WO2014043993A1 - 层状结构超深度加氢脱硫多金属本体催化剂及制备和应用 - Google Patents

层状结构超深度加氢脱硫多金属本体催化剂及制备和应用 Download PDF

Info

Publication number
WO2014043993A1
WO2014043993A1 PCT/CN2012/085119 CN2012085119W WO2014043993A1 WO 2014043993 A1 WO2014043993 A1 WO 2014043993A1 CN 2012085119 W CN2012085119 W CN 2012085119W WO 2014043993 A1 WO2014043993 A1 WO 2014043993A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal
reaction
mol
hydrodesulfurization
Prior art date
Application number
PCT/CN2012/085119
Other languages
English (en)
French (fr)
Inventor
李�灿
蒋宗轩
陈燕蝶
刘铁峰
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US14/420,167 priority Critical patent/US20150190789A1/en
Publication of WO2014043993A1 publication Critical patent/WO2014043993A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8898Manganese, technetium or rhenium containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine

Definitions

  • the present invention relates to an ultra-deep hydrodesulfurization multi-metal bulk catalyst having a layered structure.
  • the invention also relates to a process for the preparation of the above catalyst.
  • the invention also relates to the use of the above catalyst in the ultra-deep hydrodesulfurization reaction of sulfur-containing compounds. Background technique
  • hydrodesulfurization catalysts commonly used in the industry are: Co-Mo/Al 2 0 3 , Ni-Mo-P/Al 2 0 3 ,
  • Ni-WB/Al 2 0 3 Ni-Co-Mo/Al 2 0 3 and Co-W/Al 2 0 3 and the like.
  • the activity of these catalysts cannot meet the requirements of ultra-deep desulfurization, so it is urgent to increase the ultra-deep desulfurization activity of the catalyst.
  • the adjustment of process operating conditions and the use of new reactors require huge investment costs.
  • the development of a new catalyst capable of ultra-deep hydrodesulfurization in accordance with current operating conditions on existing production plants is a A more economical, more feasible approach.
  • the sulfur-containing compounds mainly contained in diesel oil are mercaptans, thioethers, thiophenes and their derivatives, benzothiophene and its derivatives, dibenzothiophene and its derivatives, of which 4,6-DMDBT is the most difficult to hydrogenate.
  • Sulfur-containing compound removed by desulfurization means In the conventional hydrodesulfurization catalyst, since the catalytic effect of the carrier itself is limited, it merely increases the catalytic effect by increasing the contact area of the reactant with the carrier or the synergistic effect between the carrier and the active component, so the addition of the generally supported catalyst The hydrogen desulfurization activity is difficult to be greatly improved.
  • the multi-metal bulk catalyst i.e., the polymetallic unsupported catalyst
  • a bulk catalyst having a metal composition of NiMoW has been shown to have a very high hydrodesulfurization activity in recent literature and patent reports, and has attracted widespread attention.
  • NiMoW bulk catalysts have been reported in U.S. Patents 6,299,760, 6,156,695, 6,783,663, 6,712,955, 6,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
  • the disadvantage of this synthetic method is that concentrated ammonia is used in the synthesis process, which causes environmental pollution. And a complex of Ni with ammonia Stable, ammonia is not easily released, and a part of Ni ammonia complex ions remain in the final mother liquor, resulting in a large amount of wastewater that cannot be discharged.
  • the catalysts prepared by these patents have low specific surface area (less than 110 m 2 /g) and small pore volume (less than 0.2 ml/g); in the diesel hydrodesulfurization reaction, such catalysts are at high pressure (higher than Excellent hydrodesulfurization activity can be exhibited under 6 MPa).
  • Catalysis Letters 99 (2005) 65-71 reports the use of different starting materials and various vulcanizing agents to synthesize NiMoW catalysts.
  • the catalysts they synthesize have a special scaly morphology and can also have a high surface area.
  • the synthesis method he used is complicated, the raw materials are expensive, the production process is cumbersome, the production cost of the catalyst is increased, and industrialization is difficult to achieve.
  • CiMoW catalyst also discloses a method for synthesizing a NiMoW catalyst, which is mainly carried out in an aqueous solution by reacting molybdenum and a tungsten salt with a basic nickel carbonate, and at least a part of the metal component is present in a solid form during the reaction.
  • the catalyst is obtained by vulcanization. Since the raw material portion used in this patent is basic nickel carbonate, which is insoluble in water, the essential reaction of the synthesis process is a displacement reaction between ions and solids, so that it is difficult to synthesize small-sized catalyst particles.
  • Chinese patents CN101544904A, CN101153228A, CN101733120A also disclose a preparation method of NiMoW three-metal bulk catalyst and its application in ultra-deep desulfurization of diesel oil; although the prepared catalyst shows higher activity in diesel ultra-deep desulfurization reaction, the catalyst The specific surface area and pore volume are still small.
  • An object of the present invention is to provide an ultra-deep hydrodesulfurization polymetallic bulk catalyst having a layer structure with high activity.
  • a multimetal bulk catalyst having a layered structure, the metal in the multimetal bulk catalyst being composed of at least one Group VIII metal, at least one +2 valent metal and Composition of at least two VIB metals.
  • the catalyst based on the oxide and based on the catalyst, contains 1 to 50% by weight of a Group VIII metal, 1 to 50% by weight of a +2 valent metal, and 5 to 60% by weight of two VIB group metals.
  • the +2 valent metal is selected from the group consisting of Zn, Mn, Cu, Fe, Mg; the Group VIII metal is selected from Ni or Co; and the two VIB group metals are selected from the group consisting of Mo and W.
  • the molar ratio of the Group VIII metal to the +2 valent metal is between 20:1 and 1:20, and the molar ratio of the two Group VIB metals is between 5:1 and 1:5.
  • a process for the preparation of a catalyst as described above comprising the steps of: a) adding a soluble salt of a Group VIII metal, a soluble salt of a +2 valent metal to water to prepare a mixed aqueous solution of a soluble salt, and dissolving the alkaline precipitant in water to form a solution, and finally alkaline
  • the precipitating agent is added to the mixed aqueous solution of the above soluble salt to carry out a coprecipitation reaction to obtain a catalyst precursor having a layered structure; b) the slurry of the layered catalyst precursor and the solubility of the metal anion containing at least two Group VIB
  • the polar solvent of the salt is mixed and subjected to an ion exchange reaction, which is separated, washed, dried and calcined at 400-500 ° C for 2-10 hours to obtain a layered metal containing one group of metals, a +2 valent metal, and two kinds of VIB group metals
  • the concentration of the aqueous solution of the soluble salt of the Group VIII metal is 0.01 to 0.3 mol/L
  • the concentration of the aqueous solution of the soluble salt of the +2 valent metal is 0.01 to 0.3 mol/L
  • the concentration of the catalyst precursor of the layered structure is 0.01 to 0.9 mol/L
  • the concentrations of the two Group VIB metals are 0.01 to 0.2, respectively. Mol/L.
  • the concentration of the aqueous solution of the alkaline precipitant is 0.01 ⁇ 0.6 mol/L, and the amount of the alkaline precipitant aqueous solution is the step a) after the coprecipitation reaction, the pH value of the solution is controlled to be between 6.0 and 9.0.
  • the alkaline precipitant described in the step a) refers to sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, ammonia, urea, ammonium hydrogencarbonate. And one or a combination of two or more of ammonium carbonate.
  • step a) is carried out at 50-150 ° C for 10-25 hours;
  • step b) wherein the ion exchange reaction in step b) is carried out at 50-150 ° C for 4-10 hours;
  • the ion exchange reaction system in step b) has a pH of from 1 to 11, the pH is adjusted by an acid such as nitric acid or a base such as ammonia.
  • the soluble salt of the Group VIII metal comprises one selected from the group consisting of nickel nitrate, nickel acetate, nickel sulfate or nickel chloride, cobalt nitrate, cobalt chloride, cobalt sulfate, or cobalt acetate.
  • the +2 valence metal soluble salt can be obtained from zinc nitrate, zinc chloride, zinc acetate, zinc sulfate, magnesium nitrate, magnesium chloride, magnesium acetate, magnesium sulfate, ferrous nitrate, chlorination.
  • ferrous iron, ferrous acetate, ferrous sulfate, copper nitrate, copper chloride, copper acetate, copper sulfate, manganese acetate, manganese nitrate, manganese chloride, and manganese sulfate can be obtained from zinc nitrate, zinc chloride, zinc acetate, zinc sulfate, magnesium nitrate, magnesium chloride, magnesium acetate, magnesium sulfate, ferrous nitrate, chlorination.
  • the soluble salt containing at least two Group VIB metal anion groups may be selected from ammonium molybdate and sodium molybdate; and from ammonium tungstate, ammonium metatungstate or Choose one of sodium tungstate.
  • the hydrodesulfurization reaction is carried out under the following conditions: a temperature of 280-400 ° C, a hydrogen pressure of 1-20 MPa, a volume ratio of hydrogen to the sulfur-containing organic compound fuel of 50-1000, and Volumetric space velocity of sulfur-containing organic compound fuels 0.1-10 h
  • the catalyst is subjected to the following pretreatments prior to the hydrodesulfurization reaction: a) grinding, kneading, forming; and b) in a hydrodesulfurization fixed bed reactor at 300-
  • the in-situ pre-vulcanization is carried out at 450 ° C in a volume concentration of 1-15% of a mixed gas of a sulfur-containing compound and hydrogen; the pre-vulcanization time is 2-10 hours.
  • the sulfur-containing compound is hydrogen sulfide, carbon disulfide or dimethyl disulfide.
  • the present invention has the following advantages: 1) In the present invention, a compound having a layer structure is used as a precursor of a synthesis catalyst, and a multi-metal bulk catalyst having a layered structure is designed and synthesized, the synthesis process is easy to handle, and the catalyst can be industrially produced.
  • the catalyst synthesized by the invention has the characteristics of high dispersion and special layer structure; ensuring sufficient contact between the active metals and forming more active centers.
  • the present invention reduces the cost of the catalyst by introducing an inexpensive +2 valence transition metal such as zinc, manganese, copper, iron, and the like.
  • the catalyst of the present invention is used for ultra-deep hydrodesulfurization of sulfur-containing compounds, exhibits extremely high hydrodesulfurization activity, and can, in mild operating conditions, 4,6-dimethyl in diesel fractions.
  • the sulfur in dibenzothiophene is removed from 500 ppm to below 10 ppm, achieving ultra-deep desulfurization.
  • Fig. 1 is an XRD chart of a NiZn-LHS (NiZn-layered hydroxy salt) catalyst precursor prepared in Example 1 of the present invention and a Cat-A catalyst. It can be found that in the spectrum of NiZn-LHS, there is a diffraction peak belonging to the (003) plane in NiZn-LHS near 12.4°, which peak can correspond to the distance between adjacent layers of the layered structure; After the exchange, it was found that in the Cat-A catalyst, this characteristic peak shifted toward the low diffraction angle and appeared near 10.4°. We calculated that the interlayer spacing was increased from 7.1A to 12.4A, indicating that the interlayer spacing was contained in Mo and W.
  • NiZn-LHS NiZn-layered hydroxy salt
  • the anionic group of the active metal is large. According to the XRD results, we can successfully synthesize the NiZn-LHS catalyst precursor with layered structure, and further exchange the Mo and W active metals into the interlayer through the anion exchange reaction. Bulk catalysts with highly dispersed active species, and by introducing inexpensive +2 valence metals, reduce the cost of the catalyst. detailed description
  • the present invention is a multi-metal bulk catalyst based on a layered structure, which is a multi-metal bulk catalyst formed of at least one Group VIII metal, at least one +2 valent metal, and at least two Group VIB metals.
  • the catalyst contains 1 to 50% by weight of a Group VIII metal, 1 to 50% by weight of a +2 valent metal, and 5 to 60% by weight of two VIB group metals based on the oxide and based on the catalyst.
  • the +2 valent metal of the present invention is selected from the group consisting of Zn, Mn, Cu, Fe, Mg; the Group VIII metal is selected from Ni or Co; and the VIB group metal is selected from the group consisting of Mo and W.
  • the molar ratio of the Group VIII metal to the +2 valent metal of the present invention is between 20:1 and 1:20, and the molar ratio of the two Group VIB metals is between 5:1 and 1:5.
  • the invention relates to a bulk catalyst synthesized by an anion exchange reaction on the basis of a layered structure, which is composed of nickel (or cobalt) zinc molybdenum tungsten, nickel (or cobalt) manganese molybdenum tungsten, nickel (or cobalt) copper molybdenum tungsten, nickel ( Or a cobalt-molybdenum tungsten, nickel (or cobalt) magnesium molybdenum tungsten or the like formed by a multi-metal catalyst having a layered structure, and the anion groups of the two Group VIB metals enter the layered layer of the layered catalyst by ion exchange reaction. In the meantime, a high degree of dispersion of the active metal is achieved, and more active centers are formed.
  • the preparation method of the present invention is briefly described as follows:
  • the preparation method of the present invention comprises the following steps:
  • the precipitating agent is added to the mixed aqueous solution of the above soluble salt to carry out a coprecipitation reaction to obtain a catalyst precursor having a layered structure;
  • the slurry of the layered catalyst precursor and the solubility of the metal anion containing at least two Group VIB The polar solvent of the salt is mixed and subjected to an ion exchange reaction, which is separated, washed, dried and calcined at 400-500 ° C for 2-10 hours to obtain a layered metal containing one group of metals, a +2 valent metal, and two kinds of VIB group metals. Structured polymetallic bulk catalyst.
  • the concentration of the aqueous solution of the soluble salt of the Group VIII metal is 0.01 to 0.3 mol/L
  • the concentration of the aqueous solution of the soluble salt of the +2 valent metal is 0.01 to 0.3 mol/L
  • the concentration of the catalyst precursor of the layered structure is 0.01 to 0.9 mol/L
  • the concentrations of the two Group VIB metals are 0.01 to 0.2, respectively. Mol/L.
  • the concentration of the aqueous solution of the alkaline precipitant is 0.01 ⁇ 0.6 mol/L, and the amount of the alkaline precipitant aqueous solution is the step a) after the coprecipitation reaction, the pH value of the solution is controlled to be between 6.0 and 9.0.
  • the alkaline precipitant described in the step a) refers to sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, ammonia water, urea, ammonium hydrogencarbonate, ammonium carbonate.
  • potassium carbonate sodium hydrogencarbonate, potassium hydrogencarbonate, ammonia water, urea, ammonium hydrogencarbonate, ammonium carbonate.
  • step a) is carried out at 50-150 ° C for 10-25 hours;
  • step b) wherein the ion exchange reaction in step b) is carried out at 50-150 ° C for 4-10 hours;
  • the ion exchange reaction system in step b) has a pH of from 1 to 11, the pH is adjusted by an acid such as nitric acid or a base such as ammonia.
  • the soluble salt of the Group VIII metal comprises one selected from the group consisting of nickel nitrate, nickel acetate, nickel sulfate or nickel chloride, cobalt nitrate, cobalt chloride, cobalt sulfate, or cobalt acetate.
  • the +2 valence metal soluble salt can be obtained from zinc nitrate, zinc chloride, zinc acetate, zinc sulfate, magnesium nitrate, magnesium chloride, magnesium acetate, magnesium sulfate, ferrous nitrate, chlorination.
  • ferrous iron, ferrous acetate, ferrous sulfate, copper nitrate, copper chloride, copper acetate, copper sulfate, manganese acetate, manganese nitrate, manganese chloride, and manganese sulfate can be obtained from zinc nitrate, zinc chloride, zinc acetate, zinc sulfate, magnesium nitrate, magnesium chloride, magnesium acetate, magnesium sulfate, ferrous nitrate, chlorination.
  • the soluble salt containing at least two Group VIB metal anion groups may be selected from ammonium molybdate and sodium molybdate; and from ammonium tungstate, ammonium metatungstate or One of the sodium tungstate is selected.
  • the hydrodesulfurization reaction is carried out under the following conditions: a temperature of 280-400 ° C, a hydrogen pressure of 1-20 MPa, a volume ratio of hydrogen to the sulfur-containing organic compound fuel of 50-1000, and The volumetric space velocity of the sulfur-containing organic compound fuel is 0.1-10! ! - 1 .
  • the catalyst is subjected to the following pretreatments prior to the hydrodesulfurization reaction: a) grinding, kneading, forming; and b) in a hydrodesulfurization fixed bed reactor at 300-
  • the in-situ pre-vulcanization is carried out at 450 ° C with a mixed gas of a sulfur-containing compound and hydrogen; the pre-vulcanization time is 2 to 10 hours.
  • the sulfur-containing compound is hydrogen sulfide, carbon disulfide or dimethyl disulfide.
  • FIG. 1 is an XRD chart of a NiZn-LHS catalyst precursor and a Cat-A catalyst prepared in Example 1 of the present invention. It can be found that in the spectrum of NiZn-LHS, there is a diffraction peak belonging to the (003) plane of NiZn-LHS near 12.4°, which peak can correspond to the distance between adjacent layers of the layered structure; After the exchange, it was found that in the Cat-A catalyst, this characteristic peak shifted toward the low diffraction angle and appeared near 10.4°. We calculated that the interlayer spacing was increased from 7.1A to 12.4A, indicating that the interlayer spacing was contained in Mo and W. The anionic group of the active metal is large.
  • the present invention proposes, based on experimental results, a multimetal bulk catalyst capable of preparing at least one Group VIII metal, at least one +2 valent metal, and at least two Group VIB metals, wherein the +2 valent metal is selected from the group consisting of Zn, Mn, Cu, Fe, Mg, a Group VIII metal is selected from Ni or Co, and the Group VIB metal is selected from the group consisting of Mo and W; here, for the sake of simplicity, a mixed metal containing NiZnMoW, NiMnMoW NiCuMoW NiFeMoW, NiMgMoW, etc. is listed.
  • the oxide embodiment but does not mean that the remaining metal combination does not achieve the invention.
  • the catalyst is in the form of a light green powder, and its molecular expression is determined by XRF. ZnO-4NiO MoO 3 W0
  • the catalyst synthesized in this example is represented by Cat-A.
  • the XRD characterization results of its precursor and calcined samples are shown in Figure 1.
  • the catalyst was pre-vulcanized prior to hydrodesulfurization under the conditions of a volume content of 10% H 2 S/H 2 and a reaction at 400 for 2 hours, wherein the flow rate of 10% H 2 S/H 2 It is 60 ml/min.
  • Nickel nitrate C29.08g wherein Ni 2+ 0.1 mol) and zinc nitrate C 2.91 g, of which Zn 2+ 0.01 mol) were used instead of the nickel nitrate C29.08 g used in Example 1, wherein Ni 2+ 0.1 mol) and nitric acid were used.
  • Zinc G.49g, Zn 2+ 0.005 mol a multimetal bulk catalyst (16.4 g) was prepared in the same manner as described in Example 1, and the synthesized multimetal bulk catalyst was represented by Cat-B, such a Cat
  • the material morphology of the -B catalyst is similar to that of the Cat-A catalyst.
  • the catalyst had a specific surface area of 142 m 2 /g and a pore volume of 0.42 ml/g as determined by low temperature nitrogen adsorption.
  • Nickel nitrate (29.08 g, wherein Ni 2+ 0.1 mol) and zinc nitrate (4.36 g, of which Zn 2+ 0.015 mol) were used in place of the nickel nitrate C29.08 g used in Example 1, wherein Ni 2+ 0.1 mol) and nitric acid Zinc G.49g, Zn 2+ 0.005 mol), a multimetal bulk catalyst (16. 8 g) was prepared in the same manner as described in Example 1, and the synthesized multimetal bulk catalyst was represented by Cat-C, such a Cat The -C catalyst was a light green powder. The catalyst had a specific surface area of 145 m 2 /g and a pore volume of 0.45 ml/g as determined by low temperature nitrogen adsorption.
  • Nickel nitrate 29.08 g, wherein Ni 2+ 0.1 mol) and zinc nitrate (5.81 g, of which Zn 2+ 0.02 mol) were used in place of the nickel nitrate C29.08 g used in Example 1, wherein Ni 2+ 0.1 mol) and nitric acid Zinc G.49g, Zn 2+ 0.005 mol
  • a multimetal bulk catalyst (17.5 g) was prepared in the same manner as described in Example 1, and the synthesized multimetal bulk catalyst was represented by Cat-D, such a Cat
  • the -D catalyst was a light green powder.
  • the catalyst has a specific surface area of 148 m 2 /g and a pore volume of 0.46 ml as determined by low temperature nitrogen adsorption.
  • Nickel nitrate C29.08g wherein Ni 2+ 0.1 mol) and zinc nitrate (.27 g, wherein Zn 2+ 0.025 mol) were used instead of the nickel nitrate C29.08 g used in Example 1, wherein Ni 2+ 0.1 mol) and nitric acid Zinc G.49g, Zn 2+ 0.005 mol
  • a multimetal bulk catalyst (18.7 g) was prepared in the same manner as described in Example 1, and the synthesized multimetal bulk catalyst was represented by Cat-E, this Cat
  • the -E catalyst is a light green powder.
  • the catalyst had a specific surface area of 149 m 2 /g and a pore volume of 0.47 ml/g as determined by low temperature nitrogen adsorption.
  • a multimetal bulk catalyst (19.0 g) was prepared in the same manner as described in Example 1, and the synthesized multimetal bulk catalyst was represented by Cat-F, such a Cat The -F catalyst is a light green powder. The catalyst had a specific surface area of 146 m 2 /g and a pore volume of 0.44 ml/g as measured by low temperature nitrogen adsorption.
  • Example 1 illustrates the preparation of a NiZnMoW bulk catalyst in the present invention:
  • Nickel nitrate (29.08 g, wherein Ni 2+ 0.1 mol) and zinc nitrate (29.1 g, wherein Zn 2+ 0.1 mol) were used in place of nickel nitrate (29.08 g, wherein Ni 2+ 0.1 mol) and nitric acid used in Example 1.
  • Zinc (1.49 g, wherein Zn 2+ 0.005 mol) a multimetal bulk catalyst (22.3 g) was prepared in the same manner as described in Example 1, and the synthesized multimetal bulk catalyst was represented by Cat-I, such a Cat The -I catalyst is a light green powder. The catalyst had a specific surface area of 142 m 2 /g and a pore volume of 0.42 ml/g as measured by low temperature nitrogen adsorption.
  • a multimetal bulk catalyst (17.2 g) was prepared in the same manner as described in Example 1, and the synthesized multimetallic bulk catalyst was used for Cat- K indicates that this Cat-K catalyst is a light green powder.
  • the catalyst had a specific surface area of 145 m 2 /g and a pore volume of 0.42 ml/g as determined by low temperature nitrogen adsorption.
  • a multimetal bulk catalyst (16.1 g) was prepared in the same manner as described in Example 1, except that the reaction was carried out at 50 ° C for 10 hours in step a instead of the reaction at 80 ° C for 25 hours.
  • the synthesized multi-metal bulk catalyst is represented by Cat-L, which is a light green powder.
  • the catalyst had a specific surface area of 142 m 2 /g and a pore volume of 0.42 ml/g as determined by low temperature nitrogen adsorption.
  • a multimetal bulk catalyst (16.1 g) was prepared in the same manner as described in Example 1, except that the reaction was carried out in step a for 25 hours at 50 ° C instead of the reaction at 80 ° C used in Example 1.
  • Synthetic gold The bulk catalyst is represented by Cat-M, which is a light green powder.
  • the catalyst had a specific surface area of 143 m 2 /g and a pore volume of 0.43 ml/g as determined by low temperature nitrogen adsorption.
  • a multimetal bulk catalyst (16.2 g) was prepared in the same manner as described in Example 1, except that in step a, a reaction was carried out at 150 ° C for 10 hours instead of the reaction at 80 ° C used in Example 1 for 25 hours.
  • the synthesized multi-metal bulk catalyst is represented by Cat-N, which is a light green powder.
  • the catalyst had a specific surface area of 144 m 2 /g and a pore volume of 0.43 ml/g as determined by low temperature nitrogen adsorption.
  • a multimetal bulk catalyst (16.0 g) was prepared in the same manner as described in Example 1, except that the reaction was carried out in step a for 25 hours at 150 ° C instead of the reaction at 80 ° C used in Example 1.
  • the synthesized multi-metal bulk catalyst is represented by Cat-0, which is a light green powder.
  • the catalyst had a specific surface area of 143 m 2 /g and a pore volume of 0.43 ml/g as determined by low temperature nitrogen adsorption.
  • a multimetal bulk catalyst (16.0 g) was prepared in the same manner as described in Example 1, except that the reaction was carried out at 50 ° C for 4 hours in step b instead of the reaction at 80 ° C for 5 hours.
  • the synthesized multi-metal bulk catalyst is represented by Cat-P, which is a light green powder.
  • the catalyst had a specific surface area of 144 m 2 /g and a pore volume of 0.44 ml/g as measured by low temperature nitrogen adsorption.
  • a multimetal bulk catalyst (16.2 g) was prepared in the same manner as described in Example 1, except that the reaction was carried out at 50 ° C for 10 hours in step b instead of the reaction at 80 ° C for 5 hours.
  • the synthesized multi-metal bulk catalyst is represented by Cat-Q, which is a light green powder.
  • the catalyst had a specific surface area of 145 m 2 /g and a pore volume of 0.46 ml/g as determined by low temperature nitrogen adsorption.
  • a multimetal bulk catalyst (16.3 g) was prepared in the same manner as described in Example 1, except that the reaction was carried out in step b for 4 hours at 150 ° C instead of the reaction at 80 ° C used in Example 1.
  • the synthesized multi-metal bulk catalyst is represented by Cat-R, which is a light green powder.
  • the catalyst had a specific surface area of 149 m 2 /g and a pore volume of 0.48 ml/g as determined by low temperature nitrogen adsorption.
  • a multimetal bulk catalyst (16.2 g) was prepared in the same manner as described in Example 1, except that the reaction was carried out at 150 ° C for 10 hours in step b instead of the reaction at 80 ° C for 5 hours.
  • the synthesized multi-metal bulk catalyst is represented by Cat-S, which is a light green powder.
  • the catalyst had a specific surface area of 142 m 2 /g and a pore volume of 0.41 ml/g as determined by low temperature nitrogen adsorption.
  • a multi-metal bulk catalyst (14.1 g) was prepared in the same manner as described in Example 1, except that the catalyst was calcined at 400 ° C for 2 hours in an air atmosphere prior to the hydrodesulfurization reaction and pre-vulcanization.
  • the polymetallic bulk catalyst is represented by Cat-T, which is a brown powder.
  • the catalyst had a specific surface area of 145 m 2 /g and a pore volume of 0.42 ml/g as determined by low temperature nitrogen adsorption.
  • a gray-green powder was obtained; the gray-green powder obtained by the reaction was filtered and washed to obtain a catalyst precursor (ie, a NiMn-LHS catalyst precursor having a layered structure); the catalyst precursor was added to 200 ml of water, and configured to Slurry precursor (a);
  • a catalyst precursor ie, a NiMn-LHS catalyst precursor having a layered structure
  • the catalyst was in the form of a gray-green powder, and its molecular expression was determined by XRF to be MnO-4NiO MoO 3 W0.
  • the catalyst synthesized in this example was represented by Cat-U.
  • the catalyst was presulfided prior to hydrodesulfurization under the conditions of a 10% H 2 S/H 2 atmosphere at 400 ° C for 2 hours, wherein 10% of the 13 ⁇ 48/13 ⁇ 4 flow rate was 60 ml. /minute.
  • the catalyst is in the form of a blue-green powder, and its molecular expression is determined by XRF.
  • the catalyst synthesized in this example is represented by Cat-V.
  • the catalyst was presulfided prior to hydrodesulfurization under the conditions of a 10% H 2 S/H 2 atmosphere at 400 ° C for 2 hours, wherein the flow rate of 10% H 2 S/H 2 It is 60 ml/min.
  • Nickel nitrate (29.08 g, of which Ni 2+ 0.1 mol) and ferrous nitrate (14.4 g, of which Fe 2+ 0.05 mol) were weighed separately, dissolved in 200 ml of water to form an aqueous solution, and 0.2 mol was slowly added dropwise thereto.
  • a catalyst precursor i.e., NiFe-LHS having a layered structure
  • Catalyst precursor The catalyst precursor was added to 200 ml of water to prepare a slurry precursor (a); b.
  • the catalyst was in the form of a green powder, and its molecular expression was determined by XRF to be FeO-4NiO MoO 3 W0.
  • the catalyst synthesized in this example was represented by Cat-W.
  • the catalyst was presulfided prior to hydrodesulfurization under the conditions of a 10% H 2 S/H 2 atmosphere at 400 ° C for 2 hours, wherein the flow rate of 10% H 2 S/H 2 It is 60 ml/min.
  • the catalyst was in the form of a light green powder, and its molecular expression was determined by XRF to be MgO-4NiO MoO 3 W0.
  • the catalyst synthesized in this example was represented by Cat-X.
  • the catalyst was presulfided prior to hydrodesulfurization under the conditions of a 10% H 2 S/H 2 atmosphere at 400 ° C for 2 hours, wherein the flow rate of 10% H 2 S/H 2 It is 60 ml/min.
  • the performance of the catalyst in the hydrodesulfurization reaction was investigated by using a diesel fraction having a sulfur content of 500 ppm (dissolving 4,6-DMDBT in decalin solvent), and the reaction was carried out in a fixed bed reactor.
  • the reaction conditions are: catalyst mass 0.5g, reaction temperature at 300 ° C, hydrogen pressure 3.0 Mpa, hydrogen to diesel fraction ratio of 800 Nm 3 hydrogen / m 3 diesel fraction, volumetric space velocity 9 h - for sulfur content in the sample
  • the test used an A TEK sulfur analyzer.
  • the catalyst of the present invention was used for the test, and it was found that Cat-A, Cat-E, Cat-J, Cat-0, Cat-S and Cat-T have the best desulfurization effect.
  • the Cat-A catalyst reduces the sulfur content of the feedstock from 500 ppm to 5 ppm, while the Cat-I catalyst reduces the sulfur content of the feedstock from 500 ppm to 15 ppm.
  • the sulfur content of the diesel fraction after hydrodesulfurization is shown in Table 1.
  • the commercial reference agent is supplied by China Petrochemical Corporation and its composition is Co 3 (V2.2Ni05.9MoO 2W0 3 .
  • the activity of the catalyst prepared by the present invention is represented by relative activity, that is, the activity of running the reference agent for 200 hours is 100,
  • the activity obtained by comparing the catalyst of the present invention represents the relative activity of the inventive catalyst.
  • the relative desulfurization activity is calculated according to the following formula:
  • Relative desulfurization activity 10 ( ⁇ [(1/8 ). ' 65 -(1/80.' 65 ]/[ (1/8 65 -(1/8&).' 65 ]
  • S fr represents the sulfur concentration of the diesel fraction used in the reference agent and the product hydrotreated by the reference agent, respectively
  • S f and S p respectively represent the diesel fraction used in the catalyst of the invention and the product after hydrotreating the inventive catalyst. Sulfur concentration.
  • the present invention synthesizes a multi-metal bulk catalyst having a layered structure with higher specific surface area, high pore volume and ultra-high hydrodesulfurization activity, which has a layered structure and is active.
  • the metal exchange enters between the laminates, which is highly dispersed, showing more active centers.
  • the catalyst can be used to hydrolyze the sulfur in the diesel fraction containing 4,6-DMDBT. From 500 ppmw to 10 ppmw, ultra-deep desulfurization is achieved, and by introducing inexpensive +2 valence metals (such as zinc, manganese, iron, copper, magnesium, etc.), the cost of the bulk catalyst is reduced, showing a huge industry Value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种具有层状结构的超深度加氢脱硫多金属本体催化剂,所述多金属本体催化剂中的金属由至少一种VIII族金属,至少一种+2价金属和至少两种VIB族金属组成。其特征在于,以氧化物计并以催化剂为基准,该催化剂中含有1-50重量%的VIII族金属、1-50重量%的+2价金属、5-60重量%的两种VIB族金属。本发明还公开了上述催化剂的制备方法和应用。本发明用于含有4,6-二甲基二苯并噻吩的柴油馏分的加氢脱硫之中,表现出极高的加氢脱硫活性,实现了超深度脱硫,并且降低了本体催化剂的成本。

Description

层状结构超深度加氢脱硫多金属本体催化剂及制备和应用 技术领域
本发明涉及一种具有层状结构的超深度加氢脱硫多金属本体催化剂。
本发明还涉及上述催化剂的制备方法。
本发明还涉及上述催化剂在含硫化合物超深度加氢脱硫反应中的应用。 背景技术
由于石油储量下降,石油重质化和劣质化问题愈来愈突出,世界范围内高硫原油 逐年增多, 且各国环境立法关于限制燃油中硫含量的要求日益严格, 因此开发性能优 良的超深度加氢脱硫催化剂, 不仅成为加氢脱硫领域的核心, 也使加氢处理技术在石 油加工业中日益受到重视。油品中的硫化物是空气污染的主要源头,燃油中的有机含 硫化合物经燃烧后产生的 SOx不仅能导致酸雨, 还能使汽车发动机尾气净化系统的 三效催化剂产生不可逆中毒, 也会产生粉尘颗粒物导致日渐增多的大雾天气,严重危 害环境和人体健康, 因而引起人们广泛关注。 为此, 各国都颁布了严格的燃油含硫量 标准, 欧洲已于 2005年实现柴油硫含量小于 10 ppmw标准, 我国已于 2012年 6月 1 日在北京率先执行硫含量低于 10 ppmw的京 V清洁柴油指标, 并将于 2014年 1月 1 日在全国范围内实行相当于欧 IV(< 50 ppmw)的排放标准的柴油硫指标, 预计在 2016 年在全国推广使用相当于欧 V(< 10 ppmw)的排放标准的清洁柴油硫指标。
目前, 工业上一般常用的加氢脱硫催化剂有: Co-Mo/Al203、 Ni-Mo-P/Al203
Ni-W-B/Al203 Ni-Co-Mo/Al203和 Co-W/Al203等。 但是随着对于硫含量限定的标准 越来越高, 这些催化剂的活性已经不能满足超深度脱硫需要, 因此迫切需要提高催化 剂的超深度脱硫活性。 调整工艺操作条件和使用新型反应器都需要巨额的投资费用, 相比之下,研制一种能够在现有的生产装置上, 按照现行的操作条件进行超深度加氢 脱硫的新型催化剂, 是一种更为经济, 更加可行的方法。
柴油中主要含有的含硫化合物为硫醇、硫醚、 噻吩及其衍生物、 苯并噻吩及其衍 生物、 二苯并噻吩及其衍生物, 其中 4,6-DMDBT是最难以通过加氢脱硫手段脱除的 含硫化合物。在传统加氢脱硫催化剂中由于载体本身的催化效果有限, 它只是通过增 大反应物与载体的接触面积或载体与活性组分间的协同作用来增加催化效果,所以一 般担载型催化剂的加氢脱硫活性很难再进行大幅度改进。而多金属本体催化剂, 即多 金属非担载型催化剂, 由于其具有多种活性组分, 并且活性中心数目要大大多于担载 型催化剂, 所以它是一种具有很高催化活性的催化剂。 其中, 金属组成为 NiMoW的 一种本体催化剂, 在近期的文献和专利报道中, 显示出了极高的加氢脱硫反应活性, 引起了人们的广泛关注。
美国专利 6299760、6156695、6783663、6712955、6758963等都报道了新型 NiMoW 本体催化剂合成和应用,且这种新型的催化剂的加氢脱硫活性是其他的工业参比剂的 三倍左右。 这种催化剂的合成方法都是以氨水为络合剂, 与反应原料 Ni2+络合, 经过 缓慢加热过程, 镍氨络合物慢慢分解出 Ni2+与溶液中的钼、 钨反应生成 NiMoW催化 剂前体, 再通过焙烧和硫化, 形成 NiMoWS硫化物催化剂。 此种合成方法的不足之 处在于, 合成过程中使用了浓氨水, 会对环境造成污染。 而且 Ni与氨形成的络合物 稳定, 氨不容易释放出来, 在最后的母液中还残留部分 Ni氨络合离子, 产生大量不 能排放的废水。 并且采用这些专利制备的催化剂比表面积都较低 (低于 110 m2/g)、 孔容小 (低于 0.2 ml/g); 在柴油加氢脱硫反应中这类催化剂要在高压 (高于 6 MPa) 下才能表现出优异的加氢脱硫活性。
GAlonso-Nunez等人在文献中 (Applied Catalysis A: General 304 (2006)124-130);
Applied Catalysis A: General 302 (2006)177-184); Catalysis Letters 99(2005)65-71)报道 了使用不同原料及多种硫化剂来合成 NiMoW催化剂的方法。他们合成得到的催化剂 具有特殊的鳞片状形态, 也可以具有较高的表面积。但是他所用到的合成方法比较复 杂, 且原料昂贵, 生产工艺繁琐, 增加了催化剂的生产成本, 难以实现工业化。
中国专利 1339985A也公开了一种合成 NiMoW催化剂的方法, 该专利主要是在 水溶液中, 通过钼、钨盐类与碱式碳酸镍反应, 反应过程中至少保证部分的金属成分 以固态形式存在,最终通过硫化得到催化剂。 由于该专利使用的原料部分为碱式碳酸 镍, 其不溶于水, 合成过程的本质反应为离子与固体之间的置换反应, 所以难以合成 得到小晶粒的催化剂粒子。中国专利 CN101544904A、CN101153228A、CN101733120A 也公开了一种 NiMoW三金属本体催化剂的制备方法以及在柴油超深度脱硫中的应 用; 尽管制备的催化剂在柴油超深度脱硫反应中显示出较高活性,但是该催化剂的比 表面积和孔容仍然较小。
从已有报道工作不难发现, 现有的本体催化剂的合成方法存如下不足的地方: (1)使用的原料对环境不友好;
(2)催化剂制备成本较高;
(3)催化剂的比表面积、 孔容以及活性还有待进一步提高。
因此, 非常有必要开发一种具有高的比表面积和孔容、 具有超高活性的、 原料易 得的、环境友好的、价格相对低廉的、较易实现大规模工业生产的超深度加氢脱硫多 金属本体催化剂。 发明内容
本发明的目的是提供一种具有高活性的具有层状结构的超深度加氢脱硫多金属 本体催化剂。
本发明的又一目的在于提供一种制备上述催化剂的方法。
为实现上述目的,在本发明的一个方面,提供一种具有层状结构的多金属本体催 化剂, 所述多金属本体催化剂中的金属由至少一种 VIII族金属, 至少一种 +2价金属 和至少两种 VIB族金属组成。 其中, 以氧化物计并以催化剂为基准, 该催化剂中含 有 1-50重量%的 VIII族金属、 1-50重量%的+2价金属、 5-60重量%的两种 VIB族金 属。
在本发明的一个优选方面, +2价金属选自 Zn、 Mn、 Cu、 Fe、 Mg; VIII族金属 选自 Ni或 Co; 两种 VIB族金属选自 Mo和 W。
在本发明的另一个优选方面, VIII族金属和 +2价金属的摩尔比例在 20:1-1 :20之 间, 两种 VIB族金属的摩尔比例在 5:1-1 :5之间。
在本发明的另一个方面,提供一种如上所述催化剂的制备方法, 该方法包括以下 步骤: a) 将所述一种 VIII族金属的可溶性盐、一种 +2价金属的可溶性盐加入水中配制 成可溶性盐的混合水溶液, 再将碱性沉淀剂溶于水中配成溶液,最后将碱性沉淀剂加 入上述可溶性盐的混合水溶液中进行共沉淀反应, 得到具有层状结构的催化剂前体; b) 将所述层状结构的催化剂前体的浆液与含有至少两种 VIB族金属阴离子的可 溶性盐的极性溶剂混合进行离子交换反应,经分离、洗涤、干燥及 400-500°C焙烧 2-10 小时得到含有一种 族金属, 一种 +2价金属, 两种 VIB族金属的具有层状结构的多 金属本体催化剂。
所述制备方法中,其中所述的 VIII族金属的可溶性盐的水溶液的浓度为 0.01〜0.3 mol/L, +2价金属的可溶性盐的水溶液浓度为 0.01〜0.3 mol/L, 其中所述的层状结构 的催化剂前体的浓度为 0.01〜0.9 mol/L, 并且在所述含有至少两种 VIB族金属阴离子 的可溶性盐的极性溶剂中, 两种 VIB族金属的浓度分别为 0.01〜0.2 mol/L。
碱性沉淀剂水溶液浓度为 0.01〜0.6 mol/L, 碱性沉淀剂水溶液用量为步骤 a)共沉 淀反应后使溶液的 pH值控制在 6.0〜9.0之间。
所述的制备方法中, 其中步骤 a)中所述的碱性沉淀剂是指氢氧化钠、 氢氧化钾、 碳酸钠、 碳酸氢钠、 碳酸钾、 碳酸氢钾、 氨水、 尿素、 碳酸氢铵、 碳酸铵中的一种或 二种以上的组合。
其中步骤 a)中所述共沉淀反应在 50-150 °C进行 10-25小时;
其中步骤 b)中所述离子交换反应在 50-150 °C进行 4-10小时;
其中步骤 b)中所述离子交换反应体系的 pH值为 1-11,通过酸(如硝酸)或碱(如 氨水) 调节 pH值。
在本发明的一个优选方面, 所述的 VIII族金属的可溶性盐包含从硝酸镍、 醋酸 镍、 硫酸镍或氯化镍、 硝酸钴、 氯化钴、 硫酸钴、 或醋酸钴中选择的一种。
在本发明的另一个优选方面, 所述的 +2 价金属可溶性盐可从硝酸锌、 氯化锌、 醋酸锌、 硫酸锌、 硝酸镁、 氯化镁、 醋酸镁、 硫酸镁、 硝酸亚铁、 氯化亚铁、 醋酸亚 铁、 硫酸亚铁、 硝酸铜、 氯化铜、 醋酸铜、 硫酸铜、 醋酸锰、 硝酸锰、 氯化锰、 硫酸 锰中选择一种。
在本发明的再一个优选方面, 所述的至少含有两种 VIB族金属阴离子基团的可 溶性盐可从钼酸铵和钼酸钠中选择一种; 以及从钨酸铵、偏钨酸铵或钨酸钠中选择一 种。
在本发明的再一个方面,提供如上所述的催化剂在含硫有机化合物燃油的加氢脱 硫反应中的应用。
在本发明的一个优选方面, 所述的加氢脱硫反应的条件为: 温度 280-400°C, 氢 气压力 l-20MPa, 氢气与所述含硫有机化合物燃油的体积比为 50-1000, 并且含硫有 机化合物燃油的体积空速 0.1-10 h
在本发明的另一个优选方面,将所述的催化剂在进行加氢脱硫反应前进行如下预 处理: a)研磨、 混捏、 成型; 和 b)在加氢脱硫固定床反应器上, 于 300-450°C下以体 积浓度 1-15%含硫化合物与氢气的混合气体进行原位预硫化; 预硫化时间为 2-10小 时。
在本发明的再一个优选方面,所述含硫化合物为硫化氢、二硫化碳或二甲基二硫。 本发明与公知技术相比, 具有如下优点: 1)本发明中使用了层状结构的化合物作为合成催化剂的前体,设计合成了具有层 状结构的多金属本体催化剂, 合成过程易于操作, 对于环境友好, 催化剂可以工业化 生产。
2)本发明合成的催化剂具有较高的分散度以及特殊的层状结构等特点;保证了活 性金属之间的充分接触, 形成了更多的活性中心。
3)本发明通过引入价格低廉的 +2价过渡金属 (如锌、 锰、 铜、 铁等), 从而降低了 催化剂的成本。
4)本发明的催化剂用于含硫化合物的超深度加氢脱硫之中,表现出极高的加氢脱 硫活性,在温和的操作条件下,可将柴油馏分中的 4,6-二甲基二苯并噻吩中的硫从 500 ppm脱至 lO ppm以下, 实现了超深度脱硫。
5)通过对催化剂的 XRD表征, 发现在本发明合成的催化剂中, 形成了层状结构, 并且通过阴离子交换反应,成功将活性金属交换进入了层板之间, 从而形成了更加均 匀的活性金属分布, 形成了更多的活性中心, 决定了此催化剂具有极高的加氢脱硫活 性。 附图说明
图 1是本发明实施例 1 中制备的 NiZn-LHS (NiZn-层状羟基盐) 催化剂前体和 Cat-A催化剂的 XRD谱图。 可以发现在 NiZn-LHS的谱图中, 位于 12.4°附近有归属 于 NiZn-LHS中 (003)面的衍射峰,此峰可以对应层状结构相邻层板之间的距离; 而通 过进行阴离子交换以后, 发现在 Cat-A催化剂中, 此特征峰向低衍射角方向位移, 出 现在 10.4°附近, 我们通过计算发现层间距由 7.1A增加到 12.4A, 说明层板间距被含 Mo和 W活性金属的阴离子基团撑大。 通过 XRD结果, 可以说明, 我们成功合成得 到了具有层状结构的 NiZn-LHS催化剂前体, 再进一步通过阴离子交换反应, 又成功 的将 Mo和 W活性金属交换进入了层板之间, 形成了具有高分散活性物种的本体催 化剂, 并且通过引入廉价的 +2价金属, 降低了催化剂的成本。 具体实施方式
本发明是一种基于层状结构的多金属本体催化剂, 是由至少一种 VIII族金属, 至少一种 +2价金属和至少两种 VIB族金属形成的多金属本体催化剂。 其中, 以氧化 物计并以催化剂为基准, 该催化剂中含有 1-50重量%的 VIII族金属、 1-50重量%的 +2价金属、 5-60重量%的两种 VIB族金属。
本发明的 +2价金属选自 Zn、 Mn、 Cu、 Fe、 Mg; VIII族金属选自 Ni或 Co; VIB 族金属选自 Mo和 W。
本发明的 VIII族金属和 +2价金属的摩尔比例在 20:1-1 :20之间, 两种 VIB族金 属的摩尔比例在 5:1-1 :5之间。
本发明是在层状结构基础上通过阴离子交换反应合成得到的本体催化剂,是由镍 (或钴)锌钼钨, 镍(或钴)锰钼钨, 镍(或钴)铜钼钨, 镍(或钴)铁钼钨, 镍(或 钴) 镁钼钨等多金属形成的具有层状结构的催化剂, 两种 VIB族金属的阴离子基团 通过离子交换反应进入了层状结构催化剂的层板之间, 实现了活性金属的高度分散, 形成了更多的活性中心。 本发明的制备方法扼要地说如下:
a) 将所述一种 VIII族金属的可溶性盐的水溶液与一种 +2价金属可溶性盐的水溶 液进行共沉淀反应合成得到层状结构的催化剂前体;
b) 将所述层状结构催化剂前体的浆液与所述含有至少两种 VIB族金属阴离子基 团的可溶性盐, 在表面活性剂, 水以及有机溶剂的混合溶液中进行阴离子交换反应。
详细地说, 本发明的制备方法包括以下步骤:
a) 将所述一种 VIII族金属的可溶性盐、一种 +2价金属的可溶性盐加入水中配制 成可溶性盐的混合水溶液, 再将碱性沉淀剂溶于水中配成溶液,最后将碱性沉淀剂加 入上述可溶性盐的混合水溶液中进行共沉淀反应, 得到具有层状结构的催化剂前体; b) 将所述层状结构的催化剂前体的浆液与含有至少两种 VIB族金属阴离子的可 溶性盐的极性溶剂混合进行离子交换反应,经分离、洗涤、干燥及 400-500°C焙烧 2-10 小时得到含有一种 族金属, 一种 +2价金属, 两种 VIB族金属的具有层状结构的多 金属本体催化剂。
所述制备方法中,其中所述的 VIII族金属的可溶性盐的水溶液的浓度为 0.01〜0.3 mol/L, +2价金属的可溶性盐的水溶液浓度为 0.01〜0.3 mol/L, 其中所述的层状结构 的催化剂前体的浓度为 0.01〜0.9 mol/L, 并且在所述含有至少两种 VIB族金属阴离子 的可溶性盐的极性溶剂中, 两种 VIB族金属的浓度分别为 0.01〜0.2 mol/L。
碱性沉淀剂水溶液浓度为 0.01〜0.6 mol/L, 碱性沉淀剂水溶液用量为步骤 a)共沉 淀反应后使溶液的 pH值控制在 6.0〜9.0之间。
所述的制备方法中, 其中步骤 a)中所述的碱性沉淀剂是指氢氧化钠、 氢氧化钾、 碳酸钠、 碳酸氢钠、 碳酸氢钾、 氨水、 尿素、 碳酸氢铵、 碳酸铵、 碳酸钾中的一种或 二种以上的组合。
其中步骤 a)中所述共沉淀反应在 50-150 °C进行 10-25小时;
其中步骤 b)中所述离子交换反应在 50-150 °C进行 4-10小时;
其中步骤 b)中所述离子交换反应体系的 pH值为 1-11,通过酸(如硝酸)或碱(如 氨水) 调节 pH值。
在本发明的一个优选方面, 所述的 VIII族金属的可溶性盐包含从硝酸镍、 醋酸 镍、 硫酸镍或氯化镍、 硝酸钴、 氯化钴、 硫酸钴、 或醋酸钴中选择的一种。
在本发明的另一个优选方面, 所述的 +2 价金属可溶性盐可从硝酸锌、 氯化锌、 醋酸锌、 硫酸锌、 硝酸镁、 氯化镁、 醋酸镁、 硫酸镁、 硝酸亚铁、 氯化亚铁、 醋酸亚 铁、 硫酸亚铁、 硝酸铜、 氯化铜、 醋酸铜、 硫酸铜、 醋酸锰、 硝酸锰、 氯化锰、 硫酸 锰中选择一种。
在本发明的再一个优选方面, 所述的至少含有两种 VIB族金属阴离子基团的可 溶性盐可从钼酸铵和钼酸钠中选择一种; 以及从钨酸铵、偏钨酸铵或钨酸钠中选择一 禾中。
在本发明的再一个方面,提供如上所述的催化剂在含硫有机化合物燃油的加氢脱 硫反应中的应用。
在本发明的一个优选方面, 所述的加氢脱硫反应的条件为: 温度 280-400°C, 氢 气压力 l-20MPa, 氢气与所述含硫有机化合物燃油的体积比为 50-1000, 并且含硫有 机化合物燃油的体积空速 0.1-10!!-1。 在本发明的另一个优选方面,将所述的催化剂在进行加氢脱硫反应前进行如下预 处理: a)研磨、 混捏、 成型; 和 b)在加氢脱硫固定床反应器上, 于 300-450°C下以含 硫化合物与氢气的混合气体进行原位预硫化; 预硫化时间为 2-10小时。
在本发明的再一个优选方面,所述含硫化合物为硫化氢、二硫化碳或二甲基二硫。 通过对于催化剂的 XRD分析测试,可以发现 NiZnMoW等催化剂具有层状结构, 并且通过交换含 Mo和 W的阴离子以后, 层间距变大, 说明了 Mo和 W活性金属成 功地交换进入了层板之间, 因此催化剂中形成了更多的活性中心。
图 1是本发明实施例 1中制备的 NiZn-LHS催化剂前体和 Cat-A催化剂的 XRD 谱图。 可以发现在 NiZn-LHS的谱图中, 位于 12.4°附近有归属于 NiZn-LHS中 (003) 面的衍射峰,此峰可以对应层状结构相邻层板之间的距离; 而通过进行阴离子交换以 后, 发现在 Cat-A催化剂中, 此特征峰向低衍射角方向位移, 出现在 10.4°附近, 我 们通过计算发现层间距由 7.1A增加到 12.4A, 说明层板间距被含 Mo和 W活性金属 的阴离子基团撑大。 通过 XRD结果, 可以说明, 我们成功合成得到了具有层状结构 的 NiZn-LHS (请标明其表示的物质)催化剂前体, 再进一步通过阴离子交换反应, 又 成功的将 Mo和 W活性金属交换进入了层板之间, 形成了具有高分散活性物种的本 体催化剂, 并且通过引入廉价的 +2价金属, 降低了催化剂的成本。
实施例
为了进一步说明本发明, 列举以下实施例,但它并不限制各附加权利要求所定义 的发明范围。 比如, 本发明根据实验结果提出可以制备至少一种 VIII族金属, 至少 一种 +2价金属和至少两种 VIB族金属形成的多金属本体催化剂,其中所述的 +2价金 属选自 Zn、 Mn、 Cu、 Fe、 Mg, VIII族金属选自 Ni或 Co, 并且所述的 VIB族金属 选自 Mo和 W;在这里为了简明起见,列举了含 NiZnMoW、 NiMnMoW NiCuMoW NiFeMoW、 NiMgMoW等的混合金属氧化物实施例, 但并不意味其余的金属组合不 能实现本发明。
实施例 1
本实施例说明本发明中的 NiZnMoW本体催化剂的制备:
a)分别称取硝酸镍( 29.08g,其中 Ni2+0.1mol)和硝酸锌( 1.49g,其中 Zn2+0.005mol), 将它们溶于 200ml水中形成水溶液, 向其中缓慢滴加 0.2 mol/L NaOH水溶液, 调节 pH=12, 并加热至反应温度, 形成浅绿色混合反应液, 将其在 80°C反应温度下回流反 应 25个小时, 得到浅绿色产物; 将反应得到的浅绿色产物过滤并且洗涤, 得到催化 剂前体 (即具有层状结构的 NiZn-LHS催化剂前体);将此催化剂前体加入 200ml水中, 配置成浆液前体 (a);
b)分别称取钼酸铵 C5.4g, 其中 Mo6+0.03mol)和偏钨酸铵 ( .2g, 其中 W^O.i mol), 将它们溶于水 (30ml)形成溶液, 并将此溶液加热至反应温度, 不断搅拌, 形成无色透 明溶液 (b); 随后将步骤 a)中制备的浆液前体 (a)加热至反应温度; 将此浆液慢慢地加 入所述无色透明溶液 (b)中, 形成浅绿色反应液, 将其在 80°C反应温度, 回流反应 5 小时, 得到浅绿色粉末; 将反应得到的浅绿色粉末过滤、 洗涤, 并在 120°C烘干, 得 到 NiZnMoW催化剂 (16.0 g)。经低温氮吸附测定的催化剂的比表面积为 140 m2/g, 孔 容为 0.40 ml/g。
c)此催化剂为浅绿色粉末状, 通过 XRF 测定其分子表达式为 ZnO-4NiO Mo03 W0 此实施例中合成的催化剂用 Cat-A来表示。 其前体和焙烧样 品 XRD表征结果列于图 1。 在进行加氢脱硫之前, 对此催化剂进行预硫化, 硫化条 件为在体积含量 10%H2S/H2气氛中, 在 400 下反应 2个小时, 其中 10%H2S/H2的 流速为 60毫升 /分钟。
实施例 2
本实施例说明本发明中的 NiZnMoW本体催化剂的制备:
使用硝酸镍 C29.08g, 其中 Ni2+0.1mol)和硝酸锌 C2.91g, 其中 Zn2+0.01mol)代替实 施例 1中使用的硝酸镍 C29.08g,其中 Ni2+0.1mol)和硝酸锌 G.49g,其中 Zn2+0.005mol), 以与实施例 1中所述的相同方式制备多金属本体催化剂 (16.4g),合成的多金属本体催 化剂用 Cat-B来表示, 此种 Cat-B催化剂的物质形貌与 Cat-A催化剂相似。 经低温氮 吸附测定的催化剂的比表面积为 142 m2/g, 孔容为 0.42 ml/g。
实施例 3
本实施例说明本发明中的 NiZnMoW本体催化剂的制备:
使用硝酸镍 (29.08g, 其中 Ni2+0.1mol)和硝酸锌 (4.36g, 其中 Zn2+0.015mol)代替实 施例 1中使用的硝酸镍 C29.08g,其中 Ni2+0.1mol)和硝酸锌 G.49g,其中 Zn2+0.005mol), 以与实施例 1 中所述的相同方式制备多金属本体催化剂( 16.8g), 合成的多金属本体 催化剂用 Cat-C来表示, 此种 Cat-C催化剂为浅绿色粉末。 经低温氮吸附测定的催化 剂的比表面积为 145 m2/g, 孔容为 0.45 ml/g。
实施例 4
本实施例说明本发明中的 NiZnMoW本体催化剂的制备:
使用硝酸镍 (29.08g, 其中 Ni2+0.1mol)和硝酸锌 (5.81g, 其中 Zn2+0.02mol)代替实 施例 1中使用的硝酸镍 C29.08g,其中 Ni2+0.1mol)和硝酸锌 G.49g,其中 Zn2+0.005mol), 以与实施例 1 中所述的相同方式制备多金属本体催化剂( 17.5g), 合成的多金属本体 催化剂用 Cat-D来表示, 此种 Cat-D催化剂为浅绿色粉末。经低温氮吸附测定的催化 剂的比表面积为 148 m2/g, 孔容为 0.46 ml
实施例 5
本实施例说明本发明中的 NiZnMoW本体催化剂的制备:
使用硝酸镍 C29.08g, 其中 Ni2+0.1mol)和硝酸锌 ( .27g, 其中 Zn2+0.025mol)代替实 施例 1中使用的硝酸镍 C29.08g,其中 Ni2+0.1mol)和硝酸锌 G.49g,其中 Zn2+0.005mol), 以与实施例 1中所述的相同方式制备多金属本体催化剂 (18.7g),合成的多金属本体催 化剂用 Cat-E来表示, 此种 Cat-E催化剂为浅绿色粉末。 经低温氮吸附测定的催化剂 的比表面积为 149 m2/g, 孔容为 0.47 ml/g。
实施例 6
本实施例说明本发明中的 NiZnMoW本体催化剂的制备:
使用硝酸镍 (29.08g, 其中 Ni2+0.1mol)和硝酸锌 (14.9g, 其中 Zn2+0.05mol)代替实 施例 1中使用的硝酸镍 C29.08g,其中 Ni2+0.1mol)和硝酸锌 G.49g,其中 Zn2+0.005mol), 以与实施例 1 中所述的相同方式制备多金属本体催化剂( 19.0g), 合成的多金属本体 催化剂用 Cat-F来表示, 此种 Cat-F催化剂为浅绿色粉末。 经低温氮吸附测定的催化 剂的比表面积为 146 m2/g, 孔容为 0.44ml/g。
实施例 本实施例说明本发明中的 NiZnMoW本体催化剂的制备:
使用硝酸镍 (29.08g, 其中 Ni2+0.1mol)和硝酸锌 (20.4g, 其中 Zn2+0.07mol)代替实 施例 1中使用的硝酸镍 C29.08g,其中 Ni2+0.1mol)和硝酸锌 G .49g,其中 Zn2+0.005mol), 以与实施例 1 中所述的相同方式制备多金属本体催化剂( 20.3g), 合成的多金属本体 催化剂用 Cat-G来表示, 此种 Cat-G催化剂为浅绿色粉末。经低温氮吸附测定的催化 剂的比表面积为 144 m2/g, 孔容为 0.42 ml/g。
实施例 8
本实施例说明本发明中的 NiZnMoW本体催化剂的制备:
使用硝酸镍 (29.08g, 其中 Ni2+0.1mol)和硝酸锌 (23.3g, 其中 Zn2+0.08mol)代替实 施例 1中使用的硝酸镍 C29.08g,其中 Ni2+0.1mol)和硝酸锌 G .49g,其中 Zn2+0.005mol), 以与实施例 1 中所述的相同方式制备多金属本体催化剂( 21.4g), 合成的多金属本体 催化剂用 Cat-H来表示, 此种 Cat-H催化剂为浅绿色粉末。经低温氮吸附测定的催化 剂的比表面积为 142 m2/g, 孔容为 0.41 ml/g。
实施例 9
本实施例说明本发明中的 NiZnMoW本体催化剂的制备:
使用硝酸镍 (29.08g, 其中 Ni2+0.1mol)和硝酸锌 (29.1g, 其中 Zn2+0.1mol)代替实施 例 1 中使用的硝酸镍 (29.08g, 其中 Ni2+0.1mol)和硝酸锌 (1.49g, 其中 Zn2+0.005mol), 以与实施例 1 中所述的相同方式制备多金属本体催化剂( 22.3g), 合成的多金属本体 催化剂用 Cat-I来表示,此种 Cat-I催化剂为浅绿色粉末。经低温氮吸附测定的催化剂 的比表面积为 142 m2/g, 孔容为 0.42ml/g。
实施例 10
除了使用钼酸铵 C5.4g, 其中 Mo6+0.03mol)和偏钨酸铵 C14.4g, 其中 W^O.i^mol) 代替实施例 1 中使用的钼酸铵 (5.4g, 其中 Mo6+0.03mol)和偏钨酸铵 (7.2g, 其中 +0.03ηιΟ1)外, 以与实施例 1 中所述的相同方式制备多金属本体催化剂 (16.7g), 合 成的多金属本体催化剂用 Cat-J来表示, 此种 Cat-J催化剂为浅绿色粉末。 经低温氮 吸附测定的催化剂的比表面积为 143 m2/g, 孔容为 0.44ml/g。
实施例 11
除了使用钼酸铵 C10.8g, Mo6+0.06mol)和偏钨酸铵 C5.4g, 其中 Mo6+0.03mol)代替 实施例 1中使用的钼酸铵 C5.4g,其中 Mo6+0.03mol)和偏钨酸铵 ( .2g,其中 W^O.i mol) 夕卜, 以与实施例 1中所述的相同方式制备多金属本体催化剂 (17.2g), 合成的多金属本 体催化剂用 Cat-K来表示, 此种 Cat-K催化剂为浅绿色粉末。经低温氮吸附测定的催 化剂的比表面积为 145 m2/g, 孔容为 0.42 ml/g。
实施例 12
除了在步骤 a中使用在 50°C反应 10小时代替实施例 1中使用的在 80°C反应 25 小时外, 以与实施例 1中所述的相同方式制备多金属本体催化剂 (16.1g), 合成的多金 属本体催化剂用 Cat-L来表示, 此种 Cat-L催化剂为浅绿色粉末。 经低温氮吸附测定 的催化剂的比表面积为 142 m2/g, 孔容为 0.42 ml/g。
实施例 13
除了在步骤 a中使用在 50°C反应 25小时代替实施例 1中使用的在 80°C反应 25 小时外, 以与实施例 1中所述的相同方式制备多金属本体催化剂 (16.1g), 合成的多金 属本体催化剂用 Cat-M来表示, 此种 Cat-M催化剂为浅绿色粉末。 经低温氮吸附测 定的催化剂的比表面积为 143 m2/g, 孔容为 0.43 ml/g。
实施例 14
除了在步骤 a中使用在 150°C反应 10小时代替实施例 1中使用的在 80°C反应 25 小时外, 以与实施例 1中所述的相同方式制备多金属本体催化剂 (16.2g), 合成的多金 属本体催化剂用 Cat-N来表示, 此种 Cat-N催化剂为浅绿色粉末。经低温氮吸附测定 的催化剂的比表面积为 144 m2/g, 孔容为 0.43 ml/g。
实施例 15
除了在步骤 a中使用在 150°C反应 25小时代替实施例 1中使用的在 80°C反应 25 小时外, 以与实施例 1中所述的相同方式制备多金属本体催化剂 (16.0g), 合成的多金 属本体催化剂用 Cat-0来表示, 此种 Cat-0催化剂为浅绿色粉末。经低温氮吸附测定 的催化剂的比表面积为 143 m2/g, 孔容为 0.43 ml/g。
实施例 16
除了在步骤 b中使用在 50°C反应 4小时代替实施例 1中使用的在 80°C反应 5小 时外, 以与实施例 1中所述的相同方式制备多金属本体催化剂 (16.0g), 合成的多金属 本体催化剂用 Cat-P来表示, 此种 Cat-P催化剂为浅绿色粉末。 经低温氮吸附测定的 催化剂的比表面积为 144 m2/g, 孔容为 0.44ml/g。
实施例 17
除了在步骤 b中使用在 50°C反应 10小时代替实施例 1 中使用的在 80°C反应 5 小时外, 以与实施例 1中所述的相同方式制备多金属本体催化剂 (16.2g), 合成的多金 属本体催化剂用 Cat-Q来表示, 此种 Cat-Q催化剂为浅绿色粉末。经低温氮吸附测定 的催化剂的比表面积为 145 m2/g, 孔容为 0.46 ml/g。
实施例 18
除了在步骤 b中使用在 150°C反应 4小时代替实施例 1 中使用的在 80°C反应 5 小时外, 以与实施例 1中所述的相同方式制备多金属本体催化剂 (16.3g), 合成的多金 属本体催化剂用 Cat-R来表示, 此种 Cat-R催化剂为浅绿色粉末。 经低温氮吸附测定 的催化剂的比表面积为 149 m2/g, 孔容为 0.48 ml/g。
实施例 19
除了在步骤 b中使用在 150°C反应 10小时代替实施例 1中使用的在 80°C反应 5 小时外, 以与实施例 1中所述的相同方式制备多金属本体催化剂 (16.2g), 合成的多金 属本体催化剂用 Cat-S来表示, 此种 Cat-S催化剂为浅绿色粉末。 经低温氮吸附测定 的催化剂的比表面积为 142 m2/g, 孔容为 0.41 ml/g。
实施例 20
除了在进行加氢脱硫反应及预硫化之前对催化剂在空气气氛下, 400°C进行煅烧 2个小时外, 以与实施例 1中所述的相同方式制备多金属本体催化剂 (14.1g), 合成的 多金属本体催化剂用 Cat-T来表示, 此种 Cat-T催化剂为褐色粉末。 经低温氮吸附测 定的催化剂的比表面积为 145 m2/g, 孔容为 0.42 ml/g。
实施例 21
本实施例说明本发明中的 NiMnMoW本体催化剂的制备:
a. 分别称取硝酸镍 C29.08g, 其中 Ni2+0.1mol)和硝酸锰 ( .5g, 其中 Mn2+0.03mol), 将它们溶于 200ml水中形成水溶液, 向其中缓慢滴加 0.2 mol/L NaOH溶液, 调节 pH=12, 并加热至反应温度, 生成灰绿色混合反应液, 将其在 80°C反应温度下回流反 应 25个小时, 得到灰绿色粉末; 将反应得到的灰绿色粉末过滤并且洗涤, 得到催化 剂前体 (即具有层状结构的 NiMn-LHS催化剂前体);将此催化剂前体加入 200ml水中, 配置成浆液前体 (a);
b. 分别称取钼酸铵 C5.4g,其中 Mo6+0.03mol)和偏钨酸铵 ( .2g,其中 W^O.i mol), 将它们溶于水 (30ml)中, 形成溶液, 并将此溶液加热至反应温度, 不断搅拌, 形成无 色透明溶液 (b); 随后将制备的浆液前体 (a)加热至反应温度并慢慢地加入无色透明溶 液 (b)中, 形成灰绿色反应液, 将其在 80°C反应温度, 回流反应 5小时; 将反应得到 的灰绿色粉末过滤、 洗涤, 并在 120°C烘干, 得到 NiMnMoW催化剂 C15.9 g)。 经低 温氮吸附测定的催化剂的比表面积为 140 m2/g, 孔容为 0.48 ml/g。
c. 此催化剂为灰绿色粉末状, 通过 XRF 测定其分子表达式为 MnO-4NiO Mo03 W0 此实施例中合成的催化剂用 Cat-U来表示。 在进行加氢脱硫 之前, 对此催化剂进行预硫化, 硫化条件为在 10%H2S/H2气氛中, 在 400°C下反应 2 个小时, 其中 10%1¾8/1¾的流速为 60毫升 /分钟。
实施例 22
本实施例说明本发明中的 NiCuMoW本体催化剂的制备:
a. 分别称取硝酸镍 C29.08g,其中 Ni2+0.1mol)和硝酸铜 C12.0g,其中 Cu2+0.05mol), 将它们溶于 200ml水中形成水溶液, 向其中缓慢滴加 0.2 mol/L NaOH溶液, 调节 pH=12, 并加热至反应温度, 生成蓝绿色混合反应液, 将其在 80°C反应温度下回流反 应 25个小时, 得到蓝绿色粉末; 将反应得到的蓝绿色粉末过滤并且洗涤, 得到催化 剂前体 (即具有层状结构的 NiCu-LHS催化剂前体);将此催化剂前体加入 200ml水中, 配置成浆液前体 (a);
b. 分别称取钼酸铵 C5.4g,其中 Mo6+0.03mol)和偏钨酸铵 ( .2g,其中 W^O.i mol), 将它们溶于水 (30ml)中, 形成溶液, 并将此溶液加热至反应温度, 不断搅拌, 形成无 色透明溶液 (b); 随后将制备的浆液前体 (a)加热至反应温度并慢慢地加入无色透明溶 液 (b)中, 形成蓝绿色反应液, 将其在 80°C反应温度, 回流反应 5小时; 将反应得到 的蓝绿色粉末过滤、 洗涤, 并在 120°C烘干, 得到 NiCuMoW催化剂 (16.1 g)。 经低温 氮吸附测定的催化剂的比表面积为 138 m2/g, 孔容为 0.37 ml/g。
c. 此催化剂为蓝绿色粉末状, 通过 XRF 测定其分子表达式为
CuO-4NiO Mo03 W0 此实施例中合成的催化剂用 Cat-V来表示。 在进行加氢脱硫 之前, 对此催化剂进行预硫化, 硫化条件为在 10%H2S/H2气氛中, 在 400°C下反应 2 个小时, 其中 10%H2S/H2的流速为 60毫升 /分钟。
实施例 23
本实施例说明本发明中的 NiFeMoW本体催化剂的制备:
a. 分别称取硝酸镍(29.08g, 其中 Ni2+0.1mol)和硝酸亚铁(14.4g, 其中 Fe2+0.05mol), 将它们溶于 200ml水中形成水溶液, 向其中缓慢滴加 0.2 mol/L NaOH 溶液, 调节 pH=12, 反应过程中要通入氩气进行保护, 并加热至反应温度, 生成翠绿 色混合反应液, 将其在 80°C反应温度下回流反应 25个小时, 得到翠绿色粉末; 将反 应得到的翠绿色粉末过滤并且洗涤, 得到催化剂前体 (即具有层状结构的 NiFe-LHS 催化剂前体); 将此催化剂前体加入 200ml水中, 配置成浆液前体 (a); b. 分别称取钼酸铵 C5.4g,其中 Mo6+0.03mol)和偏钨酸铵 ( .2g,其中 W^O.i mol), 其中 W^O.Olmol), 将它们溶于水 (30ml)中, 形成溶液, 并将此溶液加热至反应温度, 不断搅拌, 形成无色透明溶液 (b); 随后将制备的浆液前体 (a)加热至反应温度并慢慢 地加入无色透明溶液 (b)中, 形成翠绿色反应液, 将其在 80°C反应温度, 回流反应 5 小时; 将反应得到的翠绿色粉末过滤、 洗涤, 并在 120°C烘干, 得到 NiFeMoW催化 齐 U(16.2 g)。 经低温氮吸附测定的催化剂的比表面积为 142 m2/g, 孔容为 0.41 ml/g。
c. 此催化剂为绿色粉末状, 通过 XRF 测定其分子表达式为 FeO-4NiO Mo03 W0 此实施例中合成的催化剂用 Cat-W来表示。 在进行加氢脱硫 之前, 对此催化剂进行预硫化, 硫化条件为在 10%H2S/H2气氛中, 在 400°C下反应 2 个小时, 其中 10%H2S/H2的流速为 60毫升 /分钟。
实施例 24
本实施例说明本发明中的 NiMgMoW本体催化剂的制备:
a. 分别称取硝酸镍 (29.08g,其中 Ni2+0.1mol)和硝酸镁 (12.8g,其中 Mg2+0.05mol), 将它们溶于 200ml水中形成水溶液, 向其中缓慢滴加 0.2 mol/L NaOH溶液, 调节 pH=12, 并加热至反应温度, 生成浅绿色混合反应液, 将其在 80°C反应温度下回流反 应 25个小时, 得到浅绿色粉末; 将反应得到的浅绿色粉末过滤并且洗涤, 得到催化 剂前体 (即具有层状结构的 NiMg-LHS催化剂前体);将此催化剂前体加入 200ml水中, 配置成浆液前体 (a);
b. 分别称取钼酸铵 (5.4g,其中 Mo6+0.03mol)和偏钨酸铵 (7.2g,其中 W^O.i mol), 其中 W^O.Olmol), 将它们溶于水 (30ml)中, 形成溶液, 并将此溶液加热至反应温度, 不断搅拌, 形成无色透明溶液 (b); 随后将制备的浆液前体 (a)加热至反应温度并慢慢 地加入无色透明溶液 (b)中, 形成浅绿色反应液, 将其在 80°C反应温度, 回流反应 5 小时; 将反应得到的浅绿色粉末过滤、 洗涤, 并在 120°C烘干, 得到 NiMgMoW催化 齐 IJ(15.7 g)。 经低温氮吸附测定的催化剂的比表面积为 145 m2/g, 孔容为 0.45 ml/g。
c. 此催化剂为浅绿色粉末状, 通过 XRF 测定其分子表达式为 MgO-4NiO Mo03 W0 此实施例中合成的催化剂用 Cat-X来表示。 在进行加氢脱硫 之前, 对此催化剂进行预硫化, 硫化条件为在 10%H2S/H2气氛中, 在 400°C下反应 2 个小时, 其中 10%H2S/H2的流速为 60毫升 /分钟。
实施例 25
催化剂在加氢脱硫反应中的性能评价
以含硫量为 500 ppm的柴油馏分 (将 4,6-DMDBT溶解于十氢萘溶剂中), 来考察 催化剂在加氢脱硫反应中的性能, 反应在固定床反应器中进行。 反应条件为: 催化剂 质量 0.5g, 反应温度在 300°C, 氢气压力 3.0 Mpa, 氢气与柴油馏分的比率为 800Nm3 氢气 / m3柴油馏分, 体积空速 9 h- 对于样品中含硫量的测试采用的是 A TEK定硫 仪。
在上述对柴油馏分的加氢脱硫反应中, 使用本发明的催化剂进行试验, 其中, 发 现 Cat-A、 Cat-E、 Cat-J、 Cat-0、 Cat-S以及 Cat-T脱硫效果最佳, Cat-A催化剂将原 料中的硫含量由 500ppm降低到 5ppm, 而 Cat-I催化剂将原料中的硫含量由 500ppm 降低到 15ppm。 它们加氢脱硫后柴油馏分的含硫量列于表 1中。
表 1、 催化剂在加氢脱硫反应中的性能比较
Figure imgf000013_0001
商业参比剂由中国石油化工总公司提供,其组成为 Co3(V2.2Ni05.9MoO 2W03。 本发明制备催化剂的活性用相对活性表示, 即以参比剂运转 200 小时的活性为 100, 本发明催化剂与之比较所得的活性表示发明催化剂的相对活性。 相对脱硫活性 按下列公式计算:
相对脱硫活性=10(^[(1/8 )。'65-(1/80。'65]/[ (1/8 65-(1/8&)。'65]
式中 Sfr、 分别表示参比剂所用柴油馏分和经参比剂加氢处理后产物的含硫浓 度, Sf、 Sp分别表示发明催化剂所用柴油馏分和经发明催化剂加氢处理后的产物含硫 浓度。
综上所述,本发明合成了具有层状结构的较专利和文献高的比表面积、高的孔容 以及超高加氢脱硫活性的多金属本体催化剂, 这种催化剂具有层状结构, 并且活性金 属交换进入层板之间, 其分散程度较高, 显示出更多的活性中心, 在温和操作条件下 通过加氢脱硫反应,此种催化剂可以将含 4,6-DMDBT的柴油馏分中的硫从 500 ppmw 脱至 lO ppmw, 从而实现了超深度脱硫, 并且通过引入廉价的 +2价金属 (如锌、 锰、 铁、 铜、 镁等), 降低了本体催化剂的成本, 显示出巨大的工业应用价值。

Claims

权 利 要 求 书
1、 层状结构超深度加氢脱硫多金属本体催化剂, 是一种具有层状结构的超深度 加氢脱硫多金属本体催化剂, 其特征在于: 它是由至少一种 族金属, 至少一种 +2 价金属, 至少两种 VIB族金属组成的混合金属氧化物催化剂;
以氧化物计并以催化剂为基准,该催化剂中含有 1-50重量%的 VIII族金属、 1-50 重量%的+2价金属、 5-60重量%的两种 VIB族金属;
VIII族金属和 +2价金属的摩尔比例在 20: 1-1 :20之间;
两种 VIB族金属的摩尔比例 5: 1-1 :5 ;
该催化剂的比表面积 110-150 m2/g, 孔容 0.2 -0.5ml/g。
2、 根据权利要求 1所述的多金属本体催化剂, 其中所述的 VIII族金属选自 Ni 或 Co; +2价金属选自 Zn、 Mn、 Cu、 Fe、 Mg; VIB族金属选自 Mo和 W。
3、 一种权利要求 1所述催化剂的制备方法, 该方法包括以下步骤:
a) 将所述一种 VIII族金属的可溶性盐、一种 +2价金属的可溶性盐加入水中配制 成可溶性盐的混合水溶液, 再将碱性沉淀剂溶于水中配成溶液,最后将碱性沉淀剂加 入上述可溶性盐的混合水溶液中进行共沉淀反应, 得到具有层状结构的催化剂前体; b) 将所述层状结构的催化剂前体的浆液与含有至少两种 VIB族金属阴离子的可 溶性盐的极性溶剂混合进行离子交换反应,经分离、洗涤、干燥及 400-500°C焙烧 2-10 小时得到含有一种 族金属, 一种 +2价金属, 两种 VIB族金属的具有层状结构的多 金属本体催化剂。
4、 根据权利要求 3所述的催化剂制备方法, 其中所述一种 VIII族金属的可溶性 盐的水溶液的浓度为 0.01〜0.3 mol/L, +2价金属的可溶性盐的水溶液浓度为 0.01〜0.3 mol/L, 其中所述的层状结构的催化剂前体的浓度为 0.01〜0.9 mol/L, 并且在所述含有 至少两种 VIB族金属阴离子的可溶性盐的极性溶剂中, 两种 VIB族金属的浓度分别 为 0.01〜0.2 mol/L;
碱性沉淀剂水溶液浓度为 0.01〜0.6 mol/L, 碱性沉淀剂水溶液用量为步骤 a)共沉 淀反应后使溶液的 pH值控制在 6.0〜9.0之间。
5、根据权利要求 3所述的制备方法,其中步骤 a)中所述共沉淀反应在 50-150 进行 10-25小时;
其中步骤 b)中所述离子交换反应在 50-150 °C进行 4-10小时;
其中步骤 b)中所述离子交换反应体系的 pH值为 1-11,通过酸(如硝酸)或碱(如 氨水) 调节 pH值。
6、 根据权利要求 3所述的制备方法, 其中步骤 a)中所述的碱性沉淀剂是指氢氧 化钠、 氢氧化钾、 碳酸钠、 碳酸氢钠、 碳酸氢钾、 氨水、 尿素、 碳酸氢铵、 碳酸铵、 碳酸钾中的一种或二种以上的组合。
7、 如权利要求 3或 4所述的制备方法, 其特征在于: 所述的一种 VIII族金属的 可溶性盐包含从硝酸镍、 醋酸镍、 硫酸镍或氯化镍、 硝酸钴、 氯化钴、 硫酸钴、 或醋 酸钴中选择的一种; 所述的 +2 价金属可溶性盐可从硝酸锌、 氯化锌、 醋酸锌、 硫酸 锌、硝酸镁、 氯化镁、醋酸镁、硫酸镁、硝酸亚铁、 氯化亚铁、醋酸亚铁、硫酸亚铁、 硝酸铜、 氯化铜、 醋酸铜、 硫酸铜、 醋酸锰、 硝酸锰、 氯化锰、 硫酸锰中选择一种; 所述的至少含有两种 VIB族金属阴离子的可溶性盐包含从钼酸铵和钼酸钠中选 择的一种, 和从钨酸铵、 偏钨酸铵或钨酸钠中选择的一种。
8、 一种权利要求 1所述的催化剂在含硫有机化合物燃油的加氢脱硫反应中的应 用。
9、根据权利要求 8所述的应用,其中所述的加氢脱硫反应的条件为:温度 280-400 V, 氢气压力 l-20MPa, 氢气与所述含硫有机化合物燃油的体积比为 50-1000; 加氢 脱硫反应过程中, 含硫有机化合物燃油的体积空速 0.1-10 h^ o
10、 如权利要求 8或 9所述的应用, 其中所述的催化剂在进行加氢脱硫反应前 进行如下预处理:
a) 研磨、 混捏、 成型;
b)在加氢脱硫固定床反应器上,于 300-450°C下以含硫化合物与氢气的混合气体 进行原位预硫化; 预硫化时间为 2-10小时;
所述含硫化合物为硫化氢、 二硫化碳或二甲基二硫。
PCT/CN2012/085119 2012-09-18 2012-11-23 层状结构超深度加氢脱硫多金属本体催化剂及制备和应用 WO2014043993A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/420,167 US20150190789A1 (en) 2012-09-18 2012-11-23 Preparation and application of ultra-deep hydrodesulfurization multi-metal bulk catalyst of layered structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210347747.5 2012-09-18
CN201210347747.5A CN103657672B (zh) 2012-09-18 2012-09-18 层状结构超深度加氢脱硫多金属本体催化剂及制备和应用

Publications (1)

Publication Number Publication Date
WO2014043993A1 true WO2014043993A1 (zh) 2014-03-27

Family

ID=50297155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085119 WO2014043993A1 (zh) 2012-09-18 2012-11-23 层状结构超深度加氢脱硫多金属本体催化剂及制备和应用

Country Status (3)

Country Link
US (1) US20150190789A1 (zh)
CN (1) CN103657672B (zh)
WO (1) WO2014043993A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107774277A (zh) * 2016-08-29 2018-03-09 中国石油化工股份有限公司 一种制备加氢处理催化剂的方法
CN113428911A (zh) * 2021-07-15 2021-09-24 北京化工大学 层状金属氢氧化物及其制备与复合金属氧化物及其制备
CN114471593A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 加氢精制催化剂的制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105312060A (zh) * 2014-07-17 2016-02-10 中国科学院大连化学物理研究所 一种层状结构多金属本体催化剂及制备和应用
CN104826585A (zh) * 2015-04-22 2015-08-12 芜湖市鸿坤汽车零部件有限公司 一种机械强度大的经济环保脱硫活性炭及其制备方法
CN106268850B (zh) * 2015-05-15 2018-11-02 中国科学院大连化学物理研究所 一种超深度脱硫脱氮的多金属本体催化剂及其制法和应用
CN104815697A (zh) * 2015-05-20 2015-08-05 南开大学 一种用于蓖麻油制备生物航空煤油超分散加氢脱氧和加氢异构化催化剂的制备方法
CN106268976B (zh) * 2015-06-05 2019-01-25 中国科学院大连化学物理研究所 一种汽油选择性加氢脱硫催化剂及其制备和应用
CN106311259B (zh) * 2015-06-25 2019-02-19 中国科学院大连化学物理研究所 一种汽油选择性加氢脱硫体相催化剂及其制备方法和应用
CN106311281B (zh) * 2015-07-02 2019-03-19 中国科学院大连化学物理研究所 二氧化碳加氢合成低碳醇催化剂及其制备方法和应用
CN111195520B (zh) * 2018-11-16 2022-07-26 中国科学院大连化学物理研究所 一种高分散吸附脱硫催化剂及其制备和应用
CN109603839B (zh) * 2019-01-09 2022-02-15 泰州学院 一种本体型钴钼加氢脱硫催化剂的制备方法
CN110833709A (zh) * 2019-11-22 2020-02-25 中国石油大学(华东) 一种CuNi-LDH复合多级结构油水分离金属网膜及其制备方法
CN114471594B (zh) * 2020-10-26 2024-01-12 中国石油化工股份有限公司 一种加氢精制催化剂及其制备方法
CN115301285A (zh) * 2021-05-08 2022-11-08 中国石油天然气股份有限公司 分子筛纳米簇改性的非负载型Ni-Mo加氢催化剂、其制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510111A (zh) * 2002-12-26 2004-07-07 中国科学院大连化学物理研究所 一种烃类油深度脱硫方法
CN101153228A (zh) * 2007-09-19 2008-04-02 中国科学院大连化学物理研究所 用于柴油加氢脱硫的多金属本体催化剂及制法和应用
US20090107886A1 (en) * 2007-10-31 2009-04-30 Theodorus Maesen Hydroconversion Processes Employing Multi-Metallic Catalysts and Method for Making Thereof
CN101733120A (zh) * 2009-12-23 2010-06-16 中国科学院大连化学物理研究所 一种具有层状结构的多金属本体催化剂及制法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR043242A1 (es) * 2003-02-24 2005-07-20 Shell Int Research Preparacion y uso de una composicion de catalizador
US7544632B2 (en) * 2004-09-22 2009-06-09 Exxonmobil Research And Engineering Company Bulk Ni-Mo-W catalysts made from precursors containing an organic agent
CN101053846A (zh) * 2006-04-12 2007-10-17 北京化工大学 一种高分散柴油加氢脱硫催化剂的制备方法
US8383543B2 (en) * 2009-04-29 2013-02-26 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510111A (zh) * 2002-12-26 2004-07-07 中国科学院大连化学物理研究所 一种烃类油深度脱硫方法
CN101153228A (zh) * 2007-09-19 2008-04-02 中国科学院大连化学物理研究所 用于柴油加氢脱硫的多金属本体催化剂及制法和应用
US20090107886A1 (en) * 2007-10-31 2009-04-30 Theodorus Maesen Hydroconversion Processes Employing Multi-Metallic Catalysts and Method for Making Thereof
CN101733120A (zh) * 2009-12-23 2010-06-16 中国科学院大连化学物理研究所 一种具有层状结构的多金属本体催化剂及制法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107774277A (zh) * 2016-08-29 2018-03-09 中国石油化工股份有限公司 一种制备加氢处理催化剂的方法
CN114471593A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 加氢精制催化剂的制备方法
CN114471593B (zh) * 2020-10-26 2023-09-01 中国石油化工股份有限公司 加氢精制催化剂的制备方法
CN113428911A (zh) * 2021-07-15 2021-09-24 北京化工大学 层状金属氢氧化物及其制备与复合金属氧化物及其制备

Also Published As

Publication number Publication date
US20150190789A1 (en) 2015-07-09
CN103657672B (zh) 2016-05-18
CN103657672A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2014043993A1 (zh) 层状结构超深度加氢脱硫多金属本体催化剂及制备和应用
US8377289B2 (en) Composite metal oxide catalyst and method for preparation and application thereof
CN111215094B (zh) 一种多金属非负载加氢精制催化剂及其制备方法和应用
WO2011075928A1 (zh) 一种具有层状结构的多金属本体催化剂及制法和应用
WO2011103698A1 (zh) 加氢精制催化剂
CN105478129B (zh) 一种加氢处理催化剂及其应用
CN101934218B (zh) 一种脱硫吸附剂及其制备方法和应用
CN104383923A (zh) 一种汽油柴油加氢铁基催化剂及其应用
WO2011103699A1 (zh) 一种加氢精制催化剂制备方法
CN109621973B (zh) 一种c9石油树脂预加氢催化剂及制备方法和应用
WO2014032366A1 (zh) 一种二烯烃选择加氢催化剂及制备和应用
CN105312060A (zh) 一种层状结构多金属本体催化剂及制备和应用
CN101153228A (zh) 用于柴油加氢脱硫的多金属本体催化剂及制法和应用
CN102039154B (zh) 一种加氢脱硫醇催化剂及其制备方法和应用
CN101733114B (zh) 一种超细粉末复合金属氧化物催化剂及其用途
CN101200654B (zh) 一种加氢处理催化剂
CN111558376A (zh) 一种铁基加氢催化剂及其制备方法与应用
CN101468309B (zh) 一种非负载型加氢催化剂的制备方法
CN106268850B (zh) 一种超深度脱硫脱氮的多金属本体催化剂及其制法和应用
CN111558377B (zh) 一种加氢精制催化剂及其制备方法与应用
CN106311259B (zh) 一种汽油选择性加氢脱硫体相催化剂及其制备方法和应用
CN114433120B (zh) 一种脱硫催化剂及其制备方法和应用
CN106994350B (zh) 一种汽油选择性加氢脱硫体相催化剂及其制备和应用
CN114433120A (zh) 一种脱硫催化剂及其制备方法和应用
CN115011375A (zh) 一种废润滑油悬浮床加氢再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14420167

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885120

Country of ref document: EP

Kind code of ref document: A1