WO2014054112A1 - 三硫化アンチモンの製造方法 - Google Patents

三硫化アンチモンの製造方法 Download PDF

Info

Publication number
WO2014054112A1
WO2014054112A1 PCT/JP2012/075451 JP2012075451W WO2014054112A1 WO 2014054112 A1 WO2014054112 A1 WO 2014054112A1 JP 2012075451 W JP2012075451 W JP 2012075451W WO 2014054112 A1 WO2014054112 A1 WO 2014054112A1
Authority
WO
WIPO (PCT)
Prior art keywords
antimony
sulfur
trisulfide
antimony trioxide
vessel
Prior art date
Application number
PCT/JP2012/075451
Other languages
English (en)
French (fr)
Inventor
智 北薗
将大 石田
Original Assignee
日本精鉱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精鉱株式会社 filed Critical 日本精鉱株式会社
Priority to JP2013514486A priority Critical patent/JP5305495B1/ja
Priority to US14/432,798 priority patent/US9926205B2/en
Priority to PCT/JP2012/075451 priority patent/WO2014054112A1/ja
Publication of WO2014054112A1 publication Critical patent/WO2014054112A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/008Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Definitions

  • the present invention relates to a method for producing antimony trisulfide used for brake pads and the like.
  • antimony trisulfide on the market is processed from natural antimony trisulfide ore (Kyanite). That is, when natural antimony trisulfide ore is melted, antimony trisulfide settles, and impurities such as gangue rise and separate, so that antimony trisulfide can be recovered.
  • antimony trisulfide can be produced by mixing and baking metal antimony powder and sulfur.
  • Metal antimony can be produced, for example, according to Patent Document 1 below.
  • antimony trisulfide is precipitated by adding antimony trioxide to an aqueous solution of sodium sulfide and passing hydrogen sulfide through this solution. This can be recovered and obtained.
  • Antimony trioxide can be obtained, for example, by volatile oxidation refining as shown in Patent Document 2 below, and is widely distributed in the market as a fine powder.
  • the above-mentioned method for producing antimony trisulfide from natural antimony trisulfide ore contains a relatively large amount of lead, arsenic, and crystalline silica (quartz) as impurities in the produced antimony trisulfide ore. In consideration of the work environment in the process, it is required to reduce these impurities.
  • the above-mentioned method of producing from metal antimony powder is poor in reactivity because it separates and precipitates under dissolved sulfur of the metal powder.
  • a metal antimony powder having a particle size of 10 ⁇ m or less obtained by pulverizing the antimony lump is used.
  • the particle size of the metal antimony obtained by pulverizing the antimony lump is usually 20 to 30 ⁇ m, and 10 ⁇ m or less. It is very expensive to grind.
  • the production method in which the antimony trioxide powder is added to the aqueous sodium sulfide solution and passed through hydrogen sulfide is more expensive than the production method from the metal antimony powder.
  • An object of the present invention is to provide a method for producing antimony trisulfide which can be produced at a low cost with relatively few impurities such as lead, arsenic and crystalline silica.
  • the present invention is a method for producing antimony trisulfide, wherein antimony trioxide powder and sulfur are charged into a reaction vessel, and the inside of the vessel is heated to react with antimony trioxide and sulfur.
  • antimony trioxide is obtained by volatile oxidation refining, the particle size is small, the specific surface area is large, and the reactivity is good.
  • high-purity products with few impurities such as lead, arsenic and crystalline silica can be easily obtained, and by using high-purity antimony trioxide as a raw material, low-impurity antimony trisulfide can be produced at low cost. Can do.
  • FIG. 6 is an explanatory view of the conventional production of antimony trisulfide from metal antimony powder and sulfur powder.
  • the left side is a state in which a raw material 3 ′ mixed with metal antimony powder and sulfur powder is charged into the reaction vessel 20, and the right side. Is a state where sulfur is melted by heating. Since the specific gravity of liquid sulfur (about 1.8) is much smaller than the specific gravity of metal antimony (about 6.7), metal antimony tends to be precipitated in liquid sulfur. Unreacted metal antimony that does not come into contact with sulfur tends to remain in the lower part of the metal.
  • FIG. 7 is an explanatory view of the production of antimony trisulfide from the antimony trioxide powder and sulfur powder of the present invention, and the left side is a state in which the raw material 3 mixed with antimony trioxide powder and sulfur powder is charged in the reaction vessel 20; On the right side, this is heated to melt the sulfur.
  • the specific gravity of antimony trioxide (about 5.2) is larger than the specific gravity of liquid sulfur (about 1.8), but smaller than the specific gravity of metal antimony (about 6.7), and antimony trioxide and liquid sulfur. Due to the reaction, sulfur dioxide gas bubbles 4 are generated and stirred, so that antimony trioxide is hardly precipitated in the liquid sulfur, and unreacted antimony trioxide hardly remains.
  • the average particle size of the antimony trioxide powder is preferably 2 ⁇ m or less.
  • the average particle diameter in the present invention is a specific surface area sphere equivalent diameter determined based on a specific surface area determined by a specific surface area measurement method of a powder (solid) by a JIS Z8830 gas adsorption method.
  • the heating temperature in the reaction vessel is preferably 250 to 700 ° C. If the heating temperature is less than 250 ° C., the sulfur is melted and the reaction starts slowly, and the temperature exceeding 700 ° C. is unnecessary and wastes energy.
  • the amount of sulfur can be made larger than the stoichiometric amount of the product, and the inside of the reaction vessel can be heated after being filled with an inert gas.
  • the stoichiometric amount is 9 mol of sulfur with respect to 2 mol of antimony trioxide, but the blending amount is desirably about 10 to 11 mol of sulfur with respect to 2 mol of antimony trioxide. By doing so, there is almost no possibility that unreacted antimony trioxide remains in the manufactured antimony trisulfide.
  • the reaction vessel can be provided with a gas inlet and a gas outlet.
  • an inert gas such as nitrogen is introduced from the inlet to fill the container with the inert gas.
  • an antimony trisulfide is produced
  • purging may be performed by constantly flowing an inert gas into the container. By doing in this way, it can prevent that antimony reacts with oxygen in the air.
  • the produced antimony trisulfide can be heated to its melting point or higher to be melted and discharged as a liquid from the container, and the discharged liquid antimony sulfide can be cooled and solidified.
  • the melting point of antimony trisulfide is 550 ° C.
  • antimony trisulfide having relatively few impurities such as lead, arsenic and crystalline silica can be easily produced at low cost.
  • FIG. 1 is a side view of manufacturing equipment 1.
  • FIG. FIG. 4 is a cross-sectional explanatory view of the container part 2 of the manufacturing facility 1. It is explanatory drawing of the temperature in reaction container in this invention embodiment. It is explanatory drawing of the relationship between the quantity of raw material sulfur, and a reaction rate. It is explanatory drawing of antimony trisulfide manufacture from metal antimony powder and sulfur powder. It is explanatory drawing of antimony trisulfide manufacture from antimony trioxide powder and sulfur powder.
  • the manufacturing facility 1 includes a container part 2, a table 10, a support part 11, and a cylinder 12.
  • the container part 2 is rotatably supported by the rotation shaft 11 a of the support part 11 and is rotated by the cylinder 12.
  • the container part 2 has a reaction vessel (crucible) 20, an electric furnace 21, and a lid 22, and the reaction vessel 20 is mounted in the electric furnace 21 and heated by a heater 21a.
  • the lid 22 is made of glass wool, for example, and is detachable. Quartz tubes 23, 24 are provided through the lid 22, the tip of the quartz tube 23 is an inert gas (nitrogen gas) inlet 23 a, and the tip of the quartz tube 24 is a gas outlet 24 a in the reaction vessel. ing.
  • the quartz tube 24 is connected to a desulfurization apparatus (not shown), and the gas flowing out from the reaction vessel is desulfurized.
  • reference numeral 20a denotes a manufactured antimony trisulfide outlet
  • reference numeral 3 denotes a raw material.
  • antimony trioxide fine powder and sulfur powder were mixed at a weight ratio of 5: 3 (molar ratio 2: 10.9).
  • Sulfur having a particle size of less than 90 ⁇ m was used.
  • a lid 22 is attached as shown in FIG. 3, nitrogen gas is caused to flow into the reaction vessel 20 from the quartz tube 23, and the air in the vessel 20 is completely converted to nitrogen gas. Replaced. Thereafter, heating by an electric furnace was started. As shown in FIG. 4, the temperature in the reaction vessel 20 rapidly increased to about 580 ° C. due to reaction heat after reaching 400 ° C. After about 2 hours from the start of heating, the remaining sulfur was almost completely vaporized, so nitrogen gas was introduced into the reaction vessel 20 from the quartz tube 23, and the sulfur gas in the vessel was completely discharged. Thereafter, the lid 23 was removed, and the container part 2 was rotated as indicated by a broken line in FIG. 2 to take out the molten antimony trisulfide from the discharge port 20a and solidify by natural cooling.
  • the antimony trisulfide produced as described above was crushed into powder and subjected to component analysis. The results are shown in Table 1.
  • the comparative example is an example of antimony trisulfide produced from a conventional natural antimony trisulfide ore.
  • the antimony trisulfide produced according to the present invention has very few impurities such as lead, arsenic, and crystalline silica as compared with the comparative example.
  • the amount of antimony trioxide and free sulfur remaining in the product is also small.
  • the amount of sulfur is 1.0 times, 1.1 times the stoichiometric amount (stoichiometric amount), and 1.
  • Antimony trisulfide was produced by changing it to 2 times and 1.3 times, and the reaction rate (mass% of antimony trisulfide in the product) was examined. The result is shown in FIG.
  • the reaction rate is about 95% at 1.1 times, over 98% at 1.2 times, and the increase in reaction rate between 1.2 times and 1.3 times is very slight, so the amount of sulfur is About 1.1 to 1.3 times is suitable, centering on 1.2 times.
  • Table 2 compares the reaction rates in the examples in which the average particle size of antimony trioxide as a raw material was 0.4 ⁇ m, 1.2 ⁇ m, and 7.1 ⁇ m, and in a comparative example using metal antimony and sulfur powder as raw materials. Is. The amount of sulfur was all about 1.2 times the stoichiometric amount. As is apparent from the table, the reaction rate of the example is much better than that of the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 不純物である鉛、ヒ素及び結晶性シリカが比較的少なく、しかも安価に製造できる三硫化アンチモンの製造方法を開発する。 反応容器内に三酸化アンチモン粉末及び硫黄を装入し、該容器内を加熱して三酸化アンチモンと硫黄を反応させる。三酸化アンチモンは、揮発酸化精錬で得られるため粒子径が小さくて反応性がよく、鉛、ヒ素及び結晶性シリカなどの不純物が少ない高純度ものが容易に手に入り、高純度の三酸化アンチモンを原料として使用することで、不純物の少ない三硫化アンチモンを安価に製造できる。

Description

三硫化アンチモンの製造方法
 本発明は、ブレーキパッドなどに使用される三硫化アンチモンの製造方法に関する。
 市場に出ている三硫化アンチモンは、天然の三硫化アンチモン鉱石(輝安鉱)を加工したものがほとんどである。すなわち、天然の三硫化アンチモン鉱石を溶融すると、三硫化アンチモンが沈降し、脈石などの不純物が浮き上がって分離するので、三硫化アンチモンを回収することができる。
 また、三硫化アンチモンは、金属アンチモン粉末と硫黄を混合して焼成することで製造することもできる。金属アンチモンは、例えば下記特許文献1によって製造できる。
 また、三酸化アンチモンを硫化ナトリウム水溶液に加え、この溶液に硫化水素を通ずることで、三硫化アンチモンが析出するので、これを回収して得ることができる。三酸化アンチモンは、例えば下記特許文献2に示されるような揮発酸化精錬によって得ることができ、微細な粉末として市場に多く流通している。
特開平6-322455号公報 特開平6-329417号公報
 前記の、三硫化アンチモンを天然の三硫化アンチモン鉱石から製造する方法は、製造した三硫化アンチモン中に鉛、ヒ素及び結晶性シリカ(石英)が不純物として比較的多く含まれるので、自然環境及び製造工程における作業環境への配慮から、これらの不純物を低減することが求められている。
 前記の、金属アンチモン粉末から製造する方法は、金属粉末が溶けた硫黄の下に分離して沈殿するので反応性が悪い。比較的反応性を良くするためにはアンチモン塊を粉砕した粒径10μm以下の金属アンチモン粉末を用いるが、アンチモン塊を粉砕して得られる金属アンチモンの粒径は通常20~30μmであり、10μm以下に粉砕するには非常にコストがかかる。
 前記の三酸化アンチモン粉末を硫化ナトリウム水溶液に加え、硫化水素を通ずる製造方法は、前記の金属アンチモン粉末から製造する方法よりもコストがかかる。
 本発明は、不純物である鉛、ヒ素及び結晶性シリカが比較的少なく、しかも安価に製造できる三硫化アンチモンの製造方法を提供することを課題とするものである。
 本発明は、反応容器内に三酸化アンチモン粉末及び硫黄を装入し、該容器内を加熱して三酸化アンチモンと硫黄を反応させることを特徴とする三硫化アンチモンの製造方法である。
 反応容器内で三酸化アンチモン粉末と硫黄が加熱されると、硫黄が三酸化アンチモンの酸素を奪ってSOとなって気化し、SbとSが結合してSbが生成される。その反応式は次の通りである。
  2Sb + 9S = 2Sb + 3SO 
 三酸化アンチモンは、揮発酸化精錬で得られるため、粒子径が小さく比表面積が大きく、反応性がよい。さらに、鉛、ヒ素及び結晶性シリカなどの不純物が少ない高純度ものが容易に手に入り、高純度の三酸化アンチモンを原料として使用することで、不純物の少ない三硫化アンチモンを安価に製造することができる。
 本発明は、金属アンチモン粉末と硫黄粉末から三硫化アンチモンを製造する場合に比べて、反応効率が優れている。
 図6は、従来の、金属アンチモン粉末と硫黄粉末からの三硫化アンチモン製造の説明図で、左側は反応容器20内に金属アンチモン粉末と硫黄粉末を混合した原料3’を装入した状態、右側は、これを加熱して硫黄が溶融した状態である。液体硫黄の比重(約1.8)は、金属アンチモンの比重(約6.7)に比べて非常に小さいので、金属アンチモンは液体硫黄の中に沈殿した状態となりやすく、その結果、反応容器20の下部に硫黄と接触しない未反応の金属アンチモンが残りやすくなる。
 図7は、本発明の三酸化アンチモン粉末と硫黄粉末からの三硫化アンチモン製造の説明図で、左側は反応容器20内に三酸化アンチモン粉末と硫黄粉末を混合した原料3を装入した状態、右側は、これを加熱して硫黄が溶融した状態である。三酸化アンチモンの比重(約5.2)は液体硫黄の比重(約1.8)に比べて大きいが、金属アンチモンの比重(約6.7)よりも小さく、また、三酸化アンチモンと液体硫黄の反応により亜硫酸ガスの泡4が発生し撹拌するため液体硫黄のなかに三酸化アンチモンが沈殿しにくく、未反応の三酸化アンチモンが残りにくい。
 本発明において、三酸化アンチモン粉末の平均粒径は2μm以下であることが望ましい。平均粒径が2μmを越えると、反応性が悪くなり、エネルギーコストが高くなり、製造した三硫化アンチモン中に未反応の三酸化アンチモンが残留するおそれがある。
 本発明における平均粒径は、JIS Z8830 気体吸着法による粉体(固体)の比表面積測定方法によって求められた比表面積を基に求めた比表面積球相当径である。
 本発明において、反応容器内の加熱温度が250~700℃が望ましい。加熱温度が250℃未満では硫黄が溶融して反応が開始されるのが遅くなり、700℃を越える温度は不必要でエネルギーの無駄になる。
 本発明において、硫黄の量を、生成物の化学量論的量よりも多くし、反応容器内を不活性ガスで満たした後に該容器内を加熱することができる。
 化学量論的量は、三酸化アンチモン2モルに対して硫黄9モルであるが、配合量は、三酸化アンチモン2モルに対して硫黄10~11モル程度にすることが望ましい。
 このようにすることで、製造した三硫化アンチモン中に未反応の三酸化アンチモンが残留するおそれがほとんどなくなる。
 本発明において、反応容器にガス流入口とガス流出口を設けることができる。容器の加熱前に流入口から、窒素などの不活性ガスを流入させて該容器内を不活性ガスで満たす。そして、容器内を加熱して三硫化アンチモンを生成させ、完了した後に流入口から不活性ガスを流入させ、容器内の硫黄気化ガスを流出口から排出させることができる。
 なお、容器内を加熱して三硫化アンチモンを生成させているときも、絶えず不活性ガスを容器内に流入させてパージを行ってもよい。
 このようにすることで、アンチモンが空気中の酸素と反応するのを防ぐことができる。
 本発明において、生成した三硫化アンチモンをその融点以上まで加熱して溶融させ、液体として該容器から排出し、排出した液体硫化アンチモンを冷却凝固させることができる。三硫化アンチモンの融点は550℃である。
 このようにすることで、反応容器を用いて連続して三硫化アンチモンを製造することができる。
 本発明によれば、不純物である鉛、ヒ素及び結晶性シリカが比較的少ない三硫化アンチモンを、低コストで容易に製造することができる。
本発明実施形態における製造設備1の平面図である。 製造設備1の側面図である。 製造設備1の容器部2の断面説明図である。 本発明実施形態における反応容器内温度の説明図である。 原料硫黄の量と反応率の関係の説明図である。 金属アンチモン粉末と硫黄粉末からの三硫化アンチモン製造の説明図である。 三酸化アンチモン粉末と硫黄粉末からの三硫化アンチモン製造の説明図である。
 図1~3は本発明実施形態における三硫化アンチモン製造設備1に関する。製造設備1は容器部2、台10、支持部11及びシリンダ12を有する。容器部2は、支持部11の回動軸11aに回動可能に支持され、シリンダ12によって回動する。
 容器部2は反応容器(ルツボ)20、電気炉21、蓋22を有し、反応容器20は電気炉21内に装着され、ヒータ21aによって加熱される。蓋22は、例えばグラスウール製で、着脱自在である。蓋22を貫通して石英管23,24が設けられ、石英管23の先端が不活性ガス(窒素ガス)の流入口23a、石英管24の先端が反応容器内のガスの流出口24aとなっている。石英管24は脱硫装置(図示せず)に接続され、反応容器内から流出したガスは脱硫処理される。なお、図中符号20aは製造した三硫化アンチモンの排出口、符号3は原料である。
 原料3は、三酸化アンチモン微粉末と硫黄粉末を重量比5:3(モル比2:10.9)で混合した。三酸化アンチモンは平均粒径1.17μmで、Sbが99.82wt%、Asが0.03wt%以下、Pbが0.001wt%以下、Feが0.001wt%未満のものを用いた。硫黄は粒径90μm未満のものを用いた。
 反応容器20内に原料を装入した後、図3に示すように蓋22を装着し、石英管23から反応容器20内に窒素ガスを流入させ、容器20内の空気を完全に窒素ガスに置換した。その後、電気炉による加熱を開始した。反応容器20内の温度は、図4に示すように、400℃に達した後、反応熱により580℃程度まで急激に上昇した。加熱開始から約2時間経過した後、残った硫黄の気化がほぼ終了したので、石英管23から反応容器20内に窒素ガスを流入させ、容器内の硫黄ガスを完全に排出させた。その後、蓋23を取り外し、図2に破線で示すように容器部2を回動させて、排出口20aから内部の溶融状態の三硫化アンチモンを取り出し、自然冷却により凝固させた。
 上記により製造した三硫化アンチモンを粉末状に破砕し、成分分析を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、比較例は従来の天然の三硫化アンチモン鉱石から製造した三硫化アンチモンの例である。
 表1に示されるように、本発明により製造した三硫化アンチモンは、比較例に比べて鉛、ヒ素、結晶性シリカなどの不純物が非常に少ない。また、反応性がよいので製品中に残留している三酸化アンチモン及び遊離硫黄の量も僅かである。
 次に、平均粒径1.17μmの三酸化アンチモンと粒径90μm未満の硫黄を原料とし、硫黄の量を理論量(化学量論的量)の1.0倍、1.1倍、1.2倍、1.3倍に変化させて三硫化アンチモンを製造し、反応率(生成物中の三硫化アンチモンの質量%)を調べた。その結果を図5に示す。反応率は、1.1倍で約95%、1.2倍で98%を越え、1.2倍から1.3倍の間の反応率の上昇はきわめて僅かであるから、硫黄の量は1.2倍を中心として1.1倍~1.3倍程度が適当である。
 表2は、原料である三酸化アンチモンの平均粒径を0.4μm、1.2μm、及び7.1μmとした実施例と、金属アンチモンと硫黄粉末を原料とした比較例における反応率を比較したものである。硫黄の量は、全て、化学量論的量の約1.2倍とした。
 同表に明らかなように、実施例は比較例よりも反応率が格段に優れている。
Figure JPOXMLDOC01-appb-T000002
 1 製造設備
 10 台
 11 支持部
 11a 回動軸
 12 シリンダ
 2 容器部
 20 反応容器
 21 電気炉
 21a ヒータ
 22 蓋
 23 石英管
 23a 流入口
 24 石英管
 24a 流出口
 3 原料
 4 亜硫酸ガスの泡

Claims (6)

  1.  反応容器内に三酸化アンチモン粉末及び硫黄を装入し、該容器内を加熱して三酸化アンチモンと硫黄を反応させることを特徴とする三硫化アンチモンの製造方法。
  2.  前記三酸化アンチモン粉末の平均粒径が2μm以下である請求項1に記載の三硫化アンチモンの製造方法。
  3.  前記反応容器内の加熱温度が250~700℃である請求項1又は2に記載の三硫化アンチモンの製造方法。
  4.  前記硫黄の量を、生成物の化学量論的量よりも多くし、前記反応容器内を不活性ガスで満たした後に該容器内を加熱する請求項1~3のいずれかに記載の三硫化アンチモンの製造方法。
  5.  前記反応容器がガス流入口とガス流出口を有し、該容器の加熱前に該流入口から不活性ガスを流入させて該容器内を不活性ガスで満たし、該容器内で三硫化アンチモンの生成が完了した後に該流入口から不活性ガスを流入させ、該容器内のガスを該流出口から排出させる請求項4に記載の三硫化アンチモンの製造方法。
  6.  前記反応容器内において、生成した三硫化アンチモンをその融点以上まで加熱して溶融させ、液体として該容器から排出し、排出した液体硫化アンチモンを冷却凝固させる請求項1~5のいずれかに記載の三硫化アンチモンの製造方法。
PCT/JP2012/075451 2012-10-02 2012-10-02 三硫化アンチモンの製造方法 WO2014054112A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013514486A JP5305495B1 (ja) 2012-10-02 2012-10-02 三硫化アンチモンの製造方法
US14/432,798 US9926205B2 (en) 2012-10-02 2012-10-02 Method for producing antimony trisulfide
PCT/JP2012/075451 WO2014054112A1 (ja) 2012-10-02 2012-10-02 三硫化アンチモンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075451 WO2014054112A1 (ja) 2012-10-02 2012-10-02 三硫化アンチモンの製造方法

Publications (1)

Publication Number Publication Date
WO2014054112A1 true WO2014054112A1 (ja) 2014-04-10

Family

ID=49529461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075451 WO2014054112A1 (ja) 2012-10-02 2012-10-02 三硫化アンチモンの製造方法

Country Status (3)

Country Link
US (1) US9926205B2 (ja)
JP (1) JP5305495B1 (ja)
WO (1) WO2014054112A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079383A (zh) * 2020-09-24 2020-12-15 昆明理工大学 一种闪速热处理制备硫化锑粉体的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113277556B (zh) * 2021-05-31 2022-04-15 湖南娄底华星锑业有限公司 工业三氧化二锑生产装置
CN114890471B (zh) * 2022-05-06 2023-08-01 锡矿山闪星锑业有限责任公司 一种制备金黄锑的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203255A (ja) * 1988-02-10 1989-08-16 Poritoronikusu:Kk 超伝導用セラミクス
JPH03237018A (ja) * 1990-02-14 1991-10-22 Sumitomo Metal Mining Co Ltd 三硫化アンチモン合成用原料の封入方法
CN101786661A (zh) * 2010-03-09 2010-07-28 湘潭大学 一种硫化锑纳米棒的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU882934A1 (ru) * 1980-02-20 1981-11-23 Среднеазиатский Научно-Исследовательский И Проектный Институт Цветной Металлургии Способ получени трехсернистой сурьмы
JPH06322455A (ja) 1993-05-14 1994-11-22 Sumitomo Metal Mining Co Ltd 金属アンチモンの製造方法
JPH06329417A (ja) 1993-05-26 1994-11-29 Sumitomo Metal Mining Co Ltd 三酸化アンチモンの製造方法
CN1103895A (zh) * 1994-08-27 1995-06-21 周磊 一种用氧化锑矿、硫氧混合锑矿生产三氧化二锑粉的方法
JP3994435B2 (ja) * 2001-11-28 2007-10-17 ニプロ株式会社 照明用ガラスおよび着色ガラスバルブ、ならびにその製造方法
JP2009164215A (ja) * 2007-12-28 2009-07-23 Fujifilm Corp 放射線画像検出装置および放射線画像検出器の製造方法
US8801979B2 (en) * 2010-06-10 2014-08-12 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Apparatus and method for continuous production of materials
CN102126755A (zh) * 2011-05-05 2011-07-20 贵州正业工程技术投资有限公司 用高频等离子体法生产纳米三氧化二锑的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203255A (ja) * 1988-02-10 1989-08-16 Poritoronikusu:Kk 超伝導用セラミクス
JPH03237018A (ja) * 1990-02-14 1991-10-22 Sumitomo Metal Mining Co Ltd 三硫化アンチモン合成用原料の封入方法
CN101786661A (zh) * 2010-03-09 2010-07-28 湘潭大学 一种硫化锑纳米棒的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079383A (zh) * 2020-09-24 2020-12-15 昆明理工大学 一种闪速热处理制备硫化锑粉体的方法

Also Published As

Publication number Publication date
US20150259216A1 (en) 2015-09-17
JPWO2014054112A1 (ja) 2016-08-25
US9926205B2 (en) 2018-03-27
JP5305495B1 (ja) 2013-10-02

Similar Documents

Publication Publication Date Title
CN103508656B (zh) 玻璃基板的制造方法
CN101164938B (zh) 光学玻璃
WO2003066523A1 (fr) Procede de purification du silicium, scories pour purifier le silicium et silicium purifie
JP5305495B1 (ja) 三硫化アンチモンの製造方法
CN102312104A (zh) 铝及铝合金熔炼精炼剂
JP6122708B2 (ja) 硫化物系固体電解質の製造方法
JPH044965B2 (ja)
CN104058405B (zh) 一种去除金属硅中杂质磷和硼的方法
CN102859011A (zh) 铝粉末的熔化方法及熔化装置
JP2013521214A (ja) アルミニウム含有シリコンの精製方法
EP2014617A2 (en) Process For Melting Silicon Powders
JP6620953B2 (ja) 硫化リチウム製造装置
JP4511957B2 (ja) シリコンの精錬方法
CN1648041A (zh) 从金属硅制备超纯硅的方法和装置
TWI746885B (zh) 表面處理溶膠凝膠二氧化矽以及表面處理溶膠凝膠二氧化矽的製造方法、樹脂組成物、以及半導體封裝材料用填充劑
JP6256754B2 (ja) 硫化リチウムの製造方法
CN109487097A (zh) 粗锑精炼除铁的加料装置及其方法
CN106103345B (zh) 用于生产二氧化硅颗粒的方法
CN104829125A (zh) 一种澄清助熔玻璃助熔剂及其制备方法
JP5097427B2 (ja) 金属ケイ素粉末の製造方法、球状シリカ粉末の製造方法及び樹脂組成物の製造方法
JP2013087303A (ja) 金属複合超微粒子の製造方法
JP5777981B2 (ja) 金属複合超微粒子の製造方法
JP6026210B2 (ja) 金属の還元精錬方法
US20230312361A1 (en) Method Of Producing Antimony Trisulfide
TWI757362B (zh) 鉛蓄電池用活性物質材料的製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013514486

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886064

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14432798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886064

Country of ref document: EP

Kind code of ref document: A1