WO2014054098A1 - 電動駆動装置 - Google Patents

電動駆動装置 Download PDF

Info

Publication number
WO2014054098A1
WO2014054098A1 PCT/JP2012/075385 JP2012075385W WO2014054098A1 WO 2014054098 A1 WO2014054098 A1 WO 2014054098A1 JP 2012075385 W JP2012075385 W JP 2012075385W WO 2014054098 A1 WO2014054098 A1 WO 2014054098A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
electric drive
drive device
control board
motor
Prior art date
Application number
PCT/JP2012/075385
Other languages
English (en)
French (fr)
Inventor
中野 正嗣
阿久津 悟
園田 功
牛尾 公平
浅尾 淑人
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014539495A priority Critical patent/JP5936700B2/ja
Priority to US14/410,923 priority patent/US9627944B2/en
Priority to CN201280076172.6A priority patent/CN104704717B/zh
Priority to EP12886025.1A priority patent/EP2905876B1/en
Priority to PCT/JP2012/075385 priority patent/WO2014054098A1/ja
Publication of WO2014054098A1 publication Critical patent/WO2014054098A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • H02K2211/03Machines characterised by circuit boards, e.g. pcb

Definitions

  • the present invention relates to an electric drive device in which a motor and a control unit (drive device unit) that controls the drive of the motor are integrated, and particularly suitable for an electric power steering device for a vehicle. It relates to the device.
  • the present invention has been made to solve the above-described problems.
  • the present invention has been made to reduce the shaft deflection, improve the accuracy of rotation angle detection, and further reduce the noise interference from the inverter circuit and the control board.
  • An object of the present invention is to provide an electric drive device.
  • An electric drive device is an electric drive device including a motor and a control unit that is a drive device unit disposed on the side opposite to the output shaft side of the motor, and the output shaft side of the motor
  • a detection portion of a rotation angle sensor is provided at the end of the shaft opposite to the shaft
  • a sensor unit which is a detection unit of the rotation angle sensor is provided at a position coaxial with the rotation axis of the shaft
  • the control unit includes: An inverter circuit unit having a drive element for driving the motor attached to a heat sink, and a control board that is separate from the sensor unit and controls the output of the inverter circuit unit are provided, and the sensor unit and the sensor unit
  • the control board is electrically connected, and the arrangement of the control board is arranged along a plane perpendicular to the rotation axis of the shaft of the motor.
  • the mounting area of the control board can be increased by separately configuring the control board and the rotation angle sensor unit.
  • the vibration is reduced, and as a result, the accuracy of the rotation angle detection is improved, and the motor The effect that vibration noise can be reduced is obtained.
  • noise interference from the inverter circuit and control board to the rotation angle sensor can be reduced, and the control board is arranged along a plane perpendicular to the rotation axis of the motor. Compared to the arrangement along the parallel plane (vertical arrangement), there is an effect that the axial length of the ECU as the control unit can be shortened.
  • FIG. 2 is an explanatory diagram of components in which components of the electric drive device of FIG. 1 are arranged in the axial direction. It is explanatory drawing of the sensor part in the electric drive device of Embodiment 1 of this invention. It is explanatory drawing which shows an example of the permanent magnet for sensors in the electric drive device of Embodiment 1 of this invention. It is explanatory drawing which shows another example of the permanent magnet for sensors in the electric drive device of Embodiment 1 of this invention. It is explanatory drawing of the electric power steering device to which the electric drive device of this invention is applied. It is explanatory drawing of the sensor part in Embodiment 2 of this invention.
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of the electric drive apparatus according to Embodiment 1 of the present invention.
  • the electric drive apparatus has a structure in which a permanent magnet type motor 100 and an ECU (Electronic Control Unit) as a control unit are integrated.
  • a permanent magnet type motor 100 includes a stator core 1 formed by laminating electromagnetic steel plates, an armature winding 2 wound around the stator core 1, and a stator core 1. It has a frame 3 to be fixed.
  • the frame 3 is fixed by a housing 4 and a bolt 6 provided on the front portion of the motor.
  • the housing 4 is provided with a bearing 5A, and the bearing 5A rotatably supports the shaft 7 together with the bearing 5B.
  • the bearing 5B is supported by a wall portion 8 provided integrally or separately from the frame 3.
  • a pulley 9 is press-fitted into one end portion of the shaft 7, that is, the output shaft side, and the pulley 9 functions to transmit a driving force to a belt of an electric power steering device described later.
  • a sensor permanent magnet 10 which is a detected portion of the rotation angle sensor is provided at the other tip of the shaft 7.
  • a rotor core 11 is press-fitted into the shaft 7, and a permanent magnet 12 is fixed to the rotor core 11.
  • FIG. 1 shows an example in which the permanent magnet 12 is fixed on the surface of the rotor core 11, a structure embedded in the rotor core 11 may be used.
  • the ECU 200 is provided with a first connector 13 that receives a signal from a torque sensor, a second connector 14 that receives vehicle information such as vehicle speed, and a power supply connector 15 for supplying power. Further, the ECU 200 has an inverter circuit for driving a motor, and the inverter circuit has a switching element SW such as a MOS-FET.
  • the switching element SW may have a configuration in which a bare chip is mounted on a DBC (Direct Bonded Copper) substrate or a configuration in which a bare chip is molded with a resin.
  • the switching element SW generates heat because a current for driving the motor flows. Therefore, the switching element SW has a structure for dissipating heat by contacting the heat sink 16 via an adhesive or an insulating sheet.
  • the inverter circuit includes a smoothing capacitor, a noise removal coil, a power relay, and a bus bar that electrically connects them, but is omitted in FIG.
  • the bus bar is integrally formed with resin to form an intermediate member 23.
  • a control board 17 is provided adjacent to the intermediate member 23. Based on the information received from the first connector 13 and the second connector 14, the control board 17 sends a control signal to the switching element SW in order to drive the motor appropriately.
  • the control signal is transmitted by a connection member (not shown) that electrically connects the control board 17 and the switching element SW.
  • This connecting member is fixed by wire bonding, press fit, solder, or the like.
  • the case 18 may be a resin, a metal such as aluminum, or a combination of a resin and a metal such as aluminum.
  • the arrangement of the control board 17 is arranged along a plane perpendicular to the rotation axis of the shaft 7 of the motor.
  • the axial length of the ECU 200 is shortened compared to the case where the control board 17 is arranged along a plane parallel to the rotation axis of the shaft 7 (vertical arrangement).
  • the control board 17 is not necessarily along a plane perpendicular to the rotation axis, an effect of shortening the axial length can be obtained unless the control board 17 is along a plane parallel to the rotation axis.
  • a sensor unit 300 is arranged on the side of the heat sink 16 close to the motor 100.
  • the sensor unit 300 includes a magnetic sensor 19, a substrate 20, a connection member 21, and a support member 22, and the substrate 20 on which the magnetic sensor 19 is mounted is fixed to the heat sink 16 with screws (not shown). Since fixing of the substrate 20 to the heat sink 16 having a large temperature change due to the heat generated by the switching element SW is screwed, there is an effect that it is more resistant to temperature rise and heat cycle than the adhesive.
  • the magnetic sensor 19 is arranged coaxially with the rotational axis of the shaft 7 and at a position corresponding to the sensor permanent magnet 10, detects the magnetic field generated by the sensor permanent magnet 10, and knows its direction. The rotation angle of the motor rotor is detected.
  • the ECU 200 supplies an appropriate drive current to the motor 100 according to the rotation angle.
  • the connecting member 21 is supported by the supporting member 22 and electrically connects the substrate 20 of the sensor unit 300 and the control substrate 17.
  • This connection may be press-fit or solder. Since the connection member 21 needs to penetrate the heat sink 16 and the intermediate member 23, the heat sink 16 and the intermediate member 23 are provided with holes (not shown) through which the connection member 21 passes. Further, although not shown, the intermediate member 23 is provided with a guide for positioning the connecting member 21. With such a configuration, electrical connection between the sensor unit 300 and the control board 17 can be performed smoothly, and productivity is improved.
  • a recess 24 is provided in the heat sink 16, and the distance between the magnetic sensor 19 mounted on the substrate 20 of the sensor unit 300 and the surface of the heat sink 16 is increased.
  • the heat sink 16 is fixed to the frame 3 of the motor 100 by screws or shrink fitting. By being fixed to the frame 3 of the motor 100 in this way, the heat of the heat sink 16 can be transmitted to the frame 3 of the motor 100.
  • FIG. 2 is a diagram in which the respective components are disassembled in the axial direction in order to help understanding the configuration of the electric drive device of FIG.
  • the sensor unit 300 is assembled by integrating the substrate 20, the magnetic sensor 19, the support member 22, and the connection member 21.
  • the connection member 21 of the sensor unit 300 penetrates the heat sink 16 and the intermediate member 23 and is electrically connected to the control board 17.
  • Connection methods include press-fit and solder.
  • the control board 17 is arranged along a plane perpendicular to the rotation axis of the motor 100. With such a configuration, the direction in which the connection member 21 electrically connected to the sensor unit 300 extends is perpendicular to the control board 17, so that when the connection member 21 is fixed by press-fit or soldering, assembly is performed. There is an effect that is easy.
  • a switching element SW is fixed to the heat sink 16 via an adhesive or an insulating sheet.
  • a case 18 of the ECU 200 provided with the first connector 13, the second connector 14, and the power connector 15 is fixed to the heat sink 16 with an adhesive or a screw.
  • the heat sink 16 is fixed to the frame 3 of the permanent magnet motor 100 by shrink fitting or bolts.
  • FIG. 3A and 3B are explanatory diagrams of the sensor unit (detection unit) in the electric drive device according to the first embodiment of the present invention.
  • FIG. 3A is a diagram seen from the front side
  • FIG. 3B is a diagram seen from the side.
  • a magnetic sensor 19 is mounted on the substrate 20, and a support member 22 integrated with the connection member 21 is provided on the substrate 20, and the connection member 21 and the substrate 20 are fixed by press-fit or solder.
  • the magnetic sensor 19 includes a magnetoresistive effect element (MR element), an anisotropic magnetoresistive layer element (Anisotropic Magneto-resistance, AMR element), a giant magnetoresistive effect element (Giant Magneto-resistance, GMR element), a tunnel. What is necessary is just to comprise by a magnetoresistive element (Tunneling Magneto-resistance, TMR element) etc.
  • connection member 21 on the side opposite to the substrate 20 when viewed from the support member 22 is electrically connected to the control substrate 17 and is also fixed by press-fit or solder.
  • the interval between the connecting members 21 can be narrowed, so that the sensor unit 300 and the control board 17 can be reduced in size.
  • solder since the solder is not used, the manufacturing process is simplified.
  • the board 20 is provided with three screw holes 25, and the holes 20 are used to fix the heat sink 16 and screws.
  • the number of screw holes 25 is not limited to three, and the position of the screw holes 25 is not limited to the position shown in FIG.
  • the control board 17 and the rotation angle sensor unit 300 are configured as separate boards, so that the mounting area of the control board can be increased compared to mounting the magnetic sensor 19 on the control board 17. is there.
  • FIG. 4 and 5 are perspective views of a portion of the sensor permanent magnet (detected portion) 10.
  • FIG. 4 shows a configuration example having a cylindrical shape.
  • the permanent magnet 10M is magnetized in the direction of arrow Y in the figure, and is a two-pole permanent magnet.
  • the arrow Y is on a plane perpendicular to the rotation axis 7a of the rotor.
  • the permanent magnet 10M is composed of neodymium bonded magnet, neodymium sintered magnet, ferrite magnet, or the like, and is fixed by a permanent magnet support portion 10S.
  • the fixing may be an adhesive, or in the case of a bonded magnet, the permanent magnet support 10S and the permanent magnet support part 10S may be integrally formed.
  • the permanent magnet support portion 10S may be made of a stainless steel or aluminum nonmagnetic metal or resin. Further, the permanent magnet support portion 10S is fixed by being press-fitted into the shaft 7 or the like.
  • FIG. 5 shows a configuration example in which the permanent magnet has a rectangular parallelepiped shape.
  • the permanent magnet 10C is magnetized in the direction of arrow Y in the figure, and is a two-pole permanent magnet.
  • the arrow Y is on a plane perpendicular to the rotation axis 7a of the rotor.
  • the permanent magnet 10C is composed of a neodymium bond magnet, a neodymium sintered magnet, a ferrite magnet, or the like, and is fixed by a permanent magnet support portion 10S.
  • the fixing may be an adhesive, or in the case of a bonded magnet, the permanent magnet support 10S and the permanent magnet support portion 10S may be integrally formed.
  • the permanent magnet support portion 10 ⁇ / b> S may be made of a stainless steel or aluminum nonmagnetic metal or resin. Further, the permanent magnet support portion 10S is fixed by being press-fitted into the shaft 7 or the like.
  • the magnetic flux density generated in the vicinity of the magnetic sensor is mainly composed of vector components on the plane perpendicular to the rotation axis 7a.
  • the axial component is very small.
  • the magnetic sensor 19 detects the direction of the magnetic flux density on a plane perpendicular to the rotation axis 7a, the direction of the magnetic flux density hardly changes even if there is eccentricity or vibration, so that the rotation angle can be detected with high accuracy. Has an effect.
  • the generated magnetic flux density is uniform, and as a result, the magnetic flux density near the magnetic sensor is also uniform, so that the accuracy of rotation angle detection can be improved.
  • a rectangular parallelepiped magnet is used as shown in FIG. 5
  • the generated magnetic flux density is uniform and the magnetic flux density near the magnetic sensor is uniform as in the cylindrical magnet of FIG.
  • a rectangular parallelepiped magnet can be easily produced, and in the case of a sintered magnet, the material yield can be improved as compared with a complicated shape.
  • the mounting area of the control board 17 can be increased by configuring the control board 17 and the sensor unit 300, which is a rotation angle detection unit, as separate boards.
  • the distance between the bearing 5B and the permanent magnet 10 which is the detected portion of the rotation angle sensor at the end of the shaft 7 is reduced, the deflection and eccentricity are reduced. As a result, the accuracy of rotation angle detection is improved, and the effect that the vibration noise of the motor can be reduced is obtained. Furthermore, an effect that noise interference from the inverter circuit and the control board 17 to the rotation angle sensor can be reduced is obtained.
  • connection member 21 that electrically connects the sensor unit 300 and the control board 17 penetrates the inverter circuit portion, there is an effect that the electric drive device can be reduced in size. Moreover, since the sensor part 300 and the control board 17 are directly electrically connected, there exists an effect that an electric drive device can be reduced in size. (4) Since the electrical connection between the sensor unit 300 and the control board 17 is configured to be positioned by the intermediate member 23, there is an effect that the required value of the accuracy of the parts can be relaxed. (5) The electrical connection between the sensor unit 300 and the control board 17 can be performed without using solder by using a press fit.
  • the interval between the connecting members 21 can be reduced, even if many connecting members 21 are arranged side by side, the width is reduced as compared with the case of connection by soldering, so that the electric drive device can be downsized.
  • the control board provided with the rotation sensor is located behind the circuit unit, the distance from the bearing to the rotation sensor is long.
  • the magnetic sensor 19 is arranged close to the bearing 5B, so the distance between the bearing 5B and the sensor permanent magnet 10 is short. For this reason, the vibration and eccentricity at the end of the shaft are reduced, and as a result, the vibration and eccentricity of the permanent magnet for the sensor are reduced, the accuracy of rotation angle detection is improved, and the vibration and noise of the motor are reduced. Is obtained.
  • the heat sink 16 is provided with the recess 24, and the distance between the magnetic sensor 19 mounted on the substrate 20 of the sensor unit 300 and the surface of the heat sink 16 is increased. ing.
  • the temperature of the heat sink 16 rises due to heat generated by the switching element SW.
  • the recess 24 is not provided and the distance between the heat sink 16 and the magnetic sensor 19 is very close, the heat of the heat sink 16 is transmitted to the magnetic sensor 19 and the temperature of the magnetic sensor 19 becomes very high, and the rotation angle It is conceivable that the detection accuracy is lowered or the magnetic sensor 19 is not operated due to an excessive temperature rise.
  • the distance between the heat sink 16 and the magnetic sensor 19 can be increased, so that heat is hardly transmitted, the temperature rise of the magnetic sensor 19 is reduced, and the accuracy of the rotation angle can be improved. effective.
  • FIG. 6 is an explanatory diagram of an electric power steering device for an automobile to which the electric drive device of the present invention is applied.
  • the driver steers a steering wheel (not shown), and the torque is transmitted to the shaft 401 via a steering shaft (not shown).
  • the torque detected by the torque sensor 402 is converted into an electric signal and transmitted to an ECU (Electronic Control Unit) 200 as a control unit through a first connector 13 through a cable (not shown).
  • the ECU 200 includes an inverter circuit for driving the control board and the motor as described above.
  • vehicle information such as the vehicle speed is converted into an electrical signal and transmitted to the ECU 200 via the second connector 14.
  • the ECU 200 calculates a necessary assist torque from the vehicle information such as the torque and the vehicle speed, and supplies a current to the permanent magnet type motor 100 through the inverter.
  • the motor 100 is arranged in a direction parallel to the moving direction of the rack shaft (indicated by the arrow X).
  • the power supply to the ECU 200 is sent from the battery or alternator via the power connector 15.
  • Torque generated by the permanent magnet type motor 100 is decelerated by a gear box 403 containing a belt (not shown) and a ball screw (not shown), and a rack shaft (not shown) inside the housing 404 is indicated by an arrow X. Generate thrust to move in the direction to assist the driver's steering force.
  • the tie rod 405 moves and the tire can be steered to turn the vehicle.
  • the driver can turn the vehicle with a small steering force.
  • the rack boot 406 is provided so that foreign matter does not enter the apparatus. Further, the motor 100 and the ECU 200 are integrated to form an electric drive device.
  • the motor is a permanent magnet type motor, but it goes without saying that the motor may be an induction motor, a synchronous reluctance motor, or a switched reluctance motor.
  • a configuration in which a magnetic detection element is arranged on the outer peripheral side of a ring-shaped magnet magnetized in multiple poles according to the number of poles of the motor is also conceivable.
  • the positional error of the magnetic detection element and the magnetization waveform distortion or eccentricity of the ring-shaped permanent magnet magnetized in multiple poles have a great influence on the angle error. Therefore, there is a great problem as a rotation sensor for an electric power steering apparatus.
  • the magnetic sensor which is the detection unit of the rotation angle sensor since the magnetic sensor which is the detection unit of the rotation angle sensor is provided at a position coaxial with the rotation axis, the influence of the positional deviation on the angle error is small.
  • the sensor permanent magnet as the detected portion is magnetized in two poles, the distortion of the magnetized waveform hardly occurs, and an effect that the angle error can be reduced can be obtained.
  • it becomes possible to function as a 1X rotation sensor by magnetization of two poles it is possible to support driving of a motor with an arbitrary number of poles. Therefore, the effect that the design of the rotation sensor can be made common even with motors having different numbers of poles is obtained. Furthermore, since it has two poles, there is an effect that the configuration is simple.
  • FIG. FIGS. 7A and 7B are explanatory diagrams of the sensor unit according to the second embodiment of the present invention in which two magnetic sensors are mounted.
  • FIG. 7A is a view seen from the front side
  • FIG. 7B is a view seen from the side.
  • magnetic sensors 19 ⁇ / b> A and 19 ⁇ / b> B are mounted on a substrate 20.
  • the second embodiment is different from FIG. 3 in that two magnetic sensors 19 ⁇ / b> A and 19 ⁇ / b> B are mounted on the front and back of the substrate 20.
  • the positions of the two magnetic sensors 19A and 19B are such that they are aligned on the rotation axis of the motor. With this arrangement, the two magnetic sensors 19A and 19B can detect magnetic flux density vectors in substantially the same direction when detecting the magnetic field generated by the sensor permanent magnet, which is the detected part. Both of the two magnetic sensors can improve the angle detection accuracy.
  • connection members 21a and 21b are fixed by press-fit or solder.
  • the connection members 21a and 21b on the opposite side of the substrate 20 when viewed from the support member 22 are electrically connected to the control substrate, and are also fixed by press-fit or solder.
  • the distance between the connecting members 21a and 21b can be narrowed, so that the sensor unit and the control board can be downsized. Furthermore, since the solder is not used, the manufacturing process is simplified.
  • connection members 21a and 21b are required than in FIG. That is, in FIG. 7, a total of 16 connection members are provided, including eight connection members 21a for the magnetic sensor 19A and eight connection members b for the magnetic sensor B. Accordingly, eight connecting member fixing holes 21ah for the magnetic sensor 19A and eight connecting member fixing holes 21bh for the magnetic sensor 19B are provided. If it is set as the structure connected by a press fit, even if it increases in this way, there exists an effect that the space
  • the board 20 is provided with three screw holes 25, and the holes 20 are used to fix the board 20 with a heat sink and screws.
  • the number of screw holes 25 is not limited to three, and the positions of the screw holes are not limited to the positions shown in FIG.
  • the motor is driven by another sensor element.
  • the effect of redundancy is that the rotation angle can be detected.
  • the two magnetic sensors can detect the magnetic flux density vector in almost the same direction because they are mounted on the front and back of the same substrate, both the two magnetic sensors can improve the accuracy of angle detection. it can.
  • the rotation angle of the rotor of the motor can be estimated from the angle information of the two magnetic sensors, the rotation angle can be detected with higher accuracy.
  • FIG. 8 is a schematic configuration diagram showing the overall configuration of the electric drive apparatus according to Embodiment 2 of the present invention.
  • the difference from FIG. 1 is that two magnetic sensors 19 ⁇ / b> A and 19 ⁇ / b> B are mounted on the sensor unit 300.
  • the connection member of the sensor unit 300 is divided into two connection members 21a and 21b corresponding to the magnetic sensor 19A and the magnetic sensor 19B as shown in FIG. 7, in FIG. It is omitted.
  • the heat sink 16 is provided with a recess 24, and the presence of the recess 24 increases the distance between the heat sink surface and the magnetic sensor 19A and the distance between the heat sink surface and the magnetic sensor 19B.
  • FIG. 9 is a schematic configuration diagram showing the overall configuration of the electric drive apparatus according to Embodiment 3 of the present invention, and is an example in which a connection member is integrated with an intermediate member.
  • a connecting member 21F which is a first connecting member for electrically connecting the sensor unit 300 and the intermediate member 23, and a second for electrically connecting the intermediate member 23 and the control board 17 are provided.
  • the connecting member 21 ⁇ / b> R which is the connecting member is configured to be integrated with the intermediate member 23.
  • the intermediate member 23 may be configured such that the bus bar of the inverter circuit portion is insert-molded with resin, and the connecting member 21F and the connecting member 21R are also integrally formed.
  • FIG. 10 is a diagram in which the components of the electric drive device of FIG. 9 are disassembled and arranged in the axial direction.
  • the connecting member 21F and the connecting member 21R are configured integrally with the intermediate member 23.
  • the sensor unit 300 includes the substrate 20 and the magnetic sensor 19 and has no connection member. Thus, since there is no connection member in the assembled state of the sensor unit 300, there is no protruding portion, the structure of the sensor unit 300 is simplified, and there is an effect that the handling is advantageous.
  • FIG. 11 is a schematic configuration diagram showing the overall configuration of the electric drive apparatus according to Embodiment 4 of the present invention, and is an explanatory diagram of a configuration in which a sensor unit 300 is provided on the side opposite to the motor 100 when viewed from the heat sink 16. .
  • a recess 24 is provided in the heat sink 16 made of a nonmagnetic metal such as aluminum, and the thickness of the heat sink 16 in the recess 24 is thinner than other portions.
  • the magnetic flux generated by the sensor permanent magnet 10 reaches the opposite side of the heat sink 16 from the motor 100 through the thin heat sink 16T. When the magnetic sensor 300 detects this magnetic flux, the rotation angle of the rotor of the motor 100 can be detected.
  • FIG. 12 is a schematic configuration diagram showing the overall configuration of an electric drive apparatus having two magnetic sensors, which is a modification of the fourth embodiment of the present invention.
  • the difference from FIG. 11 is that two magnetic sensors 19A and 19B are mounted on the sensor unit 300.
  • FIG. 7 As shown in FIG. 7, the connection member of the sensor unit 300 is divided into two connection members 21a and 21b corresponding to the magnetic sensor 19A and the magnetic sensor 19B. Therefore, it is omitted.
  • the two magnetic sensors 19A and 19B are mounted, there is an effect that the sensor function can be made redundant.
  • the two magnetic sensors 19A and 19B can detect magnetic flux density vectors in almost the same direction because they are mounted on the front and back of the same substrate, the angle detection accuracy of both magnetic sensors is improved. can do.
  • the rotation angle of the rotor of the motor can be estimated from the angle information of the two magnetic sensors 19A and 19B, there is an effect that the rotation angle can be detected with higher accuracy.
  • FIG. FIG. 13 is a schematic configuration diagram showing the overall configuration of the electric drive apparatus according to Embodiment 5 of the present invention, and is an explanatory diagram of a structure in which a magnetic shield 26 is provided between the sensor unit 300 and the heat sink 16.
  • the magnetic shield 26 is formed by processing a plate of a magnetic material such as iron by sheet metal processing or the like, and is screwed to the heat sink 16.
  • the magnetic shield 26 is provided between the sensor unit 300 and the heat sink 16 as described above, the magnetic flux generated by the switching element SW through which a large current flows and the bus bar of the inverter circuit is shielded, and the magnetic sensor 19 is hardly affected. Therefore, there is an effect that the accuracy of the rotation angle detection is improved.
  • FIG. 14 is a schematic configuration diagram showing the overall configuration of the electric drive apparatus according to Embodiment 6 of the present invention, and is an explanatory diagram of a configuration in which a rotation angle sensor is used as a resolver 500.
  • a resolver 500 is provided on the heat sink 16, and a resolver rotor (not shown in FIG. 14) is pressed into one end of the shaft 7 as a detected portion instead of a sensor permanent magnet. It is a point that was provided.
  • FIG. 15A is a view seen from the rear side
  • FIG. 15B is a view seen from the side.
  • the resolver rotor 501 configured by laminating electromagnetic steel plates has an outer shape that has a convex portion so that the gap permeance changes.
  • the number of projections is selected according to the number of poles of the motor.
  • FIG. 15 since five convex portions are provided, five gap permeance changes can be obtained in one rotation. Therefore, it operates as a 5 ⁇ resolver suitable for driving a motor with 5 pole pairs.
  • FIG. 15 shows an example of 5X, it is needless to say that 1X may be used, and it may be designed according to the number of pole pairs of the motor.
  • a resolver stator core 502 is provided outside the resolver rotor 501.
  • a coil 503 is wound around the resolver stator core 502, and the coil 503 includes a one-phase excitation winding and a two-phase output winding. Although omitted in FIG. 15, the coil 503 is protected by a resin cover 505 or the like.
  • a screw hole 504 is provided to fix the resolver stator core 502 to the heat sink 16. Electrical connection with the control board 17 is made by the connection member 21 and is fixed by press fitting or soldering.
  • the connection member 21 is supported by a resin support member 22.
  • the resolver stator core 502, the coil 503, the cover 505, the connection member 21, and the support member 22 constitute a detection unit.
  • the resolver 500 includes an iron core 502, a coil 503, a connection member 21, a support member 22, and a cover 505.
  • the resolver 500 has a simple structure as compared with a magnetic sensor using a semiconductor and has an effect of improving vibration resistance. . Further, since the heat resistant temperature is higher than that of the magnetic sensor, there is an effect that the operating temperature range of the electric drive device can be expanded. Further, by adopting a structure in which the heat sink 16 is provided with a recess, an arrangement in which a part of the resolver is embedded in the heat sink 16 has an effect that the size of the electric drive device in the axial direction can be shortened.
  • the resolver 500 is arranged so that the coil 503 surrounds the entire periphery of the resolver rotor 501, the influence is reduced even if the resolver rotor 501 is eccentric.
  • a configuration in which a magnetic detection element is arranged on the outer peripheral side of a ring-shaped magnet magnetized in accordance with the number of poles of the motor is also conceivable. It is necessary to arrange a large number of magnetic detection elements around the shape of the magnet, leading to an increase in cost and an increase in the size of the sensor.
  • the electric drive device of the present invention is particularly suitable for use in an electric power steering device for a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

モータのシャフト(7)の端部に回転角度センサの被検出部(10)を設け、シャフトの回転軸と同軸上の位置に回転角度センサの検出部であるセンサ部(300)を設け、制御部(200)には、モータを駆動するための駆動素子SWを有するインバータ回路部と、センサ部とは別体で、インバータ回路部の出力を制御する制御基板(17)が設けられ、センサ部と制御基板は電気的に接続され、制御基板はシャフトの回転軸に垂直な面に沿った配置とした電動駆動装置。

Description

電動駆動装置
 この発明は、モータと、このモータの駆動を制御する制御部(駆動装置部)が一体に構成された電動駆動装置に関するものであり、特に車両用の電動パワーステアリング装置に用いて好適な電動駆動装置に関するものである。
 従来から電動パワーステアリング装置用の電動駆動装置の構造が考案されており、回転角度センサの配置や構造として、例えば下記の特許文献がある。
特開2011-41355号公報 特開2011-229228号公報
 しかしながら、特許文献1の構造ではシャフトが回路部を挿通しているため、軸受けからセンサの永久磁石までの距離が長く、永久磁石の振れが大きくなる傾向がある。振れが大きいと、半導体磁気センサ部の磁界が所望の状態から外れてしまうため、回転角度検出の精度が低下し、角度誤差が大きくなり、結果としてモータの振動・騒音が大きくなるという課題があった。また、特許文献2の構造では、回転角度センサがパワーモジュールなどのインバータ回路部からのノイズや制御基板からのノイズの影響を受けやすいという課題があった。
 また、特許文献1と特許文献2とも制御基板にセンサが実装されているため制御基板の実装面積がその分小さくなるという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、シャフトの振れを小さくし、回転角度検出の精度を向上すると共に、さらには、インバータ回路や制御基板からのノイズ干渉を小さくするようにした電動駆動装置を提供することを目的とする。
 この発明に係る電動駆動装置は、モータと、このモータの出力軸側とは反対側に配置された駆動装置部である制御部とを備えた電動駆動装置であって、前記モータの出力軸側とは反対側のシャフトの端部に回転角度センサの被検出部を設け、前記シャフトの回転軸と同軸上の位置に回転角度センサの検出部であるセンサ部を設け、前記制御部には、ヒートシンクに取り付けられ前記モータを駆動するための駆動素子を有するインバータ回路部と、前記センサ部とは別体であって前記インバータ回路部の出力を制御する制御基板が設けられ、前記センサ部と前記制御基板は電気的に接続され、且つ、前記制御基板の配置は前記モータのシャフトの回転軸に垂直な面に沿った配置としたものである。
 この発明の電動駆動装置によれば、制御基板と回転角度のセンサ部を別々に構成することで制御基板の実装面積を拡大できる。また、軸受けとシャフト端に設けられた回転角度センサの被検出部である永久磁石との間の距離が小さくなるため、振れが小さくなり、その結果、回転角度検出の精度が向上し、モータの振動騒音を低減できるという効果が得られる。
 また、インバータ回路や制御基板からの回転角度センサへのノイズ干渉を小さくすることができると共に、制御基板の配置はモータの回転軸に垂直な面に沿う配置としているので、制御基板を回転軸に平行な平面に沿う配置(縦方向配置)に比べて、制御部であるECUの軸方長さを短縮できるという効果がある。
  上述した、またその他の、この発明の目的、特徴、効果は、以下の実施の形態における詳細な説明および図面の記載からより明らかとなるであろう。
この発明の実施の形態1における電動駆動装置の全体構成を示す概略構成図である。 図1の電動駆動装置の各部品を軸方向に並べた構成部品の説明図である。 この発明の実施の形態1の電動駆動装置におけるセンサ部の説明図である。 この発明の実施の形態1の電動駆動装置におけるセンサ用永久磁石の一例を示す説明図である。 この発明の実施の形態1の電動駆動装置におけるセンサ用永久磁石の他の一例を示す説明図である。 この発明の電動駆動装置を適用した電動パワーステアリング装置の説明図である。 この発明の実施の形態2におけるセンサ部の説明図である。 この発明の実施の形態2における電動駆動装置の全体構成を示す概略構成図である。 この発明の実施の形態3における電動駆動装置の全体構成を示す概略構成図である。 図9の電動駆動装置の各部品を軸方向に並べた構成部品の説明図である。 この発明の実施の形態4における電動駆動装置の全体構成を示す概略構成図である。 この発明の実施の形態4の変形例で、磁気センサを2個搭載した電動駆動装置の全体構成を示す概略構成図である。 この発明の実施の形態5における電動駆動装置の全体構成を示す概略構成図である。 この発明の実施の形態6における電動駆動装置の全体構成を示す概略構成図である。 この発明の実施の形態6の電動駆動装置におけるレゾルバの説明図である。
 以下、この発明の電動駆動装置の実施の形態につき、図面を用いて説明する。なお、各図中、同一符号は、同一または相当部分を示すものとする。
実施の形態1.
 図1は、この発明の実施の形態1における電動駆動装置の全体構成を示す概略構成図である。
図1において、電動駆動装置は永久磁石型モータ100と制御部であるECU(Electronic Control Unit)が一体となった構造となっている。
まず、永久磁石型モータ100について説明する。
永久磁石型モータ(以下、単にモータともいう。)100は、電磁鋼板を積層して構成される固定子鉄心1と固定子鉄心1に巻き回された電機子巻線2と固定子鉄心1を固定するフレーム3を有する。フレーム3はモータの前面部に設けられたハウジング4とボルト6によって固定されている。ハウジング4には軸受け5Aが設けられ、軸受け5Aは軸受け5Bとともにシャフト7を回転自在に支持する。軸受け5Bはフレーム3と一体あるいは別体に設けられた壁部8に支持されている。
 シャフト7の一方の先端部すなわち出力軸側にはプーリー9が圧入されていて、プーリー9は後述する電動パワーステアリング装置のベルトに駆動力を伝達する働きをする。
シャフト7の他方の先端部には、回転角度センサの被検出部であるセンサ用永久磁石10が設けられている。シャフト7には回転子鉄心11が圧入されていて、回転子鉄心11には永久磁石12が固定されている。なお、図1では永久磁石12は回転子鉄心11の表面に固定されている例を示しているが、回転子鉄心11の中に埋め込まれた構造としてもよい。
 次に、制御部であるECU(Electronic Control Unit)200について説明する。
ECU200には、トルクセンサからの信号を受ける第1のコネクタ13と、車速などの自動車の情報を受け取る第2のコネクタ14と、電源供給用の電源コネクタ15が設けられている。さらに、ECU200にはモータを駆動するためのインバータ回路があり、インバータ回路はMOS-FET等のスイッチング素子SWを有する。このスイッチング素子SWは例えば、ベアチップをDBC(Direct Bonded Copper)基板に実装した構成や、ベアチップを樹脂でモールドしたモジュールとした構成などが考えられる。
スイッチング素子SWはモータ駆動のための電流が流れるため発熱する。そこで、スイッチング素子SWは接着剤や絶縁シートなどを介してヒートシンク16と接触させ放熱する構造となっている。
 インバータ回路にはスイッチング素子SWの他に、平滑コンデンサやノイズ除去用コイル、電源リレーやそれらを電気的に接続するバスバーなどがあるが、図1では省略している。バスバーは樹脂と一体成形され中間部材23を形成している。また、中間部材23に隣接して、制御基板17が設けられている。この制御基板17は第1のコネクタ13、第2のコネクタ14から受け取った情報に基づき、モータを適切に駆動するためにスイッチング素子SWに制御信号を送る。
 制御信号は制御基板17とスイッチング素子SW間を電気的に接続する接続部材(図示せず)によって伝達される。この接続部材はワイヤボンディングやプレスフィット、はんだなどで固定される。これらのインバータ回路と制御基板17はケース18によって覆われている。ケース18は樹脂であってもよいし、アルミ等の金属であっても、樹脂とアルミ等金属を組み合わせた構成でもよい。
 制御基板17の配置はモータのシャフト7の回転軸に垂直な面に沿う配置としている。制御基板17をこのような配置に構成することによって、制御基板17をシャフト7の回転軸に平行な平面に沿う配置(縦方向配置)とした場合に比べて、ECU200の軸方長さを短縮できるという効果がある。なお、制御基板17は必ずしも回転軸に垂直な面に沿っていなくても、回転軸に平行な平面に沿っていなければ軸方長さを短縮できる効果が得られる。
 ヒートシンク16のモータ100に近い側にはセンサ部300が配置されている。センサ部300は磁気センサ19と基板20と接続部材21と支持部材22を有し、磁気センサ19が実装された基板20がヒートシンク16にネジ(図示せず)で固定されている。
スイッチング素子SWの発熱の影響で温度変化が大きいヒートシンク16への基板20の固定はネジ止めとしたので、接着剤に比べて温度上昇やヒートサイクルに強いという効果がある。
 磁気センサ19はシャフト7の回転軸と同軸上で、かつセンサ用永久磁石10と相対応する位置に配置されていて、センサ用永久磁石10の発生する磁界を検出し、その向きを知ることでモータの回転子の回転角度を検出する。
ECU200はこの回転角度に応じて適切な駆動電流をモータ100に供給する。
 また、接続部材21は支持部材22によって支持され、センサ部300の基板20と制御基板17とを電気的に接続している。この接続はプレスフィットでもよいし、はんだでもよい。なお、接続部材21がヒートシンク16と中間部材23を貫通する必要があるため、ヒートシンク16と中間部材23には接続部材21が通る穴部(図示しない)が設けられている。さらに、図示はしないが、中間部材23は接続部材21を位置決めできるようなガイドが設けられた構成となっている。このような構成により、センサ部300と制御基板17の電気的接続がスムーズに行うことができ、生産性が向上する。
 図1ではヒートシンク16に凹部24を設けており、センサ部300の基板20に実装された磁気センサ19とヒートシンク16の表面との間の距離を大きくしている。ヒートシンク16はネジや焼き嵌めなどによってモータ100のフレーム3に固定される。
このようにモータ100のフレーム3に固定されることによって、ヒートシンク16の熱をモータ100のフレーム3に伝達させることができる。
 図2は図1の電動駆動装置の構成を理解するのを助けるために、各部品を軸方向に分解して並べた図である。
 センサ部300は、基板20と磁気センサ19と支持部材22と接続部材21が一体となって組み立てられている。センサ部300の接続部材21はヒートシンク16と中間部材23を貫通して制御基板17に電気的に接続される。接続法としてはプレスフィットやはんだがある。制御基板17の配置はモータ100の回転軸に垂直な面に沿う配置としている。このような構成であれば、センサ部300と電気的に接続される接続部材21が延在する方向が制御基板17と垂直になるため、接続部材21をプレスフィットやはんだで固定する際、組み付けが容易であるという効果がある。
ヒートシンク16にはスイッチング素子SWが接着剤や絶縁シートを介して固定されている。第1のコネクタ13と第2のコネクタ14と電源コネクタ15を具備したECU200のケース18は、ヒートシンク16と接着剤やネジによって固定される。ヒートシンク16は永久磁石モータ100のフレーム3と焼き嵌めやボルトによって固定される。
 図3は、この発明の実施の形態1の電動駆動装置におけるセンサ部(検出部)の説明図であり、(a)は前側から見た図、(b)は横側から見た図である。
基板20に磁気センサ19が実装されており、基板20には接続部材21と一体となった支持部材22が設けられ、接続部材21と基板20はプレスフィットやはんだで固定されている。なお、この磁気センサ19は、磁気抵抗効果素子(MR素子)、異方性磁気抵抗層素子(Anisotropic Magneto-resistance、AMR素子)、巨大磁気抵抗効果素子(Giant Magneto-resistance、GMR素子)、トンネル磁気抵抗素子(Tunneling Magneto-resistance、TMR素子)などで構成すればよい。
 支持部材22から見て基板20とは反対側の接続部材21は制御基板17と電気的に接続されるが、これもプレスフィットやはんだによって固定される。プレスフィットで固定される場合には接続部材21同士の間隔を狭くとることができるため、センサ部300と制御基板17の小型化が実現できる。さらに、はんだを使わないため製造工程が簡略化されるという効果もある。
基板20にはネジ穴25が3つ設けられていて、この穴25を利用して、ヒートシンク16とネジによって固定される。なお、ネジ穴25の数は3つに限らないし、ネジ穴25の位置も図3の位置に限らない。図3のように制御基板17と回転角度のセンサ部300を別々の基板で構成することで、制御基板17に磁気センサ19を実装するのと比べて制御基板の実装面積を拡大できるという効果もある。
 図4と図5はセンサ用永久磁石(被検出部)10の部分の斜視図である。
図4は円筒形状を有する構成例を示す。永久磁石10Mは図の矢印Yの方向に着磁されており、2極の永久磁石となっている。なお、この矢印Yは回転子の回転軸7aに垂直な平面上にある。永久磁石10Mは、ネオジのボンド磁石やネオジの焼結磁石、フェライト磁石などで構成され、永久磁石支持部10Sによって固定されている。
固定は接着剤でもよいし、ボンド磁石の場合は永久磁石支持部10Sと一体成形として互いを固定する構成にしてもよい。永久磁石10Mが発生する磁界への影響を小さくするため、永久磁石支持部10Sは、ステンレス系やアルミニウム系の非磁性金属や樹脂で構成するとよい。さらに永久磁石支持部10Sはシャフト7に圧入するなどして固定されている。
 図5は永久磁石が直方体形状を有する構成例を示す。永久磁石10Cは図の矢印Yの方向に着磁されており、2極の永久磁石となっている。なお、この矢印Yは回転子の回転軸7aに垂直な平面上にある。永久磁石10Cは、ネオジのボンド磁石やネオジの焼結磁石、フェライト磁石などで構成され、永久磁石支持部10Sによって固定されている。固定は接着剤でもよいし、ボンド磁石の場合は永久磁石支持部10Sと一体成形として互いを固定する構成にしてもよい。永久磁石10Cが発生する磁界への影響を小さくするため、永久磁石支持部10Sはステンレス系やアルミニウム系の非磁性金属や樹脂で構成するとよい。さらに永久磁石支持部10Sはシャフト7に圧入するなどして固定されている。
 この永久磁石10M、10Cは、着磁方向が回転軸7aに垂直な平面上にあるため、磁気センサ付近に発生する磁束密度は回転軸7aに垂直な平面上のベクトル成分が主成分となり、回転軸方向の成分は非常に小さくなる。また、磁気センサ19は回転軸7aに垂直な平面上の磁束密度の向きを検出するため、偏心や振れがあっても磁束密度の向きはほとんど変化しないため、高精度に回転角度検出ができるという効果を有する。
 図4のように円筒形状磁石を用いたので発生する磁束密度が均一となり、その結果、磁気センサ付近の磁束密度も均一となるため回転角度検出の精度を向上することができるという効果がある。
 また、図5のように直方体形状磁石を用いた場合には、図4の円筒形状磁石と同様に、発生する磁束密度が均一となり、磁気センサ付近の磁束密度も均一となるため回転角度検出の精度を向上することができるという効果に加えて、直方体磁石は作成が容易で、焼結磁石の場合は複雑な形状と比べて材料歩留まりを向上できるという効果も得られる。
 以上のように、この発明の実施の形態1の電動駆動装置によれば、以下のような優れた効果が得られるものである。
(1)制御基板17と回転角度の検出部であるセンサ部300を別々の基板で構成することで制御基板17の実装面積を拡大できる。
(2)軸受け5Bとシャフト7端の回転角度センサの被検出部である永久磁石10との間の距離が小さくなるため振れ、偏心が小さくなる。その結果、回転角度検出の精度が向上し、モータの振動騒音を低減できるという効果が得られる。さらには、インバータ回路や制御基板17からの回転角度センサへのノイズ干渉を小さくすることができるという効果が得られる。
(3)センサ部300と制御基板17を電気的に接続する接続部材21がインバータ回路部分を貫通しているため、電動駆動装置を小型化できるという効果がある。
また、センサ部300と制御基板17は直接電気的に接続されているため、電動駆動装置を小型化できるという効果がある。
(4)センサ部300と制御基板17の電気的接続は、中間部材23によって位置決めされる構成となっているため、部品の精度の要求値を緩和することができるという効果がある。 
(5)センサ部300と制御基板17の電気的接続はプレスフィットを用いることで、はんだを使わずに接続可能となる。接続部材21同士の間隔が小さくできるため、多くの接続部材21を並べて配置してもはんだによる接続の場合と比べて幅が小さくなるため電動駆動装置の小型化が可能となる。
(6)従来の特許文献1のものでは、回転センサが備えられた制御基板が回路部よりも後方に位置しているので軸受けから回転センサまでの距離が長いのに対し、本実施の形態1の構成では磁気センサ19が軸受け5Bに近い配置となっているため、軸受け5Bとセンサ用永久磁石10の距離が近い。このため、シャフトの端部での振れ、偏心が小さくなるため、結果としてセンサ用永久磁石の振れ、偏心が小さくなり、回転角度検出の精度が向上し、モータの振動・騒音が小さくなるという効果が得られる。
(7)更に、図1の実施の形態1においては、ヒートシンク16に凹部24を設けておりセンサ部300の基板20に実装された磁気センサ19とヒートシンク16の表面との間の距離を大きくしている。モータ駆動時にはヒートシンク16はスイッチング素子SWの発熱により温度が上昇する。もし、凹部24が設けられておらずヒートシンク16と磁気センサ19の距離が非常に近いと、ヒートシンク16の熱が磁気センサ19に伝わり、磁気センサ19の温度が非常に高くなってしまい、回転角度検出の精度が低下する場合や、過度の温度上昇により磁気センサ19が動作しなくなる場合も考えられる。
しかしながら、ヒートシンクに凹部24を設けることで、ヒートシンク16と磁気センサ19の距離を大きくすることができるので熱が伝わりにくくなり、磁気センサ19の温度上昇を低減し、回転角度の精度を向上できるという効果がある。
 図6はこの発明の電動駆動装置を適用した自動車の電動パワーステアリング装置の説明図である。図6において、運転者はステアリングホイール(図示しない)を操舵し、そのトルクがステアリングシャフト(図示しない)を介してシャフト401に伝達される。このときトルクセンサ402が検出したトルクは電気信号に変換されケーブル(図示しない)を通じて第1のコネクタ13を介して制御部であるECU(Electronic Control Unit)200に伝達される。ECU200は、前述したように制御基板とモータを駆動するためのインバータ回路を備えている。一方、車速などの自動車の情報が電気信号に変換され、第2のコネクタ14を介してECU200に伝達される。ECU200はこのトルクと車速などの自動車の情報から、必要なアシストトルクを演算し、インバータを通じて永久磁石型モータ100に電流を供給する。モータ100はラック軸の移動方向(矢印Xで示す)に平行な向きに配置されている。また、ECU200への電源供給はバッテリやオルタネータから電源コネクタ15を介して送られる。永久磁石型モータ100が発生したトルクはベルト(図示せず)とボールネジ(図示せず)が内蔵されたギヤボックス403によって減速されハウジング404の内部にあるラック軸(図示せず)を矢印Xの方向に動かす推力を発生させ、運転者の操舵力をアシストする。これにより、タイロッド405が動き、タイヤが転舵して車両を旋回させることができる。永久磁石型モータ100のトルクによってアシストされ運転者は少ない操舵力で車両を旋回させることができる。なお、ラックブーツ406は異物が装置内に侵入しないように設けられている。また、モータ100とECU200は一体となっており、電動駆動装置を構成している。
 このような電動パワーステアリング装置においては、モータが発生する振動・騒音が運転者に伝わるため、振動騒音は小さい方が望ましい。
 本実施の形態1の電動駆動装置を自動車の電動パワーステアリング装置に用いると装置を小型化できるという効果が得られる。また、モータの回転角度検出の精度が向上するため、振動・騒音が小さくなるという効果も得られる。
なお、本実施の形態1ではモータは永久磁石型モータとしているが、モータは誘導電動機でも、シンクロナスリラクタンスモータでも、スイッチドリラクタンスモータでも良いことは言うまでもない。
 なお、本実施の形態1で述べた回転角度センサの構成以外に、モータの極数に応じて多極に着磁されたリング形状の磁石の外周側に磁気検出素子を配置した構成も考えられる。
しかしながら、このような構成では、磁気検出素子の位置精度や多極に着磁されたリング形状永久磁石の着磁波形歪みや偏心などが角度誤差に与える影響が非常に大きい。
従って、電動パワーステアリング装置用の回転センサとしては課題が大きい。一方、本実施の形態1の構成では、回転軸と同軸上の位置に回転角度センサの検出部である磁気センサを設けたため、位置ずれの角度誤差への影響が小さい。また、被検出部であるセンサ用永久磁石は2極に着磁されているため、着磁波形の歪みが発生しにくく角度誤差を小さくできるという効果が得られる。さらに、2極の着磁で1Xの回転センサとして機能することが可能となるため、任意の極数のモータの駆動に対応できる。したがって、異なる極数のモータでも回転センサの設計を共通化できるという効果が得られる。さらに2極であるため構成が単純であるという効果もある。
実施の形態2.
 図7は、磁気センサを2個搭載したこの発明の実施の形態2におけるセンサ部の説明図であり、(a)は前側から見た図、(b)は横側から見た図である。
図7において、基板20に磁気センサ19A、19Bが実装されている。この実施の形態2において図3と異なるのは、磁気センサが基板20の表と裏に1つずつ計2個の磁気センサ19Aと磁気センサ19Bが実装されている点である。また、2個の磁気センサ19A、19Bの位置は、モータの回転軸上に並ぶような位置となっている。
このような配置とすることで、被検出部であるセンサ用永久磁石が発生する磁界を検出する際、2個の磁気センサ19A、19Bがほぼ同じ向きの磁束密度ベクトルを検出することができるため、2個の磁気センサとも角度検出の精度を向上することができる。
 基板20には接続部材21a、21bと一体となった支持部材22が設けられ、接続部材21a、21bと基板20はプレスフィットやはんだで固定されている。支持部材22から見て基板20とは反対側の接続部材21a、21bは制御基板と電気的に接続されるが、これもプレスフィットやはんだによって固定される。プレスフィットで固定される場合には接続部材21a同士、および21b同士の間隔を狭くとることができるため、センサ部と制御基板の小型化が実現できる。さらに、はんだを使わないため製造工程が簡略化されるという効果もある。
 特に図7の実施の形態2では、磁気センサを2個搭載しているため、接続部材21a、21bが図3より多く必要となる。即ち、図7では磁気センサ19A用の接続部材21aが8本、磁気センサB用の接続部材bが8本の計16本の接続部材が設けられている。それに伴い、磁気センサ19A用の接続部材固定用穴21ahが8個、磁気センサ19B用の接続部材固定用穴21bhも8個設けられている。プレスフィットで接続する構成としていれば、このように接続部材が多くなっても、接続部材同士の間隔を狭くでき、センサ部を小型化できるという効果がある。
 なお、基板20にはネジ穴25が3つ設けられていて、この穴25を利用して、ヒートシンクとネジによって固定される。なお、ネジ穴25の数は3つに限らないし、ネジ穴の位置も図7の位置に限らない。
 以上のように、この発明の実施の形態2によれば、基板に2個の磁気センサを搭載したので、二重系でセンサ素子の一方が検出不能となっても,他のセンサ素子でモータの回転角度が検出できるという冗長性の効果が得られる。さらに、同一の基板上の表裏に搭載しているため2個の磁気センサがほぼ同じ向きの磁束密度ベクトルを検出することができるため、2個の磁気センサとも角度検出の精度を向上することができる。さらに、2個の磁気センサの角度情報からモータの回転子の回転角度を推定できるため、より高精度に回転角度を検出できるという効果がある。
 図8はこの発明の実施の形態2における電動駆動装置の全体構成を示す概略構成図である。図1との相違点は、センサ部300に磁気センサ19Aと19Bの2つの磁気センサが搭載されている点である。なお、センサ部300の接続部材は図7のように2つの磁気センサ19Aと磁気センサ19Bに対応した接続部材21aと接続部材21bとに分けた構成となっているが、図8では簡単のため省略して示している。
ヒートシンク16には凹部24が設けられており、この凹部24があることによってヒートシンク表面と磁気センサ19Aとの距離、ヒートシンク表面と磁気センサ19Bとの距離が大きくできる。その結果、ヒートシンク16の熱が磁気センサ19Aと磁気センサ19Bに伝わりにくくなることで、磁気センサ19Aと磁気センサ19Bの温度上昇を抑制することができる。その結果、回転角度の精度を向上できるという効果が得られる。
実施の形態3.
 図9は、この発明の実施の形態3における電動駆動装置の全体構成を示す概略構成図であり、中間部材に接続部材が一体となって構成された例である。
 図1との相違点としては、センサ部300と中間部材23間を電気的に接続する第1の接続部材である接続部材21Fと、中間部材23と制御基板17を電気的に接続する第2の接続部材である接続部材21Rが中間部材23と一体になるように構成されている点である。例えば、中間部材23はインバータ回路部のバスバーを樹脂でインサート成形した構成とし、接続部材21Fと接続部材21Rも一体に成形された構成とすればよい。
 図10は、図9の電動駆動装置の各構成部品を軸方向に分解して並べた図である。
接続部材21Fと接続部材21Rは中間部材23と一体となって構成されている。センサ部300は基板20と磁気センサ19を有し、接続部材がない。このように、センサ部300が組み立てられた状態では接続部材がないため、突出した部分がなく、センサ部300の構造が単純となり、ハンドリング上も有利であるという効果がある。
実施の形態4.
 図11は、この発明の実施の形態4における電動駆動装置の全体構成を示す概略構成図であり、ヒートシンク16から見てモータ100とは反対側にセンサ部300を設けた構成の説明図である。
 アルミニウム等の非磁性の金属で構成されたヒートシンク16に凹部24を設け、この凹部24のヒートシンク16の肉厚は他の部位より薄肉となっている。このヒートシンク薄肉部16Tを介して、センサ用永久磁石10の発生する磁束がヒートシンク16のモータ100とは反対側に到達する。この磁束を磁気センサ300が検出することによりモータ100の回転子の回転角度を検出することができる。
 このような構成とすることで、センサ部300と中間部材23および制御基板17との距離が小さくなるため接続部材21F、21Rの長さを短くでき、センサ部300の軽量化、材料のコスト低減ができるという効果がある。また、接続部材を貫通する穴をヒートシンク16に設けなくてよいため、ヒートシンク16の加工コストを低減できるという効果がある。なお、凹部24はモータ100側としたが、モータ100とは反対側に凹部を設けた構造としてもよい。
 図12はこの発明の実施の形態4の変形例で、磁気センサを2個搭載した電動駆動装置の全体構成を示す概略構成図である。
図11との相違点は、センサ部300に磁気センサ19Aと磁気センサ19Bの2つの磁気センサが搭載されている点である。なお、センサ部300の接続部材は図7のように、2つの磁気センサ19Aと磁気センサ19Bに対応した接続部材21aと接続部材21bとに分けた構成となっているが、図12では簡単のため省略して示している。
 以上のようにこの実施の形態によれば、2個の磁気センサ19A、19Bを搭載したのでセンサの機能に冗長性を持たせることができるという効果がある。さらに、同一の基板上の表裏に搭載しているため2個の磁気センサ19A、19Bがほぼ同じ向きの磁束密度ベクトルを検出することができるため、2個の磁気センサとも角度検出の精度を向上することができる。さらに、2個の磁気センサ19A、19Bの角度情報からモータの回転子の回転角度を推定できるため、より高精度に回転角度を検出できるという効果がある。
実施の形態5.
 図13はこの発明の実施の形態5における電動駆動装置の全体構成を示す概略構成図であり、センサ部300とヒートシンク16との間に磁気シールド26を設けた構造の説明図である。磁気シールド26は鉄などの磁性材料の板を板金加工などで加工し、ヒートシンク16にネジ止めされる。このようにセンサ部300とヒートシンク16との間に磁気シールド26を設けると、大電流が流れるスイッチング素子SWやインバータ回路のバスバーなどが発生する磁束が遮蔽され、磁気センサ19にほとんど影響が及ばないため、回転角度検出の精度が向上するという効果がある。
実施の形態6.
 図14はこの発明の実施の形態6における電動駆動装置の全体構成を示す概略構成図であり、回転角度センサをレゾルバ500とした構成の説明図である。
図1との相違点はレゾルバ500をヒートシンク16に設けた点と、シャフト7の一方の端部に被検出部としてセンサ用永久磁石ではなく、レゾルバ回転子(図14では図示しない)を圧入して設けた点である。
 この実施の形態6におけるレゾルバの構造を図15に示す。図15(a)は後側から見た図、図15(b)は横側から見た図を示す。図15において、電磁鋼板を積層して構成したレゾルバ回転子501はギャップパーミアンスが変化するように外形形状は凸部を有する形状としている。この凸部の数はモータの極数によって選定する。図15では5つの凸部を設けているので、1回転で5回のギャップパーミアンス変化が得られる。従って、極対数5のモータを駆動するのに適した軸倍角が5Xのレゾルバとして動作する。
なお、図15では5Xの例を示したが、1Xでもよいことは言うまでもない、また、モータの極対数に応じて設計すればよい。
 レゾルバ回転子501の外側にレゾルバ固定子鉄心502が設けられている。このレゾルバ固定子鉄心502にはコイル503が巻き回されていて、コイル503は1相の励磁巻線と2相の出力巻線から構成されている。図15では省略しているが、樹脂製のカバー505などでコイル503は保護される。また、ヒートシンク16にレゾルバ固定子鉄心502を固定するためにネジ穴504を設けている。制御基板17との電気的接続は接続部材21によって行われ、プレスフィットやはんだによって固定される。接続部材21は樹脂製の支持部材22によって支えられている。レゾルバ固定子鉄心502、コイル503、カバー505、接続部材21、支持部材22とで検出部を構成している。
 レゾルバ500は鉄心502とコイル503と接続部材21と支持部材22とカバー505で構成されており、半導体を用いた磁気センサと比べて構造が単純であり、耐振動性が向上するという効果がある。また磁気センサと比べて耐熱温度が高くなるため電動駆動装置の使用温度範囲を広げることができるという効果がある。また、ヒートシンク16に凹部を設けた構造とすることによって、レゾルバの一部をヒートシンク16に埋め込む配置とすることで、電動駆動装置の軸方向のサイズを短縮できるという効果がある。
 さらに、レゾルバ500はコイル503がレゾルバ回転子501の周辺を全周囲うように配置されているため、レゾルバ回転子501が偏心してもその影響が小さくなる構成となっている。一方、モータの極数に応じて多極に着磁されたリング形状の磁石の外周側に磁気検出素子を配置する構成も考えられるが、このような構成で偏心の影響を小さくするにはリング形状の磁石の周辺に磁気検出素子を多数個配置する必要がありコストアップやセンサの大型化につながる。
 この発明の電動駆動装置は、特に、車両用の電動パワーステアリング装置に用いて好適なものである。
1:固定子鉄心、2:電機子巻線、3:フレーム、5A、5B:軸受け、
7:シャフト、7a:回転軸、8:壁部、9:プーリー、10、10M、
10C:センサ用永久磁石、10S:永久磁石支持部、
13:第1のコネクタ、14:第2のコネクタ、15:電源コネクタ、
16:ヒートシンク、16T:ヒートシンク薄肉部、17:制御基板、
18:ケース、19、19A、19B:磁気センサ、20:基板、
21、21a、21b、21F、21R:接続部材、22:支持部材、
23:中間部材、24:凹部、25:ネジ穴、26:磁気シールド、
SW:スイッチング素子、100:永久磁石型モータ、
200:制御部(ECU)、300:センサ部、401:シャフト、
402:トルクセンサ、403:ギヤボックス、404:ハウジング、
405:タイロッド、406:ラックブーツ、500:レゾルバ、
501:レゾルバ回転子、502:レゾルバ固定子鉄心、
503:コイル、504:ネジ穴、505:カバー

Claims (14)

  1.  モータと、このモータの出力軸側とは反対側に配置された駆動装置部である制御部とを備えた電動駆動装置であって、
    前記モータの出力軸側とは反対側のシャフトの端部に回転角度センサの被検出部を設け、
    前記シャフトの回転軸と同軸上の位置に回転角度センサの検出部であるセンサ部を設け、
    前記制御部には、ヒートシンクに取り付けられ前記モータを駆動するための駆動素子を有するインバータ回路部と、前記センサ部とは別体であって前記インバータ回路部の出力を制御する制御基板が設けられ、
    前記センサ部と前記制御基板は電気的に接続され、且つ、前記制御基板の配置は前記モータのシャフトの回転軸に垂直な面に沿った配置としたことを特徴とする電動駆動装置。
  2.  前記センサ部は基板を有し、前記基板には磁気センサが実装され、
    前記基板には前記制御基板と前記センサ部を電気的に接続する接続部材及び該接続部材と一体となった支持部材が設けられ、前記接続部材は前記インバータ回路部分を貫通していることを特徴とする請求項1に記載の電動駆動装置。
  3.  前記センサ部は前記インバータ回路部のヒートシンクに設けられ、該ヒートシンクから見てモータ側に配置されていることを特徴とする請求項1に記載の電動駆動装置。
  4.  前記センサ部と前記制御基板は直接電気的に接続されていることを特徴とする請求項1に記載の電動駆動装置。
  5.  前記ヒートシンクと前記制御基板の間に中間部材が設けられ、前記センサ部と前記制御基板の間の電気的接続は前記中間部材によって位置決めされることを特徴とする請求項1に記載の電動駆動装置。
  6.  前記中間部材には、前記センサ部と電気的に接続される第1の接続部材と、前記制御基板と電気的に接続される第2の接続部材が一体となるように構成されていることを特徴とする請求項5に記載の電動駆動装置。
  7.  前記センサ部と前記制御基板の間の電気的接続にはプレスフィットが用いられていることを特徴とする請求項1に記載の電動駆動装置。
  8.  前記被検出部は永久磁石を有し、前記センサ部は磁気センサを有し、前記磁気センサは前記永久磁石に対向する位置に配置されていることを特徴とする請求項1に記載の電動駆動装置。
  9.  前記永久磁石は2極に着磁されており,着磁方向は前記シャフトの回転軸に垂直な平面上にあることを特徴とする請求項8に記載の電動駆動装置。
  10.  前記センサ部は基板を有し、該基板の少なくとも一方の面に磁気センサが実装、配置されており、該基板の他方の面にも部品が実装されていることを特徴とする請求項8に記載の電動駆動装置。
  11.  前記センサ部は基板を有し、該基板の両面に、且つ、前記シャフトの回転軸と同軸上の位置に少なくとも2つの磁気センサが実装、配置されていることを特徴とする請求項8に記載の電動駆動装置。
  12.  前記センサ部は基板を有し.該基板には磁気センサが実装され、該基板はヒートシンクにネジ止めによって固定されることを特徴とする請求項1に記載の電動駆動装置。
  13.  前記センサ部と前記ヒートシンクの間に磁気シールドを設けたことを特徴とする請求項1に記載の電動駆動装置。
  14.  前記回転角度センサの被検出部は突部を有し磁性を有するセンサ用回転子で構成され、
    前記センサ部は、励磁巻線と出力巻線で構成されるコイルと鉄心を有するセンサ用ステータで構成されるレゾルバであることを特徴とする請求項1または請求項3~7のいずれか1項に記載の電動駆動装置。
PCT/JP2012/075385 2012-10-01 2012-10-01 電動駆動装置 WO2014054098A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014539495A JP5936700B2 (ja) 2012-10-01 2012-10-01 電動駆動装置
US14/410,923 US9627944B2 (en) 2012-10-01 2012-10-01 Electric drive apparatus
CN201280076172.6A CN104704717B (zh) 2012-10-01 2012-10-01 电动驱动装置
EP12886025.1A EP2905876B1 (en) 2012-10-01 2012-10-01 Electric drive apparatus
PCT/JP2012/075385 WO2014054098A1 (ja) 2012-10-01 2012-10-01 電動駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075385 WO2014054098A1 (ja) 2012-10-01 2012-10-01 電動駆動装置

Publications (1)

Publication Number Publication Date
WO2014054098A1 true WO2014054098A1 (ja) 2014-04-10

Family

ID=50434460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075385 WO2014054098A1 (ja) 2012-10-01 2012-10-01 電動駆動装置

Country Status (5)

Country Link
US (1) US9627944B2 (ja)
EP (1) EP2905876B1 (ja)
JP (1) JP5936700B2 (ja)
CN (1) CN104704717B (ja)
WO (1) WO2014054098A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208154A (ja) * 2014-04-22 2015-11-19 ファナック株式会社 軸受部品の飛散防止部材を備える電動機
JP2015229435A (ja) * 2014-06-05 2015-12-21 日本精工株式会社 ブラシレスモータ並びにそれを搭載した電動パワーステアリング装置及び車両
JP2016052175A (ja) * 2014-08-29 2016-04-11 株式会社デンソー 回転電機
EP3016253A3 (en) * 2014-11-03 2016-05-25 Goodrich Corporation Brushless motor with modular position sensor
JP2016127780A (ja) * 2015-01-08 2016-07-11 株式会社デンソー 駆動装置
WO2016166796A1 (ja) * 2015-04-13 2016-10-20 三菱電機株式会社 電動駆動装置
WO2017022094A1 (ja) * 2015-08-05 2017-02-09 三菱電機株式会社 インバータ一体型モータ
JPWO2016024358A1 (ja) * 2014-08-15 2017-04-27 三菱電機株式会社 制御ユニットおよびこれを用いた電動パワーステアリング装置、並びに制御ユニットの製造方法
WO2017131296A1 (ko) * 2016-01-25 2017-08-03 엘지전자 주식회사 회전전기기계
WO2017154236A1 (ja) * 2016-03-09 2017-09-14 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
EP3162660A4 (en) * 2014-06-27 2018-02-21 Mitsubishi Electric Corporation Integrated electric power steering device, and manufacturing method thereof
JP2018088813A (ja) * 2018-02-21 2018-06-07 三菱電機株式会社 電動パワーステアリング装置
WO2018220942A1 (ja) * 2017-05-30 2018-12-06 パナソニックIpマネジメント株式会社 電動工具
JP2018537065A (ja) * 2015-11-11 2018-12-13 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 冗長電子サブシステムを備えた電気機械式アクチュエータ
JP2019042814A (ja) * 2017-08-29 2019-03-22 パナソニックIpマネジメント株式会社 電動工具
JP2019158408A (ja) * 2018-03-08 2019-09-19 Tdk株式会社 磁石構造体、回転角度検出器および電動パワーステアリング装置
US10479398B2 (en) 2015-10-20 2019-11-19 Mitsubishi Electric Corporation Integrated electric power steering apparatus and manufacturing method therefor
US10696320B2 (en) 2015-04-10 2020-06-30 Mitsubishi Electric Corporation Electrical power steering apparatus housing with reduced pressure for power board connectors
US10759467B2 (en) 2015-09-18 2020-09-01 Mitsubishi Electric Corporation Integrated electric power steering apparatus
DE102015226506B4 (de) 2014-12-22 2022-09-08 Denso Corporation Antriebseinrichtung

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2509516B (en) * 2013-01-04 2015-07-15 Controlled Power Technologies Ltd Position sensing system
US9325229B2 (en) * 2013-03-15 2016-04-26 Hamilton Sundstrand Corporation Generator architecture with PMG exciter and main field rotating power converter
CN103825408A (zh) * 2014-02-28 2014-05-28 深圳市大疆创新科技有限公司 电机、应用电机的云台和应用云台的拍摄装置
JP2016123237A (ja) * 2014-12-25 2016-07-07 株式会社ジェイテクト モータユニット
JP6261776B2 (ja) * 2015-01-23 2018-01-17 三菱電機株式会社 電動駆動装置
JP6484135B2 (ja) * 2015-07-17 2019-03-13 Kyb株式会社 電動モータ
EP3163725A1 (de) * 2015-11-02 2017-05-03 Siemens Aktiengesellschaft Maschineneinheit, teilstück und zwischenelement sowie verfahren zum verbinden und/oder lösen einer anschlussleitung
EP3379702B1 (en) * 2015-11-20 2020-07-22 Kabushiki Kaisha Yaskawa Denki Motor and method for manufacturing motor
WO2017169990A1 (ja) * 2016-03-31 2017-10-05 日本電産株式会社 モータ
JP6551613B2 (ja) * 2016-10-19 2019-07-31 日本精工株式会社 センサの組付け構造体、電動モータ、及び電動パワーステアリング装置
JP7210283B2 (ja) * 2016-11-22 2023-01-23 三菱電機株式会社 回転電動機
JP2018125940A (ja) * 2017-01-31 2018-08-09 株式会社デンソー 駆動装置
JP6702212B2 (ja) * 2017-01-31 2020-05-27 株式会社デンソー 駆動装置
CN106787465A (zh) * 2017-02-09 2017-05-31 湖南天富机电科技有限公司 一种基于角度传感器的电机转子位置检测系统
US11670991B2 (en) * 2017-08-23 2023-06-06 Mitsubishi Electric Corporation Electric driving apparatus
CN108462307B (zh) * 2018-02-23 2019-10-01 蔺晓燕 一种滚柱丝杠机电作动器
US20210036577A1 (en) * 2018-04-27 2021-02-04 Mitsubishi Electric Corporation Electric motor
JP7204365B2 (ja) * 2018-07-31 2023-01-16 富士通コンポーネント株式会社 電磁継電器
FR3087895B1 (fr) * 2018-10-26 2022-01-14 Valeo Equip Electr Moteur Systeme de detection, bloc de commande d'une machine electrique tournante comportant un tel systeme de detection et procede de montage d'un tel systeme de detection
FR3087966B1 (fr) * 2018-10-26 2021-08-20 Valeo Equip Electr Moteur Bloc de commande d'une machine electrique tournante et procede de montage d'un tel bloc de commande
US11973374B2 (en) 2019-04-24 2024-04-30 Black & Decker Inc. Outer rotor brushless motor having an axial fan
US11362567B2 (en) * 2020-01-16 2022-06-14 The Boeing Company Electrical power generation from turbine engines
US11193426B2 (en) 2020-04-16 2021-12-07 The Boeing Company Electrically geared turbofan
CN112033467A (zh) * 2020-09-10 2020-12-04 南京力源汽车零部件有限公司 一种汽车微型电机检测机构
DE102021209119A1 (de) 2021-08-19 2023-02-23 Robert Bosch Gesellschaft mit beschränkter Haftung Antriebseinrichtung, Druckerzeuger für eine Bremsanlage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345211A (ja) * 2001-05-17 2002-11-29 Mitsubishi Electric Corp 電動式パワーステアリング装置
JP2007060734A (ja) * 2005-08-22 2007-03-08 Mitsubishi Electric Corp 回転電機
JP2011041355A (ja) 2009-08-07 2011-02-24 Denso Corp 駆動回路内蔵型モータ
JP2011229228A (ja) 2010-04-16 2011-11-10 Denso Corp 電動装置
JP2012147519A (ja) * 2011-01-07 2012-08-02 Mitsuba Corp モータ装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171563U (ja) 1988-05-18 1989-12-05
JP2001221656A (ja) * 2000-02-04 2001-08-17 Asmo Co Ltd モータアクチュエータ
JP3799270B2 (ja) 2001-12-21 2006-07-19 株式会社日立製作所 自動車の駆動状態を切り換える為の制御装置
JP4391407B2 (ja) * 2004-12-20 2009-12-24 三菱電機株式会社 制御装置一体型回転電機
RU2354031C1 (ru) 2005-01-31 2009-04-27 Тойота Дзидося Кабусики Кайся Конструкция закрепления резольвера
JP4203055B2 (ja) 2005-08-29 2008-12-24 三菱電機株式会社 電動式パワーステアリング装置
JP2007318972A (ja) 2006-05-29 2007-12-06 Jtekt Corp モータ及び電動パワーステアリング装置
JP5363136B2 (ja) 2009-02-13 2013-12-11 株式会社ミツバ ブラシレスモータ
US20110019650A1 (en) 2009-07-21 2011-01-27 Sabine Van Niekerk Methods and apparatus for optimization of device capability exchange in a network
JP5063722B2 (ja) * 2010-03-19 2012-10-31 三菱電機株式会社 電動式駆動装置およびそれを搭載した電動式パワーステアリング装置
JP5177711B2 (ja) * 2010-05-21 2013-04-10 株式会社デンソー 電動装置
JP5692588B2 (ja) * 2010-12-28 2015-04-01 株式会社デンソー 駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345211A (ja) * 2001-05-17 2002-11-29 Mitsubishi Electric Corp 電動式パワーステアリング装置
JP2007060734A (ja) * 2005-08-22 2007-03-08 Mitsubishi Electric Corp 回転電機
JP2011041355A (ja) 2009-08-07 2011-02-24 Denso Corp 駆動回路内蔵型モータ
JP2011229228A (ja) 2010-04-16 2011-11-10 Denso Corp 電動装置
JP2012147519A (ja) * 2011-01-07 2012-08-02 Mitsuba Corp モータ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2905876A4 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208154A (ja) * 2014-04-22 2015-11-19 ファナック株式会社 軸受部品の飛散防止部材を備える電動機
US9621006B2 (en) 2014-04-22 2017-04-11 Fanuc Corporation Electric motor with scatter preventing member of bearing part
JP2015229435A (ja) * 2014-06-05 2015-12-21 日本精工株式会社 ブラシレスモータ並びにそれを搭載した電動パワーステアリング装置及び車両
EP3162660A4 (en) * 2014-06-27 2018-02-21 Mitsubishi Electric Corporation Integrated electric power steering device, and manufacturing method thereof
US10710628B2 (en) 2014-06-27 2020-07-14 Mitsubishi Electric Corporation Integrated electric power steering apparatus and manufacturing method therefor
JPWO2016024358A1 (ja) * 2014-08-15 2017-04-27 三菱電機株式会社 制御ユニットおよびこれを用いた電動パワーステアリング装置、並びに制御ユニットの製造方法
US10144447B2 (en) 2014-08-15 2018-12-04 Mitsubishi Electric Corporation Control unit and electric power steering device using same, and method for manufacturing control unit
JP2016052175A (ja) * 2014-08-29 2016-04-11 株式会社デンソー 回転電機
EP3016253A3 (en) * 2014-11-03 2016-05-25 Goodrich Corporation Brushless motor with modular position sensor
US9929627B2 (en) 2014-11-03 2018-03-27 Goodrich Corporation Brushless motor with modular position sensor
DE102015226506B4 (de) 2014-12-22 2022-09-08 Denso Corporation Antriebseinrichtung
JP2016127780A (ja) * 2015-01-08 2016-07-11 株式会社デンソー 駆動装置
US10696320B2 (en) 2015-04-10 2020-06-30 Mitsubishi Electric Corporation Electrical power steering apparatus housing with reduced pressure for power board connectors
WO2016166796A1 (ja) * 2015-04-13 2016-10-20 三菱電機株式会社 電動駆動装置
CN107592955A (zh) * 2015-04-13 2018-01-16 三菱电机株式会社 电动驱动装置
JPWO2016166796A1 (ja) * 2015-04-13 2017-08-03 三菱電機株式会社 電動駆動装置
US10630133B2 (en) 2015-04-13 2020-04-21 Mitsubishi Electric Corporation Electric driving apparatus
JPWO2017022094A1 (ja) * 2015-08-05 2017-10-19 三菱電機株式会社 インバータ一体型モータ
US10673309B2 (en) 2015-08-05 2020-06-02 Mitsubishi Electric Corporation Inverter-integrated motor
WO2017022094A1 (ja) * 2015-08-05 2017-02-09 三菱電機株式会社 インバータ一体型モータ
US10759467B2 (en) 2015-09-18 2020-09-01 Mitsubishi Electric Corporation Integrated electric power steering apparatus
US10479398B2 (en) 2015-10-20 2019-11-19 Mitsubishi Electric Corporation Integrated electric power steering apparatus and manufacturing method therefor
JP2018537065A (ja) * 2015-11-11 2018-12-13 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 冗長電子サブシステムを備えた電気機械式アクチュエータ
US10868459B2 (en) 2015-11-11 2020-12-15 Robert Bosch Gmbh Electromechanical actuator comprising a redundant electronic sub-system
WO2017131296A1 (ko) * 2016-01-25 2017-08-03 엘지전자 주식회사 회전전기기계
KR20180026512A (ko) * 2016-03-09 2018-03-12 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
KR102106723B1 (ko) * 2016-03-09 2020-05-04 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
JP2017163682A (ja) * 2016-03-09 2017-09-14 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
US10971976B2 (en) 2016-03-09 2021-04-06 Hitachi Automotive Systems, Ltd. Electric drive device and electric power steering device
WO2017154236A1 (ja) * 2016-03-09 2017-09-14 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP2018202500A (ja) * 2017-05-30 2018-12-27 パナソニックIpマネジメント株式会社 電動工具
WO2018220942A1 (ja) * 2017-05-30 2018-12-06 パナソニックIpマネジメント株式会社 電動工具
JP2019042814A (ja) * 2017-08-29 2019-03-22 パナソニックIpマネジメント株式会社 電動工具
JP2018088813A (ja) * 2018-02-21 2018-06-07 三菱電機株式会社 電動パワーステアリング装置
JP2019158408A (ja) * 2018-03-08 2019-09-19 Tdk株式会社 磁石構造体、回転角度検出器および電動パワーステアリング装置

Also Published As

Publication number Publication date
US9627944B2 (en) 2017-04-18
US20150333600A1 (en) 2015-11-19
CN104704717A (zh) 2015-06-10
EP2905876A4 (en) 2016-06-08
JPWO2014054098A1 (ja) 2016-08-25
CN104704717B (zh) 2017-10-24
EP2905876A1 (en) 2015-08-12
EP2905876B1 (en) 2018-11-21
JP5936700B2 (ja) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5936700B2 (ja) 電動駆動装置
JP6198775B2 (ja) 電動駆動装置
JP6246325B2 (ja) 電動モータおよびこれを用いた電動パワーステアリング装置
JP6124999B2 (ja) 電動パワーステアリング用永久磁石型モータ
US8471418B2 (en) Motorized equipment
JP6157652B2 (ja) 永久磁石型モータ
JP6091619B2 (ja) 永久磁石型モータ、及び電動パワーステアリング装置
JP6485824B2 (ja) 電動駆動装置
WO2012120588A1 (ja) モータ駆動装置
EP3139478B1 (en) Permanent magnet motor
JP7424344B2 (ja) 電動駆動装置及び電動パワーステアリング装置
JP6771848B2 (ja) 電動駆動装置
JP6261776B2 (ja) 電動駆動装置
JP2018207639A (ja) 電動駆動装置、及び電動パワーステアリング装置
JP6847493B2 (ja) 回転角検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539495

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14410923

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012886025

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE