WO2014038176A1 - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2014038176A1 WO2014038176A1 PCT/JP2013/005185 JP2013005185W WO2014038176A1 WO 2014038176 A1 WO2014038176 A1 WO 2014038176A1 JP 2013005185 W JP2013005185 W JP 2013005185W WO 2014038176 A1 WO2014038176 A1 WO 2014038176A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hole
- semiconductor substrate
- mask material
- forming
- insulating film
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 170
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 153
- 239000000463 material Substances 0.000 claims abstract description 77
- 238000005530 etching Methods 0.000 claims abstract description 46
- 238000000206 photolithography Methods 0.000 claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 claims abstract description 29
- 238000001312 dry etching Methods 0.000 claims abstract description 12
- 239000010408 film Substances 0.000 claims description 75
- 239000004020 conductor Substances 0.000 claims description 35
- 239000010409 thin film Substances 0.000 claims description 16
- 238000002161 passivation Methods 0.000 claims description 14
- 238000000059 patterning Methods 0.000 claims description 5
- 230000000873 masking effect Effects 0.000 abstract 4
- 230000003746 surface roughness Effects 0.000 description 7
- 239000002184 metal Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00095—Interconnects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00261—Processes for packaging MEMS devices
- B81C1/00269—Bonding of solid lids or wafers to the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2203/00—Forming microstructural systems
- B81C2203/01—Packaging MEMS
- B81C2203/0118—Bonding a wafer on the substrate, i.e. where the cap consists of another wafer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2203/00—Forming microstructural systems
- B81C2203/07—Integrating an electronic processing unit with a micromechanical structure
- B81C2203/0785—Transfer and j oin technology, i.e. forming the electronic processing unit and the micromechanical structure on separate substrates and joining the substrates
- B81C2203/0792—Forming interconnections between the electronic processing unit and the micromechanical structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present disclosure relates to a method for manufacturing a semiconductor device in which a through electrode structure is formed on a semiconductor substrate.
- a multilayer structure in which two semiconductor substrates are bonded together is used for the purpose of, for example, enhancing the functionality of a semiconductor chip and protecting elements constituting a MEMS (micro-electro-mechanical systems) structure sensor from the external environment.
- a through-electrode structure is used in order to establish electrical continuity between the substrates and draw out the potential of each part formed inside the bonded semiconductor substrate.
- a method disclosed in Patent Document 1 is generally used.
- a through hole is formed in one semiconductor substrate, and an insulating film is formed around the through hole by a thermal oxidation process. Form. Thereafter, a semiconductor substrate having the through hole covered with an insulating film is attached to the support substrate, and then the through hole is filled with metal in a plating step. Then, after the semiconductor substrate is peeled from the support substrate, bonding to the other semiconductor substrate is performed. In this way, a through-hole structure is formed by forming a through hole in one semiconductor substrate and filling the inside with a metal, and then bonding it to the other semiconductor substrate.
- the manufacturing process becomes complicated by using a support substrate, and the surface roughness or warpage of the substrate occurs because various processes are performed before the substrates are bonded together. Will affect the bonding quality. For example, surface roughness occurs due to the effect of peeling from the support substrate, and substrate warpage occurs due to a difference in expansion coefficient between the through hole or the metal filled in the semiconductor substrate and the semiconductor substrate. .
- a through electrode after bonding two semiconductor substrates.
- a photo with a high step such as forming a contact hole in the insulating film located at the bottom of the through hole from the substrate surface side, or patterning the wiring pattern by protecting the metal film inside the through hole.
- a lithography / etching process is required. Therefore, it is desirable to be able to satisfactorily realize a high step photolithography / etching process.
- Photolithography etching steps may be required. That is, when etching a thin film disposed in a recess at a desired position at the bottom of the recess formed on one side of the semiconductor substrate, a high step photolithography / etching process is required. -It is desired that the etching process can be realized satisfactorily.
- the present disclosure provides a method for manufacturing a semiconductor device capable of satisfactorily realizing a high step photolithography etching process in which a desired position of a bottom of a recess formed on one surface side of a semiconductor substrate is etched.
- the first purpose is to provide it.
- the present disclosure does not require a support substrate, can prevent the occurrence of surface roughness and warpage before the substrates are bonded to each other, and can perform etching at high steps to form a through electrode structure. It is a second object to provide a method for manufacturing a semiconductor device.
- a semiconductor substrate having a recess formed on one surface side, a thin film formed on the inner wall surface of the recess, and after forming the thin film, the inside of the recess is defined as a cavity.
- a mask material is disposed on the thin film so as to crosslink the concave portion while remaining, a hole is formed at a position corresponding to the concave portion of the mask material by photolithography, and a difference using the mask material is determined. And performing a process of removing the thin film at a position corresponding to the hole through the hole by the anisotropic dry etching.
- the mask material is formed so as to crosslink the concave portion, and a hole is formed at a position corresponding to the concave portion in the mask material, and the thin film is etched through the hole.
- a first semiconductor substrate on which an element and a connection portion are formed is prepared, a second semiconductor substrate is bonded to one surface side of the first semiconductor substrate, and the first semiconductor substrate Etching a position corresponding to the connecting portion of the second semiconductor substrate after being bonded to the surface from the surface opposite to the first semiconductor substrate, thereby forming a through hole, an inner wall surface of the through hole, and the through hole
- An insulating film is formed on the surface of the second semiconductor substrate including the connection portion exposed in the hole, and after the insulating film is formed, the through hole is bridged while leaving the inside of the through hole as a cavity.
- a first mask material on the insulating film, forming a hole at a position corresponding to the through hole in the first mask material by photolithography, and anisotropic using the first mask material Dry etching Through the insulating film is removed at a position corresponding to the hole, and forming a contact hole for making contact with the conductor layer to expose the connection portion, characterized in that it contains.
- the first mask material is formed so as to crosslink the through hole, and a hole is formed at a position corresponding to the through hole in the first mask material, and a contact hole is formed in the insulating film through the hole. ing.
- a manufacturing method even if there is a high step from the surface of the second semiconductor substrate to the bottom of the through hole, only the first mask material crosslinked on the through hole is exposed by photolithography. High step photolithography is not necessary. For this reason, a hole can be formed well in the mask material, and a contact hole can be formed well even by high step etching by anisotropic dry etching through the hole. Therefore, it is possible to satisfactorily realize a high step photolithography etching process that is difficult to realize.
- the through electrode structure can be formed satisfactorily.
- the first semiconductor substrate and the second semiconductor substrate are bonded together before the through hole is formed.
- a support substrate is not required, surface roughness and warpage before the substrates are bonded can be prevented, and a through electrode structure can be formed by performing high-level etching well.
- the hole of the method for manufacturing a semiconductor device according to the second aspect is characterized in that the diameter of the hole is smaller than the diameter of the through hole.
- Such a hole can prevent the normal line of the second semiconductor substrate passing through the hole from passing through the portion of the insulating film formed on the side wall surface of the through hole. Therefore, during anisotropic dry etching, only the portion of the insulating film located at the bottom of the through hole can be removed without damaging the side wall of the through hole.
- FIG. 3 is an enlarged cross-sectional view of a through electrode structure portion of a semiconductor device manufactured by the semiconductor device manufacturing method according to the first embodiment of the present disclosure.
- (A)-(d) is sectional drawing which showed the manufacturing process about the penetration electrode structure part of the semiconductor device shown in FIG.
- (A)-(d) is sectional drawing which shows the manufacturing process following FIG.2 (a)-(d).
- (A)-(d) is sectional drawing which shows the manufacturing process following FIG.3 (a)-(d). It is the elements on larger scale near contact hole 5a.
- FIG. (A)-(d) is sectional drawing which showed the manufacturing process about the etching process part of the semiconductor device manufactured by the manufacturing method of the semiconductor device concerning other embodiment.
- a first embodiment of the present disclosure will be described. Here, only the portion of the through electrode structure in the semiconductor device formed by bonding two semiconductor substrates will be described, but actually, other elements and the like are formed.
- the present disclosure can be applied to various semiconductor devices provided with such a through electrode structure.
- the present disclosure can be applied to a semiconductor device in which another semiconductor substrate constituting a wiring pattern is bonded to a semiconductor substrate on which an integrated circuit is formed.
- the present disclosure can also be applied to a semiconductor device in which a semiconductor substrate constituting a cap is bonded to the surface of a semiconductor substrate on which a sensor having a MEMS structure such as an acceleration sensor is formed.
- a second semiconductor substrate 3 is bonded to the surface of a first semiconductor substrate 1 on which an integrated circuit, a MEMS structure sensor, and the like are formed via an insulating film 2 made of an oxide film or the like. Yes.
- the first semiconductor substrate 1 and the second semiconductor substrate 3 for example, silicon substrates are used.
- a connecting portion 4 is formed on the surface of the first semiconductor substrate 1, and the connecting portion 4 is exposed from the insulating film 2 through a contact hole 2 a formed at a position corresponding to the connecting portion 4 in the insulating film 2.
- the connection portion 4 is a portion that is electrically connected to a desired portion of the first semiconductor substrate 1.
- the connection portion 4 is a pad or the like connected to the wiring pattern drawn from the integrated circuit on the surface of the first semiconductor substrate 1.
- the connection portion 4 is a case of an acceleration sensor or the like having each part of the MEMS structure, for example, a movable electrode and a fixed electrode.
- a diffusion layer or the like for electrical connection with the fixed electrode or the movable electrode is used.
- the diffusion layer and the like are generally electrically connected by extending to each part of the MEMS structure, but the first semiconductor substrate 1 itself doped with impurities may be used as the wiring.
- the connection part 4 constituted by a diffusion layer is connected to each part of the MEMS structure via the first semiconductor substrate 1.
- a through hole 3a penetrating the front and back is formed at a position corresponding to the connection portion 4.
- the contact hole 2a formed in the insulating film 2 is formed at a position corresponding to the through hole 3a.
- connection portion 4 The surface of the second semiconductor substrate 3 including the inner wall surface of the through hole 3a and the exposed surface of the connection portion 4 are covered with an insulating film 5.
- a contact hole 5 a is also formed at a position corresponding to the connection portion 4 in the insulating film 5. For this reason, in the through-hole 3a, the connection part 4 is also exposed from the insulating film 5 through the contact hole 5a.
- the conductor layer 6 made of metal is patterned on the surface of the insulating film 5 including the inside of the through hole 3a and the contact hole 5a.
- electrical connection from the surface side of the second semiconductor substrate 3 to the connection portion 4 can be performed through the conductor layer 6. Therefore, the potential of the connection portion 4 provided in the first semiconductor substrate 1 can be extracted from the surface of the second semiconductor substrate 3 opposite to the first semiconductor substrate 1 through the through holes 3a and the contact holes 2a and 5a. It has become.
- the passivation film 7 is formed so that the surface of the conductor layer 6 may be covered as needed, and protection of the elements etc. which were formed in the conductor layer 6 and the 1st semiconductor substrate 1 is achieved. In this case, the passivation film 7 is removed at a desired position to expose the conductor layer 6, and the potential can be drawn from the connection portion 4 using the exposed portion as a pad.
- FIGS. 2 (a) to 4 (d) a method of manufacturing the semiconductor device configured as described above will be described with reference to FIGS. 2 (a) to 4 (d).
- FIGS. 2 (a) to 4 (d) a method of manufacturing the semiconductor device configured as described above will be described with reference to FIGS. 2 (a) to 4 (d).
- FIGS. 2 (a) to 4 (d) a method of manufacturing the semiconductor device configured as described above will be described with reference to FIGS. 2 (a) to 4 (d).
- FIGS. 2 (a) to 4 (d) a method of manufacturing the semiconductor device configured as described above will be described with reference to FIGS. 2 (a) to 4 (d).
- FIGS. 2 (a) to 4 (d) a method of manufacturing the semiconductor device configured as described above will be described with reference to FIGS. 2 (a) to 4 (d).
- FIGS. 2 (a) to 4 (d) a method of manufacturing the semiconductor device configured as described above will be described with reference to FIGS. 2
- a first semiconductor substrate 1 on which an element such as an integrated circuit or a sensor having a MEMS structure and a connection portion 4 are formed by a known method is prepared.
- the second semiconductor substrate 3 is prepared, and the insulating film 2 is formed on the back surface of the second semiconductor substrate 3, that is, one surface that is bonded to the first semiconductor substrate 1.
- the insulating film 2 is formed on the back surface of the second semiconductor substrate 3 by forming an oxide film by thermal oxidation or the like.
- the second semiconductor substrate 3 is disposed on the surface of the first semiconductor substrate 1, that is, one surface on which the connection portion 4 is formed, and the first semiconductor substrate 1 and the second semiconductor substrate are interposed via the insulating film 2.
- the second semiconductor substrate 3 is bonded by, for example, direct bonding. Then, if necessary, the second semiconductor substrate 3 is ground and polished from the surface to adjust the thickness to be suitable for forming the through electrode structure.
- the second semiconductor substrate 3 is preferably set to a thickness of about several tens to 200 ⁇ m (for example, 100 ⁇ m).
- an etching mask (not shown) that opens a region where the through hole 3 a is to be formed is disposed. Then, the second semiconductor substrate 3 is etched using the etching mask to form a through hole 3 a penetrating the front and back of the second semiconductor substrate 3, and a contact hole 2 a is formed in the insulating film 2.
- the through hole 3 a may be formed such that the side wall surface of the through hole 3 a is perpendicular to the surface of the second semiconductor substrate 3, but the opening increases as the surface advances from the surface of the second semiconductor substrate 3 to the back surface. It is desirable to have a forward taper shape in which the area is gradually reduced. By doing in this way, when the insulating film 5, the conductor layer 6, etc. are formed in the through-hole 3a in a subsequent process, it is possible to improve the film attachment on the side wall surface of the through-hole 3a.
- the method of making the through-hole 3a forward-taper is known in the art and will not be described in detail, but can be easily performed only by setting the etching conditions.
- the diameter of the through hole 3a on the front surface side of the second semiconductor substrate 3 is set to be about 50 to 150 ⁇ m, and the taper angle, that is, the back surface of the second semiconductor substrate 3 and the inner wall surface of the through hole 3a are formed. It is preferable that the angle is 70 to 80 °.
- the insulating film 5 is formed on the surface of the second semiconductor substrate 3 including the inner wall surface of the through hole 3a and the surface of the connection part 4 exposed from the through hole 3a by CVD or thermal oxidation. At this time, even if the CVD method is used, if the inner wall surface of the through-hole 3a has a forward taper shape as described above, the insulating film can be formed on the inner wall surface of the through-hole 3a with a good film. 5 can be formed.
- a mask material 10 (first mask material) is formed by performing film formation by a tenting method on the surface of the second semiconductor substrate 3 by spin coating of a photosensitive resist or pasting of a dry film. At this time, the mask material 10 is bridged on the through-hole 3a while leaving the inside of the through-hole 3a as a cavity, and covers the insulating film 5 and the second semiconductor substrate 3 as a base material including the inside of the through-hole 3a. Become. Then, through a photolithography process, a hole 10a having a diameter of, for example, about 20 to 50 ⁇ m smaller than the diameter of the through hole 3a is formed at a position corresponding to the through hole 3a in the mask material 10. Although the thickness of the mask material 10 is arbitrary, the thickness is adjusted so that the thermal expansion of the gas in the cavity formed in the through hole 3a can be suppressed during baking before exposure in the photolithography process. Yes.
- a resist material constituting such a mask material 10 for example, PMER P-CT700XP (trade name) manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
- PMER P-CT700XP trade name
- the mask is formed in a tenting shape without falling into the through-hole 3a more reliably.
- the material 10 can be deposited.
- Step shown in FIG. 3 (a)] By partially removing the insulating film 5 by anisotropic dry etching using the mask material 10, the contact hole 5 a is formed at a position where the hole 10 a is projected in the substrate normal direction with respect to the insulating film 5. In such etching, the normal line of the second semiconductor substrate 3 passing through the hole 10a does not pass through the portion of the insulating film 5 formed on the side wall surface of the through hole 3a. Only the portion of the insulating film 5 located at the bottom of the through-hole 3a can be removed without giving any resistance. Further, when the contact hole 5a is formed in this way, the side wall surface of the contact hole 5a is rounded as shown in the enlarged view of FIG. For this reason, it becomes possible to improve the embedding property (coverage property) in the contact hole 5a of the conductor layer 6 formed in a later step.
- a conductive layer 6 made of metal is formed on the entire surface of the insulating film 5 including the inside of the contact hole 5a as shown in FIG. 3C.
- Film is formed by sputtering or CVD.
- a mask material 11 (second mask material) is formed by a tenting method in the same manner as the mask material 10. Also at this time, the mask material 11 is bridged on the through-hole 3a while leaving the inside of the through-hole 3a as a cavity, and covers the conductor layer 6 and the second semiconductor substrate 3 as the base material including the inside of the through-hole 3a. It becomes composition. Then, a position corresponding to an unnecessary portion of the conductor layer 6 in the mask material 11 is removed and opened through a photolithography process.
- the conductor layer 6 is patterned by partially removing the conductor layer 6 by etching using the mask material 11. In such etching, since the through hole 3a is covered with the mask material 11, the conductor layer 6 can be removed without damaging the side wall of the through hole 3a.
- a passivation film 7 such as a nitride film is covered over the entire surface of the conductor layer 6 including the inside of the through hole 3a as shown in FIG. 4 (c).
- a passivation film 7 is formed by spin coating or the like.
- the mask material 12 (third mask material) is formed again by the tenting method. Also at this time, the mask material 12 is bridged on the through hole 3a while leaving the inside of the through hole 3a as a cavity, and covers the conductor layer 6 and the like serving as a base material including the inside of the through hole 3a. Then, a position corresponding to an unnecessary portion of the passivation film 7 in the mask material 12 is removed and opened through a photolithography process. Thereafter, unnecessary portions of the passivation film 7 are removed by etching using the mask material 12, and further the mask material 12 is removed, whereby the semiconductor device having the through electrode structure shown in FIG. 1 is completed.
- the mask material 10 is formed so as to bridge the through hole 3a, and the hole 10a is formed in the mask material 10 at a position corresponding to the through hole 3a. Through this, a contact hole 5a is formed in the insulating film 5.
- a manufacturing method even if there is a high step from the surface of the second semiconductor substrate 3 to the bottom of the through hole 3a, the mask material 10 bridged on the through hole 3a is exposed in the photolithography process. However, a high-level photolithography process is not necessary.
- the hole 10a can be satisfactorily formed in the mask material 10, and the contact hole 5a can be satisfactorily formed even by etching at a high level by anisotropic dry etching through the hole 10a. Therefore, it is possible to satisfactorily realize a high step photolithography etching process (a photolithography process and a high step etching process) that is difficult to realize.
- the mask materials 11 and 12 are bridged on the through hole 3a. For this reason, even if there is a high step from the surface of the conductor layer 6 or the passivation film 7 to the bottom of the through hole 3a, only the mask materials 11 and 12 crosslinked on the through hole 3a are exposed in the photolithography process. There is no high step. Therefore, similarly to the above, it is possible to satisfactorily realize a high-level photolithography / etching process that is difficult to realize.
- the through electrode structure can be formed satisfactorily.
- the first semiconductor substrate 1 and the second semiconductor substrate 3 are bonded together before the through hole 3a is formed.
- a support substrate is not required, and it is possible to prevent the occurrence of surface roughness and warpage before the substrates are bonded to each other, and it is possible to satisfactorily perform high step etching to form a through electrode structure.
- the diameter of the through hole 3a, the taper angle formed between the back surface of the second semiconductor substrate 3 and the inner wall surface of the through hole 3a, the diameter of the hole 10a in the mask material 10, and the second semiconductor substrate 3 in which the through hole 3a is formed A preferable set value of the thickness, that is, the depth of the through hole 3a is set to the above-described value. The reason for this will be described with reference to FIG.
- the normal line of the second semiconductor substrate 3 passing through the hole 10a is formed on the side wall surface of the through hole 3a in the insulating film 5 by making the diameter of the hole 10a smaller than the diameter of the through hole 3a.
- the etched portion does not pass, so that the side wall of the through hole 3a is not damaged during etching.
- the contact hole 5a is formed by removing the portion of the insulating film 5 located at the bottom of the through hole 3a, the side wall surface of the contact hole 5a is rounded. It becomes a banded shape. This is because the mask material 10 is arranged in a tenting shape and a cavity remains in the through-hole 3a, so that etching when forming the contact hole 5a is performed as shown in FIG. This is because it is performed while spreading radially.
- the diameter of the through hole 3a is too narrow, or depending on the taper angle of the through hole 3a, the insulating film 5 formed on the side surface of the through hole 3a is etched. End up. Therefore, the diameter of the through hole 3a and the hole 10a formed in the mask material 10 and the taper angle of the through hole 3a need to be set so that the insulating film 5 formed on the side wall surface of the through hole 3a is not etched. .
- the diameters of the through hole 3a and the hole 10a can be obtained as follows.
- the diameter of the through hole 3a on the opening side (the diameter on the surface opposite to the first semiconductor substrate 1) is L1
- the diameter of the through hole 3a on the first semiconductor substrate 1 side is L2
- the diameter of the hole 10a is L3.
- the taper angle of the through hole 3a is ⁇
- the etching spread angle is ⁇
- the depth of the through hole 3a in this embodiment, the thickness of the second semiconductor substrate 3 is D1
- the insulating film 5 outside the through hole 3a is D2.
- the depth D1 of the through hole 3a can be expressed by Equation 1.
- the diameter L2 on the first semiconductor substrate 1 side of the through hole 3a in Formula 1 can be expressed by Formula 2.
- Equation 3 L2 ⁇ L3 + 2D2tan ⁇ ( ⁇ L3 + 2D1 tan ⁇ )
- the etching spread angle ⁇ is a constant determined according to the etching conditions and the like. Therefore, by setting the depth D1 of the through hole 3a and the respective diameters L1 to L3 so as to satisfy the above formulas 1 to 3 while taking into consideration the spread angle ⁇ determined according to the etching conditions, the side of the through hole 3a is set. It is possible to prevent the insulating film 5 formed on the wall surface from being etched.
- the above-mentioned effect can be obtained if the diameters L1 and L2 on the first semiconductor substrate 1 side of the opening side of the through hole 3a and the through hole 3a are large, but if the diameter L1 on the opening side is too large, the mask material When 10 is cross-linked, there may be a problem that a part of the mask material 10 enters the through hole 3a. Similarly, if the aperture side diameter L1 is too large, it becomes difficult to suppress the thermal expansion of the gas in the cavity formed in the through hole 3a during baking before exposure. In consideration of these, it is preferable to set the upper limit value on the opening side L1 of the through hole 3a.
- each value is set in this way.
- the thickness of the second semiconductor substrate 3 that is, the depth D1 of the through hole 3a is several tens to 200 ⁇ m
- the diameter L1 on the opening side of the through hole 3a is 50 to 150 ⁇ m
- the taper angle ⁇ is It is preferable that the diameter L3 of the hole 10a is 70 to 80 ° and 20 to 50 ⁇ m.
- FIG. 1 a configuration in which the conductor layer 6 extends on the surface of the second semiconductor substrate 3, for example, a configuration in which a wiring pattern is configured by the conductor layer 6 is shown.
- the layer 6 may be configured to constitute a pad left only around the through hole 3a.
- an example in which an integrated circuit or a MEMS structure is provided is given as an example of a semiconductor device.
- this is merely an example, and another element may be formed. That is, the first and second semiconductor substrates 1 and 3 are bonded to each other, and the connection portion 4 provided in the first semiconductor substrate 3 through the through hole 3a that penetrates from the surface of the second semiconductor substrate 3 to the first semiconductor substrate 1 side. Any semiconductor device that raises the potential may be used.
- a through electrode structure in a multilayer semiconductor device in which the first and second semiconductor substrates 1 and 3 are bonded together is taken as an example. It was. That is, the semiconductor substrate integrated by the two semiconductor substrates 1 and 3 bonded together through the insulating film 2 is formed, and the concave portion formed by the through hole 3a on one surface side (second semiconductor substrate 3 side).
- a structure in which the insulating film 5 is provided as a thin film in the recess is provided.
- other high step photolithography and etching processes may be required.
- the thin film 21 is bridge
- a step of placing the mask material 22 thereon is performed.
- the position corresponding to the hole 22a through the hole 22a by anisotropic dry etching through this hole 22a is performed. In this way, the thin film 21 can be etched on the bottom surface of the recess 20a, and it is possible to satisfactorily realize a high step photolithography etching process that is difficult to realize.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Micromachines (AREA)
Abstract
貫通電極構造を有する半導体装置の製造方法において、第2半導体基板(3)に形成された貫通孔(3a)上を架橋するようにマスク材(10)を形成すると共に、マスク材(10)のうち貫通孔(3a)と対応する位置に穴(10a)を形成し、この穴(10a)を通じて絶縁膜(5)にコンタクトホール(5a)を形成する。このような製造方法とすれば、第2半導体基板(3)の表面から貫通孔3aの底部まで高段差があったとしても、フォトリソグラフィで露光するのは貫通孔(3a)上に架橋されたマスク材(10)のみであり、高段差のフォトリソグラフィは必要ない。このため、マスク材(10)に良好に穴(10a)を形成できると共に、この穴(10a)を通じた異方性ドライエッチングにて高段差のエッチングでも良好にコンタクトホール(5a)を形成できる。
Description
本開示は、2012年9月5日に出願された日本出願番号2012-195191号および2013年6月18日に出願された日本出願番号2013-127545に基づくもので、ここにその記載内容を援用する。
本開示は、半導体基板に貫通電極構造を形成する半導体装置の製造方法に関するものである。
従来より、半導体チップの高機能化や外部環境からMEMS(micro electro mechanical systems)構造のセンサを構成する素子の保護などを目的として、2枚の半導体基板を貼り合わせた多層構造が用いられている。このような構造の半導体装置においては、基板間の電気的導通を取ったり、貼り合わせられた半導体基板の内部に形成された各部の電位を外部に引き出すために、貫通電極構造を用いている。このような貫通電極構造の形成には、例えば特許文献1に示される方法を用いるのが一般的である。
貫通電極構造を形成する方法としては、例えば、2枚の半導体基板を貼り合わせる前に、一方の半導体基板に対して貫通孔を開けておき、熱酸化工程によりその貫通孔の周囲などに絶縁膜を形成する。その後、貫通孔内を絶縁膜で覆った半導体基板をサポート基板に貼り付けたのち、メッキ工程にて貫通孔内を金属で充填する。そして、半導体基板をサポート基板から剥離したのち、もう一方の半導体基板への貼り合わせを実施する。このように、一方の半導体基板に対して貫通孔を形成すると共に内部に金属を充填しておいてから、もう一方の半導体基板と貼り合わせることにより貫通電極構造を形成している。
しかしながら、特許文献1に示される方法で貫通電極構造を形成する場合、サポート基板を用いることにより製造工程が煩雑化したり、基板貼り合せ前に各種工程を行っているために基板の表面荒れや反りが発生して貼り合せ品質に影響する。例えば、表面荒れに関しては、サポート基板からの剥離による影響などで発生し、基板の反りに関しては、貫通孔や内部に充填された金属と半導体基板との膨張係数の差などに起因して発生する。
したがって、多層構造の半導体装置においては、2枚の半導体基板の貼り合わせ後に貫通電極を形成することが望ましい。ところが、この場合、基板表面側から貫通孔の底部に位置する絶縁膜にコンタクトホールを形成したり、貫通孔内部の金属膜を保護して配線パターンをパターニングするなど、実現が難しい高段差のフォトリソグラフィ・エッチング工程が必要になる。よって、高段差のフォトリソグラフィ・エッチング工程を良好に実現できるようにすることが望まれる。
なお、ここでは高段差のフォトリソグラフィ・エッチング工程が必要になる場合の一例として、2枚の半導体基板を張り合わせた多層構造の半導体装置における貫通電極構造を例に挙げたが、他にも高段差のフォトリソグラフィ・エッチング工程が必要とされ得る。すなわち、半導体基板の一面側に形成された凹部の底部の所望位置において、凹部内に配置した薄膜をエッチングする場合に、高段差のフォトリソグラフィ・エッチング工程が必要になり、この高段差のフォトリソグラフィ・エッチング工程を良好に実現できるようにすることが望まれる。
本開示は上記点に鑑みて、半導体基板の一面側に形成された凹みの底部の所望位置をエッチングするという高段差のフォトリソグラフィ・エッチング工程を良好に実現できるようにした半導体装置の製造方法を提供することを第1の目的とする。また、本開示は、サポート基板を必要とせず、基板同士の貼り合せの前の表面荒れや反りの発生も防止できると共に、高段差のエッチングも良好に行って貫通電極構造を形成することができる半導体装置の製造方法を提供することを第2の目的とする。
本開示の第一の態様によれば、一面側に凹部が形成された半導体基板を用意することと、凹部の内壁面に薄膜を形成することと、薄膜を形成したのち、凹部内を空洞として残しつつ該凹部上を架橋するように、薄膜の上にマスク材を配置することと、フォトリソグラフィにより、マスク材のうち凹部と対応する位置に穴を形成することと、マスク材を用いた異方性ドライエッチングにより、穴を通じて該穴と対応する位置において薄膜を除去する加工を行うことと、を含んでいることを特徴としている。
このように、凹部上を架橋するようにマスク材を形成すると共に、マスク材のうち凹部と対応する位置に穴を形成し、この穴を通じて薄膜をエッチング加工する。このような製造方法とすれば、半導体基板の表面から凹部の底部まで高段差があったとしても、フォトリソグラフィで露光するのは凹部上に架橋されたマスク材のみであり、高段差のフォトリソグラフィは必要ない。このため、マスク材に良好に穴を形成できると共に、この穴を通じた異方性ドライエッチングにて高段差のエッチングでも良好にコンタクトホールを形成できる。したがって、実現が難しい高段差のフォトリソグラフィ・エッチング工程を良好に実現することが可能となる。
本開示の第二の態様によれば、素子および接続部を形成した第1半導体基板を用意することと、第1半導体基板の一面側に第2半導体基板を貼り合わせることと、第1半導体基板に貼り合わせた後の第2半導体基板のうち接続部と対応する位置を第1半導体基板と反対側の面よりエッチングすることで、貫通孔を形成することと、貫通孔の内壁面および該貫通孔内において露出させられた接続部を含め、第2半導体基板の表面に絶縁膜を形成することと、絶縁膜を形成したのち、貫通孔内を空洞として残しつつ該貫通孔上を架橋するように、絶縁膜の上に第1マスク材を配置することと、フォトリソグラフィにより、第1マスク材のうち貫通孔と対応する位置に穴を形成することと、第1マスク材を用いた異方性ドライエッチングにより、穴を通じて該穴と対応する位置において絶縁膜を除去し、接続部を露出させて導体層と接触させるためのコンタクトホールを形成することと、を含んでいることを特徴としている。
このように、貫通孔上を架橋するように第1マスク材を形成すると共に、第1マスク材のうち貫通孔と対応する位置に穴を形成し、この穴を通じて絶縁膜にコンタクトホールを形成している。このような製造方法とすれば、第2半導体基板の表面から貫通孔の底部まで高段差があったとしても、フォトリソグラフィで露光するのは貫通孔上に架橋された第1マスク材のみであり、高段差のフォトリソグラフィは必要ない。このため、マスク材に良好に穴を形成できると共に、この穴を通じた異方性ドライエッチングにて高段差のエッチングでも良好にコンタクトホールを形成できる。したがって、実現が難しい高段差のフォトリソグラフィ・エッチング工程を良好に実現できる。
よって、良好に貫通電極構造を形成することができる。そして、このような半導体装置の製造方法では、貫通孔を形成する前に、第1半導体基板と第2半導体基板とを貼り合わせている。このため、従来のようにサポート基板を用いる必要もないし、基板同士の貼り合せの前の表面荒れや反りの発生も防止できる。したがって、サポート基板を必要とせず、基板同士の貼り合せの前の表面荒れや反りの発生も防止できると共に、高段差のエッチングも良好に行って貫通電極構造を形成することができる。
本開示の第三の態様によれば、上記第二の態様による半導体装置の製造方法の穴を形成することにおいて、穴の口径を貫通孔の口径よりも小さく形成することを特徴としている。
このような穴とすれば、穴を通過する第2半導体基板の法線が絶縁膜のうち貫通孔の側壁面上に形成された部分は通らないようにできる。このため、異方性ドライエッチングの際に、貫通孔の側壁にはダメージを与えることなく、絶縁膜のうち貫通孔の底部に位置する部分のみを除去できる。
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
本開示の第1実施形態にかかる半導体装置の製造方法により製造される半導体装置の貫通電極構造部分の拡大断面図である。
(a)~(d)は、図1に示す半導体装置の貫通電極構造部分についての製造工程を示した断面図である。
(a)~(d)は、図2(a)~(d)に続く製造工程を示す断面図である。
(a)~(d)は、図3(a)~(d)に続く製造工程を示す断面図である。
コンタクトホール5a近傍の部分拡大図である。
貫通孔3aの各部の寸法やマスク材10の各部の寸法の関係を示した断面図である。
(a)~(d)は、他の実施形態にかかる半導体装置の製造方法により製造される半導体装置のエッチング加工部分についての製造工程を示した断面図である。
以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
本開示の第1実施形態について説明する。ここでは、2枚の半導体基板を貼り合せて構成する半導体装置のうちの貫通電極構造の部分についてのみ説明するが、実際には他にも素子などが形成されている。このような貫通電極構造が備えられる様々な半導体装置に対して、本開示を適用することができる。例えば、集積回路を形成した半導体基板に対して、配線パターンを構成するもう一枚の半導体基板を貼り合せる半導体装置に対して本開示を適用できる。また、加速度センサのようなMEMS構造のセンサが形成された半導体基板の表面に、キャップを構成する半導体基板を貼り合せる半導体装置に対しても本開示を適用できる。
本開示の第1実施形態について説明する。ここでは、2枚の半導体基板を貼り合せて構成する半導体装置のうちの貫通電極構造の部分についてのみ説明するが、実際には他にも素子などが形成されている。このような貫通電極構造が備えられる様々な半導体装置に対して、本開示を適用することができる。例えば、集積回路を形成した半導体基板に対して、配線パターンを構成するもう一枚の半導体基板を貼り合せる半導体装置に対して本開示を適用できる。また、加速度センサのようなMEMS構造のセンサが形成された半導体基板の表面に、キャップを構成する半導体基板を貼り合せる半導体装置に対しても本開示を適用できる。
まず、図1を参照して、本実施形態にかかる半導体装置の製造方法により製造された半導体装置における貫通電極構造について説明する。
図1に示すように、集積回路やMEMS構造のセンサなどが形成された第1半導体基板1の表面に、酸化膜などで構成された絶縁膜2を介して第2半導体基板3が貼り合わされている。第1半導体基板1および第2半導体基板3には、例えばシリコン基板が用いられている。
第1半導体基板1の表面には接続部4が形成されており、絶縁膜2のうち接続部4と対応する位置に形成されたコンタクトホール2aを通じて接続部4が絶縁膜2から露出させられている。接続部4は、第1半導体基板1の所望部位に電気的に接続される部分である。例えば、第1半導体基板1に対して集積回路などが備えられる場合には、接続部4は、第1半導体基板1の表面において集積回路から引き出された配線パターンに繋がるパッド等とされる。また、例えば、第1半導体基板1に対してMEMS構造のセンサなどが備えられる場合には、接続部4は、MEMS構造の各部、例えば可動電極および固定電極を有する加速度センサ等の場合であれば固定電極もしくは可動電極との電気的接続を図る拡散層等とされる。拡散層等は、一般的にはMEMS構造の各部まで延設されることで電気的に接続されるが、不純物がドープされた第1半導体基板1そのものを配線として用いる場合もある。その場合には拡散層にて構成される接続部4は、第1半導体基板1を介してMEMS構造の各部に接続される。
第2半導体基板3には、接続部4と対応する位置において、表裏を貫通する貫通孔3aが形成されている。上記した絶縁膜2に形成されたコンタクトホール2aは、この貫通孔3aと対応する位置に形成されている。
第2半導体基板3のうちの貫通孔3aの内壁面を含む表面および接続部4の露出表面は、絶縁膜5で覆われている。この絶縁膜5のうち接続部4と対応する位置にもコンタクトホール5aが形成されている。このため、貫通孔3a内において、コンタクトホール5aを通じて接続部4が絶縁膜5からも露出した状態となっている。
貫通孔3aやコンタクトホール5a内を含めた絶縁膜5の表面に対して金属にて構成された導体層6がパターニングされている。この導体層6がコンタクトホール5aを通じて接続部4に接触させられることにより、導体層6を通じて、第2半導体基板3の表面側から接続部4に対しての電気的接続が行える。このため、貫通孔3aやコンタクトホール2a、5aを通じて、第2半導体基板3のうち第1半導体基板1と反対側の表面から第1半導体基板1に備えられた接続部4の電位引き出しが可能となっている。
なお、必要に応じて、導体層6の表面を覆うようにパッシベーション膜7が形成されており、導体層6および第1半導体基板1に形成された素子等の保護が図られる。この場合には、所望位置においてパッシベーション膜7が除去されて導体層6が露出させられ、その露出箇所をパッドとして接続部4からの電位引き出しを行うことが可能とされる。
続いて、上記のように構成される半導体装置の製造方法について、図2(a)~図4(d)を参照して説明する。なお、ここでも半導体装置のうちの貫通電極構造の部分についてのみ図示しているが、実際には他にも素子などが形成される。
〔図2(a)に示す工程〕
まず、周知の手法により集積回路やMEMS構造のセンサなどの素子および接続部4を形成した第1半導体基板1を用意する。また、第2半導体基板3を用意し、第2半導体基板3の裏面、つまり第1半導体基板1と貼り合わされる側の一面に絶縁膜2を形成する。例えば、熱酸化などによる酸化膜を形成することで、第2半導体基板3の裏面に絶縁膜2を形成している。そして、第1半導体基板1の表面、つまり接続部4が形成された側の一面の上に、第2半導体基板3を配置し、絶縁膜2を介して第1半導体基板1および第2半導体基板3を例えば直接接合によって貼り合せる。そして、必要に応じて第2半導体基板3を表面から研削研磨することで、貫通電極構造の形成に適した厚みに調整する。例えば、第2半導体基板3を数十~200μm(例えば100μm)程度の厚みに設定すると好ましい。
まず、周知の手法により集積回路やMEMS構造のセンサなどの素子および接続部4を形成した第1半導体基板1を用意する。また、第2半導体基板3を用意し、第2半導体基板3の裏面、つまり第1半導体基板1と貼り合わされる側の一面に絶縁膜2を形成する。例えば、熱酸化などによる酸化膜を形成することで、第2半導体基板3の裏面に絶縁膜2を形成している。そして、第1半導体基板1の表面、つまり接続部4が形成された側の一面の上に、第2半導体基板3を配置し、絶縁膜2を介して第1半導体基板1および第2半導体基板3を例えば直接接合によって貼り合せる。そして、必要に応じて第2半導体基板3を表面から研削研磨することで、貫通電極構造の形成に適した厚みに調整する。例えば、第2半導体基板3を数十~200μm(例えば100μm)程度の厚みに設定すると好ましい。
〔図2(b)に示す工程〕
第2半導体基板3の表面に、貫通孔3aの形成予定領域が開口するエッチングマスク(図示せず)を配置する。そして、そのエッチングマスクを用いて第2半導体基板3をエッチングすることで第2半導体基板3の表裏を貫通する貫通孔3aを形成すると共に、絶縁膜2にコンタクトホール2aを形成する。貫通孔3aについては、貫通孔3aの側壁面が第2半導体基板3の表面に対して垂直方向となるように形成しても良いが、第2半導体基板3の表面から裏面に進むにしたがって開口面積が徐々に縮小された順テーパ形状となるようにするのが望ましい。このようにすることで、後工程において絶縁膜5や導体層6などを貫通孔3a内に成膜するときに、貫通孔3aの側壁面上への膜付きが良好になるようにできる。
第2半導体基板3の表面に、貫通孔3aの形成予定領域が開口するエッチングマスク(図示せず)を配置する。そして、そのエッチングマスクを用いて第2半導体基板3をエッチングすることで第2半導体基板3の表裏を貫通する貫通孔3aを形成すると共に、絶縁膜2にコンタクトホール2aを形成する。貫通孔3aについては、貫通孔3aの側壁面が第2半導体基板3の表面に対して垂直方向となるように形成しても良いが、第2半導体基板3の表面から裏面に進むにしたがって開口面積が徐々に縮小された順テーパ形状となるようにするのが望ましい。このようにすることで、後工程において絶縁膜5や導体層6などを貫通孔3a内に成膜するときに、貫通孔3aの側壁面上への膜付きが良好になるようにできる。
貫通孔3aを順テーパにする手法は従来から知られているため詳細については省略するが、エッチング条件の設定のみで容易に行える。例えば、第2半導体基板3の表面側での貫通孔3aの口径が50~150μm程度となるように設定し、テーパ角度、つまり第2半導体基板3の裏面と貫通孔3aの内壁面との成す角度が70~80°になるようにすると好ましい。
〔図2(c)に示す工程〕
CVD法や熱酸化などにより、貫通孔3aの内壁面や貫通孔3aから露出している接続部4の表面を含めて第2半導体基板3の表面に絶縁膜5を成膜する。このときに、CVD法を用いる場合であっても、上記したように貫通孔3aの内壁面が順テーパ形状となるようにしてあれば、膜付き良く貫通孔3aの内壁面上にも絶縁膜5が形成されるようにできる。
CVD法や熱酸化などにより、貫通孔3aの内壁面や貫通孔3aから露出している接続部4の表面を含めて第2半導体基板3の表面に絶縁膜5を成膜する。このときに、CVD法を用いる場合であっても、上記したように貫通孔3aの内壁面が順テーパ形状となるようにしてあれば、膜付き良く貫通孔3aの内壁面上にも絶縁膜5が形成されるようにできる。
〔図2(d)に示す工程〕
感光性レジストのスピンコーティングまたはドライフィルム貼り付け等により、第2半導体基板3の表面にテンティング法による成膜を行うことでマスク材10(第1マスク材)を形成する。このときのマスク材10は、貫通孔3a内は空洞として残しつつ貫通孔3a上において架橋され、貫通孔3a内を含めて母材となる絶縁膜5や第2半導体基板3を覆った構成となる。そして、フォトリソグラフィ工程を経て、マスク材10における貫通孔3aと対応する位置に貫通孔3aの口径よりも小さな、例えば20~50μm程度の口径の穴10aを形成する。マスク材10の厚みは任意であるが、フォトリソグラフィ工程における露光前のベーク時に貫通孔3a内に構成される空洞内の気体の熱膨張を押さえ込める程度の厚みにされるように厚み調整している。
感光性レジストのスピンコーティングまたはドライフィルム貼り付け等により、第2半導体基板3の表面にテンティング法による成膜を行うことでマスク材10(第1マスク材)を形成する。このときのマスク材10は、貫通孔3a内は空洞として残しつつ貫通孔3a上において架橋され、貫通孔3a内を含めて母材となる絶縁膜5や第2半導体基板3を覆った構成となる。そして、フォトリソグラフィ工程を経て、マスク材10における貫通孔3aと対応する位置に貫通孔3aの口径よりも小さな、例えば20~50μm程度の口径の穴10aを形成する。マスク材10の厚みは任意であるが、フォトリソグラフィ工程における露光前のベーク時に貫通孔3a内に構成される空洞内の気体の熱膨張を押さえ込める程度の厚みにされるように厚み調整している。
このようなマスク材10を構成するレジスト材としては、例えば東京応化工業(株)製のPMER P-CT700XP(商品名)を用いることができる。また、必要に応じてこのレジスト材に添加剤を調合することでレジスト材の表面張力を高めて低速スピンコーティング等を行えば、より確実に貫通孔3a内に落ち込むことなく、テンティング状にマスク材10を成膜することができる。
〔図3(a)に示す工程〕
マスク材10を用いた異方性ドライエッチングにて絶縁膜5を部分的に除去することで、絶縁膜5に対して基板法線方向において穴10aを投影した位置においてコンタクトホール5aを形成する。このようなエッチングでは、穴10aを通過する第2半導体基板3の法線が絶縁膜5のうち貫通孔3aの側壁面上に形成された部分は通らないため、貫通孔3aの側壁にはダメージを与えることなく、絶縁膜5のうち貫通孔3aの底部に位置する部分のみを除去できる。また、このようにしてコンタクトホール5aを形成した場合、図5に示す拡大図のように、コンタクトホール5aの側壁面が丸みを帯びた形状となる。このため、後工程で形成する導体層6のコンタクトホール5a内への埋め込み性(カバレッジ性)を良好にすることが可能となる。
マスク材10を用いた異方性ドライエッチングにて絶縁膜5を部分的に除去することで、絶縁膜5に対して基板法線方向において穴10aを投影した位置においてコンタクトホール5aを形成する。このようなエッチングでは、穴10aを通過する第2半導体基板3の法線が絶縁膜5のうち貫通孔3aの側壁面上に形成された部分は通らないため、貫通孔3aの側壁にはダメージを与えることなく、絶縁膜5のうち貫通孔3aの底部に位置する部分のみを除去できる。また、このようにしてコンタクトホール5aを形成した場合、図5に示す拡大図のように、コンタクトホール5aの側壁面が丸みを帯びた形状となる。このため、後工程で形成する導体層6のコンタクトホール5a内への埋め込み性(カバレッジ性)を良好にすることが可能となる。
〔図3(b)、(c)に示す工程〕
図3(b)に示すようにマスク材10を除去したのち、図3(c)に示すように金属にて構成される導体層6をコンタクトホール5a内を含む絶縁膜5の表面全面に成膜する。例えば、スパッタやCVD法などにより導体層6を形成している。
図3(b)に示すようにマスク材10を除去したのち、図3(c)に示すように金属にて構成される導体層6をコンタクトホール5a内を含む絶縁膜5の表面全面に成膜する。例えば、スパッタやCVD法などにより導体層6を形成している。
〔図3(d)に示す工程〕
マスク材10と同様にテンティング法により、マスク材11(第2マスク材)を成膜する。このときにも、マスク材11は、貫通孔3a内は空洞として残しつつ貫通孔3a上において架橋され、貫通孔3a内を含めて母材となる導体層6や第2半導体基板3を覆った構成となる。そして、フォトリソグラフィ工程を経て、マスク材11における導体層6の不要部分と対応する位置を除去して開口させる。
マスク材10と同様にテンティング法により、マスク材11(第2マスク材)を成膜する。このときにも、マスク材11は、貫通孔3a内は空洞として残しつつ貫通孔3a上において架橋され、貫通孔3a内を含めて母材となる導体層6や第2半導体基板3を覆った構成となる。そして、フォトリソグラフィ工程を経て、マスク材11における導体層6の不要部分と対応する位置を除去して開口させる。
〔図4(a)に示す工程〕
マスク材11を用いたエッチングにて導体層6を部分的に除去することで、導体層6をパターニングする。このようなエッチングでは、マスク材11にて貫通孔3aを覆っていることから、貫通孔3aの側壁にはダメージを与えることなく導体層6を除去できる。
マスク材11を用いたエッチングにて導体層6を部分的に除去することで、導体層6をパターニングする。このようなエッチングでは、マスク材11にて貫通孔3aを覆っていることから、貫通孔3aの側壁にはダメージを与えることなく導体層6を除去できる。
〔図4(b)、(c)に示す工程〕
図4(b)に示すようにマスク材11を除去したのち、図4(c)に示すように窒化膜などのパッシベーション膜7を貫通孔3a内を含む導体層6の表面全面を覆うように成膜する。例えば、スピンコート法などによりパッシベーション膜7を形成している。
図4(b)に示すようにマスク材11を除去したのち、図4(c)に示すように窒化膜などのパッシベーション膜7を貫通孔3a内を含む導体層6の表面全面を覆うように成膜する。例えば、スピンコート法などによりパッシベーション膜7を形成している。
〔図4(d)に示す工程〕
マスク材10、11と同様にテンティング法により、もう一度マスク材12(第三マスク材)を成膜する。このときにも、マスク材12は、貫通孔3a内は空洞として残しつつ貫通孔3a上において架橋され、貫通孔3a内を含めて母材となる導体層6などを覆った構成となる。そして、フォトリソグラフィ工程を経て、マスク材12におけるパッシベーション膜7の不要部分と対応する位置を除去して開口させる。その後、マスク材12を用いたエッチングにより、パッシベーション膜7の不要部分を除去し、さらにマスク材12を除去することで、図1に示した貫通電極構造を有する半導体装置が完成する。
マスク材10、11と同様にテンティング法により、もう一度マスク材12(第三マスク材)を成膜する。このときにも、マスク材12は、貫通孔3a内は空洞として残しつつ貫通孔3a上において架橋され、貫通孔3a内を含めて母材となる導体層6などを覆った構成となる。そして、フォトリソグラフィ工程を経て、マスク材12におけるパッシベーション膜7の不要部分と対応する位置を除去して開口させる。その後、マスク材12を用いたエッチングにより、パッシベーション膜7の不要部分を除去し、さらにマスク材12を除去することで、図1に示した貫通電極構造を有する半導体装置が完成する。
以上説明したように、本実施形態では、貫通孔3a上を架橋するようにマスク材10を形成すると共に、マスク材10のうち貫通孔3aと対応する位置に穴10aを形成し、この穴10aを通じて絶縁膜5にコンタクトホール5aを形成している。このような製造方法とすれば、第2半導体基板3の表面から貫通孔3aの底部まで高段差があったとしても、フォトリソグラフィ工程で露光するのは貫通孔3a上に架橋されたマスク材10のみであり、高段差のフォトリソグラフィ工程は必要ない。このため、マスク材10に良好に穴10aを形成できると共に、この穴10aを通じた異方性ドライエッチングにて高段差のエッチングでも良好にコンタクトホール5aを形成できる。したがって、実現が難しい高段差のフォトリソグラフィ・エッチング工程(フォトリソグラフィ工程と高段差のエッチング工程)を良好に実現することが可能となる。
同様に、導体層6やパッシベーション膜7のパターニングにおいても、マスク材11、12を貫通孔3a上に架橋している。このため、導体層6やパッシベーション膜7の表面から貫通孔3aの底部まで高段差があったとしても、フォトリソグラフィ工程で露光するのは貫通孔3a上に架橋されたマスク材11、12のみであり、高段差はない。よって、上記と同様、実現が難しい高段差のフォトリソグラフィ・エッチング工程を良好に実現できる。
したがって、良好に貫通電極構造を形成することができる。そして、このような半導体装置の製造方法では、貫通孔3aを形成する前に、第1半導体基板1と第2半導体基板3とを貼り合わせている。このため、従来のようにサポート基板を用いる必要もないし、基板同士の貼り合せの前の表面荒れや反りの発生も防止することが可能となる。よって、サポート基板を必要とせず、基板同士の貼り合せの前の表面荒れや反りの発生も防止できると共に、高段差のエッチングも良好に行って貫通電極構造を形成することができる。
また、貫通孔3aの口径や第2半導体基板3の裏面と貫通孔3aの内壁面との成すテーパ角、マスク材10における穴10aの口径、貫通孔3aが形成される第2半導体基板3の厚み、つまり貫通孔3aの深さの好ましい設定値を上述した値としている。この理由について、図6を参照して説明する。
上記したように、穴10aの口径を貫通孔3aの口径よりも小さくすることで、穴10aを通過する第2半導体基板3の法線が絶縁膜5のうち貫通孔3aの側壁面上に形成された部分は通らないため、エッチング時に貫通孔3aの側壁にはダメージを与えないで済む。ただし、実際には、図5において説明したように、絶縁膜5のうち貫通孔3aの底部に位置する部分を除去してコンタクトホール5aを形成する場合に、コンタクトホール5aの側壁面が丸みを帯びた形状となる。これは、テンティング状にマスク材10を配置していて、貫通孔3a内に空洞が残った状態になっているために、図6に示すように、コンタクトホール5aを形成する際のエッチングが放射状に広がりながら行われるからである。
このようにエッチングが放射状に広がりながら行われることから、上記したように導体層6のコンタクトホール5a内への埋め込み性を良好にすることが可能になる。しかしながら、その反面、エッチングが放射状に広がって行われるため、貫通孔3aの口径が狭すぎたり、貫通孔3aのテーパ角によっては、貫通孔3aの側面上に形成された絶縁膜5までエッチングされてしまう。したがって、貫通孔3aおよびマスク材10に形成する穴10aの口径や貫通孔3aのテーパ角については、貫通孔3aの側壁面に形成される絶縁膜5がエッチングされないように設定される必要がある。これら貫通孔3aおよび穴10aの口径については、次のように求めることができる。
まず、貫通孔3aの開口側の口径(第1半導体基板1と反対側表面における口径)をL1、貫通孔3aのうちの第1半導体基板1側の口径をL2、穴10aの口径をL3とする。また、貫通孔3aのテーパ角をα、エッチングの広がり角をβ、貫通孔3aの深さ、本実施形態の場合は第2半導体基板3の厚みをD1、貫通孔3aの外側における絶縁膜5の表面から第2半導体基板3のうちの第1半導体基板1側の面までの距離をD2とする。
このように定義すると、貫通孔3aの深さD1については数式1で表すことができる。また、数式1中における貫通孔3aのうちの第1半導体基板1側の口径L2については数式2で表すことができる。
(数1)
D1=(L1-L2)/2tanα
(数2)
L2=L1-2D1/tanα
また、貫通孔3aのうちの第1半導体基板1側の端での絶縁膜5のエッチング口径が貫通孔3aのうちの第1半導体基板1側の口径L2未満である必要があることから、数式3が導出される。また、距離D2はほぼ第2半導体基板3の厚みD1と等しい(D1≒D2)ことから、D2をD1と置き換えることができる。
D1=(L1-L2)/2tanα
(数2)
L2=L1-2D1/tanα
また、貫通孔3aのうちの第1半導体基板1側の端での絶縁膜5のエッチング口径が貫通孔3aのうちの第1半導体基板1側の口径L2未満である必要があることから、数式3が導出される。また、距離D2はほぼ第2半導体基板3の厚みD1と等しい(D1≒D2)ことから、D2をD1と置き換えることができる。
(数3)
L2≧L3+2D2tanβ(≒L3+2D1tanβ)
そして、エッチングの広がり角βについては、エッチング条件などに応じて決まる定数である。したがって、エッチング条件に応じて決まる広がり角βを加味しつつ、上記数式1~3を満たすように、貫通孔3aの深さD1、各口径L1~L3を設定することで、貫通孔3aの側壁面に形成された絶縁膜5までエッチングされないようにすることができる。
L2≧L3+2D2tanβ(≒L3+2D1tanβ)
そして、エッチングの広がり角βについては、エッチング条件などに応じて決まる定数である。したがって、エッチング条件に応じて決まる広がり角βを加味しつつ、上記数式1~3を満たすように、貫通孔3aの深さD1、各口径L1~L3を設定することで、貫通孔3aの側壁面に形成された絶縁膜5までエッチングされないようにすることができる。
ただし、貫通孔3aの開口側および貫通孔3aのうちの第1半導体基板1側の口径L1、L2が大きければ上記効果を得ることができるものの、開口側の口径L1が大き過ぎると、マスク材10を架橋したときに貫通孔3a内にマスク材10の一部が入り込むなどの問題が発生し得る。また、同様に、開口側の口径L1が大き過ぎると露光前のベーク時に貫通孔3a内に構成される空洞内の気体の熱膨張を押さえ込むのが困難になる。これらのことを考慮して、貫通孔3aの開口側L1の上限値を設定するのが好ましい。
このようにして各値を設定すると良い。例えば、上記したように、第2半導体基板3の厚み、つまり貫通孔3aの深さD1を数十~200μmとする場合、貫通孔3aの開口側の口径L1が50~150μm、テーパ角αが70~80°、穴10aの口径L3が20~50μmとすると好ましい。
(他の実施形態)
上記実施形態では、図1に示すように、導体層6が第2半導体基板3の表面に延設される構成、例えば導体層6にて配線パターンを構成するような形態を示したが、導体層6が貫通孔3aの周囲にのみ残されたパッドを構成するような形態とされても良い。
上記実施形態では、図1に示すように、導体層6が第2半導体基板3の表面に延設される構成、例えば導体層6にて配線パターンを構成するような形態を示したが、導体層6が貫通孔3aの周囲にのみ残されたパッドを構成するような形態とされても良い。
また、上記実施形態では、半導体装置の一例として集積回路やMEMS構造が備えられるものを例に挙げたが、これも単なる一例に過ぎず、他の素子が形成されたものであっても良い。すなわち、第1、第2半導体基板1、3が貼り合わされ、第2半導体基板3の表面から第1半導体基板1側に貫通させられる貫通孔3aを通じて第1半導体基板3に備えられる接続部4の電位引き上げを行う半導体装置であれば、どのようなものでも良い。
さらに、上記実施形態では、高段差のフォトリソグラフィ・エッチング工程が必要になる場合の一例として、第1、第2半導体基板1、3を張り合わせた多層構造の半導体装置における貫通電極構造を例に挙げた。つまり、絶縁膜2を介して貼り合わされた2枚の半導体基板1、3にて一体化した半導体基板を構成し、その一面側(第2半導体基板3側)に貫通孔3aにより構成された凹部が備えられる構造において、凹部内に薄膜として絶縁膜5が備えられる構造を例に挙げた。しかしながら、他にも高段差のフォトリソグラフィ・エッチング工程が必要とされ得る。
すなわち、一面側に凹部が形成された半導体基板を用意し、凹部の底部の所望位置において凹部内に配置した薄膜をエッチングする工程を行う場合において、高段差のフォトリソグラフィ・エッチング工程が必要になる。この場合にも、以下の工程を順に行うことで、第1実施形態と同様の効果が得られる。まず、図7(a)に示すように、半導体基板20を用意したのち、図7(b)に示すように、半導体基板20の一面に凹部20aを形成する工程を行う。そして、図7(c)に示すように、凹部20aの内壁面に薄膜21を形成する工程を行った後、図7(d)に示すように、凹部20a上を架橋するように、薄膜21上にマスク材22を配置する工程を行う。そして、フォトリソグラフィによりマスク材22のうち凹部20aと対応する位置に穴22aを形成する工程を行った後、この穴22aを通じて異方性のドライエッチングにより、穴22aを通じ、穴22aと対応する位置において薄膜21を除去する工程を行う。このようにすれば、凹部20aの底面において、薄膜21をエッチング加工することができ、実現が難しい高段差のフォトリソグラフィ・エッチング工程を良好に実現することが可能となる。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (9)
- 一面側に凹部(3a、20a)が形成された半導体基板(1~3、20)を用意することと、
前記凹部の内壁面に薄膜(5、21)を形成することと、
前記薄膜を形成したのち、前記凹部内を空洞として残しつつ該凹部上を架橋するように、前記薄膜の上にマスク材(10、22)を配置することと、
フォトリソグラフィにより、前記第1マスク材のうち前記凹部と対応する位置に穴(10a、22a)を形成することと、
前記マスク材を用いた異方性ドライエッチングにより、前記穴を通じて該穴と対応する位置において前記薄膜を除去する加工を行うことと、を含んでいることを特徴とする半導体装置の製造方法。 - 一面側に素子に接続される接続部(4)を有する第1半導体基板(1)と、
前記第1半導体基板の前記一面側に貼り合わされた第2半導体基板(3)とを有し、
前記第2半導体基板が、前記第1半導体基板と反対側の表面から該第2半導体基板に形成した貫通孔(3a)と、前記貫通孔内に配置され前記接続部に接続された導体層(6)とを有する貫通電極構造を備える半導体装置の製造方法であって、
前記素子および前記接続部を形成した前記第1半導体基板を用意することと、
前記第1半導体基板の前記一面側に前記第2半導体基板を貼り合わせることと、
前記第1半導体基板に貼り合わせた後に、前記第2半導体基板のうち前記接続部と対応する位置において、前記第1半導体基板と反対側の表面より前記第2半導体基板をエッチングすることで、前記貫通孔を形成することと、
前記貫通孔の内壁面および該貫通孔において露出させられた前記接続部を含め、前記第2半導体基板の表面に絶縁膜(5)を形成することと、
前記絶縁膜を形成したのち、前記貫通孔内を空洞として残しつつ該貫通孔上を架橋するように、前記絶縁膜の上に第1マスク材(10)を配置することと、
フォトリソグラフィにより、前記第1マスク材のうち前記貫通孔と対応する位置に穴(10a)を形成することと、
前記第1マスク材を用いた異方性ドライエッチングにより、前記穴を通じて該穴と対応する位置において前記絶縁膜を除去し、前記接続部を露出させて前記導体層と接触させるためのコンタクトホール(5a)を形成することと、を含んでいることを特徴とする半導体装置の製造方法。 - 前記穴を形成することでは、前記穴の口径を前記貫通孔の口径よりも小さく形成することを特徴とする請求項2に記載の半導体装置の製造方法。
- 前記貫通孔を形成することでは、前記第2半導体基板における前記第1半導体基板と反対側の表面から離れるにつれて開口面積が徐々に縮小される順テーパ形状にて前記貫通孔を形成することを特徴とする請求項2または3に記載の半導体装置の製造方法。
- 前記コンタクトホールを形成することの後で、前記コンタクトホール内を含め前記絶縁膜の表面に前記導体層を成膜することで、前記コンタクトホールを通じて前記導体層と前記接続部とを接触させること、を含んでいることを特徴とする請求項2ないし4のいずれか1つに記載の半導体装置の製造方法。
- 前記導体層を形成したのち、前記貫通孔内を空洞として残しつつ該貫通孔上を架橋するように、前記導体層の上に第2マスク材(11)を配置することと、
フォトリソグラフィにより、前記第2マスク材のうち前記導体層の不要部分と対応する位置を開口させることと、
前記第2マスク材を用いたエッチングにより、前記導体層の不要部分を除去して該導体層をパターニングすることと、を含んでいることを特徴とする請求項5に記載の半導体装置の製造方法。 - 前記導体層をパターニングした後で、前記導体層の上にパッシベーション膜(7)を成膜することと、
前記パッシベーション膜を形成したのち、前記貫通孔内を空洞として残しつつ該貫通孔上を架橋するように、前記パッシベーション膜の上に第3マスク材(12)を配置することと、
フォトリソグラフィにより、前記第3マスク材のうち前記パッシベーション膜の不要部分と対応する位置を開口させることと、
前記第3マスク材を用いたエッチングにより、前記パッシベーション膜の不要部分を除去して該パッシベーション膜をパターニングすることと、を含んでいることを特徴とする請求項6に記載の半導体装置の製造方法。 - 素子および接続部(4)を有する第1半導体基板を用意することと、
前記第1半導体基板の一面側に第2半導体基板を貼り合わせることと、
前記第2半導体基板を貼り合わせることの後に、前記第2半導体基板のうち前記接続部と対応する位置において、前記第1半導体基板と反対側の表面より前記第2半導体基板をエッチングすることで、貫通孔(3a)を形成することと、
前記貫通孔の内壁面、該貫通孔において露出させられた前記接続部、および前記第2半導体基板の表面に絶縁膜(5)を形成することと、
前記絶縁膜を形成したのち、前記貫通孔内を空洞として残しつつ該貫通孔上を架橋するように、前記絶縁膜の上にマスク材(10)を配置することと、
フォトリソグラフィにより、前記マスク材のうち前記貫通孔と対応する位置に穴(10a)を形成することと、
前記マスク材を用いた異方性ドライエッチングにより、前記穴を通じて該穴と対応する位置において前記絶縁膜を除去し、前記接続部を露出させるようコンタクトホール(5a)を形成することと、を含んでいることを特徴とする半導体装置の製造方法。 - 前記コンタクトホールを形成することの後で、前記コンタクトホール内を含め前記絶縁膜の表面に導体層(6)を成膜することで、前記コンタクトホールを通じて前記導体層と前記接続部とを接触させること、を含んでいることを特徴とする請求項8に記載の半導体装置の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380046296.4A CN104603918B (zh) | 2012-09-05 | 2013-09-03 | 半导体装置的制造方法 |
US14/424,118 US9349644B2 (en) | 2012-09-05 | 2013-09-03 | Semiconductor device producing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012195191 | 2012-09-05 | ||
JP2012-195191 | 2012-09-05 | ||
JP2013127545A JP5874690B2 (ja) | 2012-09-05 | 2013-06-18 | 半導体装置の製造方法 |
JP2013-127545 | 2013-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014038176A1 true WO2014038176A1 (ja) | 2014-03-13 |
Family
ID=50236805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/005185 WO2014038176A1 (ja) | 2012-09-05 | 2013-09-03 | 半導体装置の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9349644B2 (ja) |
JP (1) | JP5874690B2 (ja) |
CN (1) | CN104603918B (ja) |
WO (1) | WO2014038176A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106957044B (zh) * | 2016-01-08 | 2019-09-27 | 中芯国际集成电路制造(上海)有限公司 | 一种mems器件及其制造方法和电子装置 |
US9960081B1 (en) * | 2017-02-02 | 2018-05-01 | Nxp Usa, Inc. | Method for selective etching using dry film photoresist |
JP6536629B2 (ja) * | 2017-06-13 | 2019-07-03 | 株式会社デンソー | 半導体装置およびその製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004064159A1 (ja) * | 2003-01-15 | 2004-07-29 | Fujitsu Limited | 半導体装置及び三次元実装半導体装置、並びに半導体装置の製造方法 |
JP2006237594A (ja) * | 2005-01-31 | 2006-09-07 | Sanyo Electric Co Ltd | 半導体装置及びその製造方法 |
JP2010114201A (ja) * | 2008-11-05 | 2010-05-20 | Oki Semiconductor Co Ltd | 半導体装置の製造方法 |
JP2010232400A (ja) * | 2009-03-27 | 2010-10-14 | Panasonic Corp | 半導体基板と半導体基板の製造方法および半導体パッケージ |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3207827B2 (ja) | 1998-09-10 | 2001-09-10 | ティーアールダブリュー・インコーポレーテッド | ウエーハをミクロ加工する方法 |
JP2002341525A (ja) * | 2001-05-14 | 2002-11-27 | Fuji Photo Film Co Ltd | ポジ型フォトレジスト転写材料およびそれを用いた基板表面の加工方法 |
JP2003133726A (ja) | 2001-10-29 | 2003-05-09 | Ngk Spark Plug Co Ltd | 配線基板の製造方法 |
JP2005266166A (ja) * | 2004-03-17 | 2005-09-29 | Fuji Photo Film Co Ltd | 感光性転写材料およびそれを用いたプリント配線基板の製造方法 |
JP3751625B2 (ja) | 2004-06-29 | 2006-03-01 | 新光電気工業株式会社 | 貫通電極の製造方法 |
JP4468436B2 (ja) | 2007-12-25 | 2010-05-26 | 富士通メディアデバイス株式会社 | 弾性波デバイスおよびその製造方法 |
US8823179B2 (en) * | 2008-05-21 | 2014-09-02 | Chia-Lun Tsai | Electronic device package and method for fabricating the same |
-
2013
- 2013-06-18 JP JP2013127545A patent/JP5874690B2/ja not_active Expired - Fee Related
- 2013-09-03 CN CN201380046296.4A patent/CN104603918B/zh not_active Expired - Fee Related
- 2013-09-03 US US14/424,118 patent/US9349644B2/en not_active Expired - Fee Related
- 2013-09-03 WO PCT/JP2013/005185 patent/WO2014038176A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004064159A1 (ja) * | 2003-01-15 | 2004-07-29 | Fujitsu Limited | 半導体装置及び三次元実装半導体装置、並びに半導体装置の製造方法 |
JP2006237594A (ja) * | 2005-01-31 | 2006-09-07 | Sanyo Electric Co Ltd | 半導体装置及びその製造方法 |
JP2010114201A (ja) * | 2008-11-05 | 2010-05-20 | Oki Semiconductor Co Ltd | 半導体装置の製造方法 |
JP2010232400A (ja) * | 2009-03-27 | 2010-10-14 | Panasonic Corp | 半導体基板と半導体基板の製造方法および半導体パッケージ |
Also Published As
Publication number | Publication date |
---|---|
US20150228540A1 (en) | 2015-08-13 |
JP2014067992A (ja) | 2014-04-17 |
JP5874690B2 (ja) | 2016-03-02 |
CN104603918A (zh) | 2015-05-06 |
CN104603918B (zh) | 2017-03-08 |
US9349644B2 (en) | 2016-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140220723A1 (en) | Methods and Structures for Using Diamond in the Production of MEMS | |
KR101406897B1 (ko) | 전자 부품 및 그 제조 방법 | |
TWI373838B (en) | Component with semiconductor junction and its production method | |
WO2014038176A1 (ja) | 半導体装置の製造方法 | |
JP2010232400A (ja) | 半導体基板と半導体基板の製造方法および半導体パッケージ | |
JP4069028B2 (ja) | 貫通電極付き基板、その製造方法及び電子デバイス | |
JP2010153750A (ja) | 半導体装置の製造方法 | |
JP2007015101A (ja) | 隠れヒンジmemsデバイス | |
JP4466213B2 (ja) | 固体撮像装置の製造方法 | |
JP2009064954A (ja) | 半導体装置およびその製造方法 | |
JP4285604B2 (ja) | 貫通電極付き基板、その製造方法及び電子デバイス | |
US7323355B2 (en) | Method of forming a microelectronic device | |
TWI631782B (zh) | 半導體雷射及其製造方法 | |
JP5460069B2 (ja) | 半導体基板と半導体パッケージおよび半導体基板の製造方法 | |
JP2005101144A (ja) | 半導体装置および半導体装置の製造方法 | |
JP2007088163A (ja) | 半導体チップの製造方法 | |
US9960081B1 (en) | Method for selective etching using dry film photoresist | |
TWI655696B (zh) | 半導體晶片的封裝方法以及封裝結構 | |
TW201208047A (en) | Manufacturing method for light-sensing structure | |
JP2008085238A (ja) | 貫通電極付き基板の製造方法、及び貫通電極付き基板 | |
JP2010067722A (ja) | 電子装置及びその電子装置に用いる構造体の製造方法 | |
JP2009539249A (ja) | マイクロエレクロトニクス素子チップ | |
KR100596609B1 (ko) | 레지스트 매립 방법 및 반도체 장치의 제조 방법 | |
WO2011052104A1 (ja) | 半導体装置及びその製造方法 | |
TWI532122B (zh) | 製造多數薄晶片的方法以及用此方法製造的薄晶片 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13835888 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14424118 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13835888 Country of ref document: EP Kind code of ref document: A1 |