WO2014046251A1 - 1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法 - Google Patents

1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法 Download PDF

Info

Publication number
WO2014046251A1
WO2014046251A1 PCT/JP2013/075541 JP2013075541W WO2014046251A1 WO 2014046251 A1 WO2014046251 A1 WO 2014046251A1 JP 2013075541 W JP2013075541 W JP 2013075541W WO 2014046251 A1 WO2014046251 A1 WO 2014046251A1
Authority
WO
WIPO (PCT)
Prior art keywords
dichloro
trifluoropropene
reaction
activated carbon
trifluoropropane
Prior art date
Application number
PCT/JP2013/075541
Other languages
English (en)
French (fr)
Inventor
祥雄 西口
覚 岡本
冬彦 佐久
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2014536941A priority Critical patent/JP6119757B2/ja
Publication of WO2014046251A1 publication Critical patent/WO2014046251A1/ja
Priority to US14/663,400 priority patent/US9090529B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation

Definitions

  • the present invention relates to a method for producing 1,2-dichloro-3,3,3-trifluoropropene.
  • 1,2-dichloro-3,3,3-trifluoropropene has an unsaturated bond and is more easily decomposed in the atmosphere.
  • Hydrochlorofluorocarbon is expected to function as a cleaning agent and refrigerant.
  • Non-Patent Document 1 discloses a method in which 1,2,3,3,3-pentachloropropene is subjected to a liquid phase reaction with antimony trifluoride.
  • Non-Patent Document 2 discloses a method of adding antimony pentachloride and reacting 1,1,2,3,3-pentachloropropene with antimony trifluoride in a liquid phase.
  • Non-Patent Document 3 discloses a method of manufacturing by adding solid potassium hydroxide to liquid 1,2,2-trichloro-3,3,3-trifluoropropane and performing a reflux operation while heating. Has been.
  • Patent Document 1 uses a chlorine-containing compound as a raw material and is represented by a general formula: CF 3 CH ⁇ CHZ (Z is Cl or F) by a fluorination reaction and a dehalogenation reaction.
  • Z is Cl or F
  • Example 4 as a by-product of the fluorination reaction and dehalogenation reaction of 1,1,1,3,3-pentachloropropane (240fa), , 2-dichloro-3,3,3-trifluoropropene is described.
  • Non-Patent Document 3 the reaction is performed by dispersing powdered potassium hydroxide in liquid 1,2,2-trichloro-3,3,3-trifluoropropane. Since the rate was low (48%) and the reaction was heterogeneous, it was difficult to say that it was efficient in terms of an industrial production method.
  • Patent Document 1 1,2-dichloro-is produced by fluorination reaction and dehalogenation reaction of chlorine-containing compounds such as 1,1,1,3,3-pentachloropropane in the gas phase.
  • 3,3,3-trifluoropropene is known to form, it is difficult to obtain an industrially sufficient amount of 1,2-dichloro-3,3,3-trifluoropropene.
  • an object of the present invention is to provide a method for producing 1,2-dichloro-3,3,3-trifluoropropene, which can be easily carried out on an industrial scale in a gas phase reaction.
  • the present inventors contacted 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane with an activated carbon catalyst in the gas phase. It was found that the desired 1,2-dichloro-3,3,3-trifluoropropene can be obtained in a high yield.
  • the present invention includes the following [Invention 1] to [Invention 4].
  • 1,2-dichloro-3,3,3-trifluoropropene is selectively produced while suppressing the formation of side reaction products, and 1,2-dichloropropane is produced in a high yield.
  • Dichloro-3,3,3-trifluoropropene can be obtained.
  • Invention 2 The production method of Invention 1, wherein the activated carbon catalyst is activated carbon not supporting a metal.
  • not supporting metal means that the metal content in the activated carbon catalyst is at least 0.01% by mass and includes zero (0).
  • 1,2-dichloro-3,3,3-trifluoropropene can be obtained with higher yield.
  • 1,2-dichloro-3,3,3-trifluoropropene can be obtained with higher yield.
  • 1,2-dichloro-3,3,3-trifluoropropene can be obtained with higher yield.
  • 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane which can be obtained at low cost, is used as a raw material in a good yield on an industrial scale. 3,3-trifluoropropene can be produced.
  • the present invention there are very few by-products other than the target 1,2-dichloro-3,3,3-trifluoropropene. Furthermore, since no by-product having a boiling point close to that of the target product is generated, the obtained product can be easily purified by operations such as distillation, and is an economically advantageous process with a small environmental load. .
  • the reaction of the present invention comprises dehydrochlorination by bringing 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane into contact with an activated carbon catalyst in the gas phase.
  • the activated carbon catalyst is filled in the reaction tube, and 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane is brought into contact with the activated carbon catalyst in a gas phase at a predetermined temperature.
  • a system for the gas phase reaction a system such as a fixed bed type gas phase reaction or a fluidized bed type gas phase reaction can be employed. This does not preclude changes in reaction conditions that can be easily adjusted by those skilled in the art.
  • 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane which is a starting material of the present invention, include fluorine, chlorine and bromine.
  • Specific compounds of 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane include 1,1,2-trichloro-3,3,3-trifluoropropane or 1,2-dichloro -1,3,3,3-tetrafluoropropane and 1-bromo-1,2-dichloro-3,3,3-trifluoropropane.
  • 1,1,2-trichloro-3,3,3-trifluoropropane is preferably used because of its availability and usefulness of the resulting compound.
  • Activated charcoal catalysts include plant-based materials such as wood, charcoal, coconut shell charcoal, palm kernel charcoal, bare ash, etc., coal-based materials such as peat, lignite, lignite, bituminous coal, anthracite, anthracite, oil carbon, etc. There are synthetic resin systems such as petroleum-based or carbonized polyvinylidene chloride as raw materials.
  • the activated carbon catalyst used in the present invention can be selected from these commercially available activated carbons.
  • coconut shell charcoal for gas refining for gas refining
  • catalyst / catalyst support Natural Envirochemicals granular white leopard GX, SX, CX, XRC, Toyo Calgon PCB, Taihei Chemical Sangyo Co., Ltd., cocole, Kuraray Coal GG, GC), etc. It may be suitably used.
  • activated carbon on which a metal is supported may be used as the activated carbon catalyst, or activated carbon not supporting a metal may be used.
  • the activated carbon not supporting a metal refers to an activated carbon catalyst having a metal content in the activated carbon catalyst of at least 0 and 0.01% by mass or less.
  • examples of the supported metal include aluminum, chromium, titanium, manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, and antimony. It is done. These metals are supported as fluorides, chlorides, fluorinated chlorides, oxyfluorides, oxychlorides, oxyfluorinated chlorides, etc., and two or more metal compounds may be supported together.
  • the activated carbon catalyst to be used is usually used in a granular form, but can be used in a normal setting condition range such as a spherical shape, a fibrous shape, a powder shape, a honeycomb shape, etc., as long as it is compatible with the reactor.
  • the specific surface area and pore volume of the activated carbon are sufficient within the range of the specifications of commercial products, but the specific surface area is desirably larger than 400 m 2 / g, and should be 800 m 2 / g or more and 3000 m 2 / g or less. Further preferred.
  • the pore volume is desirably larger than 0.1 cm 3 / g, and more preferably 0.2 cm 3 / g or more and 1.0 cm 3 / g or less.
  • the reaction temperature for carrying out this reaction is usually 200 ° C. or higher and 350 ° C. or lower, more preferably 220 ° C. or higher and 320 ° C. or lower. If it is less than 200 degreeC, reaction hardly progresses or reaction is very slow and is unpreferable. In addition, decomposition reaction or the like proceeds at 350 ° C. or higher, and a lot of by-products may be mixed, which is not preferable.
  • the contact time depends on the reaction tube temperature (reaction temperature), shape, and filler
  • the raw material supply rate (contact time) for each set temperature, reaction tube shape, and type of filler It is desirable to adjust appropriately and determine the optimal value.
  • the contact time is preferably 1 second or more and 300 seconds or less, more preferably 20 seconds or more and 150 seconds or less. preferable.
  • the contact time exceeds 300 seconds, a side reaction tends to occur, and if the contact time is less than 1 second, the conversion is low, which is not preferable.
  • a reaction tube filled with activated carbon heated to 200 to 350 ° C. with 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane has a contact time of 1 to 300 seconds. Passing is one of the preferred embodiments.
  • reaction pressure When the reaction pressure is lower than atmospheric pressure, it may be in the atmosphere or higher than atmospheric pressure, but generally it is preferably under atmospheric pressure.
  • the reaction can also be performed in the presence of an inert gas that is stable under reaction conditions such as nitrogen and argon.
  • the dehydrochlorination reaction of the present invention can be carried out in the gas phase using a general chemical engineering apparatus.
  • the reaction tubes, associated feed introduction systems, effluent systems and associated units are made from materials that are strong against hydrogen chloride. Typical materials include stainless steel materials such as austenite type, or high nickel alloys such as Monel (TM), Hastelloy (TM), and Inconel (TM), and copper clad steel. It is not limited to.
  • 1,2-dichloro-3,3,3-trifluoropropene obtained by the method of the present invention exists as a liquid at normal temperature and normal pressure.
  • the gas obtained after the reaction is passed through a cooled condenser to be condensed, and then further subjected to precision distillation, whereby high-purity 1,2-dichloro-3,3,3-trifluoropropene can be obtained.
  • the 1,2-dichloro-3,3,3-trifluoropropene produced is obtained as a mixture of cis and trans stereoisomers, but is purified by high-purity cis-1,2-dichloro. -3,3,3-trifluoropropene and trans-1,2-dichloro-3,3,3-trifluoropropene can be obtained.
  • the cis and trans isomers can be converted to each other by an isomerization reaction.
  • an isomerization reaction It does not specifically limit as an isomerization method, It can implement by the well-known gas phase reaction using solid acid catalysts, such as fluorinated alumina, fluorinated chromia, fluorinated titania, and fluorinated zirconia.
  • % of the composition analysis value represents “area%” of the composition obtained by directly measuring the reaction mixture by gas chromatography (the detector is FID unless otherwise specified).
  • Example 1 in which 1,2-dichloro-3,3,3-trifluoropropene was synthesized using activated carbon not supporting a metal as a catalyst is shown below. Table 1 shows the synthesis results of 1,2-dichloro-3,3,3-trifluoropropene.
  • composition was 97.82% of 1,2-dichloro-3,3,3-trifluoropropene (breakdown, cis-1,2- Dichloro-3,3,3-trifluoropropene (92.74%, trans-1,2-dichloro-3,3,3-trifluoropropene 5.08%).
  • the yield of 1,2-dichloro-3,3,3-trifluoropropene was 91.4%.
  • 1,2-dichloro-3,3,3-trifluoropropene which is the subject of the present invention, is a functional material such as a heat transfer medium and a cleaning agent used in a heat pump cycle or Rankine cycle, a physiologically active substance, or a functional material. It can be used as a monomer for the body and polymer compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンに、気相中にて活性炭触媒と接触させることを特徴とする1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法。安価に入手できる1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンを原料とし、工業的規模で、収率良く、1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造できる。

Description

1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法
 本発明は、1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法に関する。
 1,2-ジクロロ-3,3,3-トリフルオロプロペンは、不飽和結合を有し、大気中でより分解し易いフロン(HCFC:
Hydrochlorofluorocarbon)として、洗浄剤や冷媒としての機能が期待されている。
 1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法としては種々の方法が知られている。例えば、非特許文献1では、1,2,3,3,3-ペンタクロロプロペンを三フッ化アンチモンと液相反応させる方法が開示されている。
 また、非特許文献2では、五塩化アンチモンを添加し、1,1,2,3,3-ペンタクロロプロペンを三フッ化アンチモンと液相中で反応させる方法が開示されている。非特許文献3では、液体の1,2,2-トリクロロ-3,3,3-トリフルオロプロパンに固体状態の水酸化カリウムを加えて、加熱しながら還流操作を行うことで製造する方法が開示されている。
 気相反応として、特許文献1には、含塩素化合物を原料として用い、フッ素化反応と脱ハロゲン化反応によって、一般式:CFCH=CHZ(ZはCl又はFである。)で表される含フッ素プロペンの製造方法が開示されており、実施例4には、1,1,1,3,3-ペンタクロロプロパン(240fa)のフッ素化反応と脱ハロゲン化反応の副生成物として、1,2-ジクロロ-3,3,3-トリフルオロプロペンが生成することが記載されている。
特開2012-20992号公報
A.L.Henne et al.,J.Am.Chem.Soc.,1941,p.3478-3479 A.M.Whaley et al.,J.Am.Chem.Soc.,1948,p.1026-1027 R.N.Haszeldine et al.,J.Chem.Soc.,1951,p.2495-2504
 非特許文献3に記載の製造方法は、液体状態の1,2,2-トリクロロ-3,3,3-トリフルオロプロパンに粉末状の水酸化カリウムを分散させて反応を行っているが、収率が低く(48%)、不均一反応であるため、工業的な製造方法という点で、効率的とは言い難いものであった。
 また、特許文献1に記載のように、気相中において、1,1,1,3,3-ペンタクロロプロパン等の含塩素化合物のフッ素化反応と脱ハロゲン化反応によって、1,2-ジクロロ-3,3,3-トリフルオロプロペンが生成することは知られているが、工業的に十分な量の1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることは難しい。
 上述の様に、本発明の目的物である1,2-ジクロロ-3,3,3-トリフルオロプロペンを工業的規模で、実施が容易な製造する方法の確立が望まれていた。
 そこで本発明は、気相反応において、工業的規模で実施が容易な1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンを、気相中にて活性炭触媒と接触させることにより、目的とする1,2-ジクロロ-3,3,3-トリフルオロプロペンを高い収率で得ることができることを見出した。
 すなわち、本発明は、以下の[発明1]~[発明4]を含む。
[発明1]
 以下の式[1]で表される1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンを、気相中にて活性炭触媒と接触させることを特徴とする、1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法。
Figure JPOXMLDOC01-appb-C000002
 発明1の構成要件によれば、副反応生成物の生成を抑制しながら、1,2-ジクロロ-3,3,3-トリフルオロプロペンを選択的に生成し、高収率で1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることが可能となる。
[発明2]
 活性炭触媒が、金属を担持しない活性炭である、発明1の製造方法。尚、ここで、金属を担持しないとは、活性炭触媒における金属の含有量が少なくとも0.01質量%以下であり、ゼロ(0)を含む。
 発明2の構成要件によれば、より高収率で1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることが可能となる。
[発明3]
 1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンを活性炭触媒と接触させる時間が、1秒以上、300秒以下であり、かつ、活性炭触媒と接触させる温度が、200℃以上、350℃以下である、発明1または発明2に記載の製造方法。
 発明3の構成要件によれば、より高収率で1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることが可能となる。
[発明4]
 1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンが、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンである、請求項1から3の何れかに記載の製造方法。
 発明4の構成要件によれば、より高収率で1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることが可能となる。
 本発明によれば、安価に入手できる1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンを原料として、工業的規模で、収率良く、1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造することができる。
 また、本発明によれば、目的物となる1,2-ジクロロ-3,3,3-トリフルオロプロペン以外の副生物が非常に少ない。さらに、目的物と沸点の近接した副生物が生成しないことから、得られた生成物の精製も、蒸留等の操作によって容易に行うことができ、経済的に有利な環境負荷の小さいプロセスである。
 以下、本発明について詳細に説明する。本発明の反応は、1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンを、気相中にて活性炭触媒と接触させ、脱塩化水素させることによりなる。具体的には、反応管に活性炭触媒を充填し、所定の温度にて1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンを気相中にて活性炭触媒と接触させることにより、実施することができる。気相反応の方式としては、固定床型気相反応、流動床型気相反応などの方式をとることができる。当業者が容易に調節しうる程度の反応条件の変更を妨げるものではない。
 本発明の出発原料である、1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンにおける式[1]中のXは、具体的にはフッ素、塩素または臭素が挙げられる。1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンの具体的な化合物としては、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンまたは1,2-ジクロロ-1,3,3,3-テトラフルオロプロパン、1-ブロモ-1,2-ジクロロ-3,3,3-トリフルオロプロパンが挙げられる。これらの中でも、入手の容易さや、得られる化合物の有用性などから、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンが好ましく用いられる。
 活性炭触媒は、木材、木炭、椰子殻炭、パーム核炭、素灰等を原料とする植物系、泥炭、亜炭、褐炭、瀝青炭、無煙炭等を原料とする石炭系、石油残滓、オイルカーボン等を原料とする石油系または炭化ポリ塩化ビニリデン等の合成樹脂系がある。本発明に用いる活性炭触媒は、これら市販の活性炭から選択し使用することができる。例えば、ガス精製用、触媒・触媒担体用椰子殻炭(日本エンバイロケミカルズ製粒状白鷺GX、SX、CX、XRC、東洋カルゴン製PCB、太平化学産業株式会社製ヤシコール、クラレコールGG、GC)等が好適に用いられてもよい。本発明は、活性炭触媒として、金属が担持された活性炭を用いてもよく、金属を担持しない活性炭を用いてもよい。金属を担持しない活性炭を触媒として用いる場合、コスト的な観点、廃棄物の観点からも有利である。なお、本発明において、金属を担持しない活性炭とは、活性炭触媒における金属の含有量が少なくとも0以上、0.01質量%以下である活性炭触媒を示す。
 金属が担持された活性炭を使用する場合、担持される金属としては、アルミニウム、クロム、チタン、マンガン、鉄、ニッケル、コバルト、銅、マグネシウム、ジルコニウム、モリブデン、亜鉛、スズ、ランタンおよびアンチモンなどが挙げられる。これらの金属はフッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物等として担持され、2種以上の金属化合物を併せて担持させてもよい。
 使用する活性炭触媒は、通常粒状で用いられるが、反応器に適合すれば、球状、繊維状、粉体状、ハニカム状等、通常の設定条件範囲の中で使用することができる。活性炭の比表面積ならびに細孔容積は、市販品の規格の範囲で十分であるが、比表面積は400m/gより大きいことが望ましく、800m/g以上、3000m/g以下であることがさらに好ましい。また、細孔容積は0.1cm/gより大きいことが望ましく、0.2cm/g以上、1.0cm/g以下であることがさらに好ましい。
 本反応を実施する際の反応温度は、通常200℃以上、350℃以下であり、220℃以上、320℃以下が更に好ましい。200℃未満では反応がほとんど進行しないか、反応が極めて遅く好ましくない。また、350℃以上では分解反応等が進行し、副生成物が多く混入する場合があり、好ましくない。
 以下、本明細書では「接触時間」を次のように定義する。すなわち「充填剤(活性炭)の容積をAと表記する。一方、「毎秒あたり、反応管に導入される原料気体の容積」をBと表記する。Bの値は、原料気体を理想気体と考え、毎秒あたりに導入される原料及び窒素のモル数と圧力、温度から算出する。この時、AをBで割った値(=A/B)を「接触時間」とする。反応管中では、HClの副生や、他のガスの副生があり、モル数の変化が起こるが、これらは「接触時間」の計算に際しては考慮しないものとする。
 接触時間に関しては、反応管の温度(反応温度)、形状、充填材に依存するため、設定した温度、反応管の形状と充填材の種類ごとに、原料の供給速度(接触時間)
適宜調節し、最適の値を決定することが望ましい。通常は、未反応原料の回収、再利用の観点から25%以上の原料転化率が得られる接触時間の採用が好ましく、更に好ましくは50%以上の転化率となるように接触時間が最適される。
 好適な一例として、上述のように200℃以上、350℃以下の範囲に反応温度を維持する場合には、接触時間は1秒以上、300秒以下が好ましく、20秒以上、150秒以下がさらに好ましい。一方、接触時間が300秒を超えると副反応が生じやすく、接触時間が1秒を下回ると転化率が低く、好ましくない。1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンを200℃以上、350℃以下に加熱された活性炭を充填した反応管に、接触時間が1秒以上、300秒以下で通過させることは、好ましい態様の一つである。
 反応圧力は、大気圧より低い場合、大気下、または大気圧より高い場合でも良いが、一般に大気圧下が好ましい。また、反応は、窒素やアルゴンのような反応条件下で安定な不活性ガスの存在下でも、行なうことができる。
 本発明の脱塩化水素反応は、一般的な化学工学装置を使用して気相中で実行することができる。反応管、関連する原料導入系、流出系および関連するユニットは、塩化水素に対して強い材料から造られる。材質として典型的なものには、特にオーステナイトタイプの様なステンレス鋼材、またはモネル(TM)、ハステロイ(TM)、およびインコネル(TM)のような高ニッケル合金および銅クラッド鋼を例示できるが、これに限定されない。
 また、本発明の方法で得られた1,2-ジクロロ-3,3,3-トリフルオロプロペンは、常温・常圧で液体として存在する。反応後に得られた気体を、冷却したコンデンサーに流通させて凝縮させた後、さらに精密蒸留することで高純度の1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることができる。なお、生成する1,2-ジクロロ-3,3,3-トリフルオロプロペンは、シス体およびトランス体の立体異性体の混合物として得られるが、精密蒸留により高純度のシス-1,2-ジクロロ-3,3,3-トリフルオロプロペンおよびトランス-1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることができる。
 シス体およびトランス体の各異性体は、異性化反応によって相互に変換できる。異性化方法としては特に限定されないが、フッ素化アルミナ、フッ素化クロミア、フッ素化チタニア、フッ素化ジルコニアなどの固体酸触媒を用いた公知の気相反応によって実施することができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施態様に限定されるわけではない。ここで、組成分析値の「%」とは、反応混合物を直接ガスクロマトグラフィー(特に記述のない場合、検出器はFID)によって測定して得られた組成の「面積%」を表す。
[実施例1]
 金属を担持していない活性炭を触媒に用いて、1,2-ジクロロ-3,3,3-トリフルオロプロペンの合成を行った、実施例1を以下に示す。表1には1,2-ジクロロ-3,3,3-トリフルオロプロペンの合成結果を示す。
(1,2-ジクロロ-3,3,3-トリフルオロプロペンの合成)
 粒状活性炭(白鷺G2x:日本エンバイロケミカル株式会社製、比表面積=1200m2/g、細孔容積=0.86cm3/g)50mlを充填した金属製電気ヒーターを備えた円筒形反応管からなる気相反応装置(SUS304製、内径25mm、長さ300mm)に窒素を10ml/minの速度で流しながら、徐々に昇温し、反応管の温度が250℃に達したところで、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンを気化させ、約0.25g/minの流量で3時間かけて44.5gを供給した(接触時間107秒)。この間の反応管内の温度は、240℃以上、250℃以下であった。反応器から流出する生成ガスを氷水浴中で冷却した水入りのフッ素樹脂製ガス洗浄瓶に通し、塩化水素の吸収および反応生成物の捕集を行った。捕集された33.4gの有機物をガスクロマトグラフィーで分析したところ、組成は、1,2-ジクロロ-3,3,3-トリフルオロプロペンが97.82%(内訳、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペン92.74%、トランス-1,2-ジクロロ-3,3,3-トリフルオロプロペン5.08%)であった。1,2-ジクロロ-3,3,3-トリフルオロプロペンの収率は、91.4%であった。
Figure JPOXMLDOC01-appb-T000003
1223xd(Z):シス-1,2-ジクロロ-3,3,3-トリフルオロプロペン
1223xd(E):トランス-1,2-ジクロロ-3,3,3-トリフルオロプロペン
233da:1,1,2-トリクロロ-3,3,3-トリフルオロプロパン
 上述した特許文献1に記載されているように、気相中且つ触媒不在下において、1,1,1,3,3-ペンタクロロプロパン等の含塩素化合物のフッ素化反応と脱ハロゲン化反応によって、1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)が生成することは知られている。しかしながら、気相中且つ触媒不在下における1,1,1,3,3-ペンタクロロプロパン等の含塩素化合物のフッ素化反応と脱ハロゲン化反応によって得られる1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)は極めて微量であり、工業的に十分な量の1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることができなかった。実施例1の結果を参照すると、特許文献1に記載されているような公知の方法と比べると、本発明の1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法では、1,2-ジクロロ-3,3,3-トリフルオロプロペンの転化率が優れていることが分かる。
 本発明で対象とする1,2-ジクロロ-3,3,3-トリフルオロプロペンは、ヒートポンプサイクルまたはランキンサイクルに用いる熱伝達媒体、洗浄剤等の機能材料又は生理活性物質、機能性材料の中間体、高分子化合物のモノマーとして利用できる。

Claims (4)

  1.  式[1]で表される1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンを、気相中にて活性炭触媒と接触させることを特徴とする、1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記活性炭触媒が、金属を担持しない活性炭である、請求項1に記載の製造方法。
  3.  前記1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンを前記活性炭触媒と接触させる時間が、1秒以上、300秒以下であり、かつ、前記活性炭触媒と接触させる温度が、200℃以上、350℃以下である、請求項1に記載の製造方法。
  4.  前記1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンが、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンである、請求項1に記載の製造方法。
PCT/JP2013/075541 2012-09-21 2013-09-20 1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法 WO2014046251A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014536941A JP6119757B2 (ja) 2012-09-21 2013-09-20 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
US14/663,400 US9090529B1 (en) 2012-09-21 2015-03-19 Method for producing 1,2-dichloro-3,3,3-trifluoropropene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-207929 2012-09-21
JP2012207929 2012-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/663,400 Continuation US9090529B1 (en) 2012-09-21 2015-03-19 Method for producing 1,2-dichloro-3,3,3-trifluoropropene

Publications (1)

Publication Number Publication Date
WO2014046251A1 true WO2014046251A1 (ja) 2014-03-27

Family

ID=50341551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075541 WO2014046251A1 (ja) 2012-09-21 2013-09-20 1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法

Country Status (3)

Country Link
US (1) US9090529B1 (ja)
JP (1) JP6119757B2 (ja)
WO (1) WO2014046251A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166847A1 (ja) * 2014-04-28 2015-11-05 旭硝子株式会社 トランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法
WO2016111227A1 (ja) * 2015-01-06 2016-07-14 旭硝子株式会社 (e)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法
WO2017002925A1 (ja) * 2015-06-30 2017-01-05 旭硝子株式会社 ヒドロクロロフルオロオレフィンの製造方法、および2,3,3,3-テトラフルオロプロペンの製造方法
US10246670B2 (en) 2015-02-02 2019-04-02 Central Glass Company, Limited Azeotrope-like composition containing fluorinated olefin as component
US10344250B2 (en) 2014-11-21 2019-07-09 Central Glass Company, Limited Azeotropic composition having fluorine-containing olefin as constituent
JP2021059498A (ja) * 2019-10-03 2021-04-15 セントラル硝子株式会社 不飽和クロロフルオロカーボンの製造方法
WO2021187369A1 (ja) * 2020-03-19 2021-09-23 セントラル硝子株式会社 (ハイドロ)ハロカーボンの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107954823B (zh) * 2017-12-22 2023-06-27 新元化学(山东)股份有限公司 一种连续生产2,3-二氯-1,1,1-三氟丙烷的光氯化反应系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967281A (ja) * 1995-09-01 1997-03-11 Daikin Ind Ltd 1,1,1,3,3−ペンタフルオロプロペンの製造方法及び1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP2001509803A (ja) * 1997-01-31 2001-07-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ペンタフルオロプロペンの接触製造
JP2006193437A (ja) * 2005-01-11 2006-07-27 Central Glass Co Ltd 1,1,3,3,3−ペンタフルオロプロペンの製造方法
JP2006525339A (ja) * 2003-04-29 2006-11-09 セントラル硝子株式会社 フルオロブテン誘導体およびその製造方法
JP2008110980A (ja) * 2006-10-27 2008-05-15 Honeywell Internatl Inc ハロゲン化アルカンの選択的脱ハロゲン化水素のための方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230146B2 (en) 2003-10-27 2007-06-12 Honeywell International Inc. Process for producing fluoropropenes
JP5780007B2 (ja) 2010-06-16 2015-09-16 ダイキン工業株式会社 含フッ素プロペンの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967281A (ja) * 1995-09-01 1997-03-11 Daikin Ind Ltd 1,1,1,3,3−ペンタフルオロプロペンの製造方法及び1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP2001509803A (ja) * 1997-01-31 2001-07-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ペンタフルオロプロペンの接触製造
JP2006525339A (ja) * 2003-04-29 2006-11-09 セントラル硝子株式会社 フルオロブテン誘導体およびその製造方法
JP2006193437A (ja) * 2005-01-11 2006-07-27 Central Glass Co Ltd 1,1,3,3,3−ペンタフルオロプロペンの製造方法
JP2008110980A (ja) * 2006-10-27 2008-05-15 Honeywell Internatl Inc ハロゲン化アルカンの選択的脱ハロゲン化水素のための方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASZELDINE ET AL.: "Reactions of Fluorocarbon radicals. Part V. Alternative syntheses for triflouromethylacetylene (3:3:3-trifluoropropyne) and the influence of polyfluoro-groups on adjacent hydrogen and halogen atoms", JOURNAL OF THE CHEMICAL SOCIETY, 1951, pages 2495 - 2504 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166847A1 (ja) * 2014-04-28 2015-11-05 旭硝子株式会社 トランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法
US10344250B2 (en) 2014-11-21 2019-07-09 Central Glass Company, Limited Azeotropic composition having fluorine-containing olefin as constituent
WO2016111227A1 (ja) * 2015-01-06 2016-07-14 旭硝子株式会社 (e)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法
US10246670B2 (en) 2015-02-02 2019-04-02 Central Glass Company, Limited Azeotrope-like composition containing fluorinated olefin as component
CN107709278A (zh) * 2015-06-30 2018-02-16 旭硝子株式会社 氢氯氟烯烃的制造方法以及2,3,3,3‑四氟丙烯的制造方法
EP3318548A4 (en) * 2015-06-30 2019-02-06 AGC Inc. PREPARATION OF HYDROCHLOROFLUOROLEFINE AND METHOD OF MANUFACTURING 2,3,3,3-TETRAFLUORPROPES
JPWO2017002925A1 (ja) * 2015-06-30 2018-04-19 旭硝子株式会社 ヒドロクロロフルオロオレフィンの製造方法、および2,3,3,3−テトラフルオロプロペンの製造方法
WO2017002925A1 (ja) * 2015-06-30 2017-01-05 旭硝子株式会社 ヒドロクロロフルオロオレフィンの製造方法、および2,3,3,3-テトラフルオロプロペンの製造方法
US10442744B2 (en) 2015-06-30 2019-10-15 AGC Inc. Method of producing hydrochlorofluoroolefin and method of producing 2,3,3,3-tetrafluoropropene
CN107709278B (zh) * 2015-06-30 2020-12-18 Agc株式会社 氢氯氟烯烃的制造方法以及2,3,3,3-四氟丙烯的制造方法
JP2021028340A (ja) * 2015-06-30 2021-02-25 Agc株式会社 ヒドロクロロフルオロオレフィンの製造方法、および2,3,3,3−テトラフルオロプロペンの製造方法
JP2021059498A (ja) * 2019-10-03 2021-04-15 セントラル硝子株式会社 不飽和クロロフルオロカーボンの製造方法
WO2021187369A1 (ja) * 2020-03-19 2021-09-23 セントラル硝子株式会社 (ハイドロ)ハロカーボンの製造方法
CN114901617A (zh) * 2020-03-19 2022-08-12 中央硝子株式会社 (氢)卤烃的制备方法

Also Published As

Publication number Publication date
JP6119757B2 (ja) 2017-04-26
US20150191405A1 (en) 2015-07-09
US9090529B1 (en) 2015-07-28
JPWO2014046251A1 (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6119757B2 (ja) 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
JP6245013B2 (ja) 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
US8487144B2 (en) Process for producing fluorinated propene
KR101595196B1 (ko) 2,3,3,3-테트라플루오로프로펜의 제조 방법
JP5817373B2 (ja) トランス−1,3,3,3−テトラフルオロプロペンの製造方法
JP5748027B2 (ja) 2−クロロ−3,3,3−トリフルオロプロペンの製造方法
JP7304681B2 (ja) ハイドロフルオロオレフィンの製造方法
WO2010035748A1 (ja) 1,3,3,3-テトラフルオロプロペンの製造方法
JP2013523882A (ja) テトラフルオロオレフィンを製造するための方法
JP6477712B2 (ja) ハイドロフルオロオレフィンの製造方法
JP5515555B2 (ja) 1,3,3,3−テトラフルオロプロペンの製造方法
JP6696431B2 (ja) ハイドロフルオロオレフィンの製造方法
JP2019196411A (ja) ハイドロフルオロオレフィンの製造方法
CN109503315A (zh) 四氟丙烯的制备方法
EP1017656B1 (en) Method for producing perhalogenated cyclopentene
JP2006193437A (ja) 1,1,3,3,3−ペンタフルオロプロペンの製造方法
JPWO2010082662A1 (ja) 1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンの製造方法
JP2018524376A (ja) 2,3,3,3−テトラフルオロプロペン(1234yf)の調製プロセス
JP6780656B2 (ja) ハイドロフルオロオレフィンの製造方法
WO2011102167A1 (ja) 3,3,3-トリフルオロプロペンの製造方法
JP5187212B2 (ja) 1,3,3,3−テトラフルオロプロペンの製造方法
WO2015166847A1 (ja) トランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法
JP3154702B2 (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP7315856B2 (ja) 1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法
JP3849089B2 (ja) パーハロゲン化シクロペンテンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838719

Country of ref document: EP

Kind code of ref document: A1