WO2014046088A1 - 異方性導電接着剤及び接続構造体 - Google Patents

異方性導電接着剤及び接続構造体 Download PDF

Info

Publication number
WO2014046088A1
WO2014046088A1 PCT/JP2013/075038 JP2013075038W WO2014046088A1 WO 2014046088 A1 WO2014046088 A1 WO 2014046088A1 JP 2013075038 W JP2013075038 W JP 2013075038W WO 2014046088 A1 WO2014046088 A1 WO 2014046088A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
anisotropic conductive
conductive adhesive
conductive particles
electronic component
Prior art date
Application number
PCT/JP2013/075038
Other languages
English (en)
French (fr)
Inventor
秀次 波木
士行 蟹澤
明 石神
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020157006951A priority Critical patent/KR102096575B1/ko
Priority to EP13839161.0A priority patent/EP2899244A4/en
Priority to US14/430,440 priority patent/US20150197672A1/en
Priority to CN201380041395.3A priority patent/CN104520398B/zh
Publication of WO2014046088A1 publication Critical patent/WO2014046088A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/06102Disposition the bonding areas being at different heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29369Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29417Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29418Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/29486Coating material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29487Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/2949Coating material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • H01L2224/32501Material at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/81438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/81444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81805Soldering or alloying involving forming a eutectic alloy at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/819Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector with the bump connector not providing any mechanical bonding
    • H01L2224/81901Pressing the bump connector against the bonding areas by means of another connector
    • H01L2224/81903Pressing the bump connector against the bonding areas by means of another connector by means of a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/38Effects and problems related to the device integration
    • H01L2924/384Bump effects
    • H01L2924/3841Solder bridging
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Definitions

  • the present technology relates to an anisotropic conductive adhesive in which conductive particles are dispersed, and a connection structure using the same.
  • a chip such as a driver IC (Integrated Circuit) or LED (Light Emitting Diode) is used.
  • the present invention relates to an anisotropic conductive adhesive capable of dissipating generated heat, and a connection structure using the same.
  • the wire bond method is used as a method for mounting the LED element on the substrate.
  • a method using a conductive paste has been proposed as a method without using wire bonds
  • a method using an anisotropic conductive adhesive has been proposed as a method without using a conductive paste.
  • LED elements for flip-chip (FC) mounting have been developed, and gold-tin eutectic bonding is used as a method of mounting the FC mounting LED elements on a substrate.
  • a solder connection method using a solder paste is proposed as a method without using a gold-tin eutectic, and a method using an anisotropic conductive adhesive is proposed as a method without using a solder paste.
  • the thermal conductivity of the cured anisotropic conductive adhesive is about 0.2 W / (m ⁇ K)
  • the heat generated from the LED element cannot be sufficiently released to the substrate side.
  • FC mounting using an anisotropic conductive adhesive only the conductive particles in the electrical connection portion serve as a heat radiation path, so the heat dissipation is poor.
  • the present technology has found that the above-mentioned object can be achieved by blending conductive particles having a conductive metal layer formed on the surface of resin particles and heat conductive particles having an average particle size smaller than that of the conductive particles. It was.
  • the anisotropic conductive adhesive includes conductive particles including resin particles and a conductive metal layer formed on the surface of the resin particles, and an average particle size smaller than the conductive particles.
  • a thermally-conductive particle that is an insulating coating particle that includes a metal particle and an insulating layer formed on the surface of the metal particle, and has an average particle size smaller than that of the conductive particle;
  • an adhesive component that disperses the heat conductive particles.
  • connection structure in one embodiment of the present technology includes a terminal of the first electronic component, a terminal of the second electronic component, and a terminal of the first electronic component and a terminal of the second electronic component.
  • metal particles that are disposed between the terminals of the first electronic component and the terminals of the second electronic component and have an average particle size smaller than the conductive particles, or an average particle size smaller than the conductive particles Insulating coating particles including metal particles and an insulating layer formed on the surfaces of the metal particles, and heat conduction held between the terminals of the first electronic component and the terminals of the second electronic component With particles.
  • the conductive particles are deformed flat by pressing at the time of pressure bonding, and the heat conductive particles are crushed to increase the contact area between the opposing terminals. Therefore, high heat dissipation can be obtained.
  • a conductive particle in which a conductive metal layer is formed on the surface of a resin particle and a heat conductive particle having an average particle size smaller than that of the conductive particle are a binder ( The shape is a paste, a film, or the like, and can be appropriately selected according to the purpose.
  • FIG. 1 and FIG. 2 are cross-sectional views schematically showing the terminals facing each other before and after crimping, respectively.
  • the conductive particles 31 and the heat conductive particles 32 can be present between the terminals before pressure bonding. And at the time of crimping
  • the heat conductive particles 32 are crushed following the flat deformation of the conductive particles, and the area in contact with the terminals is increased, so that heat dissipation can be improved.
  • the insulating coating particle in which the insulating layer is formed on the surface of the high heat conductive metal particle is used as the heat conductive particle 32, the insulating layer is broken by pressing and the metal part comes into contact with the terminal, so that the heat dissipation is improved.
  • excellent voltage resistance can be obtained.
  • the conductive particles are made of epoxy resin, phenol resin, acrylic resin, acrylonitrile / styrene (AS) resin, benzoguanamine resin, divinylbenzene resin, styrene resin, etc. on the surface of a metal such as Au, Ni, Zn (conductive Metal-coated resin particles coated with a conductive metal layer). Since the metal-coated resin particles are easily crushed and easily deformed during compression, the contact area with the wiring pattern can be increased, and variations in the height of the wiring pattern can be absorbed.
  • the average particle size of the conductive particles is preferably 1 ⁇ m to 10 ⁇ m, more preferably 2 ⁇ m to 6 ⁇ m.
  • the blending amount of the conductive particles is preferably 1 part by mass to 100 parts by mass with respect to 100 parts by mass of the binder from the viewpoint of connection reliability and insulation reliability.
  • the heat conductive particles are metal particles or insulating coating particles in which an insulating layer is formed on the surface of the metal particles.
  • the shape of the heat conductive particles is granular, flake shaped, etc., and can be appropriately selected according to the purpose.
  • the metal particles and the metal particles of the insulating coating particles preferably have a thermal conductivity of 200 W / (m ⁇ K) or more.
  • the thermal conductivity is less than 200 W / (m ⁇ K)
  • the thermal resistance value is increased, and the heat dissipation is deteriorated.
  • the metal particles having a thermal conductivity of 200 W / (m ⁇ K) or more and the metal particles of the insulating coating particles include simple metals such as Ag, Au, Cu, and Pt, or alloys thereof.
  • Ag or an alloy containing Ag as a main component is preferable from the viewpoint of the light extraction efficiency of the LED and the viewpoint of easy crushing at the time of pressure bonding.
  • the blending amount of the metal particles is preferably 5% by volume to 40% by volume. If the blending amount of the metal particles is too small, excellent heat dissipation cannot be obtained, and if the blending amount is too large, connection reliability cannot be obtained.
  • the insulating layer of the insulating coating particles styrene resin, epoxy resin, resins such as acrylic resin, or, be an inorganic material such as SiO 2, Al 2 O 3, TiO 2 preferably.
  • the thickness of the insulating layer of the insulating coating particles is preferably 10 nm to 1000 nm, more preferably 20 nm to 1000 nm, and still more preferably 100 nm to 800 nm. If the insulating layer is too thin, excellent voltage resistance cannot be obtained, and if the insulating layer is too thick, the thermal resistance value of the connection structure increases.
  • the blending amount of the insulating coating particles is preferably 5% by volume to 50% by volume. If the blending amount of the insulating coating particles is too small, excellent heat dissipation cannot be obtained, and if the blending amount is too large, connection reliability cannot be obtained.
  • the average particle diameter (D50) of the heat conductive particles is preferably 5% to 80% of the average particle diameter of the conductive particles. If the heat conductive particles are too small with respect to the conductive particles, the heat conductive particles are not captured between the terminals facing each other at the time of pressure bonding, and excellent heat dissipation cannot be obtained. On the other hand, if the heat conductive particles are too large relative to the conductive particles, the heat conductive particles cannot be highly filled, and the heat conductivity of the cured product of the anisotropic conductive adhesive cannot be improved.
  • the heat conductive particles are preferably white or gray achromatic. Thereby, since a heat conductive particle functions as a light reflection particle, when it uses for an LED element, high brightness
  • luminance can be obtained.
  • an adhesive composition used in a conventional anisotropic conductive adhesive or anisotropic conductive film can be used.
  • Preferred examples of the adhesive composition include an epoxy curable adhesive mainly composed of an alicyclic epoxy compound, a heterocyclic epoxy compound, a hydrogenated epoxy compound, or the like.
  • Preferred examples of the alicyclic epoxy compound include those having two or more epoxy groups in the molecule. These may be liquid or solid. Specific examples include glycidyl hexahydrobisphenol A, 3,4-epoxycyclohexenylmethyl-3 ', 4'-epoxycyclohexene carboxylate, and the like. Among these, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate is preferred because it can ensure light transmission suitable for mounting LED elements on the cured product and is excellent in rapid curing. Can be preferably used.
  • heterocyclic epoxy compound examples include an epoxy compound having a triazine ring, and particularly preferably 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4, Mention may be made of 6- (1H, 3H, 5H) -trione.
  • hydrogenated epoxy compound hydrogenated products of the above-described alicyclic epoxy compounds and heterocyclic epoxy compounds, and other known hydrogenated epoxy resins can be used.
  • the alicyclic epoxy compound, heterocyclic epoxy compound and hydrogenated epoxy compound may be used alone, but two or more kinds may be used in combination.
  • other epoxy compounds may be used in combination as long as the effects of the present technology are not impaired.
  • the curing agent examples include acid anhydrides, imidazole compounds, and dicyan.
  • acid anhydrides that are difficult to discolor the cured product particularly alicyclic acid anhydride-based curing agents, can be preferably used.
  • methylhexahydrophthalic anhydride etc. can be mentioned preferably.
  • the amount of each used is an uncured epoxy compound if there is too little alicyclic acid anhydride curing agent. If the amount is too large, corrosion of the adherend material tends to be accelerated due to the influence of the excess curing agent. Therefore, the alicyclic acid anhydride curing agent is added to 100 parts by mass of the alicyclic epoxy compound.
  • the ratio is preferably 80 to 120 parts by mass, more preferably 95 to 105 parts by mass.
  • the anisotropic conductive adhesive having such a structure has high heat dissipation and high heat resistance because the conductive particles are flattened by pressing during crimping, and the heat conductive particles are crushed to increase the contact area between the opposing terminals. Connection reliability can be obtained.
  • anisotropic conductive adhesive according to an embodiment of the present technology can be manufactured by uniformly mixing the adhesive composition, the conductive particles, and the heat conductive particles.
  • connection structure and manufacturing method thereof> Next, a connection structure using the above-described anisotropic conductive adhesive will be described.
  • the terminal of the first electronic component and the terminal of the second electronic component are connected via conductive particles in which a conductive metal layer is formed on the surface of the resin particles.
  • heat conduction particles having an average particle size smaller than that of the conductive particles are captured (held) between the terminal of the first electronic component and the terminal of the second electronic component. Has been.
  • a chip such as a driver IC (Integrated Circuit) or LED (Light Emitting Diode) that generates heat is suitable.
  • FIG. 3 is a cross-sectional view showing a configuration example of the LED mounting body.
  • an LED element first electronic component
  • a substrate second electronic component
  • the LED element includes, for example, a first conductive clad layer 12 made of, for example, n-GaN, an active layer 13 made of, for example, an In x Al y Ga 1-xy N layer, on an element substrate 11 made of, for example, sapphire, and a second conductivity type cladding layer 14 made of p-GaN, and has a so-called double heterostructure. Further, a first conductivity type electrode 12 a is provided on a part of the first conductivity type cladding layer 12, and a second conductivity type electrode 14 a is provided on a part of the second conductivity type cladding layer 14. When a voltage is applied between the first conductivity type electrode 12a and the second conductivity type electrode 14a of the LED element, carriers are concentrated on the active layer 13 and recombination causes light emission.
  • the substrate includes a circuit pattern 22 for the first conductivity type and a circuit pattern 23 for the second conductivity type on the base material 21, and positions corresponding to the first conductivity type electrode 12a and the second conductivity type electrode 14a of the LED element. Each have an electrode 22a and an electrode 23a.
  • conductive particles 31 and heat conductive particles 32 having an average particle size smaller than that of the conductive particles 31 are dispersed in the binder 33 as described above.
  • the LED mounting body has the LED element terminals (electrodes 12 a, 14 a) and the substrate terminals (electrodes 22 a, 23 a) electrically connected via conductive particles 31.
  • Thermally conductive particles 32 are captured between the terminal of the substrate and the terminal of the substrate.
  • the heat generated in the active layer 13 of the LED element can be efficiently released to the substrate side, the decrease in light emission efficiency can be prevented, and the life of the LED mounting body can be extended.
  • the heat conductive particles 32 are white or gray achromatic, the light from the active layer 13 is reflected and high luminance can be obtained.
  • the LED element for flip-chip mounting is designed so that the terminals (electrodes 12a and 14a) of the LED element are largely designed by the passivation 105 (see FIGS. 8 and 9). More conductive particles 31 and heat conductive particles 32 are captured between the terminal of the element (electrodes 12a and 14a) and the terminal of the substrate (circuit patterns 22 and 23). Thereby, the heat generated in the active layer 13 of the LED element can be released to the substrate side more efficiently.
  • the manufacturing method of the mounting body in one embodiment of the present technology includes the anisotropic conductive adhesion in which the conductive particles described above and the heat conductive particles having an average particle size smaller than the conductive particles are dispersed in the adhesive component.
  • the agent is sandwiched between the terminal of the first electronic component and the terminal of the second electronic component, and the first electronic component and the second electronic component are thermocompression bonded.
  • the terminal of the first electronic component and the terminal of the second electronic component are electrically connected via the conductive particles, and the terminal of the first electronic component and the terminal of the second electronic component are connected. It is possible to obtain a connection structure in which the heat conduction particles are trapped in between.
  • connection structure provides high heat dissipation because the conductive particles are flattened by pressing during crimping, and the heat conductive particles are crushed to increase the contact area between the opposing terminals. And high connection reliability can be obtained.
  • the wire bond method is used as a method for mounting the LED element on the substrate.
  • the electrodes (first conductivity type electrode 104a and second conductivity type electrode 102a) of the LED element face upward, and the LED element and the substrate are electrically joined. Is performed by wire bonding (WB) 301a and 301b, and a die bond material 302 is used for bonding the LED element and the substrate.
  • WB wire bonding
  • the LED element electrodes face toward the substrate side (face down, flip chip) as shown in FIG. 6
  • a conductive paste 303 typified by a silver paste for electrical connection between the element and the substrate.
  • the conductive paste 303 (303a, 303b) has a weak adhesive force, reinforcement with the sealing resin 304 is necessary. Furthermore, since the curing process of the sealing resin 304 is performed by oven curing, production takes time.
  • the electrode surface of the LED element is directed to the substrate side (face down, flip chip), and the electrical connection and adhesion between the LED element and the substrate are insulative.
  • an anisotropic conductive adhesive in which conductive particles 306 are dispersed in an adhesive binder 305. Since the anisotropic conductive adhesive has a short bonding process, the production efficiency is good.
  • An anisotropic conductive adhesive is inexpensive and excellent in transparency, adhesiveness, heat resistance, mechanical strength, electrical insulation, and the like.
  • FC mounting LED element can be designed to have a large electrode area by the passivation 105, bumpless mounting is possible. Further, the light extraction efficiency is improved by providing a reflective film under the light emitting layer.
  • Gold-tin eutectic bonding is a method in which a chip electrode is formed of an alloy 307 of gold and tin, a flux is applied to a substrate, the chip is mounted and heated, and eutectic bonding is performed with the substrate electrode.
  • solder connection method has a bad yield because there is an adverse effect on reliability due to chip displacement during heating or flux that could not be cleaned.
  • advanced mounting technology is required.
  • solder connection method As a method not using gold-tin eutectic, there is a solder connection method using a solder paste for electrical connection between the electrode surface of the LED element and the substrate, as shown in FIG.
  • solder connection method since the paste has isotropic conductivity, the pn electrodes are short-circuited and the yield is poor.
  • an ACF Anisotropic conductive film in which conductive particles are dispersed in an insulating binder is used for the electrical connection and adhesion between the LED element and the substrate as shown in FIG.
  • an anisotropic conductive adhesive such as film
  • the anisotropic conductive adhesive is filled with an insulating binder between the pn electrodes. Accordingly, the yield is good because short-circuiting hardly occurs. Moreover, since the bonding process is short, the production efficiency is good.
  • the active layer 103 is located on the substrate side, so that heat is efficiently transmitted to the substrate side.
  • FIGS. 6 and 9 when the electrodes are joined with the conductive paste 303 (303a, 303b), heat can be radiated with high efficiency, but the connection with the conductive paste 303 (303a, 303b) As described above, connection reliability is poor. Also, as shown in FIG. 8, when gold-tin eutectic bonding is performed, the connection reliability is poor as described above.
  • the active paste 303 (303a, 303b) can be activated by flip chip mounting with an anisotropic conductive adhesive such as ACF or ACP (Anisotropic Conductive Paste) without using the conductive paste 303 (303a, 303b).
  • ACF anisotropic Conductive Paste
  • the layer 103 is disposed near the substrate side, and heat is efficiently transferred to the substrate side. Moreover, since the adhesive force is high, high connection reliability can be obtained.
  • anisotropic conductive adhesive Production of anisotropic conductive adhesive, measurement of thermal conductivity of cured product of anisotropic conductive adhesive, production of LED package, evaluation of heat dissipation of LED package, evaluation of light characteristics, and evaluation of electrical characteristics Went as follows.
  • anisotropic conductive adhesive [Production of anisotropic conductive adhesive]
  • epoxy curing adhesive epoxy resin (trade name: CEL2021P, manufactured by Daicel Chemical Industries, Ltd.) and acid anhydride (MeHHPA, product name: MH700, manufactured by Shin Nippon Rika Co., Ltd.)
  • MeHHPA acid anhydride
  • conductive particles product name: AUL705, manufactured by Sekisui Chemical Co., Ltd.
  • thermally conductive particles were blended with this resin composition to produce an anisotropic conductive adhesive having thermal conductivity.
  • Example 1 Ag particles (thermal conductivity: 428 W / (m ⁇ K)) having an average particle diameter (D50) of 1 ⁇ m were used as the heat conductive particles.
  • the thermally conductive particles were blended in an amount of 5% by volume in the resin composition described above to produce an anisotropic conductive adhesive having thermal conductivity.
  • the measurement result of the thermal conductivity of the cured product of the anisotropic conductive adhesive was 0.3 W / (m ⁇ K).
  • the measurement result of the thermal resistance of the LED mounting body manufactured using this anisotropic conductive adhesive is 160 ° C./W
  • the measurement result of the total luminous flux is 320 mlm
  • the evaluation result of the connection reliability is ⁇ at the initial stage, It was ⁇ after the high temperature and high humidity test.
  • Example 2 Ag particles (thermal conductivity: 428 W / (m ⁇ K)) having an average particle diameter (D50) of 1 ⁇ m were used as the heat conductive particles. 20 vol% of the heat conductive particles were blended with the resin composition described above to produce an anisotropic conductive adhesive having heat conductivity. The measurement result of the thermal conductivity of the cured product of the anisotropic conductive adhesive was 0.4 W / (m ⁇ K). Moreover, the measurement result of the thermal resistance of the LED mounting body produced using this anisotropic conductive adhesive is 130 ° C./W, the measurement result of the total luminous flux is 300 mlm, and the evaluation result of the connection reliability is ⁇ It was ⁇ after the high temperature and high humidity test.
  • Example 3 Ag particles (thermal conductivity: 428 W / (m ⁇ K)) having an average particle diameter (D50) of 1 ⁇ m were used as the heat conductive particles. 40 volume% of the heat conductive particles were blended in the resin composition described above to produce an anisotropic conductive adhesive having heat conductivity. The measurement result of the thermal conductivity of the cured product of the anisotropic conductive adhesive was 0.5 W / (m ⁇ K).
  • the measurement result of the thermal resistance of the LED mounting body produced using this anisotropic conductive adhesive is 120 ° C./W
  • the measurement result of the total luminous flux is 280 mlm
  • the evaluation result of the connection reliability is ⁇ at the initial stage, It was ⁇ after the high temperature and high humidity test.
  • Example 4 As the heat conduction particles, insulating coating particles having an average particle diameter (D50) of 1 ⁇ m in which the Ag particle surface was coated with SiO 2 having a thickness of 100 nm were used. The heat conductive particles were blended in an amount of 50% by volume to the resin composition described above to produce an anisotropic conductive adhesive having heat conductivity. The measurement result of the thermal conductivity of the cured product of the anisotropic conductive adhesive was 0.5 W / (m ⁇ K).
  • the measurement result of the thermal resistance of the LED mounting body manufactured using this anisotropic conductive adhesive is 115 ° C./W
  • the measurement result of the total luminous flux is 280 mlm
  • the evaluation result of the connection reliability is ⁇ in the initial stage, It was ⁇ after the high temperature and high humidity test.
  • Example 5 Ag / Pd alloy particles (thermal conductivity: 400 W / (m ⁇ K)) having an average particle diameter (D50) of 1.5 ⁇ m were used as the heat conductive particles.
  • the thermally conductive particles were blended in an amount of 5% by volume in the resin composition described above to produce an anisotropic conductive adhesive having thermal conductivity.
  • the measurement result of the thermal conductivity of the cured product of the anisotropic conductive adhesive was 0.4 W / (m ⁇ K).
  • the measurement result of the thermal resistance of the LED mounting body produced using this anisotropic conductive adhesive is 135 ° C./W
  • the measurement result of the total luminous flux is 300 mlm
  • the evaluation result of the connection reliability is ⁇ at the initial stage, It was ⁇ after the high temperature and high humidity test.
  • An anisotropic conductive adhesive was prepared without blending heat conductive particles.
  • the measurement result of the thermal conductivity of the cured product of the anisotropic conductive adhesive was 0.2 W / (m ⁇ K).
  • the measurement result of the thermal resistance of the LED mounting body produced using this anisotropic conductive adhesive is 200 ° C./W
  • the measurement result of the total luminous flux is 330 mlm
  • the evaluation result of the connection reliability is ⁇ at the initial stage, It was ⁇ after the high temperature and high humidity test.
  • the measurement result of the thermal resistance of the LED mounting body manufactured using this anisotropic conductive adhesive is 110 ° C./W
  • the measurement result of the total luminous flux is 250 mlm
  • the evaluation result of the connection reliability is ⁇ in the initial stage, It was insulating NG after the high temperature and high humidity test.
  • the measurement result of the thermal resistance of the LED mounting body produced using this anisotropic conductive adhesive is 170 ° C./W
  • the measurement result of the total luminous flux is 250 mlm
  • the evaluation result of the connection reliability is ⁇ at the initial stage
  • the NG was conducted after the high temperature and high humidity test.
  • Table 1 shows the evaluation results of Examples 1 to 5 and Comparative Examples 1 to 3.
  • the thermal conductivity of the cured anisotropic conductive adhesive is 0.2 W / (m ⁇ K), and the thermal resistance of the LED package is 200 ° C. / It was W, and excellent heat dissipation was not able to be obtained.
  • Comparative Example 2 when 50% by volume of Ag particles is blended, the thermal conductivity of the cured anisotropic conductive adhesive is 0.55 W / (m ⁇ K), and the thermal resistance value of the LED mounting body was 110 ° C./W, and better heat dissipation than Comparative Example 1 was obtained. However, since the compounding amount of Ag particles is large, the Vf value decreased by 5% or more from the initial Vf value in the high temperature and high humidity test of the LED mounting body.
  • the thermal conductivity of the cured anisotropic conductive adhesive was 1.0 W / (m ⁇ K). Since the conductivity was low, the thermal resistance value of the LED mounting body was 170 ° C./W. Further, the amount of AlN particles was large, and the high electrical insulation of AlN caused the Vf value to rise by 5% or more from the initial Vf value in the high temperature and high humidity test of the LED mounting body.
  • the thermal conductivity of the cured anisotropic conductive adhesive is 0.3 W / (m ⁇ K) to 0. .5 W / (m ⁇ K)
  • the thermal resistance value of the LED mounting body was 120 ° C./W to 160 ° C./W, and better heat dissipation than that of Comparative Example 1 could be obtained.
  • high connection reliability could be obtained also in the high temperature and high humidity test of the LED mounting body.
  • Example 4 the case of using the insulating coating particles coated with Ag particle surface SiO 2, be blended 50% by volume, in a high-temperature high-humidity test of the LED mounting body, to obtain a high connection reliability I was able to. Moreover, the thermal conductivity of the cured product of the anisotropic conductive adhesive is 0.5 W / (m ⁇ K), the thermal resistance value of the LED mounting body is 115 ° C./W, and the heat dissipation is superior to that of Comparative Example 1.
  • Example 5 when 20% by volume of Ag / Pd alloy particles is blended, the thermal conductivity of the cured anisotropic conductive adhesive is 0.4 W / (m ⁇ K), The heat resistance value was 135 ° C./W, and heat dissipation superior to that of Comparative Example 1 could be obtained. Moreover, high connection reliability could be obtained also in the high temperature and high humidity test of the LED mounting body.
  • Example 6 As the heat conductive particles, insulating coated particles having an average particle diameter (D50) of 1 ⁇ m in which the surface of the Ag particles was coated with a styrene resin having a thickness of 20 nm were used. The heat conductive particles were blended in an amount of 50% by volume to the resin composition described above to produce an anisotropic conductive adhesive having heat conductivity.
  • the measurement result of the thermal conductivity of the cured product of this anisotropic conductive adhesive is 0.5 W / (m ⁇ K), the withstand voltage test result when the space between wirings is 25 ⁇ m is 150 V, and the space between wirings The withstand voltage test result when the value of 100 ⁇ m is over 500V. Moreover, the measurement result of the thermal resistance of the LED mounting body produced using this anisotropic conductive adhesive was 130 ° C./W, and the measurement result of the total luminous flux was 300 mlm.
  • Example 7 As the heat conductive particles, insulating coating particles having an average particle diameter (D50) of 1 ⁇ m in which the Ag particle surfaces were coated with a styrene resin having a thickness of 100 nm were used. The heat conductive particles were blended in an amount of 50% by volume to the resin composition described above to produce an anisotropic conductive adhesive having heat conductivity.
  • the measurement result of the thermal conductivity of the cured product of this anisotropic conductive adhesive is 0.4 W / (m ⁇ K), the withstand voltage test result when the space between wirings is 25 ⁇ m is 210 V, and the space between wirings The withstand voltage test result when the value of 100 ⁇ m is over 500V.
  • the measurement result of the thermal resistance of the LED mounting body produced using this anisotropic conductive adhesive was 120 ° C./W, and the measurement result of the total luminous flux was 280 mlm.
  • Example 8 As the heat conductive particles, insulating coated particles having an average particle diameter (D50) of 1 ⁇ m in which the Ag particle surfaces were coated with a styrene resin having a thickness of 800 nm were used. The heat conductive particles were blended in an amount of 50% by volume to the resin composition described above to produce an anisotropic conductive adhesive having heat conductivity.
  • the measurement result of the thermal conductivity of the cured product of this anisotropic conductive adhesive is 0.5 W / (m ⁇ K), the withstand voltage test result when the space between wirings is 25 ⁇ m is 450 V, and the space between wirings The withstand voltage test result when the value of 100 ⁇ m is over 500V. Moreover, the measurement result of the thermal resistance of the LED mounting body produced using this anisotropic conductive adhesive was 115 ° C./W, and the measurement result of the total luminous flux was 280 mlm.
  • Example 9 As the heat conduction particles, insulating coating particles having an average particle diameter (D50) of 1 ⁇ m in which the Ag particle surface was coated with SiO 2 having a thickness of 100 nm were used. As in Example 4, 50 vol% of the heat conductive particles were blended with the resin composition described above to produce an anisotropic conductive adhesive having heat conductivity.
  • the measurement result of the thermal conductivity of the cured product of this anisotropic conductive adhesive is 0.5 W / (m ⁇ K), the withstand voltage test result when the inter-wiring space is 25 ⁇ m is 230 V, and the inter-wiring space The withstand voltage test result when the value of 100 ⁇ m is over 500V.
  • the measurement result of the thermal resistance of the LED mounting body produced using this anisotropic conductive adhesive was 115 ° C./W, and the measurement result of the total luminous flux was 280 mlm.
  • Example 10 As the heat conductive particles, insulating coated particles having an average particle diameter (D50) of 1.5 ⁇ m obtained by coating the Ag / Pd alloy particle surfaces with a styrene resin having a thickness of 100 nm were used. The heat conductive particles were blended in an amount of 50% by volume to the resin composition described above to produce an anisotropic conductive adhesive having heat conductivity.
  • the measurement result of the thermal conductivity of the cured product of this anisotropic conductive adhesive is 0.4 W / (m ⁇ K), the withstand voltage test result when the space between wirings is 25 ⁇ m is 210 V, and the space between wirings The withstand voltage test result when the value of 100 ⁇ m is over 500V. Moreover, the measurement result of the thermal resistance of the LED mounting body produced using this anisotropic conductive adhesive was 135 ° C./W, and the measurement result of the total luminous flux was 280 mlm.
  • heat conductive particles As the heat conductive particles, insulating coated particles having an average particle diameter (D50) of 1 ⁇ m in which the Ag particle surface was coated with a styrene resin having a thickness of 1100 nm were used. The heat conductive particles were blended in an amount of 50% by volume to the resin composition described above to produce an anisotropic conductive adhesive having heat conductivity.
  • the measurement result of the thermal conductivity of the cured product of this anisotropic conductive adhesive is 0.4 W / (m ⁇ K), the withstand voltage test result when the space between the wirings is 25 ⁇ m is 300 V, and the space between the wirings The withstand voltage test result when the value of 100 ⁇ m is over 500V.
  • the measurement result of the thermal resistance of the LED mounting body produced using this anisotropic conductive adhesive was 190 ° C./W, and the measurement result of the total luminous flux was 300 mlm.
  • Table 2 shows the evaluation results of Examples 6 to 10 and Comparative Examples 4 to 6.
  • the thermal conductivity of the cured anisotropic conductive adhesive is 0.2 W / (m ⁇ K) as in Comparative Example 1, and the heat of the LED mounting body
  • the resistance value was 200 ° C./W, and an excellent heat dissipation property could not be obtained.
  • the withstand voltage was 200 V when the space between wirings of the cured anisotropic conductive adhesive was 25 ⁇ m, and over 500 V when the space between wirings was 100 ⁇ m, and stable insulating characteristics were obtained.
  • Comparative Example 5 when 50% by volume of Ag particles was blended, the thermal conductivity of the cured anisotropic conductive adhesive was 0.55 W / (m ⁇ K), as in Comparative Example 2, and the packaging was implemented.
  • the heat resistance value of the body was 110 ° C./W, and heat dissipation superior to that of Comparative Example 1 could be obtained.
  • the withstand voltage is 100 V when the space between wirings of the cured anisotropic conductive adhesive is 25 ⁇ m, and the withstand voltage is 200 V when the space between wirings is 100 ⁇ m. Insulation characteristics could not be obtained.
  • the thermal conductivity of the cured anisotropic conductive adhesive is 0.4 W / (m ⁇ K) to 0.00.
  • the heat resistance value of the LED mounted body was 115 ° C./W to 130 ° C./W at 5 W / (m ⁇ K), and a heat dissipation superior to that of Comparative Example 1 could be obtained.
  • the withstand voltage when the space between the wirings of the cured anisotropic conductive adhesive is 25 ⁇ m is 210 to 450 V, and the withstand voltage when the space between the wirings is 100 ⁇ m is over 500 V, and stable insulation characteristics are obtained. .
  • Example 9 when insulating coated particles in which the Ag particle surface was coated with SiO 2 were used, the thermal conductivity of the cured anisotropic conductive adhesive was 0.5 W / (M ⁇ K), the thermal resistance value of the LED mounting body was 115 ° C./W, and heat dissipation superior to that of Comparative Example 1 could be obtained. Further, the withstand voltage was 230 V when the space between the wirings of the cured anisotropic conductive adhesive was 25 ⁇ m, and the withstand voltage was over 500 V when the space between the wirings was 100 ⁇ m, and stable insulating characteristics were obtained.
  • Example 10 when insulating coated particles obtained by coating Ag / Pd alloy particles with styrene resin were used, the thermal conductivity of the cured anisotropic conductive adhesive was 0.4 W / (m ⁇ K). ), The thermal resistance value of the LED mounting body was 135 ° C./W, and heat dissipation superior to that of Comparative Example 1 could be obtained. Further, the withstand voltage when the space between the wirings of the cured anisotropic conductive adhesive was 25 ⁇ m was 210 V, and the withstand voltage when the space between the wirings was 100 ⁇ m was over 500 V, and stable insulating characteristics were obtained.
  • the present technology can also employ the following configurations.
  • Conductive particles including resin particles and a conductive metal layer formed on the surface of the resin particles; Insulating coating comprising metal particles having an average particle size smaller than that of the conductive particles, or having an average particle size smaller than that of the conductive particles and including metal particles and an insulating layer formed on the surface of the metal particles
  • Heat conductive particles that are particles
  • An anisotropic conductive adhesive comprising: the conductive particles and an adhesive component that disperses the heat conductive particles.
  • the metal particles have a thermal conductivity of about 200 W / (m ⁇ K) or more;
  • the metal particles of the insulating coating particles have a thermal conductivity of about 200 W / (m ⁇ K) or more,
  • the metal particles include Ag, or an alloy containing Ag as a main component,
  • the metal particles of the insulating coating particles include Ag, or an alloy mainly composed of Ag.
  • an average particle diameter of the heat conductive particles is about 5% to 80% of an average particle diameter of the conductive particles.
  • the anisotropic conductive adhesive according to any one of (1) to (8), wherein the heat conductive particles are white or gray achromatic.
  • Conductive particles for electrically connecting the terminal of the component and the terminal of the second electronic component are disposed between the terminals of the first electronic component and the terminals of the second electronic component and have an average particle size smaller than the conductive particles, or an average smaller than the conductive particles
  • An insulating coating particle having a particle size and including a metal particle and an insulating layer formed on the surface of the metal particle, and held between the terminal of the first electronic component and the terminal of the second electronic component A connection structure comprising the thermally conductive particles.
  • the first electronic component is an LED element;
  • the connection structure according to (10), wherein the second electronic component is a substrate.
  • the connection structure according to (10), wherein the heat conductive particles are white or gray achromatic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Led Device Packages (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Conductive Materials (AREA)

Abstract

 異方性導電接着剤は、樹脂粒子とその樹脂粒子の表面に形成された導電性金属層とを含む導電性粒子と、導電性粒子よりも小さい平均粒径を有する金属粒子であり、又は導電性粒子よりも小さい平均粒径を有すると共に金属粒子とその金属粒子の表面に形成された絶縁層とを含む絶縁被覆粒子である熱伝導粒子と、導電性粒子及び熱伝導粒子を分散させる接着剤成分とを備えている。

Description

異方性導電接着剤及び接続構造体
 本技術は、導電性粒子が分散された異方性導電接着剤、及びそれを用いた接続構造体に関し、特に、ドライバーIC(Integrated Circuit)、LED(Light Emitting Diode)等のチップ(素子)が発する熱を放熱することが可能な異方性導電接着剤、及びそれを用いた接続構造体に関する。
 LED素子を基板に実装する工法として、ワイヤーボンド工法が用いられている。この他、ワイヤーボンドを用いない工法として、導電性ペーストを用いる工法が提案されていると共に、導電性ペーストを用いない工法として、異方性導電接着剤を用いる工法が提案されている。
 また、フリップチップ(FC:Flip-Chip)実装するためのLED素子が開発されており、そのFC実装用LED素子を基板に実装する工法として、金スズ共晶接合が用いられている。この他、金スズ共晶を用いない工法として、はんだペーストを用いるはんだ接続工法が提案されていると共に、はんだペーストを用いない工法として、異方性導電接着剤を用いる工法が提案されている。
特開2005-108635号公報 特開2009-283438号公報 特開2008-041706号公報 特開2007-023221号公報
 しかしながら、異方性導電接着剤の硬化物の熱伝導率は、0.2W/(m・K)程度であるため、LED素子から発生する熱を基板側に十分に逃がすことができない。また、異方性導電接着剤を用いたFC実装では、電気接続部分の導電性粒子のみが放熱路となるため、放熱性が悪い。
 したがって、高い放熱性が得られる異方性導電接着剤及び接続構造体を提供することが望ましい。
 本技術では、樹脂粒子の表面に導電性金属層が形成された導電性粒子と、導電性粒子よりも平均粒径が小さい熱伝導粒子とを配合することにより、上述の目的を達成できることを見出した。
 すなわち、本技術の一実施形態における異方性導電接着剤は、樹脂粒子とその樹脂粒子の表面に形成された導電性金属層とを含む導電性粒子と、導電性粒子よりも小さい平均粒径を有する金属粒子であり、又は導電性粒子よりも小さい平均粒径を有すると共に金属粒子とその金属粒子の表面に形成された絶縁層とを含む絶縁被覆粒子である熱伝導粒子と、導電性粒子及び熱伝導粒子を分散させる接着剤成分とを含有するものである。
 また、本技術の一実施形態における接続構造体は、第1の電子部品の端子と、第2の電子部品の端子と、第1の電子部品の端子と第2の電子部品の端子との間に配置され、樹脂粒子とその樹脂粒子の表面に形成された導電性金属層とを含むと共に、第1の電子部品の端子と第2の電子部品の端子とを電気的に接続させる導電性粒子と、第1の電子部品の端子と第2の電子部品の端子との間に配置され、導電性粒子よりも小さい平均粒径を有する金属粒子であり、又は導電性粒子よりも小さい平均粒径を有すると共に金属粒子とその金属粒子の表面に形成された絶縁層とを含む絶縁被覆粒子であり、第1の電子部品の端子と第2の電子部品の端子との間に保持された熱伝導粒子とを備えたものである。 
 本技術の一実施形態における異方性導電接着剤又は接続構造体によれば、圧着時に導電性粒子が押圧により扁平変形するとともに、熱伝導粒子が潰れ、対向する端子間の接触面積を増加させるため、高い放熱性を得ることができる。
圧着前における対向する端子間を模式的に示す断面図である。 圧着後における対向する端子間を模式的に示す断面図である。 本技術の一実施形態におけるLED実装体の一例を示す断面図である。 本技術の他の一実施形態におけるLED実装体の一例を示す断面図である。 ワイヤーボンド工法によるLED実装体の一例を示す断面図である。 導電性ペーストを用いたLED実装体の一例を示す断面図である。 異方性導電接着剤を用いたLED実装体の一例を示す断面図である。 FC実装用LEDを金スズ共晶接合により実装したLED実装体の一例を示す断面図である。 FC実装用LEDを導電性ペーストにより実装したLED実装体の一例を示す断面図である。 FC実装用LEDを異方性導電接着剤により実装したLED実装体の一例を示す断面図である。
 以下、本技術の一実施形態について、図面を参照しながら下記順序にて詳細に説明する。
 
 1.異方性導電接着剤及びその製造方法
 2.接続構造体及びその製造方法
 3.実施例
 
<1.異方性導電接着剤及びその製造方法>
 本技術の一実施形態における異方性導電接着剤は、樹脂粒子の表面に導電性金属層が形成された導電性粒子と、導電性粒子よりも平均粒径が小さい熱伝導粒子とがバインダー(接着剤成分)中に分散されたものであり、その形状は、ペースト、フィルムなどであり、目的に応じて適宜選択することができる。
 図1及び図2は、それぞれ圧着前及び圧着後における対向する端子間を模式的に示す断面図である。本技術の一実施形態では、異方性導電接着剤を後述する構成とすることにより、圧着前において導電性粒子31と熱伝導粒子32とを端子間に存在させることができる。そして、圧着時、芯材に樹脂粒子を使用した導電性粒子31が押圧により扁平変形し、変形に対する弾性反発が生じるため、電気的な接続状態を維持することができる。また、圧着時、熱伝導粒子32が導電性粒子の扁平変形に追従して潰れ、端子と接触する面積が大きくなるため、放熱性を向上させることができる。また、熱伝導粒子32として、高熱伝導金属粒子の表面に絶縁層が形成された絶縁被覆粒子を用いた場合、押圧により絶縁層が破れて金属部分が端子と接触するため、放熱性を向上させることができるとともに優れた耐電圧性が得られる。
 導電性粒子は、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の樹脂粒子の表面をAu、Ni、Zn等の金属(導電性金属層)で被覆した金属被覆樹脂粒子である。金属被覆樹脂粒子は、圧縮時に潰れやすく、変形し易いため、配線パターンとの接触面積を大きくでき、また、配線パターンの高さのバラツキを吸収することができる。
 また、導電性粒子の平均粒径は、1μm~10μmであることが好ましく、より好ましくは2μm~6μmである。また、導電性粒子の配合量は、接続信頼性及び絶縁信頼性の観点から、バインダー100質量部に対して1質量部~100質量部であることが好ましい。
 熱伝導粒子は、金属粒子であるか、又は金属粒子の表面に絶縁層が形成された絶縁被覆粒子である。また、熱伝導粒子の形状は、粒状、燐片状などであり、目的に応じて適宜選択することができる。
 金属粒子、および絶縁被覆粒子の金属粒子は、200W/(m・K)以上の熱伝導率を有することが好ましい。熱伝導率が200W/(m・K)未満である場合、熱抵抗値が大きくなり、放熱性が悪くなる。200W/(m・K)以上の熱伝導率を有する金属粒子、および絶縁被覆粒子の金属粒子としては、Ag、Au、Cu、Ptなどの金属単体又はこれらの合金を挙げることができる。これらの中でも、LEDの光取り出し効率の観点や、圧着時の潰れ易さの観点からAg又はAgを主成分とする合金であることが好ましい。
 また、金属粒子の配合量は、5体積%~40体積%であることが好ましい。金属粒子の配合量が少なすぎると優れた放熱性が得られなくなり、配合量が多すぎると接続信頼性を得ることができない。
 また、絶縁被覆粒子の絶縁層としては、スチレン樹脂、エポキシ樹脂、アクリル樹脂などの樹脂、又は、SiO2 、Al2 3 、TiO2 などの無機材料であることが好ましい。また、絶縁被覆粒子の絶縁層の厚みは、10nm~1000nmであることが好ましく、20nm~1000nmであることがより好ましく、さらに好ましくは100nm~800nmである。絶縁層が薄すぎると優れた耐電圧性が得られず、絶縁層が厚すぎると接続構造体の熱抵抗値が大きくなってしまう。
 また、絶縁被覆粒子の配合量は、5体積%~50体積%であることが好ましい。絶縁被覆粒子の配合量が少なすぎると優れた放熱性が得られなくなり、配合量が多すぎると接続信頼性を得ることができない。
 また、熱伝導粒子の平均粒径(D50)は、導電性粒子の平均粒径の5%~80%であることが好ましい。熱伝導粒子が導電性粒子に対して小さすぎると、圧着時に熱伝導粒子が対向する端子間に捕捉されず、優れた放熱性を得ることができない。一方、熱伝導粒子が導電性粒子に対して大きすぎると、熱伝導粒子を高充填することができず、異方性導電接着剤の硬化物の熱伝導率を向上させることができない。
 また、熱伝導粒子は、白又は灰色の無彩色であることが好ましい。これにより、熱伝導粒子が光反射粒子として機能するため、LED素子に用いた場合、高い輝度を得ることができる。
 バインダーとしては、従来の異方性導電接着剤や異方性導電フィルムにおいて使用されている接着剤組成物を利用することができる。接着剤組成物としては、脂環式エポキシ化合物や複素環系エポキシ化合物や水素添加エポキシ化合物等を主成分としたエポキシ硬化系接着剤が好ましく挙げられる。
 脂環式エポキシ化合物としては、分子内に2つ以上のエポキシ基を有するものが好ましく挙げられる。これらは、液状であっても固体状であってもよい。具体的には、グリシジルヘキサヒドロビスフェノールA、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート等を挙げることができる。中でも、硬化物にLED素子の実装等に適した光透過性を確保でき、速硬化性にも優れている点から、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレートを好ましく使用することができる。
 複素環状エポキシ化合物としては、トリアジン環を有するエポキシ化合物を挙げることができ、特に好ましくは1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオンを挙げることができる。
 水素添加エポキシ化合物としては、先述の脂環式エポキシ化合物や複素環系エポキシ化合物の水素添加物や、その他公知の水素添加エポキシ樹脂を使用することができる。
 脂環式エポキシ化合物や複素環系エポキシ化合物や水素添加エポキシ化合物は、単独で使用してもよいが、2種以上を併用することができる。また、これらのエポキシ化合物に加えて本技術の効果を損なわない限り、他のエポキシ化合物を併用してもよい。例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジアリールビスフェノールA、ハイドロキノン、カテコール、レゾルシン、クレゾール、テトラブロモビスフェノールA、トリヒドロキシビフェニル、ベンゾフェノン、ビスレゾルシノール、ビスフェノールヘキサフルオロアセトン、テトラメチルビスフェノールA、テトラメチルビスフェノールF、トリス(ヒドロキシフェニル)メタン、ビキシレノール、フェノールノボラック、クレゾールノボラック等の多価フェノールとエピクロルヒドリンとを反応させて得られるグリシジルエーテル;グリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族多価アルコールとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル;p-オキシ安息香酸、β-オキシナフトエ酸のようなヒドロキシカルボン酸とエピクロルヒドリンとを反応させて得られるグリシジルエーテルエステル;フタル酸、メチルフタル酸、イソフタル酸、テレフタル酸、テトラハイドロフタル酸、エンドメチレンテトラハイドロフタル酸、エンドメチレンヘキサハイドロフタル酸、トリメット酸、重合脂肪酸のようなポリカルボン酸から得られるポリグリシジルエステル;アミノフェノール、アミノアルキルフェノールから得られるグリシジルアミノグリシジルエーテル;アミノ安息香酸から得られるグリシジルアミノグリシジルエステル;アニリン、トルイジン、トリブロムアニリン、キシリレンジアミン、ジアミノシクロヘキサン、ビスアミノメチルシクロヘキサン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン等から得られるグリシジルアミン;エポキシ化ポリオレフィン等の公知のエポキシ樹脂類が挙げられる。
 硬化剤としては、酸無水物、イミダゾール化合物、ジシアン等を挙げることができる。中でも、硬化物を変色させ難い酸無水物、特に脂環式酸無水物系硬化剤を好ましく使用できる。具体的には、メチルヘキサヒドロフタル酸無水物等を好ましく挙げることができる。
 接着剤組成物において、脂環式エポキシ化合物と脂環式酸無水物系硬化剤とを使用する場合、それぞれの使用量は、脂環式酸無水物系硬化剤が少なすぎると未硬化エポキシ化合物が多くなり、多すぎると余剰の硬化剤の影響で被着体材料の腐食が促進される傾向があるので、脂環式エポキシ化合物100質量部に対し、脂環式酸無水物系硬化剤を、好ましくは80質量部~120質量部、より好ましくは95質量部~105質量部の割合で使用する。
 このような構成からなる異方性導電接着剤は、圧着時に導電性粒子が押圧により扁平変形するとともに、熱伝導粒子が潰れ、対向する端子間の接触面積を増加させるため、高い放熱性及び高い接続信頼性を得ることができる。
 また、本技術の一実施形態における異方性導電接着剤は、接着剤組成物と、導電性粒子と、熱伝導粒子とを均一に混合することにより製造することができる。
<2.接続構造体及びその製造方法>
 次に、前述した異方性導電接着剤を用いた接続構造体について説明する。本技術の一実施形態における接続構造体は、第1の電子部品の端子と、第2の電子部品の端子とが、樹脂粒子の表面に導電性金属層が形成された導電性粒子を介して電気的に接続されてなる接続構造体において、第1の電子部品の端子と第2の電子部品の端子との間に、導電性粒子よりも平均粒径が小さい熱伝導粒子が捕捉(保持)されている。
 本技術の一実施形態における電子部品としては、熱を発するドライバーIC(Integrated Circuit)、LED(Light Emitting Diode)等のチップ(素子)が好適である。
 図3は、LED実装体の構成例を示す断面図である。このLED実装体は、LED素子(第1の電子部品)と基板(第2の電子部品)とを、前述した導電性粒子と、導電性粒子よりも平均粒径が小さい熱伝導粒子とが接着剤成分中に分散された異方性導電接着剤を用いて接続したものである。
 LED素子は、例えばサファイヤからなる素子基板11上に、例えばn-GaNからなる第1導電型クラッド層12と、例えばInx Aly Ga1-x-y N層からなる活性層13と、例えばp-GaNからなる第2導電型クラッド層14とを備え、いわゆるダブルヘテロ構造を有する。また、第1導電型クラッド層12上の一部に第1導電型電極12aを備え、第2導電型クラッド層14上の一部に第2導電型電極14aを備える。LED素子の第1導電型電極12aと第2導電型電極14aとの間に電圧を印加すると、活性層13にキャリアが集中し、再結合することにより発光が生じる。
 基板は、基材21上に第1導電型用回路パターン22と、第2導電型用回路パターン23とを備え、LED素子の第1導電型電極12a及び第2導電型電極14aに対応する位置にそれぞれ電極22a及び電極23aを有する。
 異方性導電接着剤は、前述と同様、導電性粒子31と、導電性粒子31よりも平均粒径が小さい熱伝導粒子32とがバインダー33に分散されている。
 図3に示すように、LED実装体は、LED素子の端子(電極12a、14a)と、基板の端子(電極22a、23a)とが導電性粒子31を介して電気的に接続され、LED素子の端子と基板の端子との間に熱伝導粒子32が捕捉されている。
 これにより、LED素子の活性層13で発生した熱を効率良く基板側に逃がすことができ、発光効率の低下を防ぐとともにLED実装体を長寿命化させることができる。また、熱伝導粒子32が、白又は灰色の無彩色であることにより、活性層13からの光を反射し、高い輝度を得ることができる。
 また、フリップチップ実装するためのLED素子は、図4に示すように、パッシベーション105(図8及び図9参照)により、LED素子の端子(電極12a、14a)が大きく設計されているため、LED素子の端子(電極12a、14a)と基板の端子(回路パターン22、23)との間に導電性粒子31及び熱伝導粒子32がより多く捕捉される。これにより、LED素子の活性層13で発生した熱をさらに効率良く基板側に逃がすことができる。
 次に、上述した接続構造体の製造方法について説明する。本技術の一実施の形態における実装体の製造方法は、前述した導電性粒子と、導電性粒子よりも平均粒径が小さい熱伝導粒子とが接着剤成分中に分散された異方性導電接着剤を、第1の電子部品の端子と第2の電子部品の端子との間に挟み、第1の電子部品と第2の電子部品とを熱圧着する。
 これにより、第1の電子部品の端子と、第2の電子部品の端子とが導電性粒子を介して電気的に接続され、第1の電子部品の端子と第2の電子部品の端子との間に熱伝導粒子が捕捉されてなる接続構造体を得ることができる。
 本技術の一実施形態における接続構造体の製造方法は、圧着時に導電性粒子が押圧により扁平変形するとともに、熱伝導粒子が潰れ、対向する端子間のとの接触面積を増加させるため、高い放熱性及び高い接続信頼性を得ることができる。
 なお、上記した本技術の一実施形態における異方性導電接着剤及び接続構造体を用いない方法及びその問題点は、以下の通りである。
 LED素子を基板に実装する工法として、ワイヤーボンド工法が用いられている。ワイヤーボンド工法は、図5に示すように、LED素子の電極(第1導電型電極104a及び第2導電型電極102a)面を上に向け(フェイスアップ)、そのLED素子と基板の電気的接合をワイヤーボンド(WB:Wire Bonding)301a、301bで行い、LED素子と基板との接着には、ダイボンド材302を用いる。
 しかし、このようなワイヤーボンドで電気的接続を得る方法では、電極(第1導電型電極104a及び第2導電型電極102a)からのワイヤーボンドの物理的破断・剥離のリスクがあるため、より信頼性の高い技術が求められている。さらに、ダイボンド材302の硬化プロセスは、オーブン硬化で行われるため、生産に時間が掛かる。
 ワイヤーボンドを用いない工法として、図6に示すように、LED素子の電極(第1導電型電極104a及び第2導電型電極102a)面を基板側に向け(フェイスダウン、フリップチップ)、そのLED素子と基板との電気的接続に、銀ペーストに代表される導電性ペースト303(303a、303b)を用いる方法がある。
 しかし、導電性ペースト303(303a、303b)は、接着力が弱いため、封止樹脂304による補強が必要である。さらに、封止樹脂304の硬化プロセスは、オーブン硬化で行われるため、生産に時間が掛かる。
 導電性ペーストを用いない工法として、図7に示すように、LED素子の電極面を基板側に向け(フェイスダウン、フリップチップ)、そのLED素子と基板との電気的接続及び接着に、絶縁性の接着剤バインダー305中に導電性粒子306を分散させた異方性導電接着剤を用いる方法がある。異方性導電接着剤は、接着プロセスが短いため、生産効率が良い。また、異方性導電接着剤は、安価であり、透明性、接着性、耐熱性、機械的強度、電気絶縁性等に優れている。
 また、FC実装するためのLED素子が開発されている。このFC実装用LED素子は、パッシベーション105により、電極面積を大きく取る設計が可能であるため、バンプレス実装が可能となる。また、発光層の下に反射膜を設けることによって光取り出し効率が良くなる。
 FC実装用LED素子を基板に実装する工法としては、図8に示すように、金スズ共晶接合が用いられている。金スズ共晶接合は、チップ電極を金とスズの合金307で形成し、フラックスを基板に塗布し、チップを搭載、加熱することで基板電極と、共晶接合させる工法である。しかし、このようなはんだ接続工法は、加熱中のチップズレや洗浄しきれなかったフラックスによる信頼性への悪影響があるため歩留まりが悪い。また、高度な実装技術が必要である。
 金スズ共晶を用いない工法として、図9に示すように、LED素子の電極面と基板との電気的接続に、はんだペーストを用いるはんだ接続工法がある。しかし、このようなはんだ接続工法は、ペーストが等方性の導電性を有するため、pn電極間がショートしてしまい歩留まりが悪い。
 はんだペーストを用いない工法として、図10に示すように、LED素子と基板との電気的接続及び接着に、図7と同様、絶縁性のバインダー中に導電性粒子を分散させたACF(Anisotropic conductive film)などの異方性導電接着剤を用いる方法がある。異方性導電接着剤は、pn電極間に絶縁性のバインダーが充填される。よって、ショートが発生しにくいため歩留まりが良い。また、接着プロセスが短いため、生産効率が良い。
 ところで、LED素子の活性層(ジャンクション)103は、光の他に多くの熱を発生し、発光層温度(Tj=ジャンクション温度)が100℃以上になると、LEDの発光効率が低下し、LEDの寿命が短くなる。このため、活性層103の熱を効率良く逃がすための構造が必要である。
 図5に示すようなWB実装では、活性層103がLED素子の上側に位置するため、発生した熱が基板側に効率良く伝わらないため放熱性が悪い。
 また、図6、図8及び図9に示すようなフリップチップ実装を行うと、活性層103が基板側に位置するため、熱が基板側に効率良く伝わる。図6及び図9に示すように、電極間を導電性ペースト303(303a、303b)で接合した場合、高効率で放熱することができるが、導電性ペースト303(303a、303b)による接続は、上記で述べたように接続信頼性が悪い。また、図8に示すように、金スズ共晶接合を行った場合も、上記で述べたのと同様に接続信頼性が悪い。
 また、図7及び図10に示すように、導電性ペースト303(303a、303b)を用いずにACFやACP(Anisotropic Conductive Paste)等の異方性導電接着剤でフリップチップ実装することで、活性層103が基板側近く配置され、熱が基板側に効率良く伝わる。また、接着力が高いため、高い接続信頼性が得られる。
<3.実施例>
 以下、本技術の実施例について詳細に説明するが、本技術はこれらの実施例に限定されるものではない。
<3.1 熱伝導粒子の種類について>
 本実験では、熱伝導粒子を配合した異方性導電接着剤(ACP)を作製し、LED実装体を作製し、熱伝導粒子の種類について検討した。
 異方性導電接着剤の作製、異方性導電接着剤の硬化物の熱伝導率の測定、LED実装体の作製、LED実装体の放熱性の評価、光特性の評価、及び電気特性の評価は、次のように行った。
[異方性導電接着剤の作製]
 エポキシ硬化系接着剤(エポキシ樹脂(商品名:CEL2021P、(株)ダイセル化学製)及び酸無水物(MeHHPA、商品名:MH700、新日本理化(株)製)を主成分としたバインダー)中に、樹脂粒子の表面にAuが被覆された平均粒径5μmの導電性粒子(品名:AUL705、積水化学工業社製)を10質量%配合した。この樹脂組成物に熱伝導粒子を配合し、熱伝導性を有する異方性導電接着剤を作製した。
[異方性導電接着剤の硬化物の熱伝導率の測定]
 異方性導電接着剤をガラス板で挟み込み、これを150℃、1時間の条件で硬化し、厚み1mmの硬化物を得た。そして、レーザーフラッシュ法による測定装置(キセノンフラッシュアナライザーLFA447、NETZSCH製)を用いて、硬化物の熱伝導率の測定を行った。
[LED実装体の作製]
 異方性導電接着剤を用いてLEDチップ(青色LED、Vf=3.2V(If=20mA))をAu電極基板に搭載した。異方性導電接着剤をAu電極基板に塗布した後、LEDチップをアライメントして搭載し、200℃-20秒-1kg/chipの条件で加熱圧着を行った。Au電極基板は、バンプボンダーにてAuバンプを形成した後、フラットニング処理を行ったものを使用した(ガラスエポキシ基板、導体スペース=100μm、Ni/Auメッキ=5.0μm/0.3μm、金バンプ=15μm)。
[放熱性の評価]
 過渡熱抵抗測定装置(CATS電子設計社製)を用いて、LED実装体の熱抵抗値(℃/W)を測定した。測定条件はIf=200mA(定電流制御)で行った。
[光特性の評価]
 積分球による全光束測定装置(LE-2100、大塚電子株式会社製)を用いて、LED実装体の全光束量(mlm)を測定した。測定条件はIf=200mA(定電流制御)で行った。
[電気特性の評価]
 初期Vf値として、If=20mA時のVf値を測定した。また、85℃、85%RH環境下でLED実装体をIf=20mAで500時間点灯させ(高温高湿試験)、If=20mA時のVf値を測定した。接続信頼性の評価は、初期Vf値よりも5%以上上昇した場合を「導通NG」と評価し、初期Vf値よりも5%以上低下した場合を「絶縁NG」と評価し、それ以外を「○」と評価した。なお、「○」は良、「NG」は不良を意味している。
[実施例1]
 熱伝導粒子として、平均粒径(D50)1μmのAg粒子(熱伝導率:428W/(m・K))を用いた。前述の樹脂組成物にこの熱伝導粒子を5体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は、0.3W/(m・K)であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は160℃/W、全光束量の測定結果は320mlm、接続信頼性の評価結果は、初期で○、高温高湿試験後で○であった。
[実施例2]
 熱伝導粒子として、平均粒径(D50)1μmのAg粒子(熱伝導率:428W/(m・K))を用いた。前述の樹脂組成物にこの熱伝導粒子を20体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は、0.4W/(m・K)であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は130℃/W、全光束量の測定結果は300mlm、接続信頼性の評価結果は、初期で○、高温高湿試験後で○であった。
[実施例3]
 熱伝導粒子として、平均粒径(D50)1μmのAg粒子(熱伝導率:428W/(m・K))を用いた。前述の樹脂組成物にこの熱伝導粒子を40体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は、0.5W/(m・K)であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は120℃/W、全光束量の測定結果は280mlm、接続信頼性の評価結果は、初期で○、高温高湿試験後で○であった。
[実施例4]
 熱伝導粒子として、Ag粒子表面を100nm厚みのSiO2 で被覆した平均粒径(D50)1μmの絶縁被覆粒子を用いた。前述の樹脂組成物にこの熱伝導粒子を50体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は、0.5W/(m・K)であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は115℃/W、全光束量の測定結果は280mlm、接続信頼性の評価結果は、初期で○、高温高湿試験後で○であった。
[実施例5]
 熱伝導粒子として、平均粒径(D50)1.5μmのAg/Pd合金粒子(熱伝導率:400W/(m・K))を用いた。前述の樹脂組成物にこの熱伝導粒子を5体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は、0.4W/(m・K)であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は135℃/W、全光束量の測定結果は300mlm、接続信頼性の評価結果は、初期で○、高温高湿試験後で○であった。
[比較例1]
 熱伝導粒子を配合せずに異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は、0.2W/(m・K)であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は200℃/W、全光束量の測定結果は330mlm、接続信頼性の評価結果は、初期で○、高温高湿試験後で○であった。
[比較例2]
 熱伝導粒子として、平均粒径(D50)1μmのAg粒子(熱伝導率:428W/(m・K))を用いた。前述の樹脂組成物にこの熱伝導粒子を50体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は、0.55W/(m・K)であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は110℃/W、全光束量の測定結果は250mlm、接続信頼性の評価結果は、初期で○、高温高湿試験後で絶縁NGであった。
[比較例3]
 熱伝導粒子として、平均粒径(D50)1.2μmのAlN粒子(熱伝導率:190W/(m・K))を用いた。前述の樹脂組成物にこの熱伝導粒子を55体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は、1.0W/(m・K)であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は170℃/W、全光束量の測定結果は250mlm、接続信頼性の評価結果は、初期で○、高温高湿試験後で導通NGであった。
 表1に、実施例1~5、及び比較例1~3の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1のように、熱伝導粒子を添加しない場合、異方性導電接着剤の硬化物の熱伝導率は0.2W/(m・K)、LED実装体の熱抵抗値は200℃/Wであり、優れた放熱性を得ることができなかった。
 また、比較例2のように、Ag粒子を50体積%配合した場合、異方性導電接着剤の硬化物の熱伝導率は0.55W/(m・K)、LED実装体の熱抵抗値は110℃/Wであり、比較例1よりも優れた放熱性を得ることができた。しかし、Ag粒子の配合量が多いため、LED実装体の高温高湿試験においてVf値が初期Vf値よりも5%以上低下した。
 また、比較例3のように、AlN粒子を55体積%配合した場合、異方性導電接着剤の硬化物の熱伝導率は1.0W/(m・K)であったが、AlNの熱伝導率が低いため、LED実装体の熱抵抗値は170℃/Wであった。また、AlN粒子の配合量が多く、また、AlNの高い電気絶縁性により、LED実装体の高温高湿試験においてVf値が初期Vf値よりも5%以上上昇した。
 一方、実施例1~3のように、Ag粒子を5体積%~40体積%配合した場合、異方性導電接着剤の硬化物の熱伝導率は0.3W/(m・K)~0.5W/(m・K)、LED実装体の熱抵抗値は120℃/W~160℃/Wであり、比較例1よりも優れた放熱性を得ることができた。また、LED実装体の高温高湿試験においても、高い接続信頼性を得ることができた。
 また、実施例4のように、Ag粒子表面をSiO2 で被覆した絶縁被覆粒子を用いた場合、50体積%配合しても、LED実装体の高温高湿試験において、高い接続信頼性を得ることができた。また、異方性導電接着剤の硬化物の熱伝導率は0.5W/(m・K)、LED実装体の熱抵抗値は115℃/Wであり、比較例1よりも優れた放熱性を得ることができた。
 また、実施例5のように、Ag/Pd合金粒子を20体積%配合した場合、異方性導電接着剤の硬化物の熱伝導率は0.4W/(m・K)、LED実装体の熱抵抗値は135℃/Wであり、比較例1よりも優れた放熱性を得ることができた。また、LED実装体の高温高湿試験においても、高い接続信頼性を得ることができた。
<3.2 絶縁被覆粒子の絶縁層の厚みについて>
 本実験では、熱伝導粒子として、金属粒子表面に絶縁層を形成した絶縁被覆粒子を配合した異方性導電接着剤(ACP)を作製し、LED実装体を作製し、絶縁被覆粒子の絶縁層の厚みついて検討した。
 異方性導電接着剤の作製、LED実装体の作製、異方性導電接着剤の硬化物の熱伝導率の測定、LED実装体の放熱性の評価、及び光特性の評価は、前述の<3.1 熱伝導粒子の種類について>と同様に行った。また、絶縁被覆粒子の作製、及びACP硬化物の耐電圧の測定は、次のように行った。
[絶縁被覆粒子の作製]
 スチレンを主成分とする樹脂粉末(接着剤層、粒径0.2μm)と、Ag金属粉(粒径1μm)とを混合した後、粉末同士を物理的な力で衝突させ成膜する成膜装置(ホソカワミクロン製メカノフージョン)にてAg金属粉末表面に100nm程度の白色絶縁層を形成した金属を得た。
[ACP硬化物の耐電圧の測定]
 くし葉上にパターニングされた配線基板上に厚み100nmのACP硬化物を塗布計せした。くし葉の両極に電圧を500Vまで印加し、0.5mA電流が流れたときの電圧を耐電圧とした。配線間スペースが25μmのときの耐電圧、及び配線間スペースが100μmのときの耐電圧を測定した。
[実施例6]
 熱伝導粒子として、Ag粒子表面を20nm厚みのスチレン樹脂で被覆した平均粒径(D50)1μmの絶縁被覆粒子を用いた。前述の樹脂組成物にこの熱伝導粒子を50体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は0.5W/(m・K)であり、配線間スペースが25μmときの耐電圧の試験結果は150Vであり、配線間スペースが100μmときの耐電圧の試験結果は500V超であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は130℃/W、全光束量の測定結果は300mlmであった。
[実施例7]
 熱伝導粒子として、Ag粒子表面を100nm厚みのスチレン樹脂で被覆した平均粒径(D50)1μmの絶縁被覆粒子を用いた。前述の樹脂組成物にこの熱伝導粒子を50体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は0.4W/(m・K)であり、配線間スペースが25μmときの耐電圧の試験結果は210Vであり、配線間スペースが100μmときの耐電圧の試験結果は500V超であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は120℃/W、全光束量の測定結果は280mlmであった。
[実施例8]
 熱伝導粒子として、Ag粒子表面を800nm厚みのスチレン樹脂で被覆した平均粒径(D50)1μmの絶縁被覆粒子を用いた。前述の樹脂組成物にこの熱伝導粒子を50体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は0.5W/(m・K)であり、配線間スペースが25μmときの耐電圧の試験結果は450Vであり、配線間スペースが100μmときの耐電圧の試験結果は500V超であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は115℃/W、全光束量の測定結果は280mlmであった。
[実施例9]
 熱伝導粒子として、Ag粒子表面を100nm厚みのSiO2 で被覆した平均粒径(D50)1μmの絶縁被覆粒子を用いた。実施例4と同様、前述の樹脂組成物にこの熱伝導粒子を50体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は0.5W/(m・K)であり、配線間スペースが25μmときの耐電圧の試験結果は230Vであり、配線間スペースが100μmときの耐電圧の試験結果は500V超であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は115℃/W、全光束量の測定結果は280mlmであった。
[実施例10]
 熱伝導粒子として、Ag/Pd合金粒子表面を100nm厚みのスチレン樹脂で被覆した平均粒径(D50)1.5μmの絶縁被覆粒子を用いた。前述の樹脂組成物にこの熱伝導粒子を50体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は0.4W/(m・K)であり、配線間スペースが25μmときの耐電圧の試験結果は210Vであり、配線間スペースが100μmときの耐電圧の試験結果は500V超であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は135℃/W、全光束量の測定結果は280mlmであった。
[比較例4]
 熱伝導粒子を配合せずに異方性導電接着剤を作製した。比較例1と同様、この異方性導電接着剤の硬化物の熱伝導率の測定結果は0.2W/(m・K)であり、配線間スペースが25μmときの耐電圧の試験結果は200Vであり、配線間スペースが100μmときの耐電圧の試験結果は500V超であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は200℃/W、全光束量の測定結果は330mlmであった。
[比較例5]
 熱伝導粒子として、平均粒径(D50)1μmのAg粒子(熱伝導率:428W/(m・K))を用いた。前述の樹脂組成物にこの熱伝導粒子を50体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。比較例2と同様、この異方性導電接着剤の硬化物の熱伝導率の測定結果は0.55W/(m・K)であり、配線間スペースが25μmときの耐電圧の試験結果は100Vであり、配線間スペースが100μmときの耐電圧の試験結果は200Vであった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は110℃/W、全光束量の測定結果は250mlmであった。
[比較例6]
 熱伝導粒子として、Ag粒子表面を1100nm厚みのスチレン樹脂で被覆した平均粒径(D50)1μmの絶縁被覆粒子を用いた。前述の樹脂組成物にこの熱伝導粒子を50体積%配合し、熱伝導性を有する異方性導電接着剤を作製した。この異方性導電接着剤の硬化物の熱伝導率の測定結果は0.4W/(m・K)であり、配線間スペースが25μmときの耐電圧の試験結果は300Vであり、配線間スペースが100μmときの耐電圧の試験結果は500V超であった。また、この異方性導電接着剤を用いて作製したLED実装体の熱抵抗の測定結果は190℃/W、全光束量の測定結果は300mlmであった。
 表2に、実施例6~10、及び比較例4~6の評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
 比較例4のように、熱伝導粒子を添加しない場合、比較例1と同様、異方性導電接着剤の硬化物の熱伝導率は0.2W/(m・K)、LED実装体の熱抵抗値は200℃/Wであり、優れた放熱性を得ることができなかった。耐電圧については、異方性導電接着剤の硬化物の配線間スペースが25μmのときに200V、配線間スペースが100μmのときに500V超であり、安定した絶縁特性が得られた。
 また、比較例5のように、Ag粒子を50体積%配合した場合、比較例2と同様、異方性導電接着剤の硬化物の熱伝導率は0.55W/(m・K)、実装体の熱抵抗値は110℃/Wであり、比較例1よりも優れた放熱性を得ることができた。しかし、Ag粒子の配合量が多いため、異方性導電接着剤の硬化物の配線間スペースが25μmのときの耐電圧が100V、配線間スペースが100μmのときの耐電圧が200Vとなり、安定した絶縁特性が得られなかった。
 また、比較例6のように、Ag粒子表面を1100nm厚みのスチレン樹脂で被覆した絶縁被覆粒子を用いた場合、異方性導電接着剤の硬化物の熱伝導率は0.4W/(m・K)であった。しかし、LED実装体の熱抵抗値は190℃/Wであり、比較例4よりも若干低い値しか得られなかった。これは、スチレン樹脂の絶縁層が厚いため、熱伝導の阻害が起こったためだと考えられる。耐電圧については、異方性導電接着剤の硬化物の配線間スペースが25μmのときに300V、配線間スペースが100μmのときに500V超であり、安定した絶縁特性が得られた。
 一方、実施例6~8のように、スチレン樹脂の絶縁層を20nm~800nmとした場合、異方性導電接着剤の硬化物の熱伝導率は0.4W/(m・K)~0.5W/(m・K)、LED実装体の熱抵抗値は115℃/W~130℃/Wであり、比較例1よりも優れた放熱性を得ることができた。また、異方性導電接着剤の硬化物の配線間スペースが25μmのときの耐電圧は210V~450V、配線間スペースが100μmのときの耐電圧は500V超となり、安定した絶縁特性が得られた。
 また、実施例9のように、Ag粒子表面をSiO2 で被覆した絶縁被覆粒子を用いた場合、実施例4と同様、異方性導電接着剤の硬化物の熱伝導率は0.5W/(m・K)、LED実装体の熱抵抗値は115℃/Wであり、比較例1よりも優れた放熱性を得ることができた。また、異方性導電接着剤の硬化物の配線間スペースが25μmのときの耐電圧は230V、配線間スペースが100μmのときの耐電圧は500V超となり、安定した絶縁特性が得られた。
 また、実施例10のように、Ag/Pd合金粒子をスチレン樹脂で被覆した絶縁被覆粒子を用いた場合、異方性導電接着剤の硬化物の熱伝導率は0.4W/(m・K)、LED実装体の熱抵抗値は135℃/Wであり、比較例1よりも優れた放熱性を得ることができた。また、異方性導電接着剤の硬化物の配線間スペースが25μmのときの耐電圧は210V、配線間スペースが100μmのときの耐電圧は500V超となり、安定した絶縁特性が得られた。
 また、本技術は以下の構成を採用することもできる。
(1)
 樹脂粒子とその樹脂粒子の表面に形成された導電性金属層とを含む導電性粒子と、
 前記導電性粒子よりも小さい平均粒径を有する金属粒子であり、又は前記導電性粒子よりも小さい平均粒径を有すると共に金属粒子とその金属粒子の表面に形成された絶縁層とを含む絶縁被覆粒子である、熱伝導粒子と、
 前記導電性粒子及び前記熱伝導粒子を分散させる接着剤成分と
 を含有する、異方性導電接着剤。
(2)
 前記金属粒子が、約200W/(m・K)以上の熱伝導率を有し、
 前記絶縁被覆粒子の前記金属粒子が、約200W/(m・K)以上の熱伝導率を有する、
 (1)に記載の異方性導電接着剤。
(3)
 前記金属粒子が、Ag、又はAgを主成分とする合金を含み、
 前記絶縁被覆粒子の前記金属粒子が、Ag、又はAgを主成分とする合金を含む、
 (1)又は(2)に記載の異方性導電接着剤。
(4)
 前記金属粒子の含有量が、約5体積%~40体積%である
 (1)乃至(3)のいずれか1項に記載の異方性導電接着剤。
(5)
 前記絶縁層の厚みが、約20nm~1000nmである
 (1)乃至(3)のいずれか1項に記載の異方性導電接着剤。
(6)
 前記絶縁層が、樹脂、又は無機材料を含む
 (1)乃至(3)のいずれか1項に記載の異方性導電接着剤。
(7)
 前記絶縁被覆粒子の含有量が、約5体積%~50体積%である
 (6)に記載の異方性導電接着剤。
(8)
 前記熱伝導粒子の平均粒径が、前記導電性粒子の平均粒径の約5%~80%である
 (1)乃至(7)のいずれか1項に記載の異方性導電接着剤。
(9)
 前記熱伝導粒子が、白又は灰色の無彩色である
 (1)乃至(8)のいずれか1項に記載の異方性導電接着剤。
(10)
 第1の電子部品の端子と、
 第2の電子部品の端子と、
 前記第1の電子部品の端子と前記第2の電子部品の端子との間に配置され、樹脂粒子とその樹脂粒子の表面に形成された導電性金属層とを含むと共に、前記第1の電子部品の端子と前記第2の電子部品の端子とを電気的に接続させる導電性粒子と、
 前記第1の電子部品の端子と前記第2の電子部品の端子との間に配置され、前記導電性粒子よりも小さい平均粒径を有する金属粒子であり、又は前記導電性粒子よりも小さい平均粒径を有すると共に金属粒子とその金属粒子の表面に形成された絶縁層とを含む絶縁被覆粒子であり、前記第1の電子部品の端子と前記第2の電子部品の端子との間に保持された熱伝導粒子と
 を備えた、接続構造体。
(11)
 第1の電子部品が、LED素子であり、
 第2の電子部品が、基板である
 (10)に記載の接続構造体。
(12)
 前記熱伝導粒子が、白又は灰色の無彩色である
 (10)に記載の接続構造体。
 本出願は、日本国特許庁において2012年9月24日に出願された日本特許出願番号第2012-210223号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、及び変更を想到し得るが、それらは添付の請求の範囲の趣旨やその均等物の範囲に含まれるものであることが理解される。

Claims (12)

  1.  樹脂粒子とその樹脂粒子の表面に形成された導電性金属層とを含む導電性粒子と、
     前記導電性粒子よりも小さい平均粒径を有する金属粒子であり、又は前記導電性粒子よりも小さい平均粒径を有すると共に金属粒子とその金属粒子の表面に形成された絶縁層とを含む絶縁被覆粒子である、熱伝導粒子と、
     前記導電性粒子及び前記熱伝導粒子を分散させる接着剤成分と
     を含有する、異方性導電接着剤。
  2.  前記金属粒子が、約200W/(m・K)以上の熱伝導率を有し、
     前記絶縁被覆粒子の前記金属粒子が、約200W/(m・K)以上の熱伝導率を有する、
     請求項1記載の異方性導電接着剤。
  3.  前記金属粒子が、Ag、又はAgを主成分とする合金を含み、
     前記絶縁被覆粒子の前記金属粒子が、Ag、又はAgを主成分とする合金を含む、
     請求項1又は2記載の異方性導電接着剤。
  4.  前記金属粒子の含有量が、約5体積%~40体積%である
     請求項1乃至3のいずれか1項に記載の異方性導電接着剤。
  5.  前記絶縁層の厚みが、約20nm~1000nmである
     請求項1乃至3のいずれか1項に記載の異方性導電接着剤。
  6.  前記絶縁層が、樹脂、又は無機材料を含む
     請求項1乃至3のいずれか1項に記載の異方性導電接着剤。
  7.  前記絶縁被覆粒子の含有量が、約5体積%~50体積%である
     請求項6に記載の異方性導電接着剤。
  8.  前記熱伝導粒子の平均粒径が、前記導電性粒子の平均粒径の5%~80%である
     請求項1乃至7のいずれか1項に記載の異方性導電接着剤。
  9.  前記熱伝導粒子が、白又は灰色の無彩色である
     請求項1乃至8のいずれか1項に記載の異方性導電接着剤。
  10.  第1の電子部品の端子と、
     第2の電子部品の端子と、
     前記第1の電子部品の端子と前記第2の電子部品の端子との間に配置され、樹脂粒子とその樹脂粒子の表面に形成された導電性金属層とを含むと共に、前記第1の電子部品の端子と前記第2の電子部品の端子とを電気的に接続させる導電性粒子と、
     前記第1の電子部品の端子と前記第2の電子部品の端子との間に配置され、前記導電性粒子よりも小さい平均粒径を有する金属粒子であり、又は前記導電性粒子よりも小さい平均粒径を有すると共に金属粒子とその金属粒子の表面に形成された絶縁層とを含む絶縁被覆粒子であり、前記第1の電子部品の端子と前記第2の電子部品の端子との間に保持された熱伝導粒子と
     を備えた、接続構造体。
  11.  第1の電子部品が、LED素子であり、
     第2の電子部品が、基板である
     請求項10記載の接続構造体。
  12.  前記熱伝導粒子が、白又は灰色の無彩色である
     請求項10記載の接続構造体。
PCT/JP2013/075038 2012-09-24 2013-09-17 異方性導電接着剤及び接続構造体 WO2014046088A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157006951A KR102096575B1 (ko) 2012-09-24 2013-09-17 이방성 도전 접착제 및 접속 구조체
EP13839161.0A EP2899244A4 (en) 2012-09-24 2013-09-17 ANISOTROPIC CONDUCTIVE ADHESIVE AND JUNCTION STRUCTURE
US14/430,440 US20150197672A1 (en) 2012-09-24 2013-09-17 Anisotropic conductive adhesive and connection structure
CN201380041395.3A CN104520398B (zh) 2012-09-24 2013-09-17 各向异性导电粘合剂及连接结构体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012210223A JP6066643B2 (ja) 2012-09-24 2012-09-24 異方性導電接着剤
JP2012-210223 2012-09-24

Publications (1)

Publication Number Publication Date
WO2014046088A1 true WO2014046088A1 (ja) 2014-03-27

Family

ID=50341398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075038 WO2014046088A1 (ja) 2012-09-24 2013-09-17 異方性導電接着剤及び接続構造体

Country Status (7)

Country Link
US (1) US20150197672A1 (ja)
EP (1) EP2899244A4 (ja)
JP (1) JP6066643B2 (ja)
KR (1) KR102096575B1 (ja)
CN (1) CN104520398B (ja)
TW (1) TWI597346B (ja)
WO (1) WO2014046088A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7330419B1 (ja) 2022-07-12 2023-08-21 三菱電機株式会社 放熱部材、基材付き放熱部材およびパワーモジュール

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6450923B2 (ja) 2013-12-20 2019-01-16 パナソニックIpマネジメント株式会社 電子部品実装システムおよび電子部品実装方法ならびに電子部品実装装置
US10283685B2 (en) * 2014-09-26 2019-05-07 Seoul Viosys Co., Ltd. Light emitting device and method of fabricating the same
KR20160046977A (ko) * 2014-10-20 2016-05-02 삼성디스플레이 주식회사 이방성 도전입자
DE102015112967A1 (de) * 2015-08-06 2017-02-09 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102016100320A1 (de) 2016-01-11 2017-07-13 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement, optoelektronisches Modul und Verfahren zur Herstellung eines optoelektronischen Bauelements
KR102535557B1 (ko) * 2016-03-07 2023-05-24 삼성디스플레이 주식회사 표시 장치 및 전자 디바이스
CN105741917B (zh) * 2016-03-11 2019-03-08 联想(北京)有限公司 一种导电胶膜及电子设备
KR102555383B1 (ko) * 2016-12-07 2023-07-12 엘지디스플레이 주식회사 유기발광소자를 이용한 조명장치 및 그 제조방법
US20180166426A1 (en) * 2016-12-14 2018-06-14 Nanya Technology Corporation Semiconductor structure and a manufacturing method thereof
KR102309135B1 (ko) * 2017-03-06 2021-10-07 데쿠세리아루즈 가부시키가이샤 수지 조성물, 수지 조성물의 제조 방법, 및 구조체
JP7046351B2 (ja) 2018-01-31 2022-04-04 三国電子有限会社 接続構造体の作製方法
JP7185252B2 (ja) 2018-01-31 2022-12-07 三国電子有限会社 接続構造体の作製方法
JP7160302B2 (ja) * 2018-01-31 2022-10-25 三国電子有限会社 接続構造体および接続構造体の作製方法
CN110707198A (zh) * 2019-09-20 2020-01-17 深圳市华星光电半导体显示技术有限公司 阵列基板及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249922A (ja) * 1995-10-31 1996-09-27 Hitachi Chem Co Ltd 被覆粒子
JP2005108635A (ja) 2003-09-30 2005-04-21 Sony Corp 面発光装置および液晶表示装置
JP2006233200A (ja) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd 異方性導電性接着フィルム
JP2007023221A (ja) 2005-07-20 2007-02-01 Bando Chem Ind Ltd 被覆発光体およびその利用
JP2008041706A (ja) 2006-08-01 2008-02-21 Dainippon Printing Co Ltd 発光装置および白色変換シート
JP2009283438A (ja) 2007-12-07 2009-12-03 Sony Corp 照明装置、表示装置、照明装置の製造方法
JP2011510139A (ja) * 2008-01-17 2011-03-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性接着剤
JP2012129202A (ja) * 2010-11-24 2012-07-05 Sekisui Chem Co Ltd 異方性導電ペースト、接続構造体及び接続構造体の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001542A (en) * 1988-12-05 1991-03-19 Hitachi Chemical Company Composition for circuit connection, method for connection using the same, and connected structure of semiconductor chips
JP2948038B2 (ja) * 1992-12-18 1999-09-13 住友ベークライト株式会社 異方導電フィルム
JPH11150135A (ja) * 1997-11-17 1999-06-02 Nec Corp 熱伝導性が良好な導電性ペースト及び電子部品
KR100597391B1 (ko) * 2004-05-12 2006-07-06 제일모직주식회사 절연 전도성 미립자 및 이를 함유하는 이방 전도성 접착필름
JP5010990B2 (ja) * 2007-06-06 2012-08-29 ソニーケミカル&インフォメーションデバイス株式会社 接続方法
JP5617210B2 (ja) * 2009-09-14 2014-11-05 デクセリアルズ株式会社 光反射性異方性導電接着剤及び発光装置
JP5555038B2 (ja) * 2010-04-13 2014-07-23 デクセリアルズ株式会社 光反射性異方性導電接着剤及び発光装置
EP2581955A4 (en) * 2010-06-09 2015-12-30 Dexerials Corp LIGHT REFLECTING AND ELECTRICALLY CONDUCTIVE ANISOTROPE PASTE AND LIGHT-EMITTING DEVICE
CN103415585B (zh) * 2011-03-16 2015-04-29 迪睿合电子材料有限公司 反光性各向异性导电粘接剂及发光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249922A (ja) * 1995-10-31 1996-09-27 Hitachi Chem Co Ltd 被覆粒子
JP2005108635A (ja) 2003-09-30 2005-04-21 Sony Corp 面発光装置および液晶表示装置
JP2006233200A (ja) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd 異方性導電性接着フィルム
JP2007023221A (ja) 2005-07-20 2007-02-01 Bando Chem Ind Ltd 被覆発光体およびその利用
JP2008041706A (ja) 2006-08-01 2008-02-21 Dainippon Printing Co Ltd 発光装置および白色変換シート
JP2009283438A (ja) 2007-12-07 2009-12-03 Sony Corp 照明装置、表示装置、照明装置の製造方法
JP2011510139A (ja) * 2008-01-17 2011-03-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性接着剤
JP2012129202A (ja) * 2010-11-24 2012-07-05 Sekisui Chem Co Ltd 異方性導電ペースト、接続構造体及び接続構造体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2899244A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7330419B1 (ja) 2022-07-12 2023-08-21 三菱電機株式会社 放熱部材、基材付き放熱部材およびパワーモジュール
WO2024013858A1 (ja) * 2022-07-12 2024-01-18 三菱電機株式会社 放熱部材、基材付き放熱部材およびパワーモジュール

Also Published As

Publication number Publication date
TW201412934A (zh) 2014-04-01
EP2899244A1 (en) 2015-07-29
KR20150060705A (ko) 2015-06-03
TWI597346B (zh) 2017-09-01
CN104520398A (zh) 2015-04-15
JP2014067762A (ja) 2014-04-17
KR102096575B1 (ko) 2020-04-02
JP6066643B2 (ja) 2017-01-25
EP2899244A4 (en) 2016-06-01
CN104520398B (zh) 2017-10-17
US20150197672A1 (en) 2015-07-16

Similar Documents

Publication Publication Date Title
JP6066643B2 (ja) 異方性導電接着剤
WO2014046093A1 (ja) 異方性導電接着剤
JP6347635B2 (ja) 異方性導電接着剤
JP6176910B2 (ja) 接続構造体の製造方法
WO2015046326A1 (ja) 発光装置、異方性導電接着剤、発光装置製造方法
WO2015056754A1 (ja) 異方性導電接着剤及び接続構造体
WO2011045962A1 (ja) 光反射性導電粒子、異方性導電接着剤及び発光装置
KR102368748B1 (ko) 접착제 및 접속 구조체
WO2015141342A1 (ja) 異方性導電接着剤
JP6430148B2 (ja) 接着剤及び接続構造体
JP2014065765A (ja) 異方性導電接着剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006951

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14430440

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013839161

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013839161

Country of ref document: EP