WO2014050086A1 - 電池用負極、電池、車両および電池搭載機器 - Google Patents

電池用負極、電池、車両および電池搭載機器 Download PDF

Info

Publication number
WO2014050086A1
WO2014050086A1 PCT/JP2013/005659 JP2013005659W WO2014050086A1 WO 2014050086 A1 WO2014050086 A1 WO 2014050086A1 JP 2013005659 W JP2013005659 W JP 2013005659W WO 2014050086 A1 WO2014050086 A1 WO 2014050086A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
battery
present
positive electrode
active material
Prior art date
Application number
PCT/JP2013/005659
Other languages
English (en)
French (fr)
Inventor
伸 後田
真紀雄 近
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020157008223A priority Critical patent/KR20150052178A/ko
Priority to CN201380045453.XA priority patent/CN104603998A/zh
Priority to DE112013004809.4T priority patent/DE112013004809T8/de
Priority to US14/427,587 priority patent/US20150228965A1/en
Priority to JP2014538178A priority patent/JP5967209B2/ja
Publication of WO2014050086A1 publication Critical patent/WO2014050086A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery negative electrode, a battery having the battery negative electrode, a vehicle including the battery, and a battery-equipped device.
  • a lithium ion secondary battery is mainly composed of a positive electrode, a negative electrode, a separator, and an electrolyte. Lithium ion secondary batteries charge and discharge when lithium ions in the electrolyte move between both electrodes.
  • lithium titanate Li 4 Ti 5 O 12
  • Patent Document 1 Li 4 Ti 5 O 12
  • Patent Document 1 Li 4 Ti 5 O 12
  • silicon oxides represented by SiO y (2>y> 0) and Li x SiO y (x> 0, 2>y> 0) have been proposed (see, for example, Patent Documents 2 and 3).
  • JP 2001-126727 A Japanese Patent No. 2999741 JP 2012-54220 A
  • a secondary battery having a higher capacity is required as a driving power source mounted on portable electronic devices such as notebook computers, mobile phones, and video cameras, and electric vehicles.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a negative electrode for a battery capable of obtaining a secondary battery having a higher capacity than before, a battery using the same, and the like. It is said.
  • the present invention uses a specific silicate mineral having a pyroxene structure as a negative electrode material of a secondary battery, which is a conventional titanium.
  • the inventors have found that a secondary battery having a high capacity and a low capacity can be obtained as compared with the case of using lithium acid acid, and have been completed.
  • the negative electrode for a battery of the present invention has a pyroxene structure and has a general formula: A p M 2 ⁇ p X 2 O 6 (wherein A is selected from the group consisting of Na, Ca, Fe, Zn, Mn and Mg) M is at least one selected from the group consisting of transition metal elements, Al and Mg, and requires a transition metal element, and A and M are the same or different elements, 0 ⁇ p ⁇ 2, X 2 is Si 2 or Al q Si 2-q , and 0 ⁇ q ⁇ 2.).
  • the battery negative electrode of the present invention has a charge capacity and discharge capacity of 200 mAh / g or more at the time of initial charge / discharge in the evaluation of the counter electrode lithium in the above battery negative electrode.
  • the plateau potential at the time of initial charge in the evaluation of the counter electrode lithium is 1.5 V or less.
  • the silicate is any one of ediline (NaFeSi 2 O 6 ), esineite (CaFeAlSiO 6 ), and ordinary pyroxene [Ca (Mn, Fe, Zn) Si 2 O 6 ].
  • ediline NaFeSi 2 O 6
  • esineite CaFeAlSiO 6
  • ordinary pyroxene [Ca (Mn, Fe, Zn) Si 2 O 6 ].
  • conductive material carbon material
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2pyrrolidone
  • the battery of the present invention includes the above-described negative electrode for a battery.
  • the vehicle of the present invention is equipped with the above battery.
  • the battery-equipped device of the present invention is equipped with the above battery.
  • a negative electrode for a battery capable of obtaining a secondary battery having a higher capacity than before, a battery using the same, and the like.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. It is a perspective view which shows typically the wound electrode body of FIG.
  • FIG. 3 is a capacity-potential curve during charge and discharge in the evaluation of counter lithium using edylin according to Example 1.
  • FIG. 6 is a capacity-potential curve during charging / discharging in the evaluation of counter lithium using cineite according to Example 2.
  • FIG. FIG. 6 is a capacity-potential curve during charge and discharge in the counter lithium evaluation using ordinary pyroxene according to Example 3.
  • FIG. 6 is a capacity-potential curve during charging and discharging in the evaluation of counter sodium using ediline according to Example 4.
  • FIG. 10 is a capacity-potential curve during charging / discharging in the evaluation of counter sodium using cineite according to Example 5.
  • a p M 2-p X 2 O 6 represented by the general formula A p M 2-p X 2 O 6 according to the present invention are, for the negative electrode will be described for a battery characterized by comprising a silicate having a pyroxene structure.
  • the negative electrode for batteries of the present invention is configured to contain a specific silicate as described above.
  • silicate used in the present invention The specific silicate relating to the negative electrode for a battery of the present invention is hereinafter referred to as “silicate used in the present invention”.
  • the silicate used in the present invention is one represented by the above general formula and having a pyroxene structure among those classified as silicates.
  • the silicate used in the present invention may be a synthetic product or a natural product.
  • the silicate used in the present invention is generally available as a silicate mineral that is a natural product.
  • silicate minerals used in the present invention those of natural minerals are hereinafter referred to as “silicate minerals used in the present invention”.
  • the silicate mineral used in the present invention is classified into the pyroxene group of inosilicate mineral. And the silicate mineral used for this invention points out the pyroxene of a specific range among pyroxene groups, as represented with the said general formula.
  • the silicate used for this invention is used for the negative electrode for batteries of this invention as a negative electrode active material.
  • A is one or more elements selected from the group consisting of Ca, Fe, Mg, Mn, Na and Zn.
  • M is a transition metal element.
  • the transition metal element is an element of Group 3 to Group 12 of the periodic table.
  • Group 12 of the periodic table may be classified as a typical metal, but in the present invention, it is classified as a transition metal (Chemical Dictionary (1st edition), Tokyo Chemical Co., Ltd.).
  • M is, for example, one or more elements selected from the group consisting of Cr, Fe, Mn, Sc, Ti, V, and Zn.
  • a and M may be the same or different elements.
  • the case where A and M are the same is, for example, iron pyroxene or monoclinic iron pyroxene described later.
  • the value of p is in the range of 0 ⁇ p ⁇ 2. Since the silicate used in the present invention has a complicated structure and a natural mineral may be used, the value of p cannot be specified any more.
  • silicate mineral used in the present invention a small amount of other elements allowed as a natural mineral may be mixed as A and M.
  • the pyroxene structure will be described with reference to FIG.
  • the silicate used in the present invention has a pyroxene structure.
  • the pyroxene structure is a structure in which SiO 4 tetrahedrons share two oxygens and are connected in a straight chain. That is, the pyroxene structure has [(SiO 3 ) 2 ⁇ ] as a basic repeating unit.
  • the pyroxene structure is a single chain, and when viewed from a certain direction, the SiO 4 tetrahedron is formed in a zigzag shape.
  • the pyroxene structure can be confirmed by X-ray diffraction (XRD) or the like.
  • the elements represented by A and M are respectively contained in two voids formed by the [(SiO 3 ) 2 ⁇ ] 2 octahedron.
  • the space in which A is accommodated is constituted by the apex and ridge of the SiO 4 tetrahedron.
  • the space in which A is contained is the most important space for tightening the SiO 4 chain, and is a highly efficient and flexible space.
  • the void in which A is accommodated has the property that when this void is filled, the binding force of ionic bonds is dispersed and weakened.
  • the space in which M is accommodated is composed of the vertices and vertices of the SiO 4 tetrahedron.
  • the void in which M is accommodated has a function of covering the bonding force that is weakened due to the void in which A is accommodated when the void is filled.
  • Natural pyroxene is classified into orthopyroxene and clinopyroxene from the crystal structure, but any silicate may be used in the present invention.
  • the silicate used in the present invention may be a synthetic product or a natural product.
  • the silicate used in the present invention include, among Mg-Fe pyroxenes, iron pyroxene [Ferrosilite (Fs), ferrosilite, Fe 2+ 2 Si 2 O 6 / (Fe 2+ , Mg) 2 Si 2 O 6], Tanhasutetsu ⁇ stone [Clinoferrosilite, monoclinic Feroshiraito, Fe 2+ 2Si 2 O 6 / (Fe 2+, Mg) 2 Si 2 O 6], pigeonite [Pigeonite, Pijonaito, (Mg, Fe 2+, Ca Silicate minerals such as (Mg, Fe 2+ ) Si 2 O 6 ] and synthetic products corresponding to these.
  • silicate used in the present invention examples include silicate minerals such as Kano pyroxene [Kanoite (Ka), Kanoite, (Mn, Mg) 2Si 2 O 6 ] among Mn—Mg pyroxene, These corresponding synthetic products are mentioned.
  • silicate used in the present invention examples include, among Ca pyroxene, ash iron pyroxene [Hedenbergite (Hd), hedenburgite, CaFe 2+ Si 2 O 6 ], ordinary pyroxene [Augite, augite, (Ca , Mg, Fe) 2 Si 2 O 6 (Ca, Na) (Mg, Fe, Al, Ti) (Si, Al) O 6 / Ca (Mn, Fe, Zn) Si 2 O 6 ], Johansenite [Johannsenite (Jo), Johansenite, CaMnSi 2 O 6 ], Pitadanite [Petedunnite (Pe), CaZnSi 2 O 6 / Ca (Zn, Mn 2+ , Fe 2+ , Mg) Si 2 O 6 ], Esineite [Esseneite (Es), CaFe 3+ AlSiO 6 ], Davis pyroxene [Davisite, CaS
  • silicate used in the present invention examples include, for example, Omphacite (Omphacite, Onfasite, (Ca, Na) (Mg, Fe 2+ , Al, Fe 3+ ) among pyroxene groups of silicate minerals.
  • Ca—Na pyroxenes such as Si 2 O 6
  • Omphacite Opacite, Onfasite, (Ca, Na) (Mg, Fe 2+ , Al, Fe 3+ ) among pyroxene groups of silicate minerals.
  • silicate used in the present invention examples include jadeite [Jadeite (Jd), jadeite, Na (Al, Fe 3+ ) Si 2 O 6 ], edylin among pyroxene groups of silicate minerals.
  • the production area of the silicate mineral used in the present invention is not particularly limited.
  • Examples of the silicate mineral used in the present invention include Malawi, Canada, Russia, Australia, the United States, the Czech Republic, France, Madagascar, South Africa, Thailand, Kenya, El Salvador, Saint Vincent and the Grenadines, French Southern and Antarctic regions, Afghanistan, Norway, Angola, Antarctica, Argentina, Armenia, Austria, Azerbaijan, illness, Cambodia, Brazil, Bulgaria, Vietnamese, Cameroon, Central Africa, British Channel Islands, Egyptian, Eritrea, Fiji, Finland, Chile, China, Colombia, Costa Rica, Congo, Ethiopia, French Polynesia, French West Indies, Germany, Ghana Greece, Greenland, Guatemala, Guinea, Guyana, Honduras, Hungary, Iceland, India, Iran, Iraq, Ireland, Israel, Italy, Japan, Ukraine, Kyrgyzstan,erie, Mali, Malta, Mexico, Montserrat, Mongolia, Morocco, New Caledonia, New Zealand, Niger, Nigeria, North Korea, Norway, Oman, Pakistan, Papua New Guinea, Para
  • ediline includes, for example, Malawi, Canada, Russia, Australia, the United States, Afghanistan, Norway, Angola, Antarctica, Argentina, Armenia, Austria, Belarus, Cambodia, Brazil, Bulgaria, Sri, Cameroon, British territory Channel Islands, Czech Republic, Chile, China, Congo, Ethiopia, France, French Polynesia, Germany, Greece, Greenland, Guatemala, Guinea, Guyana, Honduras, Vietnamese, Iceland, India, Italy, Japan, Ukraine, Kenya, Kyrgyzstan ,erie, Madagascar, Mali, Mexico, Mongolia, Morocco, Magnolia, New Zealand, Niger, Nigeria, North Korea, Norway, Pakistan, Paraguay, Peru, Po Rand, Portugal, Yorkia, French Reunion Island, Romania, St. Helena, Saudi Arabia, Slovakia, Somaliland, South Africa, Spain, Sweden, Switzerland, Tajikistan, Africa, Turkey, Kenya, UK, Ukraine, Venezuela, Vietnam, Zambia, etc. You may use what was produced in.
  • ecineite for example, those produced in the Czech Republic, France, Russia, Israel, Italy, the United States, etc. may be used.
  • a synthetic product for example, it can be produced by the method of reference (Alain DECARREAU et al, "Hydrothermal synthesis of aegirine at 200 ° C", European Journal of Mineralogy, 2004, 16, 85-90).
  • the silicate used in the present invention is usually used as a negative electrode material in the form of particles.
  • a method for making silicate into particles for example, a known method such as grinding with a mortar can be appropriately employed.
  • the particulate silicate used in the present invention can be used as it is as a negative electrode material without further processing such as heat treatment.
  • the particulate silicate used in the present invention may be used with a carbon coating on the surface for the purpose of improving electrical conductivity.
  • a method of applying a carbon coat to the surface of the particulate silicate used in the present invention a known method can be appropriately employed.
  • Silicate with a carbon coating on the surface for example, put granular silicate in an aqueous solution containing a carbon source, stir and dry, and calcinate the carbon source by firing it in a reducing atmosphere Can be obtained.
  • the amount of carbon relative to the silicate is not particularly limited, and can be, for example, 1 to 3 parts by mass of carbon per 100 parts by mass of silicate.
  • the carbon source used for the carbon coat is not particularly limited, and examples thereof include polyvinyl alcohol and sucrose.
  • the configuration of the battery negative electrode of the present invention will be described.
  • the configuration of the negative electrode for a battery of the present invention is not particularly limited except that the silicate used in the present invention is used as the negative electrode active material, and a known negative electrode configuration can be adopted.
  • the battery negative electrode of the present invention generally includes a negative electrode active material, a conductive material, a binder, and a negative electrode current collector, but is not limited thereto.
  • the silicate used in the present invention is essential as the negative electrode active material, but other negative electrode active materials may be included.
  • the other negative electrode active material is not particularly limited, and for example, a carbon material having a graphite structure at least partially can be used.
  • the content of the silicate used in the present invention with respect to the whole negative electrode active material is not particularly limited, and is, for example, 50% by mass to 100%. It can be made into the mass%.
  • the negative electrode active material may be substantially only the silicate used in the present invention.
  • the conductive material is not particularly limited, and generally a conductive powder material such as carbon powder or carbon fiber, which is a carbon material, is used.
  • the carbon powder is not particularly limited, and examples thereof include carbon black such as acetylene black, furnace black and ketjen black, and graphite powder.
  • the content of the conductive material is not particularly limited, and can be, for example, 0.1 to 50 parts by mass with respect to 100 parts by mass of the negative electrode active material. These conductive materials may be used alone or in combination of two or more.
  • the binder is not particularly limited, and for example, an organic solvent availability binder or a water-dispersible binder can be used.
  • binder usable as an organic solvent examples include polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC), polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide-propylene oxide copolymer (PEO-PPO).
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PEO-PPO polyethylene oxide-propylene oxide copolymer
  • Polyimide polytetrafluoroethylene, polyethylene, polypropylene, polyvinyl pyrrolidone, polyester resin, acrylic resin, phenol resin, epoxy resin, and the like.
  • water-dispersible binder examples include styrene butadiene rubber (SBR), acrylic acid-modified SBR resin (SBR latex), ethylene-propylene-diene copolymer resin, polybutadiene, rubber such as gum arabic and fluororubber; Polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), etc. And the like.
  • SBR styrene butadiene rubber
  • SBR latex acrylic acid-modified SBR resin
  • ethylene-propylene-diene copolymer resin polybutadiene
  • rubber such as gum arabic and fluororubber
  • Polytetrafluoroethylene (PTFE) tetrafluoroethylene-perfluoroalky
  • the content of the binder is not particularly limited and can be appropriately adjusted according to the type and amount of the negative electrode active material.
  • the content of the binder can be, for example, 0.1 to 33 parts by mass, and further 0.1 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • These binders may be used alone or in combination of two or more.
  • a thickener can be used for the negative electrode for batteries of the present invention as necessary.
  • the thickener include cellulose resins such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), and hydroxypropylmethylcellulose phthalate (HPMCP).
  • the negative electrode current collector is not particularly limited.
  • copper or an alloy containing copper as a main component can be used.
  • the shape of the negative electrode current collector can vary depending on the shape of the secondary battery, and is not particularly limited, and can take various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
  • the manufacturing method of the negative electrode for batteries of the present invention will be described.
  • the method for producing a negative electrode for a battery of the present invention is not particularly limited except that the silicate used in the present invention is used as a negative electrode active material, and a known method for producing a negative electrode can be employed.
  • the negative electrode for a battery of the present invention can be produced by the following method.
  • the silicate used in the present invention is particulate.
  • the particulate silicate used in the present invention as the negative electrode active material is dispersed in an appropriate solvent together with a conductive material, a binder, and the like to obtain a paste-like or slurry-like composition.
  • the obtained composition is called negative electrode composite material.
  • the negative electrode mixture is applied to the negative electrode current collector, and the negative electrode mixture is dried to obtain the negative electrode.
  • the obtained negative electrode can be pressed as necessary after the negative electrode mixture is dried to adjust the electrode density.
  • a layer other than the negative electrode current collector that is, a layer in which the negative electrode mixture is dried is referred to as a negative electrode active material layer.
  • the content of the negative electrode active material in the dry mass in the negative electrode mixture is not particularly limited and can be, for example, 60 to 98.8% by mass.
  • the solvent to be dispersed is not particularly limited, and examples thereof include water; aqueous organic solvents such as lower alcohols and lower ketones; non-aqueous organic solvents such as N-methyl-2pyrrolidone (NMP) and toluene;
  • aqueous organic solvents such as lower alcohols and lower ketones
  • NMP N-methyl-2pyrrolidone
  • toluene N-methyl-2pyrrolidone
  • a method of applying the negative electrode mixture to the negative electrode current collector a known method can be appropriately employed.
  • a coating apparatus such as a slit coater, a die coater, or a gravure coater can be used.
  • known methods such as natural drying, hot air, low-humidity air, vacuum, infrared rays, far-infrared rays, and electron beams can be appropriately employed. These methods can be used alone or in combination.
  • a method of pressing after drying of the negative electrode mixture known methods such as a roll press method and a flat plate press method can be appropriately employed.
  • the thickness when adjusting the thickness of the electrode, the thickness may be measured with a film thickness measuring instrument, and the press pressure may be adjusted and compressed several times until the desired thickness is obtained.
  • the battery of the present invention will be described with reference to FIGS.
  • the battery of the present invention includes the above-described negative electrode for a battery.
  • a lithium ion secondary battery 100 will be described in detail as an embodiment of this battery, but the battery of the present invention is not limited to this embodiment.
  • Examples of the battery of the present invention include a lithium ion battery, a sodium ion battery, a calcium ion battery, and a magnesium ion battery.
  • the lithium ion secondary battery 100 of the present embodiment has a configuration in which an electrode body and a non-aqueous electrolyte are accommodated in a rectangular battery case 10.
  • the shape of the secondary battery is not particularly limited, and the battery case, electrode body, and the like can be appropriately selected in terms of material, shape, size, and the like according to the application and capacity.
  • the battery case can have a rectangular parallelepiped shape, a flat shape, a cylindrical shape, or the like, for example.
  • FIGS. 2 to 4 members / parts having the same action are denoted by the same reference numerals, and redundant description may be omitted or simplified.
  • the dimensional relationships such as length, width, and thickness in the drawings do not reflect actual dimensional relationships.
  • a configuration and manufacturing method of an electrode body such as a wound structure or a laminated structure
  • a configuration and manufacturing method of a separator a general technique related to construction of a secondary battery, and the like are those of ordinary skill in the art based on conventional techniques in the field. It is understood as a design item.
  • the lithium ion secondary battery 100 of the present embodiment is mainly composed of a positive electrode sheet 30, a negative electrode sheet 40, a separator 50, and an electrolyte (not shown).
  • the positive electrode sheet 30 is a sheet-like positive electrode
  • the negative electrode sheet 40 is a sheet-like negative electrode.
  • a non-aqueous electrolyte is used as the electrolyte.
  • the lithium ion secondary battery 100 closes the wound electrode body 20, a non-aqueous electrolyte (not shown), the battery case 10 having the opening 11, and the opening 11 of the battery case 10. It is comprised by the cover body 12 for. More specifically, the lithium ion secondary battery 100 includes a wound electrode body 20 together with a non-aqueous electrolyte (not shown) from an opening 11 of a flat box-shaped battery case 10 corresponding to the shape of the wound electrode body 20. It is constructed by being housed inside and closing the opening 11 of the battery case 10 with a lid 12.
  • the lid body 12 is provided with a positive electrode terminal 36 and a negative electrode terminal 46 for external connection so as to protrude from the surface side of the lid body 12 as a part of the terminals. Other parts of the positive electrode terminal 36 and the negative electrode terminal 46 which are external terminals are connected to the internal positive electrode terminal 35 or the internal negative electrode terminal 45 in the battery case 10, respectively.
  • the wound electrode body 20 of the present embodiment will be described with reference to FIGS.
  • the wound electrode body 20 includes a positive electrode sheet 30, a negative electrode sheet 40, and a long sheet-like separator 50.
  • the positive electrode sheet 30 has a positive electrode active material layer 31 formed on the surface of a long sheet-like positive electrode current collector 32.
  • the negative electrode sheet 40 is obtained by forming a negative electrode active material layer 41 on the surface of a long sheet-like negative electrode current collector 42.
  • the positive electrode sheet 30 and the negative electrode sheet 40 are laminated via two separators 50 in a cross-sectional view in the direction of the winding axis direction R.
  • the positive electrode sheet 30, the separator 50, the negative electrode sheet 40, and the separator 50 are sequentially arranged. Are stacked.
  • the wound electrode body 20 is formed into a flat shape by winding the laminate in a cylindrical shape around a shaft core (not shown) and crushing it from the side. is there.
  • the positive electrode sheet 30 is not provided with the positive electrode active material layer 31 at one end along the longitudinal direction or is removed, and the positive electrode current collector 32 is removed. A positive electrode current collector non-forming portion 33 is formed in which is exposed. Further, the negative electrode sheet 40 is not provided with the negative electrode active material layer 41 at the other end along the longitudinal direction or is removed, and the negative electrode current collector 42 is not formed. A portion 43 is formed.
  • the positive electrode current collector non-forming portion 33 is stacked on one end portion in the winding axis direction R in a state of protruding from the negative electrode sheet 40 and the separator 50, A positive electrode current collector laminated portion 34 is formed. Further, at the other end in the winding axis direction R, the negative electrode current collector non-forming portion 43 is laminated in a state of protruding from the positive electrode sheet 30 and the separator 50 to form the negative electrode current collector laminated portion 44. .
  • separator 50 a separator having a width larger than the width of the laminated portion of the positive electrode active material layer 31 and the negative electrode active material layer 41 and smaller than the width of the wound electrode body 20 is used.
  • the separator 50 is disposed so as to be sandwiched between the stacked portions of the positive electrode active material layer 31 and the negative electrode active material layer 41 so that the positive electrode current collector 32 and the negative electrode current collector 42 do not contact each other and cause an internal short circuit. ing.
  • the separator 50 is a sheet interposed between the positive electrode sheet 30 and the negative electrode sheet 40, and is disposed so as to be in contact with the positive electrode active material layer 31 and the negative electrode active material layer 41, respectively. And the separator 50 prevents the short circuit accompanying the contact of the positive electrode active material layer 31 and the negative electrode active material layer 41, or impregnates the pores of the separator 50 with an electrolyte such as a non-aqueous electrolyte, It plays a role of forming a conductive path as a conductive path.
  • the internal positive electrode terminal 35 is joined to the positive electrode current collector laminate portion 34, and the internal negative electrode terminal 45 is joined to the negative electrode current collector laminate portion 44, and is electrically connected to the positive electrode sheet 30 or the negative electrode sheet 40 of the wound electrode body 20. It is connected to the.
  • a joining method for example, a known method such as ultrasonic welding or resistance welding can be appropriately employed.
  • the obtained wound electrode body 20 is accommodated in the battery case 10
  • a nonaqueous electrolytic solution is injected, and the inlet that is the opening 11 is sealed with the lid 12. It can be constructed by stopping.
  • a positive electrode configured as the positive electrode sheet 30 will be described.
  • the configuration of the positive electrode in the present embodiment is not particularly limited, and a known positive electrode configuration can be adopted.
  • the positive electrode of this embodiment is comprised including the positive electrode active material, the electrically conductive material, the binder, and the positive electrode electrical power collector, it is not limited to this.
  • Positive electrode active material a positive electrode material capable of occluding and releasing lithium is used, and one or more of materials conventionally used in lithium ion secondary batteries can be used without particular limitation.
  • the positive electrode active material examples include a layered structure oxide and a spinel structure oxide. More specifically, for example, lithium nickel composite oxides such as LiNiO 2 , lithium cobalt composite oxides such as LiCoO 2 , lithium manganese composite oxides such as LiMn 2 O 4 , lithium magnesium composite oxides, etc. And lithium-containing composite oxides.
  • an olivine type lithium phosphate represented by the general formula; LiMPO 4 (M is at least one element of Co, Ni, Mn, and Fe) can be used as the positive electrode active material.
  • Examples of the olivine-type lithium phosphate include LiFePO 4 and LiMnPO 4 .
  • a sulfide containing a transition metal element or an oxide containing sodium and a transition metal element can be used.
  • transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , FeS 2 , Na (1-y) MnO 2 (0 ⁇ y ⁇ 1, etc., the same shall apply hereinafter), Na (1-y) Mn Sodium manganese composite oxide such as 2 O 4 , sodium cobalt composite oxide such as Na (1-y) CoO 2 , sodium nickel composite oxide such as Na (1-y) NiO 2 , sodium such as NaV 2 O 3 Vanadium composite oxides, transition metal oxides such as V 2 O 5, and the like can be used.
  • the positive electrode active material in the calcium ion secondary battery for example, Ca 3 Co 2 O 6 or Ca 3 CoMnO 6 can be used.
  • the positive electrode active material in the magnesium ion secondary battery for example, MgXMo 3 S 4 or graphite fluoride can be used.
  • the positive electrode current collector 32 is not particularly limited.
  • aluminum or an alloy containing aluminum as a main component can be used.
  • the shape of the positive electrode current collector 32 may vary depending on the shape of the secondary battery, and is not particularly limited, and can take various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape. .
  • a sheet-like positive electrode current collector 32 made of aluminum is used so that it can be suitably used for the lithium ion secondary battery 100 including the wound electrode body 20.
  • an aluminum sheet having a thickness of about 10 ⁇ m to 30 ⁇ m can be used.
  • the method for producing the positive electrode is not particularly limited, and a known method for producing a positive electrode can be employed.
  • the positive electrode can be produced by the following method.
  • the positive electrode active material is dispersed in an appropriate solvent together with a conductive material, a binder, and the like to obtain a paste-like or slurry-like composition.
  • the obtained composition is referred to as a positive electrode mixture.
  • a positive electrode mixture is apply
  • the obtained positive electrode can be pressed as necessary after the positive electrode mixture is dried to adjust the electrode density.
  • a layer other than the positive electrode current collector, that is, a layer in which the positive electrode mixture is dried is referred to as a positive electrode active material layer.
  • the content of the positive electrode active material in the dry mass in the positive electrode mixture is not particularly limited and can be, for example, 80 to 95% by mass.
  • the solvent to be dispersed the method of applying the composite material to the current collector, and the drying method of the applied composite material are the same as the above-described negative electrode manufacturing method.
  • the content of the conductive material in the dry mass in the positive electrode mixture can be appropriately selected according to the type and amount of the positive electrode active material.
  • the content of the conductive material can be, for example, 1 to 10% by mass.
  • the content of the binder in the dry mass in the positive electrode mixture can be appropriately selected according to the type and amount of the positive electrode active material.
  • the content of the binder can be, for example, 1 to 5% by mass.
  • a sheet-like copper negative electrode current collector 42 is used so that the lithium ion secondary battery 100 including the wound electrode body 20 can be suitably used.
  • a copper sheet having a thickness of about 6 ⁇ m to 30 ⁇ m can be used.
  • electrolyte there is no limitation in particular as electrolyte, The electrolyte conventionally used for a lithium ion secondary battery can be used. In this embodiment, a non-aqueous electrolyte is used.
  • the nonaqueous electrolytic solution contains a supporting salt in a nonaqueous solvent.
  • a lithium salt used as a supporting salt in a general lithium ion secondary battery can be appropriately selected and used.
  • the lithium salt is not particularly limited, for example LiPF 6, LiBF 4, LiClO 4 , LiAsF 6, Li (CF 3 SO 2) 2 N, and the like LiCF 3 SO 3. Among these, LiPF 6 is preferable.
  • the concentration of the supporting salt in the nonaqueous electrolytic solution is not particularly limited, and can be, for example, 0.7 to 1.3 mol / L.
  • the supporting salt can be used alone or in combination of two or more.
  • an organic solvent used for a general lithium ion secondary battery can be appropriately selected and used.
  • the non-aqueous solvent is not particularly limited, and examples thereof include ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and propylene carbonate (PC). Examples thereof include carbonates and cyclic esters such as ⁇ -butyrolactone. Among these, a mixed solvent of EC and DEC is preferable. These organic solvents can be used alone or in combination of two or more.
  • Examples of the supporting salt of the electrolyte in the sodium ion secondary battery include NaClO 4 , NaBF 4 , (CF 3 SO 2 ) 2 NNa, (C 2 F 5 SO 2 ) 2 NNa, NaCF 3 SO 3 , NaN (FSO 2 ) 2 , NaC (CF 3 SO 2 ) 3 , NaPF 6 , NaAsF 6 , NaSbF 6 , NaSiF 6 , NaAlF 4 , NaSCN, NaCl, NaF, NaBr, NaI, NaAlCl 4 and the like.
  • Examples of the electrolyte supporting salt in the calcium ion secondary battery include Ca (BF 4 ) 2 , Ca (CF 3 SO 3 ) 2 , Ca (PF 6 ) 2 , Ca (ClO 4 ) 2 , and Ca (AsF 6 ). 2 , Ca (SbF 6 ) 2 , Ca [N (CF 2 SO 2 ) 2 ] 2 , Ca [N (CF 2 F 4 SO 2 ) 2 ] 2 and the like.
  • the same organic solvents as those used in the above general lithium ion secondary battery can be used.
  • the separator 50 is a layer interposed between the positive electrode sheet 30 and the negative electrode sheet 40.
  • the separator 50 has a sheet shape, and the positive electrode active material layer 31 of the positive electrode sheet 30 and the negative electrode active material of the negative electrode sheet 40.
  • the layers 41 are arranged so as to be in contact with each other.
  • the separator 50 serves as a conductive path between the electrodes by preventing a short circuit associated with the contact between the electrode active material layers 31 and 41 in the positive electrode sheet 30 and the negative electrode sheet 40 and by impregnating the electrolyte in the pores of the separator 50. It plays the role of forming a conduction path.
  • the separator 50 there is no limitation in particular as the separator 50, A well-known thing can be employ
  • a microporous resin sheet that is a porous sheet made of a resin can be used.
  • a porous polyolefin resin sheet such as polyethylene (PE), polypropylene (PP), and polystyrene can be used.
  • PE polyethylene
  • PP polypropylene
  • polystyrene polystyrene
  • a PE sheet, a PP sheet, a multilayer structure sheet in which a PE layer and a PP layer are laminated are preferable.
  • the thickness of the separator is not particularly limited, and for example, a separator having a thickness of 10 ⁇ m to 40 ⁇ m can be used.
  • counter electrode lithium evaluation refers to a working electrode using an evaluation active material
  • a coin cell is manufactured as a lithium ion secondary battery using lithium metal as a reference / counter electrode and an electrolyte for a lithium ion battery as an electrolyte.
  • the evaluation active material is a silicate used in the present invention.
  • the coin cell is, for example, a 2032 type coin cell.
  • Evaluation items include charge capacity and discharge capacity, charge / discharge efficiency, and plateau potential during discharge. These evaluations are generally obtained from a discharge curve plotted with the vertical axis representing potential and the horizontal axis representing discharge capacity or discharge time.
  • the “plateau potential at the time of discharge” means that, in the above discharge curve, the electric potential at a portion where the electric potential is almost constant and flat with respect to the horizontal axis, or a straight line having an initial slope of the discharge, and the discharge proceeds,
  • the potential at the displacement point which is the point where a straight line having a gentler slope than the initial slope of discharge intersects.
  • plateau potential at the time of discharge of lithium titanate is generally 1.55 V on the basis of lithium.
  • the counter electrode lithium evaluation is an evaluation in a lithium ion secondary battery composed of a working electrode using the silicate used in the present invention as the negative electrode active material and a counter electrode lithium as a reference / counter electrode as described above.
  • the reference of the potential in this evaluation has the same meaning as the notation of “vs. Li / Li + ”, “at the time of Li counter electrode”, “lithium reference”, “based on the lithium metal potential”, for example.
  • counter sodium can be evaluated by the same method using metallic sodium as a reference / counter electrode and a sodium ion battery electrolyte as an electrolyte.
  • counter electrode calcium can be evaluated by the same method using calcium ion battery electrolyte as a reference / counter electrode and metal calcium.
  • counter electrode magnesium can be evaluated by the same method using magnesium metal as the reference / counter electrode and magnesium ion battery electrolyte as the electrolyte.
  • the capacity of the negative electrode for a battery of the present invention is not particularly limited, but it is preferable that both the charge capacity and the discharge capacity at the time of initial charge / discharge in the evaluation of counter electrode lithium are 200 mAh / g or more.
  • the charge capacity at the initial charge is more preferably 300 mAh / g or more, and still more preferably 400 mAh / g or more.
  • the discharge capacity at the initial discharge is more preferably 250 mAh / g or more.
  • the discharge capacity at the initial discharge is a combination of 200 mAh / g or more, 300 mAh / g or more, or 400 mAh / g or more. is there.
  • the plateau potential at the time of discharging of the present invention is not particularly limited, but the plateau potential at the time of initial charging in the evaluation of counter lithium is preferably 1.5 V or less.
  • the plateau potential during this initial charging is more preferably 1 V or less, further preferably 0.8 V or less, and most preferably 0.6 V or less.
  • the battery of the present invention is a secondary battery using the negative electrode for a battery of the present invention.
  • the use of the battery of the present invention is not particularly limited, and can be used for, for example, a vehicle or a battery-equipped device.
  • the method of mounting the battery of the present invention on a vehicle, a battery-mounted device, or the like is understood as a design matter for those skilled in the art based on the prior art in this field.
  • the present invention provides a vehicle using the battery of the present invention.
  • This vehicle is equipped with the battery of the present invention, and uses the electric energy of the mounted secondary battery as at least a part of the driving energy of the driving source.
  • the vehicle is not particularly limited, and examples thereof include an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, an electric forklift, a hybrid forklift, an electric wheelchair, an electric assist bicycle, and an electric scooter.
  • the present invention provides a battery-mounted device using the battery of the present invention.
  • This battery-equipped device is equipped with the battery of the present invention, and uses the electric energy of the mounted secondary battery as at least a part of driving energy.
  • Battery-equipped devices are not particularly limited, for example, portable electronic devices such as notebook computers, mobile phones, and video cameras, battery-powered electric tools, uninterruptible power supply devices, capacitors, etc. Home appliances, office equipment, and industrial equipment.
  • lithium titanate (Li 4 Ti 5 O 12 ) is used as a negative electrode active material capable of occluding and releasing lithium ions without changing the structure and size of the crystal lattice, and is used in a lithium ion secondary battery for high reliability applications. It has been. However, the theoretical capacity of lithium titanate is as small as 175 mAh / g. This is because lithium titanate reacts only with three electrons as shown in the following reaction formula, despite having a large molecular weight. It is thought to do. Reaction formula: Li 4 Ti 5 O 12 + 3Li + 3e ⁇ ⁇ Li 7 Ti 5 O 12
  • the silicate used in the present invention has a very high charge / discharge capacity compared to lithium titanate.
  • the silicate used in the present invention is considered to have a nine-electron reaction when estimated from the obtained charge capacity.
  • the silicate used in the present invention when used, the discharge potential can be lowered. Thereby, a high voltage battery with a high battery voltage can be obtained.
  • the silicate used in the present invention is a high capacity medium potential negative electrode material
  • the negative electrode of the present invention is a high capacity medium potential negative electrode.
  • the silicate used in the present invention is not only used for a negative electrode for a lithium ion secondary battery, but also has a structure that can contain Ca, Na, and Mg. Therefore, the negative electrode for a calcium ion secondary battery, sodium It can be estimated that it can also be used for negative electrodes for ion secondary batteries and negative electrodes for magnesium ion secondary batteries. Moreover, since the silicate used for this invention can generally use a natural mineral, it can be estimated that the cost of material can be reduced.
  • NMP N-methyl-2-pyrrolidone
  • a slurry-like negative electrode mixture was prepared.
  • the prepared negative electrode mixture was applied onto a 10 ⁇ m thick copper foil (manufactured by Nihon Foil Co., Ltd.) and dried. And it pressed so that the whole electrode density containing a copper foil and the layer of negative electrode compound material might be set to 1.1 mg / cm ⁇ 2 >, and it punched in the circle of diameter 16mm, and obtained the negative electrode.
  • a 2032 type coin cell was produced as a lithium ion secondary battery for evaluation of counter lithium.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a 2032 type coin cell was produced using the product as an electrolyte and a polyethylene separator.
  • the plateau potential during discharge obtained from FIG. 5 was more than 0.5V and less than 0.6V.
  • the charge capacity and discharge capacity (mAh / g) are the charge capacity and discharge capacity per mass of active material, and were calculated from the calculation formula “cell charge capacity or discharge capacity ⁇ active material mass”.
  • the initial charge and discharge are referred to as initial charge and initial discharge, and both are referred to as initial charge / discharge.
  • the charge / discharge efficiency (%) was obtained from the calculation formula “discharge capacity (mAh / g) ⁇ charge capacity (mAh / g) ⁇ 100”.
  • the plateau potential (V) at the time of discharge is substantially constant and flat with respect to the horizontal axis in the potential-capacity curve in which the vertical axis is the lithium reference potential (V) and the horizontal axis is the discharge capacity (mAh / g).
  • V lithium reference potential
  • V the discharge capacity
  • a displacement point that is a point where a straight line (a) having a slope at the beginning of discharge or a slope at the beginning of discharge intersects with a straight line (b) having a slope that is gentler than the slope at the beginning of discharge. Obtained as potential.
  • the displacement point is determined by looking at the potential-capacity curve from the lower potential, determining the straight line (b), then looking at the potential-capacitance curve from the higher potential, determining the straight line (a), and It was calculated as a point where both parties crossed.
  • Example 2 A coin cell was manufactured in the same manner as in Example 1 except that Czech cineite (CaFeAlSiO 6 ) was used instead of ediline.
  • the charge capacity and discharge capacity, the charge / discharge efficiency, and the plateau potential during discharge were determined in the same manner as in Example 1. The results are shown in FIG.
  • the plateau potential at the time of discharge obtained from FIG. 6 was more than 0.5V and less than 0.6V.
  • Example 3 A coin cell was produced in the same manner as in Example 1 except that American ordinary pyroxene [Ca (Mn, Fe, Zn) Si 2 O 6 ] was used instead of edilin.
  • the charge capacity and discharge capacity, the charge / discharge efficiency, and the plateau potential during discharge were determined in the same manner as in Example 1. The results are shown in FIG.
  • the plateau potential at the time of discharge calculated from FIG. 7 was more than 0.4 V and less than 0.5 V.
  • Example 2 A coin cell was produced in the same manner as in Example 1 except that a commercially available negative electrode using lithium titanate (Li 4 Ti 5 O 12 ) was used instead of the negative electrode using ediline.
  • a commercially available negative electrode using lithium titanate Li 4 Ti 5 O 12
  • the plateau potential at the time of discharge obtained from FIG. 8 was more than 1.5V and less than 1.6V.
  • Examples 1 to 3 had higher charge capacities and discharge capacities than the comparative examples. Therefore, it was found that the batteries using the negative electrode of the present invention (Examples 1 to 3) showed a higher capacity than the batteries not using the negative electrode of the present invention (Comparative Example). This result shows that the silicate used in the present invention has good charge / discharge characteristics.
  • the plateau potential during discharge according to Examples 1 to 3 is the plateau potential during discharge according to the comparative example (over 1.5 V to 1.6 V).
  • the potential was sufficiently low as compared with (less than). Therefore, it was found that the negative electrode (Examples 1 to 3) of the present invention can lower the discharge potential as compared with the comparative example. This result shows that a high voltage battery having a high battery voltage is obtained when the negative electrode of the present invention is used.
  • a coin cell was produced in the same manner as in Example 1 except that NaPF 6 dissolved in a 1: 1 (vol ratio) mixed solvent was used at a concentration of 1M.
  • charge capacity, discharge capacity, and charge / discharge efficiency were calculated
  • Example 5 A coin cell was produced in the same manner as in Example 4 except that American pyroxene [Ca (Mn, Fe, Zn) Si 2 O 6 ] was used instead of edilin. About the produced coin cell, the charge capacity, the discharge capacity, and the charge / discharge efficiency were determined by the same method as in Example 4. The results are shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本発明は、従来よりも、さらに高容量の二次電池を得ることができる電池用負極および、これを用いた電池などを提供するもので、輝石構造を有し、かつ一般式;A2-p(式中、AはNa、Ca、Fe、Zn、MnおよびMgからなる群から選択される少なくとも1種である。Mは遷移金属元素、AlおよびMgからなる群から選択される少なくとも1種であり、かつ遷移金属元素を必須とする。AとMは同一または異なる元素であり、0<p<2である。XはSiまたはAlSi2-qであり、0<q<2である。)で表されるケイ酸塩を備える。

Description

電池用負極、電池、車両および電池搭載機器
 本発明は、電池用負極、前記電池用負極を有する電池、前記電池を備える車両および電池搭載機器に関する。
 近年、二次電池としてリチウムイオン電池が急速に普及している。リチウムイオン二次電池は、主として、正極、負極、セパレータおよび電解質から構成されている。リチウムイオン二次電池は、電解質中のリチウムイオンが両電極間を行き来することにより、充放電を行うものである。
 負極材としては、高容量を与え得ることから炭素材料が実用化されているが、比重が小さいという問題があり、さらに既にこれ以上の研究の余地が少ないことが知られている。
 そこで、さらなる高容量化を目的として、様々な負極材が提案されている。例えば、チタン酸化物としてチタン酸リチウム(LiTi12)が提案されている(例えば、特許文献1および非特許文献1参照)。
 また、SiO(2>y>0)、LiSiO(x>0、2>y>0)で表されるケイ素酸化物が提案されている(例えば、特許文献2および3参照)。
特開2001-126727号公報 特許第2997741号公報 特開2012-54220号公報
S. Y. Yin et al, "Synthesis of spinel Li4Ti5O12 anode material by a modified rheologicalphase reaction", Electrochimica Acta, 2009, 54, 5629-5633
 しかしながら、例えば、ノート型パソコン、携帯電話、ビデオカメラなどの携帯型電子機器および電気自動車などに搭載する駆動用電源としては、従来よりも、さらに高容量の二次電池が求められている。
 本発明は、上述のような問題に鑑みてなされたもので、従来よりも、さらに高容量の二次電池を得ることができる電池用負極および、これを用いた電池などを提供することを目的としている。
 本発明は、本発明者らが、上記課題を解決すべく鋭意研究を重ねた結果、輝石構造を有する特定のケイ酸塩鉱物を二次電池の負極材として用いることにより、従来技術であるチタン酸リチウムを用いる場合に比べ、充放電電位を下げることができ、かつ高容量の二次電池が得られることを見出し、完成に至ったものである。
 本発明の電池用負極は、輝石構造を有し、かつ一般式;A2-p(式中、AはNa、Ca、Fe、Zn、MnおよびMgからなる群から選択される少なくとも1種である。Mは遷移金属元素、AlおよびMgからなる群から選択される少なくとも1種であり、かつ遷移金属元素を必須とする。AとMは同一または異なる元素であり、0<p<2である。XはSiまたはAlSi2-qであり、0<q<2である。)で表されるケイ酸塩を備える。
 また、本発明の電池用負極は、上記の電池用負極において、対極リチウム評価における初期充放電時の充電容量および放電容量が、ともに200mAh/g以上である。
 また、本発明の電池用負極において、対極リチウム評価における初期充電時のプラトー電位が、1.5V以下である。
 また、本発明の電池用負極において、前記ケイ酸塩が、エジリン(NaFeSi)、エシネアイト(CaFeAlSiO)および普通輝石[Ca(Mn,Fe,Zn)Si]の何れかより選ばれる1の物質である。
 また、本発明の電池用負極において、前記1の物質を粉砕して活物質を得て、該活物質:導電材(炭素材料):ポリフッ化ビニリデン(PVDF)=64:30:6(質量比)となるようにN-メチル-2ピロリドン(NMP)に加えて混合することにより調製されるスラリー状の負極合材を銅箔上に塗布し、乾燥させた銅箔と負極合材の2層とを含む。
 また、本発明の電池は、上記の電池用負極を備える。
 また、本発明の車両は、上記の電池を搭載する。
 また、本発明の電池搭載機器は、上記の電池を搭載する。
 本発明によれば、従来よりも、さらに高容量の二次電池を得ることができる電池用負極および、これを用いた電池などを提供することができる。
本発明に用いられるケイ酸塩の輝石構造の模式図である。 実施形態に係るリチウムイオン二次電池の外形を模式的に示す斜視図である。 図2におけるA-A断面図である。 図3の捲回電極体を模式的に示す斜視図である。 実施例1に係る、エジリンを使用した対極リチウム評価における、充放電時の容量-電位曲線である。 実施例2に係る、エシネアイトを使用した対極リチウム評価における、充放電時の容量-電位曲線である。 実施例3に係る、普通輝石を使用した対極リチウム評価における、充放電時の容量-電位曲線である。 比較例に係る、チタン酸リチウムを使用した対極リチウム評価における、充放電時の容量-電位曲線である。 実施例4に係る、エジリンを使用した対極ナトリウム評価における、充放電時の容量-電位曲線である。 実施例5に係る、エシネアイトを使用した対極ナトリウム評価における、充放電時の容量-電位曲線である。
〔電池用負極〕
 以下、本発明に係る一般式A2-pで表される、輝石構造を有するケイ酸塩を備えることを特徴とする電池用負極について説明する。本発明の電池用負極は、上記のように特定のケイ酸塩を含んで構成されている。
 なお、本発明の電池用負極に係る特定のケイ酸塩は、以下、「本発明に用いられるケイ酸塩」という。
 本発明に用いられるケイ酸塩とは、ケイ酸塩に分類されるもののうち、上記一般式で表され、かつ輝石構造を有するものである。本発明に用いられるケイ酸塩は、合成品でも、天然物でも構わない。本発明に用いられるケイ酸塩は、一般に天然物であるケイ酸塩鉱物として入手することができる。
 なお、本発明に用いられるケイ酸塩のうち、天然鉱物のものは、以下、「本発明に用いられるケイ酸塩鉱物」という。
 本発明に用いられるケイ酸塩鉱物は、イノケイ酸塩鉱物の輝石グループに分類される。そして、本発明に用いられるケイ酸塩鉱物は、上記一般式で表されるように、輝石グループのうち、ある特定の範囲の輝石を指している。本発明に用いられるケイ酸塩は、負極活物質として、本発明の電池用負極に用いられる。
 上記一般式において、Aは、Ca、Fe、Mg、Mn、NaおよびZnからなる群から選択される1種または2種以上の元素である。
 上記一般式において、Mは、遷移金属元素である。遷移金属元素とは、周期表の3族~12族の元素である。周期表の12族は、典型金属に分類される場合もあるが、本発明においては遷移金属に分類する(化学大辞典(第1版)、株式会社東京化学同人)。Mは、具体的には、例えば、Cr、Fe、Mn、Sc、Ti、VおよびZnからなる群から選択される1種または2種以上の元素である。
 なお、AおよびMにおいては、例えば、Fe2+およびFe3+などの原子価の異なるものが混在する場合がある。
 AとMは同一であっても、異なる元素であっても構わない。AとMが同一である場合とは、例えば、後述する鉄珪輝石や単斜鉄珪輝石などである。
 AとMとの関係において、pの値は、0<p<2の範囲にある。本発明に用いられるケイ酸塩は複雑な構造をとり、また天然物たる鉱物が用いられる場合もあるため、pの値をこれ以上特定することはできない。pの値としては、例えば、p=0.9~1.1とすることができる。
 本発明に用いられるケイ酸塩鉱物を用いる場合、AとMとして、天然鉱物として許容される少量の他の元素が混入する場合もありえる。
 上記一般式において、Xは、SiまたはSiAl2-qである。XがSiおよびAlをとる場合、qの値は、0<q<2の範囲にある。本発明に用いられるケイ酸塩は複雑な構造をとり、また天然物たる鉱物が用いられる場合もあるため、qの値をこれ以上特定することはできない。qの値としては、q=1.4~1.6とすることができる。
 図1を参照して、輝石構造について説明する。本発明に用いられるケイ酸塩は、上記のとおり、輝石構造を有する。輝石構造とは、SiO四面体が2個の酸素を共有し、直鎖状に連結された構造である。つまり、輝石構造は、[(SiO2-]を基本繰り返し単位とするものである。輝石構造は、単鎖状であり、ある方向から見るとSiO四面体がジグザグ状に構成されている。輝石構造は、X線回折(XRD)などにより確認することができる。
 AおよびMで表される元素は、[(SiO2-八面体が形成する2つの空隙に、それぞれ収まっている。Aが収まる空隙は、SiO四面体の頂点と稜とで構成されている。Aが収まる空隙は、SiO鎖を引き締めるために最も重要な空隙であり、非常に効率の良いフレキシブルな空隙である。しかし、Aが収まる空隙は、この空隙が埋まると、イオン結合の結合力が分散して弱くなるという性質を有している。Mが収まる空隙は、SiO四面体の頂点と頂点とで構成されている。Mが収まる空隙は、この空隙が埋まることにより、Aが収まる空隙が原因で弱くなる結合力をカバーする働きを有する。
 天然物たる輝石は、結晶構造より斜方輝石および単斜輝石に分類されるが、本発明に用いられるケイ酸塩は、いずれであっても構わない。
 本発明に用いられるケイ酸塩は、上述のとおり、合成品でも、天然物でも構わない。本発明に用いられるケイ酸塩としては、例えば、Mg-Fe輝石のうち、鉄珪輝石[Ferrosilite(Fs)、フェロシライト、Fe2+ Si/(Fe2+,Mg)Si
]、単斜鉄珪輝石[Clinoferrosilite、単斜フェロシライト、Fe2+2Si/(Fe2+,Mg)Si]、ピジョン輝石[Pigeonite、ピジョナイト、(Mg,Fe2+,Ca)(Mg,Fe2+)Si]などのケイ酸塩鉱物および、これらに相当する合成品が挙げられる。
 また、本発明に用いられるケイ酸塩としては、例えば、Mn-Mg輝石のうち、加納輝石[Kanoite(Ka)、カノアイト、(Mn,Mg)2Si]などのケイ酸塩鉱物
および、これらの相当する合成品が挙げられる。
 また、本発明に用いられるケイ酸塩としては、例えば、Ca輝石のうち、灰鉄輝石[Hedenbergite(Hd)、ヘデンバージャイト、CaFe2+Si]、普通輝石[Augite、オージャイト、(Ca,Mg,Fe)Si(Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)O/Ca(Mn,Fe,Zn)Si]、ヨハンセン輝石[Johannsenite(Jo)、ヨハンセナイト、CaMnSi]、ピタダナイト[Petedunnite(Pe)、CaZnSi/Ca(Zn,Mn2+,Fe2+,Mg)Si]、エシネアイト[Esseneite(Es)、CaFe3+AlSiO]、デイビス輝石[Davisite、CaScAlSiO]、グロスマン輝石[Grossmanite、CaTi3+AlSiO]、久城輝石[Kushiroite、CaAlAlSiO]などのケイ酸塩鉱物および、これらの相当する合成品が挙げられる。
 また、本発明に用いられるケイ酸塩としては、例えば、ケイ酸塩鉱物の輝石グループのうち、オンファス輝石[Omphacite、オンファサイト、(Ca,Na)(Mg,Fe2+,Al,Fe3+)Si/(Ca,Na)(Mg,Fe2+,Al)Si]、エジリン普通輝石[Aegirine-augite、エジリン-オージャイト、(Ca,Na)(Fe3+,Mg,Fe2+)Si]などのCa-Na輝石および、これらの相当する合成品が挙げられる。
 また、本発明に用いられるケイ酸塩としては、例えば、ケイ酸塩鉱物の輝石グループのうち、ひすい輝石[Jadeite(Jd)、ジェイダイト、Na(Al,Fe3+)Si]、エジリン輝石[Aegirine(Ae)、エジリンまたは錐輝石、NaFe3+Si]、コスモクロア輝石[Kosmochlor(Ko)、コスモクロア、NaCr3+Si]、ジャービス輝石[Jervisite(Je)、ジャービサイト、NaSc3+Si/(Na,Ca,Fe2+)(Sc,Mg,Fe2+)Si]、ナマンシル輝石[Namansilite、ナマンシライト、NaMn3+Si]、ナタリー輝石またはナターリア輝石[Natalyite、Na(V3+,Cr3+)Si]などのNa輝石および、これらに相当する合成品が挙げられる。
 本発明に用いられるケイ酸塩鉱物の産地は、特に限定はなく、本発明に用いられるケイ酸塩鉱物としては、例えば、マラウイ、カナダ、ロシア、オーストラリア、米国、チェコ、フランス、マダガスカル、南アフリカ、ナミビア、ケニア、エルサルバドル、セントビンセント・グレナディーン、フランス領南方・南極地域、アフガニスタン、アルジェリア、アンゴラ、南極大陸、アルゼンチン、アルメニア、オーストリア、アゼルバイジャン、ベラルーシ、ボリビア、ブラジル、ブルガリア、ミャンマー、カメルーン、中央アフリカ、英国領チャンネル諸島、エジプト、エリトリア、フィジー、フィンランド、チリ、中国、コロンビア、コスタリカ、コンゴ、エチオピア、フランス領ポリネシア、フランス領西インド諸島、ドイツ、ガーナ、ギリシャ、グリーンランド、グアテマラ、ギニア、ガイアナ、ホンジュラス、ハンガリー、アイスランド、インド、イラン、イラク、アイルランド、イスラエル、イタリア、日本、カザフスタン、キルギス、リビア、マリ、マルタ、メキシコ、モントセラト、モンゴル、モロッコ、ニューカレドニア、ニュージーランド、ニジェール、ナイジェリア、北朝鮮、ノルウェー、オマーン、パキスタン、パプアニューギニア、パラグアイ、ペルー、ポーランド、ポルトガル、マケドニア、フランス領レユニオン島、ルーマニア、セントルシア、シエラレオネ、セントへレナ、サウジアラビア、スロバキア、ソロモン諸島、韓国、ソマリランド、スペイン、スウェーデン、スイス、タジキスタン、タンザニア、トルコ、米国領ヴァージン諸島、ウガンダ、英国、ウクライナ、ウズベキスタン、西サハラ、イエメン、ベネズエラ、ベトナム、ザンビアなどで産出されたものを用いることができる。
 具体的には、エジリンとしては、例えば、マラウイ、カナダ、ロシア、オーストラリア、米国、アフガニスタン、アルジェリア、アンゴラ、南極大陸、アルゼンチン、アルメニア、オーストリア、ベラルーシ、ボリビア、ブラジル、ブルガリア、ミャンマー、カメルーン、英国領チャンネル諸島、チェコ、チリ、中国、コンゴ、エチオピア、フランス、フランス領ポリネシア、ドイツ、ギリシャ、グリーンランド、グアテマラ、ギニア、ガイアナ、ホンジュラス、ハンガリー、アイスランド、インド、イタリア、日本、カザフスタン、ケニア、キルギス、リビア、マダガスカル、マリ、メキシコ、モンゴル、モロッコ、ナミビア、ニュージーランド、ニジェール、ナイジェリア、北朝鮮、ノルウェー、パキスタン、パラグアイ、ペルー、ポーランド、ポルトガル、マケドニア、フランス領レユニオン島、ルーマニア、セントへレナ、サウジアラビア、スロバキア、ソマリランド、南アフリカ、スペイン、スウェーデン、スイス、タジキスタン、タンザニア、トルコ、ウガンダ、英国、ウクライナ、ベネズエラ、ベトナム、ザンビアなどで産出されたものを用いても良い。
 エシネアイトとしては、例えば、チェコ、フランス、ロシア、イスラエル、イタリア、米国などで産出されたものを用いても良い。
 普通輝石としては、例えば、米国、カナダ、ロシア、オーストラリア、マダガスカル、南アフリカ、ナミビア、ケニア、エルサルバドル、セントビンセント・グレナディーン、フランス領南方・南極地域、アルジェリア、南極大陸、アルゼンチン、アルメニア、オーストリア、アゼルバイジャン、ボリビア、ブラジル、ブルガリア、カメルーン、中央アフリカ、チリ、中国、コロンビア、コスタリカ、チェコ、エジプト、エリトリア、フィジー、フィンランド、フランス、フランス領ポリネシア、フランス領西インド諸島、ドイツ、ガーナ、ギリシャ、グリーンランド、グアテマラ、ギニア、ハンガリー、アイスランド、インド、イラン、イラク、アイルランド、イスラエル、イタリア、日本、カザフスタン、キルギス、リビア、マリ、マルタ、メキシコ、モントセラト、モロッコ、ニューカレドニア、ニュージーランド、ノルウェー、オマーン、パキスタン、パプアニューギニア、パラグアイ、ポーランド、ポルトガル、コンゴ、ルーマニア、セントルシア、シエラレオネ、スロバキア、ソロモン諸島、韓国、スペイン、スウェーデン、スイス、タンザニア、トルコ、米国領ヴァージン諸島、英国、ウクライナ、ウズベキスタン、西サハラ、イエメンなどで産出されたものを用いても良い。
 合成品としては、例えば、参考文献(Alain DECARREAU et al,"Hydrothermal synthesis of aegirine at200°C", European Journal of Mineralogy, 2004, 16, 85-90)の方法により作製することができる。
 本発明に用いられるケイ酸塩は、通常、粒子状として負極材に用いられる。ケイ酸塩を粒子状にする方法としては、例えば、乳鉢で磨り潰すなどの公知の方法を適宜採用することができる。
 本発明に用いられる粒子状のケイ酸塩は、熱処理などの更なる加工を施すことなく、そのまま負極材として用いることができる。
 また、本発明に用いられる粒子状のケイ酸塩は、電気導電性の向上などを目的として、表面にカーボンコートを施して用いても構わない。本発明に用いられる粒子状のケイ酸塩の表面にカーボンコートを施す方法としては、公知の方法を適宜採用することができる。表面にカーボンコートされたケイ酸塩は、例えば、粒状のケイ酸塩を、炭素源を含む水溶液に入れ、撹拌した後に乾燥させ、これを還元性雰囲気下で焼成して炭素源を炭化させることにより得ることができる。ケイ酸塩に対するカーボンの量は、特に限定はなく、例えば、ケイ酸塩100質量部当たりカーボン1~3質量部とすることができる。カーボンコートに用いられる炭素源は、特に限定はなく、例えば、ポリビニルアルコール、スクロースなどが挙げられる。
(負極の構成)
 本発明の電池用負極の構成について説明する。本発明の電池用負極の構成は、負極活物質として本発明に用いられるケイ酸塩を用いること以外、特に限定はなく、公知の負極の構成を採用することができる。本発明の電池用負極は、一般に、負極活物質、導電材、結着材および負極集電体を含んで構成されるが、これに限定されるものではない。
(負極活物質)
 負極活物質としては、上記のとおり、本発明に用いられるケイ酸塩を必須とするが、他の負極活物質を含んでも構わない。他の負極活物質としては、特に限定はなく、例えば、少なくとも一部にグラファイト構造を有するカーボン材料などを用いることができる。
 本発明に用いられるケイ酸塩と他の負極活物質とを併用する場合、負極活物質全体に対する、本発明に用いられるケイ酸塩の含有量は、特に限定はなく、例えば50質量%~100質量%とすることができる。負極活物質は、実質的に本発明に用いられるケイ酸塩だけであっても構わない。
(導電材)
 導電材としては、特に限定はなく、一般に、炭素材料であるカーボン粉末やカーボンファイバーなどの導電性粉末材料が用いられる。カーボン粉末としては、特に限定はなく、アセチレンブラック、ファーネスブラックおよびケッチェンブラックなどのカーボンブラックや、グラファイト粉末などが挙げられる。導電材の含有量は、特に限定はなく、例えば、負極活物質100質量部に対して0.1~50質量部とすることができる。これらの導電材は、1種単独で用いてもよく、2種以上を併用しても構わない。
(結着材)
 結着材としては、特に限定はなく、例えば、有機溶剤可用性結着材や水分散性結着材などを用いることができる。
 有機溶剤可用性結着材としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド-プロピレンオキサイド共重合体(PEO-PPO)、ポリイミド、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリビニルピロリドン、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂などが挙げられる。
 水分散性結着材としては、例えば、スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、エチレン-プロピレン-ジエン共重合樹脂、ポリブタジエン、アラビアゴムやフッ素ゴムなどのゴム類;ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)などのフッ素系樹脂;などが挙げられる。
 結着材の含有量は、特に限定はなく、負極活物質の種類や量に応じて適宜調整することができる。結着材の含有量としては、例えば、負極活物質100質量部に対して0.1~33質量部、さらに0.1~10質量部とすることができる。これらの結着材は1種単独で用いてもよく、2種以上を併用しても構わない。
(増粘剤)
 本発明の電池用負極には、必要に応じて増粘剤を用いることができる。増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)などのセルロース樹脂などが挙げられる。
(負極集電体)
 負極集電体は、特に限定はなく、例えば、銅または銅を主成分とする合金を用いることができる。負極集電体の形状は、二次電池の形状などに応じて異なり得るため、特に限定はなく、棒状、板状、シート状、箔状、メッシュ状などの種々の形態をとることができる。
(負極の製造方法)
 本発明の電池用負極の製造方法について説明する。本発明の電池用負極の製造方法は、負極活物質として本発明に用いられるケイ酸塩を用いること以外、特に限定はなく、公知の負極の製造方法を採用することができる。本発明の電池用負極は、一般に、以下の方法に製造することができる。
 本発明で用いられるケイ酸塩を粒子状とする。負極活物質として本発明で用いられる粒子状のケイ酸塩を、導電材や結着材などと共に、適当な溶媒に分散させ、ペースト状またはスラリー状の組成物を得る。得られた組成物は負極合材という。次に、負極合材を負極集電体に塗布して、負極合材を乾燥させることにより、負極を得る。得られた負極は、負極合材の乾燥後、必要に応じてプレス加工し、電極密度を調整することができる。この負極において、負極集電体以外の層、すなわち負極合材が層状に乾燥したものは、負極活物質層という。
 負極合材中の、乾燥質量における負極活物質の含有量は、特に限定はなく、例えば60~98.8質量%とすることができる。
 分散させる溶媒としては、特に限定はなく、水;低級アルコールや低級ケトンなどの水性有機溶媒;N-メチル-2ピロリドン(NMP)やトルエンなどの非水性有機溶媒;などが挙げられる。
 負極合材を負極集電体に塗布する方法は、公知の方法を適宜採用することができる。この方法としては、例えばスリットコーター、ダイコーター、グラビアコーターなどの塗布装置を用いることができる。
 負極集電体に塗布された負極合材の乾燥方法としては、自然乾燥、熱風、低湿風、真空、赤外線、遠赤外線、および電子線などの公知の方法を適宜採用することができる。これらの方法は、単独または組み合わせて用いることができる。
 負極合材の乾燥後にプレス加工する方法としては、ロールプレス法、平板プレス法などの公知の方法を適宜採用することができる。このプレス加工は、電極の厚さを調整するにあたり、膜厚測定器で厚みを測定し、プレス圧を調整して所望の厚さになるまで複数回圧縮してもよい。
〔電池〕
 図2~図4を参照して、本発明の電池について説明する。本発明の電池は、上述した電池用負極を備えるものである。この電池の一実施形態としてリチウムイオン二次電池100を例にして詳細に説明するが、本発明の電池は、本実施形態に限定されない。本発明の電池には、例えば、リチウムイオン電池、ナトリウムイオン電池、カルシウムイオン電池およびマグネシウムイオン電池などが包含される。
 本実施形態のリチウムイオン二次電池100は、電極体および非水電解液を角型形状の電池ケース10に収容した構成を有する。二次電池の形状は特に限定されず、電池ケースや電極体などは用途や容量に応じて、素材、形状、大きさなどを適宜選択することができる。電池ケースは、例えば、直方体状、扁平形状、円筒形状などの形状とすることができる。
 なお、図2~図4において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。また、各図における、長さ、幅および厚さなどの寸法関係は、実際の寸法関係を反映するものではない。
 また、例えば、捲回構造や積層構造などの電極体の構成および製造方法、セパレータの構成および製造方法、二次電池の構築に係る一般的技術などは、当該分野における従来技術に基づく当業者の設計事項として把握されるものである。
 本実施形態のリチウムイオン二次電池100は、主として、正極シート30、負極シート40、セパレータ50および図示しない電解質により構成されている。正極シート30はシート状の正極電極であり、負極シート40はシート状の負極電極である。電解質としては、非水電解液が用いられている。
 図2~図4に示されるように、リチウムイオン二次電池100は、捲回電極体20、図示しない非水電解液、開口部11を有する電池ケース10、電池ケース10の開口部11を塞ぐための蓋体12により構成されている。より詳細には、リチウムイオン二次電池100は、捲回電極体20を図示しない非水電解液とともに、捲回電極体20の形状に対応した扁平な箱状の電池ケース10の開口部11より内部に収容し、そして電池ケース10の開口部11を蓋体12で塞ぐことによって構築されている。蓋体12には、外部接続用の正極端子36および負極端子46が、それら端子の一部として蓋体12の表面側に突出するように設けられている。外部端子である正極端子36および負極端子46の他の一部は、電池ケース10内部で、それぞれ内部正極端子35または内部負極端子45に接続されている。
 図3および図4を参照して、本実施形態の捲回電極体20について説明する。図4に示されるように、捲回電極体20は、正極シート30、負極シート40および長尺シート状のセパレータ50を含んで構成されている。正極シート30は、長尺シート状の正極集電体32の表面に正極活物質層31が形成されたものである。負極シート40は、長尺シート状の負極集電体42の表面に負極活物質層41が形成されたものである。正極シート30及び負極シート40は、捲回軸方向Rの方向での断面視において、2枚のセパレータ50を介して積層されており、正極シート30、セパレータ50、負極シート40、セパレータ50の順に積層されている。図3および図4に示されるように、捲回電極体20は、上記積層物を図示しない軸芯の周囲に筒状に捲回させ、側面方向から押しつぶすことによって扁平形状に成形されたものである。
 図3および図4に示されるように、正極シート30には、その長手方向に沿う一方の端部において、正極活物質層31が設けられておらず、または除去されて、正極集電体32が露出した正極集電体非形成部33が形成されている。また、負極シート40には、その長手方向に沿う他方の端部において、負極活物質層41が設けられておらず、または除去されて、負極集電体42が露出した負極集電体非形成部43が形成されている。
 捲回軸方向Rに沿う方向での断面視において、捲回軸方向Rの一方の端部には、正極集電体非形成部33が負極シート40およびセパレータ50からはみ出た状態で積層され、正極集電体積層部34を形成している。また、捲回軸方向Rの他方の端部には、負極集電体非形成部43が正極シート30およびセパレータ50からはみ出た状態で積層され、負極集電体積層部44を形成している。
 セパレータ50としては、正極活物質層31および負極活物質層41の積層部分の幅より大きく、捲回電極体20の幅より小さい幅を備えるセパレータが用いられている。そして、セパレータ50は、正極集電体32と負極集電体42が互いに接触して内部短絡を生じさせないように正極活物質層31および負極活物質層41の積層部分に挟まれるように配されている。
 セパレータ50は、正極シート30および負極シート40の間に介在するシートであって、正極活物質層31および負極活物質層41にそれぞれ接するように配置される。そして、セパレータ50は、正極活物質層31と負極活物質層41との接触に伴う短絡防止や、セパレータ50の空孔内に非水電解液などの電解質を含浸させることにより、電極間の、導電経路たる伝導パスを形成する役割を担っている。
 そして、内部正極端子35は正極集電体積層部34に、内部負極端子45は負極集電体積層部44に、それぞれ接合され、捲回電極体20の正極シート30または負極シート40と電気的に接続されている。接合方法としては、例えば、超音波溶接、抵抗溶接などの公知の方法を適宜採用することができる。
 本実施形態のリチウムイオン二次電池100は、得られた捲回電極体20を電池ケース10に収容した後、非水電解液を注入し、開口部11である注入口を蓋体12で封止することによって構築することができる。
(正極の構成)
 正極シート30として構成されている正極について説明する。本実施形態の正極の構成は、特に限定はなく、公知の正極の構成を採用できる。本実施形態の正極は、正極活物質、導電材、結着材および正極集電体を含んで構成されているが、これに限定されるものではない。
(正極活物質)
 正極活物質としては、リチウムを吸蔵および放出可能な正極材料が用いられ、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。
 正極活物質としては、例えば、層状構造の酸化物やスピネル構造の酸化物などが挙げられる。より具体的には、例えば、LiNiOなどのリチウムニッケル系複合酸化物、LiCoOなどのリチウムコバルト系複合酸化物、LiMnなどのリチウムマンガン系複合酸化物、リチウムマグネシウム系複合酸化物などのリチウム含有複合酸化物などが挙げられる。
 また、正極活物質としては、一般式;LiMPO(MはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素である。)で表されるオリビン型リン酸リチウムを用いることができる。上記オリビン型リン酸リチウムとしては、例えば、LiFePOやLiMnPOなどが挙げられる。
 ナトリウムイオン二次電池における正極活物質としては、例えば、遷移金属元素を含む硫化物や、ナトリウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS、TiS、MoS、FeSなどの遷移金属硫化物、Na(1-y)MnO(0<y<1など、以下同じ)、Na(1-y)Mnなどのナトリウムマンガン複合酸化物、Na(1-y)CoOなどのナトリウムコバルト複合酸化物、Na(1-y)NiOなどのナトリウムニッケル複合酸化物、NaVなどのナトリウムバナジウム複合酸化物、Vなどの遷移金属酸化物などを用いることができる。
 カルシウムイオン二次電池における正極活物質としては、例えば、CaCoやCaCoMnOなどを用いることができる。
 マグネシウムイオン二次電池における正極活物質としては、例えば、MgXMoやフッ化黒鉛などを用いることができる。
(導電材、結着材、増粘剤)
 導電材、結着材および増粘剤としては、上述した負極と同様のものを、一種のみを単独で、または二種以上組み合わせて用いることができる。
(正極集電体)
 正極集電体32は、特に限定はなく、例えば、アルミニウムまたはアルミニウムを主成分とする合金を用いることができる。正極集電体32の形状は、二次電池の形状などに応じて異なり得るため、特に限定はなく、棒状、板状、シート状、箔状、メッシュ状などの種々の形態をとることができる。
 本実施形態では、捲回電極体20を備えるリチウムイオン二次電池100に好適に使用できるように、シート状のアルミニウム製の正極集電体32が用いられている。本実施形態では、例えば、厚みが10μm~30μm程度のアルミニウムシートを用いることができる。
(正極の製造方法)
 正極の製造方法は、特に限定はなく、公知の正極の製造方法を採用することができる。正極は、一般に、以下の方法により製造することができる。
 正極活物質を、導電材や結着材などと共に、適当な溶媒に分散させ、ペースト状またはスラリー状の組成物を得る。得られた組成物は正極合材という。次に、正極合材を正極集電体に塗布して、正極合材を乾燥させることにより、正極を得る。得られた正極は、正極合材の乾燥後、必要に応じてプレス加工し、電極密度を調整することができる。この正極において、正極集電体以外の層、すなわち正極合材が層状に乾燥したものは、正極活物質層という。
 正極合材中の、乾燥質量における正極活物質の含有量は、特に限定はなく、例えば80~95質量%とすることができる。
 なお、分散させる溶媒、合材を集電体に塗布する方法、塗布された合材の乾燥方法は、上述した負極の製造方法と同様である。
 正極合材中の、乾燥質量における導電材の含有量は、正極活物質の種類や量に応じて適宜選択することができる。導電材の含有量としては、例えば1~10質量%とすることができる。
 正極合材中の、乾燥質量における結着剤の含有量は、正極活物質の種類や量に応じて適宜選択することができる。結着剤の含有量としては、例えば1~5質量%とすることができる。
(負極)
 負極の構成および製造方法については、上述したとおりである。本実施形態では、捲回電極体20を備えるリチウムイオン二次電池100に好適に使用できるように、シート状の銅製の負極集電体42が用いられている。実施形態では、例えば、厚みが6μm~30μm程度の銅製シートを用いることができる。
(電解質)
 電解質としては、特に限定はなく、従来からリチウムイオン二次電池に用いられる電解質を用いることができる。本実施形態では、非水電解液が用いられている。非水電解液は、非水溶媒中に支持塩を含むものである。
 支持塩としては、一般的なリチウムイオン二次電池に支持塩として用いられるリチウム塩を適宜選択して使用することができる。リチウム塩としては、特に限定はないが、例えばLiPF、LiBF、LiClO、LiAsF、Li(CFSON、LiCFSOなどが挙げられる。この中でも、LiPFが好ましい。非水電解液中の支持塩の濃度は、特に限定はなく、例えば0.7~1.3mol/Lとすることができる。支持塩は、一種のみを単独で、または二種以上を組み合わせて用いることができる。
 非水溶媒としては、一般的なリチウムイオン二次電池に用いられる有機溶媒を適宜選択して使用することができる。非水溶媒としては、特に限定はなく、例えばエチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)、プロピレンカーボネート(PC)などのカーボネート類や、γ-ブチロラクトンなどの環状エステル類などが挙げられる。この中でも、ECおよびDECの混合溶媒が好ましい。これら有機溶媒は、一種のみを単独で、または二種以上を組み合わせて用いることができる。
 ナトリウムイオン二次電池における電解質の支持塩としては、例えば、NaClO、NaBF、(CFSONNa、(CSONNa、NaCFSO、NaN(FSO、NaC(CFSO、NaPF、NaAsF、NaSbF、NaSiF、NaAlF、NaSCN、NaCl、NaF、NaBr、NaI、NaAlClなどが挙げられる。
 カルシウムイオン二次電池における電解質の支持塩としては、例えば、Ca(BF、Ca(CFSO、Ca(PF、Ca(ClO、Ca(AsF、Ca(SbF、Ca[N(CFSO、Ca[N(CFSOなどが挙げられる。
 ナトリウムイオン二次電池およびカルシウムイオン二次電池における電解質の非水溶媒としては、上記一般的なリチウムイオン二次電池に用いられる有機溶媒と同様のものを用いることができる。
 マグネシウムイオン二次電池の電解質としては、Mg(AlClBuEt)のテトラヒドロフラン(THF)溶液、ハロゲノフェニルマグネシウム(CMgX(X=Cl,Br))のTHF溶液、CMgX(X=Cl,Br)及びポリエチレンオキサイド(PEO)を含むポリマーゲル電解質などを用いることができる。
(セパレータ)
 セパレータ50は、正極シート30および負極シート40の間に介在する層であって、本実施形態においてはシート状を成し、正極シート30の正極活物質層31と、負極シート40の負極活物質層41にそれぞれ接するように配置される。セパレータ50は、正極シート30と負極シート40における両電極活物質層31,41の接触に伴う短絡防止や、セパレータ50の空孔内に電解液を含浸させることにより電極間の、導電経路としての伝導パスを形成する役割を担っている。
 セパレータ50としては、特に限定はなく、公知のものを適宜採用することができる。セパレータ50としては、例えば、樹脂からなる多孔性シートである、微多孔質樹脂シートを用いることができる。微多孔質樹脂シートとしては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレンなどの多孔質ポリオレフィン系樹脂シートを用いることができる。この中でも、PEシート、PPシート、PE層とPP層とが積層された多層構造シートなどが好ましい。セパレータの厚みは、特に限定はなく、例えば、10μm~40μmのものを用いることができる。
(対極リチウム評価)
 本明細書において、対極リチウム評価とは、評価活物質を用いた作用極に対して、参照/対極としてリチウム金属および電解質としてリチウムイオン電池用電解質を用いて、リチウムイオン二次電池としてコインセルを作製し、そのコインセルを評価することをいう。評価活物質とは、本発明に用いられるケイ酸塩である。コインセルとは、例えば、2032型のコインセルである。
 評価項目としては、充電容量および放電容量、充放電効率、放電時のプラトー電位などである。これらの評価は、一般に、縦軸を電位、横軸を放電容量または放電時間としてプロットした放電カーブから求められる。
 「放電時のプラトー電位」とは、上記放電カーブにおいて、電位がほぼ一定で横軸に対して平坦となる部分での電位、または放電開始当初の傾きを有する直線と、放電が進んでいき、放電開始当初の傾きと比して緩やかになった傾きを有する直線とが交わった点である変位点の電位をいう。
 なお、チタン酸リチウムの放電時のプラトー電位は、一般的に、リチウム基準で1.55Vとされている。
 対極リチウム評価は、上記のとおり、負極活物質として本発明に用いられるケイ酸塩を使用した作用極と、参照/対極である対極リチウムとで構成されたリチウムイオン二次電池における評価である。この評価における電位の基準は、例えば、「対Li/Li」、「Li対極時」、「リチウム基準」、「金属リチウム電位を基準とする」などの表記と同様の意味である。
 また、参照/対極として金属ナトリウムおよび電解質としてナトリウムイオン電池用電解質を用いて同様の方法により、対極ナトリウム評価をすることができる。また、参照/対極として金属カルシウムおよび電解質としてカルシウムイオン電池用電解質を用いて同様の方法により、対極カルシウム評価をすることができる。また、参照/対極として金属マグネシウムおよび電解質としてマグネシウムイオン電池用電解質を用いて同様の方法により、対極マグネシウム評価をすることができる。
 本発明の電池用負極の容量は、特に限定はないが、対極リチウム評価における初期充放電時の充電容量および放電容量が、ともに200mAh/g以上であることが好ましい。
 この初期充電時の充電容量は、より好ましくは300mAh/g以上、さらに好ましくは400mAh/g以上である。この初期放電時の放電容量は、より好ましくは250mAh/g以上である。
 よって、具体的には、初期充電時の充電容量が200mAh/g以上または250mAh/g以上の場合、初期放電時の放電容量は200mAh/g以上、300mAh/g以上または400mAh/g以上の組み合わせである。
 本発明の放電時のプラトー電位は、特に限定はないが、対極リチウム評価における初期充電時のプラトー電位が、1.5V以下であることが好ましい。この初期充電時のプラトー電位は、より好ましくは1V以下、さらに好ましくは0.8V以下、最も好ましくは0.6V以下である。
〔電池の用途〕
 本発明の電池は、本発明の電池用負極を用いた二次電池である。本発明の電池の用途は、特に限定はなく、例えば、車両や電池搭載機器などに用いることができる。本発明の電池の車両および電池搭載機器などへの搭載方法は、当該分野における従来技術に基づく当業者の設計事項として把握されるものである。
(車両)
 本発明は、本発明の電池が用いられた車両を提供する。この車両は、本発明の電池を搭載し、搭載した二次電池の電気エネルギを、駆動源の駆動エネルギの少なくとも一部に使用するものである。車両としては、特に限定はなく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、ハイブリッドフォークリフト、電気車いす、電動アシスト自転車、電動スクータなどが挙げられる。
(電池搭載機器)
 本発明は、本発明の電池が用いられた電池搭載機器を提供する。この電池搭載機器は、本発明の電池を搭載し、搭載した二次電池の電気エネルギを、駆動エネルギの少なくとも一部に使用するものである。電池搭載機器としては、特に限定はなく、例えば、ノート型パソコン、携帯電話、ビデオカメラなどの携帯型電子機器、電池駆動の電動工具、無停電電源装置、蓄電器などの、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。
 従来、チタン酸リチウム(LiTi12)は、結晶格子の構造やサイズを変化することなくリチウムイオンを吸蔵および放出できる負極活物質として、高信頼性用途のリチウムイオン二次電池に用いられている。しかし、チタン酸リチウムの理論容量は175mAh/gと小さく、これは、チタン酸リチウムが大きな分子量を有しているにも関わらず、下記の反応式のように、3電子しか反応しないことに起因するものと考えられる。
 反応式;LiTi12+3Li+3e→LiTi12
 これに対して、本発明に用いられるケイ酸塩は、チタン酸リチウムと比して、非常に高い充放電容量が得られる。本発明に用いられるケイ酸塩は、得られた充電容量から見積もると9電子反応が生じていると考えられる。
 本発明では、上記のような高容量を得るためには、一般式;A2-pのMに少なくとも1種の遷移金属元素が入ることが必須であると考えられる。この原因は定かではないが、Mに遷移金属が含まれない場合、電荷補償がうまくなされず、結果として充放電容量が小さくなり、高い充放電容量が得られないと推定できる。
 また、本発明に用いられるケイ酸塩を使用すると、放電電位を下げることができる。これにより、電池電圧が高い、高電圧電池を得ることができる。
 従って、本発明に用いられるケイ酸塩は高容量中電位負極材であると言え、本発明の負極は高容量中電位負極であると言える。
 また、本発明に用いられるケイ酸塩は、リチウムイオン二次電池用負極に用いられるだけでなく、Ca、NaおよびMgを含むことができる構造であるため、カルシウムイオン二次電池用負極、ナトリウムイオン二次電池用負極およびマグネシウムイオン二次電池用負極にも用いることができると推定できる。また、本発明に用いられるケイ酸塩は、一般的に天然鉱物を用いることができるため、材料の低コスト化ができると推定できる。
 以下、実施例および比較例により本発明をさらに詳しく説明するが、これらに限定されるものではない。下記の実施例で用いたエジリン、エシネアイトおよび普通輝石は、いずれも、上述した本発明に用いられるケイ酸塩鉱物に相当する。
<リチウムイオン二次電池としての評価>
 以下の実験により、本発明に用いられるケイ酸塩をリチウムイオン二次電池用の負極活物質として評価した。
〔実施例1〕
[活物質前処理]
 マラウイ産のエジリン(NaFeSi)を乳鉢で60分間粉砕し、活物質を得た。
[電極作製]
 上記で得た活物質1gを用いて、活物質:導電材(炭素材料):ポリフッ化ビニリデン(PVDF)=64:30:6(質量比)となるようにN-メチル-2ピロリドン(NMP)に加えて混合し、スラリー状の負極合材を調製した。次いで、調製した負極合材を厚さ10μmの銅箔(日本製箔社製)上に塗布し、乾燥させた。そして、銅箔と負極合材の層とを含む全体の電極密度が1.1mg/cmになるようにプレスし、直径16mmの円形に打ち抜き、負極電極を得た。
[電池作製]
 対極リチウム評価用リチウムイオン二次電池として、2032型のコインセルを作製した。上記で得た負極電極を作用極とし、対極リチウムを参照/対極とし、エチレンカーボネート(EC):ジエチルカーボネート(DEC)=3:7(vol比)混合溶媒にLiPFを濃度1Mで溶解させたものを電解液とし、ポリエチレン製のセパレータを用いて、2032型のコインセルを作製した。
[電気化学特性評価(対極リチウム評価)]
 上記で得たコインセルを用いて、充電として0.1C(1C=1時間に満充放電できる電流値)で0.01VまでLiを挿入し、その後、放電として2.0VまでLiを脱離する操作を行い、充電容量および放電容量、充放電効率ならびに放電時のプラトー電位を求めた。結果を図5および表1に示す。
 図5から求めた放電時のプラトー電位は、0.5V超0.6V未満であった。
 なお、充電容量および放電容量(mAh/g)は、活物質質量当りの充電容量および放電容量であり、算出式「セルの充電容量または放電容量÷活物質質量」より求めた。初回の充電および放電は、初期充電および初期放電といい、両者を合わせて、初期充放電という。
 充放電効率(%)は、算出式「放電容量(mAh/g)÷充電容量(mAh/g)×100」より求めた。
 放電時のプラトー電位(V)は、縦軸がリチウム基準の電位(V)、横軸が放電容量(mAh/g)である電位-容量曲線において、電位がほぼ一定で横軸に対して平坦となる部分での電位、または放電開始当初の傾きを有する直線(a)と、放電開始当初の傾きと比して緩やかになった傾きを有する直線(b)が交わった点である変位点の電位として求めた。
 変位点は、電位-容量曲線を電位の低い方から見ていき、直線(b)を決定し、次いで電位-容量曲線を電位の高い方から見ていき、直線(a)を決定し、そして両者の交わった点として求めた。
〔実施例2〕
 エジリンに代えて、チェコ産のエシネアイト(CaFeAlSiO)を用いた以外は、実施例1と同様の方法により、コインセルを作製した。作製したコインセルについて、実施例1と同様の方法により、充電容量および放電容量、充放電効率ならびに放電時のプラトー電位を求めた。結果を図6および表1に示す。
 図6から求めた放電時のプラトー電位は、0.5V超0.6V未満であった。
〔実施例3〕
 エジリンに代えて、米国産の普通輝石[Ca(Mn,Fe,Zn)Si]を用いた以外は、実施例1と同様の方法により、コインセルを作製した。作製したコインセルについて、実施例1と同様の方法により、充電容量および放電容量、充放電効率ならびに放電時のプラトー電位を求めた。結果を図7および表1に示す。
 図7から求めた放電時のプラトー電位は、0.4V超0.5V未満であった。
〔比較例〕
 エジリンを用いた負極電極に代えて、チタン酸リチウム(LiTi12)を用いた市販の負極電極を使用した以外は、実施例1と同様の方法により、コインセルを作製した。
[電気化学特性評価(対極リチウム評価)]
 上記で得たコインセルを用いて、充電として0.1C(1C=1時間に満充放電できる電流値)で1.0VまでLiを挿入し、その後、放電として3.0VまでLiを脱離する操作を行い、実施例1と同様の方法により、充電容量および放電容量、充放電効率ならびに放電時のプラトー電位を求めた。結果を図8および表1に示す。
 図8から求めた放電時のプラトー電位は、1.5V超1.6V未満であった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~3は、比較例と比して、充電容量および放電容量が高いものであった。よって、本発明の負極を用いた電池(実施例1~3)は、本発明の負極を用いない電池(比較例)と比して、高い容量を示すことがわかった。この結果は、本発明に用いられるケイ酸塩が良好な充放電特性を有していることを示している。
 図5~8からわかるように、実施例1~3に係る放電時におけるプラトー電位(0.4~0.6V付近)は、比較例に係る放電時のプラトー電位(1.5V超1.6V未満)と比して、十分に低い電位であった。よって、本発明の負極(実施例1~3)は、比較例と比して、放電電位を下げることができることがわかった。この結果は、本発明の負極を用いた際、電池電圧が高い、高電圧電池が得られることを示している。
<ナトリウムイオン二次電池としての評価>
 以下の実験により、本発明に用いられるケイ酸塩をナトリウムイオン二次電池用の負極活物質として評価した。
〔実施例4〕
 電池作製において、正極として対極リチウムに代えて対極ナトリウムを用い、電解液としてEC:DEC=3:7(vol比)混合溶媒にLiPFを濃度1Mで溶解させたものに代えてEC:DEC=1:1(vol比)混合溶媒にNaPFを濃度1Mで溶解させたものを用いた以外は、実施例1と同様の方法により、コインセルを作製した。作製したコインセルについて、対極ナトリウム評価として、実施例1と同様の方法により、充電容量および放電容量、充放電効率を求めた。結果を図9および表2に示す。
〔実施例5〕
 エジリンに代えて、米国産の普通輝石[Ca(Mn,Fe,Zn)Si]を用いた以外は、実施例4と同様の方法により、コインセルを作製した。作製したコインセルについて、実施例4と同様の方法により、充電容量および放電容量、充放電効率を求めた。結果を図10および表2に示す。
Figure JPOXMLDOC01-appb-T000002
10...電池ケース、11...開口部、12...蓋体、20...捲回電極体、30...正極シート、31...正極活物質層、32...正極集電体、33...正極集電体非形成部、34...正極集電体積層部、35...内部正極端子、36...正極端子、40...負極シート、41...負極活物質層、42...負極集電体、43...負極集電体非形成部、44...負極集電体積層部、45...内部負極端子、46...負極端子、50...セパレータ、100...リチウムイオン二次電池

Claims (8)

  1.  輝石構造を有し、かつ
     一般式;A2-p
    (式中、AはNa、Ca、Fe、Zn、MnおよびMgからなる群から選択される少なくとも1種である。Mは遷移金属元素、AlおよびMgからなる群から選択される少なくとも1種であり、かつ遷移金属元素を必須とする。AとMは同一または異なる元素であり、0<p<2である。XはSiまたはAlSi2-qであり、0<q<2である。)で表されるケイ酸塩を備えることを特徴とする電池用負極。
  2.  対極リチウム評価における初期充放電時の充電容量および放電容量が、ともに200mAh/g以上であることを特徴とする請求項1に記載の電池用負極。
  3.  対極リチウム評価における初期充電時のプラトー電位が、1.5V以下であることを特徴とする請求項1または2に記載の電池用負極。
  4.  前記ケイ酸塩が、エジリン(NaFeSi)、エシネアイト(CaFeAlSiO)および普通輝石[Ca(Mn,Fe,Zn)Si]の何れかより選ばれる1の物質であることを特徴とする請求項1ないし3のいずれか1に記載の電池用負極。
  5.  前記1の物質を粉砕して活物質を得て、該活物質:導電材(炭素材料):ポリフッ化ビニリデン(PVDF)=64:30:6(質量比)となるようにN-メチル-2ピロリドン(NMP)に加えて混合することにより調製されるスラリー状の負極合材を銅箔上に塗布し、乾燥させた銅箔と負極合材の2層とを含むことを特徴とする請求項4に記載の電池用負極。
  6.  請求項1から5の何れか1の請求項に記載の電池用負極を備えることを特徴とする電池。
  7.  請求項6に記載の電池を搭載したことを特徴とする車両。
  8.  請求項6に記載の電池を搭載したことを特徴とする電池搭載機器。
PCT/JP2013/005659 2012-09-28 2013-09-25 電池用負極、電池、車両および電池搭載機器 WO2014050086A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157008223A KR20150052178A (ko) 2012-09-28 2013-09-25 이차 전지용 부극, 이차 전지, 차량 및 전지 탑재 기기
CN201380045453.XA CN104603998A (zh) 2012-09-28 2013-09-25 电池用负极、电池、车辆以及电池搭载设备
DE112013004809.4T DE112013004809T8 (de) 2012-09-28 2013-09-25 Negative Elektrode für eine Sekundärbatterie, Sekundärbatterie, Fahrzeug und batteriemontierte Vorrichtung
US14/427,587 US20150228965A1 (en) 2012-09-28 2013-09-25 Negative electrode for a secondary battery, a secondary battery, a vehicle and a battery-mounted device
JP2014538178A JP5967209B2 (ja) 2012-09-28 2013-09-25 二次電池用負極、二次電池、車両および電池搭載機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-216931 2012-09-28
JP2012216931 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050086A1 true WO2014050086A1 (ja) 2014-04-03

Family

ID=50387523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005659 WO2014050086A1 (ja) 2012-09-28 2013-09-25 電池用負極、電池、車両および電池搭載機器

Country Status (6)

Country Link
US (1) US20150228965A1 (ja)
JP (1) JP5967209B2 (ja)
KR (1) KR20150052178A (ja)
CN (1) CN104603998A (ja)
DE (1) DE112013004809T8 (ja)
WO (1) WO2014050086A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143183A (ja) * 2012-12-27 2014-08-07 Showa Denko Kk マグネシウムイオン二次電池用正極活物質及びその製造方法、マグネシウムイオン二次電池用正極並びにマグネシウムイオン二次電池
KR101828880B1 (ko) 2015-01-19 2018-02-13 후루카와 덴키 고교 가부시키가이샤 리튬 이온 2차 전지용 표면 처리 전해 동박, 이것을 이용한 리튬 이온 2차 전지용 전극 및 리튬 이온 2차 전지
US10205168B2 (en) 2014-05-22 2019-02-12 Faradion Limited Sodium transition metal silicates

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6311683B2 (ja) * 2015-09-10 2018-04-18 トヨタ自動車株式会社 鉄空気電池用電解液、及び、鉄空気電池
JP6389159B2 (ja) 2015-10-08 2018-09-12 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池、非水電解質二次電池用負極材の製造方法、及び非水電解質二次電池の製造方法
US20200381733A1 (en) * 2017-04-27 2020-12-03 Toyota Motor Europe Titanium-based positive electrode materials for rechargeable calcium batteries and cell comprising the same
JP7029922B2 (ja) * 2017-10-10 2022-03-04 日産自動車株式会社 非水電解質二次電池用電極の製造方法
WO2019096446A1 (en) * 2017-11-16 2019-05-23 Toyota Motor Europe One-dimensional structure pre-calciated materials as positive electrode for rechargeable calcium batteries and cell comprising the same
JP7249581B2 (ja) * 2018-05-09 2023-03-31 パナソニックIpマネジメント株式会社 固体電解質およびそれを用いたマグネシウム二次電池
CN108584968B (zh) * 2018-05-17 2021-10-08 曲阜师范大学 一种具有选择性吸附性能的非晶硅酸铁钠纳米片制备方法
CN111137902B (zh) * 2018-11-05 2022-06-07 清华大学 H-Si-O体系材料、负极活性材料及其制备方法、电化学电池负极材料及电化学电池
CN116802151A (zh) * 2022-11-04 2023-09-22 宁德新能源科技有限公司 聚阴离子型化合物及其制备方法、正极材料、正极极片、二次电池和电子设备
CN116888762A (zh) * 2023-03-03 2023-10-13 宁德时代新能源科技股份有限公司 硅基负极活性材料、二次电池及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508671A (ja) * 2003-10-14 2007-04-05 コミサリア、ア、レネルジ、アトミク 少なくとも1つの電極および電解質が共通原子団〔xy1y2y3y4〕を各々含んでなる小型電池、並びに該小型電池の製造方法
JP2011014445A (ja) * 2009-07-03 2011-01-20 Sharp Corp 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2011100625A (ja) * 2009-11-06 2011-05-19 National Institute Of Advanced Industrial Science & Technology リチウム二次電池用正極活物質及びその製造方法
WO2013042780A1 (ja) * 2011-09-22 2013-03-28 旭硝子株式会社 二次電池用正極材料の製造方法
WO2013042778A1 (ja) * 2011-09-22 2013-03-28 旭硝子株式会社 二次電池用正極材料の製造方法
WO2013042777A1 (ja) * 2011-09-22 2013-03-28 旭硝子株式会社 二次電池用正極材料の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620057A (en) * 1994-12-19 1997-04-15 General Motors Corporation Electric vehicle battery enclosure
EP2518799B1 (en) * 2009-12-21 2016-08-24 Kabushiki Kaisha Toyota Jidoshokki Negative electrode active substance for non-aqueous secondary cell and method for producing the same
KR101345625B1 (ko) * 2011-06-24 2013-12-31 서울대학교산학협력단 이산화규소 및 이산화규소를 함유한 광물을 이용한 리튬 이차전지용 음극활물질 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508671A (ja) * 2003-10-14 2007-04-05 コミサリア、ア、レネルジ、アトミク 少なくとも1つの電極および電解質が共通原子団〔xy1y2y3y4〕を各々含んでなる小型電池、並びに該小型電池の製造方法
JP2011014445A (ja) * 2009-07-03 2011-01-20 Sharp Corp 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2011100625A (ja) * 2009-11-06 2011-05-19 National Institute Of Advanced Industrial Science & Technology リチウム二次電池用正極活物質及びその製造方法
WO2013042780A1 (ja) * 2011-09-22 2013-03-28 旭硝子株式会社 二次電池用正極材料の製造方法
WO2013042778A1 (ja) * 2011-09-22 2013-03-28 旭硝子株式会社 二次電池用正極材料の製造方法
WO2013042777A1 (ja) * 2011-09-22 2013-03-28 旭硝子株式会社 二次電池用正極材料の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143183A (ja) * 2012-12-27 2014-08-07 Showa Denko Kk マグネシウムイオン二次電池用正極活物質及びその製造方法、マグネシウムイオン二次電池用正極並びにマグネシウムイオン二次電池
US10205168B2 (en) 2014-05-22 2019-02-12 Faradion Limited Sodium transition metal silicates
KR101828880B1 (ko) 2015-01-19 2018-02-13 후루카와 덴키 고교 가부시키가이샤 리튬 이온 2차 전지용 표면 처리 전해 동박, 이것을 이용한 리튬 이온 2차 전지용 전극 및 리튬 이온 2차 전지

Also Published As

Publication number Publication date
JP5967209B2 (ja) 2016-08-10
CN104603998A (zh) 2015-05-06
JPWO2014050086A1 (ja) 2016-08-22
US20150228965A1 (en) 2015-08-13
DE112013004809T5 (de) 2015-09-17
KR20150052178A (ko) 2015-05-13
DE112013004809T8 (de) 2015-11-05

Similar Documents

Publication Publication Date Title
JP5967209B2 (ja) 二次電池用負極、二次電池、車両および電池搭載機器
JP6469725B2 (ja) ガルバニ素子およびその製造方法
JP6774378B2 (ja) リチウムイオン二次電池
WO2012111546A1 (ja) 電池用電極及びその製造方法、非水電解質電池、電池パック及び活物質
JP6470070B2 (ja) 正極及び非水電解質電池
US9997768B2 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
KR20130086077A (ko) 리튬 이온 2차 전지용 부극 활물질
JP2008166156A (ja) 蓄電素子
JP7102831B2 (ja) 正極及びリチウムイオン二次電池
WO2020110260A1 (ja) 電極、電池、及び電池パック
CN107004842A (zh) 复合阳极和包括复合阳极的锂离子电池组以及复合阳极的制备方法
CN112820878A (zh) 电容器辅助的梯度电极
US20180254486A1 (en) Negative electrode active material, negative electrode and lithium ion secondary battery
JPWO2019069402A1 (ja) 電極、非水電解質電池及び電池パック
JP5585834B2 (ja) リチウムイオン二次電池
JP6484995B2 (ja) リチウムイオン二次電池
JP6946694B2 (ja) リチウムイオン二次電池
JP2013062089A (ja) リチウムイオン二次電池
JP7003775B2 (ja) リチウムイオン二次電池
JP6325678B2 (ja) 非水電解質二次電池およびそれを備えた電池パック
JP7069938B2 (ja) リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池
JP2004296305A (ja) リチウムイオン2次電池
CN115440947A (zh) 层状阳极材料
JP7243381B2 (ja) 電極及び非水電解液二次電池
JP7243380B2 (ja) 電極及び非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14427587

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014538178

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130048094

Country of ref document: DE

Ref document number: 112013004809

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20157008223

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13842932

Country of ref document: EP

Kind code of ref document: A1