WO2014038469A1 - エンジン駆動ヒートポンプチラー - Google Patents

エンジン駆動ヒートポンプチラー Download PDF

Info

Publication number
WO2014038469A1
WO2014038469A1 PCT/JP2013/073175 JP2013073175W WO2014038469A1 WO 2014038469 A1 WO2014038469 A1 WO 2014038469A1 JP 2013073175 W JP2013073175 W JP 2013073175W WO 2014038469 A1 WO2014038469 A1 WO 2014038469A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
water
heat exchanger
path
exhaust heat
Prior art date
Application number
PCT/JP2013/073175
Other languages
English (en)
French (fr)
Inventor
啓二 杉森
秀喜 金井
一就 野田
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to AU2013313564A priority Critical patent/AU2013313564B2/en
Priority to CN201380046408.6A priority patent/CN104620063B/zh
Priority to EP13835393.3A priority patent/EP2918950B1/en
Publication of WO2014038469A1 publication Critical patent/WO2014038469A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • F25B2327/001Refrigeration system using an engine for driving a compressor of the internal combustion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to an engine-driven heat pump chiller in which a compressor for compressing a refrigerant is driven by an engine and the temperature of water as a heat medium is adjusted by the heat of condensation or evaporation of the refrigerant.
  • heat pump chillers that make hot water using the heat of condensation of the refrigerant and make cold water using the heat of evaporation of the refrigerant are known.
  • the temperature range on the load side required for the heat pump chiller is wider than the temperature range on the load side required for the heat pump air conditioner.
  • the required temperature range is, for example, 20 ° C. (heating set temperature) to 27 ° C. (cooling set temperature).
  • the required temperature range is, for example, 7 ° C. (cold water) to 45 ° C. (hot water).
  • Patent Document 1 discloses a heat pump having an outside air side heat exchanger 3 (air heat exchanger), a load side heat exchanger 7 (water heat exchanger), and a working evaporator 24 when the outside air temperature decreases.
  • a chiller is disclosed. This heat pump chiller is capable of cooling and heating operation, and by switching the four-way valve 2, the outside air side heat exchanger 3 and the load side heat exchanger 7 function as a condenser or an evaporator, respectively.
  • the operating evaporator 24 when the outside air temperature is lowered operates using engine exhaust heat as a heat source during the production of warm fluid (claim 1, page 3, lower left column, lines 15 to 17) and is used only as an evaporator.
  • the first evaporator (3, 7) and the second evaporator (24) are positioned in parallel with the refrigerant flow direction (drawing).
  • Japanese Patent No. 4549205 of Patent Document 2 discloses a heat pump air conditioner having an outdoor heat exchanger 4 (air heat exchanger), an indoor heat exchanger 5, and an engine exhaust heat recovery unit 15.
  • This heat pump air conditioner can be operated for cooling and heating.
  • the outdoor heat exchanger 4 and the indoor heat exchanger 5 function as a condenser or an evaporator, respectively.
  • the engine exhaust heat recovery unit 15 operates using engine exhaust heat as a heat source during heating operation, and is used only as an evaporator.
  • the first evaporators (4, 5) and the second evaporator (15) are positioned in parallel with the refrigerant flow direction (FIG. 1).
  • Patent Document 2 also discloses control for adjusting the amount of refrigerant passing through each of the outdoor heat exchanger 4 and the engine exhaust heat recovery unit 15 during the heating operation (paragraph 0030).
  • the amount of refrigerant in the outdoor heat exchanger 4 is controlled based on the degree of superheat of the refrigerant after the refrigerant that has passed through the outdoor heat exchanger 4 and the refrigerant that has passed through the engine exhaust heat recovery unit 15, The amount of refrigerant is controlled based on the degree of superheat after passing through the engine exhaust heat recovery device 15 and before joining (paragraph 0031).
  • JP 59-60155 A Japanese Patent No. 4549205
  • the load may be reduced during cold water operation.
  • the chiller is controlled so as to reduce the number of operating compressors and reduce the rotational speed of the operating compressor in order to reduce the refrigerant circulation rate.
  • the rotation speed of the compressor falls below a predetermined allowable minimum rotation speed, the operation of the compressor cannot be continued. For this reason, the amount of heat exchange in the chiller's water heat exchanger cannot be suppressed below the capacity determined based on the allowable minimum number of rotations of the compressor.
  • Patent Documents 1 and 2 neither disclose nor suggest such problems, and naturally do not disclose configurations that can solve such problems.
  • the present invention provides a heat pump chiller that can reduce the amount of heat exchange in the water heat exchanger during cold water operation from the ability determined based on the allowable minimum number of rotations of the compressor without stopping the driving of the compressor. .
  • the engine-driven heat pump chiller is an engine-driven heat pump chiller that drives a compressor that compresses a refrigerant by an engine and adjusts the temperature of water as a heat medium by the condensation heat or evaporation heat of the refrigerant, A condenser that liquefies the refrigerant using air as a heat dissipation source, or an air heat exchanger that functions as an evaporator that vaporizes the refrigerant using air as a heat absorption source, and a cooler that cools the water using a gas-liquid two-phase refrigerant as a heat dissipation source, Alternatively, a water heat exchanger that functions as a heater that heats water using the refrigerant discharged from the compressor as a heat absorption source, a cold water operation that functions the water heat exchanger as a cooler, and the water heat exchanger as a heater An operation switching mechanism that switches between hot water operation to function, an engine exhaust heat recovery device that functions as an evapor
  • a mechanism for adjusting the flow rate of the exhaust heat medium flowing through the engine exhaust heat recovery device, and a temperature of water discharged from the water heat exchanger to converge to a set target temperature
  • a control device that controls the rotational speed of the compressor, and the control device is configured such that the required rotational speed of the compressor is less than or equal to an allowable minimum rotational speed due to a decrease in the rotational speed during the cold water operation.
  • the refrigerant and the exhaust heat medium It is configured to control the opening degree of the second expansion valve and the flow control valve to flow down exhaust heat recovery device.
  • the control device is configured such that the rotation speed is equal to or lower than a predetermined rotation speed and the temperature of the discharged water is equal to or lower than the target temperature, or the rotation speed is equal to or lower than the predetermined rotation speed and
  • the refrigerant low pressure which is the pressure of the refrigerant returning to the compressor, is equal to or lower than a predetermined pressure, it is determined that the necessary rotational speed of the compressor is equal to or lower than the allowable minimum rotational speed.
  • the control device causes the engine exhaust to be passed to the refrigerant that has passed through the air heat exchanger when the hot water operation is being performed and the exhaust heat medium is being flowed through the engine exhaust heat recovery unit.
  • the opening degree of the first expansion valve is controlled, and after passing through the engine exhaust heat recovery unit and before joining
  • the opening degree of the second expansion valve is controlled based on the degree of superheat of the refrigerant.
  • the engine-driven heat pump chiller according to the present invention can reduce the heat exchange amount in the water heat exchanger during the cold water operation from the capacity determined based on the allowable minimum number of rotations of the compressor without stopping the driving of the compressor.
  • FIG. 1 is a configuration diagram of a heat pump chiller 100 according to the first embodiment.
  • the heat pump chiller 100 includes a refrigerant circuit 10 through which refrigerant circulates, a cooling water circuit 30 through which engine cooling water circulates, a water circuit 40 through which water as a heat medium flows, a control device 50, and an input device 60.
  • the user commands the operation of the heat pump chiller 100 by operating the input device 60.
  • the control device 50 controls driving of the refrigerant circuit 10, the cooling water circuit 30, and the water circuit 40 based on the input command. By this operation, the heat pump chiller 100 adjusts the temperature of the water flowing through the water circuit 40.
  • the refrigerant circuit 10 includes a compressor 1, a four-way valve 2, an air heat exchanger 3, a water heat exchanger 4, an engine exhaust heat recovery unit 5, a first expansion valve 6, a second expansion valve 7, and a flow direction control mechanism 8. It has.
  • the refrigerant circuit 10 includes a discharge path 11, a suction path 12, a gas path 13, a liquid path 14, a high pressure liquid path 15, a low pressure liquid path 16, a liquid path 17, a gas path 18, a high pressure liquid path 19, and a low pressure liquid path 20. , And a low-pressure gas path 21.
  • the discharge path 11 connects the compressor 1 and the four-way valve 2.
  • the suction path 12 connects the four-way valve 2 and the compressor 1.
  • the gas path 13 connects the four-way valve 2 and the air heat exchanger 3.
  • the liquid path 14 connects the air heat exchanger 3 and the flow direction control mechanism 8.
  • the high-pressure liquid path 15 connects the flow direction control mechanism 8 and the first expansion valve 6.
  • the low-pressure liquid path 16 connects the first expansion valve 6 and the flow direction control mechanism 8.
  • the liquid path 17 connects the flow direction control mechanism 8 and the water heat exchanger 4.
  • the gas path 18 connects the water heat exchanger 4 and the four-way valve 2.
  • the high-pressure liquid path 19 branches from the high-pressure liquid path 15 at the connection point P1, and connects the high-pressure liquid path 15 and the second expansion valve 7.
  • the low-pressure liquid path 20 connects the second expansion valve 7 and the engine exhaust heat recovery device 5.
  • the low-pressure gas path 21 connects the engine exhaust heat recovery device 5 and the suction path 12 and joins the suction path 12 at the connection point P2.
  • the merging path 12a points to the downstream side (compressor 1 side) of the connection point P2 in the suction path 12.
  • the compressor 1 sucks the refrigerant from the suction path 12, compresses the refrigerant, and discharges the refrigerant from the discharge path 11.
  • the four-way valve (operation switching mechanism) 2 connects the discharge path 11 to the gas path 13 and the suction path 12 to the gas path 18 during cold water operation, and gasses the discharge path 11 to the gas path 18 and the suction path 12 during hot water operation.
  • the cold water operation refers to an operation state in which water in the water circuit 40 is cooled
  • the hot water operation refers to an operation state in which water in the water circuit 40 is heated.
  • the air heat exchanger 3 functions as a condenser that liquefies refrigerant using air as a heat radiation source during cold water operation, and functions as an evaporator that vaporizes refrigerant using air as a heat absorption source during hot water operation.
  • the water heat exchanger 4 functions as a cooler that cools water using a gas-liquid two-phase refrigerant as a heat radiation source during cold water operation, and functions as a heater that heats water using the refrigerant in the discharge path 11 as a heat absorption source during hot water operation.
  • the engine exhaust heat recovery unit 5 functions as an evaporator that evaporates the refrigerant using the exhaust heat of the engine 31 as a heat absorption source via engine cooling water, as will be described later.
  • the first expansion valve 6 adjusts the flow rate of the liquid refrigerant toward the air heat exchanger 3 during the hot water operation, and adjusts the flow rate of the liquid refrigerant toward the water heat exchanger 4 during the cold water operation.
  • the second expansion valve 7 adjusts the flow rate of the refrigerant in the liquid state toward the engine exhaust heat recovery unit 5.
  • a first expansion valve 6 and a second expansion valve 7 are arranged in parallel downstream of the refrigerant inflow portion of the flow direction control mechanism 8.
  • the water heat exchanger 4 and the engine exhaust heat recovery device 5 are arranged in parallel in the refrigerant flow direction during cold water operation, and the air heat exchanger 3 and the engine exhaust heat recovery device in the refrigerant flow direction during hot water operation. 5 are arranged in parallel.
  • the flow direction control mechanism 8 includes a closed path 80 and four check valves 81, 82, 83, 84.
  • the four check valves 81, 82, 83, 84 are arranged on the closed path 80.
  • the inlets of the two check valves 81 and 82 are disposed on the opposite side to the inlets of the other two check valves 83 and 84.
  • Connection points P3, P4, P5, and P6 are provided between two adjacent check valves 81, 82, 83, and 84, respectively.
  • the liquid path 14 is connected to the connection point P3, the high pressure liquid path 15 is connected to the connection point P4, the liquid path 17 is connected to the connection point P4, and the low pressure liquid path 16 is connected to the connection point P5.
  • the operation of the flow direction control mechanism 8 will be described in the description of the cold water operation and the hot water operation described later.
  • the cooling water circuit 30 includes an engine 31, a thermostat valve 32, a three-way valve 33, a radiator 34, and the engine exhaust heat recovery unit 5 described above.
  • the engine 31 drives the compressor 1.
  • the engine exhaust heat recovery device 5 belongs to both the refrigerant circuit 10 and the cooling water circuit 30.
  • the cooling water circuit 30 includes a main path 35, a return path 36, and an exhaust heat recovery path 37.
  • the main path 35 returns cooling water from the engine 31 to the engine 31 via the thermostat valve 32, the three-way valve 33, and the radiator 34.
  • the return path 36 branches from the main path 35 at the thermostat valve 32 and joins the main path 35 on the downstream side of the radiator 34.
  • the exhaust heat recovery path 37 branches from the main path 35 at the three-way valve 33 and joins the main path 35 on the downstream side of the radiator 34 via the engine exhaust heat recovery unit 5.
  • the thermostat valve 32 opens one of the main path 35 and the return path 36 based on the temperature of the cooling water in the main path 35 or the engine 31 and closes the other.
  • a predetermined temperature for example, 60 ° C.
  • the thermostat valve 32 closes the main path 35 and opens the return path 36.
  • the cooling water circulates only through the engine 31 and the thermostat valve 32. That is, the low-temperature cooling water is not supplied to the radiator 34 and the engine exhaust heat recovery unit 5.
  • the thermostat valve 32 opens the main path 35 and closes the return path 36.
  • the three-way valve (flow control valve) 33 adjusts the opening degree of the main path 35 and the exhaust heat recovery path 37 based on a command from the control device 50, and the cooling water flowing through the main path 35 and the exhaust heat recovery path 37. Change the flow rate.
  • the three-way valve 33 can also completely close one of the main path 35 and the exhaust heat recovery path 37.
  • the cooling water returns to the engine 31 via the radiator 34.
  • the three-way valve 33 opens the exhaust heat recovery path 37, the cooling water returns to the engine 31 via the engine exhaust heat recovery device 5.
  • the engine exhaust heat recovery device 5 can function as a refrigerant evaporator using the exhaust heat of the engine 31 as a heat absorption source via the engine cooling water.
  • the water circuit 40 includes the above-described water heat exchanger 40, a water inlet path 41, and a water outlet path 42.
  • the water heat exchanger 40 belongs to both the refrigerant circuit 10 and the water circuit 40.
  • the water circuit 40 may be either a closed circuit or an open circuit. When the water circuit 40 is a closed circuit, the water inlet path 41 and the water outlet path 42 are connected via a heat exchanger on the load side.
  • the heat pump chiller 100 includes various sensors.
  • the refrigerant circuit 10 includes a first pressure sensor 61, a first temperature sensor 71, a second pressure sensor 62, and a second temperature sensor 72.
  • the first pressure sensor 61 and the first temperature sensor 71 respectively detect the pressure and temperature of the refrigerant in the merge path 12a.
  • the second pressure sensor 62 and the second temperature sensor 72 detect the pressure and temperature of the refrigerant in the low-pressure gas path 21, respectively.
  • the coolant circuit 30 includes a rotation speed sensor 38 that detects the rotation speed of the engine 31.
  • the water circuit 40 includes an incoming water temperature sensor 43 and an outgoing water temperature sensor 44.
  • the incoming water temperature sensor 43 detects the temperature of water in the incoming water path 41
  • the outgoing water temperature sensor 44 detects the temperature of water in the outgoing water path 41.
  • FIG. 2 is a configuration diagram of the heat pump chiller 100 in the cold water operation.
  • the four-way valve 2 connects the discharge path 11 to the gas path 13 and connects the suction path 12 to the gas path 18. For this reason, the refrigerant in the high-pressure gas state discharged from the compressor 1 flows to the air heat exchanger 3.
  • the air heat exchanger 3 Since the temperature of the refrigerant flowing through the air heat exchanger 3 is higher than the temperature of the air flowing through the air heat exchanger 3, heat is transferred from the refrigerant to the air. As a result, the refrigerant loses heat of condensation and liquefies, and becomes a high-pressure liquid refrigerant. That is, the air heat exchanger 3 functions as a refrigerant condenser using air as a heat radiation source.
  • the refrigerant in the high pressure liquid state flows from the air heat exchanger 3 through the liquid path 14 to the connection point P3 of the flow direction control mechanism 8.
  • the connection point P3 is a refrigerant inflow portion of the flow direction control mechanism 8 during cold water operation, and is located on the outlet side of the check valves 81 and 83 and on the inlet side of the check valve 82. Therefore, the refrigerant flows from the connection point P3 to the high-pressure liquid path 15 via the check valve 82 and the connection point P4.
  • the three-way valve 33 is controlled so that the cooling water does not flow through the engine exhaust heat recovery device 5, and the second expansion valve 7 is closed. Therefore, the refrigerant passes only through the first expansion valve 6.
  • the high-pressure liquid refrigerant expands to become a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flows from the low-pressure liquid path 16 to the connection point P6 of the flow direction control mechanism 8.
  • the connection point P6 is on the inlet side of the four check valves 81, 82, 83, and 84
  • the high-pressure liquid refrigerant described above flows through the connection points P3 and P4. Due to the pressure difference, the refrigerant at the connection point P6 can pass only through the check valve 84 and cannot pass through the check valves 81 and 83. For this reason, the low-pressure gas-liquid two-phase refrigerant flows from the connection point P6 to the water heat exchanger 4 via the check valve 84, the connection point P5, and the liquid path 17.
  • the temperature of the refrigerant flowing through the water heat exchanger 4 is lower than the temperature of the water flowing through the water heat exchanger 4, heat moves from water to the refrigerant.
  • the refrigerant is vaporized by obtaining the heat of evaporation, and becomes a refrigerant in a low-pressure gas state.
  • water is cooled by the heat radiation to the refrigerant. That is, the water heat exchanger 4 functions as a cooler of the water circuit 40 using the gas-liquid two-phase refrigerant as a heat radiation source.
  • the refrigerant in the low pressure gas state flows from the water heat exchanger 4 to the gas path 18. Since the suction path 12 is connected to the gas path 18, the refrigerant is sucked into the compressor 1.
  • the refrigerant circulates in the refrigerant circuit 10 along the above-described path.
  • FIG. 3 is a configuration diagram of the heat pump chiller 100 in the hot water operation.
  • the four-way valve 2 connects the discharge path 11 to the gas path 18 and connects the suction path 12 to the gas path 13. For this reason, the refrigerant in the high-pressure gas state discharged from the compressor 1 flows to the water heat exchanger 4.
  • the temperature of the refrigerant flowing through the water heat exchanger 4 is higher than the temperature of the water flowing through the water heat exchanger 4, heat is transferred from the refrigerant to the water. As a result, the refrigerant loses heat of condensation and liquefies, and becomes a high-pressure liquid refrigerant. Moreover, water is heated by the endothermic heat from the refrigerant. That is, the water heat exchanger 4 functions as a heater of the water circuit 40 that uses the refrigerant in the discharge path 11 as a heat absorption source.
  • the refrigerant in the high pressure liquid state flows from the water heat exchanger 4 via the liquid path 17 to the connection point P5 of the flow direction control mechanism 8.
  • the connection point P5 is a refrigerant inflow portion of the flow direction control mechanism 8 during the hot water operation, and is located on the inlet side of the check valve 83 and on the outlet side of the check valves 82 and 84. Therefore, the refrigerant flows from the connection point P5 to the high-pressure liquid path 15 via the check valve 83 and the connection point P4.
  • the refrigerant flows from the high pressure liquid path 15 to the first expansion valve 6 and flows from the connection point P1 of the high pressure liquid path 15 to the second expansion valve 7 via the high pressure liquid path 19.
  • the refrigerant passes through the first expansion valve 6 and the second expansion valve 7.
  • the high-pressure liquid refrigerant expands to become a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flows from the low-pressure liquid path 16 to the connection point P6 of the flow direction control mechanism 8.
  • the connection point P6 is on the inlet side of the four check valves 81, 82, 83, and 84, but the above-described high-pressure liquid refrigerant flows through the connection points P4 and P5. Due to the pressure difference, the refrigerant at the connection point P6 can pass only through the check valve 81 and cannot pass through the check valves 82 and 84.
  • the low-pressure gas-liquid two-phase refrigerant flows from the connection point P6 to the air heat exchanger 3 via the check valve 81, the connection point P3, and the liquid path 14.
  • the flow of the refrigerant passing through the second expansion valve 7 will be described later.
  • the air heat exchanger 3 Since the temperature of the refrigerant flowing through the air heat exchanger 3 is lower than the temperature of the air flowing through the air heat exchanger 3, heat is transferred from the air to the refrigerant. As a result, the refrigerant is vaporized by obtaining the heat of evaporation, and becomes a refrigerant in a low-pressure gas state. That is, the air heat exchanger 3 functions as a refrigerant evaporator using air as a heat absorption source.
  • the refrigerant in the low pressure gas state flows from the air heat exchanger 3 to the gas path 13. Since the suction path 12 is connected to the gas path 13, the refrigerant is sucked into the compressor 1.
  • the refrigerant passing through the second expansion valve 7 expands in the second expansion valve 7 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flows to the engine exhaust heat recovery device 5 via the low-pressure liquid path 20.
  • the engine exhaust heat recovery device 5 Since the temperature of the refrigerant flowing through the engine exhaust heat recovery unit 5 is lower than the temperature of the cooling water flowing through the engine exhaust heat recovery unit 5, heat is transferred from the cooling water to the refrigerant. As a result, the refrigerant is vaporized by obtaining the heat of evaporation, and becomes a refrigerant in a low-pressure gas state. That is, the engine exhaust heat recovery device 5 functions as a refrigerant evaporator using cooling water as a heat absorption source.
  • the refrigerant in the low pressure gas state flows from the engine exhaust heat recovery device 5 to the suction path 12 via the low pressure gas path 21.
  • the refrigerant from the engine exhaust heat recovery device 5 merges with the refrigerant from the air heat exchanger 3.
  • the merged refrigerant flows through the merge path 12a and is sucked into the compressor 1.
  • the refrigerant circulates in the refrigerant circuit 10 along the above-described path.
  • the control device 50 controls the rotation speed of the compressor 1 so that the temperature of the water discharged from the water heat exchanger 4 converges to the set target temperature.
  • the target temperature is set by operating the input device 60 by the user.
  • the temperature of water discharged from the water heat exchanger 4 is detected by a water discharge temperature sensor 44.
  • the heat pump chiller 100 uses the exhaust heat of the engine 31 as a load in order to avoid stopping the compressor 1 when it is necessary to stop the compressor 1 due to a low load during cold water operation.
  • the cold water operation executed in this case is a cold water operation at a low load.
  • the control device 50 controls the three-way valve 33 and the second expansion valve so that the refrigerant and the cooling water flow through the engine exhaust heat recovery device 5 as in the normal hot water operation.
  • the compressor 1 is controlled so that the rotational speed of the compressor 1 decreases as the load size decreases.
  • the low load mentioned above refers to a load when the required rotational speed of the compressor 1 is equal to or lower than the allowable minimum rotational speed due to a decrease in the rotational speed.
  • the required rotational speed of the compressor is equal to or lower than the allowable minimum rotational speed.
  • Condition (1) The rotation speed of the compressor 1 is equal to or lower than a predetermined rotation speed, and the detected value of the outlet temperature sensor 44 is equal to or lower than the target temperature.
  • Condition (2) The rotation speed of the compressor 1 is not more than a predetermined rotation speed, and the refrigerant low pressure is not more than a predetermined pressure.
  • the rotation speed of the compressor 1 is specified based on the detection value of the rotation speed sensor 38.
  • the rotational speed of the compressor 1 corresponds to the rotational speed of the engine 31.
  • the refrigerant low pressure is the pressure of the refrigerant sucked into the compressor 1 (pressure of the refrigerant flowing through the merging path 12a) and is detected by the first pressure sensor 61.
  • the predetermined rotation speed and the predetermined pressure are set as follows.
  • the compressor 1 has a minimum allowable rotation speed and a lower limit value of the refrigerant low pressure. For this reason, the predetermined rotation speed is set to a value larger than the allowable minimum rotation speed by a certain width, and the predetermined pressure is set to a lower limit value of the refrigerant low pressure or a value larger than that by a certain width.
  • the cold water operation at low load is executed when the required rotational speed of the compressor 1 is equal to or lower than the allowable minimum rotational speed, and the required rotational speed of the compressor 1 is set to the allowable minimum rotational speed.
  • normal cold water operation is executed.
  • the second expansion valve 7 is closed, and the exhaust heat recovery path 37 is closed by the three-way valve 33.
  • the control device 50 controls the three-way valve 33 so as to open the second expansion valve 7 and open the exhaust heat recovery path 37.
  • the control device 50 controls the three-way valve 33 so as to close the second expansion valve 7 and open the exhaust heat recovery path 37.
  • the three-way valve 33 has an opening degree so that a part of the cooling water flows through the engine exhaust heat recovery device 5 even if the main path 35 is closed so that the entire amount of cooling water flows through the engine exhaust heat recovery device 5.
  • the main path 35 may be opened while being small.
  • FIG. 4 is a configuration diagram of the heat pump chiller 100 in a cold water operation at a low load.
  • the refrigerant passes through the second expansion valve 7 and flows to the engine exhaust heat recovery unit 5.
  • the refrigerant from the engine exhaust heat recovery device 5 merges with the refrigerant from the air heat exchanger 3, and the merged refrigerant is sucked into the compressor 1.
  • the refrigerant In the cold water operation at the time of low load, the refrigerant is distributed to the water heat exchanger 4 side and the engine exhaust heat recovery unit 5, and receives the heat amount in both the water heat exchanger 4 and the engine exhaust heat recovery unit 5.
  • the temperature of the cooling water flowing through the engine exhaust heat recovery unit 5 is 60 ° C. or higher as described above, and is higher than the temperature of the water flowing through the water circuit 40.
  • the refrigerant evaporation pressure in the engine exhaust heat recovery device 5 becomes higher than the refrigerant evaporation pressure in the water heat exchanger 4, and the refrigerant flow rate to the water heat exchanger 4 decreases. Therefore, by opening the second expansion valve, the amount of heat exchange in the water heat exchanger 4 can be efficiently reduced without reducing the rotational speed of the compressor 1.
  • FIG. 5 is a diagram illustrating the relationship between the refrigerant low pressure, the refrigerant high pressure, and the usable pressure range of the compressor 1.
  • the horizontal axis indicates the size of the refrigerant low pressure
  • the vertical axis indicates the size of the refrigerant high pressure.
  • the refrigerant low pressure is the pressure of the refrigerant sucked into the compressor 1 (the pressure of the refrigerant flowing through the suction passage 12) as described above, and is detected by the first pressure sensor 61.
  • the refrigerant high pressure is the pressure of the refrigerant discharged from the compressor 1 (pressure of the refrigerant flowing through the discharge path 11), and is detected by a pressure sensor (not shown). In driving the compressor 1, there is a lower limit value of the allowable refrigerant low pressure, and an upper limit value of the allowable refrigerant high pressure.
  • a rectangular area A indicates the usable range of the compressor 1.
  • a triangular area U indicated by diagonal lines is located on the upper left side of the rectangular area A. This area U indicates the unusable range of the compressor 1.
  • the impossible region U indicates a region where the refrigerant high pressure is relatively high and the refrigerant low pressure is relatively low.
  • the state S1 indicates coordinates corresponding to the refrigerant low pressure PL1 and the refrigerant high pressure PH
  • the state S2 indicates coordinates corresponding to the refrigerant low pressure PL2 and the refrigerant high pressure PH.
  • the state S1 is in the impossible area U, and in this case, the driving of the compressor 1 cannot be maintained.
  • the low-load cold water operation described above uses not only the water heat exchanger 4 but also the engine exhaust heat recovery device 5 as an evaporator.
  • the refrigerant low pressure is determined by the flow rate and evaporation pressure of the refrigerant flowing through the water heat exchanger 4 and the flow rate and evaporation pressure of the refrigerant flowing through the engine exhaust heat recovery unit 5. For this reason, even if the evaporation pressure of the refrigerant flowing through the water heat exchanger 4 is small, if the evaporation pressure of the refrigerant flowing through the engine exhaust heat recovery unit 5 is large, the evaporation pressure of the entire refrigerant increases. As a result, the refrigerant low pressure increases. When the state S1 in the impossible region U shifts to the state S2 in the possible region A due to an increase in the refrigerant low pressure, the drive of the compressor 1 can be maintained.
  • the control device 50 controls the opening degree of the first expansion valve 6 based on the degree of superheat of the refrigerant flowing through the merging path 12a, and performs the second operation based on the degree of superheat of the refrigerant flowing through the low-pressure gas path 21.
  • the opening degree of the expansion valve 7 is controlled. More specifically, the opening degree of the first expansion valve 6 is controlled so that the refrigerant low pressure does not become lower than the predetermined pressure, and the load applied to the compressor 1 is minimized as long as the refrigerant low pressure is higher than the predetermined pressure. Thus, the opening degree of the first expansion valve 6 and the second expansion valve 7 is controlled.
  • the degree of superheat of the refrigerant can be specified by detecting the pressure of the refrigerant and the temperature of the refrigerant. Specifically, the saturated vapor temperature corresponding to the refrigerant pressure is identified based on the saturated vapor line of the refrigerant, and the degree of superheat is identified as the temperature difference between the refrigerant temperature and the saturated vapor temperature. For this reason, the superheat degree of the refrigerant flowing through the merging path 12 a is specified based on the detection value by the first pressure sensor 61 and the detection value by the first temperature sensor 71. Similarly, the degree of superheat of the refrigerant flowing through the low-pressure gas path 21 is specified based on the detection value by the second pressure sensor 62 and the detection value by the second temperature sensor 72.
  • the superheat degree of the low pressure gas path 21 may be controlled to be equal to or higher than a predetermined superheat degree than the superheat degree of the merging path 12a.
  • the flow rate of the refrigerant passing through the engine exhaust heat recovery unit 5 is adjusted according to the outside air temperature passing through the air heat exchanger 3, the flow rate of the refrigerant that receives pressure loss by the engine exhaust heat recovery unit 5 is suppressed. Is done.
  • FIG. 6 is a configuration diagram of the flow direction control mechanism 208 according to the second embodiment.
  • the heat pump chiller according to the second embodiment includes liquid paths 214 and 217 and a high-pressure liquid path 219 instead of the liquid paths 14 and 17 and the high-pressure liquid path 19 according to the first embodiment.
  • the liquid path 214 connects the air heat exchanger 3 and the first expansion valve 6.
  • the liquid path 217 connects the first expansion valve 6 and the water heat exchanger 4.
  • the high-pressure liquid path 219 connects the flow direction control mechanism 208 and the second expansion valve 7.
  • the flow direction control mechanism 208 includes an open path 280 and two electromagnetic valves 281 and 282.
  • the two solenoid valves 281 and 282 are disposed on the open path 280.
  • One end of the open path 280 is a connection point P21, the other end is a connection point P22, and the connection point P23 is disposed between the two electromagnetic valves 281 and 282.
  • the open path 280 is connected to the middle of the liquid path 214 at the connection point P21.
  • the open path 280 is connected to the middle of the liquid path 217 at the connection point P22.
  • the high-pressure liquid path 219 is connected to the open path 280 at the connection point P23.
  • the electromagnetic valve 281 In the cold water operation, the electromagnetic valve 281 is opened and the electromagnetic valve 282 is closed. For this reason, the refrigerant from the air heat exchanger 3 flows to the water heat exchanger 4 via the first expansion valve 6, the connection point P22, and the liquid path 217 with the connection point P21 as the refrigerant inflow portion.
  • this refrigerant flows from the liquid path 214 to the second expansion valve 7 via the connection point P21, the electromagnetic valve 281, the connection point P23, and the high-pressure liquid path 219. Flowing.
  • the electromagnetic valve 281 In the hot water operation, the electromagnetic valve 281 is closed and the electromagnetic valve 282 is opened.
  • the refrigerant from the water heat exchanger 4 flows from the liquid path 217 to the air heat exchanger 3 via the first expansion valve 6 and the liquid path 214 with the connection point P22 as the refrigerant inflow portion.
  • the refrigerant flows from the liquid path 217 to the second expansion valve 7 via the connection point P22, the electromagnetic valve 282, the connection point P23, and the high-pressure liquid path 219.
  • FIG. 7 is a configuration diagram of a flow direction control mechanism 308 according to the third embodiment.
  • the heat pump chiller according to the third embodiment includes liquid paths 214 and 217 and a high-pressure liquid path 219 as in the second embodiment.
  • the flow direction control mechanism 308 according to the third embodiment includes two check valves 381 and 382 instead of the two electromagnetic valves 281 and 282 according to the second embodiment. Other configurations are the same between the third embodiment and the second embodiment.
  • the connection point P23 is located on the outlet side of the two check valves 381, 382.
  • the refrigerant from the air heat exchanger 3 flows to the water heat exchanger 4 through the liquid path 214, the first expansion valve 6 and the liquid path 217 with the connection point P21 as the refrigerant inflow portion.
  • this refrigerant passes through the liquid path 214, the connection point P 21, the check valve 381, the connection point P 23, and the high-pressure liquid path 219 to the second expansion valve 7. Flowing. Since the pressure at the connection point P23 is higher than the pressure at the connection point P22, the refrigerant does not flow from the connection point P23 via the check valve 382 to the connection point P21.
  • the refrigerant from the water heat exchanger 4 flows to the air heat exchanger 3 through the liquid path 217, the first expansion valve 6 and the liquid path 214 with the connection point P22 as the refrigerant inflow portion. Further, the refrigerant flows to the second expansion valve 7 via the liquid path 217, the connection point P22, the check valve 382, the connection point P23, and the high-pressure liquid path 219. Since the pressure at the connection point P23 is higher than the pressure at the connection point P21, the refrigerant does not flow from the connection point P21 to the connection point P23 via the check valve 381.
  • FIG. 8 is a configuration diagram of a flow direction control mechanism 408 according to the fourth embodiment.
  • the heat pump chiller according to the fourth embodiment includes two first expansion valves 106 and 206 instead of the first first expansion valve 6 in the first to third embodiments.
  • liquid paths 214 and 217 and a high-pressure liquid path 219 are provided.
  • the liquid path 214 connects the air heat exchanger 3 and one first expansion valve 106
  • the liquid path 217 connects the other first expansion valve 206 and the water heat exchanger 4.
  • the flow direction control mechanism 408 includes two open paths 410 and 420, a connection path 430, and two check valves 481 and 482.
  • the open path 410 branches from the liquid path 214 at the connection point P41, and is connected to the first expansion valve 106 via the check valve 481.
  • the open path 420 branches from the liquid path 217 at the connection point P42 and is connected to the first expansion valve 206 via the check valve 482.
  • the connection path 430 connects the two first expansion valves 106 and 206.
  • the open path 410 branches from the connection path 430 at the connection point P43, and the open path 420 branches from the connection path 430 at the connection point P44.
  • the high-pressure liquid path 219 is connected to the connection path 430 at the connection point P45.
  • the check valve 481 is disposed between the connection points P41 and P43 on the open path 410, and the connection point P43 is located on the outlet side of the check valve 481.
  • the check valve 482 is disposed between the connection points P42 and P44 on the open path 420, and the connection point P44 is located on the outlet side of the check valve 482.
  • the opening degree of the second expansion valve 206 is controlled.
  • the refrigerant from the air heat exchanger 3 is connected to the first expansion valve 106 or the check valve 481, the connection point P43, the connection path 430, the connection point P44, and the second expansion from the liquid path 214 with the connection point P41 as the refrigerant inflow portion. It flows to the water heat exchanger 4 via the valve 206, the connection point P42, and the liquid path 217. Further, the refrigerant flows from the connection path 430 to the second expansion valve 7 via the connection point P45 and the high-pressure fluid path 219. In the hot water operation, the opening degree of the first expansion valve 106 is controlled.
  • the refrigerant from the water heat exchanger 4 flows from the liquid path 217 to the second expansion valve or check valve 482, the connection point P44, the connection path 430, the connection point P43, with the connection point P42 as the refrigerant inflow portion.
  • the air flows to the air heat exchanger 3 via the first expansion valve 106 and the liquid path 214.
  • the refrigerant flows from the connection path 430 to the second expansion valve 7 via the connection point P45 and the high-pressure liquid path 219.
  • the heat pump chiller 100 according to the present embodiment has the following effects due to the above-described configuration.
  • the heat pump chiller includes an air heat exchanger 3, a water heat exchanger 4, an operation switching mechanism (four-way valve 2), an engine exhaust heat recovery device 5, and a first expansion.
  • a valve 6, a second expansion valve 7, a flow direction control mechanism 8, a flow rate adjustment valve (three-way valve 33), and a control device 50 are provided.
  • the control device 50 causes the second expansion valve 7 and the refrigerant so that the refrigerant and the exhaust heat medium (cooling water) flow through the engine exhaust heat recovery unit 5. Open the flow control valve (three-way valve 33).
  • the heat pump chiller has the ability to determine the amount of heat exchange in the water heat exchanger based on the allowable minimum number of rotations of the compressor during cold water operation without stopping the driving of the compressor. Can be lowered.
  • the control device 50 determines that the rotational speed is equal to or lower than the predetermined rotational speed and the detected value of the outlet temperature sensor 43 is equal to or lower than the target temperature, or the rotational speed is predetermined.
  • the rotation speed is equal to or lower than the value and the refrigerant low pressure is equal to or lower than the predetermined pressure, it is determined that the necessary rotation speed of the compressor 1 is equal to or lower than the allowable minimum rotation speed.
  • the heat pump chiller can determine whether or not the required rotational speed of the compressor 1 is equal to or lower than the allowable minimum rotational speed by using the configuration necessary for water temperature control.
  • the control device 50 allows the joining path when the exhaust heat medium (cooling water) is flowing through the engine exhaust heat recovery device 5 while the hot water operation is being performed.
  • the opening degree of the first expansion valve 6, 106, 206 is controlled based on the degree of superheat of the refrigerant flowing through 12 a, and the degree of opening of the second expansion valve 7 is controlled based on the degree of superheat of the refrigerant flowing through the low pressure gas path 21. To do.
  • the refrigerant low pressure and the refrigerant high pressure vary according to the magnitude of the load on the water circuit 40 side. Further, when the flow rate of the refrigerant flowing through each of the water heat exchanger 4 and the engine exhaust heat recovery unit 5 is adjusted, the refrigerant low pressure and the refrigerant high pressure change. For this reason, the heat pump chiller according to the first to fourth embodiments can expand the range of loads that can be handled while keeping the refrigerant low pressure and the refrigerant high pressure within allowable ranges.
  • Compressor 2 Four-way valve (Operation switching mechanism) DESCRIPTION OF SYMBOLS 3 Air heat exchanger 4 Water heat exchanger 5 Engine exhaust heat recovery device 6, 106, 206 1st expansion valve 7 2nd expansion valve 8 Flow direction control mechanism 31 Engine 33 Three-way valve (flow rate adjustment valve) 50 control device 100 heat pump chiller

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 ヒートポンプチラー(100)は、空気熱交換器(3)と、水熱交換器(4)と、冷水運転と温水運転とを切り替える運転切替機構(2)と、エンジン排熱回収器(5)と、前記エンジン排熱回収器(5)に向かう液状態の前記冷媒の流量を調節する第2膨張弁(7)と、その冷媒流入部の下流に第1膨張弁(6)及び第2膨張弁(7)が並列に配置される流れ方向制御機構(8)と、前記エンジン排熱回収器(5)を流れる前記排熱媒体の流量を調節する流量調整弁(33)と、前記冷水運転時に前記水熱交換器(4)における熱交換量の目標値が所定値以下に設定されると、前記冷媒及び前記排熱媒体が前記エンジン排熱回収器(5)を流れるように前記第2膨張弁(7)及び前記流量調整弁(33)を開く制御装置(50)と、を備えている。

Description

エンジン駆動ヒートポンプチラー
 本発明は、冷媒を圧縮する圧縮機をエンジンにより駆動し、前記冷媒の凝縮熱又は蒸発熱により熱媒体としての水の温度を調節する、エンジン駆動ヒートポンプチラーに関する。
 従来、冷媒の凝縮熱で温水を作り、冷媒の蒸発熱で冷水を作るヒートポンプチラーが公知である。このヒートポンプチラーに要求される負荷側の温度範囲は、ヒートポンプ空調機に要求される負荷側の温度範囲よりも広い。ヒートポンプ空調機では、要求される温度範囲は、例えば、20℃(暖房設定温度)から27℃(冷房設定温度)である。一方、ヒートポンプチラーでは、要求される温度範囲は、例えば、7℃(冷水)から45℃(温水)である。
 特許文献1の特開昭59-60155は、外気側熱交換器3(空気熱交換器)、負荷側熱交換器7(水熱交換器)、及び外気温低下時作動蒸発器24を有するヒートポンプチラーを開示している。このヒートポンプチラーは冷暖房運転が可能であり、四方弁2の切替により、外気側熱交換器3及び負荷側熱交換器7はそれぞれ凝縮器又は蒸発器として機能する。外気温低下時作動蒸発器24は、温流体製造時にエンジン排熱を熱源として作動し(請求項1、公報3頁左下欄15行~17行)、蒸発器としてのみ利用される。四方弁2の切替と関係なく、第1蒸発器(3、7)及び第2蒸発器(24)は、冷媒の流れ方向に対して並列に位置している(図面)。
 特許文献2の特許4549205は、室外熱交換器4(空気熱交換器)、室内熱交換器5、及びエンジン排熱回収器15を有するヒートポンプ空調機を開示している。このヒートポンプ空調機は冷暖房運転が可能であり、四方弁3の切替により、室外熱交換器4及び室内熱交換器5はそれぞれ凝縮器又は蒸発器として機能する。エンジン排熱回収器15は、暖房運転時にエンジン排熱を熱源として作動し、蒸発器としてのみ利用される。四方弁2の切替と関係なく、第1蒸発器(4、5)及び第2蒸発器(15)は、冷媒の流れ方向に対して並列に位置している(図1)。また、特許文献2は、暖房運転時に、室外熱交換器4及びエンジン排熱回収器15のそれぞれを通過する冷媒量を調整する制御も、開示している(段落0030)。室外熱交換器4の冷媒量は、室外熱交換器4を通過した冷媒とエンジン排熱回収器15を通過した冷媒の合流後の冷媒の過熱度に基づいて制御され、エンジン排熱回収器の冷媒量は、エンジン排熱回収器15を通過した後の且つ合流前の過熱度に基づいて制御される(段落0031)。
特開昭59-60155号公報 特許第4549205号公報
 冷水運転時に負荷が小さくなる場合が発生する。これは、例えば、チラーに入る水の温度が7.1℃であるときに、チラーから出る水の温度が7.0℃に設定される場合を指している。このような場合、冷媒循環量を絞るために、圧縮機の運転台数を減少するように、且つ運転中の圧縮機の回転数を低下させるように、チラーが制御される。しかし、圧縮機の回転数が所定の許容最低回転数よりも低下すると、圧縮機の運転が継続できなくなる。このため、チラーの水熱交換器における熱交換量を、圧縮機の許容最低回転数に基づいて定まる能力以下に抑制できなった。また、水温が低い場合にチラーの運転が継続されると、水熱交換器内の水が凍結するという不具合があった。このように水温が低い状態で低負荷が要求される場合に、水温が目標温度に近づくとヒートポンプチラーを停止し、水温が上昇したら運転を再開する、いわゆる発停を繰返すことによって、水の凍結を防止できる。しかし、発停の繰り返しは、圧縮機に過負荷を掛けるという不具合を生じる。
 このように、圧縮機が連続的に駆動される場合、冷水運転時に水熱交換器における熱交換量を圧縮機の許容最低回転数に基づいて定まる能力より下げられないという課題が存在する。特許文献1及び2は、このような課題の開示も示唆もなく、このような課題を解決できる構成も当然ながら開示していない。
 そこで、本願発明は、圧縮機の駆動を停止させることなく、冷水運転時に水熱交換器における熱交換量を圧縮機の許容最低回転数に基づいて定まる能力より下げることができるヒートポンプチラーを提供する。
 本発明に係るエンジン駆動ヒートポンプチラーは、冷媒を圧縮する圧縮機をエンジンにより駆動し、前記冷媒の凝縮熱又は蒸発熱により熱媒体としての水の温度を調節する、エンジン駆動ヒートポンプチラーであって、空気を放熱源として冷媒を液化する凝縮器、又は空気を吸熱源として冷媒を気化する蒸発器として機能する空気熱交換器と、気液二相冷媒を放熱源として前記水を冷却する冷却器、又は前記圧縮機の吐出冷媒を吸熱源として水を加熱する加熱器として機能する水熱交換器と、前記水熱交換器を冷却器として機能させる冷水運転と、前記水熱交換器を加熱器として機能させる温水運転とを切り替える運転切替機構と、排熱媒体を介して前記エンジンの排熱を吸熱源とする冷媒の蒸発器として機能するエンジン排熱回収器と、前記温水運転時では前記空気熱交換器に向かう液状態の前記冷媒の流量を調整し、前記冷水運転時では前記水熱交換器に向かう液状態の前記冷媒の流量を調節する第1膨張弁と、前記エンジン排熱回収器に向かう液状態の前記冷媒の流量を調節する第2膨張弁と、その冷媒流入部の下流に第1膨張弁及び第2膨張弁が並列に配置される流れ方向制御機構と、前記エンジン排熱回収器を流れる前記排熱媒体の流量を調節する流量調整弁と、設定された目標温度に、前記水熱交換器から排出される水の温度が収束するように、前記圧縮機の回転数を制御する制御装置と、を備えており、前記制御装置は、前記冷水運転時に、前記回転数の低下により前記圧縮機の必要回転数が許容最低回転数以下である場合、前記冷媒及び前記排熱媒体が前記エンジン排熱回収器を流れるように前記第2膨張弁及び前記流量調整弁の開度を制御するように構成されている。
 前記ヒートポンプチラーにおいて、前記制御装置は、前記回転数が所定回転数以下であり且つ排出される前記水の温度が前記目標温度以下である場合、又は前記回転数が所定回転数以下であり且つ前記圧縮機に戻る前記冷媒の圧力である冷媒低圧が所定圧力以下である場合に、前記圧縮機の必要回転数が許容最低回転数以下であると判定するように構成されている。
 前記ヒートポンプチラーにおいて、前記制御装置は、前記温水運転の実行中且つ前記エンジン排熱回収器に前記排熱媒体が流されているときに、前記空気熱交換器を通過した前記冷媒に前記エンジン排熱回収器を通過した前記冷媒が合流した後の前記冷媒の過熱度に基づいて、前記第1膨張弁の開度を制御し、前記エンジン排熱回収器を通過した後の且つ合流前の前記冷媒の過熱度に基づいて、前記第2膨張弁の開度を制御する。
 本発明に係るエンジン駆動ヒートポンプチラーは、圧縮機の駆動を停止させることなく、冷水運転時に水熱交換器における熱交換量を圧縮機の許容最低回転数に基づいて定まる能力より下げることができる。
第1実施形態に係るヒートポンプチラーの構成図である。 冷水運転におけるヒートポンプチラーの構成図である。 温水運転におけるヒートポンプチラーの構成図である。 低負荷時の冷水運転におけるヒートポンプチラーの構成図である。 冷媒低圧、冷媒高圧、及び圧縮機の使用可能圧力範囲の関係を示す図である。 第2実施形態に係る流れ方向制御機構の構成図である。 第3実施形態に係る流れ方向制御機構の構成図である。 第4実施形態に係る流れ方向制御機構の構成図である。
(第1実施形態)
 図1を参照して、第1実施形態に係るヒートポンプチラー100を説明する。図1は、第1実施形態に係るヒートポンプチラー100の構成図である。
 ヒートポンプチラー100は、冷媒が循環する冷媒回路10、エンジン冷却水が循環する冷却水回路30、熱媒体としての水が流れる水回路40、制御装置50、及び入力装置60を備えている。ユーザは、入力装置60を操作することにより、ヒートポンプチラー100の運転を指令する。制御装置50は、入力された指令に基づいて、冷媒回路10、冷却水回路30、及び水回路40の駆動を制御する。この操作により、ヒートポンプチラー100は、水回路40を流れる水の温度を調整する。
 冷媒回路10は、圧縮機1、四方弁2、空気熱交換器3、水熱交換器4、エンジン排熱回収器5、第1膨張弁6、第2膨張弁7、及び流れ方向制御機構8を備えている。
 また、冷媒回路10は、吐出経路11、吸入経路12、ガス経路13、液経路14、高圧液経路15、低圧液経路16、液経路17、ガス経路18、高圧液経路19、低圧液経路20、及び低圧ガス経路21を備えている。吐出経路11は、圧縮機1及び四方弁2を接続している。吸入経路12は、四方弁2及び圧縮機1を接続している。ガス経路13は、四方弁2及び空気熱交換器3を接続している。液経路14は、空気熱交換器3及び流れ方向制御機構8を接続している。高圧液経路15は、流れ方向制御機構8及び第1膨張弁6を接続している。低圧液経路16は、第1膨張弁6及び流れ方向制御機構8を接続している。液経路17は、流れ方向制御機構8及び水熱交換器4を接続している。ガス経路18は、水熱交換器4及び四方弁2を接続している。高圧液経路19は、接続点P1で高圧液経路15から分岐し、高圧液経路15及び第2膨張弁7を接続している。低圧液経路20は、第2膨張弁7及びエンジン排熱回収器5を接続している。低圧ガス経路21は、エンジン排熱回収器5及び吸入経路12を接続しており、接続点P2で吸入経路12に合流している。合流経路12aは、吸入経路12において接続点P2の下流側(圧縮機1側)を指している。
 圧縮機1は、吸入経路12から冷媒を吸入し、その冷媒を圧縮し、その冷媒を吐出経路11から吐出する。四方弁(運転切替機構)2は、冷水運転時に吐出経路11をガス経路13に且つ吸入経路12をガス経路18に接続し、温水運転時に吐出経路11をガス経路18に且つ吸入経路12をガス経路13に接続する。なお、冷水運転とは、水回路40の水を冷却する運転状態をいい、温水運転とは、水回路40の水を加熱する運転状態をいう。空気熱交換器3は、冷水運転時に空気を放熱源として冷媒を液化する凝縮器として機能し、温水運転時に空気を吸熱源として冷媒を気化する蒸発器として機能する。水熱交換器4は、冷水運転時に気液二相冷媒を放熱源として水を冷却する冷却器として機能し、温水運転時に吐出経路11の冷媒を吸熱源として水を加熱する加熱器として機能する。エンジン排熱回収器5は、後述のようにエンジン冷却水を介してエンジン31の排熱を吸熱源として冷媒を気化する蒸発器として機能する。第1膨張弁6は、温水運転時では空気熱交換器3に向かう液状態の冷媒の流量を調整し、冷水運転時では水熱交換器4に向かう液状態の冷媒の流量を調整する。第2膨張弁7は、エンジン排熱回収器5に向かう液状態の冷媒の流量を調整する。流れ方向制御機構8の冷媒流入部の下流に第1膨張弁6及び第2膨張弁7を並列に配置する。この結果、冷水運転時の冷媒の流れ方向では水熱交換器4及びエンジン排熱回収器5が並列に配置され、温水運転時の冷媒の流れ方向では空気熱交換器3及びエンジン排熱回収器5が並列に配置される。流れ方向制御機構8の構成を次に説明する。
 図1において、流れ方向制御機構8は、閉経路80と、4つの逆止弁81、82、83、84とを備えている。4つの逆止弁81、82、83、84は、閉経路80上に配置されている。閉経路80において、2つの逆止弁81、82の入口は、他の2つの逆止弁83、84の入口とは反対側に配置されている。逆止弁81、82、83、84の隣り合う2つの間に、それぞれ、接続点P3、P4、P5、P6が設けられている。液経路14は接続点P3に接続されており、高圧液経路15は接続点P4に接続されており、液経路17は接続点P4に接続されており、低圧液経路16は接続点P5に接続されている。流れ方向制御機構8の作用は、後述の冷水運転及び温水運転の説明において説明する。
 冷却水回路30は、エンジン31、サーモスタットバルブ32、三方弁33、ラジエータ34、及び前述のエンジン排熱回収器5を備えている。エンジン31は、圧縮機1を駆動する。エンジン排熱回収器5は、冷媒回路10及び冷却水回路30の双方に属している。
 また、冷却水回路30は、主経路35、戻り経路36、及び排熱回収経路37を備えている。主経路35は、エンジン31から、サーモスタットバルブ32及び三方弁33及びラジエータ34を経由して、エンジン31に冷却水を戻す。戻り経路36は、サーモスタットバルブ32において主経路35から分岐し、ラジエータ34の下流側で主経路35に合流する。排熱回収経路37は、三方弁33において主経路35から分岐し、エンジン排熱回収器5を経由してラジエータ34の下流側で主経路35に合流する。
 サーモスタットバルブ32は、主経路35又はエンジン31内の冷却水の温度に基づいて、主経路35及び戻り経路36のいずれか一方を開放し、他方を閉じる。冷却水の温度が所定温度(例えば60℃)未満である場合、サーモスタットバルブ32は主経路35を閉じ且つ戻り経路36を開く。この場合、冷却水はエンジン31及びサーモスタットバルブ32のみを循環する。つまり、低温の冷却水は、ラジエータ34及びエンジン排熱回収器5に供給されない。冷却水の温度が所定温度以上である場合、サーモスタットバルブ32は主経路35を開き且つ戻り経路36を閉じる。三方弁(流量制御弁)33は、制御装置50からの指令に基づいて、主経路35及び排熱回収経路37の開度を調節し、主経路35及び排熱回収経路37を流れる冷却水の流量を変更する。三方弁33は、主経路35及び排熱回収経路37の一方を完全に閉じることもできる。三方弁33が主経路35を開いている場合、冷却水はラジエータ34を経由してエンジン31に戻る。三方弁33が排熱回収経路37を開いている場合、冷却水はエンジン排熱回収器5を経由してエンジン31に戻る。この場合、冷却水がエンジン排熱回収器5に供給されるので、エンジン排熱回収器5がエンジン冷却水を介してエンジン31の排熱を吸熱源とする冷媒の蒸発器として機能できる。
 水回路40は、前述の水熱交換器40、入水経路41、及び出水経路42を備えている。水熱交換器40は、冷媒回路10及び水回路40の双方に属している。水回路40は、閉回路及び開回路のどちらであってもよい。水回路40が閉回路である場合、入水経路41及び出水経路42は、負荷側の熱交換器を介して接続されている。
 ヒートポンプチラー100は、各種のセンサを備えている。冷媒回路10は、第1圧力センサ61、第1温度センサ71、第2圧力センサ62、及び第2温度センサ72を備えている。第1圧力センサ61及び第1温度センサ71はそれぞれ、合流経路12a内の冷媒の圧力及び温度を検出する。第2圧力センサ62及び第2温度センサ72はそれぞれ、低圧ガス経路21内の冷媒の圧力及び温度を検出する。冷却水回路30は、エンジン31の回転数を検出する回転数センサ38を備えている。水回路40は、入水温度センサ43及び出水温度センサ44を備えている。入水温度センサ43は入水経路41内の水の温度を検出し、出水温度センサ44は出水経路41内の水の温度を検出する。
 図2を参照して、冷水運転を説明する。図2は、冷水運転におけるヒートポンプチラー100の構成図である。
 冷水運転において、四方弁2は吐出経路11をガス経路13に接続し、且つ吸入経路12をガス経路18に接続する。このため、圧縮機1から吐出される高圧ガス状態の冷媒が、空気熱交換器3に流れる。
 空気熱交換器3を流れる冷媒の温度は、空気熱交換器3を流れる空気の温度よりも高いため、冷媒から空気に熱が移動する。この結果、冷媒は凝縮熱を失って液化し、高圧液状態の冷媒になる。つまり、空気熱交換器3は、空気を放熱源とする冷媒の凝縮器として機能している。
 高圧液状態の冷媒は、空気熱交換器3から液経路14を経由して流れ方向制御機構8の接続点P3に流れる。接続点P3は、冷水運転時における流れ方向制御機構8の冷媒流入部であり、逆止弁81、83の出口側に位置し、且つ逆止弁82の入口側に位置している。このため、冷媒は、接続点P3から逆止弁82及び接続点P4を経由して、高圧液経路15に流れる。通常の冷水運転では、冷却水がエンジン排熱回収器5を流れないように三方弁33が制御され、且つ第2膨張弁7が閉じられている。めこのため、冷媒は第1膨張弁6のみを通過する。第1膨張弁6において高圧液状態の冷媒は膨張し、低圧気液二相冷媒となる。低圧気液二相冷媒は、低圧液経路16から流れ方向制御機構8の接続点P6に流れる。接続点P6は、4つの逆止弁81、82、83、84の入口側にあるが、上述した高圧液状態の冷媒が接続点P3、P4を流れている。圧力差のため、接続点P6の冷媒は、逆止弁84のみを通過でき、逆止弁81、83を通過できない。このため、低圧気液二相冷媒は、接続点P6から、逆止弁84及び接続点P5及び液経路17を経由して、水熱交換器4に流れる。
 水熱交換器4を流れる冷媒の温度は、水熱交換器4を流れる水の温度より低いため、水から冷媒に熱が移動する。この結果、冷媒は蒸発熱を得て気化し、低圧ガス状態の冷媒になる。また、水は冷媒への放熱により冷却される。つまり、水熱交換器4は、気液二相冷媒を放熱源とする水回路40の冷却器として機能している。
 低圧ガス状態の冷媒は、水熱交換器4からガス経路18に流れる。吸入経路12がガス経路18に接続されているので、冷媒は圧縮機1に吸入される。
 冷水運転が実行されている間、冷媒は上述の経路に沿って冷媒回路10内を循環する。
 図3を参照して、温水運転を説明する。図3は、温水運転におけるヒートポンプチラー100の構成図である。
 温水運転において、四方弁2は吐出経路11をガス経路18に接続し、且つ吸入経路12をガス経路13に接続する。このため、圧縮機1から吐出される高圧ガス状態の冷媒が、水熱交換器4に流れる。
 水熱交換器4を流れる冷媒の温度は、水熱交換器4を流れる水の温度よりも高いため、冷媒から水に熱が移動する。この結果、冷媒は凝縮熱を失って液化し、高圧液状態の冷媒になる。また、水は冷媒からの吸熱により加熱される。つまり、水熱交換器4は、吐出経路11の冷媒を吸熱源とする水回路40の加熱器として機能している。
 高圧液状態の冷媒は、水熱交換器4から液経路17を経由して流れ方向制御機構8の接続点P5に流れる。接続点P5は、温水運転時における流れ方向制御機構8の冷媒流入部であり、逆止弁83の入口側に位置し、且つ逆止弁82、84の出口側に位置している。このため、冷媒は、接続点P5から逆止弁83及び接続点P4を経由して高圧液経路15に流れる。冷媒は、高圧液経路15から第1膨張弁6へと流れ、且つ高圧液経路15の接続点P1から高圧液経路19を経由して第2膨張弁7へと流れる。通常の温水運転では、冷媒は第1膨張弁6及び第2膨張弁7を通過する。第1膨張弁6において高圧液状態の冷媒は膨張し、低圧気液二相冷媒となる。低圧気液二相冷媒は、低圧液経路16から流れ方向制御機構8の接続点P6に流れる。接続点P6は、4つの逆止弁81、82、83、84の入口側にあるが、上述した高圧液状態の冷媒が接続点P4、P5を流れている。圧力差のため、接続点P6の冷媒は、逆止弁81のみを通過でき、逆止弁82、84を通過できない。このため、低圧気液二相冷媒は、接続点P6から、逆止弁81及び接続点P3及び液経路14を経由して空気熱交換器3に流れる。第2膨張弁7を通過する冷媒の流れは後述する。
 空気熱交換器3を流れる冷媒の温度は、空気熱交換器3を流れる空気の温度より低いため、空気から冷媒に熱が移動する。この結果、冷媒は蒸発熱を得て気化し、低圧ガス状態の冷媒になる。つまり、空気熱交換器3は、空気を吸熱源とする冷媒の蒸発器として機能している。
 低圧ガス状態の冷媒は、空気熱交換器3からガス経路13に流れる。吸入経路12がガス経路13に接続されているので、冷媒は圧縮機1に吸入される。
 一方、第2膨張弁7を通過する冷媒は、第2膨張弁7において膨張し、低圧気液二相冷媒となる。低圧気液二相冷媒は、低圧液経路20を経由してエンジン排熱回収器5に流れる。
 エンジン排熱回収器5を流れる冷媒の温度は、エンジン排熱回収器5を流れる冷却水の温度より低いため、冷却水から冷媒に熱が移動する。この結果、冷媒は蒸発熱を得て気化し、低圧ガス状態の冷媒になる。つまり、エンジン排熱回収器5は、冷却水を吸熱源とする冷媒の蒸発器として機能している。
 低圧ガス状態の冷媒は、エンジン排熱回収器5から低圧ガス経路21を経由して吸入経路12に流れる。接続点P2において、エンジン排熱回収器5からの冷媒は、空気熱交換器3からの冷媒に合流する。合流した冷媒は、合流経路12aを流れて、圧縮機1に吸入される。
 温水運転が実行されている間、冷媒は上述の経路に沿って冷媒回路10内を循環する。
 次に、冷水運転において実行される制御を説明する。
 制御装置50は、設定された目標温度に、水熱交換器4から排出される水の温度が収束するように、圧縮機1の回転数を制御している。目標温度の設定は、ユーザによる入力装置60の操作によって行われる。水熱交換器4から排出される水の温度は、出水温度センサ44によって検出される。
 ヒートポンプチラー100は、冷水運転時に低負荷のため圧縮機1を停止する必要がある場合、圧縮機1の停止を避けるために、エンジン31の排熱を負荷として利用する。この場合に実行される冷水運転を、低負荷時の冷水運転とする。低負荷時の冷水運転において、制御装置50は、通常の温水運転と同様に、冷媒及び冷却水がエンジン排熱回収器5を流れるように、三方弁33及び第2膨張弁を制御する。
 負荷の大きさが小さくなるにつれて、圧縮機1の回転数が小さくなるように、圧縮機1は制御される。上述の低負荷は、回転数の低下により圧縮機1の必要回転数が許容最低回転数以下となる場合の負荷を指している。本実施形態では、次の条件(1)又は(2)が満たされる場合に、前記圧縮機の必要回転数が許容最低回転数以下と判定される。
 条件(1):圧縮機1の回転数が所定回転数以下であり、且つ出水温度センサ44の検出値が目標温度以下である。
 条件(2):圧縮機1の回転数が所定回転数以下であり、且つ冷媒低圧が所定圧力以下である。
 圧縮機1の回転数は、回転数センサ38の検出値に基づいて特定される。圧縮機1の回転数は、エンジン31の回転数に対応している。冷媒低圧は、圧縮機1に吸入される冷媒の圧力(合流経路12aを流れる冷媒の圧力)であり、第1圧力センサ61により検出される。所定回転数及び所定圧力は、次のように設定されている。圧縮機1には許容最低回転数及び冷媒低圧の下限値が存在している。このため、所定回転数は、許容最低回転数より一定幅だけ大きな値に設定されており、所定圧力は、冷媒低圧の下限値又はそれより一定幅だけ大きな値に設定されている。
 冷水運転の実行が指令されているとき、圧縮機1の必要回転数が許容最低回転数以下となる場合に低負荷時の冷水運転が実行され、圧縮機1の必要回転数が許容最低回転数以上である場合に通常の冷水運転が実行される。通常の冷水運転では、第2膨張弁7は閉じられており、三方弁33により排熱回収経路37は閉じられている。圧縮機1の必要回転数が許容最低回転数以下となる場合、制御装置50は、第2膨張弁7を開き、且つ排熱回収経路37を開くように三方弁33を制御する。一方、圧縮機1の必要回転数が許容最低回転数以上に復帰すると、制御装置50は、第2膨張弁7を閉じ、且つ排熱回収経路37を開くように三方弁33を制御する。この場合、三方弁33は、冷却水の全量がエンジン排熱回収器5を流れるように主経路35を閉じても、一部の冷却水がエンジン排熱回収器5を流れるように開度を小さくしながら主経路35を開いていても良い。以下では、低負荷時の冷水運転を、上述した通常の冷水運転と相違する点について、説明する。
 図4を参照して、低負荷時の冷水運転を説明する。図4は、低負荷時の冷水運転におけるヒートポンプチラー100の構成図である。
 第2膨張弁7が開かれているので、冷媒は第2膨張弁7を通過し、エンジン排熱回収器5に流れる。接続点P2において、エンジン排熱回収器5からの冷媒は、空気熱交換器3からの冷媒に合流し、合流した冷媒が圧縮機1に吸入される。
 低負荷時の冷水運転では、冷媒は、水熱交換器4側及びエンジン排熱回収器5に分配され、水熱交換器4及びエンジン排熱回収器5の双方で熱量を受け取る。ここで、エンジン排熱回収器5を流れる冷却水の温度は、上述したように60℃以上であり、水回路40を流れる水の温度よりも高い。このため、エンジン排熱回収器5における冷媒蒸発圧力が水熱交換器4における冷媒蒸発圧力よりも高くなり、水熱交換器4への冷媒流量が減少する。したがって、第2膨張弁を開くことによって、圧縮機1の回転数を低下させることなく、効率的に水熱交換器4における熱交換量を小さくすることができる。
 図5を参照して、冷媒低圧の変化の観点から、エンジン排熱回収器5を蒸発器として利用する場合の効果を説明する。図5は、冷媒低圧、冷媒高圧、及び圧縮機1の使用可能圧力範囲の関係を示す図である。
 図5において、横軸は冷媒低圧の大きさを示しており、縦軸は冷媒高圧の大きさを示している。冷媒低圧は、上述したように圧縮機1に吸入される冷媒の圧力(吸入経路12を流れる冷媒の圧力)であり、第1圧力センサ61によって検出される。冷媒高圧は、圧縮機1から吐出される冷媒の圧力(吐出経路11を流れる冷媒の圧力)であり、図示しない圧力センサよって検出される。圧縮機1を駆動する上で、許容される冷媒低圧の下限値が存在し、且つ許容される冷媒高圧の上限値が存在する。
 図5において、四角形状の領域Aは、圧縮機1の使用可能範囲を示している。斜線で示される三角形状の領域Uが、四角形状の領域Aの左上側に位置している。この領域Uは、圧縮機1の使用不可能範囲を示している。不可能領域Uは、冷媒高圧が比較的高く、冷媒低圧が比較的低い領域を示している。図5において、状態S1は冷媒低圧PL1及び冷媒高圧PHに対応する座標を示しており、状態S2は冷媒低圧PL2及び冷媒高圧PHに対応する座標を示している。状態S1は不可能領域U内にあり、この場合、圧縮機1の駆動を維持することはできない。
 上述した低負荷時の冷水運転は、水熱交換器4だけでなくエンジン排熱回収器5を蒸発器として利用している。冷媒低圧は、水熱交換器4を流れる冷媒の流量及び蒸発圧力と、エンジン排熱回収器5を流れる冷媒の流量及び蒸発圧力とによって決定される。このため、水熱交換器4を流れる冷媒の蒸発圧力が小さくても、エンジン排熱回収器5を流れる冷媒の蒸発圧力が大きければ、冷媒全体の蒸発圧力が大きくなる。この結果、冷媒低圧が大きくなる。冷媒低圧の増大により、不可能領域U内の状態S1が可能領域A内の状態S2に移行すると、圧縮機1の駆動を維持することができる。
 次に、図3を参照して、温水運転において実行される制御を説明する。
 通常の温水運転では、上述したように、エンジン排熱回収器5に冷却水が流されている。通常の温水運転において、制御装置50は、合流経路12aを流れる冷媒の過熱度に基づいて第1膨張弁6の開度を制御し、低圧ガス経路21を流れる冷媒の過熱度に基づいて第2膨張弁7の開度を制御する。より詳しくは、冷媒低圧が上述の所定圧力より小さくならないように第1膨張弁6の開度が制御され、冷媒低圧が上述の所定圧力よりも大きい限り、圧縮機1に掛かる負荷が最小となるように第1膨張弁6及び第2膨張弁7の開度が制御される。
 冷媒の過熱度は、冷媒の圧力及び冷媒の温度を検出することによって特定できる。具体的には、冷媒の飽和蒸気線に基づいて冷媒の圧力に対応する飽和蒸気温度が特定され、過熱度が冷媒の温度と飽和蒸気温度との温度差として特定される。このため、合流経路12aを流れる冷媒の過熱度は、第1圧力センサ61による検出値及び第1温度センサ71による検出値に基づいて特定される。同様に、低圧ガス経路21を流れる冷媒の過熱度は、第2圧力センサ62による検出値及び第2温度センサ72による検出値に基づいて特定される。
 更に、低圧ガス経路21の過熱度が、合流経路12aの過熱度よりも所定過熱度以上となるように制御されても良い。この場合、空気熱交換器3を通過する外気温度に応じてエンジン排熱回収器5を通過する冷媒の流量が調整されるので、エンジン排熱回収器5によって圧力損失を受ける冷媒の流量が抑制される。
(第2実施形態)
 図6を参照して、第2実施形態に係るヒートポンプチラーの流れ方向制御機構208を説明する。図6は、第2実施形態に係る流れ方向制御機構208の構成図である。
 図6において、第2実施形態に係るヒートポンプチラーは、第1実施形態に係る液経路14、17、及び高圧液経路19に代えて、液経路214、217及び高圧液経路219を備えている。液経路214は、空気熱交換器3及び第1膨張弁6を接続している。液経路217は、第1膨張弁6及び水熱交換器4を接続している。高圧液経路219は、流れ方向制御機構208及び第2膨張弁7を接続している。
 流れ方向制御機構208は、開経路280と、2つの電磁弁281、282とを備えている。2つの電磁弁281、282は、開経路280上に配置されている。開経路280の一端は接続点P21であり、他端は接続点P22であり、2つの電磁弁281、282の間に接続点P23が配置されている。開経路280は接続点P21で液経路214の中途部に接続されている。開経路280は接続点P22で液経路217の中途部に接続されている。高圧液経路219は接続点P23で開経路280に接続されている。
 冷水運転では、電磁弁281が開かれ、且つ電磁弁282が閉じられる。このため、空気熱交換器3からの冷媒は、接続点P21を冷媒流入部として第1膨張弁6及び接続点P22及び液経路217を経由して、水熱交換器4に流れる。第2膨張弁7の開度が制御される場合、この冷媒は、液経路214から、接続点P21及び電磁弁281及び接続点P23及び高圧液経路219を経由して、第2膨張弁7に流れる。温水運転では、電磁弁281が閉じられ、且つ電磁弁282が開かれる。このため、水熱交換器4からの冷媒は、接続点P22を冷媒流入部として液経路217から第1膨張弁6及び液経路214を経由して空気熱交換器3に流れる。また、この冷媒は、液経路217から、接続点P22及び電磁弁282及び接続点P23及び高圧液経路219を経由して、第2膨張弁7に流れる。
(第3実施形態)
 図7を参照して、第3実施形態に係るヒートポンプチラーの流れ方向制御機構308を説明する。図7は、第3実施形態に係る流れ方向制御機構308の構成図である。
 図7において、第3実施形態に係るヒートポンプチラーは、第2実施形態と同様に、液経路214、217及び高圧液経路219を備えている。
 第3実施形態に係る流れ方向制御機構308は、第2実施形態に係る2つの電磁弁281、282に代えて、2つの逆止弁381、382を備えている。他の構成は、第3実施形態と第2実施形態との間で同一である。接続点P23は、2つの逆止弁381、382の出口側に位置している。
 冷水運転では、空気熱交換器3からの冷媒は、接続点P21を冷媒流入部として液経路214及び第1膨張弁6及び液経路217を経由して、水熱交換器4に流れる。第2膨張弁7の開度が制御される場合、この冷媒は、液経路214及び接続点P21及び逆止弁381及び接続点P23及び高圧液経路219を経由して、第2膨張弁7に流れる。なお、接続点P23の圧力が接続点P22の圧力よりも高いので、冷媒は接続点P23から逆止弁382を経由して接続点P21に流れない。温水運転では、水熱交換器4からの冷媒は、接続点P22を冷媒流入部として液経路217及び第1膨張弁6及び液経路214を経由して、空気熱交換器3に流れる。また、この冷媒は、液経路217及び接続点P22及び逆止弁382及び接続点P23及び高圧液経路219を経由して、第2膨張弁7に流れる。なお、接続点P23の圧力が接続点P21の圧力よりも高いので、冷媒は接続点P21から逆止弁381を経由して接続点P23に流れない。
(第4実施形態)
 図8を参照して、第4実施形態に係るヒートポンプチラーの流れ方向制御機構408を説明する。図8は、第4実施形態に係る流れ方向制御機構408の構成図である。
 図8において、第4実施形態に係るヒートポンプチラーは、第1-3実施形態における1つの第1膨張弁6に代えて2つの第1膨張弁106、206を備えており、第2実施形態と同様に、液経路214、217及び高圧液経路219を備えている。ただし、液経路214は、空気熱交換器3及び一方の第1膨張弁106を接続し、液経路217は、他方の第1膨張弁206及び水熱交換器4を接続している。
 流れ方向制御機構408は、2つの開経路410、420と、接続経路430と、2つの逆止弁481、482を備えている。開経路410は、接続点P41で液経路214から分岐し、逆止弁481を経由して第1膨張弁106に接続されている。開経路420は、接続点P42で液経路217から分岐し、逆止弁482を経由して第1膨張弁206に接続されている。接続経路430は、2つの第1膨張弁106、206を接続している。開経路410は接続点P43で接続経路430から分岐しており、開経路420は接続点P44で接続経路430から分岐している。高圧液経路219は接続点P45で接続経路430に接続されている。逆止弁481は開経路410上で接続点P41、P43の間に配置されており、接続点P43が逆止弁481の出口側に位置する。逆止弁482は開経路420上で接続点P42、P44の間に配置されており、接続点P44が逆止弁482の出口側に位置する。
 冷水運転では、第2膨張弁206の開度を制御する。空気熱交換器3からの冷媒は、液経路214から、接続点P41を冷媒流入部として、第1膨張弁106または逆止弁481、接続点P43、接続経路430、接続点P44、第2膨張弁206、接続点P42、及び液経路217を経由して、水熱交換器4に流れる。また、この冷媒は、接続経路430から接続点P45及び高圧圧液経路219を経由して第2膨張弁7に流れる。温水運転では、第1膨張弁106の開度が制御される。温水運転では、水熱交換器4からの冷媒は、液経路217から、接続点P42を冷媒流入部として、第2膨張弁または逆止弁482、接続点P44、接続経路430、接続点P43、第1膨張弁106及び液経路214を経由して、空気熱交換器3に流れる。また、この冷媒は、接続経路430から接続点P45及び高圧液経路219を経由して第2膨張弁7に流れる。
(本実施形態の効果)
 本実施形態に係るヒートポンプチラー100は、上述の構成により次の効果を有している。
(1)第1-4実施形態に係るヒートポンプチラーは、空気熱交換器3と、水熱交換器4と、運転切替機構(四方弁2)と、エンジン排熱回収器5と、第1膨張弁6と、第2膨張弁7と、流れ方向制御機構8と、流量調整弁(三方弁33)と、制御装置50を備えている。制御装置50は、冷水運転時に回転数の低下により圧縮機1が失速する虞がある場合、冷媒及び排熱媒体(冷却水)がエンジン排熱回収器5を流れるように第2膨張弁7及び流量調整弁(三方弁33)を開く。
 冷水運転時に冷媒及び排熱媒体(冷却水)がエンジン排熱回収器5を流れると、エンジン排熱回収器5で熱交換が行われるため、相対的に水熱交換器4における熱交換量が小さくなる。このため、第1-4実施形態に係るヒートポンプチラーは、圧縮機の駆動を停止させることなく、冷水運転時に水熱交換器における熱交換量を圧縮機の許容最低回転数に基づいて定まる能力より下げることができる。
(2)第1-4実施形態に係るヒートポンプチラーにおいて、制御装置50は、回転数が所定回転数以下であり且つ出水温度センサ43の検出値が目標温度以下である場合、又は回転数が所定回転数以下であり且つ冷媒低圧が所定圧力以下である場合に、圧縮機1の必要回転数が許容最低回転数以下であると判定する。
 このため、第1-4実施形態に係るヒートポンプチラーは、水の温度制御に必要な構成を利用して、圧縮機1の必要回転数が許容最低回転数以下になるか否かを判定できる。
(3)第1-4実施形態に係るヒートポンプチラーにおいて、制御装置50は、温水運転の実行中且つエンジン排熱回収器5に排熱媒体(冷却水)が流されているときに、合流経路12aを流れる冷媒の過熱度に基づいて第1膨張弁6、106、206の開度を制御し、低圧ガス経路21を流れる冷媒の過熱度に基づいて、第2膨張弁7の開度を制御する。
 冷媒低圧及び冷媒高圧は、水回路40側における負荷の大きさに応じて変化する。また、水熱交換器4及びエンジン排熱回収器5のそれぞれを流れる冷媒の流量が調整されると、冷媒低圧及び冷媒高圧が変化する。このため、第1-4実施形態に係るヒートポンプチラーは、冷媒低圧及び冷媒高圧を許容される範囲内に留めながら、対応できる負荷の範囲を拡張できる。
  1 圧縮機
  2 四方弁(運転切替機構)
  3 空気熱交換器
  4 水熱交換器
  5 エンジン排熱回収器
  6、106、206 第1膨張弁
  7 第2膨張弁
  8 流れ方向制御機構
 31 エンジン
 33 三方弁(流量調整弁)
 50 制御装置
100 ヒートポンプチラー

Claims (3)

  1.  冷媒を圧縮する圧縮機をエンジンにより駆動し、前記冷媒の凝縮熱又は蒸発熱により熱媒体としての水の温度を調節する、エンジン駆動ヒートポンプチラーであって、
     空気を放熱源として冷媒を液化する凝縮器、又は空気を吸熱源として冷媒を気化する蒸発器として機能する空気熱交換器と、
     気液二相冷媒を放熱源として前記水を冷却する冷却器、又は前記圧縮機の吐出冷媒を吸熱源として水を加熱する加熱器として機能する水熱交換器と、
     前記水熱交換器を冷却器として機能させる冷水運転と、前記水熱交換器を加熱器として機能させる温水運転とを切り替える運転切替機構と、
     排熱媒体を介して前記エンジンの排熱を吸熱源とする冷媒の蒸発器として機能するエンジン排熱回収器と、
     前記温水運転時では前記空気熱交換器に向かう液状態の前記冷媒の流量を調整し、前記冷水運転時では前記水熱交換器に向かう液状態の前記冷媒の流量を調節する第1膨張弁と、
     前記エンジン排熱回収器に向かう液状態の前記冷媒の流量を調節する第2膨張弁と、
     その冷媒流入部の下流に第1膨張弁及び第2膨張弁が並列に配置される流れ方向制御機構と、
     前記エンジン排熱回収器を流れる前記排熱媒体の流量を調節する流量調整弁と、
     設定された目標温度に、前記水熱交換器から排出される水の温度が収束するように、前記圧縮機の回転数を制御する制御装置と、を備えており、
     前記制御装置は、前記冷水運転時に、前記回転数の低下により前記圧縮機の必要回転数が許容最低回転数以下である場合、前記冷媒及び前記排熱媒体が前記エンジン排熱回収器を流れるように前記第2膨張弁及び前記流量調整弁の開度を制御するように構成されている、エンジン駆動ヒートポンプチラー。
  2.  前記制御装置は、前記回転数が所定回転数以下であり且つ排出される前記水の温度が前記目標温度以下である場合、又は前記回転数が所定回転数以下であり且つ前記圧縮機に戻る前記冷媒の圧力である冷媒低圧が所定圧力以下である場合に、前記圧縮機の必要回転数が許容最低回転数以下であると判定するように構成されている、請求項1に記載のエンジン駆動ヒートポンプチラー。
  3.  前記制御装置は、前記温水運転の実行中且つ前記エンジン排熱回収器に前記排熱媒体が流されているときに、前記空気熱交換器を通過した前記冷媒に前記エンジン排熱回収器を通過した前記冷媒が合流した後の前記冷媒の過熱度に基づいて、前記第1膨張弁の開度を制御し、前記エンジン排熱回収器を通過した後の且つ合流前の前記冷媒の過熱度に基づいて、前記第2膨張弁の開度を制御する、請求項1又は2に記載のエンジン駆動ヒートポンプチラー。
PCT/JP2013/073175 2012-09-06 2013-08-29 エンジン駆動ヒートポンプチラー WO2014038469A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2013313564A AU2013313564B2 (en) 2012-09-06 2013-08-29 Engine-driven heat pump chiller
CN201380046408.6A CN104620063B (zh) 2012-09-06 2013-08-29 发动机驱动热泵冷却机
EP13835393.3A EP2918950B1 (en) 2012-09-06 2013-08-29 Engine-driven heat pump chiller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-196127 2012-09-06
JP2012196127A JP5841921B2 (ja) 2012-09-06 2012-09-06 エンジン駆動ヒートポンプチラー

Publications (1)

Publication Number Publication Date
WO2014038469A1 true WO2014038469A1 (ja) 2014-03-13

Family

ID=50237081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073175 WO2014038469A1 (ja) 2012-09-06 2013-08-29 エンジン駆動ヒートポンプチラー

Country Status (5)

Country Link
EP (1) EP2918950B1 (ja)
JP (1) JP5841921B2 (ja)
CN (1) CN104620063B (ja)
AU (1) AU2013313564B2 (ja)
WO (1) WO2014038469A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120260688A1 (en) * 2009-12-28 2012-10-18 Daikin Europe N.V. Heat pump system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318021B2 (ja) * 2014-06-24 2018-04-25 ヤンマー株式会社 ヒートポンプ式チラー
JP6342727B2 (ja) * 2014-06-24 2018-06-13 ヤンマー株式会社 ヒートポンプ式チラー
JP6290724B2 (ja) * 2014-06-24 2018-03-07 ヤンマー株式会社 チラーシステム
CN105841390B (zh) * 2016-03-31 2018-06-26 山东省食品发酵工业研究设计院 一种用于集中供热系统的燃气驱动空气源热泵供热机组
US10639957B2 (en) 2017-03-29 2020-05-05 Ford Global Technologies, Llc Vehicle compressor system
JP7068861B2 (ja) * 2018-02-28 2022-05-17 大阪瓦斯株式会社 チラーシステム
CN109341157A (zh) * 2018-10-16 2019-02-15 宁波市海智普智能科技有限公司 一种实现空调、地暖、生活热水三联供的热泵系统
CN109990497A (zh) * 2019-03-04 2019-07-09 南京天加环境科技有限公司 一种低温型燃气热泵空调系统及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837456A (ja) * 1982-06-25 1983-03-04 株式会社荏原製作所 暖房装置
JPS5960155A (ja) 1982-09-29 1984-04-06 株式会社荏原製作所 熱機関駆動ヒ−トポンプ装置
JPS6284270A (ja) * 1985-10-08 1987-04-17 ヤンマーディーゼル株式会社 エンジンヒ−トポンプ
JPS6284272A (ja) * 1985-10-08 1987-04-17 ヤンマーディーゼル株式会社 エンジンヒ−トポンプのアキユムレ−タ構造
JPH01139969A (ja) * 1987-11-26 1989-06-01 Yanmar Diesel Engine Co Ltd ヒートポンプ装置
JPH02140568A (ja) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd ヒートポンプ式冷凍装置
JP2002340434A (ja) * 2001-05-16 2002-11-27 Aisin Seiki Co Ltd ヒートポンプ
JP2006250438A (ja) * 2005-03-10 2006-09-21 Yanmar Co Ltd エンジン駆動式ヒートポンプ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535598A (en) * 1984-05-14 1985-08-20 Carrier Corporation Method and control system for verifying sensor operation in a refrigeration system
JPS6213962A (ja) * 1985-07-10 1987-01-22 株式会社日立製作所 冷凍装置の凍結防止制御装置
GB8709096D0 (en) * 1987-04-15 1987-05-20 Sea Containers Ltd Refrigerated tank container
JPH02140572A (ja) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd ヒートポンプ式冷凍装置
JPH07151429A (ja) * 1993-11-30 1995-06-16 Toshiba Corp 空気調和機
JPH1078266A (ja) * 1996-09-04 1998-03-24 Nippon P-Mac Kk 水熱源空気調和装置の制御方法及び保護機能を有する水熱源空気調和装置
JP2000154941A (ja) * 1998-11-19 2000-06-06 Matsushita Electric Ind Co Ltd 冷凍装置
JP5030344B2 (ja) * 2001-08-31 2012-09-19 三菱重工業株式会社 ガスヒートポンプ式空気調和装置、エンジン冷却水加熱装置及びガスヒートポンプ式空気調和装置の運転方法
JP3973438B2 (ja) * 2002-02-06 2007-09-12 三洋電機株式会社 空気調和装置
JP2006132818A (ja) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd 冷凍サイクル装置の制御方法およびそれを用いた冷凍サイクル装置
JP2007127307A (ja) * 2005-11-01 2007-05-24 Ebara Refrigeration Equipment & Systems Co Ltd 冷凍機及びその運転方法
JP5098472B2 (ja) * 2007-07-06 2012-12-12 三浦工業株式会社 冷凍機を用いたチラー
JP5095295B2 (ja) * 2007-08-03 2012-12-12 東芝キヤリア株式会社 給湯装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837456A (ja) * 1982-06-25 1983-03-04 株式会社荏原製作所 暖房装置
JPS5960155A (ja) 1982-09-29 1984-04-06 株式会社荏原製作所 熱機関駆動ヒ−トポンプ装置
JPS6284270A (ja) * 1985-10-08 1987-04-17 ヤンマーディーゼル株式会社 エンジンヒ−トポンプ
JPS6284272A (ja) * 1985-10-08 1987-04-17 ヤンマーディーゼル株式会社 エンジンヒ−トポンプのアキユムレ−タ構造
JPH01139969A (ja) * 1987-11-26 1989-06-01 Yanmar Diesel Engine Co Ltd ヒートポンプ装置
JPH02140568A (ja) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd ヒートポンプ式冷凍装置
JP2002340434A (ja) * 2001-05-16 2002-11-27 Aisin Seiki Co Ltd ヒートポンプ
JP2006250438A (ja) * 2005-03-10 2006-09-21 Yanmar Co Ltd エンジン駆動式ヒートポンプ
JP4549205B2 (ja) 2005-03-10 2010-09-22 ヤンマー株式会社 エンジン駆動式ヒートポンプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120260688A1 (en) * 2009-12-28 2012-10-18 Daikin Europe N.V. Heat pump system
US10184695B2 (en) * 2009-12-28 2019-01-22 Daikin Industries, Ltd. Heat pump system having controllable flow rate adjustment valves

Also Published As

Publication number Publication date
AU2013313564B2 (en) 2017-12-14
EP2918950A4 (en) 2016-08-10
CN104620063B (zh) 2016-09-07
AU2013313564A1 (en) 2015-04-23
EP2918950B1 (en) 2020-11-25
JP5841921B2 (ja) 2016-01-13
JP2014052122A (ja) 2014-03-20
CN104620063A (zh) 2015-05-13
EP2918950A1 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5841921B2 (ja) エンジン駆動ヒートポンプチラー
US11761686B2 (en) Methods and systems for controlling integrated air conditioning systems
JP6033297B2 (ja) 空気調和装置
WO2006013834A1 (ja) 冷凍装置
JP5375919B2 (ja) ヒートポンプ
WO2014038470A1 (ja) エンジン駆動ヒートポンプチラー
WO2012032699A1 (ja) 冷凍サイクル装置
JP2006071137A (ja) 冷凍装置
CN113137691A (zh) 磁悬浮空调机组的控制方法
JP2001280669A (ja) 冷凍サイクル装置
JP2007051841A (ja) 冷凍サイクル装置
JP2010002112A (ja) 冷凍装置
JP2009293887A (ja) 冷凍装置
AU2020360865B2 (en) A heat pump
JP5790675B2 (ja) ヒートポンプ
JP6704513B2 (ja) 冷凍サイクル装置
JP2013092369A5 (ja)
JP5841931B2 (ja) エンジン駆動ヒートポンプ
JP2011133132A (ja) 冷凍装置
JP7145632B2 (ja) ハイブリッドヒ-トポンプ装置
JP2009192197A (ja) ヒートポンプサイクル装置
JP7262175B2 (ja) ヒ-トポンプ装置
KR102037715B1 (ko) 냉매시스템
JP2014066439A (ja) エンジン駆動式空気調和装置
EP3966508A2 (en) Heat exchanging system and optimization method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835393

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013835393

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013313564

Country of ref document: AU

Date of ref document: 20130829

Kind code of ref document: A