WO2014038013A1 - 直流電源装置、直流電源装置の制御方法 - Google Patents

直流電源装置、直流電源装置の制御方法 Download PDF

Info

Publication number
WO2014038013A1
WO2014038013A1 PCT/JP2012/072602 JP2012072602W WO2014038013A1 WO 2014038013 A1 WO2014038013 A1 WO 2014038013A1 JP 2012072602 W JP2012072602 W JP 2012072602W WO 2014038013 A1 WO2014038013 A1 WO 2014038013A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
stop
control
power supply
gate signal
Prior art date
Application number
PCT/JP2012/072602
Other languages
English (en)
French (fr)
Inventor
譲原 逸男
俊幸 安達
真一 小玉
Original Assignee
株式会社京三製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京三製作所 filed Critical 株式会社京三製作所
Priority to PCT/JP2012/072602 priority Critical patent/WO2014038013A1/ja
Priority to IN3122KON2014 priority patent/IN2014KN03122A/en
Priority to PL12884309T priority patent/PL2879257T3/pl
Priority to CN201280075647.XA priority patent/CN104604070B/zh
Priority to US14/416,474 priority patent/US9160240B2/en
Priority to DE12884309.1T priority patent/DE12884309T1/de
Priority to JP2013555670A priority patent/JP5557407B1/ja
Priority to KR1020157006022A priority patent/KR101519319B1/ko
Priority to EP12884309.1A priority patent/EP2879257B1/en
Priority to TW102116689A priority patent/TWI472269B/zh
Publication of WO2014038013A1 publication Critical patent/WO2014038013A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/001Hot plugging or unplugging of load or power modules to or from power distribution networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32027DC powered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32045Circuits specially adapted for controlling the glow discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/02Means for extinguishing arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T15/00Circuits specially adapted for spark gaps, e.g. ignition circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/305Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M3/315Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/22DC, AC or pulsed generators

Definitions

  • the present invention relates to a DC power supply device, for example, a DC power supply device used for a load such as a plasma generator, and a control method for the DC power supply device.
  • DC power supply devices used for plasma generating devices are required to suppress excess current during arc generation and to extinguish arcs at high speed.
  • an excessive discharge current flows when an arc occurs due to a large capacitor connected to the output, or the arc is prolonged by increasing the output to compensate for a decrease in the output voltage when the arc occurs.
  • a DC power supply device including a chopper circuit, an inverter, and a voltage conversion circuit
  • the chopper main switch when stopping, the chopper main switch is stopped and the inverter is operated to perform a stop operation, and the chopper main switch is operated.
  • a DC power supply device that suppresses a large current to an inverter by gradually increasing the pulse width of a pulse, has a stable operation at startup, and starts and stops a load at high speed (Patent Document 1).
  • a short-circuit switch circuit that forcibly bypasses arc energy between the DC power supply and the load is installed, and this short-circuit switch circuit is operated periodically at regular intervals to generate reverse pulses to suppress arc discharge.
  • an arc interrupting device for a sputtering power source has been proposed in which, when arc discharge occurs, a reverse pulse is forcibly generated to reduce arc energy, and after the arc discharge is extinguished, the plasma state is restored ( Non-patent document 1).
  • Patent Document 2 A power source for a plasma generator that controls the pulse width of a pulsed high frequency according to the magnitude of arc discharge has been proposed (Patent Document 2).
  • JP 2006-6053 A (paragraph [0002] to paragraph [0012])
  • JP 08-167500 A (paragraph [0003] to paragraph [0011])
  • the DC power supply device including the inverter (Patent Document 1) starts the chopper operation after starting the inverter control when the inverter is restarted after stopping the DC power supply device.
  • the plasma generator is restarted by controlling.
  • inverter pulse width control DC / AC conversion is performed in each arm constituting the bridge circuit so that the phase of the ON / OFF operation of each switching element has a predetermined relationship.
  • this pulse width control when the phase of the on / off operation of the switching element of each arm deviates from a predetermined relationship, the resulting output voltage of each phase varies, and the voltage supplied to the load also varies. Problems arise.
  • the phase of the pulse control signal at the time of restart is set regardless of the phase of the pulse control signal at the time of stop. Therefore, at the time of restart, the output voltage of each phase varies, and the voltage supplied to the load may vary.
  • the present invention solves the above-mentioned conventional problems, and in a DC power supply device equipped with an inverter, the phase of the pulse control signal at the time of restart coincides with the phase of the pulse control signal at the time of restart when the inverter is restarted. With the goal.
  • the output voltage fluctuation of each phase of the inverter at the time of restart is suppressed, and the fluctuation of the voltage supplied to the load is suppressed.
  • the purpose is to suppress.
  • the purpose is to reduce the delay in supplying DC power to the load when the DC output of the DC power supply is restored.
  • the present invention relates to a direct current power supply device that stops and restores direct current output when direct current power is supplied to a load such as a plasma generator and a control method for the direct current power supply device.
  • the current flowing through the chopper unit at the time of stoppage is held as a circulating current, and the circulating current held at the time of restarting the inverter unit is supplied to the load. This reduces the delay in supplying the DC power to the load when the DC output of the DC power supply device is restored.
  • phase state of the gate signal at the time of stop is held, and the output at the time of restart is started by starting the orthogonal transformation of the inverter unit from the phase state of the gate signal held at the time of restart of the inverter unit Suppresses voltage fluctuations.
  • the DC power supply device of the present invention includes a current source chopper unit that constitutes a DC source, a multiphase inverter unit that converts the DC output of the current source chopper unit into multiphase AC power by operation of a plurality of switching elements, A rectifying unit that performs AC / DC conversion on the output of the inverter unit and supplies a direct current to the load, and a control unit that controls the current source chopper unit and the multiphase inverter unit are provided.
  • the current source chopper unit converts the DC power voltage into a predetermined voltage and outputs a DC current.
  • the polyphase inverter unit converts the DC output of the current source chopper unit into polyphase AC power by switching the current path by the operation of a plurality of switching elements.
  • the rectification unit converts the AC power converted by the multiphase inverter unit into DC power by AC / DC conversion, and supplies the converted DC power to the load.
  • the DC power supply device of the present invention stops the power supply from the power source side to the load when the arc discharge occurs, and then returns the power supply from the power source side to the load after the arc discharge is extinguished.
  • Whether or not arc discharge is extinguished is determined by detecting voltage such as load voltage, and the time from when arc discharge occurs until arc discharge is extinguished is set in advance. It may be determined that the arc has been extinguished.
  • the DC power supply device of the present invention uses the functions shown in the following (a) to (c) to stop the phase of the pulse control signal when the inverter is restarted at the time of stopping and returning the power supply.
  • the current flowing through the chopper unit at the time of stoppage is held as a circulating current, and this circulating current is supplied to the load when the inverter unit is restarted, thereby enabling the DC power supply device This reduces the delay in supplying DC power to the load when the DC output is restored.
  • the current source chopper unit stop function and the inverter short circuit function stop the power supply to the load during arc discharge, and (b) the current source chopper unit circulating current holding function, and (c) The inverter unit is quickly restarted by the function of holding the gate signal state of the inverter unit.
  • the DC power supply device includes an arc detection unit that detects an arc state of the arc generation device when the arc generation device is used as a load, and the control unit outputs a DC output based on a detection signal of the arc detection unit. Stop / resume control can be performed. The control unit performs stop control based on detection of arc occurrence and performs restart control based on detection of arc disappearance.
  • the arc detection unit detects the voltage of the load or the voltage at the output terminal of the DC power supply device, compares the detected voltage with a predetermined first threshold value, and compares the detected voltage with the first threshold value. Arc generation is detected when the voltage drops.
  • the detected voltage is compared with a predetermined second threshold value, and it is determined that the arc discharge has disappeared when the second threshold value is exceeded.
  • the controller of the DC power supply device of the present invention has a function of performing the following control when the DC output of the DC power supply device is stopped, stopped, and restarted.
  • the current source chopper unit converts the DC power of the DC source into a predetermined voltage and inputs it to the multiphase inverter unit.
  • the multiphase inverter unit converts DC power into AC power.
  • the rectification unit AC / DC converts the output of the multiphase inverter unit and supplies DC power to the load.
  • the power supply from the DC source is stopped by switching the main switch of the current source chopper unit from the on state to the off state.
  • the power supply from the DC source is stopped by switching the main switch of the current source chopper unit from the on state to the off state.
  • a closed circuit is formed between the current source chopper circuit and the multiphase inverter section.
  • the energy stored in the inductor of the current source chopper unit flows in the form of a circulating current when stopped.
  • This circulating current is generated in a circuit existing on the load side when viewed from the current-type chopper unit at a time point before the DC output is supplied from the DC source when the inverter unit is restarted to restore the DC output.
  • a rapid power supply from the inverter unit to the load is performed.
  • the power switch from the DC source is stopped by maintaining the main switch off of the current source chopper unit between the positive and negative terminals of the bridge circuit.
  • the circulating current flowing in the closed circuit formed between the current source chopper circuit and the multiphase inverter unit is held.
  • the gate signal state of the bridge circuit at the stop gate signal state, the phase of the bridge circuit pulse control signal is stopped when the inverter is restarted and the DC output of the DC power supply is restored. This can be continued from the phase state.
  • the control unit performs short circuit control between the positive terminal and the negative terminal of the bridge circuit when the DC output of the DC power supply device is stopped and during the stop.
  • This short-circuit control can be performed in two ways.
  • a pulse control signal for turning on all the switching elements of all the negative terminals of the bridge circuit is output as a gate signal to the switching elements of the negative terminal of the bridge circuit.
  • any one of the plurality of arms connected to the positive terminal is in the on state. Therefore, when a pulse control signal that turns on all the switching elements of all the arms of the negative terminal of the bridge circuit is output as a gate signal, the positive terminal and the negative terminal of the bridge circuit are short-circuited.
  • the gate signal in the gate signal state of the positive terminal at the stop time is output to the arm of the positive terminal of the bridge circuit
  • a gate signal for turning on the switching element of the negative terminal arm is output to the switching element of the negative terminal arm that forms a pair with the switching element of the positive terminal arm of a bridge circuit.
  • the switching element of the positive terminal side arm that is in the on state and the switching element of the negative terminal side that forms a pair with the switching element on the positive terminal side in the bridge circuit Both are turned on, and the positive terminal and the negative terminal of the bridge circuit are short-circuited.
  • the controller can control the switching element of the bridge circuit in two modes when the DC output of the DC power supply device is restored.
  • the first aspect corresponds to the first aspect of the short circuit control, stops the gate signal that turns on all the switching elements of the negative terminal arm of the bridge circuit, and sets the gate signal of each switching element.
  • the generation is restarted from the gate signal state at the time of stopping, the gate signal is input to the switching elements of the positive and negative terminal arms of the bridge circuit, and the multiphase inverter unit is restarted.
  • the second mode corresponds to the second mode of the short-circuit control.
  • the generation of the gate signal of each switching element is restarted from the gate signal state at the time of stop, and the positive and negative terminal arms of the bridge circuit are restarted.
  • a gate signal is input to the switching element to restart the multiphase inverter unit.
  • the phase of the pulse control signal at the time of restart can be matched with the phase of the pulse control signal at the time of stop. it can.
  • the present invention by adjusting the phase of the pulse control signal at the time of restart to the phase of the pulse control signal at the time of stop, the output voltage fluctuation of each phase of the inverter at the time of restart is suppressed, and the load Variations in the supplied voltage can be suppressed.
  • a DC power supply device 1 according to the present invention shown in FIG. 1 is input from a rectifying unit 10 that rectifies AC power of an AC power source 2, a snubber unit 20 that forms a protection circuit that suppresses transiently generated high voltage, and a rectifying unit 10.
  • a current source chopper unit 30 that converts a DC power voltage into a predetermined voltage and outputs a DC current
  • a multiphase inverter unit 40 that converts a DC output of the current source chopper unit 30 into a multiphase AC output
  • a multiphase inverter unit 40 Are provided with a multi-phase transformer 50 for converting the AC output into a predetermined voltage, and a multi-phase rectifier 60 for converting the AC of the multi-phase transformer 50 into a direct current.
  • an example of a current source step-down chopper circuit is shown as the current source chopper unit 30. Good.
  • the switching element Q 1 is, steps down by chopper controlling the DC voltage rectified by the rectifier unit 10.
  • the direct current reactor L F1 smoothes the current of the chopper controlled direct current.
  • the multiphase inverter unit 40 receives the direct current smoothed by the current source chopper unit 30 and performs orthogonal transformation by controlling the switching elements of the bridge circuit included in the multiphase inverter unit 40.
  • the current source chopper unit 30 may have a configuration in which an output capacitor C F1 (not shown) is connected in parallel to the output end. Normally, the current source step-down chopper is configured not to include an output capacitor. However, in the current source step-down chopper circuit of the current source chopper unit 30 according to the present invention, the output capacitor C F1 is connected to the output terminal, so that the multiphase inverter unit is provided.
  • the switching element can be protected by absorbing the surge voltage generated when performing the commutation operation between the 40 switching elements and the energy of the inductance connected in series to each switching element.
  • the value of the output capacitor C F1 is set to such an extent that the current delay does not affect the commutation of the inverter operation due to the time constant due to the output capacitor and the wiring inductance.
  • the multi-phase inverter unit 40 includes a multi-phase inverter circuit configured by bridge-connecting switching elements corresponding to the number of phases.
  • the three-phase inverter circuit is composed of six switching elements.
  • the switching element for example, a semiconductor switching element such as an IGBT or a MOSFET can be used.
  • Each switching element of the multiphase inverter circuit performs a switching operation based on the control signal of the switching control unit 81, converts DC power into AC power, and outputs the AC power.
  • the multiphase rectification unit 60 rectifies the AC output of the multiphase inverter unit 40 and supplies the DC output to the load.
  • a conventionally known multiphase rectification unit may be configured to include a DC filter circuit in the output unit. This DC filter circuit removes the high-frequency ripple component included in the AC output of the multiphase inverter unit.
  • DC filter circuit can be configured by the output capacitor C FO connected in series with the output reactor L FO in parallel connected to the output terminal (not shown).
  • the DC output of the multiphase rectification unit 60 is output via the wiring inductance L 0 provided in the wiring 90, and is supplied to the plasma generator 4 by the output cable 3 connecting the DC power supply device 1 and the plasma generator 4. .
  • the DC power supply device 1 of the present invention can use a parasitic impedance instead of the DC filter circuit in the multiphase rectifier 60 as a configuration for removing high-frequency ripple.
  • the inductance L 0 of the wiring 90 between the polyphase rectifier 60 and the output terminal as an inductance component
  • the inductance or capacitor included in the output cable 3 connected between the DC power supply device 1 and the load or
  • the electrode capacity C 0 of the plasma generator 4 can be used.
  • the parasitic impedance of the above-described multiphase inverter section and the capacity of the output cable and electrode capacitance substantially constitute a DC filter circuit, and reduce the high frequency ripple included in the AC output of the multiphase inverter section.
  • the ripple of the DC voltage has a characteristic that increases when the driving frequency of the multiphase inverter circuit is lowered. Therefore, by increasing the driving frequency of the polyphase inverter circuit, the need for output capacitors C FO and output reactor L FO can be reduced. Moreover, the energy which DC power supply device 1 holds inside can be suppressed by raising the drive frequency of a multiphase inverter circuit.
  • the DC power supply device 1 of the present invention includes a control unit 80 that controls the current source chopper unit 30 and a switching control unit 81 that controls the multiphase inverter unit 40.
  • Control unit 80 is a circuit for chopper control of the switching element to Q 1 current-chopper 30, the chopper current is an output current of the switching element Q 1, and detects an output voltage of the DC power supply device 1, the chopper current Based on the detected value of the output voltage, control is performed so that the output of the current source chopper unit 30 becomes a predetermined current value and a predetermined voltage value set in advance.
  • the switching control unit 81 controls the switching operation of the switching element connected to each arm constituting the bridge circuit of the multiphase inverter unit 40.
  • the multiphase inverter unit 40 orthogonally converts the input direct current into alternating current by controlling the switching element.
  • the multiphase inverter unit 40 is configured by a bridge circuit having six arms as shown in FIGS. Each arm is provided with six switching elements Q R , Q S , Q T , Q X , Q Y , and Q Z.
  • a switching element Q R and the switching element Q x connected in series, a switching element Q S and the switching element Q Y are connected in series, connected in series and a switching element Q T and the switching element Q z.
  • a connection point R between the switching element Q R and the switching element Q x is connected as an R phase component of the three-phase transformer 51 via an inductance L m1
  • a connection point S between the switching element Q S and the switching element Q Y is an inductance through L m @ 2 are connected as S-phase of the three-phase transformer 51
  • a switching element Q T and the switching element Q Z connecting point T is connected as T-phase of the three-phase transformer 51 via an inductance L m3
  • the 5 and 6, the inductances L m1 , L m2 , and L m3 are omitted.
  • PWM PWM control that changes the magnitude of output current under constant input current is known as current source inverter control.
  • PWM control a pulse control signal is formed for each phase by comparing a carrier wave and a modulated wave.
  • the pulse control signal of each phase has a conduction period of 120 °, and the ON / OFF of the switching element of each arm of the inverter is controlled by this pulse control signal.
  • R-phase, S-phase, and T-phase currents having a phase difference are formed.
  • a feedback signal is fed back to the control unit 80 and the switching control unit 81 from the output end of the DC power supply device 1 or the load side.
  • the feedback signal can be, for example, a voltage at the output terminal of the DC power supply device 1.
  • FIG. 2 is a schematic block diagram for explaining a configuration example of the switching control unit.
  • the switching control unit 81 is for short-circuiting between a pulse control signal generation circuit 81a that generates a pulse control signal for controlling on / off of the switching element of the multiphase inverter unit, and a positive terminal and a negative terminal of the bridge circuit.
  • a generation circuit 81b and a gate signal holding circuit 81c that holds and outputs the pulse control signal generated by the gate signal generation circuit 81b as a gate signal are provided.
  • the gate signal generation circuit 81b generates a gate signal from the pulse control signal generated by the pulse control signal generation circuit 81a and the short-circuit ON signal generated by the short-circuit ON signal generation circuit 81d.
  • the gate signal holding circuit 81c is a circuit that holds and outputs the gate signal generated by the gate signal generation circuit 81b, and performs a holding operation or a releasing operation for releasing the holding operation based on an arc generation signal described later.
  • the gate signal input from the gate signal generation circuit 81b is held by the holding operation, and the held gate signal is output.
  • the release operation the holding operation is released, and the gate signal input from the gate signal generation circuit 81b is output.
  • the switching control unit 81 inputs an arc generation signal detected by the arc detection circuit 82.
  • the arc detection circuit 82 detects the occurrence state of arc discharge in the arc generator of the load based on, for example, the load or the voltage at the output end.
  • the detection of the arc state by the arc detection circuit 82 is performed, for example, by comparing the load voltage or the voltage at the output end of the DC power supply device with a predetermined first threshold, It is detected that an arc discharge has occurred when the voltage drops below the threshold value. In addition, after detecting the occurrence of arc discharge, the detected voltage is compared with a predetermined second threshold value, and when the detected voltage exceeds the second threshold value, arc discharge disappears. to decide.
  • the arc detection circuit 82 When detecting the occurrence of arc discharge, the arc detection circuit 82 temporarily stops each generation operation of the pulse control signal generation circuit 81a and holds the signal state.
  • the arc detection circuit 82 When the arc detection circuit 82 detects the occurrence of the arc discharge and then determines that the arc discharge has disappeared, the arc detection circuit 82 releases the hold state of the pulse control signal generation circuit 81a and restarts the generation operation.
  • the pulse control signal generation circuit 81a restarts the generation of each signal from the signal state at the time of arc discharge occurrence.
  • the arc detection circuit 82 inputs an arc generation signal to the above-described pulse control signal generation circuit 81a, and also inputs an arc generation signal to the gate signal holding circuit 81c and the short-circuit on-signal generation circuit 81d.
  • the gate signal holding circuit 81c receives the arc generation signal, and when the occurrence of arc discharge is detected, holds the gate signal at that time and outputs the gate signal at the time of holding.
  • the gate signal holding circuit 81c determines that the arc discharge has disappeared by the arc generation signal after the occurrence of the arc discharge is detected, the gate signal holding circuit 81c cancels the holding of the gate signal and the gate signal generated by the gate signal generation circuit 81b is Output.
  • the gate signal holding circuit 81c measures an elapsed time after the occurrence of arc discharge is detected, and determines that the arc discharge has disappeared when the preset holding time tarc has elapsed, The retention of the gate signal may be canceled and the gate signal generated by the gate signal generation circuit 81b may be output.
  • the holding time t arc is a time for holding a current state in which the direct current immediately before the arc discharge is generated as the circulating current ⁇ i.
  • the holding time tarc can be arbitrarily set. For example, a time required until the arc to be discharged after the arc discharge is generated for the load to be controlled is obtained in advance, and a margin predicted from the fluctuation range at this time is obtained. Can be determined by adding minutes etc.
  • the short-circuit ON signal generation circuit 81d When the arc discharge generation signal is input, the short-circuit ON signal generation circuit 81d generates a short-circuit ON signal in order to short-circuit between the positive terminal and the negative terminal of the multiphase inverter unit.
  • the short-circuit ON signal is generated when both the switching element provided in the positive terminal side arm of the polyphase inverter unit and the switching element provided in the negative terminal side arm are turned on. Short-circuit between terminal and negative terminal.
  • This ON signal for short circuit can be in two modes.
  • the first mode is to turn on all the switching elements of all the negative terminals of the bridge circuit with respect to the switching elements of the negative terminal arm of the bridge circuit, whereby the positive terminal and the negative terminal of the multiphase inverter unit It is the aspect which short-circuits between.
  • any one of the plurality of arms connected to the positive terminal is in the on state.
  • a pulse control signal that turns on all the switching elements of all the arms of the negative terminal of the bridge circuit as a gate signal, the positive terminal and the negative terminal of the bridge circuit are short-circuited.
  • the first short-circuit ON signal is a pulse control signal that turns on all the switching elements of all the arms of the negative terminal of the bridge circuit.
  • the gate signal generation circuit 81b the normal pulse control signal generated by the pulse control signal generation circuit 81a and the short-circuit ON signal generated by the short-circuit ON signal generation circuit 81d are added under an OR condition to generate a gate signal. To do.
  • the gate signal in the gate signal state of the positive terminal at the stop time is output to the arm of the positive terminal of the bridge circuit,
  • the switching element of the negative terminal arm that forms a pair with the switching element of the positive terminal arm of a bridge circuit is detected, and the switching element of the negative terminal arm is turned on, thereby the positive terminal and the negative terminal of the multiphase inverter section are turned on.
  • the switching element of the positive terminal side arm that is in the on state and the switching element of the negative terminal side that forms a pair with the switching element on the positive terminal side in the bridge circuit Both are turned on, and the positive terminal and the negative terminal of the bridge circuit are short-circuited.
  • the first short-circuit ON signal is a pulse control signal that turns on the switching element of the negative terminal side arm that is paired with the switching element of the positive terminal side arm of the bridge circuit that is on.
  • the normal pulse control signal generated by the pulse control signal generation circuit 81a and the short-circuit ON signal generated by the short-circuit ON signal generation circuit 81d are added to generate a gate signal.
  • FIG. 3 is a flowchart for explaining an operation example of the DC power supply device of the present invention
  • FIG. 4 is a timing chart for explaining an operation example of the DC power supply device of the present invention
  • FIG. FIG. 6 is a diagram for explaining the flow of current when arc discharge occurs in the power supply device
  • FIG. 6 is a diagram for explaining the flow of current when arc discharge disappears in the DC power supply device of the present invention.
  • the flowchart of FIG. 3 shows an operation example when an arc discharge occurs (S1 to S7) and an operation example when an arc discharge disappears (S8 to S15) in a state where the DC power supply device is performing normal operation. Show.
  • the arc detector detects and monitors the load or the voltage at the output end of the DC power supply device, and detects that arc discharge has occurred when the voltage drops. Detection of the occurrence of arc discharge can be performed by comparing a predetermined threshold value with a detected value. The detection of arc discharge is not limited to the comparison between the detected voltage value and the threshold value (S1).
  • the power supply from the DC power supply to the chopper circuit is stopped by the process of S2, the supply of DC power from the DC power supply device to the load is stopped, and the chopper circuit and the bridge circuit of the multiphase inverter unit are processed by the processes of S3 and S4.
  • a closed circuit is formed between them.
  • the current flowing through the inductance of the chopper circuit circulates as a circulating current ⁇ i in the formed closed circuit (S5).
  • the circulating current ⁇ i is supplied to the multiphase inverter unit when the supply of DC power from the DC power supply device to the load is resumed, and accelerates the rise of the orthogonal transformation by the multiphase inverter unit.
  • the gate signal of the multiphase inverter unit at the time of the stop is held (S6), and the generation of the gate signal by the gate signal generation circuit is interrupted (S7).
  • the step of holding the gate signal of S6 and the step of interrupting the generation of a new gate signal of S7 can hold the conversion state of the orthogonal transformation of the multiphase inverter unit when the DC power supply is stopped.
  • the power supply from the DC power supply to the chopper circuit is restarted by the step S9, and the circulating current ⁇ i flowing in the closed circuit formed between the chopper circuit and the bridge circuit of the multiphase inverter unit by the steps S10 and S11 is increased.
  • the direct current supplied from the direct current power source to the multiphase inverter section is delayed due to the inductance and stray capacitance of the chopper circuit.
  • the circulating current ⁇ i is generated from the DC power supply by stopping the short circuit between the positive terminal and the negative terminal of the multiphase inverter unit and forming a current path between the chopper circuit and the multiphase inverter unit. The DC current is supplied to the multiphase inverter unit before the DC current is supplied, and the restart of the multiphase inverter unit can be accelerated.
  • a gate signal can be generated from the same phase state as that when the DC power supply is stopped.
  • FIG. 4 The timing chart of FIG. 4 is an example using a three-phase inverter as a multi-phase inverter
  • FIG. 4 (a) shows the output voltage (V 0 ) of the DC power supply device
  • FIG. 4 (b) shows the arc by the arc detector
  • FIG. 4 (c) shows the operation state of the chopper circuit
  • FIGS. 4 (d) to (i) show gate signals for controlling the driving of the switching elements provided in the arms of the three-phase inverter.
  • FIG. 4 (j) shows a short-circuit ON signal for short-circuiting between the positive terminal and the negative terminal of the three-phase inverter.
  • FIGS. 4D, 4F, and 4H show gate signals for driving the switching elements Q R , Q S , and Q T of the arm on the positive terminal side of the three-phase inverter, and FIGS. ), (I) are gate signals for driving the switching elements Q X1 , Q Y1 , and Q Z1 of the arm on the negative terminal side of the three-phase inverter. Further, the paired switching elements Q R and the switching element Q X1, the paired switching elements Q S and the switching element Q Y1, the switching element Q T and the switching element Q Z1 paired Yes. In addition, the gate signal represents 12 sections 1 to 12 in the figure as one cycle.
  • the holding time t arc is a section in which the state when the arc discharge is generated is held, corresponds to a section from the occurrence of the arc discharge to the disappearance, and can be arbitrarily set.
  • the output voltage V 0 decreases when arc discharge occurs, and returns when it is determined that arc discharge has disappeared after the phase of “ ⁇ ⁇ t arc ” has elapsed.
  • Arc detector monitors the output voltage V 0, and starts the output of the arc occurrence signal upon detecting a drop in the output voltage V 0, the time to detect the return of the output voltage V 0 or holding time t arc is passed, At this point, the output of the arc generation signal is terminated (FIG. 4B).
  • the chopper circuit When the chopper circuit receives the arc generation signal, the chopper circuit operates to the end of one section including the time point at which the arc generation signal is received in one section among a plurality of sections (12 sections in FIG. 4) constituting one cycle. Continuously, a direct current as a chopper output is supplied to the three-phase inverter unit. In the illustrated example, since the arc generation signal is received in the middle of the section “1”, the operation of the chopper circuit is stopped at the last time of the section “1”.
  • the gate signal generator outputs a signal width of 2 ⁇ / 3, a signal interval of 4 ⁇ / 3, and a gate signal of 2 ⁇ / 3 with an interval of 2 ⁇ / 3 for each of the three phases.
  • the gate signal of the switching element Q R of the positive terminal side (FIG. 4 (d))
  • the 1-4 interval is turned on, and turned off a section of 5-12.
  • the gate signal of the switching element Q S (FIG. 4 (f)) is a section of 5-8 is turned on may be turned off for 9-12 sections and 1-4 interval.
  • the gate signal of the switching element Q T (FIG. 4 (h)) is a section of 9-12 is turned on, and turned off the section of 1-8.
  • the switching control unit When the switching control unit receives the arc generation signal, the switching control unit maintains the output state and maintains the output of the gate signal when the gate signal is in the output state at the time of receiving the arc generation signal. Thereafter, when the disappearance of the arc discharge is detected, or when the arc generation signal ends after the holding time elapses, the generation of the gate signal is resumed, and the gate signals for the remaining sections are generated from the time when the arc generation signal is received.
  • the section width obtained by combining the section width before the arc occurrence time and the section width after the arc disappearance time or after the holding time elapses is the section width of 2 ⁇ / 3 minutes of the gate signal.
  • the gate signal of the switching element Q R of the positive terminal side (FIG. 4 (d)), the "omega ⁇ t 1" minutes from the beginning of the time to the point where the arc discharge has occurred in the section "1" is turned on
  • the ON state is maintained during the “ ⁇ ⁇ t arc ” section in which arc discharge continues. Further, from the time when the arc discharge disappears or the holding time elapses, the ON state is continued for “2 ⁇ / 3 ⁇ ⁇ t 1 ” which is the remaining signal width of 2 ⁇ / 3.
  • section width “ ⁇ ⁇ t arc ” before the arc occurrence time and the section width “2 ⁇ / 3 ⁇ ⁇ t 1 ” after the arc disappearance time or after the holding time has elapsed are combined to obtain a section width of 2 ⁇ / 3 minutes.
  • the gate signal in the on state is output.
  • Similar operation control is performed even when the gate signal is in an off state at the time of occurrence of arc discharge.
  • the gate signal of the switching element Q S of the positive terminal side (Fig. 4 (f)), the section 9-12 the arc discharge is combined intervals up to the time that occurred in the middle of the section "1"" ⁇ / 3 + ⁇ ⁇ t 1 ′′ is turned off, and the off state is maintained during the period of “ ⁇ ⁇ t arc ” where arc discharge continues.
  • the OFF state is continued by “2 ⁇ / 3 ⁇ ⁇ t 1 ”, which is the remaining signal width of 4 ⁇ / 3, from the time when the arc discharge disappears or the holding time elapses.
  • section width “2 ⁇ / 3 + ⁇ t 1 ” before the arc occurrence time and the section width “2 ⁇ / 3 ⁇ ⁇ t 1 ” after the arc disappearance time or after the holding time has elapsed are combined to obtain a section width of 4 ⁇ / 3 minutes.
  • the gate signal in the off state is output.
  • the ON signal for short-circuiting shown in FIG. 4J is output during the holding time tarc that can be arbitrarily set between the time when arc discharge occurs and the time when it is determined that arc discharge disappears.
  • FIG. 5 shows a circuit state when arc discharge occurs.
  • arcing as an off state of the switching element to Q 1 chopper circuit by arc detection signal, it stops the current supply from the DC power source, short the three-phase inverter by shorting ON signal, the chopper circuit and the 3-phase A closed circuit is formed with the inverter, and a circulating current ⁇ i flows.
  • FIG. 5A shows a state where all of the switching elements Q X , Q Y and Q Z of the negative terminal side arm of the three-phase inverter are turned on, and the switching element Q R .
  • An example is shown in which a closed circuit is formed by a switching element in the on state of Q S and Q T. 5 (a), a switching element Q R of the positive terminal side arm, switching elements Q X of the negative terminal side arm, Q Y, all Q Z is turned on, the switching element Q R, Q X , Q Y , Q Z , a diode D 1 , and an example in which a circulating current flows through a closed circuit formed by an inductance of L F1 .
  • FIG. 5B shows the switching elements Q R , Q S , Q T of the positive terminal side of the switching elements Q X , Q Y , Q Z of the negative terminal side arm of the three-phase inverter.
  • a switching element that is paired with a switching element that is in an on state is detected and turned on, thereby forming a closed circuit.
  • FIG. 5 (b) a switching element Q R of the positive terminal side arm, switching elements Q X of the negative terminal side of the arm which forms the switching element Q R a pair are turned on, the switching element Q
  • An example is shown in which a circulating current flows through a closed circuit formed by R 1 , Q X , a diode D 1 , and a DC reactor L F1 .
  • FIG. 6 shows a circuit state when the arc discharge disappears.
  • disappearance of the arc discharge switched on the switching elements to Q 1 chopper circuit from the off state by the arc detection signal, the resume the supply of current from the DC power source, a three-phase inverter by stopping the shorting ON signal Release the short-circuit state.
  • the circulating current ⁇ i flowing in the closed circuit between the chopper circuit and the three-phase inverter is supplied to the three-phase inverter side.
  • the three-phase inverter following the circulating current .DELTA.i, direct current is supplied from the DC power supply through the switching element Q 1.
  • FIG. 6A shows a state where the circulating current ⁇ i flows through the three-phase inverter.
  • the switching element Q R and the switching element Q Y is stopped in the ON state, like the time of stopping, to restart the switching element Q R and the switching element Q Y from the on state .
  • the circulating current ⁇ i flows through the lines of the switching element Q R , the connection point R, the three-phase transformer, the connection point S, and the switching element Q Y.
  • the current supplied from the DC power source indicates the flow conditions in the 3-phase inverter through the switching element Q 1.
  • the current from the DC power source flows through the switching element Q R , the connection point R, the three-phase transformer, the connection point S, and the line of the switching element Q Y.
  • the three-phase inverter performs orthogonal transformation by controlling conduction of the switching element with a gate signal in the same manner as in a normal operation.
  • FIG. 7 shows another configuration example of the DC power supply device of the present invention.
  • the configuration example described above is an example in which the three-phase inverter is short-circuited by controlling the ON state of the switching element of the three-phase inverter.
  • the configuration example shown in FIG. 7 in place of the short circuit of the three-phase inverter, connected in parallel switching element Q 3 between the chopper circuit and the 3-phase inverter.
  • the ON state by shorting the ON signal to the switching element Q 3, a short circuit between the output terminal of the chopper circuit, passing a circulating current in the closed to form a chopper circuit path.
  • the current source inverter device of the present invention can be applied as a power source for supplying power to a plasma generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Combustion & Propulsion (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Plasma Technology (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

再起動時におけるパルス制御信号の位相と停止時におけるパルス制御信号の位相とを一致させることによって、再起動時におけるインバータの各相の出力電圧変動および負荷への供給電圧変動を抑制する。直流電力をプラズマ発生装置に供給する際、プラズマ発生装置にアーク放電が発生したときに、直流電力の供給を停止して電極や基板の損傷を低減し、さらに、アーク放電が消弧したときに、直流電力の供給を再開する。直流出力の停止・再開において、停止時においてチョッパ部に流れる電流を循環電流として保持し、インバータ部の再起動時においてこの循環電流を負荷に供給することによって、直流出力の再開時における、負荷への直流電力の供給遅れを低減する。

Description

直流電源装置、直流電源装置の制御方法
 本発明は、直流電源装置に関し、例えば、プラズマ発生装置等の負荷に用いられる直流電源装置、直流電源装置の制御方法に関する。
 プラズマ発生用装置に用いる直流電源装置は、アーク発生時において過剰電流を抑制し、アークの消弧を高速で行うことが求められている。電圧型の直流電源は、出力に接続される大きなコンデンサによってアーク発生時に過剰な放電電流が流れたり、アーク発生時の出力電圧低下を補うために更に出力を増加させることでアークが長時間化するなど負荷への影響が増すという問題がある。
 プラズマ発生装置を負荷とした場合、アークの発生ごとに直流電源は起動・停止動作を繰り返すことになる。高速な起動・停止動作が困難なことから、不安定な動作を招くことになる。このような問題に対して、チョッパ回路、インバータ、電圧変換回路を備える直流電源装置において、停止時に、チョッパの主スイッチを停止すると共にインバータを動作させて行う停止操作、チョッパの主スイッチを動作した状態でインバータのトランジスタを全てONさせる停止動作、チョッパの主スイッチを停止すると共にインバータのトランジスタを全てONさせる停止動作の何れかを行い、起動時において、インバータを作動させチョッパ回路から出力する直流電圧パルスのパルス幅を徐々に広げることによって、インバータへの大電流を抑制し、起動時の動作が安定で、負荷を高速に起動・停止する直流電源装置が提案されている(特許文献1)。
 また、直流電源装置と負荷との間にアークエネルギーを強制的にバイパスさせる短絡スイッチ回路を設け、この短絡スイッチ回路を一定時間ごとに定期的に動作させて逆パルスを発生させてアーク放電を抑制すると共に、アーク放電が発生した際に強制的に逆パルスを発生させてアークエネルギーを低減させ、アーク放電が消弧した後、プラズマ状態を復帰させるスパッタ電源用アーク遮断装置が提案されている(非特許文献1)。
 一方、負荷に高周波電力を供給する交流電源装置において、負荷であるプラズマ発生装置にアーク放電が発生すると、回路が断線したりショートしたりする他、電極や基板に損傷を与える場合がある。このようなアーク放電の発生を抑制するために、アーク放電を検出した後、所定時間高周波電力の供給を制限又は停止し、その後、再び高周波電力を復帰させることが知られている。
 アーク放電を検出した後に所定時間高周波電力の供給を停止する際に、アーク放電を十分に抑制するために、必要以上に高周波電力の供給を長時間停止すると、グロー放電の維持が困難となるという問題がある。
 このような問題に対して、アーク放電の発生後にアーク放電を速やかに抑制し、アーク放電の消失後に直ちにプラズマ装置の運転を可能とするために、アーク放電の検出後にパルス状の高周波を供給し、アーク放電の大きさに応じてパルス状の高周波のパルス幅を制御するプラズマ発生装置用電源が提案されている(特許文献2)。
特開2006-6053号公報(段落[0002]~段落[0012]) 特開平08-167500公報(段落[0003]~段落[0011])
Origin Technical Journal No.73(2010) 1-7 スパッタ電源用アーク遮断装置(パルス発生器)「GEXUS-P30」 中村健一・三保谷博
 直流電源装置に係る先行技術の内、インバータを備える直流電源装置(特許文献1)は、直流電源装置を停止した後、インバータを再起動する際、インバータの制御を開始させた後にチョッパの動作を制御することでプラズマ発生装置を再起動させている。
 通常、インバータをパルス幅制御する場合には、パルス信号を生成し、このパルス信号をインバータの各スイッチング素子にゲート信号として入力し、スイッチング素子のオン・オフ動作を制御している。
 インバータのパルス幅制御では、ブリッジ回路を構成する各アームにおいて、各スイッチング素子のオン・オフ動作の位相が所定関係となるように直流・交流変換を行っている。このパルス幅制御において、各アームのスイッチング素子のオン・オフ動作の位相が所定関係からずれた場合には、得られる各相の出力電圧に変動が生じ、負荷に供給する電圧に変動が生じるという問題が生じる。
 前記した直流電源装置は、インバータの再起動において、再起動時におけるパルス制御信号の位相は停止時におけるパルス制御信号の位相と無関係に設定されている。そのため、再起動時において、各相の出力電圧に変動が生じ、負荷に供給する電圧に変動が生じるおそれがある。
 また、直流電源装置の直流出力を停止した後に復帰させる際には、直流電源装置が備える容量分等によって発生する遅延時間によって、インバータが再起動してから負荷に直流電力が供給されるまでの間に遅れが生じるという問題がある。
 本発明は前記した従来の問題点を解決し、インバータを備える直流電源装置において、インバータの再起動において、再起動時におけるパルス制御信号の位相を停止時におけるパルス制御信号の位相とを一致させることを目的とする。
 また、再起動時におけるパルス制御信号の位相を停止時におけるパルス制御信号の位相に一致させることによって、再起動時におけるインバータの各相の出力電圧変動を抑制し、負荷に供給する電圧の変動を抑制することを目的とする。
 また、直流電源装置の直流出力の復帰時における、負荷への直流電力の供給遅れを低減することを目的とする。
 本願発明は、プラズマ発生装置等の負荷に対して直流電力を供給する際に、直流出力の停止・復帰を行う直流電源装置および直流電源装置の制御方法に係る。
 プラズマ発生装置を負荷として直流電力を供給する場合には、負荷であるプラズマ発生装置にアーク放電が発生した際に、直流電源装置からプラズマ発生装置への直流電力の供給を停止することによって電極や基板の損傷を低減する。さらに、アーク放電が消弧した際に、直流電源装置からプラズマ発生装置への直流電力の供給を復帰させる。
 本願発明は、直流電源装置の直流出力の停止・復帰において、停止時においてチョッパ部に流れる電流を循環電流として保持し、インバータ部の再起動時において保持していた循環電流を負荷に供給することによって、直流電源装置の直流出力の復帰時における、負荷への直流電力の供給遅れを低減する。
 また、停止時におけるゲート信号の位相状態を保持しておき、インバータ部の再起動時において保持しておいたゲート信号の位相状態からインバータ部の直交変換を開始することによって、再起動時における出力電圧変動を抑制する。
 [直流電源装置]
 本願発明の直流電源装置は、直流源を構成する電流形チョッパ部と、電流形チョッパ部の直流出力を複数のスイッチング素子の動作により多相の交流電力に変換する多相インバータ部と、多相インバータ部の出力を交直変換し、負荷に直流を供給する整流部と、電流形チョッパ部および多相インバータ部を制御する制御部とを備える。
 通常の電力供給動作において、電流形チョッパ部は直流電力の電圧を所定電圧に変換して直流電流を出力する。多相インバータ部は、電流形チョッパ部の直流出力を複数のスイッチング素子の動作で電流路を切り替えることにより多相の交流電力に変換する。整流部は、多相インバータ部で変換した交流電力を交直変換によって直流電力に変換し、変換した直流電力を負荷に供給する。
 直流電力を負荷に供給する動作状態において、負荷のプラズマ発生装置においてアーク放電が発生すると、負荷電圧が降下すると共に電源側から負荷に向かって過剰電流が流れる。本願発明の直流電源装置は、このアーク放電が発生した際に電源側から負荷への電力供給を停止し、その後、アーク放電が消弧した後に電源側から負荷への電力供給を復帰する。
 アーク放電の消弧の有無は、負荷電圧等の電圧検出によって判定する他、アーク放電が発生してからアーク放電が消弧するまでの時間を予め設定しておき、この設定時間の経過に基づいて消弧したと判断してもよい。
 本願発明の直流電源装置は、以下の(a)~(c)で示した各機能によって、電力供給の停止時および復帰時において、インバータ部の再起動時におけるパルス制御信号の位相を停止時におけるパルス制御信号の位相に一致させ、パルス制御信号の位相を合わせることによって、再起動時におけるインバータの各相の出力電圧変動を抑制し、負荷に供給する電圧の変動を抑制する。
 また、直流電源装置の直流出力の停止・再開において、停止時においてチョッパ部に流れる電流を循環電流として保持し、インバータ部の再起動時においてこの循環電流を負荷に供給することによって、直流電源装置の直流出力の復帰時における、負荷への直流電力の供給遅れを低減する。
 (a)電流形チョッパ部の停止機能およびインバータの短絡機能:
 電源側から負荷への電力供給を停止する時点において、電流形チョッパ部の動作を停止すると共に、インバータ部の入力側において、正端子側と負端子側を短絡することによって、インバータ部から変圧器側に向かう電流を停止させる機能
 (b)電流形チョッパ部の循環電流の保持機能:
 電源側から負荷への電力供給の停止中において、停止時で電流形チョッパ部のインダクタ部に流れる電流を循環電流として保持しておき、電力供給の復帰時において、循環電流をインバータ部に流すことでインバータ部を迅速に再起動させる機能
 (c)インバータのゲート信号状態の保持機能:
 電源側から負荷への電力供給の停止中において、停止時におけるインバータ部を制御するゲート信号状態を保持しておき、電力供給の復帰時において、保持したゲート信号状態からインバータ部の制御を再開させる機能
 (a)の電流形チョッパ部の停止機能とインバータ部の短絡機能によって、アーク放電時に負荷への電力供給を停止し、(b)の電流形チョッパ部の循環電流の保持機能、および(c)のインバータ部のゲート信号状態の保持機能によって、インバータ部を迅速に再起動させる。
 本発明の直流電源装置は、アーク発生装置を負荷とする場合において、アーク発生装置のアーク状態を検出するアーク検出部を備える構成とし、制御部はアーク検出部の検出信号に基づいて直流出力の停止・再開制御を行うことができる。制御部は、アークの発生検出に基づいて停止制御を行い、アークの消失検出に基づいて再起動制御を行う。
 アーク検出部は、負荷の電圧、あるいは、直流電源装置の出力端の電圧を検出し、この検出電圧をあらかじめ定めておいた第1のしきい値と比較し、第1のしきい値よりも低下したときにアーク発生を検出する。
 また、アーク発生を検出した後、検出電圧をあらかじめ定めておいた第2のしきい値と比較し、第2のしきい値を超えたときにアーク放電が消失したと判断する。
 [直流電源装置の制御方法]
 本発明の直流電源装置の制御部は、直流電源装置の直流出力の停止時、停止中、および再開時において以下の制御を行う機能を有している。
 (直流電源装置の直流出力の停止時)
 電源装置の直流出力の停止時の制御は、電流形チョッパ部の主スイッチをオン状態からオフ状態に切り替え、多相インバータ部を構成するブリッジ回路のゲート信号の生成を停止すると共に、ブリッジ回路の正端子と負端子間を短絡する。
 直流電源装置は、負荷に直流出力を供給している状態では、電流形チョッパ部は直流源の直流電力を所定電圧に変換し多相インバータ部に入力する。多相インバータ部は直流電力を交流電力に変換する。整流部は多相インバータ部の出力を交直変換し、直流電力を負荷に供給する。
 直流電源装置の直流出力の停止時には、電流形チョッパ部の主スイッチをオン状態からオフ状態に切り替えることによって、直流源からの電力供給を停止する。この停止時において、多相インバータ部のブリッジ回路の正端子と負端子間を短絡すると、電流形チョッパ回路と多相インバータ部との間で閉回路が形成される。閉回路には、停止時に電流形チョッパ部のインダクタに蓄積されたエネルギーが循環電流の形態で流れる。この循環電流は、インバータ部を再起動して直流出力を復帰する際に、直流源から直流出力が供給されるよりも先の時点で、電流形チョッパ部から見て負荷側に存在する回路に流れ、インバータ部から負荷への迅速な電力供給が行われる。
 (直流電源装置の直流出力の停止中)
 直流電源装置の直流出力の停止中の制御は、電流形チョッパ部の主スイッチのオフ状態と、ブリッジ回路の正端子と負端子間の短絡状態を保持すると共に、ブリッジ回路のゲート信号状態を停止時のゲート信号状態に保持する。
 直流電源装置の直流出力の停止中には、電流形チョッパ部の主スイッチのオフ状態を保持することによって、直流源からの電力供給の停止を保持し、ブリッジ回路の正端子と負端子間の短絡状態を保持することによって、電流形チョッパ回路と多相インバータ部との間で形成される閉回路に流れる循環電流を保持する。また、ブリッジ回路のゲート信号状態を停止時のゲート信号状態に保持することによって、インバータ部を再起動して直流電源の直流出力を復帰させる時点において、ブリッジ回路のパルス制御信号の位相を停止時の位相状態から継続して行うことができる。
 (直流電源装置の直流出力の復帰時)
 直流電源装置の直流出力の復帰時の制御は、電流形チョッパ部の主スイッチをオフ状態からオン状態に切り替え、ブリッジ回路のゲート信号の生成を停止時のゲート信号状態から再開し、生成したゲート信号により多相インバータ部を再起動する。
 直流電源装置の直流出力の復帰時には、電流形チョッパ部の主スイッチをオフ状態からオン状態に切り替えることによって、直流源の直流電力を所定電圧への変換を再開し、変換した直流電力を多相インバータ部に入力する。このとき、多相インバータ部のブリッジ回路は、生成が再開されたゲート信号によってオン・オフ動作の制御が行われて再起動される。このとき、ブリッジ回路のゲート信号の生成を停止時のゲート信号状態から再開することによって、ブリッジ回路のパルス制御信号の位相を停止時の位相状態から継続して行うことができる。
 (短絡制御の態様)
 制御部は、直流電源装置の直流出力の停止時および停止中においてブリッジ回路の正端子と負端子間を短絡制御する。この短絡制御は2つの態様で行うことができる。
 第1の態様は、ブリッジ回路の負端子のアームのスイッチング素子に対して、ブリッジ回路の負端子の全アームのスイッチング素子の全てをオン状態とするパルス制御信号をゲート信号として出力する。
 多相インバータ部のブリッジ回路の切り替え動作において、正端子に接続される複数本のアームの中の何れかのアームはオン状態となっている。したがって、ブリッジ回路の負端子の全アームのスイッチング素子の全てをオン状態とするパルス制御信号をゲート信号として出力すると、ブリッジ回路の正端子と負端子の間が短絡する。
 第2の態様は、ブリッジ回路の正端子および負端子のアーム対において、ブリッジ回路の正端子のアームに対して停止時の正端子のゲート信号状態におけるゲート信号を出力し、停止時にオン状態であるブリッジ回路の正端子のアームのスイッチング素子と対を成す負端子のアームのスイッチング素子に対して、この負端子のアームのスイッチング素子をオン状態とするゲート信号を出力する。
 これによって、停止時と同じスイッチング状態において、オン状態となっている正端子側のアームのスイッチング素子と、ブリッジ回路においてこの正端子側のスイッチング素子と対を形成する負端子側のスイッチング素子とが共にオン状態となり、ブリッジ回路の正端子と負端子間が短絡する。
 (再開時制御の態様)
 制御部は、直流電源装置の直流出力の復帰時におけるブリッジ回路のスイッチング素子の制御を2つの態様で行うことができる。
 第1の態様は、短絡制御の第1の態様に対応するものであり、ブリッジ回路の負端子のアームのスイッチング素子の全てをオン状態とするゲート信号を停止し、各スイッチング素子のゲート信号の生成を停止時のゲート信号状態から再開し、ブリッジ回路の正端子および負端子のアームのスイッチング素子にゲート信号を入力して、多相インバータ部を再起動する。
 第2の態様は、短絡制御の第2の態様に対応するものであり、各スイッチング素子のゲート信号の生成を停止時のゲート信号状態から再開し、ブリッジ回路の正端子および負端子のアームのスイッチング素子にゲート信号を入力して、多相インバータ部を再起動する。
 以上説明したように、本発明によれば、インバータを備える直流電源装置において、インバータの再起動において、再起動時におけるパルス制御信号の位相を停止時におけるパルス制御信号の位相とを一致させることができる。
 また、本発明によれば、再起動時におけるパルス制御信号の位相を停止時におけるパルス制御信号の位相に一致させることによって、再起動時におけるインバータの各相の出力電圧変動を抑制し、負荷に供給する電圧の変動を抑制することができる。
 また、直流電源装置の直流出力の再開時における、負荷への直流電力の供給遅れを低減することができる。
本発明の直流電源装置の構成例を説明するための図である。 本発明のスイッチング制御部の一構成例を説明するための概略ブロック図である。 本発明の直流電源装置の動作例を説明するためのフローチャートである。 本発明の直流電源装置の動作例を説明するためのタイミングチャートである。 本発明の直流電源装置のアーク放電発生時の電流の流れを説明するための図である。 本発明の直流電源装置のアーク放電消失時の電流の流れを説明するための図である。 本発明の直流電源装置の別の構成例を説明するための図である。
 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。以下では、本発明の直流電源装置および制御方法について、図1、図2を用いて直流電源装置の構成例を説明し、図3~図6を用いて直流電源装置の制御例について説明する。
 [直流電源装置の構成例]
 はじめに、本発明の直流電源装置の構成例について図1,図2を用いて説明する。
 図1に示す本発明の直流電源装置1は、交流電源2の交流電力を整流する整流部10、過渡的に生じる高電圧を抑制する保護回路を構成するスナバー部20、整流部10から入力した直流電力の電圧を所定電圧に変換して直流電流を出力する電流形チョッパ部30、電流形チョッパ部30の直流出力を多相の交流出力に変換する多相インバータ部40、多相インバータ部40の交流出力を所定電圧に変換する多相変圧部50、多相変圧部50の交流を直流に変換する多相整流部60を備える。
 図1に示す構成例では、電流形チョッパ部30として電流形降下チョッパ回路の例を示しているが、電流形降下チョッパ回路に限らず電流形昇圧チョッパ回路あるいは電流形昇降チョッパ回路であってもよい。
 以下では、電流形チョッパ部として電流形降下チョッパ回路の場合について説明する。電流形チョッパ部30は、スイッチング素子QとダイオードDと直流リアクトルLF1とを備える。スイッチング素子Qは、整流部10で整流した直流電圧をチョッパ制御することによって降圧する。直流リアクトルLF1は、チョッパ制御した直流を電流平滑する。多相インバータ部40は、電流形チョッパ部30で電流平滑された直流を入力し、多相インバータ部40が備えるブリッジ回路のスイッチング素子を制御することによって直交変換する。
 電流形チョッパ部30は、出力端に出力コンデンサCF1(図示していない)を並列接続する構成としてもよい。通常、電流形降圧チョッパは出力コンデンサを備えない構成であるが、本発明の電流形チョッパ部30の電流形降圧チョッパ回路では、出力端に出力コンデンサCF1を接続する構成によって、多相インバータ部40のスイッチング素子間で転流動作を行う際に発生するサージ電圧や、各スイッチング素子に直列接続されたインダクタンスのエネルギーを吸収して、スイッチング素子を保護することができる。
 なお、出力コンデンサCF1の値は、この出力コンデンサおよび配線インダクタンスによる時定数によって電流の遅延がインバータ動作の転流に影響を与えない程度に設定する。
 多相インバータ部40は、相数に応じたスイッチング素子をブリッジ接続して構成される多相インバータ回路を備える。例えば3相の場合には、3相インバータ回路は6個のスイッチング素子によって構成される。スイッチング素子は、例えば、IGBTやMOSFET等の半導体スイッチング素子を用いることができる。多相インバータ回路の各スイッチング素子は、スイッチング制御部81の制御信号に基づいてスイッチング動作を行い、直流電力を交流電力に変換して出力する。
 多相整流部60は、多相インバータ部40の交流出力を整流し、直流出力を負荷に供給する。従来知られる多相整流部は出力部に直流フィルタ回路を備える構成とすることができる。この直流フィルタ回路によって、多相インバータ部の交流出力に含まれる高周波リップル分を除去している。直流フィルタ回路は、出力端に並列接続する出力コンデンサCFOと直列接続した出力リアクトルLFO(図示していない)によって構成することができる。
 多相整流部60の直流出力は配線90が備える配線インダクタンスLを介して出力され、直流電源装置1とプラズマ発生装置4との間を接続した出力ケーブル3によってプラズマ発生装置4に供給される。
 本発明の直流電源装置1は、高周波リップル分を除去する構成として、多相整流部60において、直流フィルタ回路に代えて寄生インピーダンスを利用することができる。例えば、インダクタンス分として多相整流部60と出力端子との間の配線90のインダクタンスLや、直流電源装置1と負荷との間に接続される出力ケーブル3に含まれるインダクタンスやコンデンサ、あるいは、プラズマ負荷の場合にはプラズマ発生装置4の電極容量Cを用いることができる。上記した多相インバータ部の寄生インピーダンス、および出力ケーブルや電極容量の容量分は実質的に直流フィルタ回路を構成し、多相インバータ部の交流出力に含まれる高周波リップル分を低減する。
 また、直流電圧のリップル分は、多相インバータ回路の駆動周波数を下げると増加する特性がある。そのため、多相インバータ回路の駆動周波数を高めることによって、出力コンデンサCFOおよび出力リアクトルLFOの必要性を低下させることができる。また、多相インバータ回路の駆動周波数を高めることによって、直流電源装置1が内部に保有するエネルギーを抑制することができる。
 さらに、本発明の直流電源装置1は、電流形チョッパ部30を制御する制御部80、および多相インバータ部40を制御するスイッチング制御部81を備える。
 制御部80は、電流形チョッパ部30のスイッチング素子Qをチョッパ制御する回路であり、スイッチング素子Qの出力電流であるチョッパ電流、および直流電源装置1の出力電圧を検出し、このチョッパ電流および出力電圧の検出値に基づいて、電流形チョッパ部30の出力が予め設定した所定の電流値および所定の電圧値となるように制御する。
 スイッチング制御部81は、多相インバータ部40のブリッジ回路を構成する各アームに接続されたスイッチング素子のスイッチング動作を制御する。多相インバータ部40はスイッチング素子の制御によって、入力した直流を交流に直交変換する。
 多相インバータ部40は、例えば3相インバータの場合には、例えば、図5,図6に示すように6本のアームを有するブリッジ回路によって構成される。各アームにはそれぞれスイッチング素子Q、Q、Q、Q、Q、Qの6個のスイッチング素子が設けられる。スイッチング素子Qとスイッチング素子Qとを直列接続し、スイッチング素子Qとスイッチング素子Qとを直列接続し、スイッチング素子Qとスイッチング素子Qとを直列接続する。
 スイッチング素子Qとスイッチング素子Qの接続点Rは、インダクタンスLm1を介して3相変圧器51のR相分として接続され、スイッチング素子Qとスイッチング素子Qの接続点Sは、インダクタンスLm2を介して3相変圧器51のS相分として接続され、スイッチング素子Qとスイッチング素子Q接続点Tは、インダクタンスLm3を介して3相変圧器51のT相分として接続される。なお、図5,図6は、インダクタンスLm1,Lm2,Lm3を省略して示している。
 電流形インバータの制御として、一定入力電流の下で出力電流の大きさを変えるPWM制御が知られている。PWM制御では、搬送波と変調波とを比較することによって各相についてパルス制御信号を形成する。3相インバータの場合には、各相のパルス制御信号はそれぞれ120°の導通期間を有し、このパルス制御信号によってインバータの各アームのスイッチング素子のオン・オフを制御して、それぞれ120°の位相差を有したR相、S相、およびT相の電流を形成する。
 制御部80およびスイッチング制御部81には、直流電源装置1の出力端あるいは負荷側からフィードバック信号が帰還される。フィードバック信号は、例えば、直流電源装置1の出力端の電圧とすることができる。
 次に、図2を用いてスイッチング制御部81の一構成例を説明する。図2は、スイッチング制御部の一構成例を説明するための概略ブロック図である。
 スイッチング制御部81は、多相インバータ部のスイッチング素子のオン・オフを制御するパルス制御信号を生成するパルス制御信号生成回路81aと、ブリッジ回路の正端子と負端子との間を短絡させる短絡用オン信号を生成する短絡用オン信号生成回路81dと、パルス制御信号生成回路81aで生成したパルス制御信号と短絡用オン信号生成回路81dで生成した短絡用オン信号とからゲート信号を生成するゲート信号生成回路81bと、ゲート信号生成回路81bで生成したパルス制御信号をゲート信号として保持し出力するゲート信号保持回路81cとを備える。
 ゲート信号生成回路81bは、パルス制御信号生成回路81aで生成したパルス制御信号と、短絡用オン信号生成回路81dで生成した短絡用オン信号とからゲート信号を生成する。
 ゲート信号保持回路81cは、ゲート信号生成回路81bで生成したゲート信号を保持し出力する回路であり、後述するアーク発生信号に基づいて保持動作あるいは保持動作を解除する解除動作を行う。ゲート信号生成回路81bから入力したゲート信号は保持動作によって保持され、保持状態のゲート信号を出力する。また、解除動作では保持動作を解除し、ゲート信号生成回路81bから入力されるゲート信号を出力する。
 スイッチング制御部81はアーク検出回路82で検出したアーク発生信号を入力する。アーク検出回路82は、例えば、負荷あるいは出力端の電圧に基づいて、負荷のアーク発生装置におけるアーク放電の発生状態を検出する。
 アーク検出回路82によるアーク状態の検出は、例えば、負荷の電圧、あるいは、直流電源装置の出力端の電圧をあらかじめ定めておいた第1のしきい値と比較し、検出電圧が第1のしきい値よりも低下したときにアーク放電が発生したことを検出する。また、アーク放電の発生を検出した後、検出した電圧をあらかじめ定めておいた第2のしきい値と比較し、検出電圧が第2のしきい値を超えたときにアーク放電が消失したと判断する。
 アーク検出回路82はアーク放電の発生を検出すると、パルス制御信号生成回路81aの各生成動作を一時停止させると共に、その信号状態を保持させる。
 アーク検出回路82は、アーク放電の発生を検出した後、アーク放電が消失したと判断したときには、パルス制御信号生成回路81aの保持状態を解除して生成動作を再開する。パルス制御信号生成回路81aは、アーク放電発生時の信号状態から各信号の生成を再開する。
 アーク検出回路82は、前記したパルス制御信号生成回路81aにアーク発生信号を入力する他、ゲート信号保持回路81cおよび短絡用オン信号生成回路81dにもアーク発生信号を入力する。
 ゲート信号保持回路81cはアーク発生信号を受け、アーク放電の発生が検出されたときにはその時点におけるゲート信号を保持すると共に、保持した時点のゲート信号を出力する。ゲート信号保持回路81cは、アーク放電の発生が検出された後のアーク発生信号によってアーク放電が消失したと判断すると、ゲート信号の保持を解除し、ゲート信号生成回路81bで生成されたゲート信号を出力する。
 また、ゲート信号保持回路81cは、アーク放電の発生が検出されてからの経過時間を計時し、経過時間が予め設定された保持時間tarcが経過することによってアーク放電が消失したと判断し、ゲート信号の保持を解除し、ゲート信号生成回路81bで生成されたゲート信号を出力してもよい。保持時間tarcは、アーク放電が発生する直前の直流電流を循環電流Δiとして流す電流状態を保持する時間である。この保持時間tarcは任意に設定することができ、例えば、制御対象の負荷についてアーク放電が発生してから消失するまでに要する時間を予め求めておき、この時間に変動幅から予測されるマージン分を加える等によって定めることができる。
 短絡用オン信号生成回路81dは、アーク放電発生信号を入力すると、多相インバータ部の正端子と負端子との間を短絡するために短絡用オン信号を生成する。短絡用オン信号は、多相インバータ部の正端子側のアームに設けられたスイッチング素子と、負端子側のアームに設けられたスイッチング素子を共にオン状態とすることによって、多相インバータ部の正端子と負端子との間を短絡する。
 この短絡用オン信号は2つの態様とすることができる。
 第1の態様は、ブリッジ回路の負端子のアームのスイッチング素子に対して、ブリッジ回路の負端子の全アームのスイッチング素子の全てをオン状態とし、これによって多相インバータ部の正端子と負端子との間を短絡する態様である。
 多相インバータ部のブリッジ回路の切り替え動作において、正端子に接続される複数本のアームの中の何れかのアームはオン状態となっている。ブリッジ回路の負端子の全アームのスイッチング素子の全てをオン状態とするパルス制御信号をゲート信号として出力することによって、ブリッジ回路の正端子と負端子の間は短絡する。
 第1の短絡用オン信号は、ブリッジ回路の負端子の全アームのスイッチング素子の全てをオン状態とするパルス制御信号である。ゲート信号生成回路81bにおいて、パルス制御信号生成回路81aで生成された通常のパルス制御信号と、短絡用オン信号生成回路81dで生成した短絡用オン信号とをオア条件で加算してゲート信号を生成する。
 第2の態様は、ブリッジ回路の正端子および負端子のアーム対において、ブリッジ回路の正端子のアームに対して停止時の正端子のゲート信号状態におけるゲート信号を出力し、停止時にオン状態であるブリッジ回路の正端子のアームのスイッチング素子と対を成す負端子のアームのスイッチング素子を検出し、この負端子のアームのスイッチング素子をオン状態とし、これによって多相インバータ部の正端子と負端子との間を短絡する態様である。
 これによって、停止時と同じスイッチング状態において、オン状態となっている正端子側のアームのスイッチング素子と、ブリッジ回路においてこの正端子側のスイッチング素子と対を形成する負端子側のスイッチング素子とが共にオン状態となり、ブリッジ回路の正端子と負端子間が短絡する。
 第1の短絡用オン信号は、ブリッジ回路のオン状態の正端子側のアームのスイッチング素子と対をなす負端子側のアームのスイッチング素子をオン状態とするパルス制御信号である。
 ゲート信号生成回路81bにおいて、パルス制御信号生成回路81aで生成された通常のパルス制御信号と、短絡用オン信号生成回路81dで生成した短絡用オン信号とを加算してゲート信号を生成する。
[直流電源装置の動作例]
 次に、本発明の直流電源装置の動作例について図3~図6を用いて説明する。図3は本発明の直流電源装置の動作例を説明するためのフローチャートであり、図4は本発明の直流電源装置の動作例を説明するためのタイミングチャートであり、図5は本発明の直流電源装置のアーク放電発生時の電流の流れを説明するための図であり、図6は本発明の直流電源装置のアーク放電消失時の電流の流れを説明するための図である。
 図3のフローチャートは、直流電源装置が通常動作を行っている状態において、アーク放電が発生した時の動作例(S1~S7)、およびアーク放電が消失した時の動作例(S8~S15)を示している。
 直流電源装置による負荷への直流電力の供給状態において、負荷のアーク発生装置においてアーク放電が発生すると、負荷の入力電圧あるいは直流電源装置の出力電圧が低下する。
 アーク検出部は、負荷あるいは直流電源装置の出力端の電圧を検出して監視し、電圧が低下した場合には、アーク放電が発生したことを検出する。アーク放電の発生の検出は、予め定めておいたしきい値と検出値とを比較することによって行うことができる。なお、アーク放電の検出は、電圧の検出値としきい値との比較に限られるものではない(S1)。
 (アーク放電が発生した時の動作例)
 アーク放電の発生が検出された場合には、チョッパ回路のスイッチング素子を停止し(S2)、短絡用オン信号生成回路81dで生成した短絡用オン信号によって(S3)、多相インバータ部の正端子と負端子間を短絡する(S4)。
 S2の工程によって直流電源からチョッパ回路への電力供給を停止して、直流電源装置から負荷への直流電力の供給を停止し、S3,S4の工程によってチョッパ回路と多相インバータ部のブリッジ回路との間で閉回路を形成する。チョッパ回路のインダクタンスに流れる電流は、形成された閉回路を循環電流Δiとして循環する(S5)。
 循環電流Δiは、直流電源装置から負荷への直流電力の供給を再開した際に、多相インバータ部に供給され、多相インバータ部による直交変換の立ち上がりを早める。
 また、直流電源装置の停止時において、その停止時における多相インバータ部のゲート信号を保持し(S6)、ゲート信号生成回路によるゲート信号の生成を中断する(S7)。
 S6のゲート信号を保持する工程、およびS7の新たなゲート信号の生成を中断する工程によって、直流電源装置の停止時における多相インバータ部の直交変換の変換状態を保持することができる。
 (アーク放電が消失した時の動作例)
 アーク放電の発生が検出された後、アーク放電の消失が検出された場合、あるいは、アーク放電の消失が想定される時間が経過した場合には(S8)、チョッパ回路のスイッチング素子をオン状態に切り替え(S9)、短絡用オン信号の出力を終了することによって(S10)、多相インバータ部の正端子と負端子間の短絡を停止する(S11)。
 S9の工程によって直流電源からチョッパ回路への電力供給を再開し、S10,S11の工程によってチョッパ回路と多相インバータ部のブリッジ回路との間で形成されていた閉回路に流れる循環電流Δiを多相インバータのブリッジ回路に供給する(S12)。
 S9の工程によってチョッパ回路の導通を再開した際には、チョッパ回路が有するインダクタンスや浮遊容量によって、直流電源から多相インバータ部に供給される直流電流に遅れが生じる。これに対して、循環電流Δiは、多相インバータ部の正端子と負端子間の短絡が停止し、チョッパ回路と多相インバータ部との間に電流路が形成されることによって、直流電源から直流電流が供給されるよりも先に多相インバータ部に供給され、多相インバータ部の再起動を早めることができる。
 また、直流電源装置の直流出力の復帰時において、ゲート信号の保持を終了し(S13)、保持していた位相状態からゲート信号の生成を再開する(S14)。
 S13,S14の工程によって、直流電源装置が停止した時点の位相状態と同じ位相状態からゲート信号を生成することができる。
 直流電源装置の動作を終了するまで、S1~S14の工程を繰り返す(S15)。
 図4のタイミングチャートは多相インバータとして3相インバータを用いた例であり、図4(a)は直流電源装置の出力電圧(V)を示し、図4(b)はアーク検出部によるアーク検出信号を示し、図4(c)はチョッパ回路の運転状態を示し、図4(d)~(i)は3相インバータの各アームに設けられたスイッチング素子の駆動を制御するゲート信号を示し、図4(j)は3相インバータの正端子と負端子間を短絡する短絡用オン信号を示している。
 図4(d)、(f)、(h)は3相インバータの正端子側のアームのスイッチング素子Q、Q、Qを駆動するゲート信号を示し、図4(e)、(g)、(i)は3相インバータの負端子側のアームのスイッチング素子QX1、QY1、QZ1を駆動するゲート信号である。また、スイッチング素子Qとスイッチング素子QX1とは対を成し、スイッチング素子Qとスイッチング素子QY1とは対を成し、スイッチング素子Qとスイッチング素子QZ1とは対を成している。また、ゲート信号は図中の1~12を付した12区間を1周期として表している。
 図4では、12区間中の区間“1”中の時点でアーク放電が発生した時点で直流電源装置による直流電流の供給を停止し、任意に設定可能な保持時間tarcが経過した時点においてアーク放電が消失したと判断し、インバータ部を再起動して直流電流の供給を再開している。
 図4の横軸は位相で示しているため、保持時間tarcの区間は“ω×tarc”の位相で表される(図4(a))。保持時間tarcは、アーク放電が発生したときの状態を保持する区間であり、アーク放電が発生してから消失するまでの区間に相当し、任意に設定することができる。
 出力電圧Vは、アーク放電が発生した時点で低下し、“ω×tarc”の位相分が経過してアーク放電が消失したと判断される時点で復帰する。アーク検出部は出力電圧Vをモニタし、出力電圧Vの低下を検出した時点でアーク発生信号の出力を開始し、出力電圧Vの復帰を検出した時点、あるいは保持時間tarcが経過した時点でアーク発生信号の出力を終了する(図4(b))。
 チョッパ回路はアーク発生信号を受けると、1周期を構成する複数の区間(図4では、12区間)の内の一区間において、アーク発生信号を受けた時点が含まれる一区間の最後まで運転を継続してチョッパ出力である直流電流を3相インバータ部に供給する。図示する例では、区間“1”の途中でアーク発生信号を受けているため、区間“1”の最後の時点でチョッパ回路の運転を停止する。
 ゲート信号生成部は、通常運転において、3相の各相について信号幅を2π/3、信号間隔を4π/3とゲート信号を2π/3の間隔を開けて出力する。例えば、正端子側のスイッチング素子Qのゲート信号(図4(d))は、1~4の区間をオン状態とし、5~12の区間をオフ状態とする。スイッチング素子Qのゲート信号(図4(f))は、5~8の区間をオン状態とし、9~12の区間および1~4の区間をオフ状態とする。また、スイッチング素子Qのゲート信号(図4(h))は、9~12の区間をオン状態とし、1~8の区間をオフ状態とする。
 スイッチング制御部は、アーク発生信号を受けると、ゲート信号がアーク発生信号を受けた時点において出力状態にある場合には、出力状態を保持してゲート信号の出力を維持する。その後、アーク放電の消失を検出、あるいは保持時間が経過してアーク発生信号が終了すると、ゲート信号の生成を再開し、アーク発生信号を受けた時点から残りの区間分のゲート信号を生成する。
 したがって、アーク発生時点前の区間幅とアーク消失時点後あるいは保持時間の経過後の区間幅を合わせた区間幅はゲート信号の2π/3分の区間幅となる。
 例えば、正端子側のスイッチング素子Qのゲート信号(図4(d))では、区間“1”の初めの時点からアーク放電が発生した時点までの“ω×t”分をオン状態とし、アーク放電が継続している“ω×tarc”区間の間においてオン状態を維持する。さらに、アーク放電が消失あるいは保持時間が経過した時点から、2π/3の信号幅の残り分である“ 2π/3-ω×t”分だけオン状態を継続する。これによって、アーク発生時点前の区間幅“ω×tarc”とアーク消失時点後あるいは保持時間が経過後の区間幅“ 2π/3-ω×t”を合わせて2π/3分の区間幅のオン状態のゲート信号が出力されることになる。
 アーク放電の発生時点でゲート信号がオフ状態についても同様の動作制御が行われる。例えば、正端子側のスイッチング素子Qのゲート信号(図4(f))では、区間9~12と、区間“1”の途中であってアーク放電が発生した時点までの区間を合わせた“π/3+ω×t”分をオフ状態とし、アーク放電が継続している“ω×tarc”区間の間においてオフ状態を維持する。さらに、アーク放電が消失した時点あるいは保持時間が経過した時点から、4π/3の信号幅の残り分である“ 2π/3-ω×t”分だけオフ状態を継続する。これによって、アーク発生時点前の区間幅“2π/3+ωt”とアーク消失時点後あるいは保持時間が経過後の区間幅“ 2π/3-ω×t”を合わせて4π/3分の区間幅のオフ状態のゲート信号が出力されることになる。
 また、アーク放電の発生時点からアーク放電の消失時点と判断される時点までの間で任意に設定可能は保持時間tarcの間は、図4(j)の短絡用オン信号が出力される。
 図5はアーク放電の発生時の回路状態を示している。アーク放電の発生時には、アーク検出信号によってチョッパ回路のスイッチング素子Qをオフ状態として、直流電源からの電流供給を停止すると共に、短絡用オン信号によって3相インバータを短絡し、チョッパ回路と3相インバータとの間で閉回路を形成し、循環電流Δiを流す。
 図5(a)は、3相インバータの負端子側のアームのスイッチング素子Q,Q,Qの全てをオン状態とし、このスイッチング素子と、正端子側のアームのスイッチング素子Q,Q,Qの内のオン状態となっているスイッチング素子とによって閉回路を形成する例を示している。図5(a)では、正端子側のアームのスイッチング素子Qと、負端子側のアームのスイッチング素子Q,Q,Qの全てがオン状態となり、このスイッチング素子Q,Q,Q,Q、ダイオードD、およびLF1のインダクタンスで形成される閉回路に循環電流が流れる例を示している。
 また、図5(b)は、3相インバータの負端子側のアームのスイッチング素子Q,Q,Qの内で、正端子側のアームのスイッチング素子Q,Q,Qの内でオン状態となっているスイッチング素子と対をなしているスイッチング素子を検出してオン状態とし、これによって閉回路を形成する例を示している。図5(b)では、正端子側のアームのスイッチング素子Qと、このスイッチング素子Qと対を成している負端子側のアームのスイッチング素子Qがオン状態となり、このスイッチング素子Q、Q、ダイオードD、および直流リアクトルLF1で形成される閉回路に循環電流が流れる例を示している。
 図6はアーク放電の消失時の回路状態を示している。アーク放電の消失時には、アーク検出信号によってチョッパ回路のスイッチング素子Qをオフ状態からオン状態に切り替え、直流電源からの電流供給を再開すると共に、短絡用オン信号を停止することによって3相インバータの短絡状態を解除する。チョッパ回路と3相インバータとの間の閉回路に流れていた循環電流Δiは、3相インバータ側に供給される。3相インバータには、循環電流Δiに続いて、スイッチング素子Qを通して直流電源から直流電流が供給される。
 図6(a)は、循環電流Δiが3相インバータに流れる状態を示している。3相インバータのスイッチング制御において、スイッチング素子Qとスイッチング素子Qがオン状態において停止した場合には、停止時と同様に、スイッチング素子Qとスイッチング素子Qがオン状態から再起動を行う。3相インバータの再起動によって、循環電流Δiは、スイッチング素子Q、接続点R、3相変圧器、接続点S、およびスイッチング素子Qの線路を通して流れる。
 図6(b)は、循環電流Δiが流れた後、スイッチング素子Qを通して直流電源から供給された電流が3相インバータに流れる状態を示している。直流電源からの電流は、スイッチング素子Q、接続点R、3相変圧器、接続点S、およびスイッチング素子Qの線路を通して流れる。以後、3相インバータは、通常の動作と同様にスイッチング素子をゲート信号で導通制御して直交変換を行う。
 図7は、本願発明の直流電源装置の別の構成例を示している。前記した構成例は、3相インバータのスイッチング素子のオン状態を制御することによって3相インバータを短絡する例である。これに対して、図7に示す構成例は、3相インバータの短絡に代えて、チョッパ回路と3相インバータとの間にスイッチング素子Qを並列接続する。このスイッチング素子Qを短絡用オン信号によってオン状態とすることによって、チョッパ回路の出力端間を短絡し、チョッパ回路に形成した閉回路内で循環電流を流す。
 なお、上記実施の形態及び変形例における記述は、本発明に係る電流形インバータ装置および電流形インバータ装置の制御方法の一例であり、本発明は各実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。
本発明の電流形インバータ装置は、プラズマ発生装置に電力を供給する電力源として適用することができる。
 1  直流電源装置
 2  交流電源
 3  出力ケーブル
 4  プラズマ発生装置
 10  整流部
 20  スナバー部
 30  電流形チョッパ部
 40  多相インバータ部
 50  多相変圧部
 51  相変圧器
 60  多相整流部
 80  制御部
 81  スイッチング制御部
 81a  パルス制御信号生成回路
 81b  ゲート信号生成回路
 81c  ゲート信号保持回路
 81d  短絡用オン信号生成回路
 82  アーク検出回路
 90  配線
 C  電極容量
 CF1  出力コンデンサ
 CFO  出力コンデンサ
 D  ダイオード
 L  配線インダクタンス
 LF1  直流リアクトル
 LFO  出力リアクトル
 Lm1,Lm2,Lm3  インダクタンス
 L  インダクタンス
 Pc  アークエネルギー
 Q  スイッチング素子
 Q  スイッチング素子
 Q,Q,Q  スイッチング素子
 Q,Q,Q  スイッチング素子
 R  接続点
 S  接続点
 T  接続点
 tarc   保持時間
 Vo  出力電圧
 Δi  循環電流

Claims (10)

  1.  直流源を構成する電流形チョッパ部と、前記電流形チョッパ部の直流出力を複数のスイッチング素子の動作により多相の交流電力に変換する多相インバータ部と、前記多相インバータ部の出力を交直変換し、得られた直流を負荷に供給する整流部と、前記電流形チョッパ部および前記多相インバータ部を制御する制御部とを備える直流電源装置であって、
     前記制御部は、直流出力の停止・復帰制御を行う制御機能において、
     前記停止・復帰制御を行う制御機能は、
     直流電源装置の直流出力の停止時において、
     前記電流形チョッパ部の主スイッチをオン状態からオフ状態に切り替え、
     前記多相インバータ部を構成するブリッジ回路のゲート信号の生成を停止すると共に、前記ブリッジ回路の正端子と負端子間を短絡する停止制御と、
     直流電源装置の直流出力の停止中において、
     前記電流形チョッパ部の主スイッチのオフ状態と、前記ブリッジ回路の正端子と負端子間の短絡状態を保持し、
     前記ブリッジ回路のゲート信号状態を停止時のゲート信号状態に保持する停止保持制御と、
     直流電源装置の直流出力の復帰時において、
     前記電流形チョッパ部の主スイッチをオフ状態からオン状態に切り替え、
     前記ブリッジ回路のゲート信号の生成を前記停止時のゲート信号状態から再開し、当該ゲート信号により前記多相インバータ部を再起動する復帰制御の各制御機能を備えることを特徴とする、直流電源装置。
  2.  前記制御部は、ブリッジ回路の正端子と負端子間を短絡する停止制御において、
     パルス幅制御によるパルス制御信号の生成を停止し、
     停止時のパルス制御信号と、前記ブリッジ回路の負端子側の全てのスイッチング素子をオン状態とするパルス制御信号との両パルス制御信号のオア出力をゲート信号として出力する制御機能を有することを特徴とする、請求項1に記載の直流電源装置。
  3.  前記制御部は、ブリッジ回路の正端子と負端子間を短絡する停止制御において、
     前記ブリッジ回路の正端子側および負端子側のアーム対において、
     ブリッジ回路の正端子側のアームに対して、停止時の正端子側のゲート信号状態におけるゲート信号を出力し、
     停止時にオン状態であるブリッジ回路の正端子側のアームのスイッチング素子と対を成す負端子側のアームのスイッチング素子に、当該負端子側のアームのスイッチング素子をオン状態とするパルス制御信号をゲート信号として出力する制御機能を有することを特徴とする、請求項1に記載の直流電源装置。
  4.  前記制御部は、前記復帰制御において、
     前記ブリッジ回路の負端子のアームのスイッチング素子の全てをオン状態とするパルス制御信号を停止し、
     各スイッチング素子のゲート信号の生成を停止時のゲート信号状態から再開し、ブリッジ回路の正端子側および負端子側のアームのスイッチング素子にゲート信号を出力することを特徴とする、請求項2に記載の直流電源装置。
  5.  前記制御部は、前記復帰制御において、
     前記ブリッジ回路の対を成す正端子側および負端子側のアームのスイッチング素子をオン状態とするパルス制御信号を停止し、
     各スイッチング素子のゲート信号の生成を停止時のゲート信号状態から再開し、ブリッジ回路の正端子および負端子のアームのスイッチング素子にゲート信号を出力することを特徴とする、請求項3に記載の直流電源装置。
  6.  アーク発生装置を負荷とし、当該アーク発生装置のアーク状態を検出するアーク検出部を備え、
     前記制御部は、前記停止・復帰制御において、
     前記アーク検出部によるアークの発生検出に基づいて直流出力の停止制御を行い、
     前記アーク検出部によるアークの消失検出、又は任意に設定可能な保持時間の経過に基づいて直流出力の復帰制御を行うことを特徴とする、請求項1から5の何れかに記載の直流電源装置。
  7.  直流源を構成する電流形チョッパ部と、前記電流形チョッパ部の直流出力を複数のスイッチング素子の動作により多相の交流電力に変換する多相インバータ部と、前記多相インバータ部の出力を交直変換し、得られた直流を負荷に供給する整流部と、前記電流形チョッパ部および前記多相インバータ部を制御する制御部とを備える直流電源装置の制御方法であって、
     前記制御部は、停止制御、停止保持制御、および復帰制御の各制御により直流出力の停止および復帰を制御する停止・復帰制御において、
     前記停止制御は、直流電源装置の直流出力の停止時において、
     前記電流形チョッパ部の主スイッチをオン状態からオフ状態に切り替え、
     前記多相インバータ部を構成するブリッジ回路のゲート信号の生成を停止すると共に、前記ブリッジ回路の正端子と負端子間を短絡し、
     前記停止保持制御は、直流電源装置の直流出力の停止中において、
     前記電流形チョッパ部の主スイッチのオフ状態と、前記ブリッジ回路の正端子と負端子間の短絡状態を保持すると共に、
     前記ブリッジ回路のゲート信号状態を停止時のゲート信号状態に保持し、
     前記復帰制御は、直流電源装置の直流出力の復帰時において、
     前記電流形チョッパ部の主スイッチをオフ状態からオン状態に切り替え、
     前記ブリッジ回路のゲート信号の生成を前記停止時のゲート信号状態から再開し、当該ゲート信号により前記多相インバータ部を再起動することを特徴とする、直流電源装置の制御方法。
  8.  前記制御部は、
     前記負荷の電圧降下に基づいて直流出力を停止する停止制御を行い、
     前記負荷の電圧降下の継続、又は任意に設定可能な保持時間に基づいて直流出力の停止を保持する停止保持制御を行い、
     前記負荷の電圧降下からの電圧回復、又は前記保持時間の経過に基づいて直流出力を復帰する復帰制御を行うことを特徴とする、請求項7に記載の直流電源装置の制御方法。
  9.  前記制御部は、多相インバータ部を構成するブリッジ回路を制御し、
     前記停止制御は、直流電源装置の直流出力の停止時において、
     パルス幅制御によるパルス制御信号の生成を停止し、停止時のパルス制御信号と、前記ブリッジ回路の負端子側の全てのスイッチング素子をオン状態とするパルス制御信号との両パルス制御信号のオア出力をゲート信号として出力し、
     前記停止保持制御は、直流電源装置の直流出力の停止中において、
     前記停止時におけるゲート信号を継続して出力し、
     前記復帰制御は、直流電源装置の直流出力の復帰時において、
     前記ブリッジ回路のパルス制御信号の生成を前記停止時のパルス制御信号の状態から再開し、当該パルス制御信号をゲート信号として出力することを特徴とする、請求項7又は8に記載の直流電源装置の制御方法。
  10.  前記制御部は、多相インバータ部を構成するブリッジ回路を制御し、
     前記停止制御は、直流電源装置の直流出力の停止時において、
     パルス幅制御によるパルス制御信号の生成を停止し、
     前記ブリッジ回路の正端子側および負端子側のアーム対において、
     ブリッジ回路の正端子側のアームに対して停止時の正端子側のパルス制御信号をゲート信号として出力し、ブリッジ回路の負端子側のアームに対して、停止時においてオン状態のブリッジ回路の正端子側のアームと対を成す負端子側のアームのスイッチング素子をオン状態とするパルス制御信号をゲート信号として出力し、
     前記停止保持制御は、直流電源装置の直流出力の停止中において、
     前記停止時におけるゲート信号を継続して出力し、
     前記復帰制御は、直流電源装置の直流出力の復帰時において、
     前記ブリッジ回路のパルス制御信号の生成を前記停止時のパルス制御信号の状態から再開し、当該パルス制御信号をゲート信号として出力することを特徴とする、請求項7又は8に記載の直流電源装置の制御方法。
PCT/JP2012/072602 2012-09-05 2012-09-05 直流電源装置、直流電源装置の制御方法 WO2014038013A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/JP2012/072602 WO2014038013A1 (ja) 2012-09-05 2012-09-05 直流電源装置、直流電源装置の制御方法
IN3122KON2014 IN2014KN03122A (ja) 2012-09-05 2012-09-05
PL12884309T PL2879257T3 (pl) 2012-09-05 2012-09-05 Urządzenie zasilające prądem stałym i sposób sterowania urządzeniem zasilającym prądem stałym
CN201280075647.XA CN104604070B (zh) 2012-09-05 2012-09-05 直流电源装置以及直流电源装置的控制方法
US14/416,474 US9160240B2 (en) 2012-09-05 2012-09-05 DC power supply device, and control method for DC power supply device
DE12884309.1T DE12884309T1 (de) 2012-09-05 2012-09-05 Gleichstromversorgungsvorrichtung und steuerungsverfahren für die gleichstromversorgungsvorrichtung
JP2013555670A JP5557407B1 (ja) 2012-09-05 2012-09-05 直流電源装置、直流電源装置の制御方法
KR1020157006022A KR101519319B1 (ko) 2012-09-05 2012-09-05 직류전원장치, 직류전원장치의 제어방법
EP12884309.1A EP2879257B1 (en) 2012-09-05 2012-09-05 Dc power supply device, and control method for dc power supply device
TW102116689A TWI472269B (zh) 2012-09-05 2013-05-10 直流電源裝置、直流電源裝置之控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072602 WO2014038013A1 (ja) 2012-09-05 2012-09-05 直流電源装置、直流電源装置の制御方法

Publications (1)

Publication Number Publication Date
WO2014038013A1 true WO2014038013A1 (ja) 2014-03-13

Family

ID=50236665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072602 WO2014038013A1 (ja) 2012-09-05 2012-09-05 直流電源装置、直流電源装置の制御方法

Country Status (10)

Country Link
US (1) US9160240B2 (ja)
EP (1) EP2879257B1 (ja)
JP (1) JP5557407B1 (ja)
KR (1) KR101519319B1 (ja)
CN (1) CN104604070B (ja)
DE (1) DE12884309T1 (ja)
IN (1) IN2014KN03122A (ja)
PL (1) PL2879257T3 (ja)
TW (1) TWI472269B (ja)
WO (1) WO2014038013A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045196A1 (ja) * 2013-09-27 2015-04-02 株式会社京三製作所 電圧形直流電源装置および電圧形直流電源装置の制御方法
WO2018043258A1 (ja) * 2016-09-05 2018-03-08 日立ジョンソンコントロールズ空調株式会社 電力変換装置及びこれを備える空気調和機
WO2021130846A1 (ja) * 2019-12-24 2021-07-01 株式会社Fuji プラズマ装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729732B2 (ja) * 2013-09-27 2015-06-03 株式会社京三製作所 直流電源装置、直流電源装置の制御方法
KR101863031B1 (ko) * 2013-10-04 2018-05-30 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전원 장치
WO2015049783A1 (ja) * 2013-10-04 2015-04-09 東芝三菱電機産業システム株式会社 電源装置
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
EP3100597B1 (en) 2014-01-31 2023-06-07 Monolith Materials, Inc. Plasma torch with graphite electrodes
EP3253904B1 (en) 2015-02-03 2020-07-01 Monolith Materials, Inc. Regenerative cooling method and apparatus
CN107709474A (zh) 2015-02-03 2018-02-16 巨石材料公司 炭黑生成系统
JP6332126B2 (ja) * 2015-04-20 2018-05-30 株式会社オートネットワーク技術研究所 車載負荷制御装置及びコンピュータプログラム
CN108292826B (zh) * 2015-07-29 2020-06-16 巨石材料公司 Dc等离子体焰炬电力设计方法和设备
MX2018002943A (es) 2015-09-09 2018-09-28 Monolith Mat Inc Grafeno circular de pocas capas.
JP6974307B2 (ja) 2015-09-14 2021-12-01 モノリス マテリアルズ インコーポレイテッド 天然ガス由来のカーボンブラック
WO2017190015A1 (en) 2016-04-29 2017-11-02 Monolith Materials, Inc. Torch stinger method and apparatus
CA3060482C (en) 2016-04-29 2023-04-11 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
KR102016654B1 (ko) * 2016-08-03 2019-08-30 한국전기연구원 펄스 전원 장치 스위칭 제어 회로
CA3055830A1 (en) 2017-03-08 2018-09-13 Monolith Materials, Inc. Systems and methods of making carbon particles with thermal transfer gas
CN115637064A (zh) 2017-04-20 2023-01-24 巨石材料公司 颗粒系统和方法
JP6835676B2 (ja) * 2017-07-05 2021-02-24 株式会社ダイヘン 電源システム、電源装置、制御方法及び制御プログラム
MX2020002215A (es) 2017-08-28 2020-08-20 Monolith Mat Inc Sistemas y metodos para generacion de particulas.
CA3116989C (en) 2017-10-24 2024-04-02 Monolith Materials, Inc. Particle systems and methods
KR20190048636A (ko) * 2017-10-31 2019-05-09 한국전기연구원 절연형 게이트 구동 장치
JP7051726B2 (ja) * 2019-01-24 2022-04-11 株式会社京三製作所 直流パルス電源装置
JP6858805B2 (ja) * 2019-04-11 2021-04-14 株式会社京三製作所 直流パルス電源装置、及び直流パルス電源装置の周波数制御方法
KR102242234B1 (ko) * 2019-05-08 2021-04-20 주식회사 뉴파워 프라즈마 고주파 제너레이터 및 그의 동작 방법
TWI692921B (zh) * 2019-06-26 2020-05-01 台達電子工業股份有限公司 電源供應電路與操作方法
PL239146B1 (pl) * 2019-09-13 2021-11-08 Univ West Pomeranian Szczecin Tech Układ generatora wysokiego napięcia typu AC/DC do zastosowania w reaktorach zimnej plazmy typu PCD
KR20230071354A (ko) 2021-11-16 2023-05-23 주식회사 뉴파워 프라즈마 고주파 펄스 전원 장치 및 그의 운전 방법
KR20230072808A (ko) 2021-11-18 2023-05-25 주식회사 뉴파워 프라즈마 고주파 펄스 제너레이터 장치 및 그의 운전 방법
KR20230073919A (ko) 2021-11-19 2023-05-26 주식회사 뉴파워 프라즈마 고주파 펄스 전원 장치 및 그의 운전 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893474A (ja) * 1981-11-26 1983-06-03 Fuji Electric Co Ltd 電流形インバータの制御装置
JPH08167500A (ja) 1994-12-15 1996-06-25 Jeol Ltd 高周波プラズマ発生装置用電源
JP2001112247A (ja) * 1999-10-04 2001-04-20 Toshiba Corp インバータゲート制御回路
JP2006006053A (ja) 2004-06-18 2006-01-05 Shihen Tech Corp 直流電源装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268470A (ja) * 1987-04-27 1988-11-07 Mitsubishi Electric Corp 電力変換器
US5418707A (en) * 1992-04-13 1995-05-23 The United States Of America As Represented By The United States Department Of Energy High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs
JP3419900B2 (ja) 1994-08-26 2003-06-23 高周波熱錬株式会社 アーク放電検出回路
JP3711301B2 (ja) 1996-05-29 2005-11-02 株式会社ルネサステクノロジ Ic着脱装置及びその着脱ヘッド
JPH11178333A (ja) * 1997-12-15 1999-07-02 Sansha Electric Mfg Co Ltd 直流電源装置
JP3948591B2 (ja) 1999-06-07 2007-07-25 独立行政法人 日本原子力研究開発機構 加速電源装置
JP2001295042A (ja) 2000-04-18 2001-10-26 Origin Electric Co Ltd スパッタリング装置
KR100488448B1 (ko) * 2001-11-29 2005-05-11 엘지전자 주식회사 플라즈마 디스플레이 패널의 서스테인펄스 발생장치
JP4241515B2 (ja) * 2004-06-10 2009-03-18 パナソニック電工株式会社 放電灯点灯装置及びプロジェクタ
US20060283702A1 (en) * 2005-06-21 2006-12-21 Applied Materials, Inc. Random pulsed DC power supply
JP2007220594A (ja) 2006-02-20 2007-08-30 Nissin Electric Co Ltd プラズマ生成方法及びプラズマ生成装置並びにプラズマ処理装置
CN101369785B (zh) * 2008-10-07 2011-11-09 袁晓欧 大功率发电厂烟气脱硫脱氮脉冲电晕等离子体直流电源
JP4492975B2 (ja) 2008-11-14 2010-06-30 芝浦メカトロニクス株式会社 電源、スパッタ用電源及びスパッタ装置
JP5153003B2 (ja) * 2009-08-19 2013-02-27 ウシオ電機株式会社 高圧放電ランプ点灯装置およびプロジェクタ
JP5399563B2 (ja) * 2010-08-18 2014-01-29 株式会社アルバック 直流電源装置
EP2677652B1 (en) * 2012-02-23 2016-11-16 Kyosan Electric Mfg. Co., Ltd. Current source inverter device, and method for controlling current source inverter device
DE12884110T1 (de) * 2012-09-07 2015-09-24 Kyosan Electric Mfg. Co., Ltd. Gleichstromversorgungsvorrichtung und steuerungsverfahren für die gleichstromversorgungsvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893474A (ja) * 1981-11-26 1983-06-03 Fuji Electric Co Ltd 電流形インバータの制御装置
JPH08167500A (ja) 1994-12-15 1996-06-25 Jeol Ltd 高周波プラズマ発生装置用電源
JP2001112247A (ja) * 1999-10-04 2001-04-20 Toshiba Corp インバータゲート制御回路
JP2006006053A (ja) 2004-06-18 2006-01-05 Shihen Tech Corp 直流電源装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KENICHI NAKAMURA; HIROSHI MIHOYA, ORIGIN TECHNICAL JOURNAL NO. 73, 2010, pages 1 - 7
See also references of EP2879257A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045196A1 (ja) * 2013-09-27 2015-04-02 株式会社京三製作所 電圧形直流電源装置および電圧形直流電源装置の制御方法
US9621064B2 (en) 2013-09-27 2017-04-11 Kyosan Electric Mfg. Co., Ltd. Arc quenching circuit for a power supply in a plasma generator
WO2018043258A1 (ja) * 2016-09-05 2018-03-08 日立ジョンソンコントロールズ空調株式会社 電力変換装置及びこれを備える空気調和機
JP2018042294A (ja) * 2016-09-05 2018-03-15 日立ジョンソンコントロールズ空調株式会社 電力変換装置及びこれを備える空気調和機
WO2021130846A1 (ja) * 2019-12-24 2021-07-01 株式会社Fuji プラズマ装置

Also Published As

Publication number Publication date
EP2879257B1 (en) 2017-05-10
TW201412198A (zh) 2014-03-16
CN104604070A (zh) 2015-05-06
TWI472269B (zh) 2015-02-01
EP2879257A1 (en) 2015-06-03
CN104604070B (zh) 2016-03-23
US9160240B2 (en) 2015-10-13
EP2879257A4 (en) 2016-07-06
KR20150032602A (ko) 2015-03-26
JP5557407B1 (ja) 2014-07-23
KR101519319B1 (ko) 2015-05-11
PL2879257T3 (pl) 2017-10-31
US20150180346A1 (en) 2015-06-25
IN2014KN03122A (ja) 2015-05-08
DE12884309T1 (de) 2015-09-17
JPWO2014038013A1 (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP5557407B1 (ja) 直流電源装置、直流電源装置の制御方法
JP5679241B1 (ja) 電圧形直流電源装置および電圧形直流電源装置の制御方法
JP5538658B2 (ja) 電力変換装置
EP2677652B1 (en) Current source inverter device, and method for controlling current source inverter device
US9450519B2 (en) DC power source, and DC power source control method
US11075540B2 (en) Uninterruptible power supply device
US9137885B2 (en) DC power supply device, and control method for DC power supply device
US20160327998A1 (en) Low Capacitance Drive With Improved Immunity
JP4845821B2 (ja) 瞬時電圧低下補償装置
US20220399746A1 (en) Power converter
JP2003143861A (ja) 高周波電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280075647.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013555670

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884309

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14416474

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012884309

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012884309

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157006022

Country of ref document: KR

Kind code of ref document: A