WO2014054446A1 - デジタルホログラフィ装置 - Google Patents

デジタルホログラフィ装置 Download PDF

Info

Publication number
WO2014054446A1
WO2014054446A1 PCT/JP2013/075556 JP2013075556W WO2014054446A1 WO 2014054446 A1 WO2014054446 A1 WO 2014054446A1 JP 2013075556 W JP2013075556 W JP 2013075556W WO 2014054446 A1 WO2014054446 A1 WO 2014054446A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
phase
pixel
object light
light
Prior art date
Application number
PCT/JP2013/075556
Other languages
English (en)
French (fr)
Inventor
安浩 粟辻
樹 田原
安軌 伊藤
Original Assignee
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学 filed Critical 国立大学法人京都工芸繊維大学
Priority to JP2014539666A priority Critical patent/JP6192017B2/ja
Publication of WO2014054446A1 publication Critical patent/WO2014054446A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02047Interferometers characterised by particular imaging or detection techniques using digital holographic imaging, e.g. lensless phase imaging without hologram in the reference path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0445Off-axis recording arrangement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0454Arrangement for recovering hologram complex amplitude
    • G03H2001/0458Temporal or spatial phase shifting, e.g. parallel phase shifting method
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/10Modulation characteristics, e.g. amplitude, phase, polarisation
    • G03H2210/12Phase modulating object, e.g. living cell
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/19Microoptic array, e.g. lens array
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/22Polariser

Definitions

  • the present invention relates to a digital holography apparatus.
  • the unit of phase is expressed in radians.
  • advanced measurement and analysis of the three-dimensional shape of an object is required, and various measurement methods have been developed.
  • interference measurement technology using light interference, particularly digital holography can obtain three-dimensional information of an object in a non-contact and non-destructive manner. It has become one.
  • Digital holography is a technology for reproducing an image of a three-dimensional object using a computer from interference fringes obtained by light irradiation on the three-dimensional object.
  • interference fringes formed by object light obtained by light irradiation on a three-dimensional object and reference light that is coherent with the object light are represented by a CCD (charge-coupled device) or the like. Recording is performed using an image sensor. Based on the recorded interference fringes, a computer reproduces an image of a three-dimensional object.
  • Non-Patent Document 1 describes a basic digital holography technique for reproducing an image from interference fringes.
  • Non-Patent Document 2 describes a technique (phase shift method) for removing unnecessary image components (0th-order diffracted light and conjugate image ( ⁇ 1st-order diffracted light)) when an image is reproduced from interference fringes.
  • a plurality of interference fringes are obtained by performing imaging a plurality of times under different conditions. Therefore, it cannot be applied to a dynamic subject.
  • Patent Document 1 describes a technique in which pixels are divided to simultaneously capture four types of interference fringes having different phase shift amounts between object light and reference light, and an image is reproduced by a four-stage phase shift method. .
  • Patent Document 2 describes a technique in which a pixel is divided and two types of interference fringes having different phase shift amounts of object light and reference light are simultaneously imaged and an image is reproduced by a two-stage phase shift method.
  • the two-stage phase shift method requires two types of interference fringes with different phase shift amounts. If the phase shift amount of one interference fringe is set to 0, the phase shift amount of the other interference fringe necessary for the calculation of the two-step phase shift method is 0 and a phase shift amount other than ⁇ (preferably, for example, ⁇ / 2). is there.
  • Non-Patent Document 3 describes a technique in which a pixel is divided to simultaneously capture four types of interference fringes having different phase shift amounts of object light and reference light, and an image is reproduced by a two-stage phase shift method. Yes.
  • Patent Document 1 a method of performing phase shift interference measurement from one interference fringe image recorded so that the reference light has four different phase amounts in four local pixels of the image sensor (hereinafter referred to as this).
  • a technique using a method called a parallel four-stage phase shift method the imageable range is narrow, and the resolution of an apparatus based on this technique cannot be increased.
  • the photographing range is wide and the resolution of the apparatus can be increased as compared with the technique of Patent Document 1.
  • this method is referred to as a parallel two-stage phase shift method
  • a holographic imaging optical system An optical element that is not commercially available is required.
  • an image sensor to which a polarizer array in which two types of polarizers are alternately arranged in an array shape is required, but such an image sensor is generally not commercially available at the present time. Therefore, it is not easy to configure the imaging optical system, and the imaging optical system becomes expensive.
  • Non-Patent Document 3 can be configured using a commercially available polarization imaging camera and general optical elements. However, in the technique of Non-Patent Document 3, since the two types of phase shift amounts are regarded as two types of phase shift amounts and the two-stage phase shift method is applied without any correction or compensation, an appropriate reproduced image can be obtained. It may not be possible.
  • the present invention has been made in view of the above problems, and an object of the present invention is to realize a digital holography apparatus that can configure an imaging optical system with simple optical elements and improve image quality.
  • a digital holography device includes a light source that supplies reference light and object illumination light that illuminates a subject, and an imaging device, and the object light and the reference light that are light that the object illumination light reaches through the subject.
  • the imaging device captures the interference fringes formed by the imaging device, and the imaging device corresponds to each polarization region and a polarizer array having four polarization regions with different polarization directions of light passing through each other.
  • the digital holography device includes circularly or elliptically polarized object light, and circularly or elliptically polarized reference light that rotates in the opposite direction to the object light.
  • phase correction unit that corrects a difference between the four types of phase shift amounts generated according to the four polarization regions, and an interference imaged by the imaging device.
  • a digital holography device including an imaging device can be easily configured using a commercially available polarization imaging camera that detects different polarized light for every four pixels. Since the phase correction unit can correct the difference between the four types of phase shift amounts generated according to the four polarization regions, the parallel two-stage phase shift method can be appropriately applied. Therefore, the digital holography device can obtain a reproduced image with good image quality.
  • FIG. 1 It is a schematic diagram which shows the structure of the digital holography apparatus which concerns on one Embodiment of this invention. It is a figure which shows the structure of the polarizer array in the said digital holography apparatus, and an image pick-up element. It is a figure which shows the phase shift amount on each pixel by the effect
  • FIG. 1 is a schematic diagram showing a configuration of a digital holography device 1 of the present embodiment.
  • the digital holography device 1 includes an imaging optical system 11 and a playback device 12 (playback unit).
  • the playback device 12 can be configured by a computer such as a computer.
  • the imaging optical system 11 includes a laser light source (light source) 13 and a polarization imaging imaging device 14 (imaging device).
  • the imaging optical system 11 includes, as optical elements (optical members), a beam splitter BS1, a mirror M1, a beam expander BE1, a polarizer LP1, a half-wave plate HWP1, a beam expander BE2, a mirror M2, and a beam splitter BS2. And a quarter wave plate QWP1.
  • Each of the beam expanders BE1 and BE2 includes an objective lens BEa, a pinhole BEb, and a collimator lens BEc.
  • the beam splitters BS1 and BS2 are half mirrors.
  • the polarization imaging imaging device 14 is connected to the reproduction device 12, and the output of the polarization imaging imaging device 14 is input to the reproduction device 12.
  • the polarization imaging imaging device 14 includes a polarizer array 16 and an imaging element 15 made of a CCD.
  • the plurality of polarizers arranged in a matrix of the polarizer array 16 are aligned so as to correspond to each pixel of the image sensor 15.
  • the polarizer array 16 is affixed to the front surface of the image sensor 15, and the image sensor 15 detects the intensity of light that has passed through the polarizer array 16.
  • the laser light source 13 generates coherent light, that is, laser light.
  • one direction perpendicular to the propagation direction of the laser light is defined as the first direction
  • the propagation direction of the laser light and the direction perpendicular to the first direction are defined as the second direction.
  • the first direction coincides with the horizontal direction with respect to the drawing (paper surface)
  • the second direction coincides with the vertical direction.
  • the laser light from the laser light source 13 is linearly polarized light that is perpendicularly polarized with respect to the drawing (paper surface).
  • the polarization direction of the laser light emitted from the laser light source 13 can be adjusted using a wave plate or a polarizer.
  • the laser light emitted from the laser light source 13 is split into reference light and object illumination light by the beam splitter BS1.
  • the reference light and the object illumination light divided by the beam splitter BS1 are linearly polarized light that is vertically polarized.
  • the object illumination light which is one of the divided lights, is reflected by the mirror M1 and then converted into expanded parallel light by the beam expander BE1. Thereafter, the object illumination light is applied to the subject (object) 17.
  • the object illumination light incident on the subject 17 is diffracted or scattered by the subject 17 and is emitted from the subject 17 as object light.
  • the object light passes through the polarizer LP1, the beam splitter BS2, and the quarter-wave plate QWP1 in this order, and enters the polarization imaging device 14.
  • the polarizer LP1 serves to remove noise components by adjusting the polarization of object light disturbed by the subject 17 to vertical polarization.
  • the polarizer LP1 can be omitted.
  • the object light after passing through the beam splitter BS2 is vertically polarized with respect to the figure (paper surface).
  • the object light is incident substantially perpendicular to the imaging surface of the image sensor 15.
  • the reference light which is the other of the divided lights, is converted into horizontally polarized light by the half-wave plate HWP1.
  • the slow axis of the half-wave plate HWP1 is inclined 45 ° with respect to the vertical direction. Thereafter, the reference light is converted into expanded parallel light by the beam expander BE2. Thereafter, the reference light is reflected by the mirror M2, then reflected by the beam splitter BS2, passes through the quarter-wave plate QWP1, and enters the polarization imaging device 14.
  • the vertically polarized object light and the horizontally polarized reference light are incident on the quarter wave plate QWP1. That is, before entering the quarter-wave plate QWP1, the polarization direction of the object light and the polarization direction of the reference light are orthogonal to each other.
  • the slow axis of the quarter wave plate QWP1 is inclined 45 ° from the horizontal direction. That is, the slow axis of the quarter wave plate QWP1 is inclined 45 ° with respect to the polarization direction (horizontal direction) of the reference light, and is also inclined 45 ° with respect to the polarization direction (vertical direction) of the object light. . Therefore, the reference light that has passed through the quarter-wave plate QWP1 is converted into circularly polarized light.
  • the object light that has passed through the quarter-wave plate QWP1 is converted into circularly polarized light.
  • the polarization direction of the reference light with respect to the slow axis is 45 °
  • the polarization direction of the object light with respect to the slow axis is ⁇ 45 °. Therefore, after passing through the quarter-wave plate QWP1, the circularly polarized light of the reference light and the circularly polarized light of the object light are rotated in opposite directions.
  • the reference light and the object light may be elliptically polarized light.
  • the imaging optical system 11 is composed of an inline optical system. That is, the reference light is incident from almost the front of the image pickup surface of the image pickup device 15, and the subject 17 is positioned optically in front of the image pickup surface of the image pickup device 15 (optically normal to the image pickup surface).
  • the optical axis of the object light (the axis that optically connects the subject 17 and the image sensor 15) and the optical axis of the reference light are different from each other by an angle ⁇ .
  • the object light is incident perpendicular to the imaging surface of the imaging element 15.
  • the reference light is incident at an angle ⁇ with respect to the normal direction of the imaging surface.
  • the mirror M2 is arranged on the fine movement rotary stage so that the angle can be adjusted, and is configured to be rotatable.
  • FIG. 2 is a diagram illustrating the configuration of the polarizer array 16 and the image sensor 15 of the polarization imaging apparatus 14.
  • the polarizer array 16 includes four types of polarization regions 16a, 16b, 16c, and 16d arranged in a matrix.
  • the polarization region 16a passes only the polarization component in the upward right direction (45 ° direction).
  • the polarization region 16b transmits only the polarization component in the horizontal direction (0 ° direction).
  • the polarization region 16c passes only the polarization component in the upward left direction ( ⁇ 45 ° direction).
  • the polarization region 16d passes only the polarization component in the vertical direction (90 ° direction).
  • Each of the polarization regions 16a to 16d is periodically arranged in units of four polarization regions 16a to 16d of 2 rows ⁇ 2 columns.
  • the polarizer array 16 is disposed on the image sensor 15 so that the polarization regions 16a to 16d correspond to the pixels 15a to 15d of the image sensor 15, respectively. That is, light that has passed through one polarization region 16a is incident on one pixel 15a.
  • a polarization imaging camera including a polarizer array in which four types of polarization regions are arranged is already on the market.
  • a polarization imaging camera (model number PI-110) is commercially available from Photonic Lattice Co., Ltd.
  • polarization imaging cameras are commercially available as cameras for observing the polarization state of a subject (and thus having four types of polarization regions), not for use in digital holography. Therefore, the polarization imaging imaging device 14 of the present embodiment can be configured by removing a lens for imaging from a commercially available polarization imaging camera. Therefore, the polarization imaging apparatus 14 can be easily manufactured at a low cost using a commercially available product.
  • the imaging optical system 11 of the present embodiment can be configured by general optical elements such as a half mirror, a lens, a half-wave plate, a quarter-wave plate, and a polarizer. It is not necessary to use a special optical element such as a phase shift array in order to configure the imaging optical system 11. In addition, since the imaging optical system 11 does not require an imaging optical system, the optical elements can be easily aligned. Therefore, the imaging optical system 11 can be configured easily and at low cost.
  • the imaging optical system may be configured to irradiate the subject with the object light and capture the reflected / scattered object light.
  • the circularly polarized light of the object light and the circularly polarized light of the reference light are rotated in opposite directions.
  • the object light and the reference light incident on the polarization region 16a pass only the polarization component in the 45 ° direction from the horizontal direction.
  • the phase shift amount between the object light that has passed through the polarization region 16a and the reference light is set to 0 with reference to polarization of 45 ° from the horizontal direction.
  • the horizontal polarization component (polarization component in the 0 ° direction) passes through the object light and the reference light incident on the polarization region 16b.
  • the object light and the reference light incident on each polarization region are circularly polarized light that rotates in opposite directions. Therefore, the phase of the component of the object light that has passed through the polarization region 16b is advanced by ⁇ / 4, and the phase of the component of the reference light that has passed through the polarization region 16b is, for example, compared to the object light and the reference light that have passed through the polarization region 16a. Delayed by ⁇ / 4.
  • phase shift amount between the object light and the reference light that has passed through the polarization region 16b is ⁇ / 2.
  • the phase of the component of the object light that has passed through the polarization region 16c is advanced by ⁇ / 2
  • the phase of the reference light component that has passed through the polarization region 16c is delayed by ⁇ / 2. . That is, when passing through the polarization region 16c, the phase of the reference light is delayed by ⁇ with respect to the phase of the object light.
  • the amount of phase shift between the object light that has passed through the polarization region 16c and the reference light is ⁇ .
  • the amount of phase shift between the object light and the reference light that has passed through the polarization region 16d is 3 ⁇ / 2.
  • the phase lag or advance of the reference light with respect to the phase of the object light is a phase shift amount. It is defined as
  • the difference in the amount of phase shift between the object light and the reference light that have passed through each of the polarization regions 16a to 16d occurs because the incident object light and the reference light are circularly polarized light that rotates in opposite directions.
  • whether the phase shift amount between the object light that has passed through the polarization region 16b and the reference light is ⁇ / 2 or ⁇ / 2 as compared to the polarization region 16a depends on the circular polarization of the incident object light and reference light. Depends on the direction of rotation.
  • object light and reference light with four types of phase shifts in increments of ⁇ / 2 can be obtained corresponding to the four types of polarization regions 16a to 16d.
  • the four types of polarization regions 16a to 16d can be arranged arbitrarily.
  • the object light and reference light that have passed through the polarization regions 16a to 16d are incident on the corresponding pixels 15a to 15d.
  • the object light and the reference light interfere with each other on the imaging surface to form interference fringes.
  • the image sensor 15 captures an interference fringe formed by the interference between the object light and the reference light.
  • FIG. 3 is a diagram showing the amount of phase shift on each pixel due to the action of the polarizer array 16.
  • an interference fringe with a phase shift amount 0 an interference fringe with a phase shift amount ⁇ / 2
  • an interference fringe with a phase shift amount ⁇ an interference fringe with a phase shift amount 3 ⁇ / 2
  • pixel data corresponding to the phase shift amount of 0 may be extracted.
  • four types of interference fringes with different phase shift amounts can be obtained.
  • the imaging range becomes narrower. You can not get a high quality image. If the four types of phase shift amounts are regarded as two types of phase shift amounts and the parallel two-stage phase shift method is simply applied without any correction or compensation, a sufficient improvement in image quality cannot be expected.
  • FIG. 4 is a diagram for explaining the phase shift amounts of incident object light and reference light.
  • the pixels of the image sensor 15 are indicated by dots, and the traveling directions of the object light and the reference light incident on each pixel are indicated by arrows.
  • the pitch of each pixel in a plane including the optical axis of the object light and the optical axis of the reference light is d.
  • the reference light is a plane wave.
  • the object light can be regarded as a plane wave in the range of several pixels.
  • the optical axis of the object light coincides with the normal of the imaging surface, and the optical axis of the reference light is inclined at an angle ⁇ from the normal of the imaging surface.
  • phase shift amount of the object light and the reference light incident on the first pixel is a standard (0)
  • the phase shift amount of the object light and the reference light on the second pixel is ⁇
  • the third pixel is on the third pixel.
  • the phase shift amounts of the object light and the reference light are zero.
  • the average phase shift amount on each pixel is 0 or ⁇ . That is, by setting the angle ⁇ of the reference light with respect to the object light to a predetermined angle, the phase shift amount between pixels adjacent in a certain direction can be varied by ⁇ .
  • the mirror M2 or the beam splitter BS2 can also be said to be a phase adjustment mechanism (phase correction unit).
  • the mirror M2 and the beam splitter BS2 may be fixed at an arrangement / angle so that the incident angle of the reference light is a predetermined angle ⁇ .
  • FIG. 5 is a diagram showing the amount of phase shift on each pixel due to the action of the angle ⁇ .
  • the phase shift amounts of the pixels arranged in the horizontal direction are the same.
  • 0 or ⁇ are alternately arranged as the phase shift amount of each pixel.
  • the phase shift amount changes in the vertical direction as shown in FIG.
  • the reference light is inclined in the horizontal direction
  • the phase shift amount changes in the horizontal direction.
  • the reference light is inclined in the oblique direction with respect to the row direction (horizontal direction) and the column direction (vertical direction) of the pixel
  • the phase shift amount of the oblique stripe as shown in FIG. 6 can be obtained.
  • n is a natural number
  • FIG. 7 is a diagram illustrating the amount of phase shift on each pixel in the imaging optical system 11.
  • both the action of the polarizer array 16 and the action of the angle ⁇ work, so the phase shift amount (FIG. 3) due to the action of the polarizer array 16 and the phase due to the action of the angle ⁇ .
  • An interference fringe (hologram) obtained by combining the shift amount (FIG. 5) is obtained.
  • the phase shift amount of the interference fringe to be imaged is changed from four kinds to two kinds and three kinds. Or five or more types.
  • the phase shift amount of the interference fringe to be imaged is converted from four types to two types.
  • the interference fringes imaged by the image sensor 15 include pixels having a phase shift amount of 0 and pixels having a phase shift amount of ⁇ / 2. Therefore, the polarization imaging imaging device 14 can image two types of interference fringes that are different in phase shift amount by ⁇ / 2 at a time. In addition, pixels with a phase shift amount of 0 and pixels with a phase shift amount of ⁇ / 2 are arranged in a checkered pattern.
  • the polarization imaging imaging device 14 outputs the captured interference fringe image data to the reproduction device 12. Since there are two types of phase shift amounts of 0 and ⁇ / 2, it is possible to obtain a reproduced image with good image quality using the parallel two-stage phase shift method.
  • phase shift amount ⁇ may be added to any one of the phase shift amounts ⁇ / 2 and 3 ⁇ / 2. Therefore, even if the arrangement of the polarization regions of the polarizer array 16 is different from the arrangement shown in FIG. 2, two phase shift amounts of 0 and ⁇ / 2 are obtained by adjusting the direction in which the reference light is inclined. Interference fringes can be imaged.
  • the playback device 12 includes a phase shift processing unit 18 and a diffraction processing unit 19.
  • the reproducing device 12 acquires image data indicating the interference fringes imaged from the polarization imaging imaging device 14 and inputs the acquired image data to the phase shift processing unit 18.
  • FIG. 8 is a diagram for explaining an image reproduction algorithm in the phase shift processing unit 18.
  • FIG. 8 shows only a part of the interference fringes.
  • the captured interference fringe 21 includes two types of pixels, a pixel 21a having a phase shift amount of 0 and a pixel 21b having a phase shift amount of ⁇ / 2.
  • the phase shift processing unit 18 obtains an interference fringe 22a having a phase shift amount of 0 and an interference fringe 22b having a phase shift amount of ⁇ / 2 by extracting these two types of pixels 21a and 21b.
  • the phase shift processing unit 18 interpolates the pixel value of the missing pixel of the interference fringe 22a having the phase shift amount of 0 by interpolation or extrapolation, and the interpolated interference shift 23a having the phase shift amount of 0 is obtained. Get. Similarly, the phase shift processing unit 18 interpolates the pixel values of the missing pixels of the interference fringes 22b having the phase shift amount of ⁇ / 2, and obtains the interference fringes 23b having the interpolated phase shift amount of ⁇ / 2. .
  • the parallel two-stage phase shift method In order to obtain the complex amplitude distribution of the object light from the two types of interference fringes 23a and 23b having different phase shift amounts by the parallel two-stage phase shift method, information on the intensity distribution of the reference light on the image sensor 15 is necessary. Become. Since the intensity distribution of the reference light is constant and does not change, only the reference light can be imaged by blocking the object light before or after imaging the interference fringes of the subject 17. Note that the subject 17 is not necessary when obtaining the intensity distribution of the reference light.
  • the reproduction device 12 acquires the intensity distribution of the reference light from the polarization imaging device 14 as with the interference fringes.
  • the intensity of the reference light is made sufficiently higher than the intensity of the object light. When the intensity of the reference light is sufficiently higher than the intensity of the object light, the parallel two-stage phase shift method can be suitably applied.
  • the recording of the intensity distribution of the reference light is omitted, and the phase shift processing unit 18 performs the phase shift process to obtain the complex amplitude distribution of the object light.
  • a reference light intensity distribution may be generated and used. By repeatedly processing the interference fringes obtained by changing the intensity of the reference light, an appropriate intensity distribution of the reference light can be estimated.
  • the phase shift processing unit 18 applies the parallel two-stage phase shift method to the interference fringe 23a having the interpolated phase shift amount of 0 and the interference fringe 23b having the interpolated phase shift amount of ⁇ / 2.
  • the complex amplitude distribution 24 of the object light can be obtained.
  • the complex amplitude distribution 24 obtained here represents the amplitude distribution and the phase distribution of the object light at the position of each pixel on the imaging surface.
  • the phase shift processing unit 18 outputs the complex amplitude distribution 24 of the object light to the diffraction processing unit 19.
  • the diffraction processing unit 19 obtains a reproduced image of the subject 17 by applying diffraction integration to the complex amplitude distribution 24 of the object light. If the complex amplitude distribution 24 of the object light on the imaging surface of the image sensor 15 is obtained, a focused image (reproduced image showing the amplitude distribution) at an arbitrary depth position is obtained by tracing back the propagation of the object light by diffraction integration. Obtainable. In addition, a phase distribution including information on the three-dimensional shape of the subject 17 can be obtained for the focused image.
  • the phase adjustment mechanism reduces the reference light so that the phase shift amount becomes two types. Adjust the angle ⁇ .
  • an interference fringe in which interference fringes of two types of phase shift amounts are space-division multiplexed can be obtained. Therefore, the parallel two-stage phase shift method can be preferably applied, and a reproduced image with good image quality can be obtained.
  • the number of space division multiplexing is two, that is, the apparent number of pixels is halved. Therefore, more information is recorded on the interference fringes than when the parallel four-stage phase shift method in which the apparent number of pixels is 1 ⁇ 4 is used. Therefore, the resolution and imaging range of the digital holography device can be improved.
  • the imaging optical system 11 does not require an imaging optical system, the optical elements can be easily aligned. Therefore, the imaging optical system 11 can be configured easily and at low cost using a commercially available product.
  • simulation result The inventor of the present application performed simulation of the generation of a reproduced image based on the present embodiment by a computer. The simulation results will be described below.
  • the simulation conditions are as follows.
  • An optical system for imaging a subject is the imaging optical system 11 shown in FIG.
  • the imaging device is a CCD, the number of pixels is 2448 ⁇ 1000 (horizontal ⁇ vertical), the pixel pitch is 3.45 ⁇ m in the horizontal direction, and 3.45 ⁇ m in the vertical direction.
  • the subject is a miniature model of ducks, fences and chicks from the left. The distances from the image sensor of the duck, the fence, and the chick are 300 mm, 350 mm, and 380 mm, respectively. Under the above-mentioned conditions, a simulation was performed in which a computer obtains interference fringes formed on the imaging surface by the reference light and the object light of the subject, and calculates a reproduced image. Interference fringes are also obtained by computer simulation.
  • FIG. 9 is an image showing the result of the simulation regarding the reproduced image of the subject. For comparison, the result of a simulation performed by a conventional method is also shown. Note that the reproduced image shown in FIG. 9 is a reproduced image when focused at a position of 300 mm from the image sensor.
  • FIG. 9 is an image showing a reproduced image reproduced by using a parallel four-stage phase shift method from interference fringes of four types of phase shift amounts as in Patent Document 1.
  • the effective imaging range is narrow and the reproduced image becomes dark overall.
  • a fine reproduced image cannot be obtained.
  • FIG. 9B shows an interference fringe of two types of phase shift using a special optical element (phase shift array) as in Patent Document 2, and the interference fringes of two types of phase shift are obtained.
  • It is an image which shows the reproduction
  • this method requires a special optical element such as detecting different polarized light for every two pixels in order to construct an imaging optical system. For this reason, it is necessary to develop a dedicated element for the device and to mass-produce the dedicated element, which increases the cost.
  • the phase shift array is arranged in the optical path of the reference light, an image forming optical system is required, and the image forming optical system needs to be adjusted.
  • FIG. 9C shows a reproduced image reproduced using the parallel two-stage phase shift method, assuming that the four types of phase shift amounts in the interference fringes are regarded as two types of phase shift amounts, as in Non-Patent Document 3. It is the image shown.
  • the complex amplitude distribution of the obtained object light includes an error.
  • object light including an error is propagated by diffraction integration
  • the object light may propagate in a direction different from the original.
  • the left and right positions of the subject may be switched in the obtained reproduced image. This indicates that the three-dimensional position cannot be measured accurately. That is, it means that the three-dimensional measurement accuracy is not obtained without correction. Therefore, in this method, an accurate reproduced image may not be obtained.
  • FIG. 9 is an image showing a reproduced image reproduced by using the parallel two-stage phase shift method from interference fringes of two types of phase shift amounts according to the configuration of the present embodiment (FIG. 1).
  • the effective imaging range is twice or more wide and the resolution is 1.4 times or more compared with FIG. Therefore, a fine reproduced image can be obtained.
  • a digital holography device capable of obtaining a reproduced image with good image quality can be realized by using an imaging optical system that can be easily configured. Therefore, practical application of digital holography can be promoted.
  • the digital holography apparatus of this embodiment is, for example, visualization of three-dimensional dynamics of a minute object such as a living cell, high-speed three-dimensional structure measurement / analysis of a product, and visualization / measurement of a gas / liquid fluid phenomenon such as gasoline spray. Can be used.
  • a method for adjusting the angle of the phase adjustment mechanism (mirror M2) will be described.
  • 0 °
  • the average luminance value of each interference fringe corresponding to the phase shift amount is also four types. That is, for four images (interference fringes) obtained by extracting one pixel for every 2 ⁇ 2 four pixels, the average luminance value of each image is considered to be a different (four) value.
  • the angle ⁇ of the reference light is changed from 0 ° by the phase adjustment mechanism, the average luminance value of the four images eventually becomes two values. At this time, there are two types of phase shift amounts.
  • the phase adjustment mechanism can be adjusted appropriately.
  • the above determination can also be made by observing the spatial frequency distribution by Fourier-transforming the imaged interference fringes.
  • the captured interference fringes include interference fringes of two types of phase shift amounts.
  • the imaged interference fringes include two types of phase shift amount interference fringes and when the imaged interference fringes include four types of phase shift amount interference fringes, the imaged interference fringes are Fourier transformed. Different spatial frequency distributions are obtained. Therefore, two interference fringes are obtained by storing the spatial frequency distribution in the case where the captured interference fringes include interference fringes of two types of phase shift amounts in advance in the computer and comparing the spatial frequency distribution with the spatial frequency distribution. Can be determined.
  • the configuration in which the optical axis of the reference light is tilted at an angle ⁇ from the normal of the imaging surface has been described as an example, but the present invention is not limited to this.
  • the optical axis of the object light may be inclined by the angle ⁇ from the normal of the imaging surface.
  • both the optical axis of the reference light and the optical axis of the object light may be tilted. That is, at least one of the optical axis of the reference light and the optical axis of the object light is determined from the normal of the imaging surface so as to satisfy the above formula (1), the above formula (1 ′), or the above formula (2). What is necessary is just to incline angle (theta). The same applies to the embodiments described later.
  • FIG. 10 is a schematic diagram showing a configuration of the digital holography device 2 of the present embodiment.
  • the digital holography device 2 includes a prism 31 (phase correction unit, phase adjustment mechanism) in the optical path of the reference light.
  • prism 31 phase correction unit, phase adjustment mechanism
  • mirror M2 and beam splitter BS2 are fixed.
  • the traveling direction of the reference light is changed by the refraction of the prism 31.
  • the arrangement angle of the prism 31 can be adjusted so that the incident angle with respect to the image sensor 15 becomes a predetermined angle ⁇ . Accordingly, the optical axis of the object light and the optical axis of the reference light can be made different from each other by the angle ⁇ . Therefore, the interference fringes of the four types of phase shift amounts by the polarizer array 16 can be converted into the interference fringes of the two types of phase shift amounts.
  • the optical element (optical member) serving as the phase adjusting mechanism disposed in the optical path of the reference light is not limited to the prism 31.
  • a diffraction grating, a spatial light modulator, an optical element array having different optical path lengths, and the like may be arranged to adjust the optical axis of the reference light by diffraction.
  • a wedge-type (wedge-shaped) optical element can also be used. It is also possible to arrange a re-diffractive optical system in the optical path of the reference light and modulate the phase on the optically generated spatial frequency distribution plane.
  • the optical axis of the reference light is perpendicular to the imaging surface, and the optical axis of the object light is relative to the imaging surface. May be configured to enter at a predetermined angle ⁇ . Therefore, the angle between the optical axis of the object light and the optical axis of the reference light can be adjusted by arranging an optical element such as the prism in the optical path of the reference light.
  • an optical element may be arranged in both the optical path of the reference light and the optical path of the object light, and the angle between the optical axis of the object light and the optical axis of the reference light may be adjusted.
  • FIG. 11 is a schematic diagram showing the configuration of the digital holography device 3 of the present embodiment.
  • the digital holography device 3 includes an imaging optical system 32 and a playback device 33.
  • the imaging optical system 32 includes the same optical elements as in the first embodiment, but differs from the first embodiment in that the optical axis of the object light incident on the imaging element 15 and the optical axis of the reference light coincide. That is, the angle ⁇ formed by the optical axis of the object light and the optical axis of the reference light is 0 °. Therefore, there are four types of phase shift amounts of interference fringes picked up by the image pickup device 15, as shown in FIG. 3, 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2.
  • the playback device 33 includes a phase shift processing unit 18, a phase adjustment unit 34 (phase correction unit), and a diffraction processing unit 19.
  • the reproducing device 33 acquires image data indicating the interference fringes imaged from the polarization imaging imaging device 14 and inputs the image data to the phase shift processing unit 18.
  • FIG. 12 is a diagram for explaining an image reproduction algorithm in the reproduction apparatus 33.
  • FIG. 12 shows only a part of the interference fringes.
  • the captured interference fringe 41 includes a pixel (1,1) with a phase shift amount of 0, a pixel (2,1) with a phase shift amount of ⁇ / 2, and a pixel (1,1) with a phase shift amount of 3 ⁇ / 2. 2) and four types of pixels of phase shift amount ⁇ (2,2).
  • the phase shift processing unit 18 obtains a complex amplitude distribution of the object light using a parallel two-stage phase shift method.
  • a case where information on adjacent pixels is directly used for calculation of the phase shift method will be described as an example.
  • the intensity of the interference fringes 41 imaged by the image sensor 15 (the intensity of the imaged light) is I (x, y).
  • the intensity of the reference light is Ir (x, y).
  • x represents the horizontal coordinate of the pixel
  • y represents the vertical coordinate of the pixel.
  • the phase shift amount of the pixel (1,1) is 0,
  • the phase shift amount of the pixel (2,1) is ⁇ / 2
  • the phase of the pixel (1,2) The shift amount is 3 ⁇ / 2
  • the phase shift amount of the pixel (2, 2) is ⁇ .
  • which is the square of the absolute value of the amplitude distribution at coordinates (x, y)
  • U (x, y) at the coordinates (x, y) is obtained.
  • the phase shift processing unit 18 outputs the obtained complex amplitude distribution U (x, y) of the object light to the phase adjustment unit 34.
  • the complex amplitude distribution U (x, y) of the object light obtained in this way is obtained by applying the parallel two-stage phase shift method to the interference fringes including four types of phase shift amounts. Includes phase error.
  • the phase adjustment unit 34 adds a phase adjustment amount corresponding to each pixel (x, y) to the complex amplitude distribution U (x, y) of the object light. Thereby, it is possible to obtain an accurate complex amplitude distribution U ′ (x, y) of the object light whose phase is corrected. Specifically, the phase adjustment unit 34 adds the same phase value as the phase shift amount in the captured interference fringe to the phase ⁇ of the object light at the corresponding pixel position (x, y). The phase adjustment unit 34 outputs the corrected complex amplitude distribution U ′ (x, y) of the object light to the diffraction processing unit 19.
  • the diffraction processing unit 19 obtains a reproduction image of the subject by performing diffraction integration based on the corrected complex amplitude distribution U ′ (x, y) of the object light.
  • phase adjustment mechanism In the present embodiment, four types of interference fringes with different phase shift amounts are imaged by the imaging optical system 32 having no phase adjustment mechanism.
  • the parallel two-stage phase shift method By applying the parallel two-stage phase shift method to the four types of interference fringes with different phase shift amounts, and correcting the phase of the object light in the image reproduction calculation process, an accurate complex amplitude distribution of the object light can be obtained. obtain.
  • the phase since the phase can be corrected in the image reproduction calculation process, it is not necessary to adjust the angle ⁇ of the phase adjustment mechanism.
  • the phase of the object light is also corrected by performing a two-dimensional Fourier transform on the complex amplitude distribution U (x, y) of the object light obtained after the calculation of the phase shift method and correcting the spectral shift in the spatial spectrum distribution. be able to.
  • a corrected complex amplitude distribution U ′ (x, y) of the object light can be obtained.
  • phase adjustment processing in which the phase adjustment unit 34 adds the phase value can be performed on the captured interference fringes 41 before applying the phase shift method. Thereafter, by applying the parallel two-stage phase shift method to the phase-adjusted interference fringes, an accurate complex amplitude distribution U ′ of the object light whose phase is corrected is obtained.
  • the configuration of the digital holography device 3 is the same as that of the third embodiment.
  • the present embodiment is different from the third embodiment in that when applying the parallel two-stage phase shift method, interpolation processing is performed by dividing pixels.
  • FIG. 13 is a diagram for explaining an image reproduction algorithm in the reproduction apparatus 33.
  • FIG. 13 shows only a part of the interference fringes.
  • the captured interference fringes include a pixel (1,1) having a phase shift amount of 0, a pixel (2,1) having a phase shift amount of ⁇ / 2, and a pixel (1,2) having a phase shift amount of 3 ⁇ / 2. ) And a pixel (2, 2) having a phase shift amount of ⁇ .
  • the phase shift processing unit 18 obtains a complex amplitude distribution of the object light using a parallel two-stage phase shift method.
  • the phase shift processing unit 18 generates an interference fringe 42 a obtained by extracting pixels with a phase shift amount of 0 and pixels with a phase shift amount of ⁇ from the captured interference fringes 41. Further, the phase shift processing unit 18 generates an interference fringe 42b obtained by extracting pixels with a phase shift amount of ⁇ / 2 and pixels with a phase shift amount of 3 ⁇ / 2 from the captured interference fringes 41.
  • the phase shift processing unit 18 interpolates the pixel values of the missing pixels of the interference fringes 42a having the phase shift amounts of 0 and ⁇ by interpolation or extrapolation using pixels adjacent in the vertical direction, Interference fringes 43a having interpolated phase shift amounts of 0 and ⁇ are obtained. Therefore, the pixels located in the odd columns have a phase shift amount of 0, and the pixels located in the even columns have a phase shift amount of ⁇ . Similarly, the phase shift processing unit 18 interpolates and interpolates the pixel values of the missing pixels of the interference fringes 42b having the phase shift amounts of ⁇ / 2 and 3 ⁇ / 2 using the pixels adjacent in the vertical direction. Interference fringes 43b having phase shift amounts of ⁇ / 2 and 3 ⁇ / 2 are obtained. For this reason, pixels located in odd columns have a phase shift amount of 3 ⁇ / 2, and pixels located in even columns have a phase shift amount of ⁇ / 2.
  • the interference fringe 43b can be said to have a phase shift amount of ⁇ / 2 with respect to the interference fringe 43a. Therefore, the parallel two-stage phase shift method can be applied using the interference fringes 43a and 43b and the intensity distribution Ir (x, y) of the reference light.
  • the phase shift processing unit 18 applies a parallel two-stage phase shift method to the interpolated interference fringe 43a and the interpolated interference fringe 43b, thereby performing a complex amplitude distribution U (x, y) of the object light on the imaging surface. Can be requested.
  • the phase shift processing unit 18 outputs the complex amplitude distribution U (x, y) of the object light to the phase adjustment unit 34.
  • the interpolated interference fringes 43a and 43b originally had a phase shift amount different by ⁇ between adjacent columns.
  • the complex amplitude distribution U (x, y) of the object light obtained here also includes a phase ⁇ shift between adjacent columns.
  • the phase adjustment unit 34 adds a phase adjustment amount corresponding to each pixel (x, y) to the complex amplitude distribution U (x, y) of the object light. Thereby, it is possible to obtain an accurate complex amplitude distribution U ′ (x, y) of the object light whose phase is corrected. Specifically, the phase adjustment unit 34 sets a phase value that makes the phase shift amount in the interpolated interference fringes 43a and 43b before applying the phase shift method uniform (0) to the position of the corresponding pixel ( x, y) is added to the phase ⁇ of the object beam.
  • a reference phase value for example, phase value ⁇ / 2
  • phase value ⁇ / 2 is added to the phase of the object light of the even-numbered pixels (first pixels), and the odd-numbered pixels (second adjacent to the first pixels).
  • a phase value for example, (3 ⁇ / 2)
  • the phase adjustment unit 34 outputs the corrected complex amplitude distribution U ′ (x, y) of the object light to the diffraction processing unit 19.
  • the diffraction processing unit 19 obtains a reproduction image of the subject by performing diffraction integration based on the corrected complex amplitude distribution U ′ (x, y) of the object light.
  • the parallel two-stage phase shift method is applied to four types of interference fringes having different phase shift amounts, and the phase shift remaining in the complex amplitude distribution U of the obtained object light is corrected. Therefore, a phase value corresponding to the deviation is added to the phase of the object light. Thereby, an accurate complex amplitude distribution of the object light can be obtained.
  • the phase since the phase can be corrected in the image reproduction calculation process, it is not necessary to adjust the angle ⁇ of the phase adjustment mechanism.
  • Embodiment 5 In the present embodiment, a mode in which the incident angle of the reference light is tilted and phase adjustment is performed at the time of image reproduction processing will be described.
  • the present embodiment is a form in which the first embodiment and the third embodiment are combined.
  • members / configurations having the same functions as those described in Embodiments 1 and 3 are denoted by the same reference numerals, and only portions different from Embodiments 1 and 3 will be described below.
  • FIG. 14 is a schematic diagram showing the configuration of the digital holography device 5 of the present embodiment.
  • the digital holography device 5 includes an imaging optical system 11 and a playback device 33.
  • the imaging optical system 11 has the same configuration as that of the first embodiment.
  • the playback device 33 has the same configuration as that of the third embodiment.
  • the reference light is incident with the optical axis of the reference light inclined with respect to the optical axis of the object light.
  • the angle ⁇ deviates from a predetermined value and sin ⁇ ⁇ ⁇ / (2d)
  • the phase shift amount of the captured interference fringe may not be exactly two types, 0 and ⁇ / 2.
  • the phase shift amount error remaining in the captured interference fringes is corrected by the phase adjustment processing of the phase adjustment unit 34.
  • the phase shift processing unit 18 applies the parallel two-stage phase shift method to the captured interference fringes to obtain the complex amplitude distribution of the object light.
  • the phase adjusting unit 34 adds a phase value corresponding to the pixel to the complex amplitude distribution of the object light, thereby correcting the phase shift amount error.
  • an accurate complex amplitude distribution of the object light can be obtained.
  • the phase value to be added is calculated when there is an error because the peak position of the spatial frequency distribution obtained by Fourier transform of the captured image is different from the original. For example, when the object light is parallel light that is perpendicularly incident on the image sensor, a peak value originally appears at the center of the image on the Fourier transform plane.
  • the adjustment amount by the phase adjustment mechanism is not the value of the above formula (1), the peak position of the spatial frequency distribution is shifted according to the adjustment amount error. From this, it is possible to know the difference between the actual adjustment amount and the adjustment amount that should be obtained by making full use of Fourier transform. Then, the phase value to be corrected by the adjustment process can be added.
  • adjustment accuracy of the phase adjustment mechanism is low, adjustment processing is essential, and adjustment is possible by examining the amount of error in advance by making object light parallel light before imaging the subject.
  • the alignment error of the optical system is corrected by the phase adjustment process of the reproducing device 33. It can be corrected.
  • each block of the reproducing devices 12 and 33, in particular, the phase shift processing unit 18, the diffraction processing unit 19, and the phase adjustment unit 34 are realized in hardware by a logic circuit formed on an integrated circuit (IC chip). Alternatively, it may be realized by software using a CPU (Central Processing Unit).
  • IC chip integrated circuit
  • CPU Central Processing Unit
  • the playback devices 12 and 33 include a CPU that executes instructions of a program that implements each function, a ROM (Read Only Memory) that stores the program, a RAM (Random Access Memory) that expands the program, and the program. And a storage device (recording medium) such as a memory for storing various data.
  • An object of the present invention is a recording medium in which program codes (execution format program, intermediate code program, source program) of a control program of the playback devices 12 and 33, which are software for realizing the functions described above, are recorded so as to be readable by a computer. Can also be achieved by reading the program code recorded on the recording medium and executing it by the computer (or CPU or MPU).
  • Examples of the recording medium include non-transitory tangible media, such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and CD-ROM / MO.
  • Discs including optical disks such as / MD / DVD / CD-R, cards such as IC cards (including memory cards) / optical cards, and semiconductor memories such as mask ROM / EPROM / EEPROM (registered trademark) / flash ROM
  • logic circuits such as PLD (Programmable logic device) and FPGA (Field Programmable Gate array) can be used.
  • the playback devices 12 and 33 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited as long as it can transmit the program code.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network (Virtual Private Network), telephone line network, mobile communication network, satellite communication network, etc. can be used.
  • the transmission medium constituting the communication network may be any medium that can transmit the program code, and is not limited to a specific configuration or type.
  • wired lines such as IEEE1394, USB, power line carrier, cable TV line, telephone line, ADSL (Asymmetric Digital Subscriber Line) line, infrared rays such as IrDA and remote control, Bluetooth (registered trademark), IEEE 802.11 wireless, HDR ( It can also be used wirelessly such as High Data Rate, NFC (Near Field Communication), DLNA (Digital Living Network Alliance) (registered trademark), a mobile phone network, a satellite line, and a terrestrial digital network.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • a digital holography device includes a light source that supplies reference light and object illumination light that illuminates a subject, and an imaging device, and the object light and the reference light that are light that the object illumination light reaches through the subject.
  • the imaging device captures the interference fringes formed by the imaging device, and the imaging device corresponds to each polarization region and a polarizer array having four polarization regions with different polarization directions of light passing through each other.
  • the digital holography device includes circularly or elliptically polarized object light, and circularly or elliptically polarized reference light that rotates in the opposite direction to the object light.
  • phase correction unit that corrects a difference between four types of phase shift amounts generated according to the four polarization regions, and an interference fringe imaged by the imaging device.
  • a digital holography device including an imaging device can be easily configured using a commercially available polarization imaging camera. Since the phase correction unit can correct the difference between the four types of phase shift amounts generated according to the four polarization regions, the parallel two-stage phase shift method can be appropriately applied. Therefore, the digital holography device can obtain a reproduced image with good image quality.
  • the phase correction unit may include a mechanism that tilts the optical axis of the reference light incident on the image sensor with a predetermined angle with respect to the optical axis of the object light incident on the image sensor.
  • the phase of the reference light changes with respect to the phase of the object light along the direction in which the optical axis is inclined on the image sensor. Therefore, the amount of phase shift between the object light and the reference light can be changed according to the position of the pixel. Thereby, the difference of the four types of phase shift amounts generated according to the four polarization regions can be corrected.
  • the predetermined angle is ⁇
  • the wavelengths of the object light and the reference light are ⁇
  • the pitch of the pixels in a plane including the optical axis of the object light and the optical axis of the reference light is d
  • n is a natural number.
  • the phase of the reference light with respect to the phase of the object light can be shifted by ⁇ between a pixel row arranged in a certain direction and an adjacent pixel row.
  • the difference of the four types of phase shift amounts generated according to the four polarization regions can be corrected.
  • the phase correction unit converts the four types of phase shift amounts generated according to the four polarization regions into two types of phase shift amounts, and the imaging apparatus detects two types of interference fringes having different phase shift amounts. It can also be set as the structure imaged at once.
  • phase shift amount of one of the two interference fringes is 0, the phase shift amount of the other interference fringe may be ⁇ / 2.
  • the phase correction unit may include an optical member that can adjust the angle by reflecting, refracting, or diffracting the reference light or the object light.
  • the optical member may be arranged in the optical path of the reference light.
  • the optical member may be arranged in the optical path of the object light.
  • the imaging device captures four types of interference fringes having different phase shift amounts at a time
  • the reproducing unit uses the parallel two-stage phase shift method to capture an object from the four types of interference fringes captured by the imaging device.
  • a phase shift processing unit that generates a complex amplitude distribution of light, wherein the phase correction unit adds a phase value corresponding to the pixel to the complex amplitude distribution of the object light generated by the phase shift processing unit. It is also possible to obtain a complex amplitude distribution of the object light whose phase is corrected.
  • the phase correction unit can correct the phase error caused by the difference between the four types of phase shift amounts included in the complex amplitude distribution of the object light generated by the phase shift processing unit. Therefore, it is possible to correct the difference between the four types of phase shift amounts generated according to the four polarization regions.
  • the phase correction unit adds a phase value corresponding to the phase shift amount of the captured interference fringe for each pixel to the complex amplitude distribution of the object light generated by the phase shift processing unit. It is also possible to obtain a complex amplitude distribution of the corrected object light.
  • the four types of interference fringes imaged by the imaging device include a first pixel with a phase shift amount of 0, a second pixel with a phase shift amount of ⁇ / 2, a third pixel with a phase shift amount of ⁇ , and a phase
  • the phase correction unit adds a phase value of 0 in the first pixel to the complex amplitude distribution of the object light generated by the phase shift processing unit, and includes a fourth pixel having a shift amount of 3 ⁇ / 2.
  • a phase value ⁇ / 2 is added to the second pixel, a phase value ⁇ is added to the third pixel, and a phase value 3 ⁇ / 2 is added to the fourth pixel.
  • the phase shift processing unit generates a first interference fringe by extracting a first phase shift amount pixel and a second phase shift amount pixel from the four types of interference fringes captured by the imaging device, A pixel having a three phase shift amount and a pixel having a fourth phase shift amount are extracted to generate a second interference fringe.
  • the first phase shift amount and the third phase shift amount are different from each other by ⁇ / 2.
  • the second phase shift amount and the fourth phase shift amount are different by ⁇ / 2, and the phase shift processing unit applies a parallel two-stage phase shift method to the first interference fringe and the second interference fringe.
  • a complex amplitude distribution of the object light is generated, and the phase correction unit performs the first interference fringe and the second interference fringe for each pixel with respect to the complex amplitude distribution of the object light generated by the phase shift processing unit.
  • the phase correction unit performs the first interference fringe and the second interference fringe for each pixel with respect to the complex amplitude distribution of the object light generated by the phase shift processing unit.
  • the first phase shift amount and the second phase shift amount are different from each other by ⁇
  • the third phase shift amount and the fourth phase shift amount are different from each other by ⁇
  • the phase correction unit performs the phase shift process.
  • the phase value 0 may be added to the first pixel and the phase value ⁇ may be added to the second pixel adjacent to the first pixel to the complex amplitude distribution of the object light generated by the unit.
  • the present invention can be used for a digital holography apparatus.
  • the present invention is used for, for example, visualization of three-dimensional dynamics of a minute object such as a living cell, high-speed three-dimensional structure measurement / analysis of a product, and visualization / measurement of a gas / liquid fluid phenomenon such as gasoline spray. be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Holo Graphy (AREA)
  • Polarising Elements (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 本発明に係るデジタルホログラフィ装置(1)の撮像装置(14)は、互いに通過させる光の偏光方向が異なる4つの偏光領域を有する偏光子アレイ(16)を備える。デジタルホログラフィ装置(1)は、互いに反対方向に回転する円偏光である物体光および参照光とを偏光子アレイ(16)に入射させ、4種類の位相シフト量の差を補正するミラー(M2)と、撮像装置(14)が撮像した干渉縞に並列2段階位相シフト法を適用して再生像を生成する再生装置(12)とを備える。

Description

デジタルホログラフィ装置
 本発明は、デジタルホログラフィ装置に関する。
 以後の文章中で位相の単位はラジアンで表す。加工技術の精密化や多様化に伴い、物体の3次元形状等の高度な計測や解析が求められ、様々な測定法が開発されている。該測定法のうち、光の干渉を利用した干渉計測技術、特にデジタルホログラフィは、非接触かつ非破壊で、物体の3次元情報を得ることができるため、近年、注目を集めている測定法の一つとなっている。
 デジタルホログラフィは、3次元物体への光照射によって得られる干渉縞から、コンピュータを用いて3次元物体の像を再生する技術である。具体的には例えば、3次元物体への光照射によって得られる物体光と、該物体光に対して可干渉(コヒーレント)である参照光とが作る干渉縞を、CCD(charge coupled device)等の撮像素子を用いて記録する。記録された干渉縞に基づいて、コンピュータで3次元物体の像を再生する。
 非特許文献1には、干渉縞から像を再生する基本的なデジタルホログラフィ技術が記載されている。
 非特許文献2には、干渉縞から像を再生する際に、不要な像成分(0次回折光および共役像(-1次回折光))を除去する技術(位相シフト法)が記載されている。しかしながら、非特許文献2に記載の構成では、条件を変えて複数回撮像を行うことにより複数の干渉縞を得る。そのため、動的な被写体に適用することができない。
 動的な被写体にデジタルホログラフィを適用可能にするために、本発明者らは以下の技術を開発した。
 特許文献1には、画素を分割して、物体光と参照光との位相シフト量が異なる4種類の干渉縞を同時に撮像し、4段階位相シフト法によって像を再生する技術が記載されている。
 特許文献2には、画素を分割して、物体光と参照光との位相シフト量が異なる2種類の干渉縞を同時に撮像し、2段階位相シフト法によって像を再生する技術が記載されている。2段階位相シフト法では、位相シフト量が異なる2種類の干渉縞が必要になる。一方の干渉縞の位相シフト量を0とすると、2段階位相シフト法の計算に必要な他方の干渉縞の位相シフト量は0、π以外の位相シフト量(好適には例えばπ/2)である。
 非特許文献3には、画素を分割して、物体光と参照光との位相シフト量が異なる4種類の干渉縞を同時に撮像し、2段階位相シフト法によって像を再生する技術が記載されている。
日本国特許第4294526号公報(2009年4月17日登録) 国際公開第2009/066771号(2009年5月28日公開)
J. W. Goodman and R. W. Lawrence、「DIGITAL IMAGE FORMATION FROM ELECTRONICALLY DETECTED HOLOGRAMS」、APPLIED PHYSICS LETTERS、(1967)、Vol. 11、No. 3、p.77 I. Yamaguchi and T. Zhang、「Phase-shifting digital holography」、OPTICS LETTERS、(1997)、Vol. 22、No. 16、p.1268 Takashi Kakue et. al.、「Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography」、OPTICS EXPRESS、(2010)、Vol. 18、No. 8、p.9555
 しかしながら、上記従来の構成では、以下の問題を生じる。
 特許文献1のように、撮像素子の局所的な4つの画素において参照光が4つの異なる位相量となるように記録された1枚の干渉縞画像から位相シフト干渉計測を行う方法(以下、この方法を並列4段階位相シフト法と呼ぶ)を用いる技術では、撮影可能範囲が狭く、またこの技術に基づく装置の分解能を高くすることができない。
 特許文献2の技術では、特許文献1の技術に比べて、撮影可能範囲も広く、また装置の分解能も高くすることができる。しかしながら、2段階位相シフト法に必要な2種類の干渉縞を1回の撮像で得る方法(以下、この方法を並列2段階位相シフト法と呼ぶ)を行うためには、ホログラフィの撮像光学系の中に市販されていない光学素子が必要になる。例えば、2種類の偏光子がアレイ状に交互に配列した偏光子アレイが貼り付けられた撮像素子が必要になるが、そのような撮像素子は現時点では一般に市販されていない。そのため、撮像光学系を構成することが容易ではなく、また撮像光学系が高価なものになってしまう。
 非特許文献3で使用する撮像光学系は、市販の偏光イメージングカメラおよび一般的な光学素子を用いて構成可能である。しかしながら、非特許文献3の技術では、4種類の位相シフト量を2種類の位相シフト量とみなして何の補正または補償もなしに2段階位相シフト法を適用するので、適切な再生像が得られないことがある。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、簡単な光学素子によって撮像光学系を構成でき、かつ画質を向上できるデジタルホログラフィ装置を実現することにある。
 本発明に係るデジタルホログラフィ装置は、参照光および被写体を照明する物体照明光を供給する光源と、撮像装置とを備え、物体照明光が上記被写体を介して到達する光である物体光と参照光とが作る干渉縞を上記撮像装置が撮像するデジタルホログラフィ装置であって、上記撮像装置は、互いに通過させる光の偏光方向が異なる4つの偏光領域を有する偏光子アレイと、各偏光領域に対応して配列している画素を有する撮像素子とを備え、上記デジタルホログラフィ装置は、円偏光または楕円偏光である物体光と、物体光とは反対方向に回転する円偏光または楕円偏光である参照光とを上記偏光子アレイに入射させ、上記4つの偏光領域に応じて生じる4種類の位相シフト量の差を補正する位相補正部と、上記撮像装置が撮像した干渉縞に並列2段階位相シフト法を適用して再生像を生成する再生部とを備えることを特徴としている。
 本発明によれば、市販されている4画素ごとに異なる偏光を検出する偏光イメージングカメラを利用して簡単に撮像装置を含むデジタルホログラフィ装置を構成することができる。そして、位相補正部によって上記4つの偏光領域に応じて生じる4種類の位相シフト量の差を補正することができるので、適切に並列2段階位相シフト法を適用することができる。それゆえ、デジタルホログラフィ装置は、画質のよい再生像を得ることができる。
本発明の一実施形態に係るデジタルホログラフィ装置の構成を示す模式図である。 上記デジタルホログラフィ装置における偏光子アレイおよび撮像素子の構成を示す図である。 上記偏光子アレイの作用による、各画素上の位相シフト量を示す図である。 入射する物体光および参照光の位相シフト量を説明する図である。 角度θの作用による、各画素上の位相シフト量を示す図である。 角度θの作用による、斜めストライプの位相シフト量の例を示す図である。 上記デジタルホログラフィ装置の撮像光学系における各画素上の位相シフト量を示す図である。 上記デジタルホログラフィ装置の位相シフト処理部における像再生アルゴリズムを説明するための図である。 被写体の再生像に関して、シミュレーションの結果を示す画像である。 本発明の他の実施形態に係るデジタルホログラフィ装置の構成を示す模式図である。 本発明のさらに他の実施形態に係るデジタルホログラフィ装置の構成を示す模式図である。 上記デジタルホログラフィ装置の再生装置における像再生アルゴリズムを説明するための図である。 本発明のさらに他の実施形態に係る再生装置における像再生アルゴリズムを説明するための図である。 本発明のさらに他の実施形態に係るデジタルホログラフィ装置の構成を示す模式図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 [実施形態1]
 (デジタルホログラフィ装置1の構成)
 図1は、本実施形態のデジタルホログラフィ装置1の構成を示す模式図である。デジタルホログラフィ装置1は、撮像光学系11と、再生装置12(再生部)とを備える。再生装置12は、コンピュータ等の計算機によって構成することができる。
 撮像光学系11は、レーザ光源(光源)13と、偏光イメージング撮像装置14(撮像装置)とを備える。また、撮像光学系11は、光学素子(光学部材)として、ビームスプリッタBS1、ミラーM1、ビームエキスパンダBE1、偏光子LP1、1/2波長板HWP1、ビームエキスパンダBE2、ミラーM2、ビームスプリッタBS2、および1/4波長板QWP1を備える。ビームエキスパンダBE1・BE2はそれぞれ、対物レンズBEa、ピンホールBEb、およびコリメータレンズBEcを備える。ビームスプリッタBS1・BS2は、ハーフミラーからなる。
 偏光イメージング撮像装置14は再生装置12に接続されており、偏光イメージング撮像装置14の出力は再生装置12に入力される。偏光イメージング撮像装置14は、偏光子アレイ16と、CCDからなる撮像素子15とを備える。偏光子アレイ16のマトリクス状に配置された複数の偏光子は、撮像素子15の各画素に対応するように位置合わせがされている。偏光子アレイ16は、撮像素子15の前面に貼り付けられており、撮像素子15は、偏光子アレイ16を通過した光の強度を検出する。
 物体光および参照光の経路について説明する。
 レーザ光源13は、コヒーレントな光、すなわちレーザ光を発生する。ここで、レーザ光の伝播方向に垂直な1つの方向を第1方向と定義し、レーザ光の伝播方向および第1方向に垂直な方向を第2方向と定義する。本実施形態では第1方向は図(紙面)に対して水平方向に一致し、第2方向は垂直方向に一致する。ここではレーザ光源13のレーザ光は、図(紙面)に対して垂直偏光した直線偏光の光である。なお、波長板または偏光子を用いてレーザ光源13から出射されたレーザ光の偏光方向を調整することもできる。レーザ光源13から出射されたレーザ光は、ビームスプリッタBS1によって参照光と物体照明光とに分割される。ビームスプリッタBS1で分割された参照光および物体照明光は、それぞれ垂直偏光した直線偏光の光である。
 分割された光の一方である物体照明光は、ミラーM1によって反射された後、ビームエキスパンダBE1によって、拡大された平行光にされる。その後、物体照明光は被写体(物体)17に照射される。被写体17に入射した物体照明光は被写体17によって回折または散乱されて、物体光として被写体17から出射する。その後、物体光は、偏光子LP1、ビームスプリッタBS2、1/4波長板QWP1をこの順に通過し、偏光イメージング撮像装置14に入射する。偏光子LP1は、被写体17によって乱れた物体光の偏光を垂直偏光に整えることによって、ノイズとなる成分を除去する役割を果たす。偏光子LP1は、省略することもできる。ビームスプリッタBS2を通過した後の物体光は、図(紙面)に対して垂直偏光である。物体光は、撮像素子15の撮像面に対してほぼ垂直に入射する。
 分割された光の他方である参照光は、1/2波長板HWP1によって水平偏光に変換される。1/2波長板HWP1の遅相軸は、垂直方向に対して45°傾いている。その後、参照光は、ビームエキスパンダBE2によって、拡大された平行光にされる。その後、参照光はミラーM2によって反射された後、ビームスプリッタBS2によって反射され、1/4波長板QWP1を通過し、偏光イメージング撮像装置14に入射する。
 1/4波長板QWP1には、垂直偏光の物体光と、水平偏光の参照光とが入射する。すなわち、1/4波長板QWP1に入射する前において、物体光の偏光方向と参照光の偏光方向とは直交する。そして、1/4波長板QWP1の遅相軸は、水平方向から45°傾いている。すなわち、1/4波長板QWP1の遅相軸は、参照光の偏光方向(水平方向)に対して45°傾いており、物体光の偏光方向(垂直方向)に対しても45°傾いている。それゆえ、1/4波長板QWP1を通過した参照光は、円偏光に変換される。また、1/4波長板QWP1を通過した物体光は、円偏光に変換される。ただし、遅相軸に対する参照光の偏光方向が45°であるとすると、遅相軸に対する物体光の偏光方向は-45°である。そのため、1/4波長板QWP1を通過した後、参照光の円偏光と物体光の円偏光とは互いに反対方向に回転している。なお、参照光および物体光は楕円偏光であってもよい。
 撮像光学系11は、インライン型の光学系で構成されている。すなわち、参照光は撮像素子15の撮像面のほぼ正面から入射し、被写体17は撮像素子15の撮像面の光学的な正面(光学的に撮像面の法線方向)に位置している。ただし、本実施形態では、物体光の光軸(被写体17と撮像素子15とを光学的に結ぶ軸)と、参照光の光軸とは角度θ異なっている。例えば物体光は撮像素子15の撮像面に対して垂直に入射する。これに対して、参照光は撮像面の法線方向に対して角度θ傾いて入射する。
 ミラーM2またはビームスプリッタBS2の角度を調整することによって、参照光の入射角θを調整することが可能である。本実施形態では、ミラーM2は、角度を調整可能なように微動回転ステージ上に配置され、回転可能に構成されている。
 図2は、偏光イメージング撮像装置14の偏光子アレイ16および撮像素子15の構成を示す図である。図2では、偏光子アレイ16および撮像素子15の一部だけを拡大して示す。偏光子アレイ16は、マトリクス状に配列している4種類の偏光領域16a・16b・16c・16dを含む。偏光領域16aは右上がり方向(45°方向)の偏光成分のみを通過させる。偏光領域16bは水平方向(0°方向)の偏光成分のみを通過させる。偏光領域16cは左上がり方向(-45°方向)の偏光成分のみを通過させる。偏光領域16dは垂直方向(90°方向)の偏光成分のみを通過させる。2行×2列の4つの偏光領域16a~16dを単位として、各偏光領域16a~16dが周期的に配置されている。各偏光領域16a~16dがそれぞれ撮像素子15の画素15a~15dに対応するように、偏光子アレイ16は撮像素子15上に配置されている。すなわち1つの偏光領域16aを通過した光は、1つの画素15aに入射する。
 なお、4種類の偏光領域が配列した偏光子アレイを備えた偏光イメージングカメラは、既に市販されている。例えば、株式会社フォトニックラティスから偏光イメージングカメラ(型番PI-110)が市販されている。一般に偏光イメージングカメラは、デジタルホログラフィに利用するためではなく、被写体の偏光状態を観察するためのカメラ(それゆえ4種類の偏光領域を有する)として市販されている。そのため、本実施形態の偏光イメージング撮像装置14は、市販の偏光イメージングカメラから結像用のレンズ等を除いたもので構成することができる。それゆえ、市販の製品を用いて偏光イメージング撮像装置14を簡単に、低コストで製作することができる。また、本実施形態の撮像光学系11は、ハーフミラー、レンズ、1/2波長板、1/4波長板、および偏光子等の一般的な光学素子によって構成することができる。撮像光学系11を構成するために位相シフトアレイ等の特殊な光学素子を用いる必要がない。また、撮像光学系11には結像光学系も不要であるので、光学素子の位置合わせが簡単である。そのため、撮像光学系11を簡単に、かつ低コストで構成することができる。
 上記の例では物体光が被写体を透過する構成を例に挙げて説明したが、物体光を被写体に照射し、反射・散乱された物体光を撮像するように撮像光学系を構成することもできる。
 (偏光子アレイ16の作用)
 偏光子アレイ16の作用を説明するための参考例として、上記のデジタルホログラフィ装置1において、参照光の入射角θが0°のときを考える。すなわち、参考例では物体光の光軸と参照光の光軸とが一致している。
 物体光および参照光が偏光子アレイ16に入射するとき、物体光の円偏光と参照光の円偏光とは、互いに逆向きに回転している。偏光領域16aに入射した物体光および参照光は、それらの水平方向より45°方向の偏光成分のみが通過する。例えば、水平方向より45°の偏光を基準にして、偏光領域16aを通過した物体光と参照光との位相シフト量を0とする。
 これに対して、偏光領域16bに入射した物体光および参照光は、水平方向偏光成分(0°方向の偏光成分)のみが通過する。各偏光領域に入射する物体光と参照光とは互いに逆方向に回転する円偏光である。そのため、偏光領域16aを通過した物体光および参照光に比べて、例えば、偏光領域16bを通過した物体光の成分は位相がπ/4進み、偏光領域16bを通過した参照光の成分は位相がπ/4遅れる。すなわち、偏光領域16bを通過すると物体光の位相に対して参照光の位相がπ/2遅れる。偏光領域16bを通過した物体光と参照光との位相シフト量はπ/2となる。
 同様に、偏光領域16cに入射した物体光および参照光は、-45°方向の偏光成分のみが通過する。偏光領域16aを通過した物体光および参照光に比べて、偏光領域16cを通過した物体光の成分は位相がπ/2進み、偏光領域16cを通過した参照光の成分は位相がπ/2遅れる。すなわち、偏光領域16cを通過すると物体光の位相に対して参照光の位相がπ遅れる。偏光領域16cを通過した物体光と参照光との位相シフト量はπとなる。
 同様に、偏光領域16dを通過した物体光と参照光との位相シフト量は3π/2となる。ここでは、水平方向より+45°方向の偏光を透過する偏光領域16aを通過した物体光および参照光の位相の関係を基準にし、物体光の位相に対する参照光の位相の遅れまたは進みを位相シフト量と定義している。
 各偏光領域16a~16dを通過した物体光および参照光における位相シフト量の違いは、入射する物体光と参照光とが互いに逆方向に回転する円偏光であるために生じる。また、偏光領域16aに比べて偏光領域16bを通過した物体光と参照光との位相シフト量がπ/2となるか-π/2となるかは、入射する物体光および参照光の円偏光の回転方向に依存している。いずれにせよ、4種類の偏光領域16a~16dに対応して、π/2刻みの4種類の位相シフト量の物体光および参照光が得られる。なお、4種類の偏光領域16a~16dは、任意の並びに配置することができる。
 各偏光領域16a~16dを通過した物体光および参照光は、対応する画素15a~15dに入射する。物体光および参照光は、撮像面で干渉して干渉縞を形成する。撮像素子15は、物体光と参照光とが干渉することによって形成される干渉縞を撮像する。
 図3は、偏光子アレイ16の作用による、各画素上の位相シフト量を示す図である。参考例の場合、位相シフト量0の干渉縞と、位相シフト量π/2の干渉縞と、位相シフト量πの干渉縞と、位相シフト量3π/2の干渉縞とが得られる。例えば位相シフト量0の干渉縞を扱う場合、位相シフト量0に対応する画素のデータを抜き出せばよい。参考例では位相シフト量の異なる4種類の干渉縞が得られるが、並列4段階位相シフト法(parallel four-step Phase-shifting digital holography)を適用して再生像を得ると撮像範囲が狭くなり、画質も高いものが得られない。また、4種類の位相シフト量を2種類の位相シフト量とみなして何の補正または補償もなく単に並列2段階位相シフト法を適用するだけでは、十分な画質の向上は期待できない。
 並列2段階位相シフト法(parallel two-step Phase-shifting digital holography)によって画質のよい再生像を得るためには、2種類の位相シフト量(例えば0およびπ/2)の干渉縞を得る必要がある。なお、位相シフト量0の干渉縞と位相シフト量πの干渉縞とでは、2段階位相シフト法で画質のよい再生像を得ることはできない。2段階位相シフト法で画質のよい再生像を得るためには、位相シフト量0の干渉縞と位相シフト量π/2の干渉縞とを得ることが好ましい。
 (角度θの作用)
 本実施形態では、ミラーM2の角度を調整して、物体光の光軸と参照光の光軸と間の角度θが、
 sinθ=λ/(2d)   …(1)
となるようにする。ここで、λはレーザ光の波長、dは撮像素子15の画素のピッチである。なお、
 sinθ=nλ/(2d)  (nは自然数)   …(1´)
であってもよい。
 図4は、入射する物体光および参照光の位相シフト量を説明する図である。ここでは説明を簡単にするために、偏光子アレイを通過した場合ではなく、物体光および参照光が単一方向に偏光して各画素に入射する場合について説明する。図4では、撮像素子15の画素を点で示し、各画素に入射する物体光および参照光の進行方向を矢印で示す。物体光の光軸および参照光の光軸とを含む平面における各画素のピッチはdである。参照光は平面波である。また、物体光も、数個の画素の範囲ではほぼ平面波と見なせる。物体光の光軸は撮像面の法線に一致し、参照光の光軸は撮像面の法線から角度θ傾いている。
 図4に示すように、参照光の入射方向は角度θ傾いているので、上から1番目の画素に入射する参照光と、2番目の画素に入射する参照光とは光路がd×sinθ異なる。すなわち、光路がλ/2異なる。2番目の画素への光路が半波長長いので、1番目の画素に入射する参照光の位相に対して、2番目の画素に入射する参照光の位相はπ遅れる。すなわち、隣接する画素の間で、参照光の位相がπ異なる。同様に、1番目の画素に入射する参照光と3番目の画素に入射する参照光との位相差は2π(=0)である。
 1番目の画素に入射する物体光および参照光の位相シフト量を基準(0)とすると、2番目の画素上での物体光および参照光の位相シフト量はπとなり、3番目の画素上での物体光および参照光の位相シフト量は0となる。実際には画素は点ではなく面なので、各画素上における位相シフト量の平均が、0またはπになる。すなわち、物体光に対する参照光の角度θを所定の角度にすることにより、ある方向に隣接する画素同士の位相シフト量をπ異ならせることができる。角度θを調整することにより隣接する画素同士の位相シフト量を調整することができるので、ミラーM2またはビームスプリッタBS2は位相調整機構(位相補正部)とも言える。なお、ミラーM2およびビームスプリッタBS2は、参照光の入射角を所定の角度θにするような配置・角度で固定されていてもよい。
 図5は、角度θの作用による各画素上の位相シフト量を示す図である。ここでは、横方向に並ぶ画素の位相シフト量は同じである。縦方向に沿って、各画素の位相シフト量は0またはπが交互に並ぶ。例えば参照光が縦方向に傾いていれば図5に示すように縦方向において位相シフト量が変化する。もし参照光が横方向に傾いていれば横方向において位相シフト量が変化する。もし参照光が画素の行方向(横方向)および列方向(縦方向)に対して斜め方向に傾いていれば、図6に示すような斜めストライプの位相シフト量を得ることもできる。この場合、参照光の角度θは、
 sinθ=nλ/(2d×√2)  (nは自然数)   …(2)
とする。
 (撮像光学系11で得られるホログラム)
 図7は、撮像光学系11における各画素上の位相シフト量を示す図である。本実施形態の撮像光学系11では、偏光子アレイ16の作用と角度θの作用との両方が働くので、偏光子アレイ16の作用による位相シフト量(図3)と、角度θの作用による位相シフト量(図5)とが合成された干渉縞(ホログラム)が得られる。このように、偏光子アレイ16の作用による4種類の位相シフト量に、角度θの作用による位相シフト量を加えることで、撮像される干渉縞の位相シフト量を4種類から2種類、3種類、または5種類以上に変換することができる。ここでは、撮像される干渉縞の位相シフト量を4種類から2種類に変換する。
 撮像素子15が撮像する干渉縞には、位相シフト量が0の画素と、位相シフト量がπ/2の画素とが含まれる。そのため、偏光イメージング撮像装置14は、位相シフト量がπ/2だけ異なる2種類の干渉縞を一度に撮像することができる。また、位相シフト量が0の画素と、位相シフト量がπ/2の画素とは市松模様に並んでいる。
 偏光イメージング撮像装置14は、撮像した干渉縞の画像データを、再生装置12に出力する。位相シフト量が0、π/2の2種類であるので、並列2段階位相シフト法を用いて画質のよい再生像を得ることができる。
 なお、位相シフト量が0、π/2である2つの干渉縞を得るためには、偏光子アレイ16によって生じた4つの位相シフト量のうち、位相シフト量0、πのいずれか一方にπの位相シフト量を加え、位相シフト量π/2、3π/2のいずれか一方にπの位相シフト量πを加えればよい。よって、偏光子アレイ16の偏光領域の配置が図2に示す配置とは異なる場合であっても、参照光が傾く方向を調整することにより、位相シフト量が0、π/2である2つの干渉縞を撮像することができる。
 (像再生処理)
 再生装置12は、位相シフト処理部18、および回折処理部19を備える。再生装置12は、偏光イメージング撮像装置14から撮像された干渉縞を示す画像データを取得し、位相シフト処理部18に入力する。
 図8は、位相シフト処理部18における像再生アルゴリズムを説明するための図である。図8には干渉縞の一部だけを示す。撮像された干渉縞21は、位相シフト量が0の画素21aと、位相シフト量がπ/2の画素21bとの2種類の画素を含む。
 位相シフト処理部18は、これら2種類の画素21a・21bをそれぞれ抽出することにより、位相シフト量が0の干渉縞22aと、位相シフト量がπ/2の干渉縞22bとを得る。
 次に、位相シフト処理部18は、位相シフト量が0の干渉縞22aの欠落している画素の画素値を内挿または外挿によって補間し、補間された位相シフト量が0の干渉縞23aを得る。同様に、位相シフト処理部18は、位相シフト量がπ/2の干渉縞22bの欠落している画素の画素値を補間し、補間された位相シフト量がπ/2の干渉縞23bを得る。
 これら位相シフト量の異なる2種類の干渉縞23a・23bから並列2段階位相シフト法によって物体光の複素振幅分布を得るためには、撮像素子15上での参照光の強度分布の情報が必要になる。参照光の強度分布は定常的で変化しないため、被写体17の干渉縞を撮像する前または後に、物体光を遮る等して参照光だけを撮像することができる。なお、参照光の強度分布を得る際に被写体17は不要である。再生装置12は、干渉縞と同様に、偏光イメージング撮像装置14から参照光の強度分布を取得する。なお、参照光の強度は物体光の強度より十分に強くなるようにする。参照光の強度が物体光の強度より十分に強い場合に、並列2段階位相シフト法を好適に適用することができる。
 また、参照光の強度分布が一様だと仮定できる場合あるいは推定できる場合は、参照光の強度分布の記録を省略し、物体光の複素振幅分布を得る位相シフト処理時に位相シフト処理部18によって参照光の強度分布を生成して用いてもよい。参照光の強度を変化させて得られた干渉縞を繰り返し処理することで、適切な参照光の強度分布を推定することができる。
 位相シフト処理部18は、補間された位相シフト量が0の干渉縞23aおよび補間された位相シフト量がπ/2の干渉縞23bに、並列2段階位相シフト法を適用することにより、撮像面上における物体光の複素振幅分布24を求めることができる。ここで得られる複素振幅分布24は、撮像面上の各画素の位置における物体光の振幅分布と位相分布とを表す。位相シフト処理部18は、物体光の複素振幅分布24を、回折処理部19に出力する。
 回折処理部19は、物体光の複素振幅分布24に回折積分を適用して被写体17の再生像を得る。撮像素子15の撮像面上における物体光の複素振幅分布24が得られれば、回折積分によって物体光の伝播を遡ることにより、任意の奥行き位置での合焦像(振幅分布を示す再生像)を得ることができる。また、合焦像について被写体17の3次元形状の情報を含む位相分布を得ることができる。
 本実施形態では、4種類の偏光領域を有する偏光イメージング撮像装置14を用いた撮像光学系11において、位相シフト量が2種類になるよう位相調整機構(ミラーM2、ビームスプリッタBS2)によって参照光の角度θを調整する。これにより、2種類の位相シフト量の干渉縞が空間分割多重された干渉縞を得ることができる。それゆえ、好適に並列2段階位相シフト法を適用することができ、画質のよい再生像を得ることができる。本実施形態では、空間分割多重数が2つ、すなわち見かけの画素数が1/2になる。そのため、見かけの画素数が1/4になる並列4段階位相シフト法を用いる場合よりも、干渉縞に記録される有効な情報が多い。それゆえ、デジタルホログラフィ装置の分解能および撮像範囲を向上することができる。
 また、本実施形態では、撮像光学系11を構成するために位相シフトアレイ等の特殊な光学素子を用いる必要がない。また、撮像光学系11には結像光学系も不要であるので、光学素子の位置合わせが簡単である。そのため、市販の製品を利用して撮像光学系11を簡単に、かつ低コストで構成することができる。
 (シミュレーション結果)
 本願発明者は、計算機による本実施の形態に基づく再生像の生成のシミュレーションを行った。以下に、そのシミュレーション結果について説明する。
 シミュレーションの条件は以下の通りである。被写体の撮像を行う光学系は、図1に示す撮像光学系11である。用いるレーザ光源は連続波(Continuous Wave: CW)レーザであり、その波長はλ=632.8nm(赤色)である。撮像素子はCCDであり、画素数は2448×1000(横×縦)、画素ピッチは横方向3.45μm、縦方向3.45μmである。被写体は向かって左からアヒル、柵、およびヒナのミニチュア模型である。アヒル、柵、およびヒナの撮像素子からの距離は、それぞれ、300mm、350mm、380mmである。上記の条件の下、計算機によって、参照光と被写体の物体光とが撮像面に作る干渉縞を取得し、再生像を計算するシミュレーションを行った。なお、干渉縞の取得も計算機によるシミュレーションによって行っている。
 図9は、被写体の再生像に関して、シミュレーションの結果を示す画像である。なお、比較のために、従来の方法で行ったシミュレーションの結果も示す。なお、図9に示す再生像は撮像素子から300mmの位置に合焦したときの再生像である。
 図9の(a)は、特許文献1のように、4種類の位相シフト量の干渉縞から並列4段階位相シフト法を用いて再生した再生像を示す画像である。この方法では、有効な撮像範囲が狭く、かつ再生像が全体的に暗くなる。また、精細な再生像が得られない。
 図9の(b)は、特許文献2のように、特殊な光学素子(位相シフトアレイ)を用いて2種類の位相シフト量の干渉縞を取得し、2種類の位相シフト量の干渉縞から並列2段階位相シフト法を用いて再生した再生像を示す画像である。この方法では、有効な撮像範囲が広く、図9の(a)を像再生した方法に比べて分解能が1.4倍になる。しかしながら、この方法では、撮像光学系を構成するために2画素ごとに異なる偏光を検出する等の特殊な光学素子が必要になる。そのため、装置化する際に専用の素子を開発し、専用の素子を独自に量産する必要があり、コストが高くなる。位相シフトアレイを参照光の光路に配置する場合、結像光学系が必要になり、結像光学系の調整が必要になる。
 図9の(c)は、非特許文献3のように、干渉縞における4種類の位相シフト量を2種類の位相シフト量とみなして、並列2段階位相シフト法を用いて再生した再生像を示す画像である。この方法では、本来4種類である位相シフト量を2種類とみなして計算するために、得られる物体光の複素振幅分布は誤差を含む。そのため、誤差を含む物体光を回折積分で伝播させたときに、物体光が本来とは異なる方向に伝播することがある。結果的に、図9の(c)に示すように、得られた再生像において被写体の左右の位置が入れ替わってしまうことがある。これは、3次元的な位置を正確に計測できていないことを示す。すなわち、補正なしには3次元計測精度が出ないことを表す。それゆえ、この方法では、正確な再生像が得られない場合がある。
 図9の(d)は、本実施形態の構成(図1)により、2種類の位相シフト量の干渉縞から並列2段階位相シフト法を用いて再生した再生像を示す画像である。本実施形態の方法では、図9の(a)に比べて、有効な撮像範囲が2倍以上広くなり、分解能が1.4倍以上になる。そのため、精細な再生像を得ることができる。このように、本実施形態によれば、簡単に構成することができる撮像光学系を用いて、画質のよい再生像が得られるデジタルホログラフィ装置を実現することができる。そのためデジタルホログラフィの実用化を促進することができる。本実施形態のデジタルホログラフィ装置は、例えば、生細胞等の微小物体の3次元動態の可視化、製造物の高速3次元構造計測・解析、および、ガソリン噴霧等の気体・液体流体現象の可視化・計測に利用することができる。
 (位相調整機構の調整方法)
 位相調整機構(ミラーM2)の角度の調整方法について説明する。例えばθ=0°のとき、撮像素子15によって撮像される干渉縞の位相シフト量は4種類である。このとき、位相シフト量に応じたそれぞれの干渉縞の平均輝度値も4種類となる。すなわち、2×2の4画素毎に1画素を抽出して得られる4つの画像(干渉縞)について、各画像の平均輝度値は互いに異なる(4つの)値になると考えられる。位相調整機構によって参照光の角度θを0°から変化させていくと、4つの画像の平均輝度値はやがて2つの値になる。このとき、位相シフト量が2種類になっている。すなわち、4画素毎に1画素を抽出して得られる4つの画像の平均輝度値を観察することにより、角度θが所定の条件(上式(1))を満たし、かつ位相シフト量が0とπ/2の2つの干渉縞が得られているかを判定することができる。この判定は偏光イメージング撮像装置の出力を受ける計算機によって行うことができる。よって、適切に位相調整機構の調整を行うことができる。
 また、上記判定は、撮像された干渉縞をフーリエ変換して空間周波数分布を観察することによっても行うことができる。位相調整機構が適切に調整されている場合、撮像された干渉縞は2種類の位相シフト量の干渉縞を含む。撮像された干渉縞が2種類の位相シフト量の干渉縞を含む場合と、撮像された干渉縞が4種類の位相シフト量の干渉縞を含む場合とでは、撮像された干渉縞をフーリエ変換して得られる空間周波数分布が異なる。よって、撮像された干渉縞が2種類の位相シフト量の干渉縞を含む場合の空間周波数分布をあらかじめ計算機に記憶しておき、該空間周波数分布と比較することにより、2つの干渉縞が得られているかを判定することができる。
 なお、ここまでは、参照光の光軸を撮像面の法線から角度θ傾ける構成を例に挙げて説明したが、本発明はこれに限定されない。撮像面の法線から角度θ傾けるのは物体光の光軸であってもよい。また、参照光の光軸と物体光の光軸との双方を傾けても良い。即ち、参照光の光軸と物体光の光軸との少なくとも一方を、上記式(1)、上記式(1´)、または上記式(2)を満足するように、撮像面の法線から角度θ傾ければ良い。後述する実施の形態においても同様である。
 [実施形態2]
 本実施形態では、位相調整機構の構成が異なる形態について説明する。なお、説明の便宜上、実施形態1にて説明した部材・構成と同じ機能を有する部材・構成については、同じ符号を付記し、以下では実施形態1と異なる部分についてのみ説明する。
 図10は、本実施形態のデジタルホログラフィ装置2の構成を示す模式図である。デジタルホログラフィ装置2は、参照光の光路にプリズム31(位相補正部、位相調整機構)を備える。実施形態1とは異なり、本実施形態では、ミラーM2およびビームスプリッタBS2は固定されている。プリズム31の屈折によって参照光の進行方向が変化される。プリズム31は、撮像素子15に対する入射角が所定の角度θになるように、配置角度を調整することができる。これにより、物体光の光軸と参照光の光軸とを角度θ異ならせることができる。それゆえ、偏光子アレイ16による4種類の位相シフト量の干渉縞を、2種類の位相シフト量の干渉縞に変換することができる。
 なお、参照光の光路に配置する位相調整機構となる光学素子(光学部材)は、プリズム31に限らない。プリズム31の代わりに、回折格子、空間光変調器、光路長を異ならせる光学素子アレイ等を配置して回折によって参照光の光軸を調整することもできる。また、ウェッジ型(くさび形)の光学素子を用いることもできる。また、再回折光学系を参照光の光路に配置し、光学的に生成された空間周波数分布面において位相を変調させることも可能である。
 また、物体光と参照光との間の相対的な位相シフト量を調整できればよいので、参照光の光軸が撮像面に対して垂直になるようにし、物体光の光軸が撮像面に対して所定の角度θで入射するように構成してもよい。そのため、上記プリズム等の光学素子を参照光の光路に配置して、物体光の光軸と参照光の光軸との間の角度を調整することもできる。もちろん、参照光の光路と物体光の光路との双方に光学素子を配置して、物体光の光軸と参照光の光軸との間の角度を調整しても良い。
 [実施形態3]
 本実施形態では、像再生の処理時に位相調整を行う形態について説明する。なお、説明の便宜上、実施形態1にて説明した部材・構成と同じ機能を有する部材・構成については、同じ符号を付記し、以下では実施形態1と異なる部分についてのみ説明する。
 (デジタルホログラフィ装置3の構成)
 図11は、本実施形態のデジタルホログラフィ装置3の構成を示す模式図である。デジタルホログラフィ装置3は、撮像光学系32と、再生装置33とを備える。
 撮像光学系32は、実施形態1と同様の光学素子を有するが、撮像素子15に入射する物体光の光軸と参照光の光軸とが一致する点が実施形態1とは異なる。すなわち、物体光の光軸と参照光の光軸とのなす角度θが0°である。そのため、撮像素子15によって撮像される干渉縞の位相シフト量は、図3に示すように、0、π/2、π、3π/2の4種類となる。
 (像再生処理)
 再生装置33は、位相シフト処理部18、位相調整部34(位相補正部)、および回折処理部19を備える。再生装置33は、偏光イメージング撮像装置14から撮像された干渉縞を示す画像データを取得し、位相シフト処理部18に入力する。
 図12は、再生装置33における像再生アルゴリズムを説明するための図である。図12には干渉縞の一部だけを示す。撮像された干渉縞41は、位相シフト量が0の画素(1,1)と、位相シフト量がπ/2の画素(2,1)と、位相シフト量が3π/2の画素(1,2)と、位相シフト量がπの画素(2,2)との4種類の画素を含む。
 位相シフト処理部18は、並列2段階位相シフト法を用いて、物体光の複素振幅分布を求める。ここでは、実施形態1とは異なり、隣接画素の情報を位相シフト法の計算に直接用いる場合を例に挙げて説明する。
 撮像素子15によって撮像された干渉縞41の強度(撮像された光の強度)をI(x,y)とする。参照光の強度をIr(x,y)とする。xは画素の横方向の座標、yは画素の縦方向の座標を表す。ここでは左上端の画素を(x,y)=(1,1)とする。撮像された干渉縞41において、例えば、画素(1,1)の位相シフト量は0であり、画素(2,1)の位相シフト量はπ/2であり、画素(1,2)の位相シフト量は3π/2であり、画素(2,2)の位相シフト量はπである。互いに隣接する画素(x,y)および画素(x,y+1)の間の位相シフト量の差をαとして、並列2段階位相シフト法を用いて、撮像面上の物体光の複素振幅分布U(x,y)=Ao(x,y)exp{jφ(x,y)}を以下のように求める。ここで、Ao(x,y)は座標(x,y)における物体光の振幅分布を表し、φ(x,y)は座標(x,y)における物体光の位相分布を表す。また、jは虚数単位である。
Figure JPOXMLDOC01-appb-M000001
 上式(3)-(7)によって、座標(x,y)における振幅分布の絶対値の2乗である|Ao(x,y)|が求められる。この値を用いて、座標(x,y)における複素振幅分布U(x,y)を求める。
Figure JPOXMLDOC01-appb-M000002
 なお、水平方向に互いに隣接する画素(x,y)および画素(x+1,y)から座標(x,y)における複素振幅分布U(x,y)を求める場合は、以下の式を用いることができる。
Figure JPOXMLDOC01-appb-M000003
 位相シフト処理部18は、得られた物体光の複素振幅分布U(x,y)を位相調整部34に出力する。
 このようにして得られた物体光の複素振幅分布U(x,y)は、4種類の位相シフト量を含む干渉縞に並列2段階位相シフト法を適用して得られたものであるので、位相の誤差を含む。
 そこで、位相調整部34は、物体光の複素振幅分布U(x,y)に対して各画素(x,y)に応じた位相調整量を加える。これにより、位相が補正された正確な物体光の複素振幅分布U´(x,y)を得ることができる。具体的には、位相調整部34は、撮像された干渉縞における位相シフト量と同じ位相値を、対応する画素の位置(x,y)における物体光の位相φに加える。位相調整部34は、補正された物体光の複素振幅分布U´(x,y)を回折処理部19に出力する。
 回折処理部19は、補正された物体光の複素振幅分布U´(x,y)に基づいて、回折積分を行うことにより、被写体の再生像を求める。
 本実施形態では、位相調整機構を有しない撮像光学系32で位相シフト量が異なる4種類の干渉縞を撮像する。この位相シフト量が異なる4種類の干渉縞に対して並列2段階位相シフト法を適用し、像再生の計算過程において、物体光の位相を補正することにより、正確な物体光の複素振幅分布を得る。本実施形態では、像再生の計算過程において位相を補正することができるので、位相調整機構の角度θの調整を必要としない。
 なお、位相シフト法の計算後に得られる物体光の複素振幅分布U(x,y)に2次元フーリエ変換を施し、空間スペクトル分布においてスペクトルのずれを補正することでも、物体光の位相を補正することができる。位相を補正した空間スペクトル分布に逆フーリエ変換を施すことにより、補正された物体光の複素振幅分布U´(x,y)を得ることができる。
 なお、位相調整部34が位相値を加える位相調整の処理を、位相シフト法を適用する前に、撮像された干渉縞41に対して行うこともできる。その後、位相調整された干渉縞に対して上記並列2段階位相シフト法を適用することで、位相が補正された正確な物体光の複素振幅分布U´が得られる。
 [実施形態4]
 本実施形態では、像再生の処理時に位相調整を行う別の形態について説明する。なお、説明の便宜上、実施形態3にて説明した部材・構成と同じ機能を有する部材・構成については、同じ符号を付記し、以下では実施形態3と異なる部分についてのみ説明する。
 本実施形態では、デジタルホログラフィ装置3の構成は実施形態3と同じである。本実施形態では、並列2段階位相シフト法を適用する際に、画素を分割して補間処理を行う点が実施形態3とは異なる。
 図13は、再生装置33における像再生アルゴリズムを説明するための図である。図13には干渉縞の一部だけを示す。撮像された干渉縞は、位相シフト量が0の画素(1,1)と、位相シフト量がπ/2の画素(2,1)と、位相シフト量が3π/2の画素(1,2)と、位相シフト量がπの画素(2,2)との4種類の画素を含む。
 位相シフト処理部18は、並列2段階位相シフト法を用いて、物体光の複素振幅分布を求める。位相シフト処理部18は、撮像された干渉縞41から、位相シフト量が0の画素および位相シフト量がπの画素を抽出した干渉縞42aを生成する。また、位相シフト処理部18は、撮像された干渉縞41から、位相シフト量がπ/2の画素および位相シフト量が3π/2の画素を抽出した干渉縞42bを生成する。
 次に、位相シフト処理部18は、位相シフト量が0およびπの干渉縞42aの欠落している画素の画素値を、縦方向に隣接する画素を用いて内挿または外挿によって補間し、補間された位相シフト量が0およびπの干渉縞43aを得る。そのため、奇数列に位置する画素は位相シフト量が0であり、偶数列に位置する画素は位相シフト量がπである。同様に、位相シフト処理部18は、位相シフト量がπ/2および3π/2の干渉縞42bの欠落している画素の画素値を縦方向に隣接する画素を用いて補間し、補間された位相シフト量がπ/2および3π/2の干渉縞43bを得る。そのため、奇数列に位置する画素は位相シフト量が3π/2であり、偶数列に位置する画素は位相シフト量がπ/2である。
 2つの干渉縞43a・43bの間では、対応する画素の位相シフト量の差がπ/2である。そのため、干渉縞43aに対して干渉縞43bは位相シフト量が-π/2であると言える。それゆえ、干渉縞43a・43bおよび参照光の強度分布Ir(x,y)を用いて並列2段階位相シフト法を適用することができる。
 位相シフト処理部18は、補間された干渉縞43aおよび補間された干渉縞43bに、並列2段階位相シフト法を適用することにより、撮像面上における物体光の複素振幅分布U(x,y)を求めることができる。位相シフト処理部18は、物体光の複素振幅分布U(x,y)を位相調整部34に出力する。ただし、補間された干渉縞43a・43bは、元々隣接する列の間で位相シフト量がπ異なっていた。そのため、ここで得られた物体光の複素振幅分布U(x,y)にも、隣接する列の間で位相πのずれが含まれている。
 そこで、位相調整部34は、物体光の複素振幅分布U(x,y)に対して各画素(x,y)に応じた位相調整量を加える。これにより、位相が補正された正確な物体光の複素振幅分布U´(x,y)を得ることができる。具体的には、位相調整部34は、位相シフト法を適用する前の補間された干渉縞43a・43bにおける位相シフト量を均一(0)にするような位相値を、対応する画素の位置(x,y)における物体光の位相φに加える。具体的には、偶数列の画素(第1画素)の物体光の位相に対して基準位相値(例えば位相値π/2)を加え、奇数列の画素(上記第1画素に隣接する第2画素)の物体光の位相に対して上記基準位相値にπを加減算した位相値(例えば(3π/2))を加えることにより、位相が補正された正確な物体光の複素振幅分布U´(x,y)を得る。位相調整部34は、補正された物体光の複素振幅分布U´(x,y)を回折処理部19に出力する。
 回折処理部19は、補正された物体光の複素振幅分布U´(x,y)に基づいて、回折積分を行うことにより、被写体の再生像を求める。
 本実施形態および実施形態3では、位相シフト量が異なる4種類の干渉縞に対して並列2段階位相シフト法を適用し、得られた物体光の複素振幅分布Uに残留する位相のずれを補正するために、物体光の位相にずれに応じた位相値を加える。これにより、正確な物体光の複素振幅分布を得ることができる。本実施形態では、像再生の計算過程において位相を補正することができるので、位相調整機構の角度θの調整を必要としない。
 [実施形態5]
 本実施形態では、参照光の入射角を傾け、さらに像再生の処理時に位相調整を行う形態について説明する。本実施形態は実施形態1と実施形態3とを組み合わせたような形態である。なお、説明の便宜上、実施形態1、3にて説明した部材・構成と同じ機能を有する部材・構成については、同じ符号を付記し、以下では実施形態1、3と異なる部分についてのみ説明する。
 図14は、本実施形態のデジタルホログラフィ装置5の構成を示す模式図である。デジタルホログラフィ装置5は、撮像光学系11と、再生装置33とを備える。撮像光学系11は、実施形態1と同様の構成である。再生装置33は、実施形態3と同様の構成である。
 本実施形態では、参照光の光軸を物体光の光軸に対して傾けて参照光を入射する。しかしながら、角度θが所定の値からずれておりsinθ≠λ/(2d)である場合、撮像された干渉縞の位相シフト量が正確に0とπ/2の2種類とはならないことがある。
 そこで、本実施形態では、撮像された干渉縞に残留する位相シフト量の誤差を、位相調整部34の位相調整処理によって補正する。具体的には、位相シフト処理部18が撮像された干渉縞に並列2段階位相シフト法を適用して物体光の複素振幅分布を求める。その後、位相調整部34が物体光の複素振幅分布に対して画素に応じた位相値の加算を行うことにより、位相シフト量の誤差を補正する。これにより、正確な物体光の複素振幅分布を得ることができる。
 加算する位相値については、誤差がある場合、撮像された画像をフーリエ変換して得られる空間周波数分布のピーク位置が本来と異なることから算出する。例えば、物体光が撮像素子へ垂直入射する平行光である場合、本来フーリエ変換面では画像の中央にピーク値が現れる。位相調整機構による調整量が上記式(1)の値でない場合、空間周波数分布のピーク位置が調整量の誤差に応じてずれる。このことから、本来得られるべき調整量に対する実際の調整量の差を、フーリエ変換を駆使することにより知ることができる。そして、調整処理により補正すべき位相値を加えることができる。また、位相調整機構の調整精度が低い場合等においては調整処理が必須であり、被写体の撮像前に物体光を平行光にするなどして事前に誤差量を調べることによっても調整可能である。
 本実施形態によれば、撮像光学系の各光学素子のアライメントに誤差が存在する場合であっても、干渉縞を撮像した後で、再生装置33の位相調整処理によって光学系のアライメントの誤差を補正することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 [ソフトウェアによる実現例]
 最後に、再生装置12・33の各ブロック、特に位相シフト処理部18、回折処理部19および位相調整部34は、集積回路(ICチップ)上に形成された論理回路によってハードウェア的に実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェア的に実現してもよい。
 後者の場合、再生装置12・33は、各機能を実現するプログラムの命令を実行するCPU、上記プログラムを格納したROM(Read Only Memory)、上記プログラムを展開するRAM(Random Access Memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである再生装置12・33の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記再生装置12・33に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。
 上記記録媒体としては、一時的でない有形の媒体(non-transitory tangible medium)、例えば、磁気テープやカセットテープ等のテープ類、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク類、ICカード(メモリカードを含む)/光カード等のカード類、マスクROM/EPROM/EEPROM(登録商標)/フラッシュROM等の半導体メモリ類、あるいはPLD(Programmable logic device)やFPGA(Field Programmable Gate Array)等の論理回路類などを用いることができる。
 また、再生装置12・33を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークは、プログラムコードを伝送可能であればよく、特に限定されない。例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(Virtual Private Network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、この通信ネットワークを構成する伝送媒体も、プログラムコードを伝送可能な媒体であればよく、特定の構成または種類のものに限定されない。例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL(Asymmetric Digital Subscriber Line)回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、IEEE802.11無線、HDR(High Data Rate)、NFC(Near Field Communication)、DLNA(Digital Living Network Alliance)(登録商標)、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。
 [まとめ]
 本発明に係るデジタルホログラフィ装置は、参照光および被写体を照明する物体照明光を供給する光源と、撮像装置とを備え、物体照明光が上記被写体を介して到達する光である物体光と参照光とが作る干渉縞を上記撮像装置が撮像するデジタルホログラフィ装置であって、上記撮像装置は、互いに通過させる光の偏光方向が異なる4つの偏光領域を有する偏光子アレイと、各偏光領域に対応して配列している画素を有する撮像素子とを備え、上記デジタルホログラフィ装置は、円偏光または楕円偏光である物体光と、物体光とは反対方向に回転する円偏光または楕円偏光である参照光とを上記偏光子アレイに入射させ、上記4つの偏光領域に応じて生じる4種類の位相シフト量の差を補正する位相補正部と、上記撮像装置が撮像した干渉縞に並列2段階位相シフト法を適用して再生像を生成する再生部とを備えることを特徴としている。
 上記の構成によれば、市販されている偏光イメージングカメラを利用して簡単に撮像装置を含むデジタルホログラフィ装置を構成することができる。そして、位相補正部によって上記4つの偏光領域に応じて生じる4種類の位相シフト量の差を補正することができるので、適切に並列2段階位相シフト法を適用することができる。それゆえ、デジタルホログラフィ装置は、画質のよい再生像を得ることができる。
 上記位相補正部は、上記撮像素子に入射する物体光の光軸に対して上記撮像素子に入射する参照光の光軸を所定の角度傾ける機構を有する構成とすることもできる。
 上記の構成によれば、撮像素子上において光軸が傾いた方向に沿って、物体光の位相に対する参照光の位相が変化する。そのため、画素の位置に応じて物体光と参照光との位相シフト量を変化させることができる。これにより、上記4つの偏光領域に応じて生じる4種類の位相シフト量の差を補正することができる。
 上記所定の角度をθとし、物体光および参照光の波長をλとし、物体光の上記光軸と参照光の上記光軸とを含む平面における上記画素のピッチをdとし、nを自然数とすると、sinθ=nλ/(2d)である構成とすることもできる。
 上記の構成によれば、例えばある方向に並ぶ画素列と隣接する画素列との間で、物体光の位相に対する参照光の位相をπシフトさせることができる。これにより、上記4つの偏光領域に応じて生じる4種類の位相シフト量の差を補正することができる。
 上記位相補正部は、上記4つの偏光領域に応じて生じる4種類の位相シフト量を、2種類の位相シフト量に変換し、上記撮像装置は、互いに位相シフト量が異なる2種類の干渉縞を一度に撮像する構成とすることもできる。
 上記の構成によれば、並列2段階位相シフト法に適した2種類の干渉縞を得ることができるので、再生像の画質を向上することができる。
 上記2種類の干渉縞のうち、一方の干渉縞の位相シフト量を0とすると、他方の干渉縞の位相シフト量はπ/2である構成とすることもできる。
 上記位相補正部は、参照光または物体光を反射、屈折または回折することによって上記角度を調整することが可能な光学部材を含む構成とすることもできる。
 上記光学部材は、参照光の光路に配置されている構成とすることもできる。
 上記光学部材は、物体光の光路に配置されている構成とすることもできる。
 上記撮像装置は、互いに位相シフト量が異なる4種類の干渉縞を一度に撮像し、上記再生部は、並列2段階位相シフト法を用いて上記撮像装置が撮像した上記4種類の干渉縞から物体光の複素振幅分布を生成する位相シフト処理部を含み、上記位相補正部は、上記位相シフト処理部が生成した物体光の複素振幅分布に対して、上記画素に応じた位相値を加えることによって位相が補正された物体光の複素振幅分布を得る構成とすることもできる。
 上記の構成によれば、位相シフト処理部が生成した物体光の複素振幅分布に含まれる、4種類の位相シフト量の差に起因する位相の誤差を、位相補正部が補正することができる。それゆえ、上記4つの偏光領域に応じて生じる4種類の位相シフト量の差を補正することができる。
 上記位相補正部は、上記位相シフト処理部が生成した物体光の複素振幅分布に対して、上記画素毎に、上記撮像された干渉縞の位相シフト量に応じた位相値を加えることによって位相が補正された物体光の複素振幅分布を得る構成とすることもできる。
 上記撮像装置が撮像した上記4種類の干渉縞は、位相シフト量が0の第1画素と、位相シフト量がπ/2の第2画素と、位相シフト量がπの第3画素と、位相シフト量が3π/2の第4画素とを含み、上記位相補正部は、上記位相シフト処理部が生成した物体光の複素振幅分布に対して、上記第1画素において位相値0を加え、上記第2画素において位相値π/2を加え、上記第3画素において位相値πを加え、上記第4画素において位相値3π/2を加える構成とすることもできる。
 上記位相シフト処理部は、上記撮像装置が撮像した上記4種類の干渉縞から、第1位相シフト量の画素と第2位相シフト量の画素とを抽出して第1干渉縞を生成し、第3位相シフト量の画素と第4位相シフト量の画素とを抽出して第2干渉縞を生成し、上記第1位相シフト量と上記第3位相シフト量とはπ/2異なっており、上記第2位相シフト量と上記第4位相シフト量とはπ/2異なっており、上記位相シフト処理部は、上記第1干渉縞および上記第2干渉縞に並列2段階位相シフト法を適用して物体光の複素振幅分布を生成し、上記位相補正部は、上記位相シフト処理部が生成した物体光の複素振幅分布に対して、上記画素毎に、上記第1干渉縞と上記第2干渉縞との間の位相シフト量の差に応じた位相値を加えることによって位相が補正された物体光の複素振幅分布を得る構成とすることもできる。
 上記第1位相シフト量と上記第2位相シフト量とはπ異なっており、上記第3位相シフト量と上記第4位相シフト量とはπ異なっており、上記位相補正部は、上記位相シフト処理部が生成した物体光の複素振幅分布に対して、第1画素において位相値0を加え、上記第1画素に隣接する第2画素において位相値πを加える構成とすることもできる。
 本発明は、デジタルホログラフィ装置に利用することができる。また、本発明は、例えば、生細胞等の微小物体の3次元動態の可視化、製造物の高速3次元構造計測・解析、および、ガソリン噴霧等の気体・液体流体現象の可視化・計測に利用することができる。
1・2・3・5  デジタルホログラフィ装置
11・32  撮像光学系
12・33  再生装置(再生部)
13  レーザ光源(光源)
14  偏光イメージング撮像装置(撮像装置)
15  撮像素子
15a~15d  画素
16  偏光子アレイ
16a~16d  偏光領域
17  被写体
18  位相シフト処理部
19  回折処理部
21  干渉縞
21a・21b  画素
22a・22b  干渉縞
23a・23b  干渉縞
24  複素振幅分布
31  プリズム(位相補正部、光学部材)
34  位相調整部(位相補正部)
41  干渉縞
42a・42b  干渉縞
43a・43b  干渉縞
BE1・BE2  ビームエキスパンダ
BEa  対物レンズ
BEb  ピンホール
BEc  コリメータレンズ
BS1・BS2  ビームスプリッタ(位相補正部、光学部材)
LP1  偏光子
M1・M2  ミラー(位相補正部、光学部材)
HWP1  1/2波長板
QWP1  1/4波長板

Claims (14)

  1.  参照光および被写体を照明する物体照明光を供給する光源と、撮像装置とを備え、物体照明光が上記被写体を介して到達する光である物体光と参照光とが作る干渉縞を上記撮像装置が撮像するデジタルホログラフィ装置であって、
     上記撮像装置は、互いに通過させる光の偏光方向が異なる4つの偏光領域を有する偏光子アレイと、各偏光領域に対応して配列している画素を有する撮像素子とを備え、
     上記デジタルホログラフィ装置は、円偏光または楕円偏光である物体光と、物体光とは反対方向に回転する円偏光または楕円偏光である参照光とを上記偏光子アレイに入射させ、
     上記4つの偏光領域に応じて生じる4種類の位相シフト量の差を補正する 位相補正部と、
     上記撮像装置が撮像した干渉縞に並列2段階位相シフト法を適用して再生像を生成する再生部とを備えることを特徴とするデジタルホログラフィ装置。
  2.  上記位相補正部は、上記撮像素子に入射する物体光の光軸と上記撮像素子に入射する参照光の光軸との少なくとも一方を前記撮像素子の撮像面の法線から所定の角度傾ける位相調整機構を有することを特徴とする請求項1に記載のデジタルホログラフィ装置。
  3.  上記所定の角度をθとし、物体光および参照光の波長をλとし、物体光の上記光軸と参照光の上記光軸とを含む平面における上記画素のピッチをdとし、nを自然数とすると、
     sinθ=nλ/(2d)、または、
     sinθ=nλ/(2d×√2)
     であることを特徴とする請求項2に記載のデジタルホログラフィ装置。
  4.  上記位相補正部は、上記4つの偏光領域に応じて生じる4種類の位相シフト量を、2種類の位相シフト量に変換し、
     上記撮像装置は、互いに位相シフト量が異なる2種類の干渉縞を一度に撮像することを特徴とする請求項2に記載のデジタルホログラフィ装置。
  5.  上記2種類の干渉縞のうち、一方の干渉縞の位相シフト量を0とすると、他方の干渉縞の位相シフト量はπ/2であることを特徴とする請求項4に記載のデジタルホログラフィ装置。
  6.  上記位相補正部は、参照光または物体光を反射、屈折または回折することによって上記角度を調整することが可能な光学部材を含むことを特徴とする請求項2に記載のデジタルホログラフィ装置。
  7.  上記光学部材は、参照光の光路に配置されていることを特徴とする請求項6に記載のデジタルホログラフィ装置。
  8.  上記光学部材は、物体光の光路に配置されていることを特徴とする請求項6に記載のデジタルホログラフィ装置。
  9.  上記撮像装置は、互いに位相シフト量が異なる4種類の干渉縞を一度に撮像し、
     上記再生部は、並列2段階位相シフト法を用いて上記撮像装置が撮像した上記4種類の干渉縞から、上記撮像素子の上記画素に対応する物体光の複素振幅分布を生成する位相シフト処理部を含み、
     上記位相補正部は、上記位相シフト処理部が生成した物体光の複素振幅分布に対して、上記画素に応じた位相値を加えることによって位相が補正された物体光の複素振幅分布を得る位相調整部を有することを特徴とする請求項1に記載のデジタルホログラフィ装置。
  10.  上記位相補正部は、上記位相シフト処理部が生成した物体光の複素振幅分布に対して、上記画素毎に、上記撮像された干渉縞の位相シフト量に応じた位相値を加えることによって位相が補正された物体光の複素振幅分布を得ることを特徴とする請求項9に記載のデジタルホログラフィ装置。
  11.  上記撮像装置が撮像した上記4種類の干渉縞は、位相シフト量が0の第1画素と、位相シフト量がπ/2の第2画素と、位相シフト量がπの第3画素と、位相シフト量が3π/2の第4画素とを含み、
     上記位相補正部は、上記位相シフト処理部が生成した物体光の複素振幅分布に対して、上記第1画素において位相値0を加え、上記第2画素において位相値π/2を加え、上記第3画素において位相値πを加え、上記第4画素において位相値3π/2を加えることを特徴とする請求項10に記載のデジタルホログラフィ装置。
  12.  上記位相シフト処理部は、上記撮像装置が撮像した上記4種類の干渉縞から、第1位相シフト量の画素と第2位相シフト量の画素とを抽出して第1干渉縞を生成し、第3位相シフト量の画素と第4位相シフト量の画素とを抽出して第2干渉縞を生成し、
     上記第1位相シフト量と上記第3位相シフト量とはπ/2異なっており、上記第2位相シフト量と上記第4位相シフト量とはπ/2異なっており、
     上記位相シフト処理部は、上記第1干渉縞および上記第2干渉縞に並列2段階位相シフト法を適用して物体光の複素振幅分布を生成し、
     上記位相補正部は、上記位相シフト処理部が生成した物体光の複素振幅分布に対して、上記画素毎に、上記第1干渉縞と上記第2干渉縞との間の位相シフト量の差に応じた位相値を加えることによって位相が補正された物体光の複素振幅分布を得ることを特徴とする請求項9に記載のデジタルホログラフィ装置。
  13.  上記第1位相シフト量と上記第2位相シフト量とはπ異なっており、上記第3位相シフト量と上記第4位相シフト量とはπ異なっており、
     上記位相補正部は、上記位相シフト処理部が生成した物体光の複素振幅分布に対して、第1画素において基準位相値を加え、上記第1画素に隣接する第2画素において上記基準位相値にπを加減算した位相値を加えることを特徴とする請求項12に記載のデジタルホログラフィ装置。
  14.  上記位相補正部は、上記撮像素子に入射する物体光の光軸と上記撮像素子に入射する参照光の光軸との少なくとも一方を前記撮像素子の撮像面の法線から所定の角度傾ける位相調整機構を有し、
     上記再生部は、並列2段階位相シフト法を用いて上記撮像装置が撮像した上記4種類の干渉縞から、上記撮像素子の上記画素に対応する物体光の複素振幅分布を生成する位相シフト処理部を含み、
     上記位相補正部は、上記位相シフト処理部が生成した物体光の複素振幅分布に対して、上記画素に応じた位相値を加えることによって位相が補正された物体光の複素振幅分布を得る位相調整部をさらに有することを特徴とする請求項1に記載のデジタルホログラフィ装置。
PCT/JP2013/075556 2012-10-05 2013-09-20 デジタルホログラフィ装置 WO2014054446A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014539666A JP6192017B2 (ja) 2012-10-05 2013-09-20 デジタルホログラフィ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012223657 2012-10-05
JP2012-223657 2012-10-05

Publications (1)

Publication Number Publication Date
WO2014054446A1 true WO2014054446A1 (ja) 2014-04-10

Family

ID=50434775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075556 WO2014054446A1 (ja) 2012-10-05 2013-09-20 デジタルホログラフィ装置

Country Status (2)

Country Link
JP (1) JP6192017B2 (ja)
WO (1) WO2014054446A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843637B1 (ko) 2016-05-24 2018-03-29 연세대학교 산학협력단 다파장 디지털 홀로그래피 시스템
CN108120393A (zh) * 2017-12-19 2018-06-05 中国科学院光电技术研究所 一种多光场调制的三维形貌测量方法
WO2018147473A1 (ja) * 2017-02-10 2018-08-16 国立大学法人京都工芸繊維大学 3次元物体情報計測装置
JP2018205430A (ja) * 2017-05-31 2018-12-27 国立研究開発法人産業技術総合研究所 位相シフトデジタルホログラフィ装置及びそのプログラム
CN109690236A (zh) * 2016-09-28 2019-04-26 Ckd株式会社 三维测量装置
CN111707216A (zh) * 2020-06-30 2020-09-25 西安工业大学 一种基于随机两步相移的面形检测方法
JP2021511520A (ja) * 2018-01-23 2021-05-06 コリア リサーチ インスティトゥート オブ スタンダード アンド サイエンス 位相シフト偏向測定法で非線形応答特性を補償するためのシステム及び方法
JP2021184033A (ja) * 2020-05-21 2021-12-02 日本放送協会 光変調素子及び位相計測装置
KR20220162677A (ko) * 2017-10-20 2022-12-08 주식회사 엘지화학 적층체의 제조방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987531B (zh) * 2019-12-12 2022-08-09 浙江棱镜全息科技有限公司 全息透镜组件及具有该组件的显示系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283683A (ja) * 2004-03-26 2005-10-13 Japan Science & Technology Agency デジタルホログラフィ装置及びデジタルホログラフィを用いた像再生方法
JP2008122565A (ja) * 2006-11-10 2008-05-29 Hyogo Prefecture ホログラフィによる画像記録装置および画像記録方法
WO2009066771A1 (ja) * 2007-11-22 2009-05-28 National University Corporation Kyoto Institute Of Technology デジタルホログラフィ装置及び位相板アレイ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002207A1 (ja) * 2010-06-29 2012-01-05 国立大学法人京都工芸繊維大学 偏光イメージング装置および偏光イメージング方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283683A (ja) * 2004-03-26 2005-10-13 Japan Science & Technology Agency デジタルホログラフィ装置及びデジタルホログラフィを用いた像再生方法
JP2008122565A (ja) * 2006-11-10 2008-05-29 Hyogo Prefecture ホログラフィによる画像記録装置および画像記録方法
WO2009066771A1 (ja) * 2007-11-22 2009-05-28 National University Corporation Kyoto Institute Of Technology デジタルホログラフィ装置及び位相板アレイ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843637B1 (ko) 2016-05-24 2018-03-29 연세대학교 산학협력단 다파장 디지털 홀로그래피 시스템
CN109690236A (zh) * 2016-09-28 2019-04-26 Ckd株式会社 三维测量装置
JP6995376B2 (ja) 2017-02-10 2022-02-04 国立大学法人京都工芸繊維大学 3次元物体情報計測装置
WO2018147473A1 (ja) * 2017-02-10 2018-08-16 国立大学法人京都工芸繊維大学 3次元物体情報計測装置
JPWO2018147473A1 (ja) * 2017-02-10 2020-01-09 国立大学法人京都工芸繊維大学 3次元物体情報計測装置
JP2018205430A (ja) * 2017-05-31 2018-12-27 国立研究開発法人産業技術総合研究所 位相シフトデジタルホログラフィ装置及びそのプログラム
KR102648791B1 (ko) * 2017-10-20 2024-03-19 주식회사 엘지화학 적층체의 제조방법
KR20220162677A (ko) * 2017-10-20 2022-12-08 주식회사 엘지화학 적층체의 제조방법
CN108120393A (zh) * 2017-12-19 2018-06-05 中国科学院光电技术研究所 一种多光场调制的三维形貌测量方法
JP2021511520A (ja) * 2018-01-23 2021-05-06 コリア リサーチ インスティトゥート オブ スタンダード アンド サイエンス 位相シフト偏向測定法で非線形応答特性を補償するためのシステム及び方法
JP7001835B2 (ja) 2018-01-23 2022-01-20 コリア リサーチ インスティトゥート オブ スタンダード アンド サイエンス 位相シフト偏向測定法で非線形応答特性を補償するためのシステム及び方法
JP2021184033A (ja) * 2020-05-21 2021-12-02 日本放送協会 光変調素子及び位相計測装置
JP7478026B2 (ja) 2020-05-21 2024-05-02 日本放送協会 光変調素子及び位相計測装置
CN111707216B (zh) * 2020-06-30 2021-07-02 西安工业大学 一种基于随机两步相移的面形检测方法
CN111707216A (zh) * 2020-06-30 2020-09-25 西安工业大学 一种基于随机两步相移的面形检测方法

Also Published As

Publication number Publication date
JPWO2014054446A1 (ja) 2016-08-25
JP6192017B2 (ja) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6192017B2 (ja) デジタルホログラフィ装置
JP5339535B2 (ja) デジタルホログラフィ装置及び位相板アレイ
JP5691082B2 (ja) 偏光イメージング装置および偏光イメージング方法
JP5352763B2 (ja) 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置
JP5648193B2 (ja) 干渉計測装置および干渉計測方法
CN105241374B (zh) 双波长共路正交载频数字全息检测装置及检测方法
US9500470B2 (en) Apparatus and method for measuring quality of holographic image
JP6308594B2 (ja) デジタルホログラフィ装置およびデジタルホログラフィ方法
JP6230047B2 (ja) 複素振幅画像表示方法、散乱位相画像生成装置および散乱位相画像生成方法
JP7122153B2 (ja) ホログラム記録装置及び像再生装置
JP2007114463A (ja) 3次元カラー画像記録装置
JP2015001726A (ja) ホログラム記録装置およびホログラム記録方法
JP2017076038A (ja) デジタルホログラフィ装置およびデジタルホログラフィ方法
JP6309384B2 (ja) デジタルホログラフィ装置およびデジタルホログラフィ方法
KR20170079441A (ko) 진동 환경에서 큰 단차를 갖는 샘플의 높낮이 측정을 위한 디지털 홀로그램 기록재생장치 및 기록재생방법
JP5891567B2 (ja) デジタルホログラフィ装置、及びデジタルホログラフィによる3次元像再生方法
JP6040469B2 (ja) デジタルホログラフィ装置
JP5096397B2 (ja) ホログラム記録再生方法およびホログラム記録再生装置
JP7348858B2 (ja) ホログラム撮影装置及び像再構成システム
JP5106472B2 (ja) 原画像復元データ生成方法および装置
TWI645269B (zh) 共光程螺旋相位數位全像系統及其方法
JP2023007531A (ja) インコヒーレントデジタルホログラフィ撮像装置および撮像方法
JP2023097562A (ja) インコヒーレントデジタルホログラフィ撮像装置および撮像方法
JP2023077325A (ja) 撮像装置及び撮像方法
JP2020190616A (ja) ホログラム記録再生装置及び立体像再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843082

Country of ref document: EP

Kind code of ref document: A1