WO2014038013A1 - 直流電源装置、直流電源装置の制御方法 - Google Patents
直流電源装置、直流電源装置の制御方法 Download PDFInfo
- Publication number
- WO2014038013A1 WO2014038013A1 PCT/JP2012/072602 JP2012072602W WO2014038013A1 WO 2014038013 A1 WO2014038013 A1 WO 2014038013A1 JP 2012072602 W JP2012072602 W JP 2012072602W WO 2014038013 A1 WO2014038013 A1 WO 2014038013A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output
- stop
- control
- power supply
- gate signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/001—Hot plugging or unplugging of load or power modules to or from power distribution networks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32018—Glow discharge
- H01J37/32027—DC powered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32018—Glow discharge
- H01J37/32045—Circuits specially adapted for controlling the glow discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T1/00—Details of spark gaps
- H01T1/02—Means for extinguishing arc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T15/00—Circuits specially adapted for spark gaps, e.g. ignition circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/305—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a thyratron or thyristor type requiring extinguishing means
- H02M3/315—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/48—Generating plasma using an arc
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/325—Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H2242/00—Auxiliary systems
- H05H2242/20—Power circuits
- H05H2242/22—DC, AC or pulsed generators
Definitions
- the present invention relates to a DC power supply device, for example, a DC power supply device used for a load such as a plasma generator, and a control method for the DC power supply device.
- DC power supply devices used for plasma generating devices are required to suppress excess current during arc generation and to extinguish arcs at high speed.
- an excessive discharge current flows when an arc occurs due to a large capacitor connected to the output, or the arc is prolonged by increasing the output to compensate for a decrease in the output voltage when the arc occurs.
- a DC power supply device including a chopper circuit, an inverter, and a voltage conversion circuit
- the chopper main switch when stopping, the chopper main switch is stopped and the inverter is operated to perform a stop operation, and the chopper main switch is operated.
- a DC power supply device that suppresses a large current to an inverter by gradually increasing the pulse width of a pulse, has a stable operation at startup, and starts and stops a load at high speed (Patent Document 1).
- a short-circuit switch circuit that forcibly bypasses arc energy between the DC power supply and the load is installed, and this short-circuit switch circuit is operated periodically at regular intervals to generate reverse pulses to suppress arc discharge.
- an arc interrupting device for a sputtering power source has been proposed in which, when arc discharge occurs, a reverse pulse is forcibly generated to reduce arc energy, and after the arc discharge is extinguished, the plasma state is restored ( Non-patent document 1).
- Patent Document 2 A power source for a plasma generator that controls the pulse width of a pulsed high frequency according to the magnitude of arc discharge has been proposed (Patent Document 2).
- JP 2006-6053 A (paragraph [0002] to paragraph [0012])
- JP 08-167500 A (paragraph [0003] to paragraph [0011])
- the DC power supply device including the inverter (Patent Document 1) starts the chopper operation after starting the inverter control when the inverter is restarted after stopping the DC power supply device.
- the plasma generator is restarted by controlling.
- inverter pulse width control DC / AC conversion is performed in each arm constituting the bridge circuit so that the phase of the ON / OFF operation of each switching element has a predetermined relationship.
- this pulse width control when the phase of the on / off operation of the switching element of each arm deviates from a predetermined relationship, the resulting output voltage of each phase varies, and the voltage supplied to the load also varies. Problems arise.
- the phase of the pulse control signal at the time of restart is set regardless of the phase of the pulse control signal at the time of stop. Therefore, at the time of restart, the output voltage of each phase varies, and the voltage supplied to the load may vary.
- the present invention solves the above-mentioned conventional problems, and in a DC power supply device equipped with an inverter, the phase of the pulse control signal at the time of restart coincides with the phase of the pulse control signal at the time of restart when the inverter is restarted. With the goal.
- the output voltage fluctuation of each phase of the inverter at the time of restart is suppressed, and the fluctuation of the voltage supplied to the load is suppressed.
- the purpose is to suppress.
- the purpose is to reduce the delay in supplying DC power to the load when the DC output of the DC power supply is restored.
- the present invention relates to a direct current power supply device that stops and restores direct current output when direct current power is supplied to a load such as a plasma generator and a control method for the direct current power supply device.
- the current flowing through the chopper unit at the time of stoppage is held as a circulating current, and the circulating current held at the time of restarting the inverter unit is supplied to the load. This reduces the delay in supplying the DC power to the load when the DC output of the DC power supply device is restored.
- phase state of the gate signal at the time of stop is held, and the output at the time of restart is started by starting the orthogonal transformation of the inverter unit from the phase state of the gate signal held at the time of restart of the inverter unit Suppresses voltage fluctuations.
- the DC power supply device of the present invention includes a current source chopper unit that constitutes a DC source, a multiphase inverter unit that converts the DC output of the current source chopper unit into multiphase AC power by operation of a plurality of switching elements, A rectifying unit that performs AC / DC conversion on the output of the inverter unit and supplies a direct current to the load, and a control unit that controls the current source chopper unit and the multiphase inverter unit are provided.
- the current source chopper unit converts the DC power voltage into a predetermined voltage and outputs a DC current.
- the polyphase inverter unit converts the DC output of the current source chopper unit into polyphase AC power by switching the current path by the operation of a plurality of switching elements.
- the rectification unit converts the AC power converted by the multiphase inverter unit into DC power by AC / DC conversion, and supplies the converted DC power to the load.
- the DC power supply device of the present invention stops the power supply from the power source side to the load when the arc discharge occurs, and then returns the power supply from the power source side to the load after the arc discharge is extinguished.
- Whether or not arc discharge is extinguished is determined by detecting voltage such as load voltage, and the time from when arc discharge occurs until arc discharge is extinguished is set in advance. It may be determined that the arc has been extinguished.
- the DC power supply device of the present invention uses the functions shown in the following (a) to (c) to stop the phase of the pulse control signal when the inverter is restarted at the time of stopping and returning the power supply.
- the current flowing through the chopper unit at the time of stoppage is held as a circulating current, and this circulating current is supplied to the load when the inverter unit is restarted, thereby enabling the DC power supply device This reduces the delay in supplying DC power to the load when the DC output is restored.
- the current source chopper unit stop function and the inverter short circuit function stop the power supply to the load during arc discharge, and (b) the current source chopper unit circulating current holding function, and (c) The inverter unit is quickly restarted by the function of holding the gate signal state of the inverter unit.
- the DC power supply device includes an arc detection unit that detects an arc state of the arc generation device when the arc generation device is used as a load, and the control unit outputs a DC output based on a detection signal of the arc detection unit. Stop / resume control can be performed. The control unit performs stop control based on detection of arc occurrence and performs restart control based on detection of arc disappearance.
- the arc detection unit detects the voltage of the load or the voltage at the output terminal of the DC power supply device, compares the detected voltage with a predetermined first threshold value, and compares the detected voltage with the first threshold value. Arc generation is detected when the voltage drops.
- the detected voltage is compared with a predetermined second threshold value, and it is determined that the arc discharge has disappeared when the second threshold value is exceeded.
- the controller of the DC power supply device of the present invention has a function of performing the following control when the DC output of the DC power supply device is stopped, stopped, and restarted.
- the current source chopper unit converts the DC power of the DC source into a predetermined voltage and inputs it to the multiphase inverter unit.
- the multiphase inverter unit converts DC power into AC power.
- the rectification unit AC / DC converts the output of the multiphase inverter unit and supplies DC power to the load.
- the power supply from the DC source is stopped by switching the main switch of the current source chopper unit from the on state to the off state.
- the power supply from the DC source is stopped by switching the main switch of the current source chopper unit from the on state to the off state.
- a closed circuit is formed between the current source chopper circuit and the multiphase inverter section.
- the energy stored in the inductor of the current source chopper unit flows in the form of a circulating current when stopped.
- This circulating current is generated in a circuit existing on the load side when viewed from the current-type chopper unit at a time point before the DC output is supplied from the DC source when the inverter unit is restarted to restore the DC output.
- a rapid power supply from the inverter unit to the load is performed.
- the power switch from the DC source is stopped by maintaining the main switch off of the current source chopper unit between the positive and negative terminals of the bridge circuit.
- the circulating current flowing in the closed circuit formed between the current source chopper circuit and the multiphase inverter unit is held.
- the gate signal state of the bridge circuit at the stop gate signal state, the phase of the bridge circuit pulse control signal is stopped when the inverter is restarted and the DC output of the DC power supply is restored. This can be continued from the phase state.
- the control unit performs short circuit control between the positive terminal and the negative terminal of the bridge circuit when the DC output of the DC power supply device is stopped and during the stop.
- This short-circuit control can be performed in two ways.
- a pulse control signal for turning on all the switching elements of all the negative terminals of the bridge circuit is output as a gate signal to the switching elements of the negative terminal of the bridge circuit.
- any one of the plurality of arms connected to the positive terminal is in the on state. Therefore, when a pulse control signal that turns on all the switching elements of all the arms of the negative terminal of the bridge circuit is output as a gate signal, the positive terminal and the negative terminal of the bridge circuit are short-circuited.
- the gate signal in the gate signal state of the positive terminal at the stop time is output to the arm of the positive terminal of the bridge circuit
- a gate signal for turning on the switching element of the negative terminal arm is output to the switching element of the negative terminal arm that forms a pair with the switching element of the positive terminal arm of a bridge circuit.
- the switching element of the positive terminal side arm that is in the on state and the switching element of the negative terminal side that forms a pair with the switching element on the positive terminal side in the bridge circuit Both are turned on, and the positive terminal and the negative terminal of the bridge circuit are short-circuited.
- the controller can control the switching element of the bridge circuit in two modes when the DC output of the DC power supply device is restored.
- the first aspect corresponds to the first aspect of the short circuit control, stops the gate signal that turns on all the switching elements of the negative terminal arm of the bridge circuit, and sets the gate signal of each switching element.
- the generation is restarted from the gate signal state at the time of stopping, the gate signal is input to the switching elements of the positive and negative terminal arms of the bridge circuit, and the multiphase inverter unit is restarted.
- the second mode corresponds to the second mode of the short-circuit control.
- the generation of the gate signal of each switching element is restarted from the gate signal state at the time of stop, and the positive and negative terminal arms of the bridge circuit are restarted.
- a gate signal is input to the switching element to restart the multiphase inverter unit.
- the phase of the pulse control signal at the time of restart can be matched with the phase of the pulse control signal at the time of stop. it can.
- the present invention by adjusting the phase of the pulse control signal at the time of restart to the phase of the pulse control signal at the time of stop, the output voltage fluctuation of each phase of the inverter at the time of restart is suppressed, and the load Variations in the supplied voltage can be suppressed.
- a DC power supply device 1 according to the present invention shown in FIG. 1 is input from a rectifying unit 10 that rectifies AC power of an AC power source 2, a snubber unit 20 that forms a protection circuit that suppresses transiently generated high voltage, and a rectifying unit 10.
- a current source chopper unit 30 that converts a DC power voltage into a predetermined voltage and outputs a DC current
- a multiphase inverter unit 40 that converts a DC output of the current source chopper unit 30 into a multiphase AC output
- a multiphase inverter unit 40 Are provided with a multi-phase transformer 50 for converting the AC output into a predetermined voltage, and a multi-phase rectifier 60 for converting the AC of the multi-phase transformer 50 into a direct current.
- an example of a current source step-down chopper circuit is shown as the current source chopper unit 30. Good.
- the switching element Q 1 is, steps down by chopper controlling the DC voltage rectified by the rectifier unit 10.
- the direct current reactor L F1 smoothes the current of the chopper controlled direct current.
- the multiphase inverter unit 40 receives the direct current smoothed by the current source chopper unit 30 and performs orthogonal transformation by controlling the switching elements of the bridge circuit included in the multiphase inverter unit 40.
- the current source chopper unit 30 may have a configuration in which an output capacitor C F1 (not shown) is connected in parallel to the output end. Normally, the current source step-down chopper is configured not to include an output capacitor. However, in the current source step-down chopper circuit of the current source chopper unit 30 according to the present invention, the output capacitor C F1 is connected to the output terminal, so that the multiphase inverter unit is provided.
- the switching element can be protected by absorbing the surge voltage generated when performing the commutation operation between the 40 switching elements and the energy of the inductance connected in series to each switching element.
- the value of the output capacitor C F1 is set to such an extent that the current delay does not affect the commutation of the inverter operation due to the time constant due to the output capacitor and the wiring inductance.
- the multi-phase inverter unit 40 includes a multi-phase inverter circuit configured by bridge-connecting switching elements corresponding to the number of phases.
- the three-phase inverter circuit is composed of six switching elements.
- the switching element for example, a semiconductor switching element such as an IGBT or a MOSFET can be used.
- Each switching element of the multiphase inverter circuit performs a switching operation based on the control signal of the switching control unit 81, converts DC power into AC power, and outputs the AC power.
- the multiphase rectification unit 60 rectifies the AC output of the multiphase inverter unit 40 and supplies the DC output to the load.
- a conventionally known multiphase rectification unit may be configured to include a DC filter circuit in the output unit. This DC filter circuit removes the high-frequency ripple component included in the AC output of the multiphase inverter unit.
- DC filter circuit can be configured by the output capacitor C FO connected in series with the output reactor L FO in parallel connected to the output terminal (not shown).
- the DC output of the multiphase rectification unit 60 is output via the wiring inductance L 0 provided in the wiring 90, and is supplied to the plasma generator 4 by the output cable 3 connecting the DC power supply device 1 and the plasma generator 4. .
- the DC power supply device 1 of the present invention can use a parasitic impedance instead of the DC filter circuit in the multiphase rectifier 60 as a configuration for removing high-frequency ripple.
- the inductance L 0 of the wiring 90 between the polyphase rectifier 60 and the output terminal as an inductance component
- the inductance or capacitor included in the output cable 3 connected between the DC power supply device 1 and the load or
- the electrode capacity C 0 of the plasma generator 4 can be used.
- the parasitic impedance of the above-described multiphase inverter section and the capacity of the output cable and electrode capacitance substantially constitute a DC filter circuit, and reduce the high frequency ripple included in the AC output of the multiphase inverter section.
- the ripple of the DC voltage has a characteristic that increases when the driving frequency of the multiphase inverter circuit is lowered. Therefore, by increasing the driving frequency of the polyphase inverter circuit, the need for output capacitors C FO and output reactor L FO can be reduced. Moreover, the energy which DC power supply device 1 holds inside can be suppressed by raising the drive frequency of a multiphase inverter circuit.
- the DC power supply device 1 of the present invention includes a control unit 80 that controls the current source chopper unit 30 and a switching control unit 81 that controls the multiphase inverter unit 40.
- Control unit 80 is a circuit for chopper control of the switching element to Q 1 current-chopper 30, the chopper current is an output current of the switching element Q 1, and detects an output voltage of the DC power supply device 1, the chopper current Based on the detected value of the output voltage, control is performed so that the output of the current source chopper unit 30 becomes a predetermined current value and a predetermined voltage value set in advance.
- the switching control unit 81 controls the switching operation of the switching element connected to each arm constituting the bridge circuit of the multiphase inverter unit 40.
- the multiphase inverter unit 40 orthogonally converts the input direct current into alternating current by controlling the switching element.
- the multiphase inverter unit 40 is configured by a bridge circuit having six arms as shown in FIGS. Each arm is provided with six switching elements Q R , Q S , Q T , Q X , Q Y , and Q Z.
- a switching element Q R and the switching element Q x connected in series, a switching element Q S and the switching element Q Y are connected in series, connected in series and a switching element Q T and the switching element Q z.
- a connection point R between the switching element Q R and the switching element Q x is connected as an R phase component of the three-phase transformer 51 via an inductance L m1
- a connection point S between the switching element Q S and the switching element Q Y is an inductance through L m @ 2 are connected as S-phase of the three-phase transformer 51
- a switching element Q T and the switching element Q Z connecting point T is connected as T-phase of the three-phase transformer 51 via an inductance L m3
- the 5 and 6, the inductances L m1 , L m2 , and L m3 are omitted.
- PWM PWM control that changes the magnitude of output current under constant input current is known as current source inverter control.
- PWM control a pulse control signal is formed for each phase by comparing a carrier wave and a modulated wave.
- the pulse control signal of each phase has a conduction period of 120 °, and the ON / OFF of the switching element of each arm of the inverter is controlled by this pulse control signal.
- R-phase, S-phase, and T-phase currents having a phase difference are formed.
- a feedback signal is fed back to the control unit 80 and the switching control unit 81 from the output end of the DC power supply device 1 or the load side.
- the feedback signal can be, for example, a voltage at the output terminal of the DC power supply device 1.
- FIG. 2 is a schematic block diagram for explaining a configuration example of the switching control unit.
- the switching control unit 81 is for short-circuiting between a pulse control signal generation circuit 81a that generates a pulse control signal for controlling on / off of the switching element of the multiphase inverter unit, and a positive terminal and a negative terminal of the bridge circuit.
- a generation circuit 81b and a gate signal holding circuit 81c that holds and outputs the pulse control signal generated by the gate signal generation circuit 81b as a gate signal are provided.
- the gate signal generation circuit 81b generates a gate signal from the pulse control signal generated by the pulse control signal generation circuit 81a and the short-circuit ON signal generated by the short-circuit ON signal generation circuit 81d.
- the gate signal holding circuit 81c is a circuit that holds and outputs the gate signal generated by the gate signal generation circuit 81b, and performs a holding operation or a releasing operation for releasing the holding operation based on an arc generation signal described later.
- the gate signal input from the gate signal generation circuit 81b is held by the holding operation, and the held gate signal is output.
- the release operation the holding operation is released, and the gate signal input from the gate signal generation circuit 81b is output.
- the switching control unit 81 inputs an arc generation signal detected by the arc detection circuit 82.
- the arc detection circuit 82 detects the occurrence state of arc discharge in the arc generator of the load based on, for example, the load or the voltage at the output end.
- the detection of the arc state by the arc detection circuit 82 is performed, for example, by comparing the load voltage or the voltage at the output end of the DC power supply device with a predetermined first threshold, It is detected that an arc discharge has occurred when the voltage drops below the threshold value. In addition, after detecting the occurrence of arc discharge, the detected voltage is compared with a predetermined second threshold value, and when the detected voltage exceeds the second threshold value, arc discharge disappears. to decide.
- the arc detection circuit 82 When detecting the occurrence of arc discharge, the arc detection circuit 82 temporarily stops each generation operation of the pulse control signal generation circuit 81a and holds the signal state.
- the arc detection circuit 82 When the arc detection circuit 82 detects the occurrence of the arc discharge and then determines that the arc discharge has disappeared, the arc detection circuit 82 releases the hold state of the pulse control signal generation circuit 81a and restarts the generation operation.
- the pulse control signal generation circuit 81a restarts the generation of each signal from the signal state at the time of arc discharge occurrence.
- the arc detection circuit 82 inputs an arc generation signal to the above-described pulse control signal generation circuit 81a, and also inputs an arc generation signal to the gate signal holding circuit 81c and the short-circuit on-signal generation circuit 81d.
- the gate signal holding circuit 81c receives the arc generation signal, and when the occurrence of arc discharge is detected, holds the gate signal at that time and outputs the gate signal at the time of holding.
- the gate signal holding circuit 81c determines that the arc discharge has disappeared by the arc generation signal after the occurrence of the arc discharge is detected, the gate signal holding circuit 81c cancels the holding of the gate signal and the gate signal generated by the gate signal generation circuit 81b is Output.
- the gate signal holding circuit 81c measures an elapsed time after the occurrence of arc discharge is detected, and determines that the arc discharge has disappeared when the preset holding time tarc has elapsed, The retention of the gate signal may be canceled and the gate signal generated by the gate signal generation circuit 81b may be output.
- the holding time t arc is a time for holding a current state in which the direct current immediately before the arc discharge is generated as the circulating current ⁇ i.
- the holding time tarc can be arbitrarily set. For example, a time required until the arc to be discharged after the arc discharge is generated for the load to be controlled is obtained in advance, and a margin predicted from the fluctuation range at this time is obtained. Can be determined by adding minutes etc.
- the short-circuit ON signal generation circuit 81d When the arc discharge generation signal is input, the short-circuit ON signal generation circuit 81d generates a short-circuit ON signal in order to short-circuit between the positive terminal and the negative terminal of the multiphase inverter unit.
- the short-circuit ON signal is generated when both the switching element provided in the positive terminal side arm of the polyphase inverter unit and the switching element provided in the negative terminal side arm are turned on. Short-circuit between terminal and negative terminal.
- This ON signal for short circuit can be in two modes.
- the first mode is to turn on all the switching elements of all the negative terminals of the bridge circuit with respect to the switching elements of the negative terminal arm of the bridge circuit, whereby the positive terminal and the negative terminal of the multiphase inverter unit It is the aspect which short-circuits between.
- any one of the plurality of arms connected to the positive terminal is in the on state.
- a pulse control signal that turns on all the switching elements of all the arms of the negative terminal of the bridge circuit as a gate signal, the positive terminal and the negative terminal of the bridge circuit are short-circuited.
- the first short-circuit ON signal is a pulse control signal that turns on all the switching elements of all the arms of the negative terminal of the bridge circuit.
- the gate signal generation circuit 81b the normal pulse control signal generated by the pulse control signal generation circuit 81a and the short-circuit ON signal generated by the short-circuit ON signal generation circuit 81d are added under an OR condition to generate a gate signal. To do.
- the gate signal in the gate signal state of the positive terminal at the stop time is output to the arm of the positive terminal of the bridge circuit,
- the switching element of the negative terminal arm that forms a pair with the switching element of the positive terminal arm of a bridge circuit is detected, and the switching element of the negative terminal arm is turned on, thereby the positive terminal and the negative terminal of the multiphase inverter section are turned on.
- the switching element of the positive terminal side arm that is in the on state and the switching element of the negative terminal side that forms a pair with the switching element on the positive terminal side in the bridge circuit Both are turned on, and the positive terminal and the negative terminal of the bridge circuit are short-circuited.
- the first short-circuit ON signal is a pulse control signal that turns on the switching element of the negative terminal side arm that is paired with the switching element of the positive terminal side arm of the bridge circuit that is on.
- the normal pulse control signal generated by the pulse control signal generation circuit 81a and the short-circuit ON signal generated by the short-circuit ON signal generation circuit 81d are added to generate a gate signal.
- FIG. 3 is a flowchart for explaining an operation example of the DC power supply device of the present invention
- FIG. 4 is a timing chart for explaining an operation example of the DC power supply device of the present invention
- FIG. FIG. 6 is a diagram for explaining the flow of current when arc discharge occurs in the power supply device
- FIG. 6 is a diagram for explaining the flow of current when arc discharge disappears in the DC power supply device of the present invention.
- the flowchart of FIG. 3 shows an operation example when an arc discharge occurs (S1 to S7) and an operation example when an arc discharge disappears (S8 to S15) in a state where the DC power supply device is performing normal operation. Show.
- the arc detector detects and monitors the load or the voltage at the output end of the DC power supply device, and detects that arc discharge has occurred when the voltage drops. Detection of the occurrence of arc discharge can be performed by comparing a predetermined threshold value with a detected value. The detection of arc discharge is not limited to the comparison between the detected voltage value and the threshold value (S1).
- the power supply from the DC power supply to the chopper circuit is stopped by the process of S2, the supply of DC power from the DC power supply device to the load is stopped, and the chopper circuit and the bridge circuit of the multiphase inverter unit are processed by the processes of S3 and S4.
- a closed circuit is formed between them.
- the current flowing through the inductance of the chopper circuit circulates as a circulating current ⁇ i in the formed closed circuit (S5).
- the circulating current ⁇ i is supplied to the multiphase inverter unit when the supply of DC power from the DC power supply device to the load is resumed, and accelerates the rise of the orthogonal transformation by the multiphase inverter unit.
- the gate signal of the multiphase inverter unit at the time of the stop is held (S6), and the generation of the gate signal by the gate signal generation circuit is interrupted (S7).
- the step of holding the gate signal of S6 and the step of interrupting the generation of a new gate signal of S7 can hold the conversion state of the orthogonal transformation of the multiphase inverter unit when the DC power supply is stopped.
- the power supply from the DC power supply to the chopper circuit is restarted by the step S9, and the circulating current ⁇ i flowing in the closed circuit formed between the chopper circuit and the bridge circuit of the multiphase inverter unit by the steps S10 and S11 is increased.
- the direct current supplied from the direct current power source to the multiphase inverter section is delayed due to the inductance and stray capacitance of the chopper circuit.
- the circulating current ⁇ i is generated from the DC power supply by stopping the short circuit between the positive terminal and the negative terminal of the multiphase inverter unit and forming a current path between the chopper circuit and the multiphase inverter unit. The DC current is supplied to the multiphase inverter unit before the DC current is supplied, and the restart of the multiphase inverter unit can be accelerated.
- a gate signal can be generated from the same phase state as that when the DC power supply is stopped.
- FIG. 4 The timing chart of FIG. 4 is an example using a three-phase inverter as a multi-phase inverter
- FIG. 4 (a) shows the output voltage (V 0 ) of the DC power supply device
- FIG. 4 (b) shows the arc by the arc detector
- FIG. 4 (c) shows the operation state of the chopper circuit
- FIGS. 4 (d) to (i) show gate signals for controlling the driving of the switching elements provided in the arms of the three-phase inverter.
- FIG. 4 (j) shows a short-circuit ON signal for short-circuiting between the positive terminal and the negative terminal of the three-phase inverter.
- FIGS. 4D, 4F, and 4H show gate signals for driving the switching elements Q R , Q S , and Q T of the arm on the positive terminal side of the three-phase inverter, and FIGS. ), (I) are gate signals for driving the switching elements Q X1 , Q Y1 , and Q Z1 of the arm on the negative terminal side of the three-phase inverter. Further, the paired switching elements Q R and the switching element Q X1, the paired switching elements Q S and the switching element Q Y1, the switching element Q T and the switching element Q Z1 paired Yes. In addition, the gate signal represents 12 sections 1 to 12 in the figure as one cycle.
- the holding time t arc is a section in which the state when the arc discharge is generated is held, corresponds to a section from the occurrence of the arc discharge to the disappearance, and can be arbitrarily set.
- the output voltage V 0 decreases when arc discharge occurs, and returns when it is determined that arc discharge has disappeared after the phase of “ ⁇ ⁇ t arc ” has elapsed.
- Arc detector monitors the output voltage V 0, and starts the output of the arc occurrence signal upon detecting a drop in the output voltage V 0, the time to detect the return of the output voltage V 0 or holding time t arc is passed, At this point, the output of the arc generation signal is terminated (FIG. 4B).
- the chopper circuit When the chopper circuit receives the arc generation signal, the chopper circuit operates to the end of one section including the time point at which the arc generation signal is received in one section among a plurality of sections (12 sections in FIG. 4) constituting one cycle. Continuously, a direct current as a chopper output is supplied to the three-phase inverter unit. In the illustrated example, since the arc generation signal is received in the middle of the section “1”, the operation of the chopper circuit is stopped at the last time of the section “1”.
- the gate signal generator outputs a signal width of 2 ⁇ / 3, a signal interval of 4 ⁇ / 3, and a gate signal of 2 ⁇ / 3 with an interval of 2 ⁇ / 3 for each of the three phases.
- the gate signal of the switching element Q R of the positive terminal side (FIG. 4 (d))
- the 1-4 interval is turned on, and turned off a section of 5-12.
- the gate signal of the switching element Q S (FIG. 4 (f)) is a section of 5-8 is turned on may be turned off for 9-12 sections and 1-4 interval.
- the gate signal of the switching element Q T (FIG. 4 (h)) is a section of 9-12 is turned on, and turned off the section of 1-8.
- the switching control unit When the switching control unit receives the arc generation signal, the switching control unit maintains the output state and maintains the output of the gate signal when the gate signal is in the output state at the time of receiving the arc generation signal. Thereafter, when the disappearance of the arc discharge is detected, or when the arc generation signal ends after the holding time elapses, the generation of the gate signal is resumed, and the gate signals for the remaining sections are generated from the time when the arc generation signal is received.
- the section width obtained by combining the section width before the arc occurrence time and the section width after the arc disappearance time or after the holding time elapses is the section width of 2 ⁇ / 3 minutes of the gate signal.
- the gate signal of the switching element Q R of the positive terminal side (FIG. 4 (d)), the "omega ⁇ t 1" minutes from the beginning of the time to the point where the arc discharge has occurred in the section "1" is turned on
- the ON state is maintained during the “ ⁇ ⁇ t arc ” section in which arc discharge continues. Further, from the time when the arc discharge disappears or the holding time elapses, the ON state is continued for “2 ⁇ / 3 ⁇ ⁇ t 1 ” which is the remaining signal width of 2 ⁇ / 3.
- section width “ ⁇ ⁇ t arc ” before the arc occurrence time and the section width “2 ⁇ / 3 ⁇ ⁇ t 1 ” after the arc disappearance time or after the holding time has elapsed are combined to obtain a section width of 2 ⁇ / 3 minutes.
- the gate signal in the on state is output.
- Similar operation control is performed even when the gate signal is in an off state at the time of occurrence of arc discharge.
- the gate signal of the switching element Q S of the positive terminal side (Fig. 4 (f)), the section 9-12 the arc discharge is combined intervals up to the time that occurred in the middle of the section "1"" ⁇ / 3 + ⁇ ⁇ t 1 ′′ is turned off, and the off state is maintained during the period of “ ⁇ ⁇ t arc ” where arc discharge continues.
- the OFF state is continued by “2 ⁇ / 3 ⁇ ⁇ t 1 ”, which is the remaining signal width of 4 ⁇ / 3, from the time when the arc discharge disappears or the holding time elapses.
- section width “2 ⁇ / 3 + ⁇ t 1 ” before the arc occurrence time and the section width “2 ⁇ / 3 ⁇ ⁇ t 1 ” after the arc disappearance time or after the holding time has elapsed are combined to obtain a section width of 4 ⁇ / 3 minutes.
- the gate signal in the off state is output.
- the ON signal for short-circuiting shown in FIG. 4J is output during the holding time tarc that can be arbitrarily set between the time when arc discharge occurs and the time when it is determined that arc discharge disappears.
- FIG. 5 shows a circuit state when arc discharge occurs.
- arcing as an off state of the switching element to Q 1 chopper circuit by arc detection signal, it stops the current supply from the DC power source, short the three-phase inverter by shorting ON signal, the chopper circuit and the 3-phase A closed circuit is formed with the inverter, and a circulating current ⁇ i flows.
- FIG. 5A shows a state where all of the switching elements Q X , Q Y and Q Z of the negative terminal side arm of the three-phase inverter are turned on, and the switching element Q R .
- An example is shown in which a closed circuit is formed by a switching element in the on state of Q S and Q T. 5 (a), a switching element Q R of the positive terminal side arm, switching elements Q X of the negative terminal side arm, Q Y, all Q Z is turned on, the switching element Q R, Q X , Q Y , Q Z , a diode D 1 , and an example in which a circulating current flows through a closed circuit formed by an inductance of L F1 .
- FIG. 5B shows the switching elements Q R , Q S , Q T of the positive terminal side of the switching elements Q X , Q Y , Q Z of the negative terminal side arm of the three-phase inverter.
- a switching element that is paired with a switching element that is in an on state is detected and turned on, thereby forming a closed circuit.
- FIG. 5 (b) a switching element Q R of the positive terminal side arm, switching elements Q X of the negative terminal side of the arm which forms the switching element Q R a pair are turned on, the switching element Q
- An example is shown in which a circulating current flows through a closed circuit formed by R 1 , Q X , a diode D 1 , and a DC reactor L F1 .
- FIG. 6 shows a circuit state when the arc discharge disappears.
- disappearance of the arc discharge switched on the switching elements to Q 1 chopper circuit from the off state by the arc detection signal, the resume the supply of current from the DC power source, a three-phase inverter by stopping the shorting ON signal Release the short-circuit state.
- the circulating current ⁇ i flowing in the closed circuit between the chopper circuit and the three-phase inverter is supplied to the three-phase inverter side.
- the three-phase inverter following the circulating current .DELTA.i, direct current is supplied from the DC power supply through the switching element Q 1.
- FIG. 6A shows a state where the circulating current ⁇ i flows through the three-phase inverter.
- the switching element Q R and the switching element Q Y is stopped in the ON state, like the time of stopping, to restart the switching element Q R and the switching element Q Y from the on state .
- the circulating current ⁇ i flows through the lines of the switching element Q R , the connection point R, the three-phase transformer, the connection point S, and the switching element Q Y.
- the current supplied from the DC power source indicates the flow conditions in the 3-phase inverter through the switching element Q 1.
- the current from the DC power source flows through the switching element Q R , the connection point R, the three-phase transformer, the connection point S, and the line of the switching element Q Y.
- the three-phase inverter performs orthogonal transformation by controlling conduction of the switching element with a gate signal in the same manner as in a normal operation.
- FIG. 7 shows another configuration example of the DC power supply device of the present invention.
- the configuration example described above is an example in which the three-phase inverter is short-circuited by controlling the ON state of the switching element of the three-phase inverter.
- the configuration example shown in FIG. 7 in place of the short circuit of the three-phase inverter, connected in parallel switching element Q 3 between the chopper circuit and the 3-phase inverter.
- the ON state by shorting the ON signal to the switching element Q 3, a short circuit between the output terminal of the chopper circuit, passing a circulating current in the closed to form a chopper circuit path.
- the current source inverter device of the present invention can be applied as a power source for supplying power to a plasma generator.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Combustion & Propulsion (AREA)
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
- Plasma Technology (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
Description
本願発明の直流電源装置は、直流源を構成する電流形チョッパ部と、電流形チョッパ部の直流出力を複数のスイッチング素子の動作により多相の交流電力に変換する多相インバータ部と、多相インバータ部の出力を交直変換し、負荷に直流を供給する整流部と、電流形チョッパ部および多相インバータ部を制御する制御部とを備える。
電源側から負荷への電力供給を停止する時点において、電流形チョッパ部の動作を停止すると共に、インバータ部の入力側において、正端子側と負端子側を短絡することによって、インバータ部から変圧器側に向かう電流を停止させる機能
(b)電流形チョッパ部の循環電流の保持機能:
電源側から負荷への電力供給の停止中において、停止時で電流形チョッパ部のインダクタ部に流れる電流を循環電流として保持しておき、電力供給の復帰時において、循環電流をインバータ部に流すことでインバータ部を迅速に再起動させる機能
(c)インバータのゲート信号状態の保持機能:
電源側から負荷への電力供給の停止中において、停止時におけるインバータ部を制御するゲート信号状態を保持しておき、電力供給の復帰時において、保持したゲート信号状態からインバータ部の制御を再開させる機能
本発明の直流電源装置の制御部は、直流電源装置の直流出力の停止時、停止中、および再開時において以下の制御を行う機能を有している。
電源装置の直流出力の停止時の制御は、電流形チョッパ部の主スイッチをオン状態からオフ状態に切り替え、多相インバータ部を構成するブリッジ回路のゲート信号の生成を停止すると共に、ブリッジ回路の正端子と負端子間を短絡する。
直流電源装置の直流出力の停止中の制御は、電流形チョッパ部の主スイッチのオフ状態と、ブリッジ回路の正端子と負端子間の短絡状態を保持すると共に、ブリッジ回路のゲート信号状態を停止時のゲート信号状態に保持する。
直流電源装置の直流出力の復帰時の制御は、電流形チョッパ部の主スイッチをオフ状態からオン状態に切り替え、ブリッジ回路のゲート信号の生成を停止時のゲート信号状態から再開し、生成したゲート信号により多相インバータ部を再起動する。
制御部は、直流電源装置の直流出力の停止時および停止中においてブリッジ回路の正端子と負端子間を短絡制御する。この短絡制御は2つの態様で行うことができる。
制御部は、直流電源装置の直流出力の復帰時におけるブリッジ回路のスイッチング素子の制御を2つの態様で行うことができる。
はじめに、本発明の直流電源装置の構成例について図1,図2を用いて説明する。
次に、本発明の直流電源装置の動作例について図3~図6を用いて説明する。図3は本発明の直流電源装置の動作例を説明するためのフローチャートであり、図4は本発明の直流電源装置の動作例を説明するためのタイミングチャートであり、図5は本発明の直流電源装置のアーク放電発生時の電流の流れを説明するための図であり、図6は本発明の直流電源装置のアーク放電消失時の電流の流れを説明するための図である。
アーク放電の発生が検出された場合には、チョッパ回路のスイッチング素子を停止し(S2)、短絡用オン信号生成回路81dで生成した短絡用オン信号によって(S3)、多相インバータ部の正端子と負端子間を短絡する(S4)。
アーク放電の発生が検出された後、アーク放電の消失が検出された場合、あるいは、アーク放電の消失が想定される時間が経過した場合には(S8)、チョッパ回路のスイッチング素子をオン状態に切り替え(S9)、短絡用オン信号の出力を終了することによって(S10)、多相インバータ部の正端子と負端子間の短絡を停止する(S11)。
2 交流電源
3 出力ケーブル
4 プラズマ発生装置
10 整流部
20 スナバー部
30 電流形チョッパ部
40 多相インバータ部
50 多相変圧部
51 相変圧器
60 多相整流部
80 制御部
81 スイッチング制御部
81a パルス制御信号生成回路
81b ゲート信号生成回路
81c ゲート信号保持回路
81d 短絡用オン信号生成回路
82 アーク検出回路
90 配線
C0 電極容量
CF1 出力コンデンサ
CFO 出力コンデンサ
D1 ダイオード
L0 配線インダクタンス
LF1 直流リアクトル
LFO 出力リアクトル
Lm1,Lm2,Lm3 インダクタンス
LR インダクタンス
Pc アークエネルギー
Q1 スイッチング素子
Q3 スイッチング素子
QR,QS,QT スイッチング素子
QX,QY,QZ スイッチング素子
R 接続点
S 接続点
T 接続点
tarc 保持時間
Vo 出力電圧
Δi 循環電流
Claims (10)
- 直流源を構成する電流形チョッパ部と、前記電流形チョッパ部の直流出力を複数のスイッチング素子の動作により多相の交流電力に変換する多相インバータ部と、前記多相インバータ部の出力を交直変換し、得られた直流を負荷に供給する整流部と、前記電流形チョッパ部および前記多相インバータ部を制御する制御部とを備える直流電源装置であって、
前記制御部は、直流出力の停止・復帰制御を行う制御機能において、
前記停止・復帰制御を行う制御機能は、
直流電源装置の直流出力の停止時において、
前記電流形チョッパ部の主スイッチをオン状態からオフ状態に切り替え、
前記多相インバータ部を構成するブリッジ回路のゲート信号の生成を停止すると共に、前記ブリッジ回路の正端子と負端子間を短絡する停止制御と、
直流電源装置の直流出力の停止中において、
前記電流形チョッパ部の主スイッチのオフ状態と、前記ブリッジ回路の正端子と負端子間の短絡状態を保持し、
前記ブリッジ回路のゲート信号状態を停止時のゲート信号状態に保持する停止保持制御と、
直流電源装置の直流出力の復帰時において、
前記電流形チョッパ部の主スイッチをオフ状態からオン状態に切り替え、
前記ブリッジ回路のゲート信号の生成を前記停止時のゲート信号状態から再開し、当該ゲート信号により前記多相インバータ部を再起動する復帰制御の各制御機能を備えることを特徴とする、直流電源装置。 - 前記制御部は、ブリッジ回路の正端子と負端子間を短絡する停止制御において、
パルス幅制御によるパルス制御信号の生成を停止し、
停止時のパルス制御信号と、前記ブリッジ回路の負端子側の全てのスイッチング素子をオン状態とするパルス制御信号との両パルス制御信号のオア出力をゲート信号として出力する制御機能を有することを特徴とする、請求項1に記載の直流電源装置。 - 前記制御部は、ブリッジ回路の正端子と負端子間を短絡する停止制御において、
前記ブリッジ回路の正端子側および負端子側のアーム対において、
ブリッジ回路の正端子側のアームに対して、停止時の正端子側のゲート信号状態におけるゲート信号を出力し、
停止時にオン状態であるブリッジ回路の正端子側のアームのスイッチング素子と対を成す負端子側のアームのスイッチング素子に、当該負端子側のアームのスイッチング素子をオン状態とするパルス制御信号をゲート信号として出力する制御機能を有することを特徴とする、請求項1に記載の直流電源装置。 - 前記制御部は、前記復帰制御において、
前記ブリッジ回路の負端子のアームのスイッチング素子の全てをオン状態とするパルス制御信号を停止し、
各スイッチング素子のゲート信号の生成を停止時のゲート信号状態から再開し、ブリッジ回路の正端子側および負端子側のアームのスイッチング素子にゲート信号を出力することを特徴とする、請求項2に記載の直流電源装置。 - 前記制御部は、前記復帰制御において、
前記ブリッジ回路の対を成す正端子側および負端子側のアームのスイッチング素子をオン状態とするパルス制御信号を停止し、
各スイッチング素子のゲート信号の生成を停止時のゲート信号状態から再開し、ブリッジ回路の正端子および負端子のアームのスイッチング素子にゲート信号を出力することを特徴とする、請求項3に記載の直流電源装置。 - アーク発生装置を負荷とし、当該アーク発生装置のアーク状態を検出するアーク検出部を備え、
前記制御部は、前記停止・復帰制御において、
前記アーク検出部によるアークの発生検出に基づいて直流出力の停止制御を行い、
前記アーク検出部によるアークの消失検出、又は任意に設定可能な保持時間の経過に基づいて直流出力の復帰制御を行うことを特徴とする、請求項1から5の何れかに記載の直流電源装置。 - 直流源を構成する電流形チョッパ部と、前記電流形チョッパ部の直流出力を複数のスイッチング素子の動作により多相の交流電力に変換する多相インバータ部と、前記多相インバータ部の出力を交直変換し、得られた直流を負荷に供給する整流部と、前記電流形チョッパ部および前記多相インバータ部を制御する制御部とを備える直流電源装置の制御方法であって、
前記制御部は、停止制御、停止保持制御、および復帰制御の各制御により直流出力の停止および復帰を制御する停止・復帰制御において、
前記停止制御は、直流電源装置の直流出力の停止時において、
前記電流形チョッパ部の主スイッチをオン状態からオフ状態に切り替え、
前記多相インバータ部を構成するブリッジ回路のゲート信号の生成を停止すると共に、前記ブリッジ回路の正端子と負端子間を短絡し、
前記停止保持制御は、直流電源装置の直流出力の停止中において、
前記電流形チョッパ部の主スイッチのオフ状態と、前記ブリッジ回路の正端子と負端子間の短絡状態を保持すると共に、
前記ブリッジ回路のゲート信号状態を停止時のゲート信号状態に保持し、
前記復帰制御は、直流電源装置の直流出力の復帰時において、
前記電流形チョッパ部の主スイッチをオフ状態からオン状態に切り替え、
前記ブリッジ回路のゲート信号の生成を前記停止時のゲート信号状態から再開し、当該ゲート信号により前記多相インバータ部を再起動することを特徴とする、直流電源装置の制御方法。 - 前記制御部は、
前記負荷の電圧降下に基づいて直流出力を停止する停止制御を行い、
前記負荷の電圧降下の継続、又は任意に設定可能な保持時間に基づいて直流出力の停止を保持する停止保持制御を行い、
前記負荷の電圧降下からの電圧回復、又は前記保持時間の経過に基づいて直流出力を復帰する復帰制御を行うことを特徴とする、請求項7に記載の直流電源装置の制御方法。 - 前記制御部は、多相インバータ部を構成するブリッジ回路を制御し、
前記停止制御は、直流電源装置の直流出力の停止時において、
パルス幅制御によるパルス制御信号の生成を停止し、停止時のパルス制御信号と、前記ブリッジ回路の負端子側の全てのスイッチング素子をオン状態とするパルス制御信号との両パルス制御信号のオア出力をゲート信号として出力し、
前記停止保持制御は、直流電源装置の直流出力の停止中において、
前記停止時におけるゲート信号を継続して出力し、
前記復帰制御は、直流電源装置の直流出力の復帰時において、
前記ブリッジ回路のパルス制御信号の生成を前記停止時のパルス制御信号の状態から再開し、当該パルス制御信号をゲート信号として出力することを特徴とする、請求項7又は8に記載の直流電源装置の制御方法。 - 前記制御部は、多相インバータ部を構成するブリッジ回路を制御し、
前記停止制御は、直流電源装置の直流出力の停止時において、
パルス幅制御によるパルス制御信号の生成を停止し、
前記ブリッジ回路の正端子側および負端子側のアーム対において、
ブリッジ回路の正端子側のアームに対して停止時の正端子側のパルス制御信号をゲート信号として出力し、ブリッジ回路の負端子側のアームに対して、停止時においてオン状態のブリッジ回路の正端子側のアームと対を成す負端子側のアームのスイッチング素子をオン状態とするパルス制御信号をゲート信号として出力し、
前記停止保持制御は、直流電源装置の直流出力の停止中において、
前記停止時におけるゲート信号を継続して出力し、
前記復帰制御は、直流電源装置の直流出力の復帰時において、
前記ブリッジ回路のパルス制御信号の生成を前記停止時のパルス制御信号の状態から再開し、当該パルス制御信号をゲート信号として出力することを特徴とする、請求項7又は8に記載の直流電源装置の制御方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/072602 WO2014038013A1 (ja) | 2012-09-05 | 2012-09-05 | 直流電源装置、直流電源装置の制御方法 |
IN3122KON2014 IN2014KN03122A (ja) | 2012-09-05 | 2012-09-05 | |
PL12884309T PL2879257T3 (pl) | 2012-09-05 | 2012-09-05 | Urządzenie zasilające prądem stałym i sposób sterowania urządzeniem zasilającym prądem stałym |
CN201280075647.XA CN104604070B (zh) | 2012-09-05 | 2012-09-05 | 直流电源装置以及直流电源装置的控制方法 |
US14/416,474 US9160240B2 (en) | 2012-09-05 | 2012-09-05 | DC power supply device, and control method for DC power supply device |
DE12884309.1T DE12884309T1 (de) | 2012-09-05 | 2012-09-05 | Gleichstromversorgungsvorrichtung und steuerungsverfahren für die gleichstromversorgungsvorrichtung |
JP2013555670A JP5557407B1 (ja) | 2012-09-05 | 2012-09-05 | 直流電源装置、直流電源装置の制御方法 |
KR1020157006022A KR101519319B1 (ko) | 2012-09-05 | 2012-09-05 | 직류전원장치, 직류전원장치의 제어방법 |
EP12884309.1A EP2879257B1 (en) | 2012-09-05 | 2012-09-05 | Dc power supply device, and control method for dc power supply device |
TW102116689A TWI472269B (zh) | 2012-09-05 | 2013-05-10 | 直流電源裝置、直流電源裝置之控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/072602 WO2014038013A1 (ja) | 2012-09-05 | 2012-09-05 | 直流電源装置、直流電源装置の制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014038013A1 true WO2014038013A1 (ja) | 2014-03-13 |
Family
ID=50236665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/072602 WO2014038013A1 (ja) | 2012-09-05 | 2012-09-05 | 直流電源装置、直流電源装置の制御方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US9160240B2 (ja) |
EP (1) | EP2879257B1 (ja) |
JP (1) | JP5557407B1 (ja) |
KR (1) | KR101519319B1 (ja) |
CN (1) | CN104604070B (ja) |
DE (1) | DE12884309T1 (ja) |
IN (1) | IN2014KN03122A (ja) |
PL (1) | PL2879257T3 (ja) |
TW (1) | TWI472269B (ja) |
WO (1) | WO2014038013A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045196A1 (ja) * | 2013-09-27 | 2015-04-02 | 株式会社京三製作所 | 電圧形直流電源装置および電圧形直流電源装置の制御方法 |
WO2018043258A1 (ja) * | 2016-09-05 | 2018-03-08 | 日立ジョンソンコントロールズ空調株式会社 | 電力変換装置及びこれを備える空気調和機 |
WO2021130846A1 (ja) * | 2019-12-24 | 2021-07-01 | 株式会社Fuji | プラズマ装置 |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5729732B2 (ja) * | 2013-09-27 | 2015-06-03 | 株式会社京三製作所 | 直流電源装置、直流電源装置の制御方法 |
KR101863031B1 (ko) * | 2013-10-04 | 2018-05-30 | 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 | 전원 장치 |
WO2015049783A1 (ja) * | 2013-10-04 | 2015-04-09 | 東芝三菱電機産業システム株式会社 | 電源装置 |
US10138378B2 (en) | 2014-01-30 | 2018-11-27 | Monolith Materials, Inc. | Plasma gas throat assembly and method |
US10370539B2 (en) | 2014-01-30 | 2019-08-06 | Monolith Materials, Inc. | System for high temperature chemical processing |
US10100200B2 (en) | 2014-01-30 | 2018-10-16 | Monolith Materials, Inc. | Use of feedstock in carbon black plasma process |
US11939477B2 (en) | 2014-01-30 | 2024-03-26 | Monolith Materials, Inc. | High temperature heat integration method of making carbon black |
EP3100597B1 (en) | 2014-01-31 | 2023-06-07 | Monolith Materials, Inc. | Plasma torch with graphite electrodes |
EP3253904B1 (en) | 2015-02-03 | 2020-07-01 | Monolith Materials, Inc. | Regenerative cooling method and apparatus |
CN107709474A (zh) | 2015-02-03 | 2018-02-16 | 巨石材料公司 | 炭黑生成系统 |
JP6332126B2 (ja) * | 2015-04-20 | 2018-05-30 | 株式会社オートネットワーク技術研究所 | 車載負荷制御装置及びコンピュータプログラム |
CN108292826B (zh) * | 2015-07-29 | 2020-06-16 | 巨石材料公司 | Dc等离子体焰炬电力设计方法和设备 |
MX2018002943A (es) | 2015-09-09 | 2018-09-28 | Monolith Mat Inc | Grafeno circular de pocas capas. |
JP6974307B2 (ja) | 2015-09-14 | 2021-12-01 | モノリス マテリアルズ インコーポレイテッド | 天然ガス由来のカーボンブラック |
WO2017190015A1 (en) | 2016-04-29 | 2017-11-02 | Monolith Materials, Inc. | Torch stinger method and apparatus |
CA3060482C (en) | 2016-04-29 | 2023-04-11 | Monolith Materials, Inc. | Secondary heat addition to particle production process and apparatus |
KR102016654B1 (ko) * | 2016-08-03 | 2019-08-30 | 한국전기연구원 | 펄스 전원 장치 스위칭 제어 회로 |
CA3055830A1 (en) | 2017-03-08 | 2018-09-13 | Monolith Materials, Inc. | Systems and methods of making carbon particles with thermal transfer gas |
CN115637064A (zh) | 2017-04-20 | 2023-01-24 | 巨石材料公司 | 颗粒系统和方法 |
JP6835676B2 (ja) * | 2017-07-05 | 2021-02-24 | 株式会社ダイヘン | 電源システム、電源装置、制御方法及び制御プログラム |
MX2020002215A (es) | 2017-08-28 | 2020-08-20 | Monolith Mat Inc | Sistemas y metodos para generacion de particulas. |
CA3116989C (en) | 2017-10-24 | 2024-04-02 | Monolith Materials, Inc. | Particle systems and methods |
KR20190048636A (ko) * | 2017-10-31 | 2019-05-09 | 한국전기연구원 | 절연형 게이트 구동 장치 |
JP7051726B2 (ja) * | 2019-01-24 | 2022-04-11 | 株式会社京三製作所 | 直流パルス電源装置 |
JP6858805B2 (ja) * | 2019-04-11 | 2021-04-14 | 株式会社京三製作所 | 直流パルス電源装置、及び直流パルス電源装置の周波数制御方法 |
KR102242234B1 (ko) * | 2019-05-08 | 2021-04-20 | 주식회사 뉴파워 프라즈마 | 고주파 제너레이터 및 그의 동작 방법 |
TWI692921B (zh) * | 2019-06-26 | 2020-05-01 | 台達電子工業股份有限公司 | 電源供應電路與操作方法 |
PL239146B1 (pl) * | 2019-09-13 | 2021-11-08 | Univ West Pomeranian Szczecin Tech | Układ generatora wysokiego napięcia typu AC/DC do zastosowania w reaktorach zimnej plazmy typu PCD |
KR20230071354A (ko) | 2021-11-16 | 2023-05-23 | 주식회사 뉴파워 프라즈마 | 고주파 펄스 전원 장치 및 그의 운전 방법 |
KR20230072808A (ko) | 2021-11-18 | 2023-05-25 | 주식회사 뉴파워 프라즈마 | 고주파 펄스 제너레이터 장치 및 그의 운전 방법 |
KR20230073919A (ko) | 2021-11-19 | 2023-05-26 | 주식회사 뉴파워 프라즈마 | 고주파 펄스 전원 장치 및 그의 운전 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5893474A (ja) * | 1981-11-26 | 1983-06-03 | Fuji Electric Co Ltd | 電流形インバータの制御装置 |
JPH08167500A (ja) | 1994-12-15 | 1996-06-25 | Jeol Ltd | 高周波プラズマ発生装置用電源 |
JP2001112247A (ja) * | 1999-10-04 | 2001-04-20 | Toshiba Corp | インバータゲート制御回路 |
JP2006006053A (ja) | 2004-06-18 | 2006-01-05 | Shihen Tech Corp | 直流電源装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63268470A (ja) * | 1987-04-27 | 1988-11-07 | Mitsubishi Electric Corp | 電力変換器 |
US5418707A (en) * | 1992-04-13 | 1995-05-23 | The United States Of America As Represented By The United States Department Of Energy | High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs |
JP3419900B2 (ja) | 1994-08-26 | 2003-06-23 | 高周波熱錬株式会社 | アーク放電検出回路 |
JP3711301B2 (ja) | 1996-05-29 | 2005-11-02 | 株式会社ルネサステクノロジ | Ic着脱装置及びその着脱ヘッド |
JPH11178333A (ja) * | 1997-12-15 | 1999-07-02 | Sansha Electric Mfg Co Ltd | 直流電源装置 |
JP3948591B2 (ja) | 1999-06-07 | 2007-07-25 | 独立行政法人 日本原子力研究開発機構 | 加速電源装置 |
JP2001295042A (ja) | 2000-04-18 | 2001-10-26 | Origin Electric Co Ltd | スパッタリング装置 |
KR100488448B1 (ko) * | 2001-11-29 | 2005-05-11 | 엘지전자 주식회사 | 플라즈마 디스플레이 패널의 서스테인펄스 발생장치 |
JP4241515B2 (ja) * | 2004-06-10 | 2009-03-18 | パナソニック電工株式会社 | 放電灯点灯装置及びプロジェクタ |
US20060283702A1 (en) * | 2005-06-21 | 2006-12-21 | Applied Materials, Inc. | Random pulsed DC power supply |
JP2007220594A (ja) | 2006-02-20 | 2007-08-30 | Nissin Electric Co Ltd | プラズマ生成方法及びプラズマ生成装置並びにプラズマ処理装置 |
CN101369785B (zh) * | 2008-10-07 | 2011-11-09 | 袁晓欧 | 大功率发电厂烟气脱硫脱氮脉冲电晕等离子体直流电源 |
JP4492975B2 (ja) | 2008-11-14 | 2010-06-30 | 芝浦メカトロニクス株式会社 | 電源、スパッタ用電源及びスパッタ装置 |
JP5153003B2 (ja) * | 2009-08-19 | 2013-02-27 | ウシオ電機株式会社 | 高圧放電ランプ点灯装置およびプロジェクタ |
JP5399563B2 (ja) * | 2010-08-18 | 2014-01-29 | 株式会社アルバック | 直流電源装置 |
EP2677652B1 (en) * | 2012-02-23 | 2016-11-16 | Kyosan Electric Mfg. Co., Ltd. | Current source inverter device, and method for controlling current source inverter device |
DE12884110T1 (de) * | 2012-09-07 | 2015-09-24 | Kyosan Electric Mfg. Co., Ltd. | Gleichstromversorgungsvorrichtung und steuerungsverfahren für die gleichstromversorgungsvorrichtung |
-
2012
- 2012-09-05 JP JP2013555670A patent/JP5557407B1/ja active Active
- 2012-09-05 EP EP12884309.1A patent/EP2879257B1/en active Active
- 2012-09-05 KR KR1020157006022A patent/KR101519319B1/ko active IP Right Grant
- 2012-09-05 DE DE12884309.1T patent/DE12884309T1/de active Pending
- 2012-09-05 CN CN201280075647.XA patent/CN104604070B/zh active Active
- 2012-09-05 WO PCT/JP2012/072602 patent/WO2014038013A1/ja active Application Filing
- 2012-09-05 PL PL12884309T patent/PL2879257T3/pl unknown
- 2012-09-05 IN IN3122KON2014 patent/IN2014KN03122A/en unknown
- 2012-09-05 US US14/416,474 patent/US9160240B2/en active Active
-
2013
- 2013-05-10 TW TW102116689A patent/TWI472269B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5893474A (ja) * | 1981-11-26 | 1983-06-03 | Fuji Electric Co Ltd | 電流形インバータの制御装置 |
JPH08167500A (ja) | 1994-12-15 | 1996-06-25 | Jeol Ltd | 高周波プラズマ発生装置用電源 |
JP2001112247A (ja) * | 1999-10-04 | 2001-04-20 | Toshiba Corp | インバータゲート制御回路 |
JP2006006053A (ja) | 2004-06-18 | 2006-01-05 | Shihen Tech Corp | 直流電源装置 |
Non-Patent Citations (2)
Title |
---|
KENICHI NAKAMURA; HIROSHI MIHOYA, ORIGIN TECHNICAL JOURNAL NO. 73, 2010, pages 1 - 7 |
See also references of EP2879257A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045196A1 (ja) * | 2013-09-27 | 2015-04-02 | 株式会社京三製作所 | 電圧形直流電源装置および電圧形直流電源装置の制御方法 |
US9621064B2 (en) | 2013-09-27 | 2017-04-11 | Kyosan Electric Mfg. Co., Ltd. | Arc quenching circuit for a power supply in a plasma generator |
WO2018043258A1 (ja) * | 2016-09-05 | 2018-03-08 | 日立ジョンソンコントロールズ空調株式会社 | 電力変換装置及びこれを備える空気調和機 |
JP2018042294A (ja) * | 2016-09-05 | 2018-03-15 | 日立ジョンソンコントロールズ空調株式会社 | 電力変換装置及びこれを備える空気調和機 |
WO2021130846A1 (ja) * | 2019-12-24 | 2021-07-01 | 株式会社Fuji | プラズマ装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2879257B1 (en) | 2017-05-10 |
TW201412198A (zh) | 2014-03-16 |
CN104604070A (zh) | 2015-05-06 |
TWI472269B (zh) | 2015-02-01 |
EP2879257A1 (en) | 2015-06-03 |
CN104604070B (zh) | 2016-03-23 |
US9160240B2 (en) | 2015-10-13 |
EP2879257A4 (en) | 2016-07-06 |
KR20150032602A (ko) | 2015-03-26 |
JP5557407B1 (ja) | 2014-07-23 |
KR101519319B1 (ko) | 2015-05-11 |
PL2879257T3 (pl) | 2017-10-31 |
US20150180346A1 (en) | 2015-06-25 |
IN2014KN03122A (ja) | 2015-05-08 |
DE12884309T1 (de) | 2015-09-17 |
JPWO2014038013A1 (ja) | 2016-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5557407B1 (ja) | 直流電源装置、直流電源装置の制御方法 | |
JP5679241B1 (ja) | 電圧形直流電源装置および電圧形直流電源装置の制御方法 | |
JP5538658B2 (ja) | 電力変換装置 | |
EP2677652B1 (en) | Current source inverter device, and method for controlling current source inverter device | |
US9450519B2 (en) | DC power source, and DC power source control method | |
US11075540B2 (en) | Uninterruptible power supply device | |
US9137885B2 (en) | DC power supply device, and control method for DC power supply device | |
US20160327998A1 (en) | Low Capacitance Drive With Improved Immunity | |
JP4845821B2 (ja) | 瞬時電圧低下補償装置 | |
US20220399746A1 (en) | Power converter | |
JP2003143861A (ja) | 高周波電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280075647.X Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2013555670 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12884309 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14416474 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2012884309 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012884309 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157006022 Country of ref document: KR Kind code of ref document: A |