.01~50nm/秒の範囲内、基板温度としては-50~300℃の範囲内、膜厚としては0.1nm~5μmの範囲内、好ましくは5~200nmの範囲内で適宜選択することが好ましい。
 これらの各構成層を形成した後、その上に陰極用形成物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲内の膜厚になるように、例えば、蒸着やスパッタリング等の方法により陰極を形成することにより、所望の有機EL素子が得られる。
 この有機EL素子の作製は、一回の真空引きで一貫して陽極、正孔注入層から陰極まで作製するプロセスが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
 このようにして得られた有機EL素子を備える多色の表示デバイス(有機ELパネル)に、直流電圧を印加する場合には、陽極をプラス、陰極をマイナスの極性として電圧2~40V程度を印加すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 実施例1
 《樹脂基材の準備》
 熱可塑性樹脂基材(支持体)として、両面に易接着加工が施された厚さ125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、ポリエチレンテレフタレート、KDL86WA、表1には「PET」と略記する。)をそのまま樹脂基材として用いた。樹脂基材について測定した表面粗さ(JIS B 0601準拠)は、Raが4nm、Rzが320nmであった。
 《導電層付樹脂基材の作製》
 〔導電層付樹脂基材1の作製〕
 上記樹脂基材の裏面側に、導電層としてITO(インジウムチンオキシド)を厚さ150nmになるようにスパッタ法で成膜して、導電層付樹脂基材1を作製した。
 〔導電層付樹脂基材2の作製〕
 下記の導電層形成用塗布液2を、樹脂基材の裏面に、乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した後、80℃で3分間乾燥し、次いで、硬化条件として0.5J/cm空気下で、高圧水銀ランプを使用して硬化を行って導電層を形成し、導電層付樹脂基材2を作製した。
 (導電層形成用塗布液2の調製)
 DIC(株)製のUV硬化型樹脂ユニディックV-4025に、シーアイ化成(株)製のNanoTekSlurryのSnOのメチルイソブチルケトン(MIBK)分散液を、固形分比(体積%)で、UV硬化型樹脂:SnO=85:15になるように添加し、更に、光重合開始剤としてイルガキュア184(BASFジャパン社製)を、固形分比(質量%)でUV硬化型樹脂:光重合開始剤=95:5となるように添加して、導電層形成用塗布液2を調製した。
 〔導電層付樹脂基材3の作製〕
 上記導電層付樹脂基材2の作製において、導電層形成用塗布液2におけるUV硬化型樹脂:SnOの添加量比(体積%)を96:4に変更した以外は同様にして調製した導電層形成用塗布液3を用いて導電層を形成し、導電層付樹脂基材3を作製した。
 〔導電層付樹脂基材4の作製〕
 上記導電層付樹脂基材2の作製において、導電層形成用塗布液2におけるSnO分散液を、信越ポリマー(株)製のセプルジーダAS-H(ポリチオフェン系)に変更し、更に、固形分比(体積%)としてUV硬化型樹脂:導電性ポリマー=90:10に変更した以外は同様にして調製した導電層形成用塗布液4を用いて導電層を形成し、導電層付樹脂基材4を作製した。
 〔導電層付樹脂基材5の作製〕
 上記導電層付樹脂基材2の作製において、導電層形成用塗布液2におけるSnO分散液を除いた以外は同様にして調製した導電層形成用塗布液5を用いて導電層を形成し、導電層付樹脂基材5を作製した。
 〔導電層付樹脂基材6の作製〕
 上記導電層付樹脂基材2の作製において、導電層形成用塗布液2におけるUV硬化型樹脂:SnOの添加量比(体積%)を60:40に変更した以外は同様にして調製した導電層形成用塗布液6を用いて導電層を形成し、導電層付樹脂基材6を作製した。
 〔導電層付樹脂基材7の作製〕
 上記導電層付樹脂基材2の作製において、導電層形成用塗布液2におけるUV硬化型樹脂:SnOの添加量比(体積%)を93:7に変更した以外は同様にして調製した導電層形成用塗布液7を用いて導電層を形成し、導電層付樹脂基材7を作製した。
 〔導電層付樹脂基材8の作製〕
 上記導電層付樹脂基材2の作製において、導電層形成用塗布液2におけるSnO分散液を、信越ポリマー(株)製のセプルジーダAS-H(ポリチオフェン系)に変更した以外は同様にして調製した導電層形成用塗布液8を用いて導電層を形成し、導電層付樹脂基材8を作製した。
 〔導電層付樹脂基材9の作製〕
 上記導電層付樹脂基材2の作製において、導電層形成用塗布液2におけるSnO分散液を、シーアイ化成(株)製のNanoTek SlurryのITOのメチルイソブチルケトン(MIBK)分散液に変更した以外は同様にして調製した導電層形成用塗布液9を用いて導電層を形成し、導電層付樹脂基材9を作製した。
 〔導電層付樹脂基材10の作製〕
 上記導電層付樹脂基材2の作製において、導電層形成用塗布液2におけるUV硬化型樹脂をJSR(株)製オプスターZ7501に変更し、かつSnO分散液を、シーアイ化成(株)製のNanoTek SlurryのITOのメチルイソブチルケトン(MIBK)分散液に変更した以外は同様にして調製した導電層形成用塗布液10を用いて導電層を形成し、導電層付樹脂基材10を作製した。
 〔導電層付樹脂基材11の作製〕
 上記導電層付樹脂基材10の作製において、導電層形成用塗布液10を用いて導電層を形成した後、導電層を形成した面とは反対側の樹脂基材面(表面)に、UV硬化型樹脂としてJSR(株)製のオプスターZ7501を用い、乾燥後の膜厚が4μmになる条件で、ワイヤーバーで塗布した後、80℃で3分間乾燥し、次いで、硬化条件として0.5J/cm空気下で、高圧水銀ランプを使用して硬化を行い、アンカー層を形成して、導電層付樹脂基材11を作製した。
 〔導電層付樹脂基材12の作製〕
 上記導電層付樹脂基材10の作製において、樹脂基材をポリエチレンテレフタレートから、両面に易接着加工が施された厚さ125μmのポリエステルナフタレートフィルム(帝人デュポンフィルム株式会社製、Q65FWA、表1には「PEN」と略記する。)に変更した以外は同様にして、導電層付樹脂基材12を作製した。
 〔導電層付樹脂基材13の作製〕
 上記導電層付樹脂基材10の作製において、樹脂基材をポリエチレンテレフタレートから、厚さ50μmのポリカーボネートフィルム(帝人化成株式会社製、WR-S148、表1には「PC」と略記する。)に変更した以外は同様にして、導電層付樹脂基材13を作製した。
 〔導電層付樹脂基材14の作製〕
 上記導電層付樹脂基材12の作製において、導電層を形成した面とは反対側の樹脂基材面(表面)に、UV硬化型樹脂としてJSR(株)製のオプスターZ7501を用い、乾燥後の膜厚が4μmになる条件で、ワイヤーバーで塗布した後、80℃で3分間乾燥し、次いで、硬化条件として0.5J/cm空気下で、高圧水銀ランプを使用して硬化を行い、アンカー層を形成して、導電層付樹脂基材14を作製した。
 〔導電層付樹脂基材15の作製〕
 上記導電層付樹脂基材5(導電層のSiOフリー)の作製において、導電層を形成した面とは反対側の樹脂基材面(表面)に、導電層付樹脂基材2の作製に用いた導電層形成用塗布液2を、同様の方法で塗布乾燥して、アンカー層として形成し、導電層付樹脂基材15を作製した。
 《ガスバリアー性フィルムの作製》
 〔ガスバリアー性フィルム1の作製〕
 図2に記載の磁場を印加したローラー間放電プラズマCVD装置を用いて、導電層付樹脂基材1の表面側(導電層を形成した面とは反対側の面)にガスバリアー層を形成して、ガスバリアー性フィルム1を作製した。この成膜方法を、「ローラーCVD方法」と略記する。
 上記作製した導電層付樹脂基材1を、形成した導電層が成膜ローラーと接触する面側になるように装置に装着して、下記の成膜条件(プラズマCVD条件)により、樹脂基材上にガスバリアー層を、厚さ500nmとなる条件で成膜し、ガスバリアー性フィルム1を作製した。
 (成膜条件)
 原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O)の供給量:500sccm
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 導電層付樹脂基材の搬送速度;0.8m/min
 〔ガスバリアー性フィルム2の作製〕
 下記に記載の条件に従って、プラズマ放電方式により、導電層付樹脂基材2の表面側(導電層を形成した面とは反対側の面)に第1のセラミック層及び第2のセラミック層から構成される厚さ500nmのガスバリアー層2を形成した。この成膜方法を、「CVD方法」と称す。
 (第1のセラミック層の形成)
 〈第1のセラミック層形成用の混合ガス組成物〉
 放電ガス:窒素ガス                 94.9体積%
 薄膜形成ガス:テトラエトキシシラン          0.5体積%
 添加ガス:酸素ガス                  5.0体積%
 (第1のセラミック層の成膜条件)
 第1電極側 電源種類 応用電機製 80kHz
       周波数  80kHz
       出力密度 8W/cm
       電極温度 120℃
 第2電極側 電源種類 パール工業製 13.56MHz CF-5000-13M
       周波数  13.56MHz
       出力密度 10W/cm
       電極温度 90℃
 (第2のセラミック層の形成)
 〈第2のセラミック層形成用の混合ガス組成物〉
 放電ガス:窒素ガス                 94.9体積%
 薄膜形成ガス:テトラエトキシシラン          0.1体積%
 添加ガス:酸素ガス                  5.0体積%
 〈第2のセラミック層の成膜条件〉
 第1電極側 電源種類 ハイデン研究所 100kHz(連続モード) PHF-6k
       周波数  100kHz
       出力密度 10W/cm
       電極温度 120℃
 第2電極側 電源種類 パール工業 13.56MHz CF-5000-13M
       周波数  13.56MHz
       出力密度 10W/cm
       電極温度 90℃
 〔ガスバリアー性フィルム3の作製〕
 下記に記載の条件に従って、従来公知のスパッタ法を用いて、導電層付樹脂基材2の表面側(導電層を形成した面とは反対側の面)に、SiOからなる厚さ500nmのガスバリアー層を形成して、ガスバリアー性フィルム3を作製した。この成膜方法を、「スパッタ方法」と称す。
 〔ガスバリアー性フィルム4の作製〕
 真空蒸着装置を用いて、SiOの装着した抵抗加熱ボートを通電及び加熱し、蒸着速度1~2nm/秒で、導電層付樹脂基材2の表面側(導電層を形成した面とは反対側の面)に、SiOからなる厚さ500nmのガスバリアー層を形成して、ガスバリアー性フィルム4を作製した。
 〔ガスバリアー性フィルム5の作製〕
 上記作製した導電層付樹脂基材2の表面側(導電層を形成した面とは反対側の面)に、PHPS-エキシマ方法に従って、厚さ300nmのガスバリアー層を形成して、ガスバリアー性フィルム5を作製した。この成膜方法を、PHPS-エキシマ方法(表1には、単に「エキシマ方法」と記載。)と称す。
 (ポリシラザンよりSiO膜の形成)
 〈ポリシラザン層形成用塗布液の調製〉
 パーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液を、ポリシラザン層形成用塗布液として用いた。
 〈ポリシラザン層の形成〉
 上記調製したポリシラザン層形成用塗布液を、ワイヤレスバーにて、乾燥後の(平均)膜厚が300nmとなるように塗布し、温度85℃、相対湿度55%の雰囲気下で1分間処理して乾燥させ、更に温度25℃、相対湿度10%(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行って、ポリシラザン層を形成した。
 〈ガスバリアー層の形成:紫外光によるポリシラザン層のシリカ転化処理〉
 次いで、上記形成したポリシラザン層に対し、下記紫外線装置を真空チャンバー内に設置して、装置内の圧力を調整して、シリカ転化処理を実施した。
 〈紫外線照射装置〉
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 照射波長:172nm
 ランプ封入ガス:Xe
 〈改質処理条件〉
 稼動ステージ上に固定したポリシラザン層を形成した導電層付樹脂基材2に対し、以下の条件で改質処理を行って、ガスバリアー層を形成し、ガスバリアー性フィルム5を作製した。
 エキシマランプ光強度:130mW/cm(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:1.0%
 エキシマランプ照射時間:5秒
 〔ガスバリアー性フィルム6~18の作製〕
 上記ガスバリアー性フィルム1の作製において、導電層付樹脂基材1に代えて、それぞれ導電層付樹脂基材2~5、15、6~13を用いた以外は同様にして、ローラーCVD方法により、ガスバリアー性フィルム6~18を作製した。
 〔ガスバリアー性フィルム19の作製〕
 上記ガスバリアー性フィルム6の作製において、ローラーCVD方法における酸素ガスの供給量を750sccm、フィルム搬送速度を2.5m/minに変更した以外は同様にして、ローラーCVD方法により厚さ300nmのガスバリアー層を形成し、ガスバリアー性フィルム19を作製した。
 〔ガスバリアー性フィルム20の作製〕
 上記ガスバリアー性フィルム6の作製において、ローラーCVD方法における原料ガスの供給量を75sccm、フィルム搬送速度を0.4m/minに変更した以外は同様にして、ローラーCVD方法により厚さ1000nmのガスバリアー層を形成し、ガスバリアー性フィルム20を作製した。
 〔ガスバリアー性フィルム21の作製〕
 上記ガスバリアー性フィルム15の作製において、ローラーCVD方法における酸素ガスの供給量を750sccm、フィルム搬送速度を2.5m/minに変更した以外は同様にして、ローラーCVD方法により厚さ300nmのガスバリアー層を形成し、ガスバリアー性フィルム21を作製した。
 〔ガスバリアー性フィルム22の作製〕
 上記ガスバリアー性フィルム15の作製において、ローラーCVD方法における原料ガスの供給量を75sccm、フィルム搬送速度を0.4m/minに変更した以外は同様にして、ローラーCVD方法により厚さ1000nmのガスバリアー層を形成し、ガスバリアー性フィルム22を作製した。
 〔ガスバリアー性フィルム23の作製〕
 上記作製したガスバリアー性フィルム17を用い、更にガスバリアー層上に下記の方法に従ってオーバーコート層を形成して、ガスバリアー性フィルム23を作製した。
 (オーバーコート層の形成)
 ガスバリアー性フィルム17のガスバリアー層上に、和信化学工業(株)製のワシンコートMP6103を、乾燥後の膜厚が500nmとなる条件で塗布し、120℃で3分間乾燥して、オーバーコート層を形成した。
 〔ガスバリアー性フィルム24の作製〕
 上記作製したガスバリアー性フィルム17を用い、形成したガスバリアー層上に、前記ガスバリアー性フィルム5の作製で用いたのと同様の方法で、PHPS-エキシマ方法により、厚さ300nmの第2のガスバリアー層を形成して、ガスバリアー性フィルム24を作製した。
 〔ガスバリアー性フィルム25の作製〕
 上記作製したガスバリアー性フィルム17を用い、形成したガスバリアー層上に、更に同一構成のガスバリアー層(第2のガスバリアー層)を厚さ500nmで積層して、ガスバリアー層の総厚が1000nmのガスバリアー性フィルム25を作製した。
 〔ガスバリアー性フィルム26の作製〕
 上記作製したガスバリアー層及び第2のガスバリアー層を積層したガスバリアー性フィルム24を用い、第2のガスバリアー層上に、更に下記の方法に従ってオーバーコート層を形成して、ガスバリアー性フィルム26を作製した。
 (オーバーコート層の形成)
 ガスバリアー性フィルム24の第2のガスバリアー層上に、和信化学工業(株)製のワシンコートMP6103を、乾燥後の膜厚が500nmとなる条件で塗布し、120℃で3分間乾燥して、オーバーコート層を形成した。
 〔ガスバリアー性フィルム27の作製〕
 上記作製したガスバリアー層及び第2のガスバリアー層を積層したガスバリアー性フィルム24を用い、第2のガスバリアー層上に、更に下記の方法に従ってオーバーコート層を形成して、ガスバリアー性フィルム27を作製した。
 (オーバーコート層の形成)
 ガスバリアー性フィルム24の第2のガスバリアー層上に、JSR(株)製グラスカHPC7003を、乾燥後の膜厚が500nmとなる条件で塗布し、120℃で3分間乾燥して、オーバーコート層を形成した。
 〔ガスバリアー性フィルム28の作製〕
 上記ガスバリアー性フィルム26の作製において、導電層付樹脂基板12を、導電層付樹脂基板14(アンカー層付)に変更した以外は同様にして、ガスバリアー性フィルム28を作製した。
 以上により作製した各ガスバリアー性フィルムの構成を、表1に示す。
Figure JPOXMLDOC01-appb-T000002
 なお、表1に略称で記載した各構成要素及び表面比抵抗の測定方法の詳細は、以下の通りである。
 (樹脂材料)
 PET:ポリエチレンテレフタレート
 PEN:ポリエチレンナフタレート
 PC:ポリカーボネート
 (裏面導電層)
 〈樹脂〉
 V-4025:DIC(株)製 UV硬化型樹脂 ユニディックV-4025
 Z7501:JSR(株)製 UV硬化型樹脂 オプスターZ7501
 AS-H:信越ポリマー(株)製 セプルジーダAS-H(ポリチオフェン系)
 〈金属酸化物〉
 ITO:インジウムチンオキシド
 (オーバーコート層)
 MP6103:和信化学工業(株)製 ワシンコートMP6103
 グラスカ:JSR(株)製 グラスカHPC7003
 (表面比抵抗値の測定)
 表面比抵抗値は、導電層を形成した樹脂基材を、23℃、50%RHの環境下で24時間調湿した後、導電層側を測定電極に接触させ、アドバンテスト社製のデジタル超高電気抵抗計(R8340A)を用い、印可電圧100V、測定環境23℃、50%RHの条件にて測定した。数値はN=5の平均値とした。
 《ガスバリアー性フィルムの特性値の測定及び評価》
 〔原子分布プロファイル(XPSデータ)測定〕
 下記条件にて、作製した各ガスバリアー性フィルムのXPSデプスプロファイル測定を行い、ケイ素原子分布、酸素原子分布、炭素原子分布及び酸素炭素原子分布を得た。
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値):10nm
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800×400μmの楕円形。
 表1には、ガスバリアー層全域におけるケイ素原子の最大at%、ガスバリアー層全域における酸素原子の最大at%、ガスバリアー層の表面から89%までの領域における炭素原子の最大at%と炭素元素比率が連続的に変化する領域の有無、ガスバリアー層の表面に対し垂直方向の90~95%範囲(樹脂基材に隣接する垂直方向5~10%の範囲)における炭素原子の最大at%と炭素元素比率が連続的に増加する領域の有無について、表示した。
 上記条件で測定したデータをもとに、ガスバリアー層の表面からの距離を横軸にケイ素分布曲線、酸素分布曲線及び炭素分布曲線の一例として、後述の表1に記載の本発明のガスバリアー性フィルム15について、図3に示した。
 〔水蒸気透過係数(WVTR)の測定(作製直後試料の評価)〕
 ガスバリアー性フィルムの水蒸気透過係数(WVTR)は、以下に示すCa測定法に従って測定した。
 (水蒸気バリアー性評価試料の作製装置)
 蒸着装置:日本電子(株)製真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 〈原材料〉
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 (水蒸気バリアー性評価試料の作製)
 真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、作製した各ガスバリアー性フィルムのガスバリアー層形成面に、マスクを通して12mm×12mmのサイズで金属カルシウムを蒸着させた。この際、蒸着膜厚は80nmとなるようにした。
 次いで、真空状態のままでマスクを取り去り、シート片側全面にアルミニウムを蒸着させて仮封止をした。次いで、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下に移して、アルミニウム蒸着面に封止用紫外線硬化樹脂(ナガセケムテックス社製)を介して厚さ0.2mmの石英ガラスを張り合わせ、紫外線を照射して樹脂を硬化接着させて本封止することで、水蒸気バリアー性評価試料を作製した。
 得られた試料を60℃、90%RHの高温高湿下で保存し、保存時間に対して金属カルシウムが腐食して行く様子を観察した。観察は、保存時間6時間までは1時間ごとに、それ以降24時間までは3時間ごとに、それ以降48時間までは6時間ごとに、それ以降は12時間ごとに行い、12mm×12mmの金属カルシウム蒸着面積に対する金属カルシウムが腐食した面積を%表示で算出した。金属カルシウムが腐食した面積が1%となった時間を観察結果から直線で内挿して求め、金属カルシウム蒸着面積と、面積1%分の金属カルシウムを腐食させる水蒸気量と、それに要した時間との関係からそれぞれのガスバリアー性フィルムの水蒸気透過率を算出した。
 〔密着性の評価(作製直後試料の評価)〕
 ガスバリアー性フィルムの密着性の評価は、JIS K 5600の5.6(2004年度版)の記載の碁盤目試験法に準じて行った。
 ガスバリアー性フィルムのガスバリアー層を形成した面側に、カッターナイフで樹脂基材に達する1mm角の100個の碁盤目状の切り傷を1mm間隔のカッターガイドを用いて付け、セロハン粘着テープ(ニチバン社製「CT405AP-18」;18mm幅)を切り傷面に貼り付け、消しゴムで上からこすって完全にテープを付着させた後、垂直方向に引き剥がして、ガスバリアー層が樹脂基材表面にどのくらい残存しているかを、100個の碁盤目について計測し、下記の基準に従って密着性の評価を行った。
 ○:碁盤目試験にて剥離した碁盤目数が、4個以下である
 ○△:碁盤目試験にて剥離した碁盤目数が、5~10個の範囲内である
 △:碁盤目試験にて剥離した碁盤目数が、11~15個の範囲内である
 △×:碁盤目試験にて剥離した碁盤目数が、16~20個の範囲内である
 ×:碁盤目試験にて剥離した碁盤目数が、21~30個の範囲内である
 ××:碁盤目試験にて剥離した碁盤目数が、31個以上である
 〔耐久性の評価〕
 各ガスバリアー性フィルムについて、第1ステップとして、温度85℃、相対湿度85%の環境下で3000時間保存して、高温高湿環境による強制劣化試験を行った。
 次いで、第2のステップとして、更に金属製の円柱にガスバリアー性フィルムを、ガスバリアー層形成面が外側になるようにして巻き付けた後、1分間放置する屈曲性試験を施した。
 上記各処理を施したガスバリアー性フィルムについて、上記と同様の方法で、水蒸気透過係数(WVTR)の測定及び密着性の評価を行った。
 なお、屈曲試験における曲率半径Rは棒の直径の1/2に相当するが、ガスバリアー性フィルムの巻き数が多くなる場合には、フィルムを巻き付けた時の直径の1/2を曲率半径Rとした。Rは、8mmにて屈曲性試験を行った。
 以上により得られた結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に記載の結果より明らかなように、本発明で規定する構成からなるガスバリアー性フィルムは、比較例に対し、ガスバリアー性(水蒸気遮断性)及び密着性に優れ、高温高湿環境下で保管した後、屈曲処理を施しても、形成したガスバリアー層のひび割れや膜剥がれが生じることなく、すぐれたガスバリアー性及び密着性を維持しており、耐久性に優れていることが分かる。
 実施例2
 《有機EL素子の作製》
 実施例1で作製したガスバリアー性フィルムを用いて、電子デバイスの一例として、下記の方法に従って、有機EL素子1~28を作製した。
 〔有機EL素子1の作製〕
 (第1電極層の形成)
 実施例1で作製したガスバリアー性フィルム1のガスバリアー層上に、厚さ150nmのITO膜(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターンは、発光面積が50mm平方になるようなパターンとして形成した。
 (正孔輸送層の形成)
 第1電極層を形成したガスバリアー性フィルム1の第1電極層上に、以下に記載の正孔輸送層形成用塗布液を用い、25℃、相対湿度50%の環境下で、押出し塗布機で塗布し、下記の条件で乾燥及び加熱処理を行って、正孔輸送層を形成した。なお、正孔輸送層形成用塗布液は、乾燥後の厚さが50nとなる条件で塗布した。
 正孔輸送層形成用塗布液を塗布する前に、ガスバリアー性フィルム1の両面に対し洗浄表面改質処理として、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。
 〈正孔輸送層形成用塗布液の調製〉
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を、純水で65%、メタノール5%で希釈した溶液を、正孔輸送層形成用塗布液として準備した。
 〈乾燥および加熱処理条件〉
 正孔輸送層形成用塗布液を塗布した後、正孔輸送層形成面に対し、高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、加熱処理装置を用い、温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
 (発光層の形成)
 上記で形成した正孔輸送層上に、以下に示す白色発光層形成用塗布液を、下記の条件により押出し塗布機で塗布した後、下記の条件で乾燥および加熱処理を行い、発光層を形成した。白色発光層形成用塗布液は、乾燥後の厚さが40nmとなる条件で塗布した。
 〈白色発光層形成用塗布液の調製〉
 ホスト材料として、下記に示す化合物H-Aを1.0gと、第1のドーパント材料として下記化合物D-Aを100mgと、第2のドーパント材料として下記化合物D-Bを0.2mgと、第3のドーパント材料として下記化合物D-Cを0.2mgとを、100gのトルエンに溶解して、白色発光層形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000004
 〈塗布条件〉
 塗布工程としては、窒素ガス濃度99%以上の雰囲気下で、塗布温度を25℃、塗布速度1m/minで行った。
 〈乾燥および加熱処理条件〉
 白色発光層形成用塗布液を、正孔輸送層上に塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
 (電子輸送層の形成)
 上記で形成した発光層上に、以下に示す電子輸送層形成用塗布液を下記の条件により押出し塗布機で塗布した後、下記の条件で乾燥および加熱処理し、電子輸送層を形成した。電子輸送層形成用塗布液は、乾燥後の厚さが30nmとなる条件で塗布した。
 〈電子輸送層形成用塗布液の調製〉
 電子輸送層形成用塗布液は、下記化合物E-Aを、2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し、0.5質量%溶液として調製した。
Figure JPOXMLDOC01-appb-C000005
 〈塗布条件〉
 塗布工程は、窒素ガス濃度99%以上の雰囲気下で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
 〈乾燥および加熱処理条件〉
 電子輸送層形成用塗布液を、発光層上に塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。
 (電子注入層の形成)
 上記形成した電子輸送層上に、下記の方法に従って、電子注入層を形成した。
 電子輸送層まで形成したガスバリアー性フィルム1を減圧チャンバーに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバー内のタンタル製蒸着ボートに装填しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
 (第2電極27の形成)
 上記で形成した電子注入層上であって、第1電極の取り出し電極になる部分を除く部分に、5×10-4Paの真空下で、第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法により、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ100nmの第2電極を積層した。
 (裁断)
 以上のように、第2電極まで形成した積層体を、再び窒素雰囲気に移動し、規定の大きさに、紫外線レーザーを用いて裁断し、有機EL素子1を作製した。
 (電極リード接続)
 作製した有機EL素子1に、ソニーケミカル&インフォメーションデバイス株式会社製の異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理メNiAuッキ)を接続した。
 圧着条件:温度170℃(別途熱伝対を用いて測定したACF温度140℃)、圧力2MPa、10秒で圧着を行った。
 (封止)
 封止部材として、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)ものを用意した。
 用意した封止部材のアルミニウム面に、熱硬化性接着剤を、ディスペンサーを使用してアルミ箔の接着面(つや面)に沿って厚み20μmで均一に塗布し、接着剤層を形成した。
 このとき、熱硬化性接着剤としては、下記の(A)~(C)を混合したエポキシ系接着剤を用いた。
 (A)ビスフェノールAジグリシジルエーテル(DGEBA)
 (B)ジシアンジアミド(DICY)
 (C)エポキシアダクト系硬化促進剤
 封止部材を、取り出し電極および電極リードの接合部を覆うようにして密着・配置して、圧着ローラーを用いて圧着条件、圧着ローラー温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した。
 〔有機EL素子2~28の作製〕
 上記有機EL素子1の作製において、ガスバリアー性フィルム1に代えて、実施例1で作製したガスバリアー性フィルム2~28を用いた以外は同様にして、有機EL素子2~28を作製した。
 《有機EL素子の評価》
 上記作製した有機EL素子1~28について、下記の方法に従って、耐久性の評価を行った。
 〔耐久性の評価〕
 (加速劣化処理)
 上記作製した各有機EL素子を、60℃、90%RHの環境下で400時間の加速劣化処理を施した後、加速劣化処理を施していない有機EL素子と共に、下記に記載の方法に従って、黒点に関する評価を行った。
 (黒点数の測定及び耐久性の判定)
 加速劣化処理を施した有機EL素子及び加速劣化処理を施していない有機EL素子(ブランク試料)に対し、それぞれ1mA/cmの電流を印加し、24時間連続発光させた後、100倍のマイクロスコープ(株式会社モリテックス製MS-804、レンズMP-ZE25-200)でパネルの一部分を拡大し、撮影を行った。撮影画像を2mm四方に分割し、黒点の発生面積比率を求め、下式に従って素子劣化耐性率を算出した。
 次いで、求めた素子劣化耐性率を基に、下記の基準に従って耐久性を判定した。評価ランクが、◎及び○であれば、実用上好ましい特性であると判定した。
 素子劣化耐性率=(加速劣化処理を施していない素子で発生した黒点の面積/加速劣化処理を施した素子で発生した黒点の面積)×100(%)
 ◎:素子劣化耐性率が、90%以上である
 ○:素子劣化耐性率が、75%以上、90%未満である
 △:素子劣化耐性率が、60%以上、75%未満である
 △×:素子劣化耐性率が、45%以上、60%未満である
 ×:素子劣化耐性率が、45%未満である
 以上により得られた結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000006
 表3に記載の結果より明らかなように、本発明のガスバリアー性フィルムを備えた有機EL素子は、素子劣化耐性率が60%以上であり、良好な耐久性を備えていることが分かる。一方、比較例のガスバリアー性フィルムを備えた素子は、素子劣化耐性率が60%未満であった。
 したがって、本発明の実施例のガスバリアー性フィルムは、電子デバイスである有機EL素子の封止フィルムとして用いることが可能な非常に優れたガスバリアー性を有していることが分かる。
 本発明のガスバリアー性フィルムの製造方法により、屋外使用のような高温高湿の使用環境下でも電子デバイス用途に必要なガスバリアー性を有し、かつフレキシブル性(屈曲性)及び密着性に優れたガスバリアー性フィルムを得ることができ、有機エレクトロルミネッセンスパネル、有機エレクトロルミネッセンス素子、有機光電変換素子、液晶表示素子等の電子デバイスの封止部材として好適に利用できる。
 1 ガスバリアー性フィルム
 2 樹脂基材
 2 応力吸収層
 3 導電層
 4 ガスバリアー層
 5 第2のガスバリアー層
 6 透明電極
 7 有機EL素子(電子デバイス本体)
 8 接着剤層
 9 対向フィルム
 P 有機EL素子(電子デバイス)
 11 送り出しローラー
 21、22、23、24 搬送ローラー
 31、32 成膜ローラー
 41 ガス供給管
 51 プラズマ発生用電源
 61、62 磁場発生装置
 71 巻き取りローラー
 A 炭素分布曲線
 B ケイ素分布曲線
 C 酸素分布曲線
 D 酸素炭素分布曲線

Claims (7)

  1.  樹脂基材の一方の面上に、炭素原子、ケイ素原子及び酸素原子を含有するガスバリアー層を備え、当該樹脂基材のガスバリアー層を有する面とは反対側の面上に導電層を有するガスバリアー性フィルムの製造方法であって、
     有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により、前記樹脂基材の一方の面上に前記ガスバリアー層を形成し、前記樹脂基材のガスバリアー層を有する面とは反対側の面上に、23℃、50%RHの環境下における表面比抵抗値が1×10~1×1010Ω/□の範囲内にある導電層を形成することを特徴とするガスバリアー性フィルムの製造方法。
  2.  前記ガスバリアー層が、下記(1)~(4)の全てを満たす条件で形成することを特徴とする請求項1に記載のガスバリアー性フィルムの製造方法。
     (1)ガスバリアー層の炭素原子比率が、膜厚方向において、前記ガスバリアー層の表面から層厚の89%までの距離範囲内では、前記表面からの距離に対応して連続的に変化する。
     (2)ガスバリアー層の炭素原子比率の最大値が、膜厚方向において、前記ガスバリアー層の表面から層厚の89%までの距離範囲内では、20at%未満である。
     (3)ガスバリアー層の炭素原子比率が、膜厚方向において、前記ガスバリアー層の表面から層厚の90~95%までの距離範囲内(樹脂基材に隣接する面から5~10%の範囲内)では、連続的に増加する。
     (4)ガスバリアー層の炭素原子比率の最大値が、膜厚方向において、前記ガスバリアー層の表面から層厚の90~95%までの距離範囲内(樹脂基材に隣接する面から5~10%の範囲内)では、20at%以上である。
  3.  前記導電層が、樹脂と金属酸化物を含有することを特徴とする請求項1又は請求項2に記載のガスバリアー性フィルムの製造方法。
  4.  前記ガスバリアー層の上に、ポリシラザン含有液を塗布及び乾燥し、形成した塗膜に波長200nm以下の真空紫外光を照射して改質処理を施して、第2のガスバリアー層を形成することを特徴とする請求項1から請求項3までのいずれか一項に記載のガスバリアー性フィルムの製造方法。
  5.  樹脂基材の一方の面上に、炭素原子、ケイ素原子及び酸素原子を含有するガスバリアー層を備え、該樹脂基材のガスバリアー層を有する面とは反対側の面上に導電層を有するガスバリアー性フィルムであって、
     前記樹脂基材の一方の面上に、有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成された前記ガスバリアー層を有し、前記樹脂基材のガスバリアー層を有する面とは反対側の面上に、23℃、50%RHの環境下における表面比抵抗値が1×10~1×1010Ω/□の範囲内にある導電層を有することを特徴とするガスバリアー性フィルム。
  6.  下記(1)~(4)の全ての条件を満たすことを特徴とする第5項に記載のガスバリアー性フィルム。
     (1)前記ガスバリアー層の炭素原子比率が、膜厚方向において、前記ガスバリアー層の表面から層厚の89%までの距離範囲内では、前記表面からの距離に対応して連続的に変化する。
     (2)ガスバリアー層の炭素原子比率の最大値が、膜厚方向において、前記ガスバリアー層の表面から層厚の89%までの距離範囲内では、20at%未満である。
     (3)ガスバリアー層の炭素原子比率が、膜厚方向において、前記ガスバリアー層の表面から層厚の90~95%までの距離範囲内(樹脂基材に隣接する面から5~10%の範囲内)では、連続的に増加する。
     (4)ガスバリアー層の炭素原子比率の最大値が、膜厚方向において、前記ガスバリアー層の表面から層厚の90~95%までの距離範囲内(樹脂基材に隣接する面から5~10%の範囲内)では、20at%以上である。
  7.  請求項5または請求項6に記載のガスバリアー性フィルムを具備したことを特徴とする電子デバイス。
PCT/JP2013/077788 2012-10-19 2013-10-11 ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス WO2014061597A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/436,231 US20150247241A1 (en) 2012-10-19 2013-10-11 Method for producing gas barrier film, gas barrier film, and electronic device
CN201380054591.4A CN104736336B (zh) 2012-10-19 2013-10-11 气体阻隔性膜的制造方法、气体阻隔性膜和电子设备
JP2014542112A JP6156388B2 (ja) 2012-10-19 2013-10-11 ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-231372 2012-10-19
JP2012231372 2012-10-19

Publications (1)

Publication Number Publication Date
WO2014061597A1 true WO2014061597A1 (ja) 2014-04-24

Family

ID=50488163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077788 WO2014061597A1 (ja) 2012-10-19 2013-10-11 ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス

Country Status (4)

Country Link
US (1) US20150247241A1 (ja)
JP (1) JP6156388B2 (ja)
CN (1) CN104736336B (ja)
WO (1) WO2014061597A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147221A1 (ja) * 2014-03-27 2015-10-01 コニカミノルタ株式会社 ガスバリア性フィルムおよびガスバリア性フィルムの製造方法
JP2016087951A (ja) * 2014-11-06 2016-05-23 コニカミノルタ株式会社 ガスバリアーフィルム、ガスバリアーフィルムの製造方法及び電子デバイス
JP2017074711A (ja) * 2015-10-15 2017-04-20 コニカミノルタ株式会社 ガスバリアー性フィルム及びガスバリアー性フィルムの製造方法
WO2017099239A1 (ja) * 2015-12-11 2017-06-15 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569685B2 (ja) * 2014-11-21 2019-09-04 コニカミノルタ株式会社 成膜装置及びガスバリアーフィルムの製造方法
KR102327147B1 (ko) * 2014-12-26 2021-11-16 삼성전자주식회사 표시장치용 윈도우 및 이를 포함하는 표시 장치
WO2017086035A1 (ja) * 2015-11-18 2017-05-26 コニカミノルタ株式会社 ガスバリアー性フィルム
WO2017086034A1 (ja) * 2015-11-18 2017-05-26 コニカミノルタ株式会社 ガスバリアー性フィルム、照明装置及び表示装置
JP6691803B2 (ja) * 2016-03-31 2020-05-13 住友化学株式会社 積層フィルム及びその製造方法
JP7133904B2 (ja) * 2016-03-31 2022-09-09 住友化学株式会社 積層フィルム及びその製造方法
WO2017188947A1 (en) * 2016-04-27 2017-11-02 Applied Materials, Inc. System for atomic layer deposition on flexible substrates and method for the same
CN109415805B (zh) * 2016-06-28 2020-10-16 柯尼卡美能达株式会社 气体阻隔性膜的制造方法
US11389825B2 (en) * 2017-08-23 2022-07-19 Jiangsu Favored Nanotechnology Co., LTD Methods for preparing nano-protective coating with a modulation structure
US11185883B2 (en) * 2017-08-23 2021-11-30 Jiangsu Favored Nanotechnology Co., LTD Methods for preparing nano-protective coating
US10672652B2 (en) * 2018-06-29 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Gradient atomic layer deposition
CN109468607B (zh) * 2018-11-27 2020-12-18 河北大学 一种气体阻隔薄膜的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253590A (ja) * 2006-03-27 2007-10-04 Fujifilm Corp ガスバリア性フィルム、基材フィルムおよび有機エレクトロルミネッセンス素子
JP2010006039A (ja) * 2007-09-05 2010-01-14 Fujifilm Corp ガスバリアフィルムおよびガスバリアフィルムを用いて表示素子を封止する方法。
JP2012081631A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 積層フィルム
JP2012082464A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd プラズマcvd成膜装置、成膜方法、ガスバリア性積層フィルム
JP2012082467A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd プラズマcvd成膜装置、成膜方法
JP2012097291A (ja) * 2010-10-29 2012-05-24 Kobe Steel Ltd プラズマcvd装置
JP2012126969A (ja) * 2010-12-16 2012-07-05 Kobe Steel Ltd プラズマcvd装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3054235B2 (ja) * 1991-06-05 2000-06-19 株式会社リコー 液晶表示用電極基板
JP3666222B2 (ja) * 1998-01-13 2005-06-29 三菱化学株式会社 プラスチック積層体
US6480250B1 (en) * 1999-06-02 2002-11-12 Fuji Photo Film Co., Ltd. Low-reflection transparent conductive multi layer film having at least one transparent protective layer having anti-smudge properties
JP3970022B2 (ja) * 2001-12-27 2007-09-05 帝人株式会社 ガスバリア性透明フィルム
JP2004103292A (ja) * 2002-09-05 2004-04-02 Fuji Photo Film Co Ltd 複層フィルム
JP4419146B2 (ja) * 2005-06-13 2010-02-24 日東電工株式会社 透明導電性積層体
WO2008121478A2 (en) * 2007-03-28 2008-10-09 Dow Corning Corporation Roll-to-roll plasma enhanced chemical vapor deposition method of barrier layers comprising silicon and carbon
KR101718560B1 (ko) * 2009-04-09 2017-03-21 스미또모 가가꾸 가부시키가이샤 가스 배리어성 적층 필름
CN202319138U (zh) * 2011-07-24 2012-07-11 张克忠 一种高阻隔复合膜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253590A (ja) * 2006-03-27 2007-10-04 Fujifilm Corp ガスバリア性フィルム、基材フィルムおよび有機エレクトロルミネッセンス素子
JP2010006039A (ja) * 2007-09-05 2010-01-14 Fujifilm Corp ガスバリアフィルムおよびガスバリアフィルムを用いて表示素子を封止する方法。
JP2012081631A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 積層フィルム
JP2012082464A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd プラズマcvd成膜装置、成膜方法、ガスバリア性積層フィルム
JP2012082467A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd プラズマcvd成膜装置、成膜方法
JP2012097291A (ja) * 2010-10-29 2012-05-24 Kobe Steel Ltd プラズマcvd装置
JP2012126969A (ja) * 2010-12-16 2012-07-05 Kobe Steel Ltd プラズマcvd装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147221A1 (ja) * 2014-03-27 2015-10-01 コニカミノルタ株式会社 ガスバリア性フィルムおよびガスバリア性フィルムの製造方法
JP2016087951A (ja) * 2014-11-06 2016-05-23 コニカミノルタ株式会社 ガスバリアーフィルム、ガスバリアーフィルムの製造方法及び電子デバイス
JP2017074711A (ja) * 2015-10-15 2017-04-20 コニカミノルタ株式会社 ガスバリアー性フィルム及びガスバリアー性フィルムの製造方法
WO2017099239A1 (ja) * 2015-12-11 2017-06-15 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法
JPWO2017099239A1 (ja) * 2015-12-11 2018-10-04 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法

Also Published As

Publication number Publication date
CN104736336A (zh) 2015-06-24
JPWO2014061597A1 (ja) 2016-09-05
CN104736336B (zh) 2016-08-24
JP6156388B2 (ja) 2017-07-05
US20150247241A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP6156388B2 (ja) ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス
JP5862707B2 (ja) ガスバリアーフィルム、素子デバイス及びガスバリアーフィルムの製造方法
WO2014073438A1 (ja) 電子デバイス及びガスバリアー性フィルムの製造方法
JP5533585B2 (ja) ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器
WO2014163062A1 (ja) ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス
TWI733786B (zh) 積層膜及其製造方法
JP5949432B2 (ja) ガスバリアーフィルム及びガスバリアーフィルムの製造方法
WO2016009801A1 (ja) ガスバリア性フィルムおよび電子デバイス
JP2015131473A (ja) ガスバリア性フィルム、およびこれを用いた電子デバイス
WO2014141821A1 (ja) 電子デバイス及び電子デバイスの製造方法
JP5892030B2 (ja) ガスバリアーフィルムの製造方法及びガスバリアーフィルム
JP6319095B2 (ja) 有機エレクトロルミネッセンスデバイスの製造方法
JP6520932B2 (ja) ガスバリア性フィルム
JPWO2015178069A6 (ja) ガスバリア性フィルム
JP5552979B2 (ja) ガスバリアフィルムの製造方法、該ガスバリアフィルムを有する有機電子デバイス
JP5966937B2 (ja) ガスバリアーフィルム及びガスバリアーフィルムの製造方法
WO2015025782A1 (ja) ガスバリアーフィルムの製造装置及びガスバリアーフィルムの製造方法
JP2016087951A (ja) ガスバリアーフィルム、ガスバリアーフィルムの製造方法及び電子デバイス
WO2015025783A1 (ja) ガスバリアーフィルムの製造装置及びガスバリアーフィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014542112

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14436231

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846701

Country of ref document: EP

Kind code of ref document: A1