WO2014032366A1 - 一种二烯烃选择加氢催化剂及制备和应用 - Google Patents
一种二烯烃选择加氢催化剂及制备和应用 Download PDFInfo
- Publication number
- WO2014032366A1 WO2014032366A1 PCT/CN2012/085114 CN2012085114W WO2014032366A1 WO 2014032366 A1 WO2014032366 A1 WO 2014032366A1 CN 2012085114 W CN2012085114 W CN 2012085114W WO 2014032366 A1 WO2014032366 A1 WO 2014032366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- group
- catalyst
- metals
- soluble salt
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 199
- 150000001993 dienes Chemical class 0.000 title claims abstract description 53
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 28
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 185
- 239000002184 metal Substances 0.000 claims abstract description 185
- 238000006243 chemical reaction Methods 0.000 claims abstract description 62
- -1 VIB metals Chemical class 0.000 claims abstract description 27
- 229910003455 mixed metal oxide Inorganic materials 0.000 claims abstract description 14
- 239000011148 porous material Substances 0.000 claims abstract description 10
- 150000003839 salts Chemical class 0.000 claims description 36
- 239000000203 mixture Substances 0.000 claims description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 25
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 239000000243 solution Substances 0.000 claims description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- 239000001257 hydrogen Substances 0.000 claims description 18
- 239000007864 aqueous solution Substances 0.000 claims description 17
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 16
- 229910052717 sulfur Inorganic materials 0.000 claims description 16
- 239000011593 sulfur Substances 0.000 claims description 16
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 15
- 239000012018 catalyst precursor Substances 0.000 claims description 15
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 claims description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 10
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims description 10
- 239000011609 ammonium molybdate Substances 0.000 claims description 10
- 235000018660 ammonium molybdate Nutrition 0.000 claims description 10
- 229940010552 ammonium molybdate Drugs 0.000 claims description 10
- 238000000227 grinding Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 239000002002 slurry Substances 0.000 claims description 9
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 238000005349 anion exchange Methods 0.000 claims description 7
- 150000002739 metals Chemical class 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 6
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 6
- 150000001450 anions Chemical class 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 claims description 6
- 238000000975 co-precipitation Methods 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 claims description 6
- 239000002798 polar solvent Substances 0.000 claims description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 5
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 5
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 239000011230 binding agent Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 230000001376 precipitating effect Effects 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910021555 Chromium Chloride Inorganic materials 0.000 claims description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 3
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 3
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 3
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 claims description 3
- 229940009827 aluminum acetate Drugs 0.000 claims description 3
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 claims description 3
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 claims description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 238000004898 kneading Methods 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 229940078494 nickel acetate Drugs 0.000 claims description 3
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 3
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 3
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 3
- 239000002244 precipitate Substances 0.000 claims description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 3
- 239000011684 sodium molybdate Substances 0.000 claims description 3
- 235000015393 sodium molybdate Nutrition 0.000 claims description 3
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 claims description 3
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims 2
- 239000012670 alkaline solution Substances 0.000 claims 1
- 238000005342 ion exchange Methods 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 238000005486 sulfidation Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 10
- 230000008901 benefit Effects 0.000 abstract description 4
- 239000002574 poison Substances 0.000 abstract description 4
- 231100000614 poison Toxicity 0.000 abstract description 4
- 239000000571 coke Substances 0.000 abstract description 3
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- 238000000921 elemental analysis Methods 0.000 description 19
- 238000004876 x-ray fluorescence Methods 0.000 description 19
- 239000002994 raw material Substances 0.000 description 15
- 229910004298 SiO 2 Inorganic materials 0.000 description 13
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 11
- 150000001336 alkenes Chemical class 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229910052747 lanthanoid Inorganic materials 0.000 description 8
- 229910052746 lanthanum Inorganic materials 0.000 description 8
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 8
- 238000004073 vulcanization Methods 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 7
- 239000010970 precious metal Substances 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 229910052785 arsenic Inorganic materials 0.000 description 6
- 150000002602 lanthanoids Chemical class 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 239000002243 precursor Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 208000008316 Arsenic Poisoning Diseases 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 238000004939 coking Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229940011182 cobalt acetate Drugs 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 2
- 229940044175 cobalt sulfate Drugs 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000009740 moulding (composite fabrication) Methods 0.000 description 2
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 2
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 208000005374 Poisoning Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000219793 Trifolium Species 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- ZRUWFKRETRELPY-UHFFFAOYSA-N azane;nickel(2+) Chemical compound N.[Ni+2] ZRUWFKRETRELPY-UHFFFAOYSA-N 0.000 description 1
- 239000012490 blank solution Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000020335 dealkylation Effects 0.000 description 1
- 238000006900 dealkylation reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- FMJXEEOAXNVXGA-UHFFFAOYSA-N furan-2,5-dione;toluene Chemical compound CC1=CC=CC=C1.O=C1OC(=O)C=C1 FMJXEEOAXNVXGA-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000003657 tungsten Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/888—Tungsten
- B01J23/8885—Tungsten containing also molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/75—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/888—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/049—Pillared clays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/633—Pore volume less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
- B01J37/033—Using Hydrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/20—Sulfiding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/148—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
- C07C7/163—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/32—Selective hydrogenation of the diolefin or acetylene compounds
- C10G45/34—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
- C10G45/36—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/38—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metals, or compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/15—X-ray diffraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/70—Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
- B01J35/73—Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline having a two-dimensional layered crystalline structure, e.g. layered double hydroxide [LDH]
Definitions
- the present invention relates to selective hydrogenation of diolefins, and more particularly to a catalyst for the selective hydrogenation of diolefins, which has a layered structure and exhibits extremely high diene hydrogenation activity and selectivity.
- Diolefins are widely found in catalytically cracked gasoline, pyrolysis gasoline, and some olefin-rich feedstocks. Diolefins are very active in nature and, in addition to being readily polymerized by themselves, react with other olefins to form colloids and coking precursors. Thus, prior to further processing of the above gasoline and olefin-rich feedstock, the diolefins must be removed to avoid coking on the catalyst affecting the useful life of the catalyst.
- the method for industrially removing diolefins is mainly to select a catalytic hydrogenation method. That is, the selective catalytic hydrogenation of the diene on the catalyst having a hydrogenation function achieves the purpose of removing the diene.
- the first type is a noble metal (mainly palladium, Pd) supported catalyst; for example, US Patent No. 6,388,162, USP 6,255,548, US Pat. No. 6,084,140, US Pat.
- a method for removing a diene from an olefin-rich feedstock the catalyst used is Pd/a-Al 2 0 3 ; these patents also indicate that other metals such as silver may be added in order to increase the selectivity of the catalyst for de-olefin removal.
- the Pd content is 0.05-0.2 wt%, preferably 0.2 wt%, and the preferred reaction temperature is 26-49 °C.
- precious metal catalysts are very effective for the treatment of some raw materials containing no or very low levels of poisons (such as sulfur, arsenic, etc.), but for some sulfur, arsenic and other high-toxic raw materials such as the aforementioned catalytic cracking gasoline, thermal cracking Gasoline and some olefin-rich raw materials, precious metal catalysts are easily poisoned and deactivated, seriously affecting the service life of the catalyst. Moreover, precious metal Pd is expensive.
- poisons such as sulfur, arsenic, etc.
- the second type is a nickel-supported or nickel-amorphous alloy-supported catalyst; for example, Chinese Patent No. CN1221638C, CN99120660.6, CN100566827C discloses a method for removing a diene in an olefin-rich raw material, which is supported by nickel or
- the nickel amorphous alloy supported catalyst is a porous material composed of a porous support material having no oxidizing property, including porous inorganic oxide, activated carbon, molecular sieve and the like.
- the process conditions for de-diene have the following characteristics: reaction temperature 40-70 ° C, pressure 1.0-3.0 MPa, H 2 /oil volume ratio 100-700, liquid hourly space velocity (LHSV) 0.5-4.0 h ⁇ o It is very effective to treat some raw materials containing no or low content of poisons (such as sulfur, arsenic, etc.), but for some sulfur, arsenic and other high-toxic raw materials such as the aforementioned catalytic cracking gasoline, pyrolysis gasoline and some rich
- poisons such as sulfur, arsenic, etc.
- the third type is a transition metal sulfide-supported catalyst; for example, Chinese patents CN1676580A, CN101619236A, CN100338190C, CN1317366C, CN1317365C, CN1286951C, CN1291785C, CN1272103C, a method for selectively hydrotreating distillate of distillate oil, the catalyst used is supported by alumina Cobalt and / or nickel, molybdenum and / or tungsten and alkali metals (such as potassium). Such catalysts are subjected to a sulfurization treatment prior to use to convert the active metal to a sulfide active phase.
- the process conditions for hydrodehalation of the diene have the following characteristics: a reaction temperature of 160-300 ° C, preferably 200-260 ° C; a hydrogen partial pressure of 1.0-6.0 MPa, preferably 1.2-4.0 MPa; a liquid hourly space velocity of 2.0 -30.0 h- 1 , preferably 5.0-20.0 h - a hydrogen oil volume ratio of 50-600, preferably 100-400.
- a reaction temperature 160-300 ° C, preferably 200-260 ° C
- a liquid hourly space velocity of 2.0 -30.0 h- 1 preferably 5.0-20.0 h -
- a hydrogen oil volume ratio of 50-600 preferably 100-400.
- the disadvantage of this synthesis method is that concentrated ammonia water is used in the synthesis process, which pollutes the environment, and the complex formed by Ni and ammonia is stable, ammonia is not easily released, and part of Ni remains in the final mother liquor. Ammonia complex ions produce a large amount of wastewater that cannot be discharged.
- the catalysts prepared by these patents have low specific surface area (less than 120 m 2 /g) and small pore volume (less than 0.2 ml/g); in the diesel hydrodesulfurization reaction, such catalysts are at high pressure (higher than 6 MPa), high hydrogen to oil ratio (above 500 NL / L) can show excellent hydrodesulfurization activity. When such a catalyst is used in a diene-rich olefin-rich feedstock dediolefin, the catalyst is deactivated rapidly, limiting its industrial application.
- CiMoW catalyst also discloses a method for synthesizing NiMoW catalyst, which mainly reacts with molybdenum, tungsten salt and basic nickel carbonate in an aqueous solution, and at least part of the metal component exists in a solid form during the reaction, and finally The catalyst is obtained by vulcanization. Since the raw material used in this patent is partially basic nickel carbonate, which is insoluble in water, the essential reaction of the synthesis process is a displacement reaction between ions and solids, so it is difficult to synthesize small-sized catalyst particles, and the activity of the catalyst is conventional. Alumina supported catalysts do not have much advantage.
- Chinese patents CN101544904A, CN101153228A, CN101733120A also disclose a preparation method of NiMoW three metal bulk catalyst and application in ultra deep desulfurization of diesel; although the prepared catalyst shows ultra high activity in diesel ultra deep desulfurization reaction, the catalyst Also unsuitable for the removal of diolefins from olefin-rich feedstocks, an important reason is that the catalyst has a small specific surface area and pore volume (small carbon capacity), and the diene is particularly susceptible to coking on the catalyst. Therefore, the catalyst has a short life and cannot meet the industrial application requirements of de-diene.
- the existing de-diene catalysts have the following disadvantages: (1) Pd-based and Ni-based catalysts loaded with noble metals have poor resistance to sulfur and arsenic poisoning, and short catalyst life cannot be effectively treated. Raw materials for poisons such as sulfur and arsenic; (2) expensive catalysts containing Pd noble metals; (3) Conventional supported transition metal sulfide catalysts have lower reactivity, higher reaction temperatures, and faster catalyst deactivation. Therefore, it is very necessary to develop a high activity, high selectivity, strong resistance to sulfur and arsenic poisoning, relatively low reaction temperature, low catalyst relative to precious metals, high metal content, specific surface area and pore volume. Larger sulfide dediene catalyst. Summary of the invention
- a diene selective hydrogenation catalyst consists of a Group VIII metal, a +3 valent metal, a Group IA metal, an IVB metal, a lanthanide metal, two Group VIB metals, and a balance of silica.
- a mixed metal oxide catalyst composed of alumina characterized in that, in terms of an oxide and based on a catalyst, the catalyst contains 10 to 40% by weight of a Group VIII metal, and 5 to 30% by weight of a +3 valence.
- the catalyst has a specific surface area of from 150 to 300 m 2 /g and a pore volume of from 0.4 to 0.8 ml/g.
- the Group VIII metal is selected from the group consisting of Ni, Co; the +3 valent metal is selected from the group consisting of Cr, Al; the Group IA metal is selected from the group consisting of Na, K, and the Group IVB metal is selected from the group consisting of Ti, Zr, and the lanthanide metal is selected from the group consisting of The Zn, VIB group metal is selected from the group consisting of Mo, W.
- the Group VIII metal is selected from the group consisting of: the +3 valent metal is selected from the group consisting of the Group IA metal and the Group IA metal is selected from the group consisting of the Group IB, and the Group VIB metal is selected from the group consisting of the Group Mo and W.
- the invention has the advantages of high activity, high selectivity, strong resistance to sulfur and arsenic poisoning, relatively low reaction temperature, low catalyst relative to precious metal, high metal content, large specific surface area and large pore volume.
- Sulfide dediene catalyst is a member of the invention.
- a process for the preparation of a catalyst as described above which process comprises the steps of: a) dissolving a soluble salt of a Group VIII metal, a soluble salt of a +3 valent metal, and The soluble salts of the lanthanide metals are mixed and added to prepare an aqueous solution, and the alkaline precipitant containing the Group IA metal is dissolved in water to form a solution, and finally the alkaline precipitant is added to the mixed solution of the above soluble salts for coprecipitation. Reacting to obtain a catalyst precursor having a layered double hydroxide structure;
- the mixed metal oxide obtained in the step b) is pulverized and sieved into a powder having a particle size of more than 100 mesh.
- the powder was sufficiently kneaded with a binder containing a Group IVB metal oxide and SiO 2 -Al 2 0 3 and extruded through a extruder. Drying and calcining to obtain a group metal, a +3 valent metal, a Group IA metal, a Group IVB metal, a lanthanum metal, two Group VIB metals, and a balance of Si0 2 -Al 2 0 3 formed mixed metal oxide catalyst.
- the concentration of the aqueous solution of the soluble salt containing a Group VIII metal is 0.01 to 0.3 mol/L
- the concentration of the aqueous solution of the soluble salt containing the +3 valent metal is 0.01 to 0.3 mol/L
- the concentration of the aqueous solution containing a soluble salt of a lanthanum metal is 0.01 to 0.3 mol/L, and the concentration of the aqueous solution of the alkaline precipitant containing a Group IA metal is 0.1 to 1.5 mol/L, wherein the layered dihydrogen is The concentration of the oxide structure catalyst precursor is 0.01 to 0.9 mol/L, and in the polar solvent of the soluble salt of the at least two VIB group metals, the concentration of the two Group VIB metals is 0.01 to 0.2 mol/L.
- step a) wherein the coprecipitation reaction in step a) is carried out at 50-150 ° C for 10-25 hours; in step b) the anion exchange reaction is carried out at 50-150 ° C for 4-10 hour.
- the alkaline precipitating agent described in the step a) means one of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate or a combination thereof;
- the pH of the anion exchange reaction system is 1-11.
- the soluble salt of the Group VIII metal comprises one selected from the group consisting of nickel nitrate, nickel acetate, nickel sulfate or nickel chloride, cobalt nitrate, cobalt acetate, cobalt sulfate or cobalt chloride.
- the at least one +3 valent metal soluble salt comprises one selected from the group consisting of aluminum nitrate, aluminum chloride, aluminum acetate, chromium nitrate, chromium chloride, chromium acetate, cobalt nitrate, and cobalt chloride.
- the soluble salt containing at least two Group VIB metal anion groups comprises one selected from the group consisting of ammonium molybdate and sodium molybdate; and from ammonium tungstate and ammonium metatungstate Or one of the selected ones of sodium tungstate.
- the reaction temperature is 30-220 ° C
- the hydrogen pressure is 0.1-10 MPa
- the volume ratio of hydrogen to the material is 10-300 NL/L.
- the volume velocity of the material is 0.1-10 II 1 .
- the catalyst should be treated as follows before the selective hydrogenation reaction of the diolefin is carried out.
- the sulfur-containing compound is hydrogen sulfide, carbon disulfide or dimethyl disulfide.
- the dediolefin catalyst of the present invention has the following advantages over the prior art:
- the catalyst synthesis process is easy to control, environmentally friendly, and the catalyst can be industrially produced.
- the catalyst is used in the removal of olefin-rich diolefins and exhibits extremely high diene selective hydrogenation activity under mild operating conditions (reaction temperature 80 ° C, hydrogen partial pressure 1.0 MPa, Hydrogen oil volume ratio of 50 NL / L, night space velocity of 2.0 h" 1 ), the diene in the full-fraction FCC gasoline can be removed from the diene value of 0.72 gl 2 /100g of raw material to 0.1 gl 2 /100g of raw material. Under the same operating conditions, the catalyst prepared in the comparative example was only removed to about 0.5 gl 2 /100 g of raw material.
- the catalyst is not only resistant to sulfur and arsenic, but also difficult to coke.
- the 500-hour life test shows that the catalyst can maintain high catalyst activity for a long time at a lower reaction temperature (less than 100 ° C).
- Fig. 1 is an XRD chart of a NiZnAl-LDH catalyst precursor having a layered structure and a final Cat-A catalyst prepared in Example 1 of the present invention. detailed description
- a diene selective hydrogenation catalyst comprising a group metal, a +3 valent metal, a Group IA metal, a Group IVB metal, a mixed metal oxide catalyst comprising a lanthanide metal, two Group VIB metals, and a balance of silica and/or alumina, characterized in that the catalyst contains 10-based on the basis of the catalyst and based on the catalyst.
- Group VIII metal 40% by weight Group VIII metal, 5-30% by weight of +3 valent metal, 0.1-8 wt% of lanthanum metal, 0.1-8 wt% of Group IVB metal, 0.1-30% by weight of lanthanum metal, 5-50 weight % of the two Group VIB metals and 10-30% by weight of Si0 2 -Al 2 0 3 ; the molar ratio of the two Group VIB metals 3 : 1-1: 3;
- the specific surface area of the catalyst is 150-300 m 2 / g, pore volume 0.4 -0.8ml / g.
- the Group VIII metal is selected from the group consisting of Ni, Co; the +3 valent metal is selected from the group consisting of Cr, Al; the Group IA metal is selected from the group consisting of Na, K, and the Group IVB metal is selected from the group consisting of Ti, Zr, and the lanthanide metal is selected from the group consisting of Zn, Group VIB metal is selected from another preferred aspect of the invention, Group VIII metal is selected from Ni; +3 valent metal is selected from Al; Group IA metal is selected from K; Group IVB metal is selected from Ti; Group IIB metal is selected from The Zn, VIB group metals are selected from the group consisting of Mo and W.
- a process for the preparation of a catalyst as described above which process comprises the steps of: a) dissolving a soluble salt of a Group VIII metal, a soluble salt of a +3 valent metal, and The soluble salts of the lanthanide metals are mixed and added to prepare an aqueous solution, and the alkaline precipitant containing the Group IA metal is dissolved in water to form a solution, and finally the alkaline precipitant is added to the mixed solution of the above soluble salts for coprecipitation. Reacting to obtain a catalyst precursor having a layered double hydroxide structure;
- the mixed metal oxide obtained in the step b) is pulverized and sieved into a powder having a particle size of more than 100 mesh.
- the powder is thoroughly kneaded with a binder containing a Group IVB metal oxide and a mixture of silica and/or alumina, and extruded through an extruder. Drying and calcining to obtain a group metal, a +3 valent metal, an IA group metal, a group IVB metal, a lanthanum metal, two Group VIB metals, and a balance of silica and/or A mixed metal oxide catalyst formed from alumina.
- the concentration of the aqueous solution of the soluble salt containing a Group VIII metal is 0.01 to 0.3 mol/L
- the concentration of the aqueous solution of the soluble salt containing the +3 valent metal is 0.01 to 0.3 mol/L
- the concentration of the aqueous solution containing a soluble salt of a lanthanum metal is 0.01 to 0.3 mol/L, and the concentration of the aqueous solution of the alkaline precipitant containing a Group IA metal is 0.1 to 1.5 mol/L, wherein the layered dihydrogen is The concentration of the oxide structure catalyst precursor is 0.01 to 0.9 mol/L, and in the polar solvent of the soluble salt of the at least two VIB group metals, the concentration of the Group VIB metal in the two groups is 0.01 - 0.2 mol/L.
- step a) wherein the coprecipitation reaction in step a) is carried out at 50-150 ° C
- step b) the anion exchange reaction described in step b) is carried out at 50-150 ° C for 4-10 hours.
- the alkaline precipitating agent described in the step a) means one of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate or a combination thereof;
- the pH of the anion exchange reaction system is 1-11.
- the soluble salt of the Group VIII metal comprises one selected from the group consisting of nickel nitrate, nickel acetate, nickel sulfate or nickel chloride, cobalt nitrate, cobalt acetate, cobalt sulfate or cobalt chloride.
- the at least one +3 valent metal soluble salt comprises one selected from the group consisting of aluminum nitrate, aluminum chloride, aluminum acetate, chromium nitrate, chromium chloride, chromium acetate, cobalt nitrate, and cobalt chloride.
- the soluble salt containing at least two Group VIB metal anion groups comprises one selected from the group consisting of ammonium molybdate and sodium molybdate; and from ammonium tungstate and ammonium metatungstate Or sodium tungstate One of the choices.
- the reaction temperature is 30-220 ° C
- the hydrogen pressure is 0.1-10 MPa
- the volume ratio of hydrogen to the material is 10-300 NL/L.
- the volume velocity of the material is 0.1-10 II 1 .
- the catalyst should be treated as follows before the selective hydrogenation reaction of the diolefin is carried out.
- the sulfur-containing compound is hydrogen sulfide, carbon disulfide or dimethyl disulfide.
- Figure 1 is an XRD chart of a NiZnAlK-LDH catalyst precursor prepared in Example 1 of the present invention and a final Cat-A catalyst. It can be found that in the spectrum of NiZnAlK-LDH, four relatively strong diffraction peaks appear at 11.8°, 23.5°, 33.7°, and 60.1°, respectively; and after anion exchange containing Mo, W, it is found in Cat- In the A catalyst, at 9.4. 18.5. , 34.0. Four broader diffraction peaks appeared at 60.5°. From the strength and position of these diffraction peaks, there is a large difference from the patent CN101733120A and the US patent USP6299760, which indicates that the catalyst prepared by us is structurally different from the patent-prepared catalyst.
- the present invention proposes that a group metal, a +3 valence metal, a Group IA metal, a Group IVB metal, a lanthanum metal, two Group VIB metals, and a balanced amount of Si0 can be prepared based on experimental results.
- a mixed metal oxide catalyst composed of 2 -Al 2 0 3 , wherein the Group VIII metal is selected from the group consisting of Ni, Co; the +3 valent metal is selected from the group consisting of Cr, Al; and the Group IA metal is selected from the group consisting of Na, K, and IVB metals.
- NiZnAlKTiMoW/Si0 2 -Al 2 0 3 is exemplified as an example, but does not mean the remaining metal.
- the present invention cannot be implemented.
- NiZnAlKMoW catalyst precursor is pulverized, sieved into a 160-mesh powder, and the binder of the Ti-containing Si0 2 -Al 2 0 3 mixture is kneaded thoroughly, and extruded into a ⁇ 2.0 clover strip by a squeezer, after 120° C was dried for 12 hours and calcined at 420 ° C for 4 hours to form a catalyst NiZnAlKTiMoW/Si0 2 -Al 2 0 3 having a highly dispersed active species.
- the composition of the catalyst was 16.9% NiO, 18.4% ZnO, 10.9% MoO 3 , 17.5% W0 3 , 5.8% A1 2 0 3 , 2.7% Ti0 2 , 2.8% K 2 by X-ray fluorescence (XRF) elemental analysis. 0, 25.0% SiO 2 -Al 2 O 3 (Si0 2 -Al 2 0 3 of Si0 2 96% by weight of the total).
- the catalyst is pre-vulcanized prior to hydrodesulfurization under conditions of a volume of 10% H 2 S/H 2 at 200 ° C for 2 hours, wherein 10% H 2 S/H 2 The flow rate was 60 ml/min.
- the catalyst synthesized in this example was represented by Cat-A, and the Cat-A catalyst was brownish black.
- the XRD results are shown in Figure 1.
- Example 2 Prepared in the same manner as described in Example 1, except that nickel nitrate (in which Ni 2+ 0.09 mol) and aluminum nitrate (in which Al 3 + 0.03 mol) were used instead of nickel nitrate and aluminum nitrate used in Example 1.
- the composition of the catalyst was 36.3% NiO, 13.2% ZnO, 7.8% Mo0 3 , 12.5% W0 3 , 8.3% A1 2 0 3 , 2.0% TiO 2 , 2.0% K 2 by X-ray fluorescence (XRF) elemental analysis. O, 17.9% Si0 2 -Al 2 0
- NiZnAlKTiMoW/Si0 2 - was prepared in the same manner as described in Example 1, except that nickel nitrate and aluminum nitrate were used, in which Ni 2+ 0.03 mol, Al 3+ 0.09 mol was used instead of the nickel nitrate and aluminum nitrate used in Example 1.
- Al 2 O 3 catalyst, the synthesized multi-metal bulk catalyst is represented by Cat-C.
- the composition of the catalyst was 13.1% NiO, 14.3% ZnO, 8.4% Mo0 3 , 13.6% W0 3 , 26.8% A1 2 0 3 , 2.2% Ti0 2 , 2.2% K 2 by X-ray fluorescence (XRF) elemental analysis. 0, 19.4% Si0 2 -Al 2 0 3 .
- Example 2 Except that ammonium molybdate and ammonium metatungstate, wherein Mo 6 + 0.01 mol, W ⁇ Oi mol was used instead of ammonium molybdate and ammonium metatungstate used in Example 1, in the same manner as described in Example 1.
- a NiZnAlKTiMoW/SiO 2 -Al 2 0 3 catalyst was prepared, and the synthesized multi-metal bulk catalyst was represented by Cat-D.
- the composition of the catalyst was 12.5% NiO, 13.6% ZnO, 8.0% MoO 3 , 38.9% W0 3 , 4.3% A1 2 0 3 , 2.1% Ti0 2 , 2.1% K 2 by X-ray fluorescence (XRF) elemental analysis. 0, 18.5% Si0 2 -Al 2 0 3 .
- NiZnAlKTiMoW/SiO 2 -Al 2 O 3 catalyst was prepared in a manner, and the synthesized multi-metal bulk catalyst was represented by Cat-E.
- the composition of the catalyst was 13.9% NiO, 15.1% ZnO, 26.8% Mo0 3 , 14.4% W0 3 , 4.7% A1 2 0 3 , 2.3% Ti0 2 , 2.3% K 2 by X-ray fluorescence (XRF) elemental analysis. 0, 20.5% SiO 2 -Al 2 O 3 .
- NiZnAlKTiMoW/Si0 2 -Al 2 0 3 was prepared in the same manner as described in Example 1, except that a part of the self-made slurry precursor containing Ni 2+ 0.08 mol was used instead of the part of the homemade slurry used in Example 1.
- the catalyst and the synthesized catalyst are represented by Cat-F.
- the composition of the catalyst was 35.2% NiO, 14.4% ZnO, 8.5% Mo0 3 , 13.6% W0 3 , 4.5% A1 2 0 3 , 2.2% Ti0 2 , 2.2% K 2 by X-ray fluorescence (XRF) elemental analysis. 0, 19.4%Si0 2 -Al 2 0
- the composition of the catalyst was 16.8% NiO, 13.7% ZnO, 16.2% Mo0 3 , 26.2% W0 3 , 4.3% A1 2 0 3 , 2.1% Ti0 2 , 2.1% K 2 by X-ray fluorescence (XRF) elemental analysis. 0, 18.6% Si0 2 -Al 2 0 3 .
- NiZnAlKTiMoW/Si0 2 -Al 2 0 3 was prepared in the same manner as described in Example 1, except that the reaction was carried out at 50 ° C for 10 hours in step a instead of the reaction at 80 ° C for 25 hours used in Example 1.
- Catalyst the prepared catalyst is represented by Cat-H.
- the composition of the catalyst was 16.4% NiO, 18.9% ZnO, 10.3% MoO 3 , 18.1% W0 3 , 5.6% A1 2 0 3 , 2.9% Ti0 2 , 2.4% K 2 by X-ray fluorescence (XRF) elemental analysis. 0, 25.4% Si0 2 - Al 2 0 3 .
- NiZnAlKTiMoW/Si0 2 -Al 2 0 3 was prepared in the same manner as described in Example 1, except that the reaction was carried out at 50 ° C for 25 hours in step a instead of the reaction at 80 ° C for 25 hours.
- Catalyst the prepared catalyst is represented by Cat-I.
- the composition of the catalyst was 16.6% NiO, 18.7% ZnO, 10.8% MoO 3 , 17.6% W0 3 , 5.8% A1 2 0 3 , 2.7% Ti0 2 , 2.7% K 2 by X-ray fluorescence (XRF) elemental analysis. 0, 25.0% SiO 2 -Al 2 O 3 .
- NiZnAlKTiMoW/Si0 2 -Al 2 0 3 was prepared in the same manner as described in Example 1, except that the reaction was carried out at 150 ° C for 10 hours in step a instead of the reaction at 80 ° C for 25 hours used in Example 1.
- Catalyst the prepared catalyst is represented by Cat-J.
- the composition of the catalyst was 16.8% NiO, 18.5% ZnO, 10.2% MoO 3 , 18.2% W0 3 , 5.2% A1 2 0 3 , 3.0% TiO 2 , 3.0% K 2 by X-ray fluorescence (XRF) elemental analysis. O, 25.0% SiO 2 -Al 2 O 3 .
- NiZnAlKTiMoW/Si0 2 -Al 2 0 3 was prepared in the same manner as described in Example 1, except that the reaction was carried out at 150 ° C for 25 hours in step a instead of the reaction at 80 ° C for 25 hours used in Example 1.
- Catalyst the prepared catalyst is represented by Cat-K.
- the composition of the catalyst was 17.8% NiO, 16.5% ZnO, 11.2% Mo0 3 , 17.2% W0 3 , 5.2% A1 2 0 3 , 3.0% TiO 2 , 3.0% K 2 by X-ray fluorescence (XRF) elemental analysis. O, 25.0% SiO 2 -Al 2 O 3 .
- NiZnAlKTiMoW/Si0 2 -Al 2 0 3 in the same manner as described in Example 1 except that the reaction was carried out at 50 ° C for 4 hours in step b instead of the reaction at 80 ° C for 5 hours.
- Catalyst the prepared catalyst is represented by Cat-L.
- the composition of the catalyst was 17.6% NiO, 16.7% ZnO, 11.0% MoO 3 , 17.4% W0 3 , 5.2% A1 2 0 3 , 3.0% TiO 2 , 3.0% K 2 by X-ray fluorescence (XRF) elemental analysis. O, 25.0% SiO 2 -Al 2 O 3 .
- NiZnAlKTiMoW/Si0 2 -Al 2 0 3 was prepared in the same manner as described in Example 1, except that the reaction was carried out at 50 ° C for 10 hours in step b instead of the reaction at 80 ° C for 5 hours.
- Catalyst the prepared catalyst is represented by Cat-M.
- the composition of the catalyst was 15.6% NiO, 17.7% ZnO, 12.0% MoO 3 , 16.4% W0 3 , 6.2% A1 2 0 3 , 3.0% TiO 2 , 3.0% K 2 by X-ray fluorescence (XRF) elemental analysis. O, 25.0% SiO 2 -Al 2 O 3 .
- NiZnAlKTiMoW/Si0 2 -Al 2 0 3 was prepared in the same manner as described in Example 1, except that the reaction was carried out at 150 ° C for 4 hours in step b instead of the reaction at 80 ° C for 5 hours.
- Catalyst the prepared catalyst is represented by Cat-N.
- the composition of the catalyst was 15.5% NiO, 17.8% ZnO, 11.0% MoO 3 , 17.4% W0 3 , 5.2% A1 2 0 3 , 3.0% TiO 2 , 3.0% K 2 by X-ray fluorescence (XRF) elemental analysis. O, 26.0% SiO 2 -Al 2 O 3 .
- NiZnAlKTiMoW/Si0 2 -Al 2 0 3 was prepared in the same manner as described in Example 1, except that the reaction was carried out at 150 ° C for 10 hours in step b instead of the reaction at 80 ° C for 5 hours.
- Catalyst the prepared catalyst is represented by Cat-0.
- the composition of the catalyst was 15.5% NiO, 17.8% ZnO, 11.0% MoO 3 , 17.4% W0 3 , 5.2% A1 2 0 3 , 3.0% TiO 2 , 3.0% K 2 by X-ray fluorescence (XRF) elemental analysis. O, 26.0% SiO 2 -Al 2 O 3 .
- the catalyst was prepared in the same manner as in Example 2 of Chinese Patent No. CN101619236A, and the obtained catalyst was represented by R1.
- the composition of the catalyst was 3.4% NiO, 16.6% ⁇ 0 3 , 80% ⁇ 1 2 ⁇ 3 by X-ray fluorescence (XRF) elemental analysis.
- the catalyst is prepared in the same manner, and the catalyst is prepared.
- the composition of the catalyst was 5.5% NiO, 10.5% MoO 3 , 4.1% ⁇ 2 0, 79.9% ⁇ 1 2 0 by X-ray fluorescence (XRF) elemental analysis.
- XRF X-ray fluorescence
- the catalyst was prepared in the same manner as in Example 1 of U.S. Patent No. 6,299,760, and the obtained catalyst was represented by R3.
- the composition of the catalyst was 28.5% NiO, 27.5% Mo0 3 , 44.0% WO by X-ray fluorescence (XRF) elemental analysis.
- the catalyst was prepared in the same manner as in Example 1 of Chinese Patent No. CN101733120A, and the obtained catalyst was represented by R3.
- the composition of the catalyst was 36.1% NiO, 17.4% Mo0 3 , 28.1% W0 3 , 18.4% Cr 2 0 by X-ray fluorescence (XRF) elemental analysis.
- the FCC gasoline was subjected to a selective hydrodeoxydiene test using the catalyst prepared by the present invention.
- the properties of the feedstock oil are shown in Table 1.
- the specific evaluation method was as follows: The catalyst sieve was divided into 20-30 mesh pellets, and 10 ml of a catalyst was charged in a 20 ml fixed bed reactor. Pre-vulcanization, vulcanization of the catalyst prior to formal feeding The conditions were exactly the same as those of Comparative Example 1 and Comparative Example 2, that is, the catalyst was pre-vulcanized using straight-run gasoline containing 2% by weight of carbon disulfide.
- the specific vulcanization conditions were hydrogen partial pressure of 1.6 MPa, temperature of 290 ° C, and liquid hourly space velocity of 2.0 h - 1 .
- the specific reaction conditions are a reaction temperature of 80 ° C, a hydrogen partial pressure of 10 MPa, a hydrogen oil volume ratio of 50 NL / L, and a night time space velocity of 2.0! ! - 1 .
- the samples were analyzed after 500 hours of reaction, and the results are shown in Table 2.
- the diene value in FCC gasoline was determined by the maleic anhydride method. The specific steps are as follows: 1. Accurately weigh the lO.OOg oil sample into the flask with an analytical balance, add 20 mL of maleic anhydride toluene solution (maleic anhydride in toluene solution must be allowed to stand overnight, filtered rear Can be used), add 0.5 mL of O.lmol / L iodine solution, shake well. 2.
- the grinding flask was placed on a reflux condenser, heated and refluxed in a water bath at 110 ° C ⁇ 2 ° C for 3 hours, then the solution was cooled to room temperature, 5 mL of water was added from the upper end of the condenser tube, and the temperature was further refluxed for 15 minutes.
- the condenser was washed with 5 mL of MTBE and 20 mL of water, respectively. 3.
- Remove the grinding flask from the condenser carefully transfer the solution in the grinding flask to the separatory funnel. (The sealing of the separatory funnel must be ensured during the test to prevent leakage and affect the accuracy of the results.
- A volume of sodium hydroxide solution consumed by the sample, in milliliters (mL);
- M molar concentration of sodium hydroxide solution, in moles / liter (mol / L);
- the catalyst prepared by the present invention can still remove the diene value to below 0.1 gl 2 /100 g oil after a 500-hour operation period under relatively mild conditions, and the comparative preparation is prepared.
- the catalyst can only be removed to above 0.5 gl 2 /100 g of oil.
- the catalyst provided by the invention not only has high activity and selectivity for hydrogenation of diolefins, but also has a reaction temperature higher than conventional oxidation when used in the selective hydrodealkylation of a diene component.
- the aluminum-supported catalyst is lower than 50 ° C, the catalyst is not easy to coke, the anti-poisoning ability is strong, and the catalyst has a long operating cycle.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
提供了一种二烯烃选择加氢催化剂。该催化剂由一种VIII族金属,一种+3价金属,一种IA族金属,一种IVB族金属,一种IIB族金属、两种VIB族金属以及平衡量的SiO2-Al2O3组成的混合金属氧化物催化剂,其特征在于,以氧化物计并以催化剂为基准,该催化剂中含有10-40重量%的VIII族金属、5-30重量%的+3价金属、0.1-8重量%的IA族金属、0.1-8重量%的IVB族金属、0.1-30重量%的IIB族金属、5-50重量%的两种VIB族金属和10-30重量%的SiO2-Al2O3。该催化剂的比表面积为150-300m2/g,孔容为0.4-0.8ml/g。与现有催化剂相比,该催化剂在用于含有二烯烃组分的选择性加氢脱二烯烃时,不仅二烯烃加氢的活性和选择性高,而且还具有反应温度比传统氧化铝负载型催化剂低50°C以上,催化剂不容易结焦,抗中毒能力强,催化剂运转周期长等优点。还提供了一种二烯经选择加氢催化剂的制法及其应用。
Description
种二烯烃选择加氢催化剂及制备和应用 技术领域
本发明涉及一种二烯烃选择加氢,具体地说是一种二烯烃选择性加氢催化剂及制 法和应用, 此种催化剂具有层状结构, 表现出极高二烯烃加氢活性和选择性。 背景技术
二烯烃广泛存在于催化裂化汽油、热裂解汽油以及一些富含烯烃的原料之中。二 烯烃性质非常活泼, 除了自身容易聚合之外, 还会同其它的烯烃发生反应, 形成胶质 及结焦前体。 因而, 在对上述汽油及富含烯烃的原料进行进一步加工前, 必须将其中 的二烯烃脱除, 以避免二烯烃在催化剂上结焦影响催化剂的使用寿命。
目前, 在工业上脱除二烯烃的方法主要是选择催化加氢法。 即在具有加氢功能的 催化剂上选择性催化加氢二烯烃达到脱除二烯烃的目的。能够选择性加氢脱除二烯烃 的催化剂主要有三类: 第一类是贵金属 (主要是钯, Pd)负载型催化剂; 比如美国专 利 USP6, 388,162、 USP6255548、 US6084140、 CN101628843、 CN1071443A公开了一 种在富含烯烃的原料中脱除二烯烃的方法, 所使用的催化剂是 Pd/a-Al203 ; 这些专利 同时还指出, 为了提高催化剂脱二烯烃的选择性, 还可以添加其它金属如银 (Ag)、 铜(Cu)、钴(Co)。Pd含量为 0.05-0.2 wt%,优选 0.2 wt%,优选的反应温度是 26-49°C。 这类贵金属催化剂对于处理一些不含或含量很低毒物(如硫、砷等)的原料非常有效, 但对于一些硫、砷等毒物含量比较高的原料如前面提到的催化裂化汽油、热裂解汽油 以及一些富含烯烃的原料, 贵金属催化剂很容易中毒失活,严重影响催化剂的使用寿 命。 而且, 贵金属 Pd价格昂贵。
第二类是镍负载或镍非晶态合金负载催化剂; 比如中国专利 CN1221638C、 CN99120660.6 CN100566827C公开了一种在富含烯烃的原料中脱除二烯烃的方法, 所使用的催化剂是镍负载或镍非晶态合金负载催化剂,所使用的载体为多孔材料, 由 不具有氧化性的多孔载体材料组成, 包括多孔无机氧化物、 活性碳、 分子筛等。 脱二 烯烃的工艺条件具有如下特征: 反应温度 40-70°C, 压力 1.0-3.0 MPa, H2/油体积比 100-700, 液时空速(LHSV) 0.5-4.0 h^ o 这类催化剂对于处理一些不含或含量很低毒 物(如硫、 砷等) 的原料非常有效, 但对于一些硫、 砷等毒物含量比较高的原料如前 面提到的催化裂化汽油、热裂解汽油以及一些富含烯烃的原料,镍基催化剂很容易中 毒失活, 严重影响催化剂的使用寿命。
第三类是过渡金属硫化物负载型催化剂; 比如中国专利 CN1676580A、 CN101619236A、 CN100338190C CN1317366C CN1317365C CN1286951C CN1291785C、 CN1272103C 公开了一种馏分油选择性加氢脱二烯烃的方法, 所使用 的催化剂由氧化铝负载钴和 /或镍、 钼和 /或钨及碱金属 (如钾) 组成。 这类催化剂在 使用前要进行硫化处理,使活性金属转化成硫化物活性相。加氢脱二烯烃的工艺条件 具有如下特征: 反应温度为 160-300°C, 优选为 200-260°C; 氢分压为 1.0-6.0 MPa, 优选为 1.2-4.0 MPa;液时空速为 2.0-30.0 h—1 ,优选为 5.0-20.0h— 氢油体积比 50-600, 优选为 100-400。 与上述的两类脱二烯烃催化剂相比, 采用过渡金属硫化物负载型催 化剂进行选择性加氢脱二烯烃时, 催化剂抗硫、 砷中毒性能好, 选择性高, 且碱金属 的存在对于抑制催化剂表面积碳有利。但这类催化剂也有其自身无法克服的缺点, 由 于活性金属的负载量有限, 催化剂的反应活性较低, 需要的反应温度较高。 由于催化 剂反应温度高, 二烯烃结焦速度加快, 催化剂失活速度也加快, 这大大减少了催化剂 的使用寿命, 极大地影响了装置的长期稳定运行。 因此, 非常有必要开发一种具有高
活性的、 选择性高的、 抗硫、 砷中毒能力强的、 反应温度相对低的、 催化剂相对于贵 金属廉价的、 金属含量高的硫化物脱二烯烃催化剂。
美国专利 USP6299760、 USP6156695、 USP6783663 USP6712955、 USP6758963 公开了一种具有高金属含量的新型 NiMoW三金属硫化物本体催化剂的制备方法及在 柴油超深度脱硫中的应用,这种新型的催化剂的加氢脱硫活性是其他的传统氧化铝负 载参比催化剂的三倍左右。这种催化剂的合成过程都是以氨水为络合剂, 与反应原料 Ni2+络合, 经过缓慢加热过程, 镍氨络合物慢慢分解出 Ni2+与溶液中的钼、 钨反应生 成 NiMoW催化剂前体, 再通过焙烧和硫化, 形成 NiMoW催化剂。 此种合成方法的 不足之处在于, 合成过程中使用了浓氨水, 会对环境造成污染, 而且 Ni与氨形成的 络合物稳定, 氨不容易释放出来, 在最后的母液中还残留部分 Ni氨络合离子, 产生 大量不能排放的废水。 并且采用这些专利制备的催化剂比表面积都较低 (低于 120 m2/g)、 孔容小 (低于 0.2 ml/g); 在柴油加氢脱硫反应中这类催化剂要在高压 (高于 6 MPa)、 高氢油比 (高于 500 NL/L) 才能表现出优异的加氢脱硫活性。 将这类催化 剂用于含有二烯烃的富含烯烃的原料脱二烯烃时,催化剂失活速度很快, 限制了它的 工业应用。
GAlonso-Nunez等人在文献中 (Applied Catalysis A: General 304 (2006)124-130); Applied Catalysis A: General 302 (2006)177-184); Catalysis Letters 99(2005)65-71)报道 了使用不同原料及多种硫化剂来合成 NiMoW催化剂的方法。他们合成得到的催化剂 具有特殊的鳞片状形态, 但该催化剂的合成方法比较复杂, 且原料昂贵, 生产工艺繁 琐, 增加了催化剂的生产成本, 再者制备的硫化物催化剂成纳米粉体材料, 成型非常 困难, 因而难以实现工业化。
中国专利 CN1339985A也公开了一种合成 NiMoW催化剂的方法,该专利主要是 在水溶液中, 通过钼、钨盐类与碱式碳酸镍反应, 反应过程中至少保证部分的金属成 分以固态形式存在,最终通过硫化得到催化剂。 由于该专利使用的原料部分为碱式碳 酸镍, 其不溶于水, 合成过程的本质反应为离子与固体之间的置换反应, 所以难以合 成得到小晶粒的催化剂粒子,催化剂的活性与传统的氧化铝负载型催化剂比较没有太 大的优势。 中国专利 CN101544904A、 CN101153228A、 CN101733120A也公开了一 种 NiMoW三金属本体催化剂的制备方法以及在柴油超深度脱硫中的应用;尽管制备 的催化剂在柴油超深度脱硫反应中显示出超高活性,但是该催化剂也不适合于应用到 富含烯烃的原料中的二烯烃的脱除,一个重要原因是该催化剂的比表面积和孔容较小 (容碳能力小), 二烯烃在该催化剂上特别容易结焦, 因而催化剂的寿命较短, 不能 满足脱二烯烃的工业应用要求。
从已有报道工作不难发现, 现有的脱二烯烃催化剂存在如下不足的地方: (1 )负 载贵金属 Pd基及 Ni基催化剂抗硫、砷中毒能力差, 催化剂寿命短, 不能有效地处理 含硫、 砷等毒物的原料; (2) 含 Pd贵金属催化剂价格昂贵; (3 ) 传统负载型过渡金 属硫化物催化剂反应活性较低, 反应温度偏高, 催化剂失活速度快。 因此, 非常有必 要开发一种具有高活性的、选择性高的、抗硫、砷中毒能力强的、反应温度相对低的、 催化剂相对于贵金属廉价的、金属含量高的、 比表面积和孔容较大的硫化物脱二烯烃 催化剂。 发明内容
本发明的目的是提供一种脱二烯烃催化剂。
本发明的又一目的在于提供一种制备上述催化剂的方法。
为实现上述目的, 在本发明的一个方面, 提供一种二烯烃选择加氢催化剂, 所述
二烯烃选择加氢催化剂由一种 VIII族金属, 一种 +3价金属, 一种 IA族金属, 一种 IVB 族金属, 一种 ΠΒ族金属、两种 VIB族金属以及平衡量的二氧化硅和 /或氧化铝组成的 混合金属氧化物催化剂, 其特征在于, 以氧化物计并以催化剂为基准, 该催化剂中含 有 10-40重量%的 VIII族金属、 5-30重量%的+3价金属、 0.1-8重量%的 IA族金属、 0.1-8重量%的^¾族金属、 0.1-30重量%的118族金属、 5-50重量%的两种 VIB族金 属和 10-30 重量%Si02-Al203组成。 该催化剂的比表面积 150-300 m2/g, 孔容 0.4 -0.8ml/g。
在本发明的一个优选方面, VIII族金属选自 Ni, Co; +3价金属选自 Cr, Al; IA 族金属选自 Na, K, IVB族金属选自 Ti, Zr, ΠΒ族金属选自 Zn, VIB族金属选自 Mo, W。
在本发明的另一个优选方面, VIII族金属选自 Ni; +3价金属选自 Al; IA族金属 选自 K; IVB族金属选自 Ti; IIB族金属选自 Zn, VIB族金属选自 Mo和 W。
本发明为一种具有高活性的、 选择性高的、 抗硫、 砷中毒能力强的、 反应温度相 对低的、催化剂相对于贵金属廉价的、 金属含量高的、 比表面积和孔容较大的硫化物 脱二烯烃催化剂。
在本发明的另一个方面, 提供一种如上所述催化剂的制备方法, 该方法包括以下 步骤: a) 将所述一种 VIII族金属的可溶性盐、一种 +3价金属的可溶性盐以及一种 ΠΒ 族金属的可溶性盐混合后加入水配制成水溶液, 再将含有 IA族金属的碱性沉淀剂溶 于水中配成溶液, 最后将碱性沉淀剂加入上述可溶性盐的混合溶液中进行共沉淀反 应, 得到具有层状双氢氧化物结构的催化剂前体;
b) 将所述层状双氢氧化物结构的催化剂前体的浆液与所述含有至少两种 VIB族 金属阴离子的可溶性盐的极性溶剂中进行离子交换反应, 经分离、干燥及焙烧步骤得 到含有一种 族金属, 一种 +3价金属, 一种 IA族金属, 一种 ΠΒ族金属、 两种 VIB 族金属的混合金属氧化物;
c) 将步骤 b)中得到的混合金属氧化物粉碎, 筛分成粒度大于 100目的粉体。将 该粉体与含有 IVB族金属氧化物以及 Si02-Al203的粘结剂充分混捏, 经挤条机挤出 成型。 经干燥、 焙烧得到含有一种 族金属, 一种 +3价金属, 一种 IA族金属, 一种 IVB族金属, 一种 ΠΒ族金属、 两种 VIB族金属以及平衡量的 Si02-Al203形成的混合 金属氧化物催化剂。
在本发明的一个优选方面, 其中所述一种含 VIII族金属的可溶性盐的水溶液的 浓度为 0.01〜0.3 mol/L, 含 +3价金属的可溶性盐的水溶液浓度为 0.01〜0.3 mol/L, 一 种含 ΠΒ族金属的可溶性盐的水溶液浓度为 0.01〜0.3 mol/L,含 IA族金属的碱性沉淀 剂的水溶液的浓度为 0.1〜1.5 mol/L,其中所述的层状双氢氧化物结构催化剂前体的浓 度为 0.01〜0.9 mol/L, 并且在所述至少两种 VIB族金属的可溶性盐的极性溶剂中, 两 种 VIB族金属的浓度为 0.01〜0.2 mol/L。
在本发明的另一个优选方面, 其中步骤 a)中所述共沉淀反应在 50-150 °C进行 10-25小时; 步骤 b)中所述阴离子交换反应在 50-150 °C进行 4-10小时。
在本发明的再一个优选方面, 其中步骤 a)中所述的碱性沉淀剂是指氢氧化钠、氢 氧化钾、 碳酸钠、 碳酸钾中的一种或其组合; 步骤 b)中所述阴离子交换反应体系的 pH值为 1-11。
在本发明的再一个优选方面, 所述的一种 VIII族金属的可溶性盐包含从硝酸镍、 醋酸镍、 硫酸镍或氯化镍、 硝酸钴、 醋酸钴、 硫酸钴或氯化钴选择的一种, 和所述的 至少一种 +3 价金属可溶性盐包含从硝酸铝、 氯化铝、 醋酸铝、 硝酸铬、 氯化铬、 醋 酸铬、 硝酸钴、 氯化钴中选择的一种。
在本发明的再一个优选方面, 所述的至少含有两种 VIB族金属阴离子基团的可 溶性盐包含从钼酸铵和钼酸钠中选择的一种; 以及从钨酸铵、偏钨酸铵或钨酸钠中选 择的一种。
在本发明的再一个方面, 提供如上所述的催化剂在二烯烃选择加氢反应中的应 用。
在本发明的一个优选方面,所述的二烯烃选择加氢反应中,反应温度为 30-220°C, 氢气压力为 0.1-10 MPa, 氢气与物料的体积比为 10-300 NL/L, 并且物料的体积空速 0.1-10 II 1。
在本发明的另一个优选方面,所述的催化剂在进行二烯烃选择加氢反应前应作如 下处理,
a)在空气气氛中, 于 350-550°C焙烧;
b)研磨、 混捏、 成型; 和
c)在固定床反应器上, 于 250-400°C下以含硫化合物与氢气的混合气体进行原位 预硫化。
在本发明的再一个优选方面,所述含硫化合物为硫化氢、二硫化碳或二甲基二硫。 本发明的脱二烯烃催化剂和公知技术相比, 具有如下优点:
1. 催化剂合成过程易于控制, 环境友好, 催化剂可以工业化生产。
2. 活性组分含量高, 比表面积 (大于 150 m2/g) 和孔容大 (大于 0.4ml/g)。
3. 不含有贵金属, 催化剂价格低。
4. 该催化剂用于富含烯烃的二烯烃脱除之中, 表现出极高的二烯烃选择加氢活 性, 在温和的操作条件下 (反应温度 80°C, 氢分压 l .O MPa, 氢油体积比 50 NL/L, 夜时空速 2.0 h"1 ), 可将全馏分 FCC汽油中的二烯烃从二烯值 0.72 gl2/100g原料脱至 0.1 gl2/100g原料以下。 相反, 在相同的操作条件下, 按对比例制备的催化剂只能脱 至 0.5 gl2/100g原料左右。
5. 该催化剂不仅抗硫、 砷中毒能力强, 而且不易结焦。 经 500 小时寿命试验表 明, 该催化剂可以在较低的反应温度下 (低于 100°C), 长时间保持催化剂高活性。 附图说明
图 1是本发明实施例 1中制备的具有层状结构的 NiZnAl-LDH催化剂前体和最终 Cat-A催化剂的 XRD谱图。 具体实施方式
在本发明的一个方面, 提供一种二烯烃选择加氢催化剂, 所述二烯烃选择加氢催 化剂由一种 族金属, 一种 +3价金属, 一种 IA族金属, 一种 IVB族金属, 一种 ΠΒ 族金属、 两种 VIB 族金属以及平衡量的二氧化硅和 /或氧化铝组成的混合金属氧化物 催化剂, 其特征在于, 以氧化物计并以催化剂为基准, 该催化剂中含有 10-40重量%
的 VIII族金属、 5-30重量%的+3价金属、 0.1-8重量%的 ΙΑ族金属、 0.1-8重量%的 IVB族金属、 0.1-30重量%的 ΠΒ族金属、 5-50重量%的两种 VIB族金属和平衡量的 10-30重量%Si02-Al203 ; 两种 VIB族金属的摩尔比例 3 : 1-1: 3; 该催化剂的比表面 积 150-300 m2/g, 孔容 0.4 -0.8ml/g。
在本发明的一个优选方面, VIII族金属选自 Ni, Co; +3价金属选自 Cr, Al; IA 族金属选自 Na, K, IVB族金属选自 Ti, Zr, ΠΒ族金属选自 Zn, VIB族金属选自 在本发明的另一个优选方面, VIII族金属选自 Ni; +3价金属选自 Al; IA族金属 选自 K; IVB族金属选自 Ti; IIB族金属选自 Zn, VIB族金属选自 Mo和 W。
在本发明的另一个方面, 提供一种如上所述催化剂的制备方法, 该方法包括以下 步骤: a) 将所述一种 VIII族金属的可溶性盐、一种 +3价金属的可溶性盐以及一种 ΠΒ 族金属的可溶性盐混合后加入水配制成水溶液, 再将含有 IA族金属的碱性沉淀剂溶 于水中配成溶液, 最后将碱性沉淀剂加入上述可溶性盐的混合溶液中进行共沉淀反 应, 得到具有层状双氢氧化物结构的催化剂前体;
b) 将所述层状双氢氧化物结构的催化剂前体的浆液与所述含有至少两种 VIB族 金属阴离子的可溶性盐的极性溶剂中进行离子交换反应, 经分离、干燥及焙烧步骤得 到含有一种 族金属, 一种 +3价金属, 一种 IA族金属, 一种 ΠΒ族金属、 两种 VIB 族金属的混合金属氧化物;
c) 将步骤 b)中得到的混合金属氧化物粉碎, 筛分成粒度大于 100目的粉体。将 该粉体与含有 IVB族金属氧化物以及氧化硅和 /或氧化铝混合物的粘结剂充分混捏, 经挤条机挤出成型。 经干燥、 焙烧得到含有一种 族金属, 一种 +3价金属, 一种 IA 族金属, 一种 IVB族金属, 一种 ΠΒ族金属、 两种 VIB族金属以及平衡量的二氧化硅 和 /或氧化铝形成的混合金属氧化物催化剂。
在本发明的一个优选方面, 其中所述一种含 VIII族金属的可溶性盐的水溶液的 浓度为 0.01〜0.3 mol/L, 含 +3价金属的可溶性盐的水溶液浓度为 0.01〜0.3 mol/L, 一 种含 ΠΒ族金属的可溶性盐的水溶液浓度为 0.01〜0.3 mol/L,含 IA族金属的碱性沉淀 剂的水溶液的浓度为 0.1〜1.5 mol/L,其中所述的层状双氢氧化物结构催化剂前体的浓 度为 0.01〜0.9 mol/L, 并且在所述至少两种 VIB族金属的可溶性盐的极性溶剂中, 两 禾中 VIB族金属的浓度为 0.01 -0.2 mol/L o
在本发明的另一个优选方面, 其中步骤 a)中所述共沉淀反应在 50-150 °C进行
10-25小时; 步骤 b)中所述阴离子交换反应在 50-150 °C进行 4-10小时。
在本发明的再一个优选方面, 其中步骤 a)中所述的碱性沉淀剂是指氢氧化钠、氢 氧化钾、 碳酸钠、 碳酸钾中的一种或其组合; 步骤 b)中所述阴离子交换反应体系的 pH值为 1-11。
在本发明的再一个优选方面, 所述的一种 VIII族金属的可溶性盐包含从硝酸镍、 醋酸镍、 硫酸镍或氯化镍、 硝酸钴、 醋酸钴、 硫酸钴或氯化钴选择的一种, 和所述的 至少一种 +3 价金属可溶性盐包含从硝酸铝、 氯化铝、 醋酸铝、 硝酸铬、 氯化铬、 醋 酸铬、 硝酸钴、 氯化钴中选择的一种。
在本发明的再一个优选方面, 所述的至少含有两种 VIB族金属阴离子基团的可 溶性盐包含从钼酸铵和钼酸钠中选择的一种; 以及从钨酸铵、偏钨酸铵或钨酸钠中选
择的一种。
在本发明的再一个方面, 提供如上所述的催化剂在二烯烃选择加氢反应中的应 用。
在本发明的一个优选方面,所述的二烯烃选择加氢反应中,反应温度为 30-220°C, 氢气压力为 0.1-10 MPa, 氢气与物料的体积比为 10-300 NL/L, 并且物料的体积空速 0.1-10 II 1。
在本发明的另一个优选方面,所述的催化剂在进行二烯烃选择加氢反应前应作如 下处理,
a)在空气气氛中, 于 350-550°C焙烧;
b)研磨、 混捏、 成型; 和
c)在固定床反应器上, 于 250-400°C下以含硫化合物与氢气的混合气体进行原位 预硫化。
在本发明的再一个优选方面,所述含硫化合物为硫化氢、二硫化碳或二甲基二硫。 图 1是本发明实施例 1中制备的 NiZnAlK-LDH催化剂前体和最终 Cat-A催化剂 的 XRD谱图。 可以发现在 NiZnAlK-LDH的谱图中, 出现了四个比较强的衍射峰, 分别位于 11.8°、 23.5°、 33.7°、 60.1°; 而通过含有 Mo, W的阴离子交换以后, 发现 在 Cat-A催化剂中, 在 9.4。、 18.5。、 34.0。、 60.5°出现了四个比较宽的衍射峰。 从这 些衍射峰的强度和位置来看,与专利 CN101733120A以及美国专利 USP6299760等都 有较大的差异, 这表明我们制备的催化剂在结构上与专利制备的催化剂是不同的。
实施例
为了进一步说明本发明, 列举以下实施例, 但它并不限制各附加权利要求所定义 的发明范围。 比如, 本发明根据实验结果提出可以制备由一种 族金属, 一种 +3 价 金属, 一种 IA族金属, 一种 IVB族金属, 一种 ΠΒ族金属、 两种 VIB族金属以及平 衡量的 Si02-Al203组成的混合金属氧化物催化剂, 其中所述的 VIII族金属选自 Ni, Co; +3价金属选自 Cr, Al; IA族金属选自 Na, K, IVB族金属选自 Ti, Zr, ΠΒ族 金属选自 Zn, VIB 族金属选自 Mo, W ; 在这里为了简明起见, 只列举了 NiZnAlKTiMoW/Si02-Al203作为实施例, 但并不意味其余的金属不能实现本发明。
实施例 1
本发明中 NiZnAlKTiMoW/Si02-Al203催化剂的制备:
a. 分别称取一定量的硝酸镍、 硝酸锌和硝酸铝, 其中 Ni2+0.1mol, Zn2+0.1mol,
Al3+0.05mol,将他们溶于 200ml水中形成水溶液,向其中缓慢滴加 K+浓度为 0.2 mol/L 的 KOH与 K2C03 ( 0.1mol/L 的 KOH和 0.05 mol/L 的 K2C03 ) 的混合溶液, 调节 pH=12, 并加热至反应温度 80°C, 生成绿色混合反应液, 在 80°C反应温度下回流反 应 25个小时; 将反应得到的绿色沉淀过滤; 将此催化剂前体加入 200ml水中, 配置 成浆液前体;
b. 分别称取一定量的钼酸铵和偏钨酸铵, 其中 Mo6+0.01mol, W^O.Olmol, 将它 们溶于 350ml水中, 形成溶液, 并将此溶液加热至反应温度, 不断搅拌, 形成无色透 明溶液; 随后量取部分自制的浆液前体, 其中含 Ni2+0.03mol, Zn2+0.03mol , Al3+0.015mol将其加热至反应温度 80°C; 将此浆液慢慢地加入上述无色透明溶液中, 形成绿色反应液, 在 80°C反应温度, 回流反应 5小时; 将反应得到的黄绿色沉淀
过滤, 并在 120°C烘干 12小时, 420°C焙烧 4小时得到 NiZnAlKMoW颗粒状棕黑色 催化剂前体。
c 将 NiZnAlKMoW催化剂前体粉碎, 筛分成 160 目的粉体, 加入含 Ti 的 Si02-Al203混合物的粘结剂充分混捏, 经挤条机挤成 φ2.0三叶草条形, 经 120°C干燥 12 小时, 420°C 焙烧 4 小时形成了具有高分散活性物种的催化剂 NiZnAlKTiMoW/Si02-Al203。 经 X-光荧光 (XRF ) 元素分析, 该催化剂的组成为 16.9%NiO, 18.4%ZnO, 10.9%MoO3, 17.5%W03, 5.8%A1203, 2.7%Ti02, 2.8%K20, 25.0%SiO2-Al2O3 ( Si02-Al203中 Si02占总重量的 96%)。 在进行加氢脱硫之前, 对此 催化剂进行预硫化, 硫化条件为在体积含量 10%H2S/H2气氛中, 在 400°C下反应 2个 小时, 其中 10%H2S/H2的流速为 60毫升 /分钟。
此实施例中合成的催化剂用 Cat-A来表示, Cat-A催化剂为棕黑色。 其 XRD表 征结果列于图 1中。
实施例 2
除了使用硝酸镍(其中 Ni2+0.09mol)和硝酸铝(其中 Al3+0.03mol), 代替实施例 1 中使用的硝酸镍和硝酸铝外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催化齐 [J, 合成的催化剂用 Cat-B来表示, 此种 Cat-B催化 剂的物质形貌与 Cat-A催化剂相似。 经 X-光荧光 (XRF) 元素分析, 该催化剂的组 成为 36.3%NiO, 13.2%ZnO, 7.8%Mo03, 12.5%W03, 8.3%A1203, 2.0%TiO2, 2.0%K2O, 17.9%Si02-Al20
实施例 3
除了使用硝酸镍和硝酸铝, 其中 Ni2+0.03mol, Al3+0.09mol代替实施例 1中使用 的硝酸镍和硝酸铝,以与实施例 1中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203 催化剂, 合成的多金属本体催化剂用 Cat-C来表示。 经 X-光荧光 (XRF) 元素分析, 该催化剂的组成为 13.1%NiO, 14.3%ZnO, 8.4%Mo03, 13.6%W03 , 26.8%A1203, 2.2%Ti02, 2.2%K20, 19.4%Si02-Al203。
实施例 4
除了使用钼酸铵和偏钨酸铵, 其中 Mo6+0.01mol, W^O.i mol代替实施例 1中使 用的钼酸铵和偏钨酸铵外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催化剂, 合成的多金属本体催化剂用 Cat-D 来表示。 经 X-光荧光(XRF)元素分析, 该催化剂的组成为 12.5%NiO, 13.6%ZnO, 8.0%MoO3, 38.9%W03, 4.3%A1203, 2.1%Ti02, 2.1%K20, 18.5%Si02-Al203。
实施例 5
除了使用钼酸铵和偏钨酸铵, 其中 Mo6+0.03mol, W^O.Olmol代替实施例 1中使 用的钼酸铵和偏钨酸铵外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催化剂, 合成的多金属本体催化剂用 Cat-E 来表示。 经 X-光荧光(XRF)元素分析, 该催化剂的组成为 13.9%NiO, 15.1%ZnO, 26.8%Mo03, 14.4%W03, 4.7%A1203, 2.3%Ti02, 2.3%K20, 20.5%SiO2-Al2O3。
实施例 6
除了使用部分自制浆液前体, 其中含 Ni2+0.08mol代替实施例 1中使用的部分自 制浆液前体外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催
化剂, 合成的催化剂用 Cat-F来表示。 经 X-光荧光(XRF)元素分析, 该催化剂的组 成为 35.2%NiO, 14.4%ZnO, 8.5%Mo03, 13.6%W03, 4.5%A1203, 2.2%Ti02, 2.2%K20, 19.4%Si02-Al20
实施例 7
除了使用钼酸铵和偏钨酸铵, 其中 Mo6+0.02mol, W^O.i^mol代替实施例 1中使 用的钼酸铵和偏钨酸铵 (其中 Mo6+0.01mol, W^O.Olmol) 以及使用部分自制浆液前 体, 其中含 Ni2+0.04mol代替实施例 1中使用的部分自制浆液前体外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催化剂, 合成的多金属本体催化 剂用 Cat-G来表示。 经 X-光荧光 (XRF) 元素分析, 该催化剂的组成为 16.8%NiO, 13.7%ZnO, 16.2%Mo03, 26.2%W03, 4.3%A1203, 2.1%Ti02, 2.1%K20, 18.6%Si02-Al203。
实施例 8
除了在步骤 a中使用在 50°C反应 10小时代替实施例 1中使用的在 80°C反应 25 小时外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催化剂, 制备的催化剂用 Cat-H来表示。 经 X-光荧光 (XRF) 元素分析, 该催化剂的组成为 16.4%NiO, 18.9%ZnO, 10.3%MoO3, 18.1%W03, 5.6%A1203, 2.9%Ti02, 2.4%K20, 25.4%Si02-Al203。
实施例 9
除了在步骤 a中使用在 50°C反应 25小时代替实施例 1中使用的在 80°C反应 25 小时外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催化剂, 制备的催化剂用 Cat-I 来表示。 经 X-光荧光 (XRF) 元素分析, 该催化剂的组成为 16.6%NiO, 18.7%ZnO, 10.8%MoO3, 17.6%W03, 5.8%A1203, 2.7%Ti02, 2.7%K20, 25.0%SiO2-Al2O3。
实施例 10
除了在步骤 a中使用在 150°C反应 10小时代替实施例 1中使用的在 80°C反应 25 小时外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催化剂, 制备的催化剂用 Cat-J来表示。 经 X-光荧光 (XRF) 元素分析, 该催化剂的组成为 16.8%NiO, 18.5%ZnO, 10.2%MoO3, 18.2%W03, 5.2%A1203, 3.0%TiO2, 3.0%K2O, 25.0%SiO2-Al2O3。
实施例 11
除了在步骤 a中使用在 150°C反应 25小时代替实施例 1中使用的在 80°C反应 25 小时外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催化剂, 制备的催化剂用 Cat-K来表示。 经 X-光荧光 (XRF) 元素分析, 该催化剂的组成为 17.8%NiO, 16.5%ZnO, 11.2%Mo03, 17.2%W03, 5.2%A1203, 3.0%TiO2, 3.0%K2O, 25.0%SiO2-Al2O3。
实施例 12
除了在步骤 b中使用在 50°C反应 4小时代替实施例 1中使用的在 80°C反应 5小 时外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催化剂, 制 备的催化剂用 Cat-L 来表示。 经 X-光荧光 (XRF) 元素分析, 该催化剂的组成为 17.6%NiO, 16.7%ZnO, 11.0%MoO3, 17.4%W03, 5.2%A1203, 3.0%TiO2, 3.0%K2O,
25.0%SiO2-Al2O3。
实施例 13
除了在步骤 b中使用在 50°C反应 10小时代替实施例 1中使用的在 80°C反应 5小 时外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催化剂, 制 备的催化剂用 Cat-M 来表示。 经 X-光荧光 (XRF) 元素分析, 该催化剂的组成为 15.6%NiO, 17.7%ZnO, 12.0%MoO3, 16.4%W03, 6.2%A1203, 3.0%TiO2, 3.0%K2O, 25.0%SiO2-Al2O3。
实施例 14
除了在步骤 b中使用在 150°C反应 4小时代替实施例 1中使用的在 80°C反应 5小 时外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催化剂, 制 备的催化剂用 Cat-N 来表示。 经 X-光荧光 (XRF) 元素分析, 该催化剂的组成为 15.5%NiO, 17.8%ZnO, 11.0%MoO3, 17.4%W03, 5.2%A1203, 3.0%TiO2, 3.0%K2O, 26.0%SiO2-Al2O3。
实施例 15
除了在步骤 b中使用在 150°C反应 10小时代替实施例 1中使用的在 80°C反应 5 小时外, 以与实施例 1 中所述的相同方式制备 NiZnAlKTiMoW/Si02-Al203催化剂, 制备的催化剂用 Cat-0来表示。 经 X-光荧光 (XRF) 元素分析, 该催化剂的组成为 15.5%NiO, 17.8%ZnO, 11.0%MoO3, 17.4%W03, 5.2%A1203, 3.0%TiO2, 3.0%K2O, 26.0%SiO2-Al2O3。
对比例 1
按中国发明专利 CN101619236A实施例 2相同的方法制备催化剂,制得的催化剂 用 R1 来表示。 经 X-光荧光 (XRF ) 元素分析, 该催化剂的组成为 3.4%NiO, 16.6%Μο03, 80%Α12Ο3。
对比例 2
按中国发明专利 CN1317366C实施例 3相同的方法制备催化剂,制得的催化剂用
R2来表示。经 X-光荧光(XRF)元素分析,该催化剂的组成为 5.5%NiO, 10.5%MoO3, 4.1%Κ20, 79.9%Α120
对比例 3
按美国专利 USP6299760 实施例 1 相同的方法用制备催化剂, 制得的催化剂用 R3表示。经 X-光荧光(XRF)元素分析,该催化剂的组成为 28.5%NiO, 27.5%Mo03, 44.0%WO
对比例 4
按中国发明专利 CN101733120A实施例 1相同的方法制备催化剂,制得的催化剂 用 R3表示。经 X-光荧光(XRF)元素分析,该催化剂的组成为 36.1%NiO, 17.4%Mo03, 28.1%W03, 18.4%Cr20
实施例 16
催化剂在 FCC汽油脱二烯烃反应中的性能评价
采用本发明制备的催化剂对 FCC汽油进行选择性加氢脱二烯烃试验, 原料油性 质如表 1所示。 具体评价方法如下: 将催化剂筛分成 20-30 目的颗粒, 在 20毫升固 定床反应器中装入催化剂 10毫升。 在正式进料前, 对催化剂进行器内预硫化, 硫化
条件与对比例 1和对比例 2完全相同, 即使用含 2wt%二硫化碳的直馏汽油对催化剂 进行预硫化, 具体硫化条件是氢分压 1.6 MPa, 温度 290°C, 液时空速 2.0 h-1 , 氢油 体积比 300, 硫化时间 9小时。 硫化完成后进原料进行加氢脱二烯烃反应。 具体反应 条件是反应温度 80°C, 氢分压 l.O MPa, 氢油体积比 50 NL/L, 夜时空速 2.0!!-1。 反 应 500小时后取样分析, 结果列于表 2中。
二烯值得测定方法: 采用马来酸酐法测定 FCC汽油中的二烯值。 具体步骤如下: 1、用分析天平准确称量 lO.OOg的油样放入烧瓶中,加 20 mL顺丁烯二酸酐甲苯溶液 (顺丁烯二酸酐甲苯溶液配制后必须静置过夜, 过滤后方可使用), 再加 O.lmol/L碘 甲苯溶液 0.5mL, 摇匀。 2、 然后将磨口烧瓶装至回流冷凝管上, 在 110°C ±2°C水浴 里加热回流 3小时, 然后将溶液冷却至室温, 从冷凝管上端加水 5mL, 继续升温回 流 15min, 冷却后分别用 5mLMTBE、 20 mL水分数次冲洗冷凝管。 3、 将磨口烧瓶 从冷凝管上拆下, 小心地将磨口三角烧瓶内溶液转移到分液漏斗中(试验过程中必须 保证分液漏斗的密封性, 以防漏液,影响结果准确度),先用 20mL MTBE,再用 25mL 水分别分三次洗涤磨口烧瓶内壁, 洗液倒入分液漏斗中。 4、 振荡分液漏斗 4〜5 分 钟, 静止分层, 将水层放入磨口三角烧瓶内, 油层再分三次分别加入 25mL、 10mL、 10mL水振荡抽提, 并将水层合并于磨口三角烧瓶中。 5、 在磨口三角烧瓶中滴加酚 酞指示剂 1〜2 滴, 用 NaOH标准滴定溶液滴定至溶液呈淡红色为终点, 记下消耗 NaOH标准滴定溶液的体积。6、取甲苯 10.00g代替试样按上述操作条件做空白试验。 7、 平行做样, 监测分析结果平行性。 8、 结果计算: 二烯值 (单位为 g I2/100g油) 按下式计算:
双烯值 = ( B - A) ( M ) ( 12.69 )/W
式中:
A=样品消耗氢氧化钠溶液的体积, 单位为毫升 (mL);
8 =空白溶液消耗氢氧化钠溶液的体积, 单位为毫升 (mL)
M =氢氧化钠溶液的摩尔浓度, 单位为摩尔 /升 (mol/L);
W =试样质量 (g)
表 1、 FCC汽油性质
从表 2 试验结果可以看出, 本发明制备的催化剂可以在比较温和的条件下, 在 500小时运转周期后, 仍能将二烯值脱至 0.1gl2/100g油以下, 而对比例制备的催化剂 只能脱至 0.5gl2/100g油以上。 这些结果表明, 采用本发明制备的催化剂较对比例制 备的催化剂, 在相同的反应条件下, 具有高得多的脱二烯烃活性和稳定性。
与现有催化剂相比,本发明提供的催化剂在用于含有二烯烃组分的选择性加氢脱 二烯烃时, 不仅二烯烃加氢的活性和选择性高, 而且还具有反应温度比传统氧化铝负 载型催化剂低 50°C以上, 催化剂不容易结焦, 抗中毒能力强, 催化剂运转周期长等 优点。
Claims
1、 一种二烯烃选择加氢催化剂, 其特征在于: 它是由一种 族金属, 一种 +3价 金属, 一种 IA族金属, 一种 IVB族金属, 一种 ΠΒ族金属、 两种 VIB族金属以及平 衡量的 Si02-Al203组成的混合金属氧化物催化剂; Si02-Al203中 Si02占总重量的 90-99%;
以氧化物计并以催化剂为基准,该催化剂中含有 10-40重量%的 VIII族金属、5-30 重量%的+3价金属、 0.1-8重量%的 IA族金属、 0.1-8重量%的 IVB族金属、 0.1-30 重量%的118族金属、 5-50重量%的两种 VIB族金属、 10-30重量%Si02-Al203;
两种 VIB族金属的摩尔比例 3 : 1-1: 3;
该催化剂的比表面积 150-300 m2/g, 孔容 0.4 -0.8ml/g。
2、 根据权利要求 1所述的二烯烃选择性加氢催化剂, 其中所述的 VIII族金属选 自 Ni或 Co; +3价金属选自 Cr或 Al; IA族金属选自 Na或 K, IVB族金属选自 Ti 或 Zr, IIB族金属选自 Zn, VIB族金属选自 Mo和 W。
3、 根据权利要求 1所述的二烯烃选择加氢催化剂, 其中所述的 VIII族金属选自
Ni; +3价金属选自 Al; IA族金属选自 K; IVB族金属选自 Ti; ΠΒ族金属选自 Zn, VIB族金属选自 Mo和 W。
4、 一种权利要求 1所述催化剂的制备方法, 该方法包括以下步骤:
a) 将所述一种 VIII族金属的可溶性盐、 一种 +3价金属的可溶性盐以及一种 ΠΒ 族金属的可溶性盐混合后加入水配制成水溶液, 再将含有 IA族金属的碱性沉淀剂溶 于水中配成溶液, 最后将碱性沉淀剂加入上述可溶性盐的混合溶液中进行共沉淀反 应, 得到具有层状双氢氧化物结构的催化剂前体;
b) 将所述层状双氢氧化物结构的催化剂前体的浆液与所述含有至少两种 VIB族 金属阴离子的可溶性盐的极性溶剂混合进行离子交换反应,经分离、干燥及 400-500°C 焙烧 2-10小时步骤得到含有一种 族金属, 一种 +3价金属, 一种 IA族金属, 一种 ΠΒ族金属、 两种 VIB族金属的混合金属氧化物;
c) 将步骤 b)中得到的混合金属氧化物粉碎, 筛分成粒度大于 100目的粉体; 将 该粉体与含有 IVB族金属氧化物以及粘结剂 Si02-Al203充分混捏, 经挤条机挤出成 型; 经干燥、 400-500°C焙烧 2-10小时得到含有一种 族金属, 一种 +3价金属, 一 种 IA族金属, 一种 IVB族金属, 一种 ΠΒ族金属、 两种 VIB族金属以及平衡量的 Si02-Al203形成的混合金属氧化物催化剂。
5、 根据权利要求 4所述的催化剂制备方法, 其中所述一种含 VIII族金属的可溶 性盐的水溶液的浓度为 0.01〜0.3 mol/L, 含 +3 价金属的可溶性盐的水溶液浓度为 0.01〜0.3 mol/L, 一种含 ΠΒ族金属的可溶性盐的水溶液浓度为 0.01〜0.3 mol/L, 含 IA 族金属的碱性沉淀剂的水溶液的浓度为 0.1〜1.5 mol/L,其中所述的层状双氢氧化物结 构的催化剂前体的浓度为 0.01〜0.9 mol/L, 并且在所述至少两种 VIB族金属的可溶性 盐的极性溶剂中, 两种 VIB族金属的浓度为 0.01〜0.2 mol/L。
6、根据权利要求 4所述的制备方法, 其中步骤 a)中所述共沉淀反应在 50-150 °C 进行 10-25小时;
其中步骤 b)中所述阴离子交换反应在 50-150 °C进行 4-10小时;
中步骤 b)中所述阴离子交换反应体系的 pH值为 1-11。
7、 根据权利要求 4或 5所述的制备方法, 其中步骤 a)中所述的碱性沉淀剂是指 氢氧化钠、 氢氧化钾、 碳酸钠、 碳酸钾中的一种或二种以上的组合。
8、 如权利要求 4或 5所述的制备方法, 其特征在于: 所述的一种 VIII族金属的 可溶性盐包含从硝酸镍、醋酸镍、硫酸镍或氯化镍选择的一种, 和所述的至少一种 +3 价金属可溶性盐包含从硝酸铝、氯化铝、醋酸铝、硝酸铬、氯化铬、醋酸铬、硝酸钴、 氯化钴中选择的一种;
所述的至少含有两种 VIB族金属阴离子的可溶性盐包含从钼酸铵和钼酸钠中选 择的一种, 和从钨酸铵、 偏钨酸铵或钨酸钠中选择的一种。
9、 一种权利要求 1所述的催化剂在二烯烃选择加氢反应中的应用。
10、根据权利要求 9所述的应用, 其中在所述的二烯烃选择加氢反应中, 反应温 度为 30-220°C, 氢气压力为 0.1-10 MPa, 氢气与物料的体积比为 10-300 NL/L, 并且 物料的体积空速 0.1-10 1
11、 如权利要求 9所述的应用, 其特征在于: 所述的催化剂在进行二烯烃选择加 氢反应前应作如下处理,
a)在空气气氛中, 于 350-550°C焙烧;
b)研磨、 混捏、 成型; 和
c)在固定床反应器上, 于 250-400°C下以含硫化合物与氢气的混合气体进行原位 预硫化;
所述含硫化合物为硫化氢、二硫化碳或二甲基二硫,其于混合气体中体积含量为
1-15%。
12、 如权利要求 9所述的应用, 其特征在于: 所述二烯烃为 C4-C8的共轭二烯 烃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/419,433 US9669392B2 (en) | 2012-08-30 | 2012-11-23 | Catalyst for selective hydrogenation of dienes, preparation method and application thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210315165.9A CN103657671B (zh) | 2012-08-30 | 2012-08-30 | 一种二烯烃选择加氢催化剂及制备和应用 |
CN201210315165.9 | 2012-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014032366A1 true WO2014032366A1 (zh) | 2014-03-06 |
Family
ID=50182416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/085114 WO2014032366A1 (zh) | 2012-08-30 | 2012-11-23 | 一种二烯烃选择加氢催化剂及制备和应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9669392B2 (zh) |
CN (1) | CN103657671B (zh) |
WO (1) | WO2014032366A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105251494A (zh) * | 2015-11-13 | 2016-01-20 | 无锡普爱德环保科技有限公司 | 一种加氢催化剂的制备方法 |
CN114768820A (zh) * | 2022-04-06 | 2022-07-22 | 郑州大学 | 一种铁基催化加氢制低碳烯烃催化剂的压片成型方法 |
RU2824622C1 (ru) * | 2023-12-18 | 2024-08-12 | Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" | Способ приготовления катализатора селективного гидрирования диенов |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107344122A (zh) * | 2016-05-06 | 2017-11-14 | 南京工业大学 | 一种提高金属纳米粒子/多孔配位聚合物复合催化剂催化选择性的方法及其应用 |
CN106944089A (zh) * | 2017-02-08 | 2017-07-14 | 辽宁石油化工大学 | 一种高hds活性硫化态非负载型催化剂的制备方法 |
KR20200004501A (ko) * | 2018-07-04 | 2020-01-14 | 한국화학연구원 | 전환율 및 선택도가 향상된 올레핀 제조용 촉매 및 그 제조방법 |
CN110054542B (zh) * | 2019-05-16 | 2022-03-29 | 中煤陕西榆林能源化工有限公司 | 添加调节剂的c4组分加氢脱除丁二烯的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1708684A (zh) * | 2002-10-25 | 2005-12-14 | 蒂阿马公司 | 检测透明或半透明旋转容器颈环上表面缺陷的方法和装置 |
CN101733120A (zh) * | 2009-12-23 | 2010-06-16 | 中国科学院大连化学物理研究所 | 一种具有层状结构的多金属本体催化剂及制法和应用 |
CN101844081A (zh) * | 2009-03-26 | 2010-09-29 | 中国石油化工股份有限公司 | 选择加氢催化剂及其应用 |
CN102451715A (zh) * | 2010-10-15 | 2012-05-16 | 中国石油化工股份有限公司 | 一种选择性加氢脱二烯烃催化剂及其制备方法 |
CN102600909A (zh) * | 2011-01-20 | 2012-07-25 | 中国石油天然气股份有限公司 | 一种碱性金属组分呈分层分布的加氢催化剂载体的制备方法 |
FR2970881A1 (fr) * | 2011-01-31 | 2012-08-03 | IFP Energies Nouvelles | Catalyseur thioresistant, procede de fabrication et utilisation en hydrogenation selective |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3531398A (en) * | 1968-05-03 | 1970-09-29 | Exxon Research Engineering Co | Hydrodesulfurization of heavy petroleum distillates |
US3969274A (en) * | 1974-03-14 | 1976-07-13 | National Distillers And Chemical Corporation | Fixed bed catalyst |
US3935127A (en) * | 1974-07-01 | 1976-01-27 | Universal Oil Products Company | Method of catalyst manufacture |
US4098683A (en) * | 1975-11-03 | 1978-07-04 | Uop Inc. | Process for hydrodesulfurizing or hydrogenating a hydrocarbon distillate |
US4102822A (en) * | 1976-07-26 | 1978-07-25 | Chevron Research Company | Hydrocarbon hydroconversion catalyst and the method for its preparation |
US4210525A (en) * | 1979-04-24 | 1980-07-01 | Mobil Oil Corporation | Hydrodenitrogenation of demetallized residual oil |
US4394302A (en) * | 1981-10-26 | 1983-07-19 | Union Oil Company Of California | Hydrodesulfurization catalyst on lithium-containing support and method for its preparation |
US4548710A (en) * | 1982-12-28 | 1985-10-22 | Union Oil Company Of California | Hydrocarbon processing |
US4460707A (en) * | 1982-12-28 | 1984-07-17 | Union Oil Company Of California | Hydroprocessing catalyst and method for preparing it |
US4526675A (en) * | 1983-05-26 | 1985-07-02 | Standard Oil Company (Indiana) | Hydrocarbon conversion method |
CN1026494C (zh) | 1991-10-04 | 1994-11-09 | 兰州化学工业公司化工研究院 | 一种用于裂解汽油一段选择性加氢的催化剂 |
KR100333350B1 (ko) | 1996-09-11 | 2002-05-25 | 즈도케미 쇼쿠바이 가부시키가이샤 | 올레핀 화합물류 중의 고불포화 탄화수소 화합물 선택 수소 첨가용 촉매 |
US6758963B1 (en) | 1997-07-15 | 2004-07-06 | Exxonmobil Research And Engineering Company | Hydroprocessing using bulk group VIII/group vib catalysts |
US7229548B2 (en) * | 1997-07-15 | 2007-06-12 | Exxonmobil Research And Engineering Company | Process for upgrading naphtha |
US6278030B1 (en) * | 1997-07-15 | 2001-08-21 | Exxon Chemical Patents, Inc. | Process for preparing alcohols by the Oxo process |
US6783663B1 (en) | 1997-07-15 | 2004-08-31 | Exxonmobil Research And Engineering Company | Hydrotreating using bulk multimetallic catalysts |
US6156695A (en) | 1997-07-15 | 2000-12-05 | Exxon Research And Engineering Company | Nickel molybdotungstate hydrotreating catalysts |
US6712955B1 (en) * | 1997-07-15 | 2004-03-30 | Exxonmobil Research And Engineering Company | Slurry hydroprocessing using bulk multimetallic catalysts |
FR2770520B1 (fr) | 1997-10-31 | 1999-12-10 | Inst Francais Du Petrole | Procede d'hydrogenation selective des composes insatures |
DK1150768T3 (da) | 1999-01-15 | 2004-09-20 | Akzo Nobel Nv | En blandet metalkatalysatorsammensætning, dens fremstilling og anvendelse |
US6299760B1 (en) | 1999-08-12 | 2001-10-09 | Exxon Research And Engineering Company | Nickel molybodtungstate hydrotreating catalysts (law444) |
CN1141181C (zh) | 1999-12-24 | 2004-03-10 | 中国石油化工集团公司 | 用于烯烃选择性加氢的非晶态合金催化剂 |
US6388162B1 (en) | 2000-05-08 | 2002-05-14 | Shell Oil Company | Diene removal from an olefin feedstock |
CN100338190C (zh) | 2004-03-31 | 2007-09-19 | 中国石油化工股份有限公司 | 一种馏分油选择性加氢脱二烯烃方法 |
CN1317365C (zh) | 2004-03-31 | 2007-05-23 | 中国石油化工股份有限公司 | 一种馏分油选择性加氢脱二烯烃方法 |
CN100566827C (zh) | 2006-10-19 | 2009-12-09 | 北京竞宇松化工技术研究所 | 一种选择加氢脱除轻汽油中二烯烃的催化剂 |
CN101153228A (zh) | 2007-09-19 | 2008-04-02 | 中国科学院大连化学物理研究所 | 用于柴油加氢脱硫的多金属本体催化剂及制法和应用 |
CN101544904B (zh) | 2008-03-28 | 2012-11-14 | 中国科学院大连化学物理研究所 | 一种复合金属氧化物催化剂及制备和应用 |
CN101619236B (zh) | 2008-06-30 | 2013-03-27 | 中国石油化工股份有限公司 | 一种选择性加氢脱二烯烃方法 |
CN101628843B (zh) | 2008-07-18 | 2013-11-27 | 环球油品公司 | 利用层状催化剂组合物的选择性加氢方法和所述催化剂的制备 |
CN101480618B (zh) * | 2009-01-22 | 2011-04-13 | 江苏佳誉信实业有限公司 | 一种汽油加氢预处理催化剂及其制法和用途 |
CA2655841C (en) * | 2009-02-26 | 2016-06-21 | Nova Chemicals Corporation | Supported oxidative dehydrogenation catalyst |
-
2012
- 2012-08-30 CN CN201210315165.9A patent/CN103657671B/zh active Active
- 2012-11-23 US US14/419,433 patent/US9669392B2/en not_active Expired - Fee Related
- 2012-11-23 WO PCT/CN2012/085114 patent/WO2014032366A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1708684A (zh) * | 2002-10-25 | 2005-12-14 | 蒂阿马公司 | 检测透明或半透明旋转容器颈环上表面缺陷的方法和装置 |
CN101844081A (zh) * | 2009-03-26 | 2010-09-29 | 中国石油化工股份有限公司 | 选择加氢催化剂及其应用 |
CN101733120A (zh) * | 2009-12-23 | 2010-06-16 | 中国科学院大连化学物理研究所 | 一种具有层状结构的多金属本体催化剂及制法和应用 |
CN102451715A (zh) * | 2010-10-15 | 2012-05-16 | 中国石油化工股份有限公司 | 一种选择性加氢脱二烯烃催化剂及其制备方法 |
CN102600909A (zh) * | 2011-01-20 | 2012-07-25 | 中国石油天然气股份有限公司 | 一种碱性金属组分呈分层分布的加氢催化剂载体的制备方法 |
FR2970881A1 (fr) * | 2011-01-31 | 2012-08-03 | IFP Energies Nouvelles | Catalyseur thioresistant, procede de fabrication et utilisation en hydrogenation selective |
Non-Patent Citations (1)
Title |
---|
LIU, PENG ET AL.: "Epoxidation of Allylic Alcohols on Self-assembled Polyoxometalates Hosted in Layered Double Hydroxides with Aqueous H202 as Oxidant", JOURNAL OF CATALYSIS, vol. 262, no. 1, 15 February 2009 (2009-02-15), pages 159 - 168, XP025918142, DOI: doi:10.1016/j.jcat.2008.12.018 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105251494A (zh) * | 2015-11-13 | 2016-01-20 | 无锡普爱德环保科技有限公司 | 一种加氢催化剂的制备方法 |
CN114768820A (zh) * | 2022-04-06 | 2022-07-22 | 郑州大学 | 一种铁基催化加氢制低碳烯烃催化剂的压片成型方法 |
CN114768820B (zh) * | 2022-04-06 | 2023-06-27 | 郑州大学 | 一种铁基催化加氢制低碳烯烃催化剂的压片成型方法 |
RU2824622C1 (ru) * | 2023-12-18 | 2024-08-12 | Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" | Способ приготовления катализатора селективного гидрирования диенов |
Also Published As
Publication number | Publication date |
---|---|
CN103657671A (zh) | 2014-03-26 |
CN103657671B (zh) | 2015-07-08 |
US9669392B2 (en) | 2017-06-06 |
US20150224481A1 (en) | 2015-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111215094B (zh) | 一种多金属非负载加氢精制催化剂及其制备方法和应用 | |
CN103657672B (zh) | 层状结构超深度加氢脱硫多金属本体催化剂及制备和应用 | |
TWI450761B (zh) | 包含viii族金屬及vib族金屬鉬之整體氫化處理觸媒(bulk hydroprocessing catalyst) | |
CN101733120B (zh) | 一种具有层状结构的多金属本体催化剂及制法和应用 | |
WO2014032366A1 (zh) | 一种二烯烃选择加氢催化剂及制备和应用 | |
WO2009117863A1 (zh) | 一种复合金属氧化物催化剂及制备和应用 | |
JP2002534583A (ja) | バルク多重金属触媒を用いた留出物の水素化脱硫−水素添加の多段方法 | |
CN102899083B (zh) | 一种全馏分fcc汽油超深度脱硫组合方法 | |
WO2015007230A1 (zh) | 一种铁基加氢催化剂及其应用 | |
CN106268976A (zh) | 一种汽油选择性加氢脱硫催化剂及其制备和应用 | |
CN107398282A (zh) | 镍铝锆钨水滑石类催化剂的制备及其在加氢脱硫中的应用 | |
CN106179414B (zh) | 一种硫化型加氢精制催化剂及其制备方法 | |
CN106512984B (zh) | 一种高活性柴油加氢脱硫催化剂的制备方法 | |
CN103666559A (zh) | 一种fcc汽油超深度脱硫组合方法 | |
CN100478423C (zh) | 催化裂化汽油选择性加氢脱硫催化剂及其制备方法 | |
CN103801344B (zh) | 一种加氢催化剂组合物的制备方法 | |
CN101255356B (zh) | 一种非负载型催化剂及其制备方法 | |
CN103374387A (zh) | 一种镍和钒含量高的重油加氢处理方法 | |
CN102836725B (zh) | 一种加氢精制催化剂的制备方法 | |
RU2626396C1 (ru) | Катализатор гидрокрекинга углеводородного сырья | |
CN110975878B (zh) | 烃油加氢处理方法、所用加氢催化剂及其体相催化剂、体相催化剂的制备方法 | |
CN103374392A (zh) | 一种催化裂化原料油的加氢改质方法 | |
CN102836726A (zh) | 一种加氢催化剂组合物的制备方法及应用 | |
CN102836727A (zh) | 一种具有高脱氮和脱芳烃活性加氢催化剂的制备方法 | |
RU2626401C1 (ru) | Способ гидроочистки сырья гидрокрекинга |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12883893 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14419433 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12883893 Country of ref document: EP Kind code of ref document: A1 |