WO2014059789A1 - 天冬氨酸激酶iii突变体及其宿主细胞和应用 - Google Patents

天冬氨酸激酶iii突变体及其宿主细胞和应用 Download PDF

Info

Publication number
WO2014059789A1
WO2014059789A1 PCT/CN2013/075751 CN2013075751W WO2014059789A1 WO 2014059789 A1 WO2014059789 A1 WO 2014059789A1 CN 2013075751 W CN2013075751 W CN 2013075751W WO 2014059789 A1 WO2014059789 A1 WO 2014059789A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
aspartokinase
lysine
acid sequence
host cell
Prior art date
Application number
PCT/CN2013/075751
Other languages
English (en)
French (fr)
Inventor
岳国君
孙际宾
郑平
刘娇
李庆刚
夏令和
周永生
罗虎
周勇
满云
卢宗梅
马延和
Original Assignee
中粮生物化学(安徽)股份有限公司
中国科学院天津工业生物技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中粮生物化学(安徽)股份有限公司, 中国科学院天津工业生物技术研究所 filed Critical 中粮生物化学(安徽)股份有限公司
Priority to CA2888606A priority Critical patent/CA2888606C/en
Priority to JP2015537111A priority patent/JP6091629B2/ja
Priority to EP13846350.0A priority patent/EP2910567B1/en
Priority to US14/437,115 priority patent/US9896734B2/en
Publication of WO2014059789A1 publication Critical patent/WO2014059789A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02004Aspartate kinase (2.7.2.4)

Definitions

  • the invention relates to the field of biotechnology. Specifically, the present invention relates to a mutant of aspartokinase ⁇ (abbreviated as AK III, also known as LysC) and its use.
  • AK III aspartokinase ⁇
  • L-lysine is the most important essential amino acid in human and animal nutrition and plays an important role in the food industry, aquaculture and the word industry. In recent years, its market demand has steadily increased, and the sales volume in the world market has exceeded 100 million tons. Currently, lysine is mainly produced by microbial fermentation.
  • the L-lysine synthesis pathway is based on aspartic acid, including two steps in common with amino acids such as methionine and threonine.
  • the L-lysine biosynthetic pathway undergoes a nine-step enzymatic process (shown below).
  • the first step of aspartate kinase catalyzing the biosynthesis of lysine is the rate-limiting step of lysine production, and its viability determines the proportion of metabolic flux to the L-lysine synthesis pathway.
  • AK I aspartokinase I
  • AK II aspartokinase II
  • metL metL gene
  • aspartate Acid kinase ⁇ ⁇ ⁇ , encoded by the lysC gene, the nucleotide sequence of which encodes the gene is shown in SEQ ID NO: 1, and its amino acid sequence is shown in SEQ ID NO: 2).
  • AK I and AK II are bifunctional enzymes, both of which also have high serine dehydrogenase activity.
  • AK I is inhibited by the feedback of threonine and lysine at the level of enzyme activity
  • AK III is inhibited by the feedback of the final product lysine at the level of enzyme activity
  • AK II is not subject to feedback inhibition by the aspartate family of amino acids at the level of enzyme activity but is tightly regulated by transcription levels (X Dong, PJ Quinn, X Wang. ( 201 1). " Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production Of L-threonine.,, Biotechnology advances ).
  • Escherichia coli has been transformed by many companies for the industrial production of lysine. Since the aspartokinase activity is tightly regulated by lysine, releasing the feedback inhibition of aspartate kinase by lysine is the only way to develop a high-yield lysine strain.
  • DuPont obtained two AK III mutants that de-repressed feedback by random mutation screening, replacing 352 threonine with isoleucine (T352I) and 318 methionine with isoleucine (M318I) ) (EP1394257). Ajinomoto has also obtained an indole mutant that partially relieves lysine feedback inhibition (US005661012, US2010190216, US2010173368).
  • the present invention provides an aspartokinase, wherein the amino acid sequence of the aspartokinase is non-winter in the amino acid residue corresponding to position 340 of the amino acid sequence shown by SEQ ID NO: 2. Amino acid.
  • the aspartokinase is derived from a bacterium belonging to the genus Escherichia, preferably from Escherichia coli.
  • sequence defined by a) is passed through one or several amino acid residues, preferably 1-20, more preferably 1-15, more preferably 1-10, more preferably 1-3, most preferably 1 amino acid.
  • amino acid sequence of the aspartokinase at amino acid residue corresponding to position 340 of the amino acid sequence set forth in SEQ ID NO: 2 is selected from at least one of the following amino acids: Pro, Ala, Arg, Lys, Gln, Asn, Val, lie, Leu, Met and Phe.
  • amino acid sequence of the aspartokinase is selected from Pro, Arg or Val at the amino acid residue corresponding to position 340 of the amino acid sequence shown in SEQ ID NO: 2.
  • amino acid sequence of the aspartokinase is set forth in SEQ ID NO: 4, 6 or 8.
  • the aspartokinase relieves lysine feedback inhibition.
  • the aspartokinase retains at least 20% of the activity in the presence of a concentration of 10 mM L-lysine; preferably, from 30% to 40% of the activity; More preferably, from 50% to 60% or more; more preferably from 70% to 80% or more; most preferably, more than 90% of activity.
  • the aspartokinase retains at least 20% of the activity of the aspartokinase in the presence of a concentration of L-lysine at a concentration of 20 mM; preferably, 30% More than 40% active; more preferably, 50% to 60% or more; more preferably, 70% or more of activity; most preferably, more than 80% of activity.
  • the aspartokinase retains at least 20% of the activity of the aspartokinase in the presence of a concentration of L-lysine at a concentration of 100 mM; preferably, 30 %-40% The above activity; more preferably, 50% to 60% or more; more preferably, 70% or more of activity; most preferably, 80% or more of activity.
  • the invention provides a gene encoding an aspartokinase of the first aspect of the invention.
  • the nucleotide sequence of the gene is set forth in SEQ ID NO: 3, 5 or 7.
  • the invention provides a vector comprising the gene encoding the second aspect of the invention.
  • the invention provides a host cell comprising the coding gene of the second aspect of the invention.
  • amino acid sequence of the aspartokinase at amino acid residue corresponding to position 340 of the amino acid sequence set forth in SEQ ID NO: 2 is selected from at least one of the following amino acids: Pro, Ala, Arg, Lys, Gln, Asn, Val, Ile, Leu, Met and Phe.
  • amino acid sequence of the aspartokinase is selected from Pro, Arg or Val at the amino acid residue corresponding to position 340 of the amino acid sequence shown in SEQ ID NO: 2.
  • sequence comprising a defined by one or more amino acid residues, preferably 1-20, more preferably 1 -15, more preferably 1 - 10, more preferably 1-3, most preferably 1 amino acid residue
  • nucleotide sequence of the gene is as shown in SEQ ID NO: 3, 5 or 7.
  • the host cell is from the genus Escherichia, Corynebacterium, Brevibacterium sp., Bacillus, Serratia ( Serratia) or Vibrio.
  • the host cell is Escherichia coli (E. coli) or Corynebacterium glutamicum.
  • the host cell chromosome has the coding gene of the second aspect of the invention integrated or the vector of the third aspect of the invention.
  • the host cell expresses an aspartokinase of the invention.
  • one or more genes selected from the group consisting of the following are weakened or reduced in expression:
  • c a pta gene encoding a phosphoacetyltransferase
  • d an ldhA gene encoding a lactate dehydrogenase
  • thrA gene encoding an aspartokinase 1 / homoserine dehydrogenase I bifunctional enzyme
  • thrB gene encoding a homoserine kinase
  • the cadA gene encoding a lysine decarboxylase.
  • one or more genes selected from the group consisting of the following are enhanced or overexpressed:
  • a dapA gene encoding a dihydrodipyridine synthase that inhibits lysine feedback inhibition
  • dapD encoding tetrahydropyridine dicarboxylic acid succinylase and dapE encoding succinyl diaminopimelate deacylase
  • the invention provides the use of a host cell of the fourth aspect of the invention for the production of L-amino acids.
  • the present invention provides a method of producing an L-amino acid, the method comprising the steps of: a. cultivating the host cell of claim 4 to produce an L-amino acid;
  • the method is carried out at 30-45 ° C, more preferably at 37 ° C.
  • the present invention provides the use of the aspartokinase of the first aspect of the invention for producing an L-amino acid.
  • the L-amino acid is L-lysine, L-threonine, L-methionine, L-isoleucine or L - Proline.
  • the present invention provides a method for preparing L-lysine, L-threonine, L-methionine, L-isoleucine or L-valine, the method comprising the following steps :
  • the use of the aspartokinase (EC 2.7.2.4) of the first aspect of the invention catalyzes the production of L-lysine, L-threonine, L-methionine from L-aspartate , L-isoleucine or L-valine in the process of Reaction, thereby obtaining L-lysine, L-threonine, L-methionine, L-isoleucine or L-valine,
  • the invention provides a method of preparing the aspartokinase of the first aspect of the invention, the method comprising the steps of:
  • the coding sequence obtained by a is directly transfected into a suitable host cell or introduced into a suitable host cell via a vector; c the host cell obtained by culturing b;
  • step c isolating the aspartokinase produced by said host cell from the culture system obtained in step c; and e. determining the ability of said aspartate kinase to release lysine feedback inhibition.
  • the amino acid sequence of the aspartokinase at position 340 corresponding to the amino acid sequence of SEQ ID NO: 2 is selected from at least one of the following amino acids: Pro, Ala, Arg, Lys, Gln, Asn, Val, Ile, Leu, Met and Phe.
  • the amino acid sequence of the aspartokinase is selected from Pro, Arg or Val at the amino acid residue corresponding to position 340 of the amino acid sequence shown in SEQ ID NO: 2.
  • the invention provides a method of modifying wild-type aspartate kinase to release lysine feedback inhibition, the method comprising the steps of:
  • c the coding sequence obtained by b is directly transfected into a suitable host cell or introduced into a suitable host cell via a vector; d. a host cell obtained by culturing c;
  • step d isolating the aspartokinase produced by the host cell from the culture system obtained in step d; and f. determining the ability of the aspartokinase to release lysine feedback inhibition.
  • the amino acid sequence of the aspartokinase at position 340 corresponding to the amino acid sequence of SEQ ID NO: 2 is selected from at least one of the following amino acids: Pro, Ala, Arg, Lys, Gln, Asn, Val, Ile, Leu, Met and Phe.
  • the amino acid sequence of the aspartokinase is selected from the group consisting of Pro, Arg or Val at amino acid residue corresponding to position 340 of the amino acid sequence set forth in SEQ ID NO: 2.
  • Figure 1 compares the relative enzyme activities of the crude enzyme solution of the AK III mutant of the present invention and wild type AK III.
  • Figure 2 shows the pure enzyme relative enzyme activity of the aspartokinase (D340R) of the present invention containing 6-His Tag and the mutants of I418T, F413A, G401K and Y420A and wild type AK III. detailed description
  • aspartate kinase of the invention and “polypeptide of the invention” as used herein are used interchangeably and have the meaning as commonly understood by one of ordinary skill in the art.
  • the aspartokinase of the present invention has an activity of transferring a phosphate group to aspartic acid.
  • the amino acid sequence of the aspartokinase of the present invention is a non-aspartic acid at the amino acid residue corresponding to position 340 of the amino acid sequence shown by SEQ ID NO: 2.
  • amino acid sequence of the aspartokinase of the present invention at amino acid residue corresponding to position 340 of the amino acid sequence set forth in SEQ ID NO: 2 is selected from at least one of the following amino acids: Pro, Ala, Arg, Lys, Gln, Asn, Val, lie, Leu, Met and Phe.
  • amino acid sequence of the aspartokinase of the present invention is selected from Pro, Arg or Val at the amino acid residue corresponding to position 340 of the amino acid sequence shown by SEQ ID NO: 2.
  • the aspartokinase of the invention is:
  • the aspartokinase of the invention is effectively depleted in the presence of a concentration of lysine above 10 mM, preferably 20 mM, more preferably in the presence of lysine at a concentration above 100 mM Lysine feedback inhibition.
  • polypeptide of the present invention can further mutate on the basis of the non-aspartic acid amino acid residue corresponding to position 340 of the amino acid sequence shown by SEQ ID NO: 2, and still have the aspartokinase of the present invention. Function and activity.
  • the aspartokinase (a) of the present invention has an amino acid sequence as shown in SEQ ID NO: 4, 6 or 8; or (b) comprises a sequence defined by (a) via one or more amino acid residues, preferably a sequence formed by substitution, deletion or addition of 1-20, more preferably 1 to 15, more preferably 1-10, more preferably 1-3, most preferably 1 amino acid residues, and having substantially (a) A polypeptide derived from (a) that defines the function of the polypeptide.
  • the aspartokinase of the present invention comprises up to 20, preferably up to 10, compared to an aspartokinase having an amino acid sequence such as SEQ ID NO: 4, 6 or 8. Further preferably up to 3, more preferably up to 2, optimally at most 1 amino acid is replaced by a similar or similar amino acid. Mutants of these conservative variations can be produced by, for example, performing amino acid substitutions as shown in the table below.
  • the invention also provides polynucleotides encoding the polypeptides of the invention.
  • polynucleotide encoding a polypeptide may be a polynucleotide comprising the polypeptide, or a polynucleotide further comprising additional coding and/or non-coding sequences. Therefore, the words “including”, “having” or “including” as used herein include “including”, “consisting of”, “consisting essentially of”, and “consisting of”;”mainly by... ... constitutes a subordinate concept of “consisting of", “consisting of” and “consisting of” with “containing", “having” or “including”. Amino acid residue corresponding to position 340 of the amino acid sequence shown in SEQ ID NO: 2.
  • corresponding to means a position in which one sequence corresponds to a specified position in another sequence after alignment of homology or sequence identity by two sequences. Therefore, in the case of "amino acid residue at position 340 corresponding to the amino acid sequence shown in SEQ ID NO: 2", if a 6-His tag is added to one end of the amino acid sequence shown in SEQ ID NO: 2, the resulting mutation The 340th position in the body corresponding to the amino acid sequence shown in SEQ ID NO: 2 may be the 346th position; and if a few amino acid residues in the amino acid sequence shown in SEQ ID NO: 2 are deleted, the resulting mutant corresponds to The 340th position of the amino acid sequence shown in SEQ ID NO: 2 may be the 338th position, and the like.
  • the resulting mutant corresponds to SEQ ID NO:
  • the 340th position of the amino acid sequence shown by 2 may be the 320th position.
  • the homology or sequence identity may be 80% or more, preferably 90% or more, more preferably 95% to 98%, and most preferably 99% or more.
  • the preferred method of determining identity is to obtain the largest match between the sequences tested.
  • the method of determining identity is compiled in a publicly available computer program.
  • Preferred computer program methods for determining identity between two sequences include, but are not limited to: GCG packages (Devereux, J. et al., 1984), BLASTP, BLASTN, and FASTA (Altschul, S, F. et al., 1990).
  • the BLASTX program is available to the public from NCBI and other sources (BLAST Handbook, Altschul, S. et al, NCBI NLM NIH Bethesda, Md. 20894; Altschul, S. et al, 1990).
  • the well-known Smith Waterman algorithm can also be used to determine identity. Host cell
  • host cell as used herein has the meaning commonly understood by one of ordinary skill in the art, i.e., a host cell capable of producing an aspartokinase of the invention.
  • the present invention can utilize any host cell as long as the aspartokinase of the present invention can be expressed in the host cell.
  • the present invention utilizes a host cell comprising an exogenous aspartic protease encoding gene of the present invention, preferably an AK-deficient E. coli strain.
  • a host cell comprising an exogenous aspartic protease encoding gene of the present invention, preferably an AK-deficient E. coli strain.
  • the gene encoding the aspartokinase contained in the host cell of the present invention may be not only a recombinant vector or a plasmid, but also a gene encoding a gene integrated with the enzyme on the genome, BP, an enzyme integrated in the genome.
  • the coding gene may be obtained by homologous recombination by transfer into a plasmid, or may be obtained by site-directed mutagenesis of the corresponding site on the genome.
  • the host cell of the present invention is capable of efficiently producing L-amino acids and has anti-feedback inhibition ability against L-lysine.
  • the host cell of the invention is capable of producing L-lysine, L-threonine, L-methionine, L-isoleucine or L-valine.
  • amino acid sequence of the aspartokinase corresponds to SEQ ID NO:
  • the amino acid residue at position 340 of the amino acid sequence of 2 is selected from at least one of the following amino acids: Pro, Ala, Arg, Lys, Gln, Asn, Val, Ile, Leu, Met and Phe.
  • amino acid sequence of the aspartokinase is selected from Pro, Arg or Val at amino acid residue corresponding to position 340 of the amino acid sequence set forth in SEQ ID NO: 2.
  • the nucleotide sequence of the gene is set forth in SEQ ID NO: 3, 5 or 7.
  • the host cell is from the genus Escherichia, Corynebacterium, Brevibacterium sp., Bacillus
  • the host cell is E. coli or Corynebacterium glutamicum.
  • one or more genes selected from the group consisting of the following are weakened or Reduced expression:
  • thrA gene encoding an aspartokinase 1 / homoserine dehydrogenase I bifunctional enzyme
  • the cadA gene encoding a lysine decarboxylase.
  • dapA gene encoding a dihydrodipyridine synthase that inhibits lysine feedback inhibition (EP1477564);
  • dapB gene encoding dihydrodipyridine dicarboxylic acid reductase (EP1253195);
  • dapD encoding tetrahydropyridine dicarboxylic acid succinylase and dapE encoding succinyl diaminopimelate deacylase (EP1253195);
  • the present invention utilizes a mutant strain in which an aspartokinase is inactivated to detect the enzyme activity of the aspartokinase mutant of the present invention and the ability to release lysine feedback inhibition.
  • an aspartokinase is inactivated to detect the enzyme activity of the aspartokinase mutant of the present invention and the ability to release lysine feedback inhibition.
  • a natural strain that is not inactivated by its own aspartokinase can also be used to detect the enzymatic activity of the aspartokinase mutant of the present invention and to release lysine feedback, provided that the control is set. The ability to suppress.
  • Application of the polypeptide of the present invention or the host cell of the present invention is encoding nicotinamide adenine dinucleotide transhydrogenase (EP1253195).
  • polypeptide of the present invention can be used as an aspartokinase to catalyze the following reaction in the synthesis of L-lysine from L-aspartic acid, thereby obtaining L-lysine: H 3 HH EC 2.7.2.4 H : i rf H o 0
  • aspartokinase is L-lysine, L-threonine and L-methionine and L-isoleucine and L- from L-threonine.
  • An enzyme used in the common synthesis pathway of proline is an enzyme used in the common synthesis pathway of proline.
  • L-aspartyl-4-ylphosphoric acid can be isolated for use, for example, in L-threonine.
  • Production of various downstream products such as acid, L-methionine, L-isoleucine and L-valine.
  • the host cell of the present invention can produce L-lysine at 30-45 ° C, preferably 37 ° C. Release lysine feedback inhibition
  • relieving lysine feedback inhibition refers to an enzyme that is originally inhibited by lysine feedback, which is modified to reduce its degree of lysine inhibition. This reduction was obtained by comparing the degree of inhibition of the two enzymes at the same lysine concentration.
  • "Relieving lysine feedback suppression” includes the partial release of feedback suppression to the full release.
  • the degree of inhibition refers to the proportion of loss (i.e., inhibition) of aspartate kinase activity in the presence of a certain concentration of lysine compared to the absence of lysine. Under these conditions, the proportion of aspartokinase activity remaining, called the enzyme activity residual ratio or enzyme activity retention ratio or relative enzyme activity, due to:
  • the degree of inhibition is often expressed by the residual ratio of the enzyme activity.
  • "relieving lysine feedback inhibition” is also usually characterized by a comparison of the ratio of enzyme residues remaining between the two enzymes before and after the modification.
  • the aspartokinase of the present invention retains at least 20% of activity in the presence of 10 mM L-lysine, and releases lysine compared to wild-type aspartate kinase.
  • Acid feedback inhibition preferably, 30-40% or more of activity is retained; more preferably, 50%-60% or more of activity; more preferably, 70%-80% or more of activity; more preferably, more than 90% of activity.
  • the aspartokinase of the present invention retains at least 20% of the activity of the aspartokinase of the present invention in the presence of a concentration of L-lysine at a concentration of 20 mM, with wild-type aspartate Lysine feedback inhibition is relieved compared to the tyrosine kinase; preferably, 30-40% or more of activity is retained; more preferably, 50%-60% or more of activity is retained; more preferably, more than 70% of activity is retained; Preferably, more than 80% of the activity is retained.
  • the aspartokinase of the invention is stored at a concentration of 100 mM L-lysine
  • at least 20% of the activity can be retained, and lysine feedback inhibition is relieved compared to the wild-type aspartokinase; preferably, 30-40% or more of the activity is retained; more preferably, 50%-60 is retained. More than % activity; more preferably, more than 70% activity is retained; more preferably, more than 80% activity is retained. Enhance/weak
  • enhancement refers to an increase in the intracellular activity of one or more enzymes encoded by a microorganism, including but not limited to by increasing the copy number of the coding gene, by enhancing transcription or translational strength, or by replacing the coding. Genes or alleles of enzymes with increased activity, and optionally using these methods.
  • the term "weakening" in the present invention means that the intracellular activity of one or more enzymes or proteins encoded by DNA in a microorganism is reduced or eliminated, including but not limited to deletion of part or all of the coding gene, gene reading frame frameshift mutation. Attenuating transcription or translational strength, or using genes or alleles encoding corresponding enzymes or proteins with lower activity, and optionally using these methods.
  • immobilized enzyme as used herein has the meaning as commonly understood by one of ordinary skill in the art. Specifically, the term means that the water-soluble enzyme is physically or chemically treated to bind the enzyme to the water-insoluble macromolecular carrier or to embed the enzyme therein, so that the enzyme is soluble in water or semipermeable membrane microcapsules in water. This results in a decrease in fluidity.
  • the immobilized enzyme still has enzymatic activity and acts on the substrate in a solid phase state in the catalytic reaction. After immobilization, the enzyme generally has increased stability, is easily separated from the reaction system, and is easy to control, and can be used repeatedly. It is convenient for transportation and storage, which is conducive to automated production. Immobilized enzymes are enzyme application technologies developed in the past ten years, and have attractive application prospects in industrial production, chemical analysis and medicine.
  • the various aspartokinase, gene encoding genes thereof, and host cells comprising the same according to the present invention can be industrially applied to produce L-lysine and other amino acids;
  • the various aspartokinase provided by the present invention is an aspartokinase which is highly specific and effective in relieving L-lysine feedback inhibition. Therefore, the various aspartokinase of the present invention, the gene encoding the same, and the host cell containing the same can not only efficiently produce L-lysine, but also effectively release lysine feedback inhibition, industrially. Broad application prospects;
  • E. coli MG1655 obtained from ATCC 700926, see Blattner F et al, The complete genome sequence of Escherichia coli K-12. Science 277: 1453-62 (1997)) in LB medium (tryptone 10 g/L, After yeast powder 5 g / L, sodium chloride 10 g / L, pH 7.0), 37 ° C, 200 rpm, cultured for 12-16 h, the cells were collected, and the genomic DNA was extracted using the Biomiga genome kit. Using the E. coli genome as a template, a constitutive promoter and a suitable SD sequence were added to the wild-type lysC gene by three rounds of PCR, and appropriate restriction sites were added to both ends of the fragment.
  • AAATTGTTGTCTCCAAAT SEQ ID NO: 9
  • TTACTCAAACAAATTACTATG CAGTTTTTG SEQ ID NO: 10.
  • D340P-F/D340P- The plasmid pWSK29-lysC was introduced into the mutation site by PCR.
  • the obtained plasmid was recovered by PCR product, and the enzyme in the PCR system and the salt ion in the buffer system were removed, and then digested with Dpnl.
  • the methylated template plasmid DNA was removed 1 h, and the treated plasmid was transferred into competent cell TranlO (purchased from Beijing Quanjin Biotechnology Co., Ltd.), and the correct mutant plasmid obtained was named pSLL1, carrying the lysC mutant nucleus.
  • the nucleotide sequence is shown in SEQ ID NO: 3, and the translated amino acid sequence is SEQ ID. NO: 4 is shown.
  • the plasmid pWSK29-lysC was subjected to PCR to introduce a mutation site by primer D340V-F/D340V-R (see Table 1), and the obtained plasmid was recovered by PCR product, and the enzyme in the PCR system and the salt ion in the buffer system were removed.
  • the methylated template plasmid DNA was removed by digestion with Dpnl, and the treated plasmid was transferred into competent cell TranlO.
  • the correct mutant plasmid obtained was named pSLL2, and the nucleotide sequence of the lysC mutant carried was SEQ ID NO: 5.
  • the translated amino acid sequence is shown in SEQ ID NO: 6.
  • the plasmid pWSK29-lysC was subjected to PCR into the mutation site by primer D340R-F/D340R-R (see Table 1), and the obtained plasmid was recovered by PCR product to remove the enzyme in the PCR system and the salt ion in the buffer system. Thereafter, the methylated template plasmid DNA was removed by digestion with Dpnl for 1 h, and the treated plasmid was transferred into competent cell TranlO, and the correct mutant plasmid obtained was named pSLL3, and the nucleotide sequence of the lysC mutant carried was SEQ ID. As shown by NO: 7, the translated amino acid sequence is shown in SEQ ID NO: 8.
  • E.coliGT3 p WSK29-lysC
  • E.coliGT3 pSLLl
  • E.coliGT3 pSLL2
  • E.coliGT3 (pSLL3) to achieve its constitutive expression.
  • E.coliGT3 (pWSK29-lysC), E.coliGT3 (pSLL1), E.coliGT3 (pSLL2) and E.coliGT3 (pSLL3) strains were cultured overnight on LB medium at 37 ° C, then loaded in 2% transfer A 500 ml flask of 50 ml LB medium was supplemented with 50 mg/L ampicillin and cultured at 37 ° C, 200 rpm until the OD600 was approximately 0.6. The cultured cells were collected, washed once with 20 mM Tris-HCl (pH 7.5) buffer, resuspended in 3 ml of 20 mM Tris-HCl (pH 7.5) buffer, and sonicated at 200 W for 10 min. (3 seconds per ultrasound for 3 seconds), then centrifuge at 13000 rpm for 30 min, and take the supernatant as a crude enzyme. Liquid.
  • Enzyme activity assay 1 ml of reaction solution containing 200 mM Tris-HCl (pH 7.5), 10 mM MgSO4* 6H2O, 10 mM L-aspartic acid, 10 mM ATP, 160 mM hydroxylamine hydrochloride and an appropriate amount of crude enzyme solution
  • the desired concentration of L-lysine was reacted at 37 ° C for 20 min, 1 ml of 5% (w/v) FeCB was added to terminate the enzyme activity, and 200 ul was measured on a microplate reader to determine OD540 (Black and Wright, 1954).
  • the fermentation medium was as follows: glucose 40 g/L, ammonium sulfate 10 g/L, phosphoric acid 0.6 mL/L, potassium chloride 0.8 g/L, betaine 0.4 g/L, magnesium sulfate 1.2 g/L, manganese sulfate 0.03 g /L, ferrous sulfate 0.03 g / L, corn syrup organic nitrogen 0.4 g / L, 5% defoamer 0.5 mL / L, threonine 0.2 g / L.
  • the lysine production of overexpressing AK III wild type and mutant in SCEcL3 strain is shown in Table 2.
  • the overexpression of AK III wild type and mutant showed almost the same growth and sugar consumption, but the sugar was almost exhausted at 20 hours.
  • the overexpressed mutant indole produced 0.28-0.54 g/L of lysine, while the overexpressed wild type AK III produced almost no lysine, and the mutant had a significantly higher lysine yield than the wild type strain.
  • the BCA protein quantitative assay kit (purchased from Bole Corporation, Cat. No. 23227) was used to quantify the total protein of the crude enzyme solution, and the ratio of wild type to mutant AK III without lysine.
  • the results of the enzyme activity assay are shown in Table 3.
  • the wild type gene of lysC, the D340R point mutation with D340R point mutation and the lysC gene with I418T point mutation were cloned into plasmid pET21a+ (purchased from NOVAGEN) through Ndel and Xhol restriction endonuclease sites, and the resulting plasmid was electrotransformed.
  • the method was transferred to E. coli BL21 (DE3), which enabled expression of the LysC protein and a 6-His tag tag at the C-terminus.
  • the protein was purified by using His SpinTrap columns (purchased from GE Company, product no. 28-4013-53).
  • the specific method was as follows. The purified protein was assayed by the method shown in Example 2, and the results are shown in Figure 2. Since the enzyme activities of the present examples were all measured by the purified enzyme, there were some differences compared with the crude enzyme assays of the previous examples, but the effects were consistent.
  • the inventors also mutated 413, 401, 418 and 420 of wild-type AK III using the following primers (Table 4), and detected the relative enzyme activities of the obtained mutants, and found The wild type AK III 413 and 401 mutants did not release lysine feedback inhibition.
  • the wild type AK III 418 and 420 mutants were less able to release lysine feedback inhibition than wild. type 340 mutant of AK III (Fig. 2).
  • the inventors further mutated 413 and 401 based on the 340th mutation of AK III, and detected the relative enzyme activity of the obtained mutant, and found that the double mutant AK III mutants, such as F413A and G401K, were resistant. Lysine feedback inhibition is similar to the aspartokinase of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供一种天冬氨酸激酶,所述天冬氨酸激酶的氨基酸序列在对应于SEQ ID NO:2所示氨基酸序列的第340位的氨基酸残基为非天冬氨酸。本发明的天冬氨酸激酶能高效解除L-赖氨酸的反馈抑制,并且能有效用于生产L-赖氨酸。本发明还提供包含编码所述天冬氨酸激酶的基因的宿主细胞以及利用所述宿主细胞或天冬氨酸激酶产生L-赖氨酸的方法。本发明的天冬氨酸激酶或包含本发明天冬氨酸激酶的宿主细胞还用于产生L-苏氨酸、L-甲硫氨酸、L-异亮氨酸或L-缬氨酸。本发明还提供利用所述天冬氨酸激酶或宿主细胞产生L-天冬氨酰-4-基磷酸的方法。

Description

天冬氨酸激酶 III突变体及其宿主细胞和应用
技术领域
本发明涉及生物技术领域。 具体地说, 本发明涉及天冬氨酸激酶 ΙΠ(简称 AK III, 又称 LysC)的突变体及其应用。 背景技术
L-赖氨酸是人类和动物营养中最重要的必需氨基酸, 在食品工业、 养殖业和 词料工业中有着十分重要的地位。 近年来, 其市场需求稳步增加, 世界市场销售 量已经突破百万吨规模。 目前, 赖氨酸主要采用微生物发酵法来生产。
在许多微生物中 L-赖氨酸的合成途径是以天冬氨酸为前体的, 包括两步和甲 硫氨酸和苏氨酸等氨基酸共用的步骤。 在大肠杆菌中, L-赖氨酸生物合成途径经 过九步的酶催化过程 (如下式所示)。 其中, 天冬氨酸激酶催化赖氨酸生物合成的 第一步反应, 是赖氨酸生产的限速步骤, 它的活力决定着代谢流流向 L-赖氨酸合 成途径的比例。 在大肠杆菌中有三个天冬氨酸激酶, 分别命名为天冬氨酸激酶 I (AK I, 由 thrA基因编码)、 天冬氨酸激酶 II (AK II, 由 metL基因编码)、 天冬氨 酸激酶 ΠΙ (ΑΚ ΠΙ, 由 lysC基因编码, 其编码基因的核苷酸序列如 SEQ ID NO: 1 所示, 其氨基酸序列如 SEQ ID NO: 2所示)。 AK I和 AK II是双功能酶, 都还具 有高丝氨酸脱氢酶活性。 AK I在酶活性水平受到苏氨酸和赖氨酸的反馈抑制, AK III在酶活性水平受终产物赖氨酸的反馈抑制(Bearer CF, Neet KE; Stadtman, E. ., Cohen, G.N., LeBras, G., obichon-Szulmaj ster, H. ( 1961). "Feed-back Inhibition and Repression of Aspartokinase Activity in Escherichia coli and Saccharomyces cerevisiae." J. Biol. Chem. ) 。 AK II在酶活水平不受天冬氨酸家族氨基酸的反馈抑 制但是受到转录水平严谨调控 (X Dong, PJ Quinn, X Wang. ( 201 1). " Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine.,, Biotechnology advances ) 。
Figure imgf000003_0001
从天冬氨酸到 L-赖氨酸的生物合成途径
目前大肠杆菌已经被多家企业改造用来进行赖氨酸的工业化生产。 由于天冬 氨酸激酶活性收到赖氨酸严谨的调控, 解除赖氨酸对天冬氨酸激酶的反馈抑制是 发展高产赖氨酸菌株的必经之路。 杜邦公司通过随机突变筛选获得了两种解除反 馈抑制的 AK III突变体, 分别是将 352苏氨酸用异亮氨酸替换 (T352I)和 318位甲 硫氨酸用异亮氨酸替换 (M318I) (EP1394257)。 日本味之素公司也获得部分解除赖 氨酸反馈抑制的 ΑΚ ΠΙ突变体 (US005661012、 US2010190216, US2010173368)。
此外, 由于天冬氨酸激酶是 L-赖氨酸、 L-苏氨酸和 L-甲硫氨酸的合成途径所 共用的酶, 例如, 中国专利 CN 1071378C公开了一种解除反馈抑制的天冬氨酸激 酶以及利用该激酶和包含该激酶的宿主生产 L-苏氨酸的方法。 如果能够获得具有 高比活和有效解除 L-赖氨酸反馈抑制的天冬氨酸激酶, 对于 L-赖氨酸、 L-苏氨酸 和 L-甲硫氨酸, 甚至以 L-苏氨酸为前体合成的其他代谢物, 包括 L-异亮氨酸和 L-缬氨酸的生产都具有重要的意义。 因此, 综上所述, 本领域急需具有高酶活和有效解除 L-赖氨酸反馈抑制天冬 氨酸激酶突变体。 发明内容
本发明的目的在于提供具有高酶活和解除 L-赖氨酸反馈抑制的 AK III突变 体以及此类突变体的应用与使用方法。 在第一方面, 本发明提供一种天冬氨酸激酶, 所述天冬氨酸激酶的氨基酸序 列在对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基为非天冬氨 酸。
在优选的实施方式中, 所述天冬氨酸激酶来源于埃希氏菌属细菌, 优选地, 来源于大肠杆菌。
在优选的实施方式中, 所述天冬氨酸激酶:
a. 具有如 SEQ ID NO: 2所示氨基酸序列且第 340位的氨基酸残基为非天冬 氨酸, 或
b. 具有 a)所限定的序列经过一个或几个氨基酸残基, 优选 1-20个、 更优选 1-15个、 更优选 1-10个、 更优选 1-3个、 最优选 1个氨基酸残基的取代、 缺失或 添加而形成的序列, 且基本具有 a)所限定的天冬氨酸激酶功能的由 a)衍生的天冬 氨酸激酶。
在优选的实施方式中,所述天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基选自以下氨基酸的至少一种: Pro、Ala、 Arg、 Lys、 Gln、 Asn、 Val、 lie, Leu、 Met禾口 Phe。
在进一步优选的实施方式中, 所述天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基选自 Pro、 Arg或 Val。
在优选的实施方式中, 所述天冬氨酸激酶:
a. 其氨基酸序列如 SEQ ID NO: 4、 6或 8所示; 或
b. 包含 (a)所限定的序列经过一个或几个氨基酸残基, 优选 1-20个、 更优选
1-15个、 更优选 1-10个、 更优选 1-3个、 最优选 1个氨基酸残基的取代、 缺失或 添加而形成的序列, 且基本具有 a所限定的天冬氨酸激酶功能的由 a衍生的天冬 氨酸激酶。
在进一步优选的实施方式中,所述天冬氨酸激酶的氨基酸序列如 SEQ ID NO: 4、 6或 8所示。
在优选的实施方式中, 所述天冬氨酸激酶解除赖氨酸反馈抑制。
在另一优选的实施方式中, 在 10 mM浓度的 L-赖氨酸存在下, 所述的天冬 氨酸激酶至少保留 20%以上的活性; 优选地, 30%-40%以上的活性; 更优选地, 50%-60%以上的活性; 更优选地, 70%-80%以上的活性; 最优选, 90%以上的活 性。
在进一步优选的实施方式中, 所述的天冬氨酸激酶在 20 mM浓度的 L-赖氨 酸存在下, 所述的天冬氨酸激酶至少保留 20%以上的活性; 优选地, 30%-40%以 上的活性; 更优选地, 50%-60%以上的活性; 更优选地, 70%以上的活性; 最优 选, 80%以上的活性。
在更进一步优选的实施方式中, 所述的天冬氨酸激酶在 100 mM浓度的 L-赖 氨酸存在下, 所述的天冬氨酸激酶至少保留 20%以上的活性; 优选地, 30%-40% 以上的活性; 更优选地, 50%-60%以上的活性; 更优选地, 70%以上的活性; 最 优选, 80%以上的活性。 在第二方面, 本发明提供编码本发明第一方面所述天冬氨酸激酶的基因。 在优选的实施方式中, 所述基因的核苷酸序列如 SEQ ID NO: 3、 5或 7所示。 在第三方面, 本发明提供包含本发明第二方面所述编码基因的载体。 在第四方面, 本发明提供一种宿主细胞, 所述宿主细胞含有本发明第二方面 所述的编码基因。
在优选的实施方式中,所述天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基选自以下氨基酸的至少一种: Pro、Ala、 Arg、 Lys、 Gln、 Asn、 Val、 Ile、 Leu、 Met禾卩 Phe。
在进一步优选的实施方式中, 所述天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基选自 Pro、 Arg或 Val。
在优选的实施方式中, 所述天冬氨酸激酶:
a. 其氨基酸序列如 SEQ ID NO: 4、 6或 8所示; 或
b. 包含 a所限定的序列经过一个或几个氨基酸残基, 优选 1-20个、 更优选 1 -15个、 更优选 1- 10个、 更优选 1 -3个、 最优选 1个氨基酸残基的取代、 缺失或 添加而形成的序列, 且基本具有 a所限定的天冬氨酸激酶功能的由 a衍生的天冬 氨酸激酶。
在另一优选的实施方式中, 所述基因的核苷酸序列如 SEQ ID NO: 3、 5或 7 所示。
在优选的实施方式中, 所述宿主细胞来自埃希氏菌属 (Escherichia)、 棒状杆 菌属 (Corynebacterium)、短杆菌属 (Brevibacterium sp. )、芽孢杆菌属 (Bacillus) ^ 沙雷氏菌属 (Serratia)或弧菌属 (Vibrio)。
在进一步优选的实施方式中, 所述宿主细胞是大肠杆菌 (E. Coli)或谷氨酸棒 状杆菌 (Corynebacterium glutamicum)。
在优选的实施方式中, 所述宿主细胞染色体上整合有本发明第二方面所述的 编码基因或含有本发明第三方面所述的载体。
在优选的实施方式中, 所述宿主细胞表达本发明的天冬氨酸激酶。
在另一优选的实施方式中, 所述宿主细胞中选自以下的一个或多个基因被弱 化或表达降低:
a. 编码乙醇脱氢酶的 adhE基因;
b. 编码乙酸激酶的 ackA基因;
c 编码磷酸乙酰转移酶的 pta基因; d. 编码乳酸脱氢酶的 ldhA基因;
e. 编码甲酸转运蛋白的 focA基因;
f. 编码丙酮酸甲酸裂解酶的 pflB基因;
g. 编码丙酮酸氧化酶的 poxB基因;
h. 编码天冬氨酸激酶 1/高丝氨酸脱氢酶 I双功能酶的 thrA基因;
i. 编码高丝氨酸激酶的 thrB基因;
j. 编码赖氨酸脱羧酶的 ldcC基因; 和
h. 编码赖氨酸脱羧酶的 cadA基因。
在另一优选的实施方式中, 所述宿主细胞中选自以下的一个或多个基因被增 强或过表达:
a.编码解除赖氨酸反馈抑制的二氢二吡啶合成酶的 dapA基因;
b.编码二氢二吡啶二羧酸还原酶的 dapB基因;
c编码二氨基庚二酸脱氢酶的 ddh基因;
d.编码四氢吡啶二羧酸琥珀酰酶的 dapD和编码琥珀酰二氨基庚二酸脱酰酶 的 dapE;
e.编码天冬氨酸-半醛脱氢酶的 asd基因;
f.编码磷酸烯醇丙酮酸羧化酶的 ppc基因; 或
g.编码烟酸胺腺嘌呤二核苷酸转氢酶的 pntAB基因。 在第五方面, 本发明提供本发明第四方面所述宿主细胞在生产 L-氨基酸中的 应用。 在第六方面,本发明提供一种制备 L-氨基酸的方法,所述方法包括以下步骤: a. 培养权利要求 4所述的宿主细胞, 使之产生 L-氨基酸; 和
b. 从培养液中分离 L-氨基酸。
在优选的实施方式中, 所述方法在 30-45°C, 更优选在 37°C实施。 在第七方面, 本发明提供本发明第一方面所述的天冬氨酸激酶在生产 L-氨基 酸中的应用。
在本发明第六方面和第七方面的优选实施方式中,所述的 L-氨基酸为 L-赖氨 酸、 L-苏氨酸、 L-甲硫氨酸、 L-异亮氨酸或 L-缬氨酸。 在第八方面, 本发明提供一种制备 L-赖氨酸、 L-苏氨酸、 L-甲硫氨酸、 L-异 亮氨酸或 L-缬氨酸方法, 所述方法包括以下步骤:
a. 利用本发明第一方面所述的天冬氨酸激酶 (EC 2.7.2.4), 催化从 L-天冬氨 酸生成 L-赖氨酸、 L-苏氨酸、 L-甲硫氨酸、 L-异亮氨酸或 L-缬氨酸过程中的以下 反应, 进而获得 L-赖氨酸、 L-苏氨酸、 L-甲硫氨酸、 L-异亮氨酸或 L-缬氨酸,
ATP ADP
H3N H £C 2.7.2 H3:N H ό ά
L-天冬氯酸 L-天冬氨酰 -Φ基磷酸; 和
b. 从以上反应体系中分离 L-赖氨酸、 L-苏氨酸、 L-甲硫氨酸、 L-异亮氨酸或 L- 缬氨酸。 在第九方面,本发明提供制备本发明第一方面所述天冬氨酸激酶的方法,所述方 法包括以下步骤:
a. 改造 SEQ ID NO: 2所示氨基酸序列的编码序列, 使得编码的氨基酸序列中对 应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基突变为非天冬氨酸; b. 将 a得到的编码序列直接转染合适的宿主细胞或经载体引入合适的宿主细胞; c 培养 b得到的宿主细胞;
d. 从步骤 c得到的培养体系中分离所述宿主细胞产生的天冬氨酸激酶; 和 e. 测定所述天冬氨酸激酶解除赖氨酸反馈抑制的能力。
在优选的实施方式中, 所述天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO: 2 所示氨基酸序列的第 340位的氨基酸残基选自以下氨基酸的至少一种: Pro、 Ala、 Arg、 Lys、 Gln、 Asn、 Val、 Ile、 Leu、 Met禾卩 Phe。
在进一步优选的实施方式中, 所述天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基选自 Pro、 Arg或 Val。 在本发明的第十方面,本发明提供改造野生型天冬氨酸激酶使之解除赖氨酸反馈 抑制的方法, 所述方法包括以下步骤:
a. 将野生型天冬氨酸激酶的氨基酸序列与 SEQ ID NO: 2所示氨基酸序列作比 对; 和
b. 改造所述野生型天冬氨酸激酶的编码序列, 使得编码的氨基酸序列中对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基突变为非天冬氨酸;
c 将 b得到的编码序列直接转染合适的宿主细胞或经载体引入合适的宿主细胞; d. 培养 c得到的宿主细胞;
e. 从步骤 d得到的培养体系中分离所述宿主细胞产生的天冬氨酸激酶; 和 f. 测定所述天冬氨酸激酶解除赖氨酸反馈抑制的能力。
在优选的实施方式中, 所述天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO: 2 所示氨基酸序列的第 340位的氨基酸残基选自以下氨基酸的至少一种: Pro、 Ala、 Arg、 Lys、 Gln、 Asn、 Val、 Ile、 Leu、 Met禾卩 Phe。
在进一步优选的实施方式中, 所述天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基选自 Pro、 Arg或 Val。 应理解, 在本发明范围内中, 本发明的上述各技术特征和在下文 (如实施例)中具 体描述的各技术特征之间都可以互相组合, 从而构成新的或优选的技术方案。 限于篇 幅, 在此不再一一累述。 附图说明
图 1比较了本发明的 AK III突变体和野生型 AK III的粗酶液相对酶活。
图 2显示了含 6-His Tag的本发明天冬氨酸激酶 (D340R)以及 I418T、 F413A、 G401K和 Y420A的突变体和野生型 AK III的纯酶相对酶活。 具体实施方式
发明人经过广泛而深入的研究, 出乎意料地发现对大肠杆菌来源的天冬氨酸 激酶 III的第 340位进行遗传改造, 获得的天冬氨酸激酶 III突变体不仅具有优秀 的酶活性, 还有效解除了 L-赖氨酸的反馈抑制, 从而能用于高效生产 L-赖氨酸。 在此基础上完成了本发明。 本发明的天冬氨酸激酶
本文所用的术语 "本发明的天冬氨酸激酶"和 "本发明的多肽"可互换使用, 并具有本领域普通技术人员通常理解的含义。 本发明的天冬氨酸激酶具有将磷酸 基团转移到天冬氨酸的活性。
在具体的实施方式中, 本发明天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基为非天冬氨酸。
在优选的实施方式中, 本发明天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基选自以下氨基酸的至少一种: Pro、 Ala, Arg、 Lys、 Gln、 Asn、 Val、 lie, Leu、 Met禾口 Phe。
在优选的实施方式中, 本发明天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基选自 Pro、 Arg或 Val。
在优选的实施方式中, 本发明天冬氨酸激酶:
(a) 其氨基酸序列如 SEQ ID NO: 4、 6或 8所示; 或
(b) 包含 (a)所限定的序列经过一个或多个氨基酸残基的取代、 缺失或添加而 形成的序列, 且基本具有 (a) 所限定的天冬氨酸激酶功能的由 (a)衍生的天冬氨酸 激酶。
在具体的实施方式中,本发明的天冬氨酸激酶在 10 mM以上浓度的赖氨酸存 在下,优选地 20 mM, 更优选地, 在 100 mM以上浓度的赖氨酸存在下, 有效解除 赖氨酸反馈抑制。
本领域普通技术人员不难知晓, 在多肽的某些区域, 例如非重要区域改变少 数氨基酸残基基本上不会改变生物活性, 例如, 适当替换某些氨基酸得到的序列 并不会影响其活性(可参见 Watson等, Molecular Biology of The Gene, 第四版, 1987, The Benjamin/Cummings Pub. Co. P224)。 因此, 本领域普通技术人员能够 实施这种替换并且确保所得分子仍具有所需生物活性。
因此, 本发明的多肽可以在对应于 SEQ ID NO: 2所示氨基酸序列的第 340 位的氨基酸残基为非天冬氨酸的基础上作进一步突变而仍具备本发明天冬氨酸激 酶的功能和活性。例如本发明的天冬氨酸激酶 (a) 其氨基酸序列如 SEQ ID NO: 4、 6或 8所示; 或 (b) 包含 (a)所限定的序列经过一个或多个氨基酸残基, 优选 1-20 个、 更优选 1- 15个、 更优选 1-10个、 更优选 1-3个、 最优选 1个氨基酸残基的取 代、 缺失或添加而形成的序列, 且基本具有 (a) 所限定的多肽功能的由 (a)衍生的 多肽。
在本发明中, 本发明的天冬氨酸激酶包括与氨基酸序列如 SEQ ID NO: 4、 6 或 8所示的天冬氨酸激酶相比, 有至多 20个、 较佳地至多 10个, 再佳地至多 3 个, 更佳地至多 2个, 最佳地至多 1个氨基酸被性质相似或相近的氨基酸所替换 而形成的突变体。 这些保守性变异的突变体可根据, 例如下表所示进行氨基酸替 换而产生。
Figure imgf000009_0001
本发明还提供了编码本发明多肽的多核苷酸。 术语 "编码多肽的多核苷酸" 可以是包括编码此多肽的多核苷酸, 也可以是还包括附加编码和 /或非编码序列的 多核苷酸。 因此, 本文所用的 "含有" , "具有" 或 "包括" 包括了 "包含" 、 "主要 由……构成"、 "基本上由……构成"、和 "由 …构成"; "主要由……构成"、 "基本上由……构成" 和 "由……构成" 属于 "含有" 、 "具有" 或 "包括" 的 下位概念。 对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基
本领域普通技术人员均知道, 可在某个蛋白的氨基酸序列中对一些氨基酸残 基作出各种突变, 例如取代、 添加或缺失, 但得到的突变体仍能具备原蛋白的功 能或活性。 因此, 本领域普通技术人员可对本发明具体公开的氨基酸序列作出一 定改变而得到仍具有所需活性的突变体,那么这种突变体中与 SEQ ID NO: 2所示 氨基酸序列的第 340位的氨基酸残基相对应的氨基酸残基可能就不是第 340位, 但如此得到的突变体仍应落在本发明的保护范围内。
本文所用的术语 "对应于" 具有本领域普通技术人员通常理解的意义。 具体 地说, "对应于" 表示两条序列经同源性或序列相同性比对后, 一条序列与另一 条序列中的指定位置相对应的位置。 因此, 就 "对应于 SEQ ID NO: 2所示氨基酸 序列的第 340位的氨基酸残基"而言, 如果在 SEQ ID NO: 2所示氨基酸序列的一 端加上 6-His标签, 那么所得突变体中对应于 SEQ ID NO: 2所示氨基酸序列的第 340位就可能是第 346位; 而如果删除 SEQ ID NO: 2所示氨基酸序列中的少数氨 基酸残基,那么所得突变体中对应于 SEQ ID NO: 2所示氨基酸序列的第 340位就 可能是第 338位, 等等。 再例如, 如果一条具有 400个氨基酸残基的序列与 SEQ ID NO: 2所示氨基酸序列的第 20-420位具有较高的同源性或序列相同性,那么所 得突变体中对应于 SEQ ID NO: 2所示氨基酸序列的第 340位就可能是第 320位。
在具体的实施方式中, 所述同源性或序列相同性可以是 80%以上, 优选 90% 以上, 更优选 95%-98%, 最优选 99%以上。
本领域普通技术人员公知的测定序列同源性或相同性的方法包括但不限于: 计算机分子生物学 (Computational Molecular Biology), Lesk, A.M.编, 牛津大学出 版社, 纽约, 1988 ; 生物计算: 信息学和基因组项目(Biocomputing:Informatics and Genome Projects), Smith, D.W.编, 学术出版社, 纽约, 1993 ; 序列数据的计算 机分析(Computer Analysis of Sequence Data), 第一部分, Griffin, A.M.禾卩 Griffin, H.G.编, Humana Press,新泽西, 1994;分子生物学中的序列分析(Sequence Analysis in Molecular Biology) , von Heinje , G.,学术出版社, 1987和序列分析引物(Sequence Analysis Primer), Gribskov, M.与 Devereux, J.编 M Stockton Press, 纽约, 1991 和 Carillo, H.与 Lipman, D., SIAM J. Applied Math., 48: 1073(1988)。 测定相同 性的优选方法要在测试的序列之间得到最大的匹配。 测定相同性的方法编译在公 众可获得的计算机程序中。 优选的测定两条序列之间相同性的计算机程序方法包 括但不限于: GCG程序包 (Devereux, J.等, 1984)、 BLASTP、 BLASTN和 FASTA(Altschul, S, F.等, 1990)。 公众可从 NCBI和其它来源得到 BLASTX程 序 (BLAST手册, Altschul, S.等, NCBI NLM NIH Bethesda, Md.20894; Altschul, S.等, 1990)。 熟知的 Smith Waterman算法也可用于测定相同性。 宿主细胞
本文所用的术语"宿主细胞"具有本领域普通技术人员通常理解的含义, 即, 能够产生本发明天冬氨酸激酶的宿主细胞。 换言之, 本发明可以利用任何宿主细 胞, 只要本发明的天冬氨酸激酶能在该宿主细胞中表达。
例如, 在具体的实施例中, 本发明利用的是包含外源性的本发明天冬氨酸激 酶编码基因的宿主细胞, 优选 AK缺陷型大肠杆菌菌株。 但本领域普通技术人员 应该知道, 本发明不限于包含外源性编码基因的宿主细胞。 例如, 本发明的宿主 细胞中包含的天冬氨酸激酶的编码基因不仅可以是重组载体或质粒, 还有可能是 基因组上整合有所述酶的编码基因, BP , 在基因组整合上的酶的编码基因可能是 通过转入质粒进行同源重组得到, 也有可能在基因组上定点突变相应的位点而得 到。
在具体的实施方式中, 本发明的宿主细胞能够高效产生 L-氨基酸, 且具有对 L-赖氨酸的抗反馈抑制能力。
在具体的实施方式中, 本发明的宿主细胞能够产生 L-赖氨酸、 L-苏氨酸、 L- 甲硫氨酸、 L-异亮氨酸或 L-缬氨酸。
在具体的实施方式中,所述天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO:
2所示氨基酸序列的第 340位的氨基酸残基选自以下氨基酸的至少一种: Pro、Ala、 Arg、 Lys、 Gln、 Asn、 Val、 Ile、 Leu、 Met禾口 Phe。
在优选的实施方式中,所述天冬氨酸激酶的氨基酸序列在对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基选自 Pro、 Arg或 Val。
在优选的实施方式中, 所述天冬氨酸激酶:
(a) 其氨基酸序列如 SEQ ID NO: 4、 6或 8所示; 或
(b) 包含 (a)所限定的序列经过一个或多个氨基酸残基的取代、 缺失或添加而 形成的序列, 且基本具有 (a) 所限定的天冬氨酸激酶功能的由 (a)衍生的天冬氨酸 激酶。
在优选的实施方式中, 所述基因的核苷酸序列如 SEQ ID NO: 3、 5或 7所示。 在优选的实施方式中, 所述的宿主细胞来自埃希氏菌属 (Escherichia)、 棒状 杆菌属 (Corynebacterium)、 短杆菌属 (Brevibacterium sp. )、 芽孢杆菌属
(Bacillus), 沙雷氏菌属 (Serratia)或弧菌属 (Vibrio)。
在优选的实施方式中, 所述的宿主细胞是大肠杆菌 (E. Coli)或谷氨酸棒状杆 菌 (Corynebacterium glutamicum)。
在优选的实施方式中, 所述宿主细胞中选自以下的一个或多个基因被弱化或 表达降低:
a. 编码乙醇脱氢酶的 adhE基因;
b. 编码乙酸激酶的 ackA基因;
c 编码磷酸乙酰转移酶的 pta基因;
d. 编码乳酸脱氢酶的 ldhA基因;
e. 编码甲酸转运蛋白的 focA基因;
f. 编码丙酮酸甲酸裂解酶的 pflB基因;
g. 编码丙酮酸氧化酶的 poxB基因;
h. 编码天冬氨酸激酶 1/高丝氨酸脱氢酶 I双功能酶的 thrA基因;
I. 编码高丝氨酸激酶的 thrB基因;
j. 编码赖氨酸脱羧酶的 ldcC基因; 和
h. 编码赖氨酸脱羧酶的 cadA基因。
此外, 本领域普通技术人员应理解, 就 L-赖氨酸的生产而言, 细胞中特定生 物合成途径、 糖酵解、 回补代谢中一种或多种酶的增强或过表达是有益的。 因此, 在一些实施方式中, 除本发明所述基因外, 可同时增强或过表达其它相关基因, 例如, 选自以下的一个或多个基因被增强或过表达:
a.编码解除赖氨酸反馈抑制的二氢二吡啶合成酶的 dapA基因(EP1477564) ; b.编码二氢二吡啶二羧酸还原酶的 dapB基因 (EP1253195);
c编码二氨基庚二酸脱氢酶的 ddh基因 (EP1253195)。
d.编码四氢吡啶二羧酸琥珀酰酶的 dapD和编码琥珀酰二氨基庚二酸脱酰酶 的 dapE(EP1253195);
e.编码天冬氨酸-半醛脱氢酶的 asd基因 (EP1253195);
f.编码磷酸烯醇丙酮酸羧化酶的 ppc基因 (EP1253195); 或
g.编码烟酸胺腺嘌呤二核苷酸转氢酶的 pntAB基因 (EP1253195)。 此外, 出于实验便利的目的, 本发明利用本身的天冬氨酸激酶失活的突变菌 株检测本发明天冬氨酸激酶突变体的酶活以及解除赖氨酸反馈抑制的能力。 但本 领域普通技术人员应该知道在设置对照的前提下, 本身的天冬氨酸激酶未失活的 天然菌株也可用于检测本发明天冬氨酸激酶突变体的酶活以及解除赖氨酸反馈抑 制的能力。 本发明多肽或本发明宿主细胞的应用
本发明多肽可作为天冬氨酸激酶催化从 L-天冬氨酸合成 L-赖氨酸过程中的 以下反应, 进而获得 L-赖氨酸: H3H H EC 2.7.2.4 H:irf H o 0
L-天冬氨酸 L-天冬氨酰 -4-基磷酸
此外, 本领域普通技术人员已知天冬氨酸激酶是 L-赖氨酸、 L-苏氨酸和 L- 甲硫氨酸以及从 L-苏氨酸合成 L-异亮氨酸和 L-缬氨酸的共同合成途径所用的酶。 因此, 本领域普通技术人员结合本发明的教导和现有技术, 不难明白本发明的多 肽或宿主细胞不仅可用于生产 L-赖氨酸, 还可用于生产 L-苏氨酸、 L-甲硫氨酸、 L-异亮氨酸和 L-缬氨酸。
进一步地, 本领域普通技术人员不难明白, 也可分离本发明天冬氨酸激酶高 水平产生的中间体, L-天冬氨酰 -4-基磷酸, 以便用于, 例如 L-苏氨酸、 L-甲硫氨 酸、 L-异亮氨酸和 L-缬氨酸等各种下游产物的生产。
在具体的实施方式中, 本发明的宿主细胞可以在 30-45°C, 优选 37°C产生 L- 赖氨酸。 解除赖氨酸反馈抑制
本领域技术人员应理解, 本文所用的术语 "解除赖氨酸反馈抑制" 是指一种 原本受到赖氨酸反馈抑制的酶, 在经过改造后令其受赖氨酸抑制程度降低。 这种 降低是通过两种酶在相同赖氨酸浓度下的抑制程度比较获得的。 "解除赖氨酸反 馈抑制" 包含了反馈抑制的部分解除到全部解除。 而抑制程度是指在一定浓度的 赖氨酸存在下, 与不存在赖氨酸时相比, 天冬氨酸激酶酶活性损失(即受到抑制) 的比例。 在这种条件下, 天冬氨酸激酶酶活性保留下来的比例, 称为酶活残存比 例或酶活保留比例或相对酶活, 由于:
酶活损失比例 + 酶活残存比例 = 100%,
所以经常用酶活残存比例表示抑制程度。酶活残存比例越高,抑制程度越低。 相应的, "解除赖氨酸反馈抑制" 也通常用改造前后两个酶残存酶活比例的比较 来刻画。
在具体的实施方式中, 在 lO mM L-赖氨酸存在下, 本发明的天冬氨酸激酶至 少能保留 20%以上的活性, 与野生型天冬氨酸激酶相比, 解除了赖氨酸反馈抑制; 优选地,保留 30-40%以上的活性;更优选, 50%-60%以上的活性;更优选, 70%-80% 以上的活性; 更优选, 90%以上的活性。
在优选的实施方式中, 本发明的天冬氨酸激酶在 20 mM浓度的 L-赖氨酸存 在下, 本发明的天冬氨酸激酶至少能保留 20%以上的活性, 与野生型天冬氨酸激 酶相比, 解除了赖氨酸反馈抑制; 优选地, 保留 30-40%以上的活性; 更优选, 保 留 50%-60%以上的活性; 更优选, 保留 70%以上的活性; 更优选, 保留 80%以上 的活性。
在优选的实施方式中, 本发明的天冬氨酸激酶在 100 mM浓度的 L-赖氨酸存 在下, 至少能保留 20%以上的活性, 与野生型天冬氨酸激酶相比, 解除了赖氨酸 反馈抑制; 优选地, 保留 30-40%以上的活性; 更优选, 保留 50%-60%以上的活 性; 更优选, 保留 70%以上的活性; 更优选, 保留 80%以上的活性。 增强 /弱化
本发明中术语 "增强" 是指微生物由 DNA编码的一种或多种酶的胞内活性 的增加, 包括但不限于通过增加编码基因的拷贝数, 通过增强转录或翻译强度, 或换用编码具有升高活性的酶的基因或等位基因, 及任选地组合使用这些方法。
本发明中术语 "弱化" 是指微生物中由 DNA所编码的一种或多种酶或蛋白 质的胞内活性降低或消除, 包括但不限于通过删除部分或全部编码基因、 基因阅 读框移码突变、 弱化转录或翻译强度、 或使用编码具有较低活性的相应酶或蛋白 质的基因或等位基因, 及任选地组合使用这些方法。 固定化酶
本文所用的术语 "固定化酶" 具有本领域普通技术人员常规理解的含义。 具 体地说, 该术语表示水溶性酶经物理或化学方法处理后, 使酶与水不溶性大分子 载体结合或把酶包埋在其中, 使得酶在水中溶性凝胶或半透膜的微囊体从而导致 流动性降低。
固定化的酶仍具有酶活性, 在催化反应中以固相状态作用于底物。 酶经固定 化后一般稳定性增加, 易从反应系统中分离, 且易于控制, 能反复多次使用。 便 于运输和贮存, 有利于自动化生产。 固定化酶是近十余年发展起来的酶应用技术, 在工业生产、 化学分析和医药等方面有诱人的应用前景。
本领域普通技术人员鉴于本文的教导, 不难将本发明的天冬氨酸激酶处理成 固定化酶, 进而用于催化从天冬氨酸到 L-赖氨酸的反应, 从而既能高效地产生 L- 赖氨酸, 又能有效解除赖氨酸反馈抑制。 本发明的应用与优点
1. 本发明提供的各种天冬氨酸激酶、其编码基因以及包含所述编码具有的宿 主细胞可以在工业上应用以产生 L-赖氨酸和其它氨基酸;
2. 本发明提供的各种天冬氨酸激酶是一种高比活和有效解除 L-赖氨酸反馈 抑制的天冬氨酸激酶。 因此, 本发明的各种天冬氨酸激酶、 其编码基因以及包含 所述编码基因的宿主细胞不仅能高效地产生 L-赖氨酸, 还能有效解除赖氨酸反馈 抑制, 在工业上的应用前景广阔;
3. 本发明提供的各种天冬氨酸激酶以及它们的编码基因有助于阐明与理解 L-赖氨酸生物合成途径以及反馈抑制的相关机理, 从而为进一步利用基因工程手 段改造相关蛋白质或宿主细胞提供了理论基础与材料。 下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明 本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通常按照常规条件如 Sambrook等人, 分子克隆: 实验室手册 (New York: Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按照制造厂商所建议的条 件。 实施例 1. AK III突变体的获得
1. AK III野生型基因的克隆
将 E.coli MG1655(获自 ATCC 700926, 可参考 Blattner F 等, The complete genome sequence of Escherichia coli K-12. Science 277: 1453-62 (1997))在 LB培养基 (胰蛋白胨 10 g/L, 酵母粉 5 g/L, 氯化钠 10 g/L, pH 7.0)中, 37°C, 200 rpm, 培 养 12-16 h后, 收集细胞, 采用 Biomiga基因组小提试剂盒提取基因组 DNA。 以 大肠杆菌基因组为模板, 通过三轮 PCR获得在野生型 lysC基因前加上组成型启 动子及合适的 SD序列, 并在片段两端加上合适的酶切位点。
具体操作为:
AAATTGTTGTCTCCAAAT (SEQ ID NO: 9)和 TTACTCAAACAAATTACTATG CAGTTTTTG (SEQ ID NO: 10)为引物,从 E.coli MG1655基因组 DNA上扩增 lysC 基因 (野生型 lysC的编码基因, 其氨基酸序列为 SEQ ID NO: 2, 其核苷酸序列为 一轮 PCR产物为模板, 以 TTGACGGCTAGCTCAGTC
Figure imgf000015_0001
第二轮 PCR; 再以第二轮的 PCR产物为模板, 以
Figure imgf000015_0002
13)为 引物进行第三轮 PCR, 最后所获得的 DNA片段带上了 Xbal和 Sacl的酶切位点。 通过 Xbal和 Sacl将最后获得的 DNA片段克隆至 pWSK29质粒, 所得质粒命名 为 pWSK29-lysC。
2. AK III的定点突变
利用 Stratagene系列 QuikChange®XL- II定点突变试剂盒, 通过引物
D340P-F/D340P- (见表 1)对质粒 pWSK29-lysC进行 PCR引入突变位点, 获得的 质粒经过 PCR产物回收, 除去 PCR体系中的酶及缓冲体系中的盐离子后, 采用 Dpnl酶切 1 h除去甲基化的模板质粒 DNA,处理后的质粒转入感受态细胞 TranlO (购自北京全式金生物技术有限公司), 所获得的正确突变质粒命名为 pSLLl , 携 带的 lysC突变体核苷酸序列如 SEQ ID NO: 3所示, 翻译的氨基酸序列如 SEQ ID NO: 4所示。
再通过引物 D340V-F/D340V-R (见表 1)对质粒 pWSK29-lysC进行 PCR引入 突变位点, 获得的质粒经过 PCR产物回收, 除去 PCR体系中的酶及缓冲体系中 的盐离子后, 采用 Dpnl酶切 l h除去甲基化的模板质粒 DNA, 处理后的质粒转 入感受态细胞 TranlO, 所获得的正确突变质粒命名为 pSLL2, 携带的 lysC突变体 核苷酸序列如 SEQ ID NO: 5所示, 翻译的氨基酸序列如 SEQ ID NO: 6所示。
最后通过引物 D340R-F/D340R-R (见表 1)对质粒 pWSK29-lysC进行 PCR弓 I 入突变位点, 获得的质粒经过 PCR产物回收, 除去 PCR体系中的酶及缓冲体系 中的盐离子后, 采用 Dpnl酶切 1 h除去甲基化的模板质粒 DNA, 处理后的质粒 转入感受态细胞 TranlO, 所获得的正确突变质粒命名为 pSLL3, 携带的 lysC突变 体核苷酸序列如 SEQ ID NO: 7所示, 翻译的氨基酸序列如 SEQ ID NO: 8所示。
表 1. 点突变所用引物表
Figure imgf000016_0001
实施例 2. AK III突变体的体外效果检测
1. AK III的表达
将前面构建好的野生型型质粒 pWSK29-lysC以及突变体质粒 pSLLl、 pSLL2 禾口 pSLL3分别电转化至 E.coli GT3(参见 Theze, J., Margarita, D., Cohen, G. N., Borne, F.,and Patte, J. C., Mapping of the structural genes of the three aspartokinases and of the two homo serine dehydrogenases of Escherichia coli K-12. J. BacterioL, 1 17 133-143 (1974); 另可参见 US005661012A)菌株, 依次获得的菌株分别命名为 E.coliGT3(p WSK29-lysC) , E.coliGT3(pSLLl)、 E.coliGT3(pSLL2)和
E.coliGT3(pSLL3), 以实现其组成型表达。
2. AK III的酶活检测
将 E.coliGT3 (pWSK29-lysC)、 E.coliGT3 (pSLLl)、 E.coliGT3 (pSLL2)和 E.coliGT3 (pSLL3)菌株分别在 LB培养基上 37°C过夜培养,然后按照 2%转接装有 50 ml LB培养基的 500 ml三角瓶, 补加 50 mg/L的氨苄青霉素, 37°C, 200 rpm 培养至 OD600约为 0.6。 收集培养好的菌体, 用 20 mM的 Tris-HCl (pH 7.5)缓冲 液洗一次, 再重悬在 3 ml含 20 mM的 Tris-HCl (pH 7.5)缓冲液中, 200 W超声破 碎 10 min (每超声 1秒停 3秒), 然后在 13000 rpm离心 30 min, 取上清作为粗酶 液。
酶活测定: 1 ml反应液中含有 200 mM Tris-HCl (pH 7.5)、 10 mM MgSO4* 6H2O、 lO mM L-天冬氨酸、 10 mM ATP、 160 mM 盐酸羟胺和适量的粗酶液及所 需浓度的 L-赖氨酸, 37°C反应 20 min,加入 1 ml 5% (w/v) FeCB终止酶活,取 200 ul在酶标仪上测定 OD540 (Black and Wright, 1954)。
结果见图 1所示,野生型的 AK III在 1 mM的赖氨酸时只残存约 80%的酶活, 10 mM时残存约 40%的酶活, 说明酶活受到赖氨酸的反馈抑制; 而 3个突变体的 酶活在高达 100 mM的残存酶活达到 100%,说明 340位氨基酸突变能够有效的解 除赖氨酸的反馈抑制。 实施例 3. 野生型和突变型 ΑΚ ΠΙ产生 L-Lys的能力
将前面构建好的野生型型质粒 pWSK29-lysC以及突变体质粒 pSLLl、pSLL2、 和 pSLL3分别电转化至 SCEcL3 (实验室构建的一株大肠杆菌突变株, E.Coli MG1655 Δ adhE Δ ackA Δ pta Δ ldhA Δ focA Δ pflB Δ poxB Δ thrAB Δ lcdC)菌株(可参 照文献 Kaemwich Jantama, Xueli Zhang, J.C. Moore, K.T. Shanmugam,S.A.
Svoronos,L.O. Ingram Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnology and Bioengineering, Vol. 101, No. 5, December 1, 2008所述, 以 E.coliMG1655为出发菌株, 通过 red重组技术 依次敲除 adhE、 ackA, pta、 ldhA、 foe A, pflB, poxB、 thrA、 thrB禾卩 lcdC十个 基因的编码序列获得突变株), 依次获得的菌株分别命名为 SCEcL3
(pWSK29-lysC), SCEcL3 (pSLLl), SCEcL3 (pSLL2)禾口 SCEcL3 (pSLL3), 用于发 酵产生赖氨酸。
发酵培养基如下: 葡萄糖 40 g/L, 硫酸铵 10 g/L, 磷酸 0.6 mL/L, 氯化钾 0.8 g/L, 甜菜碱 0.4 g/L, 硫酸镁 1.2 g/L, 硫酸锰 0.03 g/L, 硫酸亚铁 0.03 g/L, 玉米 浆有机氮 0.4 g/L, 5%消泡剂 0.5 mL/L, 苏氨酸 0.2 g/L。 采用汇和堂的可控 pH的 高通量摇床发酵, 500 ml三角瓶装 100 mL发酵培养基, 补加 50 ug/mL的氨苄青 霉素, 接种 2 mL LB过夜培养的菌液在 37°C、 200 rpm、 稀释的氨水控制 pH 6.8, 发酵 20 ho
在 SCEcL3菌株中过表达 AK III野生型和突变体的赖氨酸产量见表 2所示, 过表达 AK III野生型和突变体的生长及耗糖情况基本一致, 但在 20小时糖几乎 耗尽时, 过量表达突变的 ΑΚ ΠΙ可以产 0.28-0.54g/L的赖氨酸, 而过量表达野生 型的 AK III几乎不产赖氨酸, 突变体比野生型菌株赖氨酸产量有明显提高。
表 2. 过表达 AK III野生型和突变体的赖氨酸产量
Figure imgf000017_0001
Figure imgf000018_0001
实施例 4. 不含赖氨酸时野生型和突变型 AK III的比酶活
参照实施例 2的实验方法, 利用 BCA蛋白定量分析试剂盒 (购自伯乐公司, 货号: 23227)—进行粗酶液的总蛋白定量, 不含赖氨酸时野生型和突变型 AK III 的比酶活测定结果如表 3所示。
表 3. 不含赖氨酸时野生型和突变型 AK III的比酶活
Figure imgf000018_0002
结果显示 340位的天冬氨酸突变为脯氨酸得到的突变型 AK III (340P)的绝对 酶活不但没有下降, 还略有升高; 而 340位的天冬氨酸突变为缬氨酸 (340V)或精 氨酸 (340R)得到的突变型 AK III的绝对酶活相对于野生型 AK III有所降低。 但 结合实施例 2和 3的结果, 发明人出乎意料地发现, 340V、 340R以及 340P具备 优秀的解除赖氨酸反馈抑制能力。 在产物赖氨酸存在下, 340V或 340R的相对酶 活与 340P的相似。 实施例 5. 6-His tag标记的本发明多肽
将 lysC的野生型基因、带有 D340R点突变和带有 I418T点突变的 lysC基因, 通过 Ndel和 Xhol限制性内切酶位点克隆至质粒 pET21a+ (购自 NOVAGEN公 司), 所得质粒通过电转化的方式转入大肠杆菌 E.coli BL21 (DE3)中, 这就能够实 现 LysC蛋白的表达,并且在 C端带上了 6-His tag标记。蛋白纯化采用 His SpinTrap columns (购自 GE 公司, 产品货号 28-4013-53), 具体方法参照产品说明书, 纯化 后的蛋白采用实施例 2所示的方法进行酶活测定, 结果如图 2所示, 由于本实施 例的酶活都是用纯化后的酶测定的, 所以与前面实施例粗酶测定相比有一定的差 异, 但体现的效果是一致的。
本实施例的实验结果证明在本发明多肽的任一侧加上少数氨基酸残基得到的 进一步突变的多肽也能具备与本发明多肽相同相似的功能和活性。 实施例 6. 双突变所得 AK III的解除反馈抑制
采用前述实施例的方法, 利用下述引物 (表 4), 发明人还对野生型 AK III的 413位、 401位、 418位和 420位进行突变, 并检测所得突变体的相对酶活, 发现 野生型 AK III的 413位、 401位这两个突变体并没有解除赖氨酸反馈抑制, 野生 型 AK III的 418位、 420位这两个突变体解除赖氨酸反馈抑制的能力弱于野生型 AK III的 340位突变体(图 2)。
表 4. 点突变所用引物表
Figure imgf000019_0001
发明人在 AK III 第 340位突变的基础上将 413位、 401位作了进一步突变, 并检测了所得突变体的相对酶活, 发现得到的双突变 AK III突变体, 例如 F413A 和 G401K的抗赖氨酸反馈抑制与本发明的天冬氨酸激酶相似。
综上所述, 本实施例的实验结果证明 340位对于天冬氨酸激酶解除赖氨酸反 馈抑制的能力至关重要, 而在本发明天冬氨酸激酶的基础上作进一步突变得到的 多肽也能具备与本发明天冬氨酸激酶相同相似的功能和活性。 在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献被 单独引用作为参考那样。 此外应理解, 在阅读了本发明的上述内容之后, 本领域 技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申请所附权 利要求书所限定的范围。

Claims

权 利 要 求
I . 一种天冬氨酸激酶, 其特征在于, 所述天冬氨酸激酶的氨基酸序列在对应 于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基为非天冬氨酸。
2. 编码权利要求 1所述天冬氨酸激酶的基因。
3. 包含权利要求 2所述编码基因的载体。
4.一种宿主细胞,其特征在于,所述宿主细胞含有权利要求 2所述编码基因。
5. 权利要求 4所述宿主细胞在生产 L-氨基酸中的应用。
6. 一种制备 L-氨基酸的方法, 其特征在于, 所述方法包括以下步骤: a. 培养权利要求 4所述的宿主细胞, 使之产生 L-氨基酸; 和
b. 从培养液中分离 L-氨基酸。
7. 权利要求 1所述天冬氨酸激酶在生产 L-氨基酸中的应用。
8. 如权利要求 5-7所述的应用或方法, 其特征在于, 所述的 L-氨基酸为 L- 赖氨酸、 L-苏氨酸、 L-甲硫氨酸、 L-异亮氨酸或 L-缬氨酸。
9.一种制备 L-赖氨酸、 L-苏氨酸、 L-甲硫氨酸、 L-异亮氨酸或 L-缬氨酸方法, 其特征在于, 所述方法包括以下步骤:
a. 利用权利要求 1所述的天冬氨酸激酶 (EC 2.7.2.4), 催化从 L-天冬氨酸生 成 L-赖氨酸、 L-苏氨酸、 L-甲硫氨酸、 L-异亮氨酸或 L-缬氨酸过程中的以下反应, 进而获得 L-赖氨酸、 L-苏氨酸、 L-甲硫氨酸、 L-异亮氨酸或 L-缬氨酸,
Figure imgf000020_0001
L-天冬氨酸 L-天冬氨酰 -4-基磷酸. 禾卩
b. 从以上反应体系中分离 L-赖氨酸、 L-苏氨酸、 L-甲硫氨酸、 L-异亮氨酸或 L-缬氨酸。
10. 制备权利要求 1所述天冬氨酸激酶的方法, 其特征在于, 所述方法包括 以下步骤:
a. 改造 SEQ ID NO: 2所示氨基酸序列的编码序列, 使得编码的氨基酸序列 中对应于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基突变为非天冬氨 酸;
b. 将 a得到的编码序列直接转染合适的宿主细胞或经载体引入合适的宿主细 胞;
c 培养 b得到的宿主细胞;
d. 从步骤 c得到的培养体系中分离所述宿主细胞产生的天冬氨酸激酶; 和 e. 测定所述天冬氨酸激酶解除赖氨酸反馈抑制的能力。
I I . 改造野生型天冬氨酸激酶使之解除赖氨酸反馈抑制的方法, 其特征在于, 所述方法包括以下步骤: a. 将野生型天冬氨酸激酶的氨基酸序列与 SEQ ID NO: 2所示氨基酸序列作 比对; 和
b. 改造所述野生型天冬氨酸激酶的编码序列, 使得编码的氨基酸序列中对应 于 SEQ ID NO: 2所示氨基酸序列的第 340位的氨基酸残基突变为非天冬氨酸; c 将 b得到的编码序列直接转染合适的宿主细胞或经载体引入合适的宿主细 胞;
d. 培养 c得到的宿主细胞;
e. 从步骤 d得到的培养体系中分离所述宿主细胞产生的天冬氨酸激酶; 和 f. 测定所述天冬氨酸激酶解除赖氨酸反馈抑制的能力。
PCT/CN2013/075751 2012-10-18 2013-05-16 天冬氨酸激酶iii突变体及其宿主细胞和应用 WO2014059789A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2888606A CA2888606C (en) 2012-10-18 2013-05-16 Asparaginic acid kinase iii mutant and host cells and use thereof
JP2015537111A JP6091629B2 (ja) 2012-10-18 2013-05-16 アスパラギン酸キナーゼiii変異体およびその宿主細胞と応用
EP13846350.0A EP2910567B1 (en) 2012-10-18 2013-05-16 Asparaginic acid kinase iii mutant and host cells and use thereof
US14/437,115 US9896734B2 (en) 2012-10-18 2013-05-16 Asparaginic acid kinase III mutant and host cells and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210398902.6 2012-10-18
CN201210398902.6A CN103773745B (zh) 2012-10-18 2012-10-18 天冬氨酸激酶iii突变体及其宿主细胞和应用

Publications (1)

Publication Number Publication Date
WO2014059789A1 true WO2014059789A1 (zh) 2014-04-24

Family

ID=50487520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075751 WO2014059789A1 (zh) 2012-10-18 2013-05-16 天冬氨酸激酶iii突变体及其宿主细胞和应用

Country Status (7)

Country Link
US (1) US9896734B2 (zh)
EP (1) EP2910567B1 (zh)
JP (1) JP6091629B2 (zh)
CN (2) CN103773745B (zh)
CA (1) CA2888606C (zh)
PT (1) PT2910567T (zh)
WO (1) WO2014059789A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105505894A (zh) * 2014-09-24 2016-04-20 中国科学院天津工业生物技术研究所 天冬氨酸激酶/高丝氨酸脱氢酶突变体及其应用
CN109385417A (zh) * 2017-08-03 2019-02-26 华东理工大学 体内dna无缝组装方法
CN107475281B (zh) * 2017-09-06 2020-10-13 福建农林大学 一种生物转化甲醇代谢途径
CN109295028B (zh) * 2018-11-05 2021-12-17 吉林农业大学 高酶活天冬氨酸激酶突变体、工程菌及该突变体的制备方法
CN113278655B (zh) * 2020-05-13 2022-05-17 安徽华恒生物科技股份有限公司 生产l-缬氨酸的重组微生物及构建方法、应用
CN111944781A (zh) * 2020-09-03 2020-11-17 廊坊梅花生物技术开发有限公司 一种突变的高丝氨酸激酶及其应用
CN113201514B (zh) * 2020-10-16 2022-09-06 中国科学院天津工业生物技术研究所 具有天冬氨酸激酶活性的多肽及其在生产氨基酸中的应用
CN112695036B (zh) * 2021-03-23 2021-07-06 中国科学院天津工业生物技术研究所 一种天冬氨酸激酶基因表达调控序列及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1107179A (zh) * 1992-11-10 1995-08-23 味之素株式会社 发酵生产l-苏氨酸的方法
CN1182133A (zh) * 1996-10-15 1998-05-20 味之素株式会社 发酵生产l-氨基酸的方法
CN1203629A (zh) * 1995-06-13 1998-12-30 味之素株式会社 发酵生产l-赖氨酸的方法
EP1253195A1 (en) 2000-01-21 2002-10-30 Ajinomoto Co., Inc. Process for producing l-lysine
EP1394257A1 (en) 1992-03-19 2004-03-03 E.I. Dupont De Nemours And Company Nucleic acid fragments and methods for increasing the lysine and threonine content of the seeds of plants
EP1477564A2 (en) 1999-07-22 2004-11-17 Incyte Genomics, Inc. Human synthetases
US20100190216A1 (en) 2006-02-02 2010-07-29 Yoshiya Gunji Method for production of l-lysine using methanol-utilizing bacterium
WO2012056318A1 (en) * 2010-10-28 2012-05-03 Adisseo France S.A.S. A method of production of 2,4-dihydroxybutyric acid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076856B (zh) * 2008-06-30 2014-12-31 孟山都技术公司 用于提高植物中的氨基酸含量的组合物和方法
JP2014036576A (ja) * 2010-12-10 2014-02-27 Ajinomoto Co Inc L−アミノ酸の製造法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394257A1 (en) 1992-03-19 2004-03-03 E.I. Dupont De Nemours And Company Nucleic acid fragments and methods for increasing the lysine and threonine content of the seeds of plants
CN1107179A (zh) * 1992-11-10 1995-08-23 味之素株式会社 发酵生产l-苏氨酸的方法
US5661012A (en) 1992-11-10 1997-08-26 Ajinomoto Co., Inc. Method for the production of L-threonine by fermentation, using mutated DNA encoding aspartokinase III
CN1071378C (zh) 1992-11-10 2001-09-19 味之素株式会社 发酵生产l-苏氨酸的方法
CN1203629A (zh) * 1995-06-13 1998-12-30 味之素株式会社 发酵生产l-赖氨酸的方法
CN1182133A (zh) * 1996-10-15 1998-05-20 味之素株式会社 发酵生产l-氨基酸的方法
EP1477564A2 (en) 1999-07-22 2004-11-17 Incyte Genomics, Inc. Human synthetases
EP1253195A1 (en) 2000-01-21 2002-10-30 Ajinomoto Co., Inc. Process for producing l-lysine
US20100173368A1 (en) 2000-01-21 2010-07-08 Kazuo Nakanishi Method for producing l-lysine
US20100190216A1 (en) 2006-02-02 2010-07-29 Yoshiya Gunji Method for production of l-lysine using methanol-utilizing bacterium
WO2012056318A1 (en) * 2010-10-28 2012-05-03 Adisseo France S.A.S. A method of production of 2,4-dihydroxybutyric acid

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"Biocomputing: Informatics and Genome Projects", 1993, ACADEMIC PRESS
"Computational Molecular Biology", 1988, OXFORD UNIVERSITY PRESS
"Computer Analysis of Sequence Data", 1994, HUMANA PRESS
"Sequence Analysis Primer", 1991, M STOCKTON PRESS
BEARER CF; NEET KE; STADTMAN, ER; COHEN, GN; LEBRAS, G.; ROBICHON-SZULMAJSTER, H.: "Feed-back Inhibition and Repression of Aspartokinase Activity in Escherichia coli and Saccharomyces cerevisiae", J. BIOL. CHEM., 1961
BLATTNER FR ET AL.: "The complete genome sequence of Escherichia coli K-12", SCIENCE, vol. 277, 1997, pages 1453 - 62, XP002937834, DOI: doi:10.1126/science.277.5331.1453
CARILLO, H; LIPMAN, D., SIAM J. APPLIED MATH, vol. 48, 1988, pages 1073
KAEMWICH JANTAMA; XUELI ZHANG; JC MOORE; KT SHANMUGAM; SA SVORONOS; LO INGRAM: "Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C", BIOTECHNOLOGY AND BIOENGINEERING, vol. 101, no. 5, 1 December 2008 (2008-12-01)
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
THEZE, J.; MARGARITA, D.; COHEN, GN; BORNE, F.; PATTE, JC: "Mapping of the structural genes of the three aspartokinases and of the two homoserine dehydrogenases of Escherichia coli K-12", J. BACTERIOL, vol. 117, 1974, pages 133 - 143
VON HEINJE, G: "Sequence Analysis in Molecular Biology", 1987, ACADEMIC PRESS
WATSON ET AL.: "Molecular Biology of The Gene", 1987, THE BENJAMIN / CUMMINGS PUB. CO., pages: 224
X DONG; PJ QUINN; X WANG: "Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine", BIOTECHNOLOGY ADVANCES, 2011

Also Published As

Publication number Publication date
CN108486082A (zh) 2018-09-04
EP2910567A1 (en) 2015-08-26
CN103773745A (zh) 2014-05-07
JP2015532111A (ja) 2015-11-09
EP2910567B1 (en) 2020-12-16
PT2910567T (pt) 2021-02-05
CA2888606A1 (en) 2014-04-24
US9896734B2 (en) 2018-02-20
US20150337346A1 (en) 2015-11-26
CN103773745B (zh) 2018-03-23
EP2910567A4 (en) 2016-09-14
JP6091629B2 (ja) 2017-03-08
CA2888606C (en) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2014059789A1 (zh) 天冬氨酸激酶iii突变体及其宿主细胞和应用
Takeno et al. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production
JP7139478B2 (ja) 発酵経路を経由するフラックスの増大を示す組み換え微生物体
Takeno et al. l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene
TW201910512A (zh) Atp磷酸核糖基轉移酶變體及使用該變體製造l-組胺酸之方法
WO2019085445A1 (zh) 生产l-赖氨酸的重组菌、其构建方法以及l-赖氨酸的生产方法
Chong et al. Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP)
Sindelar et al. Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes
JP2008530978A (ja) 4−ハイドロキシ−l−イソロイシン又はその塩の製造法
Blombach et al. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum
Martinez et al. Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli
JP2020000250A (ja) ピルビン酸デヒドロゲナーゼ変異体、それを含む微生物及びそれを用いるl−アミノ酸生産方法
RU2699516C2 (ru) Новая лизиндекарбоксилаза и способ получения кадаверина с ее использованием
TW201005094A (en) Polypeptide having glyoxalase III activity, polynucleotide encoding the same and uses thereof
JP2008526196A (ja) 外来のnadp依存的グリセルアルデヒド−3−リン酸デヒドロゲナーゼ遺伝子を含むエシェリキア種またはコリネバクテリウム種の微生物、およびこれらを用いてl−リジンを生産する方法
WO2020057308A1 (zh) Nadh依赖性的氨基酸脱氢酶及其在提高赖氨酸产量中的应用
Xu et al. Production of L-tyrosine using tyrosine phenol-lyase by whole cell biotransformation approach
CN110218710B (zh) 活性提高的磷酸转酮酶及在生产代谢物中的应用
CN101952418B (zh) 生产(2s,3r,4s)-4-羟基-l-异亮氨酸的方法
KR102149044B1 (ko) 2-히드록시 감마 부티로락톤 또는 2,4-디히드록시-부티레이트 의 제조 방법
CN105505894A (zh) 天冬氨酸激酶/高丝氨酸脱氢酶突变体及其应用
Tsujimoto et al. L-Lysine biosynthetic pathway of Methylophilus methylotrophus and construction of an L-lysine producer
CN106978405A (zh) 天冬氨酸激酶/高丝氨酸脱氢酶突变体及其应用
CN104178442A (zh) 含有突变的lpdA基因的大肠杆菌及其应用
JP2008109924A (ja) 4−ヒドロキシ−l−イソロイシン又はその塩の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2888606

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015537111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14437115

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013846350

Country of ref document: EP