WO2014038470A1 - エンジン駆動ヒートポンプチラー - Google Patents

エンジン駆動ヒートポンプチラー Download PDF

Info

Publication number
WO2014038470A1
WO2014038470A1 PCT/JP2013/073176 JP2013073176W WO2014038470A1 WO 2014038470 A1 WO2014038470 A1 WO 2014038470A1 JP 2013073176 W JP2013073176 W JP 2013073176W WO 2014038470 A1 WO2014038470 A1 WO 2014038470A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
water
chiller
heat exchanger
path
Prior art date
Application number
PCT/JP2013/073176
Other languages
English (en)
French (fr)
Inventor
啓二 杉森
一就 野田
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2014038470A1 publication Critical patent/WO2014038470A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • F25B2327/001Refrigeration system using an engine for driving a compressor of the internal combustion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to an engine-driven heat pump chiller in which a compressor for compressing a refrigerant is driven by an engine and the temperature of water as a heat medium is adjusted by the heat of condensation or evaporation of the refrigerant.
  • frost adheres to the outdoor heat exchanger.
  • a heat pump chiller that performs a defrosting operation for removing frost is known.
  • Patent Document 1 discloses performing a defrosting operation in a heat pump chiller in which a plurality of chiller units are connected in parallel to a water circuit (paragraphs 0140 to 0147).
  • the number (predetermined number) of chiller units that perform the defrosting operation is set by the number of connected chiller units connected to the water circuit (paragraph 0140). For example, when the number of connected units is four, the predetermined number is set to one, and when the number of connected units is five to eight, the predetermined number is set to two (paragraph 0141) so that the water temperature of the water circuit does not decrease.
  • Patent Document 1 does not indicate the presence of other evaporators used in place of the water heat exchanger during the defrosting operation, and the water temperature generated by the defrosting operation (cooling operation) of a predetermined number of chiller units.
  • the decrease in power must be offset by heating operation of other chiller units.
  • Patent Document 2 discloses performing a defrosting operation in a heat pump chiller connected to a water circuit (paragraph 0034).
  • This heat pump chiller includes an engine exhaust heat recovery unit that uses engine exhaust heat as a heat absorption source as an evaporator used instead of the water heat exchanger.
  • the refrigerant discharged from the compressor is caused to flow to the outdoor heat exchanger during the defrosting operation as in the cooling operation, and then returned to the compressor via the engine exhaust heat recovery device. That is, in the defrosting operation, the refrigerant does not flow through the water heat exchanger that adjusts the temperature of the water.
  • Patent Document 1 discloses a heat pump chiller in which a plurality of chiller units are connected in parallel to a water circuit. However, in order to suppress a decrease in the water temperature of the water circuit during a defrosting operation, a load is applied to another chiller unit. Patent Document 2 does not disclose a heat pump chiller in which a plurality of chiller units are connected in parallel to a water circuit.
  • the present invention provides a configuration that can suppress a decrease in the water temperature of the water circuit during the defrosting operation without applying a load to the chiller unit other than the defrosting operation in the heat pump chiller in which a plurality of chiller units are connected in parallel to the water circuit. To do.
  • An engine-driven heat pump chiller includes a plurality of engine-driven heat pump chiller units that drive a compressor that compresses a refrigerant by an engine and adjust the temperature of water as a heat medium by the condensation heat or evaporation heat of the refrigerant.
  • the chiller unit includes an air heat exchanger that functions as a condenser that liquefies refrigerant using air as a heat radiation source or an evaporator that vaporizes refrigerant using air as a heat absorption source, and a water inlet pipe for introducing the water.
  • a water discharge pipe for discharging the water as a cooler for cooling the water using a gas-liquid two-phase refrigerant as a heat radiation source, or as a heater for heating water using the refrigerant discharged from the compressor as a heat absorption source
  • a first expansion valve that adjusts a flow rate of the refrigerant in a state and adjusts a flow rate of the refrigerant in a liquid state toward the water heat exchanger during the non-warm water operation, and a liquid state toward the engine exhaust heat recovery unit
  • a second expansion valve that adjusts the flow rate of the refrigerant, and a flow rate adjustment valve that adjusts the flow rate of the exhaust heat medium flowing through the engine exhaust heat recovery unit, and each of the inlet pipe and the outlet pipe includes Are connected in parallel, and the defrosting control is performed while at least one of the chiller units does not perform defrosting operation at the same time while the plurality of the chiller units are in hot water operation.
  • the chiller unit that performs the defrosting operation switches the hot water operation to the non-warm water operation by controlling the operation switching mechanism so that the refrigerant does not flow through the water heat exchanger.
  • the first expansion valve is closed, and the opening degrees of the second expansion valve and the flow rate adjustment valve are controlled so that the refrigerant and the exhaust heat medium flow through the engine exhaust heat recovery device.
  • the heat pump chiller according to the present invention can suppress a decrease in the water temperature of the water circuit during the defrosting operation without applying a load to the chiller unit other than the defrosting operation.
  • FIG. 1 is a configuration diagram of a heat pump chiller 1000 according to the present embodiment.
  • the heat pump chiller 1000 includes four chiller units 100A, 100B, 100C, and 100D, and a water circuit 200.
  • the chiller units 100A, 100B, 100C, and 100D have the same configuration, and different reference numerals are provided for the convenience of identification. Hereinafter, when it is not necessary to distinguish the four chiller units, reference numeral 100 is used for the chiller unit.
  • the heat pump chiller 1000 adjusts the temperature of the water flowing through the water circuit 200.
  • the water circuit 200 includes an incoming water main pipe 210, an outgoing water main pipe 220, and the water circuit 40 of each chiller unit 100.
  • the water circuit 40 includes a water inlet branch pipe (water inlet pipe) 41 and a water outlet branch pipe (water outlet pipe) 42.
  • the incoming water branch pipe 41 of each chiller unit 100 is connected in parallel to the incoming water main pipe 210, and the outgoing water branch pipe 42 of each chiller unit 100 is connected in parallel to the outgoing water main pipe 220. Water is distributed from the incoming water main pipe 210 to each chiller unit 100 via each incoming water branch pipe 41, and the temperature is adjusted in each chiller unit 100.
  • the water whose temperature has been adjusted merges from each chiller unit 100 to each water discharge main pipe 220 via each water discharge branch pipe 42 and is discharged from the heat pump chiller 1000.
  • the water circuit 200 may be a part of either a closed circuit or an open circuit. In the case of a closed circuit, the incoming water main pipe 210 and the outgoing water main pipe 220 are connected via a heat exchanger on the load side.
  • the chiller unit 100 can perform any one of hot water operation, cold water operation, and defrosting operation. Below, the structure of the chiller unit 100 is demonstrated first, and a hot water driving
  • FIG. 2 is a configuration diagram of the chiller unit 100 according to the present embodiment.
  • the chiller unit 100 includes a refrigerant circuit 10 through which refrigerant circulates, a cooling water circuit 30 through which engine cooling water circulates, a water circuit 40 through which water flows, a control device 50, and an input device 60.
  • the user commands the operation of the heat pump chiller 100 by operating the input device 60.
  • the control device 50 controls driving of the refrigerant circuit 10, the cooling water circuit 30, and the water circuit 40 based on the input command. By this operation, the chiller unit 100 adjusts the temperature of the water flowing through the water circuit 40.
  • the refrigerant circuit 10 includes a compressor 1, a four-way valve 2, an air heat exchanger 3, a water heat exchanger 4, an engine exhaust heat recovery device 5, a first expansion valve 6, a second expansion valve 7, and a bridge circuit 8. ing.
  • the refrigerant circuit 10 includes a discharge path 11, a suction path 12, a gas path 13, a liquid path 14, a high pressure liquid path 15, a low pressure liquid path 16, a liquid path 17, a gas path 18, a high pressure liquid path 19, and a low pressure liquid path 20. , And a low-pressure gas path 21.
  • the discharge path 11 connects the compressor 1 and the four-way valve 2.
  • the suction path 12 connects the four-way valve 2 and the compressor 1.
  • the gas path 13 connects the four-way valve 2 and the air heat exchanger 3.
  • the liquid path 14 connects the air heat exchanger 3 and the bridge circuit 8.
  • the high pressure liquid path 15 connects the bridge circuit 8 and the first expansion valve 6.
  • the low-pressure liquid path 16 connects the first expansion valve 6 and the bridge circuit 8.
  • the liquid path 17 connects the bridge circuit 8 and the water heat exchanger 4.
  • the gas path 18 connects the water heat exchanger 4 and the four-way valve 2.
  • the high-pressure liquid path 19 branches from the high-pressure liquid path 15 at the connection point P1, and connects the high-pressure liquid path 15 and the second expansion valve 7.
  • the low-pressure liquid path 20 connects the second expansion valve 7 and the engine exhaust heat recovery device 5.
  • the low-pressure gas path 21 connects the engine exhaust heat recovery device 5 and the suction path 12 and joins the suction path 12 at the connection point P2.
  • the merging path 12a points to the downstream side (compressor 1 side) of the connection point P2 in the suction path 12.
  • the compressor 1 sucks the refrigerant from the suction path 12, compresses the refrigerant, and discharges the refrigerant from the discharge path 11.
  • the four-way valve 2 connects the discharge path 11 to the gas path 13 and the suction path 12 to the gas path 18 during cold water operation, and connects the discharge path 11 to the gas path 18 and the suction path 12 to the gas path 13 during hot water operation.
  • the cold water operation refers to an operation state in which water in the water circuit 40 is cooled
  • the hot water operation refers to an operation state in which water in the water circuit 40 is heated.
  • the air heat exchanger 3 functions as a condenser that liquefies refrigerant using air as a heat radiation source during cold water operation, and functions as an evaporator that vaporizes refrigerant using air as a heat absorption source during hot water operation.
  • the water heat exchanger 4 functions as a cooler that cools water using a gas-liquid two-phase refrigerant as a heat radiation source during cold water operation, and functions as a heater that heats water using the refrigerant in the discharge path 11 as a heat absorption source during hot water operation.
  • the engine exhaust heat recovery unit 5 functions as an evaporator that evaporates the refrigerant using the exhaust heat of the engine 31 as a heat absorption source via engine cooling water, as will be described later.
  • the first expansion valve 6 adjusts the flow rate of the liquid refrigerant toward the air heat exchanger 3 during the hot water operation, and adjusts the flow rate of the liquid refrigerant toward the water heat exchanger 4 during the cold water operation.
  • the second expansion valve 7 adjusts the flow rate of the refrigerant in the liquid state toward the engine exhaust heat recovery unit 5.
  • a first expansion valve 6 and a second expansion valve 7 are arranged in parallel downstream of the bridge circuit 8. As a result, the water heat exchanger 4 and the engine exhaust heat recovery device 5 are arranged in parallel in the refrigerant flow direction during cold water operation, and the air heat exchanger 3 and the engine exhaust heat recovery device in the refrigerant flow direction during hot water operation. 5 are arranged in parallel. Next, the configuration of the bridge circuit 8 will be described.
  • the bridge circuit 8 includes a closed path 80 and four check valves 81, 82, 83, and 84.
  • the four check valves 81, 82, 83, 84 are arranged on the closed path 80.
  • the inlets of the two check valves 81 and 82 are disposed on the opposite side to the inlets of the other two check valves 83 and 84.
  • Connection points P3, P4, P5, and P6 are provided between two adjacent check valves 81, 82, 83, and 84, respectively.
  • the liquid path 14 is connected to the connection point P3, the high pressure liquid path 15 is connected to the connection point P4, the liquid path 17 is connected to the connection point P4, and the low pressure liquid path 16 is connected to the connection point P5.
  • the operation of the bridge circuit 8 will be described in the description of the cold water operation and the hot water operation described later.
  • the cooling water circuit 30 includes an engine 31, a thermostat valve 32, a three-way valve 33, a radiator 34, and the engine exhaust heat recovery unit 5 described above.
  • the engine 31 drives the compressor 1.
  • the engine exhaust heat recovery device 5 belongs to both the refrigerant circuit 10 and the cooling water circuit 30.
  • the cooling water circuit 30 includes a main path 35, a return path 36, and an exhaust heat recovery path 37.
  • the main path 35 returns cooling water from the engine 31 to the engine 31 via the thermostat valve 32, the three-way valve 33, and the radiator 34.
  • the return path 36 branches from the main path 35 at the thermostat valve 32 and joins the main path 35 on the downstream side of the radiator 34.
  • the exhaust heat recovery path 37 branches from the main path 35 at the three-way valve 33 and joins the main path 35 on the downstream side of the radiator 34 via the engine exhaust heat recovery unit 5.
  • the thermostat valve 32 opens one of the main path 35 and the return path 36 based on the temperature of the cooling water in the main path 35 or the engine 31 and closes the other.
  • a predetermined temperature for example, 60 ° C.
  • the thermostat valve 32 closes the main path 35 and opens the return path 36.
  • the cooling water circulates only through the engine 31 and the thermostat valve 32. That is, the low-temperature cooling water is not supplied to the radiator 34 and the engine exhaust heat recovery unit 5.
  • the thermostat valve 32 opens the main path 35 and closes the return path 36.
  • the three-way valve (flow control valve) 33 adjusts the opening degree of the main path 35 and the exhaust heat recovery path 37 based on a command from the control device 50, and the cooling water flowing through the main path 35 and the exhaust heat recovery path 37. Change the flow rate.
  • the three-way valve 33 can also completely close one of the main path 35 and the exhaust heat recovery path 37.
  • the cooling water returns to the engine 31 via the radiator 34.
  • the three-way valve 33 opens the exhaust heat recovery path 37, the cooling water returns to the engine 31 via the engine exhaust heat recovery device 5.
  • the engine exhaust heat recovery device 5 can function as a refrigerant evaporator using the exhaust heat of the engine 31 as a heat absorption source via the engine cooling water.
  • the water circuit 40 includes a water heat exchanger 40, a water inlet path 41, and a water outlet path 42.
  • the water heat exchanger 40 belongs to both the refrigerant circuit 10 and the water circuit 40.
  • the chiller unit 100 includes various sensors.
  • the refrigerant circuit 10 includes a first pressure sensor 61, a first temperature sensor 71, a second pressure sensor 62, and a second temperature sensor 72.
  • the first pressure sensor 61 and the first temperature sensor 71 respectively detect the pressure and temperature of the refrigerant in the merge path 12a.
  • the second pressure sensor 62 and the second temperature sensor 72 detect the pressure and temperature of the refrigerant in the low-pressure gas path 21, respectively.
  • the coolant circuit 30 includes a rotation speed sensor 38 that detects the rotation speed of the engine 31.
  • the water circuit 40 includes an incoming water temperature sensor 43 and an outgoing water temperature sensor 44.
  • the incoming water temperature sensor 43 detects the temperature of water in the incoming water path 41
  • the outgoing water temperature sensor 44 detects the temperature of water in the outgoing water path 41.
  • FIG. 3 is a configuration diagram of the chiller unit 100 in the cold water operation.
  • the four-way valve 2 connects the discharge path 11 to the gas path 13 and connects the suction path 12 to the gas path 18. For this reason, the refrigerant in the high-pressure gas state discharged from the compressor 1 flows to the air heat exchanger 3.
  • the air heat exchanger 3 Since the temperature of the refrigerant flowing through the air heat exchanger 3 is higher than the temperature of the air flowing through the air heat exchanger 3, heat is transferred from the refrigerant to the air. As a result, the refrigerant loses heat of condensation and liquefies, and becomes a high-pressure liquid refrigerant. That is, the air heat exchanger 3 functions as a refrigerant condenser using air as a heat radiation source.
  • the refrigerant in the high-pressure liquid state flows from the air heat exchanger 3 to the connection point P3 of the bridge circuit 8 via the liquid path 14.
  • the connection point P3 is located on the outlet side of the check valves 81 and 83 and is located on the inlet side of the check valve 82. Therefore, the refrigerant flows from the connection point P3 to the high-pressure liquid path 15 via the check valve 82 and the connection point P4.
  • the three-way valve 33 is controlled so that the cooling water does not flow through the engine exhaust heat recovery device 5, and the second expansion valve 7 is closed. For this reason, the refrigerant passes only through the first expansion valve 6.
  • the high-pressure liquid refrigerant expands to become a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flows from the low-pressure liquid path 16 to the connection point P6 of the bridge circuit 8.
  • the connection point P6 is on the inlet side of the four check valves 81, 82, 83, and 84
  • the high-pressure liquid refrigerant described above flows through the connection points P3 and P4. Due to the pressure difference, the refrigerant at the connection point P6 can pass only through the check valve 84 and cannot pass through the check valves 81 and 83. For this reason, the low-pressure gas-liquid two-phase refrigerant flows from the connection point P6 to the water heat exchanger 4 via the check valve 84, the connection point P5, and the liquid path 17.
  • the temperature of the refrigerant flowing through the water heat exchanger 4 is lower than the temperature of the water flowing through the water heat exchanger 4, heat moves from water to the refrigerant.
  • the refrigerant is vaporized by obtaining the heat of evaporation, and becomes a refrigerant in a low-pressure gas state.
  • water is cooled by the heat radiation to the refrigerant. That is, the water heat exchanger 4 functions as a cooler of the water circuit 40 using the gas-liquid two-phase refrigerant as a heat radiation source.
  • the refrigerant in the low pressure gas state flows from the water heat exchanger 4 to the gas path 18. Since the suction path 12 is connected to the gas path 18, the refrigerant is sucked into the compressor 1.
  • the refrigerant circulates in the refrigerant circuit 10 along the above-described path.
  • FIG. 4 is a configuration diagram of the chiller unit 100 in the hot water operation.
  • the four-way valve 2 connects the discharge path 11 to the gas path 18 and connects the suction path 12 to the gas path 13. For this reason, the refrigerant in the high-pressure gas state discharged from the compressor 1 flows to the water heat exchanger 4.
  • the temperature of the refrigerant flowing through the water heat exchanger 4 is higher than the temperature of the water flowing through the water heat exchanger 4, heat is transferred from the refrigerant to the water. As a result, the refrigerant loses heat of condensation and liquefies, and becomes a high-pressure liquid refrigerant. Moreover, water is heated by the endothermic heat from the refrigerant. That is, the water heat exchanger 4 functions as a heater of the water circuit 40 that uses the refrigerant in the discharge path 11 as a heat absorption source.
  • the refrigerant in the high-pressure liquid state flows from the water heat exchanger 4 via the liquid path 17 to the connection point P5 of the bridge circuit 8.
  • the connection point P5 is located on the inlet side of the check valve 83 and on the outlet side of the check valves 82 and 84. Therefore, the refrigerant flows from the connection point P5 to the high-pressure liquid path 15 via the check valve 83 and the connection point P4.
  • the refrigerant flows from the high pressure liquid path 15 to the first expansion valve 6 and flows from the connection point P1 of the high pressure liquid path 15 to the second expansion valve 7 via the high pressure liquid path 19. In the hot water operation, the refrigerant passes through the first expansion valve 6 and the second expansion valve 7.
  • the high-pressure liquid refrigerant expands to become a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flows from the low-pressure liquid path 16 to the connection point P6 of the bridge circuit 8.
  • the connection point P6 is on the inlet side of the four check valves 81, 82, 83, and 84, but the above-described high-pressure liquid refrigerant flows through the connection points P4 and P5. Due to the pressure difference, the refrigerant at the connection point P6 can pass only through the check valve 81 and cannot pass through the check valves 82 and 84.
  • the low-pressure gas-liquid two-phase refrigerant flows from the connection point P6 to the air heat exchanger 3 via the check valve 81, the connection point P3, and the liquid path 14.
  • the flow of the refrigerant passing through the second expansion valve 7 will be described later.
  • the air heat exchanger 3 Since the temperature of the refrigerant flowing through the air heat exchanger 3 is lower than the temperature of the air flowing through the air heat exchanger 3, heat is transferred from the air to the refrigerant. As a result, the refrigerant is vaporized by obtaining the heat of evaporation, and becomes a refrigerant in a low-pressure gas state. That is, the air heat exchanger 3 functions as a refrigerant evaporator using air as a heat absorption source.
  • the refrigerant in the low pressure gas state flows from the air heat exchanger 3 to the gas path 13. Since the suction path 12 is connected to the gas path 13, the refrigerant is sucked into the compressor 1.
  • the refrigerant passing through the second expansion valve 7 expands in the second expansion valve 7 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flows to the engine exhaust heat recovery device 5 via the low-pressure liquid path 20.
  • the engine exhaust heat recovery device 5 Since the temperature of the refrigerant flowing through the engine exhaust heat recovery unit 5 is lower than the temperature of the cooling water flowing through the engine exhaust heat recovery unit 5, heat is transferred from the cooling water to the refrigerant. As a result, the refrigerant is vaporized by obtaining the heat of evaporation, and becomes a refrigerant in a low-pressure gas state. That is, the engine exhaust heat recovery device 5 functions as a refrigerant evaporator using cooling water as a heat absorption source.
  • the refrigerant in the low pressure gas state flows from the engine exhaust heat recovery device 5 to the suction path 12 via the low pressure gas path 21.
  • the refrigerant from the engine exhaust heat recovery device 5 merges with the refrigerant from the air heat exchanger 3.
  • the merged refrigerant flows through the merge path 12a and is sucked into the compressor 1.
  • the refrigerant circulates in the refrigerant circuit 10 along the above-described path.
  • FIG. 5 is a configuration diagram of the chiller unit 100 in the defrosting operation.
  • Hot water operation, cooling operation, and defrosting operation have the following relationship.
  • the four-way valve (operation switching mechanism) 2 switches between the hot water operation and the non-warm water operation by switching the flow path in the refrigerant circuit 10.
  • the non-warm water operation indicates a cooling operation and a defrosting operation.
  • the four-way valve 2 is switched to the non-warm water operation, the first expansion valve 6 is closed so that the refrigerant does not flow through the water heat exchanger 4, and the refrigerant and cooling water flow through the engine exhaust heat recovery device 5.
  • the opening degree of the second expansion valve 7 and the flow rate adjustment valve 33 is controlled. Since the first expansion valve 6 is closed, the entire amount of refrigerant flows through the engine exhaust heat recovery device 5.
  • the three-way valve 33 has a small opening so that a part of the cooling water flows through the engine exhaust heat recovery device 5 even if the main path 35 is closed so that the entire amount of cooling water flows through the engine exhaust heat recovery device 5.
  • the main path 35 may be opened.
  • the air heat exchanger 3 functions as a condenser as in the cooling operation
  • the engine exhaust heat recovery device 5 functions as an evaporator instead of the water heat exchanger 4 that functions as an evaporator in the cooling operation.
  • the refrigerant in the high-pressure gas state is supplied to the air heat exchanger 3 as in the cooling operation, so that the piping in the air heat exchanger 3 is heated.
  • the frost attached to the air heat exchanger 3 in the hot water operation is removed.
  • the water temperature does not decrease due to the evaporation of the refrigerant.
  • the chiller unit 100 controls the opening degree of the second expansion valve 7 based on the degree of superheat of the refrigerant flowing through the merge path 12a or the degree of superheat of the refrigerant flowing through the low-pressure gas path 21.
  • the first expansion valve 6 since the first expansion valve 6 is closed, the entire amount of the refrigerant flowing through the low-pressure gas path 21 flows through the merge path 12a. For this reason, the superheat degree of the refrigerant in the junction path 12a is substantially equal to the superheat degree of the refrigerant in the low-pressure gas path 21.
  • the degree of superheat of the refrigerant can be specified by detecting the pressure of the refrigerant and the temperature of the refrigerant. Specifically, the saturated vapor temperature corresponding to the refrigerant pressure is identified based on the saturated vapor line of the refrigerant, and the degree of superheat is identified as the temperature difference between the refrigerant temperature and the saturated vapor temperature. For this reason, the superheat degree of the refrigerant flowing through the merging path 12 a is specified based on the detection value by the first pressure sensor 61 and the detection value by the first temperature sensor 71. Similarly, the degree of superheat of the refrigerant flowing through the low-pressure gas path 21 is specified based on the detection value by the second pressure sensor 62 and the detection value by the second temperature sensor 72.
  • FIG. 6 is a configuration diagram of the heat pump chiller 1000 in the defrost control.
  • Each chiller unit 100 executes defrost control in order to remove frost attached to the air heat exchanger 3. For example, the chiller unit 100 determines that the defrosting operation is necessary when the continuous execution time of the hot water operation exceeds a predetermined time. In order to cope with the case where the need for the defrosting operation occurs in the plurality of chiller units 100, the defrosting control is prepared.
  • the defrosting control is a control for causing the chiller units 100 to perform the defrosting operation alternately at least one unit without performing the defrosting operation at the same time while all the chiller units 100 are operating in the hot water operation. .
  • the heat pump chiller 1000 includes a control mechanism for executing defrost control.
  • the control mechanism is an aggregate of the control devices 50 of all the chiller units 100, and the control devices 50 are connected so as to communicate with each other.
  • one chiller unit 100 is designated as a parent device, and the control device 50 of the parent device causes each chiller unit 100 to perform a snow removal operation.
  • the control mechanism may be a device that is arranged outside each chiller unit 100 and that controls each chiller unit 100 in an integrated manner.
  • three chiller units 100A, 100B, and 100C are operating, and one chiller unit 100D is at rest.
  • the three chiller units 100A, 100B, and 100C that are in operation are all performing hot water operation.
  • the master unit for example, the chiller unit 100A
  • the master unit causes the other two chiller units 100B and 100C to continue the hot water operation.
  • the defrosting operation is executed for a predetermined time, for example.
  • the master unit designates another chiller unit 100B and causes the chiller unit 100B to perform the defrosting operation. In this manner, the master unit designates the chiller unit 100 that performs the defrosting operation in turn, and causes the other chiller units 100 to continue the hot water operation. In this way, while all the chiller units 100 are performing hot water operation while all the chiller units 100 are performing defrost operation at the same time, at least one chiller unit 100 is performing hot water operation, 100 defrosting operations are performed alternately. In addition, when only one chiller unit 100 is performing the hot water operation and it is determined that the defrosting operation is necessary, the process proceeds to the defrosting operation. In this case, another chiller unit 100 is appropriately activated for the hot water operation according to the target water temperature.
  • the heat pump chiller 1000 according to the present embodiment has the following effects due to the above-described configuration.
  • the heat pump chiller 1000 when a plurality of chiller units 100 are performing hot water operation, all the chiller units 100 perform hot water operation on at least one chiller unit 100 without performing defrosting operation at the same time.
  • the defrosting operation is performed on at least one chiller unit 100 in turn while continuing.
  • the operation switching mechanism four-way valve 2 is switched to the non-warm water operation, the first expansion valve 6 is closed so that the refrigerant does not flow through the water heat exchanger 4, and the refrigerant and the exhaust heat medium (cooling water) are supplied.
  • the opening degree of the second expansion valve 7 and the flow rate adjusting valve (three-way valve 33) is controlled so as to flow through the engine exhaust heat recovery device 5.
  • the engine exhaust heat recovery device 5 functions as an evaporator instead of the water heat exchanger 4 when the refrigerant is flown so that the air heat exchanger 3 becomes a condenser as in the cooling operation.
  • the heat pump chiller 1000 according to the present embodiment can suppress a decrease in the water temperature of the water circuit 200 during the defrosting operation without imposing a load on the chiller unit 100.
  • Compressor 2 Four-way valve (Operation switching mechanism) DESCRIPTION OF SYMBOLS 3 Air heat exchanger 4 Water heat exchanger 5 Engine exhaust heat recovery device 6 1st expansion valve 7 2nd expansion valve 8 Position switching mechanism 31 Engine 33 Three-way valve (flow control valve) 41 Inlet branch pipe (inlet pipe) 42 Drainage branch pipe (Drainage pipe) 100, 100A, 100B, 100C, 100D Chiller unit 1000 Engine heat pump chiller

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 ヒートポンプチラー(1000)は、複数のチラーユニット(100)が温水運転を行っているときに全てのチラーユニットが同時期に除霜運転を行うことなく少なくとも1台の前記チラーユニット(100)に温水運転を継続させながら、少なくとも1台ずつ交代で前記チラーユニット(100)に除霜運転を行い、前記除霜運転は、前記運転切替機構(2)を制御することによって前記温水運転を前記非温水運転に切替え、前記冷媒が前記水熱交換器(4)を流れないように前記第1膨張弁(6)を閉じ、前記冷媒及び前記排熱媒体が前記エンジン排熱回収器(5)を流れるように前記第2膨張弁(7)及び前記流量調整弁(33)の開度を制御する運転である。

Description

エンジン駆動ヒートポンプチラー
 本発明は、冷媒を圧縮する圧縮機をエンジンにより駆動し、前記冷媒の凝縮熱又は蒸発熱により熱媒体としての水の温度を調節する、エンジン駆動ヒートポンプチラーに関する。
 低温環境下で暖房運転が継続的に実行されると、室外熱交換器に霜が付着する。従来、霜を除去する除霜運転を行うヒートポンプチラーが知られている。
 特許文献1は、水回路に複数のチラーユニットを並列に接続するヒートポンプチラーにおいて、除霜運転を行うことを開示している(段落0140~0147)。除霜運転を実行するチラーユニットの台数(所定台数)は、水回路に接続されているチラーユニットの接続台数によって設定されている(段落0140)。水回路の水温が低下しないように、例えば接続台数が4台のとき所定台数は1台、接続台数が5~8台のとき所定台数は2台に設定される(段落0141)。しかし、特許文献1は、除霜運転時に、水熱交換器に代えて用いられる他の蒸発器の存在を示しておらず、所定台数のチラーユニットの除霜運転(冷房運転)によって発生する水温の低下を、他のチラーユニットの暖房運転によって打ち消さざるを得ない。
 特許文献2は、水回路に接続されるヒートポンプチラーにおいて、除霜運転を行うことを開示している(段落0034)。このヒートポンプチラーは、水熱交換器に代えて用いられる蒸発器として、エンジン排熱を吸熱源とするエンジン排熱回収器を備えている。このヒートポンプチラーは、除霜運転時に冷房運転と同様に圧縮機から吐出される冷媒を室外熱交換器に流した後、エンジン排熱回収器を経由して圧縮機に戻している。つまり、除霜運転では、水の温度を調節する水熱交換器を冷媒が流れない。
特許第3731095号公報 特許第4549205号公報
 特許文献1は、水回路に複数のチラーユニットを並列に接続するヒートポンプチラーを開示しているが、除霜運転時における水回路の水温低下を抑えるために、他のチラーユニットに負荷を掛けており、特許文献2は、水回路に複数のチラーユニットを並列に接続するヒートポンプチラーを開示していない。
 そこで本発明は、水回路に複数のチラーユニットを並列に接続するヒートポンプチラーにおいて、除霜運転以外のチラーユニットに負荷を掛けることなく除霜運転時における水回路の水温低下を抑制できる構成を提供する。
 本発明に係るエンジン駆動ヒートポンプチラーは、冷媒を圧縮する圧縮機をエンジンにより駆動し、前記冷媒の凝縮熱又は蒸発熱により熱媒体としての水の温度を調節する、エンジン駆動ヒートポンプチラーユニットを複数台設け、前記チラーユニットは、空気を放熱源として冷媒を液化する凝縮器として又は空気を吸熱源として冷媒を気化する蒸発器として機能する空気熱交換器と、前記水を導入するための入水管と前記水を排出するための出水管とを備えており、気液二相冷媒を放熱源として前記水を冷却する冷却器として又は前記圧縮機の吐出冷媒を吸熱源として水を加熱する加熱器として機能する水熱交換器と、前記空気熱交換器を蒸発器として機能させる温水運転と、前記空気熱交換器を凝縮器として機能させる非温水運転とを切り替える運転切替機構と、排熱媒体を介して前記エンジンの排熱を吸熱源とする冷媒の蒸発器として機能するエンジン排熱回収器と、前記温水運転時では前記空気熱交換器に向かう液状態の前記冷媒の流量を調整し、前記非温水運転時では前記水熱交換器に向かう液状態の前記冷媒の流量を調節する第1膨張弁と、前記エンジン排熱回収器に向かう液状態の前記冷媒の流量を調節する第2膨張弁と、前記エンジン排熱回収器を流れる前記排熱媒体の流量を調節する流量調整弁と、を備えており、各々の前記入水管及び前記出水管は、それぞれ並列に接続されており、除霜制御は、複数の前記チラーユニットが温水運転中に全ての前記チラーユニットが同時期に除霜運転を行うことなく少なくとも1台ずつ交代で前記チラーユニットに除霜運転を実行させる制御であり、除霜運転を行う前記チラーユニットは、前記運転切替機構を制御することによって前記温水運転を前記非温水運転に切替え、前記冷媒が前記水熱交換器を流れないように前記第1膨張弁を閉じ、前記冷媒及び前記排熱媒体が前記エンジン排熱回収器を流れるように前記第2膨張弁及び前記流量調整弁の開度を制御する。
 本発明に係るヒートポンプチラーは、除霜運転以外のチラーユニットに負荷を掛けることなく除霜運転時における水回路の水温低下を抑制できる。
本実施形態に係るヒートポンプチラーの構成図である。 本実施形態に係るチラーユニットの構成図である。 冷水運転におけるチラーユニットの構成図である。 温水運転におけるチラーユニットの構成図である。 除霜運転におけるチラーユニットの構成図である。 除霜制御におけるヒートポンプチラーの構成図である。
(本実施形態の構成)
 図1を参照して、本実施形態に係るエンジン駆動ヒートポンプチラー1000を説明する。図1は、本実施形態に係るヒートポンプチラー1000の構成図である。
 図1において、ヒートポンプチラー1000は、4台のチラーユニット100A、100B、100C、100Dと、水回路200とを備えている。チラーユニット100A、100B、100C、100Dは同一の構成を有しており、識別の都合上、異なる符号が設けられている。以下、4つのチラーユニットを区別する必要がない場合、チラーユニットに対して符号100を用いる。
 ヒートポンプチラー1000は、水回路200を流れる水の温度を調節する。水回路200は、入水幹管210、出水幹管220、各チラーユニット100の水回路40から構成されている。水回路40は、入水枝管(入水管)41及び出水枝管(出水管)42を備えている。各チラーユニット100の入水枝管41は並列に入水幹管210に接続されており、各チラーユニット100の出水枝管42は並列に出水幹管220に接続されている。水は、入水幹管210から各入水枝管41を介して各チラーユニット100に分配され、各チラーユニット100において温度を調節される。温度が調節された水は、各チラーユニット100から各出水枝管42を介して出水幹管220に合流し、ヒートポンプチラー1000から排出される。なお、水回路200は、閉回路及び開回路のどちらの一部であってもよい。閉回路の場合、入水幹管210及び出水幹管220は、負荷側の熱交換器を介して接続されている。
 チラーユニット100は、温水運転、冷水運転、及び除霜運転のいずれか1つを実行できる。以下では、まずチラーユニット100の構成を説明し、その上で温水運転、冷水運転、及び除霜運転を説明する。
 図2を参照して、本実施形態に係るチラーユニット100を説明する。図2は、本実施形態に係るチラーユニット100の構成図である。
 チラーユニット100は、冷媒が循環する冷媒回路10、エンジン冷却水が循環する冷却水回路30、水が流れる水回路40、制御装置50、及び入力装置60を備えている。ユーザは、入力装置60を操作することにより、ヒートポンプチラー100の運転を指令する。制御装置50は、入力された指令に基づいて、冷媒回路10、冷却水回路30、及び水回路40の駆動を制御する。この操作により、チラーユニット100は、水回路40を流れる水の温度を調整する。
 冷媒回路10は、圧縮機1、四方弁2、空気熱交換器3、水熱交換器4、エンジン排熱回収器5、第1膨張弁6、第2膨張弁7、及びブリッジ回路8を備えている。
 また、冷媒回路10は、吐出経路11、吸入経路12、ガス経路13、液経路14、高圧液経路15、低圧液経路16、液経路17、ガス経路18、高圧液経路19、低圧液経路20、及び低圧ガス経路21を備えている。吐出経路11は、圧縮機1及び四方弁2を接続している。吸入経路12は、四方弁2及び圧縮機1を接続している。ガス経路13は、四方弁2及び空気熱交換器3を接続している。液経路14は、空気熱交換器3及びブリッジ回路8を接続している。高圧液経路15は、ブリッジ回路8及び第1膨張弁6を接続している。低圧液経路16は、第1膨張弁6及びブリッジ回路8を接続している。液経路17は、ブリッジ回路8及び水熱交換器4を接続している。ガス経路18は、水熱交換器4及び四方弁2を接続している。高圧液経路19は、接続点P1で高圧液経路15から分岐し、高圧液経路15及び第2膨張弁7を接続している。低圧液経路20は、第2膨張弁7及びエンジン排熱回収器5を接続している。低圧ガス経路21は、エンジン排熱回収器5及び吸入経路12を接続しており、接続点P2で吸入経路12に合流している。合流経路12aは、吸入経路12において接続点P2の下流側(圧縮機1側)を指している。
 圧縮機1は、吸入経路12から冷媒を吸入し、その冷媒を圧縮し、その冷媒を吐出経路11から吐出する。四方弁2は、冷水運転時に吐出経路11をガス経路13に且つ吸入経路12をガス経路18に接続し、温水運転時に吐出経路11をガス経路18に且つ吸入経路12をガス経路13に接続する。なお、冷水運転とは、水回路40の水を冷却する運転状態をいい、温水運転とは、水回路40の水を加熱する運転状態をいう。空気熱交換器3は、冷水運転時に空気を放熱源として冷媒を液化する凝縮器として機能し、温水運転時に空気を吸熱源として冷媒を気化する蒸発器として機能する。水熱交換器4は、冷水運転時に気液二相冷媒を放熱源として水を冷却する冷却器として機能し、温水運転時に吐出経路11の冷媒を吸熱源として水を加熱する加熱器として機能する。エンジン排熱回収器5は、後述のようにエンジン冷却水を介してエンジン31の排熱を吸熱源として冷媒を気化する蒸発器として機能する。第1膨張弁6は、温水運転時では空気熱交換器3に向かう液状態の冷媒の流量を調整し、冷水運転時では水熱交換器4に向かう液状態の冷媒の流量を調整する。第2膨張弁7は、エンジン排熱回収器5に向かう液状態の冷媒の流量を調整する。ブリッジ回路8の下流に第1膨張弁6及び第2膨張弁7を並列に配置する。この結果、冷水運転時の冷媒の流れ方向では水熱交換器4及びエンジン排熱回収器5が並列に配置され、温水運転時の冷媒の流れ方向では空気熱交換器3及びエンジン排熱回収器5が並列に配置される。ブリッジ回路8の構成を次に説明する。
 図2において、ブリッジ回路8は、閉経路80と、4つの逆止弁81、82、83、84とを備えている。4つの逆止弁81、82、83、84は、閉経路80上に配置されている。閉経路80において、2つの逆止弁81、82の入口は、他の2つの逆止弁83、84の入口とは反対側に配置されている。逆止弁81、82、83、84の隣り合う2つの間に、それぞれ、接続点P3、P4、P5、P6が設けられている。液経路14は接続点P3に接続されており、高圧液経路15は接続点P4に接続されており、液経路17は接続点P4に接続されており、低圧液経路16は接続点P5に接続されている。ブリッジ回路8の作用は、後述の冷水運転及び温水運転の説明において説明する。
 冷却水回路30は、エンジン31、サーモスタットバルブ32、三方弁33、ラジエータ34、及び前述のエンジン排熱回収器5を備えている。エンジン31は、圧縮機1を駆動する。エンジン排熱回収器5は、冷媒回路10及び冷却水回路30の双方に属している。
 また、冷却水回路30は、主経路35、戻り経路36、及び排熱回収経路37を備えている。主経路35は、エンジン31から、サーモスタットバルブ32及び三方弁33及びラジエータ34を経由して、エンジン31に冷却水を戻す。戻り経路36は、サーモスタットバルブ32において主経路35から分岐し、ラジエータ34の下流側で主経路35に合流する。排熱回収経路37は、三方弁33において主経路35から分岐し、エンジン排熱回収器5を経由してラジエータ34の下流側で主経路35に合流する。
 サーモスタットバルブ32は、主経路35又はエンジン31内の冷却水の温度に基づいて、主経路35及び戻り経路36のいずれか一方を開放し、他方を閉じる。冷却水の温度が所定温度(例えば60℃)未満である場合、サーモスタットバルブ32は主経路35を閉じ且つ戻り経路36を開く。この場合、冷却水はエンジン31及びサーモスタットバルブ32のみを循環する。つまり、低温の冷却水は、ラジエータ34及びエンジン排熱回収器5に供給されない。冷却水の温度が所定温度以上である場合、サーモスタットバルブ32は主経路35を開き且つ戻り経路36を閉じる。三方弁(流量制御弁)33は、制御装置50からの指令に基づいて、主経路35及び排熱回収経路37の開度を調節し、主経路35及び排熱回収経路37を流れる冷却水の流量を変更する。三方弁33は、主経路35及び排熱回収経路37の一方を完全に閉じることもできる。三方弁33が主経路35を開いている場合、冷却水はラジエータ34を経由してエンジン31に戻る。三方弁33が排熱回収経路37を開いている場合、冷却水はエンジン排熱回収器5を経由してエンジン31に戻る。この場合、冷却水がエンジン排熱回収器5に供給されるので、エンジン排熱回収器5がエンジン冷却水を介してエンジン31の排熱を吸熱源とする冷媒の蒸発器として機能できる。
 水回路40は、水熱交換器40、入水経路41、及び出水経路42を備えている。水熱交換器40は、冷媒回路10及び水回路40の双方に属している。
 チラーユニット100は、各種のセンサを備えている。冷媒回路10は、第1圧力センサ61、第1温度センサ71、第2圧力センサ62、及び第2温度センサ72を備えている。第1圧力センサ61及び第1温度センサ71はそれぞれ、合流経路12a内の冷媒の圧力及び温度を検出する。第2圧力センサ62及び第2温度センサ72はそれぞれ、低圧ガス経路21内の冷媒の圧力及び温度を検出する。冷却水回路30は、エンジン31の回転数を検出する回転数センサ38を備えている。水回路40は、入水温度センサ43及び出水温度センサ44を備えている。入水温度センサ43は入水経路41内の水の温度を検出し、出水温度センサ44は出水経路41内の水の温度を検出する。
 図3を参照して、冷水運転を説明する。図3は、冷水運転におけるチラーユニット100の構成図である。
 冷水運転において、四方弁2は吐出経路11をガス経路13に接続し、且つ吸入経路12をガス経路18に接続する。このため、圧縮機1から吐出される高圧ガス状態の冷媒が、空気熱交換器3に流れる。
 空気熱交換器3を流れる冷媒の温度は、空気熱交換器3を流れる空気の温度よりも高いため、冷媒から空気に熱が移動する。この結果、冷媒は凝縮熱を失って液化し、高圧液状態の冷媒になる。つまり、空気熱交換器3は、空気を放熱源とする冷媒の凝縮器として機能している。
 高圧液状態の冷媒は、空気熱交換器3から液経路14を経由してブリッジ回路8の接続点P3に流れる。接続点P3は、逆止弁81、83の出口側に位置し、且つ逆止弁82の入口側に位置している。このため、冷媒は、接続点P3から逆止弁82及び接続点P4を経由して、高圧液経路15に流れる。冷水運転では、冷却水がエンジン排熱回収器5を流れないように三方弁33が制御され、且つ第2膨張弁7が閉じられている。このため、冷媒は第1膨張弁6のみを通過する。第1膨張弁6において高圧液状態の冷媒は膨張し、低圧気液二相冷媒となる。低圧気液二相冷媒は、低圧液経路16からブリッジ回路8の接続点P6に流れる。接続点P6は、4つの逆止弁81、82、83、84の入口側にあるが、上述した高圧液状態の冷媒が接続点P3、P4を流れている。圧力差のため、接続点P6の冷媒は、逆止弁84のみを通過でき、逆止弁81、83を通過できない。このため、低圧気液二相冷媒は、接続点P6から、逆止弁84及び接続点P5及び液経路17を経由して、水熱交換器4に流れる。
 水熱交換器4を流れる冷媒の温度は、水熱交換器4を流れる水の温度より低いため、水から冷媒に熱が移動する。この結果、冷媒は蒸発熱を得て気化し、低圧ガス状態の冷媒になる。また、水は冷媒への放熱により冷却される。つまり、水熱交換器4は、気液二相冷媒を放熱源とする水回路40の冷却器として機能している。
 低圧ガス状態の冷媒は、水熱交換器4からガス経路18に流れる。吸入経路12がガス経路18に接続されているので、冷媒は圧縮機1に吸入される。
 冷水運転が実行されている間、冷媒は上述の経路に沿って冷媒回路10内を循環する。
 図4を参照して、温水運転を説明する。図4は、温水運転におけるチラーユニット100の構成図である。
 温水運転において、四方弁2は吐出経路11をガス経路18に接続し、且つ吸入経路12をガス経路13に接続する。このため、圧縮機1から吐出される高圧ガス状態の冷媒が、水熱交換器4に流れる。
 水熱交換器4を流れる冷媒の温度は、水熱交換器4を流れる水の温度よりも高いため、冷媒から水に熱が移動する。この結果、冷媒は凝縮熱を失って液化し、高圧液状態の冷媒になる。また、水は冷媒からの吸熱により加熱される。つまり、水熱交換器4は、吐出経路11の冷媒を吸熱源とする水回路40の加熱器として機能している。
 高圧液状態の冷媒は、水熱交換器4から液経路17を経由してブリッジ回路8の接続点P5に流れる。接続点P5は、逆止弁83の入口側に位置し、且つ逆止弁82、84の出口側に位置している。このため、冷媒は、接続点P5から逆止弁83及び接続点P4を経由して高圧液経路15に流れる。冷媒は、高圧液経路15から第1膨張弁6へと流れ、且つ高圧液経路15の接続点P1から高圧液経路19を経由して第2膨張弁7へと流れる。温水運転では、冷媒は第1膨張弁6及び第2膨張弁7を通過する。第1膨張弁6において高圧液状態の冷媒は膨張し、低圧気液二相冷媒となる。低圧気液二相冷媒は、低圧液経路16からブリッジ回路8の接続点P6に流れる。接続点P6は、4つの逆止弁81、82、83、84の入口側にあるが、上述した高圧液状態の冷媒が接続点P4、P5を流れている。圧力差のため、接続点P6の冷媒は、逆止弁81のみを通過でき、逆止弁82、84を通過できない。このため、低圧気液二相冷媒は、接続点P6から、逆止弁81及び接続点P3及び液経路14を経由して空気熱交換器3に流れる。第2膨張弁7を通過する冷媒の流れは後述する。
 空気熱交換器3を流れる冷媒の温度は、空気熱交換器3を流れる空気の温度より低いため、空気から冷媒に熱が移動する。この結果、冷媒は蒸発熱を得て気化し、低圧ガス状態の冷媒になる。つまり、空気熱交換器3は、空気を吸熱源とする冷媒の蒸発器として機能している。
 低圧ガス状態の冷媒は、空気熱交換器3からガス経路13に流れる。吸入経路12がガス経路13に接続されているので、冷媒は圧縮機1に吸入される。
 一方、第2膨張弁7を通過する冷媒は、第2膨張弁7において膨張し、低圧気液二相冷媒となる。低圧気液二相冷媒は、低圧液経路20を経由してエンジン排熱回収器5に流れる。
 エンジン排熱回収器5を流れる冷媒の温度は、エンジン排熱回収器5を流れる冷却水の温度より低いため、冷却水から冷媒に熱が移動する。この結果、冷媒は蒸発熱を得て気化し、低圧ガス状態の冷媒になる。つまり、エンジン排熱回収器5は、冷却水を吸熱源とする冷媒の蒸発器として機能している。
 低圧ガス状態の冷媒は、エンジン排熱回収器5から低圧ガス経路21を経由して吸入経路12に流れる。接続点P2において、エンジン排熱回収器5からの冷媒は、空気熱交換器3からの冷媒に合流する。合流した冷媒は、合流経路12aを流れて、圧縮機1に吸入される。
 温水運転が実行されている間、冷媒は上述の経路に沿って冷媒回路10内を循環する。
 図5を参照して、除霜運転を説明する。図5は、除霜運転におけるチラーユニット100の構成図である。
 温水運転、冷房運転、除霜運転は、次の関係にある。四方弁(運転切替機構)2は、冷媒回路10内の流路を切り替えることにより、温水運転と非温水運転とを切り替える。ここで、非温水運転は、冷房運転及び除霜運転を指している。除霜運転は、四方弁2を非温水運転に切替え、冷媒が水熱交換器4を流れないように第1膨張弁6を閉じ、冷媒及び冷却水がエンジン排熱回収器5を流れるように第2膨張弁7及び流量調整弁33の開度を制御する運転である。第1膨張弁6が閉じられているので、冷媒の全量がエンジン排熱回収器5を流れる。一方、三方弁33は、冷却水の全量がエンジン排熱回収器5を流れるように主経路35を閉じても、一部の冷却水がエンジン排熱回収器5を流れるように開度を小さくしながら主経路35を開いていても良い。
 除霜運転では、冷房運転と同様に空気熱交換器3が凝縮器として機能し、冷房運転で蒸発器として機能する水熱交換器4の代わりに、エンジン排熱回収器5が蒸発器として機能する。除霜運転では、冷房運転と同様に空気熱交換器3に高圧ガス状態の冷媒が供給されるので、空気熱交換器3内の配管が加熱される。この結果、温水運転において空気熱交換器3に付着した霜が除去される。また、除霜運転では、冷媒が水熱交換器4を流れないので、冷媒蒸発に伴う水温の低下は生じない。
 除霜運転において、チラーユニット100は、合流経路12aを流れる冷媒の過熱度、又は低圧ガス経路21を流れる冷媒の過熱度に基づいて第2膨張弁7の開度を制御する。除霜運転では、第1膨張弁6が閉じられているので、低圧ガス経路21を流れる冷媒の全量が、合流経路12aを流れている。このため、合流経路12aにおける冷媒の過熱度は、低圧ガス経路21における冷媒の過熱度に実質的に等しい。
 冷媒の過熱度は、冷媒の圧力及び冷媒の温度を検出することによって特定できる。具体的には、冷媒の飽和蒸気線に基づいて冷媒の圧力に対応する飽和蒸気温度が特定され、過熱度が冷媒の温度と飽和蒸気温度との温度差として特定される。このため、合流経路12aを流れる冷媒の過熱度は、第1圧力センサ61による検出値及び第1温度センサ71による検出値に基づいて特定される。同様に、低圧ガス経路21を流れる冷媒の過熱度は、第2圧力センサ62による検出値及び第2温度センサ72による検出値に基づいて特定される。
 図6を参照して、除霜制御を説明する。図6は、除霜制御におけるヒートポンプチラー1000の構成図である。
 各チラーユニット100は、空気熱交換器3に付着した霜を除去するために、除霜制御を実行する。チラーユニット100は、例えば、温水運転の連続実行時間が所定時間を超えている場合に除霜運転が必要と判定する。除霜運転の必要が複数のチラーユニット100で発生した場合に対処するため、除霜制御が用意されている。除霜制御は、複数のチラーユニット100が温水運転中に全てのチラーユニット100が同時期に除霜運転を行うことなく少なくとも1台ずつ交代でチラーユニット100に除霜運転を実行させる制御である。
 ヒートポンプチラー1000は、除霜制御を実行するための制御機構を備えている。本実施形態では、制御機構は全チラーユニット100の制御装置50の集合体であり、各制御装置50は互いに通信可能に接続されている。全チラーユニット100のうち、1台のチラーユニット100が親機に指定され、親機の制御装置50が各チラーユニット100に除雪運転を実行させる。なお、制御機構は、各チラーユニット100の外部に配置されて各チラーユニット100を統括制御する装置であってもよい。
 図6において、3台のチラーユニット100A、100B、100Cが稼働中であり、1台のチラーユニット100Dは休止している。稼働中の3台のチラーユニット100A、100B、100Cは、全て温水運転を実行している。チラーユニット100A、100B、100Cの3台がそれぞれ除霜運転が必要と判定すると、親機(例えばチラーユニット100A)が1台のチラーユニット100Aを指定し、このチラーユニット100Aに除霜運転を実行させる。親機は、他の2台のチラーユニット100B、100Cには、温水運転を継続させる。除霜運転は、例えば所定時間の間、実行される。指定されたチラーユニット100Aの除霜運転が終了すると、親機は、別のチラーユニット100Bを指定し、このチラーユニット100Bに除霜運転を実行させる。このように、親機は、除霜運転を実行させるチラーユニット100を交代で指定し、他のチラーユニット100には温水運転を継続させる。このようにして、複数のチラーユニット100が温水運転中に全てのチラーユニット100が同時期に除霜運転を行うことなく少なくとも1台のチラーユニット100が温水運転を実行しながら、全てのチラーユニット100の除霜運転が交代で実行される。なお、1台のチラーユニット100のみが温水運転を行っていて除霜運転が必要と判定されたときは除霜運転に移行する。この場合は、目標水温に応じて他のチラーユニット100が適宜、温水運転のために起動する。
(本実施形態の効果)
 本実施形態に係るヒートポンプチラー1000は、上述の構成により次の効果を有している。
 本実施形態に係るヒートポンプチラー1000は、複数のチラーユニット100が温水運転を行っているときに全てのチラーユニット100が同時期に除霜運転を行うことなく少なくとも1台のチラーユニット100に温水運転を継続させながら、交代で少なくとも1台のチラーユニット100に除霜運転を行う。除霜運転は、運転切替機構(四方弁2)を非温水運転に切替え、冷媒が水熱交換器4を流れないように第1膨張弁6を閉じ、冷媒及び排熱媒体(冷却水)がエンジン排熱回収器5を流れるように第2膨張弁7及び流量調整弁(三方弁33)の開度を制御する運転である。
 除霜運転では、冷房運転と同様に空気熱交換器3が凝縮器となるように冷媒が流されるときに、水熱交換器4の代わりにエンジン排熱回収器5が蒸発器として機能する。このため、除霜運転が実行されるチラーユニット100において、冷媒蒸発に伴う水熱交換器4内の水温の低下は生じない。したがって、本実施形態に係るヒートポンプチラー1000は、チラーユニット100に負荷を掛けることなく除霜運転時における水回路200の水温低下を抑制できる。
  1 圧縮機
  2 四方弁(運転切替機構)
  3 空気熱交換器
  4 水熱交換器
  5 エンジン排熱回収器
  6 第1膨張弁
  7 第2膨張弁
  8 位置切替機構
 31 エンジン
 33 三方弁(流量調整弁)
 41 入水枝管(入水管)
 42 出水枝管(出水管)
100、100A、100B、100C、100D チラーユニット
1000 エンジンヒートポンプチラー

Claims (1)

  1.  冷媒を圧縮する圧縮機をエンジンにより駆動し、前記冷媒の凝縮熱又は蒸発熱により熱媒体としての水の温度を調節する、エンジン駆動ヒートポンプチラーユニットを複数台設け、
      前記チラーユニットは、
      空気を放熱源として冷媒を液化する凝縮器として又は空気を吸熱源として冷媒を気化する蒸発器として機能する空気熱交換器と、
      前記水を導入するための入水管と前記水を排出するための出水管とを備えており、気液二相冷媒を放熱源として前記水を冷却する冷却器として又は前記圧縮機の吐出冷媒を吸熱源として水を加熱する加熱器として機能する水熱交換器と、
      前記空気熱交換器を蒸発器として機能させる温水運転と、前記空気熱交換器を凝縮器として機能させる非温水運転とを切り替える運転切替機構と、
      排熱媒体を介して前記エンジンの排熱を吸熱源とする冷媒の蒸発器として機能するエンジン排熱回収器と、
      前記温水運転時では前記空気熱交換器に向かう液状態の前記冷媒の流量を調整し、前記非温水運転時では前記水熱交換器に向かう液状態の前記冷媒の流量を調節する第1膨張弁と、
      前記エンジン排熱回収器に向かう液状態の前記冷媒の流量を調節する第2膨張弁と、
      前記エンジン排熱回収器を流れる前記排熱媒体の流量を調節する流量調整弁と、を備えており、
     各々の前記入水管及び前記出水管は、それぞれ並列に接続されており、
     除霜制御は、複数の前記チラーユニットが温水運転中に全ての前記チラーユニットが同時期に除霜運転を行うことなく少なくとも1台ずつ交代で前記チラーユニットに除霜運転を実行させる制御であり、除霜運転を行う前記チラーユニットは、前記運転切替機構を制御することによって前記温水運転を前記非温水運転に切替え、前記冷媒が前記水熱交換器を流れないように前記第1膨張弁を閉じ、前記冷媒及び前記排熱媒体が前記エンジン排熱回収器を流れるように前記第2膨張弁及び前記流量調整弁の開度を制御する、エンジン駆動ヒートポンプチラー。
PCT/JP2013/073176 2012-09-06 2013-08-29 エンジン駆動ヒートポンプチラー WO2014038470A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-196135 2012-09-06
JP2012196135A JP2014052123A (ja) 2012-09-06 2012-09-06 エンジン駆動ヒートポンプチラー

Publications (1)

Publication Number Publication Date
WO2014038470A1 true WO2014038470A1 (ja) 2014-03-13

Family

ID=50237082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073176 WO2014038470A1 (ja) 2012-09-06 2013-08-29 エンジン駆動ヒートポンプチラー

Country Status (2)

Country Link
JP (1) JP2014052123A (ja)
WO (1) WO2014038470A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091435A (zh) * 2014-05-13 2015-11-25 珠海格力电器股份有限公司 化霜控制方法
JP2016008773A (ja) * 2014-06-24 2016-01-18 ヤンマー株式会社 チラーシステム
JP2016008774A (ja) * 2014-06-24 2016-01-18 ヤンマー株式会社 チラーシステム
WO2017049258A1 (en) * 2015-09-18 2017-03-23 Carrier Corporation System and method of freeze protection for a chiller
EP3249321A4 (en) * 2015-02-02 2017-12-27 Mitsubishi Heavy Industries Thermal Systems, Ltd. Control device, control method, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016057854A1 (en) * 2014-10-08 2016-04-14 Inertech Ip Llc Systems and methods for cooling electrical equipment
JP6618430B2 (ja) * 2015-06-16 2019-12-11 大阪瓦斯株式会社 ヒートポンプシステムの検査方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571833A (ja) * 1991-09-11 1993-03-23 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH10122604A (ja) * 1996-10-23 1998-05-15 Daikin Ind Ltd 冷凍装置の制御装置
JP2008039299A (ja) * 2006-08-07 2008-02-21 Yanmar Co Ltd エンジン駆動式ヒートポンプ
JP2009192197A (ja) * 2008-02-18 2009-08-27 Denso Corp ヒートポンプサイクル装置
JP2009236341A (ja) * 2008-03-26 2009-10-15 Sanyo Electric Co Ltd チラーユニット
JP2011127889A (ja) * 2009-11-17 2011-06-30 Osaka Gas Co Ltd マルチ型温調システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571833A (ja) * 1991-09-11 1993-03-23 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH10122604A (ja) * 1996-10-23 1998-05-15 Daikin Ind Ltd 冷凍装置の制御装置
JP2008039299A (ja) * 2006-08-07 2008-02-21 Yanmar Co Ltd エンジン駆動式ヒートポンプ
JP2009192197A (ja) * 2008-02-18 2009-08-27 Denso Corp ヒートポンプサイクル装置
JP2009236341A (ja) * 2008-03-26 2009-10-15 Sanyo Electric Co Ltd チラーユニット
JP2011127889A (ja) * 2009-11-17 2011-06-30 Osaka Gas Co Ltd マルチ型温調システム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091435A (zh) * 2014-05-13 2015-11-25 珠海格力电器股份有限公司 化霜控制方法
JP2016008773A (ja) * 2014-06-24 2016-01-18 ヤンマー株式会社 チラーシステム
JP2016008774A (ja) * 2014-06-24 2016-01-18 ヤンマー株式会社 チラーシステム
CN106461281A (zh) * 2014-06-24 2017-02-22 洋马株式会社 冷却系统
EP3163225A4 (en) * 2014-06-24 2017-06-28 Yanmar Co., Ltd. Chiller system
EP3163219A4 (en) * 2014-06-24 2017-06-28 Yanmar Co., Ltd. Chiller system
CN106461281B (zh) * 2014-06-24 2019-05-14 洋马株式会社 冷却系统
EP3249321A4 (en) * 2015-02-02 2017-12-27 Mitsubishi Heavy Industries Thermal Systems, Ltd. Control device, control method, and program
WO2017049258A1 (en) * 2015-09-18 2017-03-23 Carrier Corporation System and method of freeze protection for a chiller
US11365921B2 (en) 2015-09-18 2022-06-21 Carrier Corporation System and method of freeze protection for a chiller

Also Published As

Publication number Publication date
JP2014052123A (ja) 2014-03-20

Similar Documents

Publication Publication Date Title
WO2014038470A1 (ja) エンジン駆動ヒートポンプチラー
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
JP6599002B2 (ja) 空気調和装置
US7360372B2 (en) Refrigeration system
JP4984453B2 (ja) エジェクタ式冷凍サイクル
JP5841921B2 (ja) エンジン駆動ヒートポンプチラー
JP5213817B2 (ja) 空気調和機
JP6320567B2 (ja) 空気調和装置
JP6410839B2 (ja) 冷凍サイクル装置
KR101401909B1 (ko) 무착상 연속운전용 실외 열교환기가 형성된 히트펌프장치 및 제상방법
JP7455211B2 (ja) 空気調和装置
WO2014029316A1 (zh) 带除霜结构的热泵及其除霜方法
JP5404761B2 (ja) 冷凍装置
WO2007102345A1 (ja) 冷凍装置
KR20160055583A (ko) 히트 펌프
JP2018091540A (ja) 空気調和機
KR101161381B1 (ko) 냉동 사이클 장치
JP2010002112A (ja) 冷凍装置
JP4468888B2 (ja) 空気調和装置
WO2021065156A1 (ja) 熱源ユニット及び冷凍装置
KR20070025278A (ko) 자동차용 히트펌프 시스템
JP6950328B2 (ja) 空気調和装置
JP6602476B2 (ja) 冷凍装置
JP7145632B2 (ja) ハイブリッドヒ-トポンプ装置
KR102037715B1 (ko) 냉매시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834900

Country of ref document: EP

Kind code of ref document: A1