WO2014034996A1 - 전도성 이온 잉크 조성물, 그 제조방법 및 이를 이용한 고전도성 패턴 또는 막의 형성방법 - Google Patents

전도성 이온 잉크 조성물, 그 제조방법 및 이를 이용한 고전도성 패턴 또는 막의 형성방법 Download PDF

Info

Publication number
WO2014034996A1
WO2014034996A1 PCT/KR2012/007289 KR2012007289W WO2014034996A1 WO 2014034996 A1 WO2014034996 A1 WO 2014034996A1 KR 2012007289 W KR2012007289 W KR 2012007289W WO 2014034996 A1 WO2014034996 A1 WO 2014034996A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
film
ink composition
metal ion
printing
Prior art date
Application number
PCT/KR2012/007289
Other languages
English (en)
French (fr)
Inventor
오영제
왕병용
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2014034996A1 publication Critical patent/WO2014034996A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/006Patterns of chemical products used for a specific purpose, e.g. pesticides, perfumes, adhesive patterns; use of microencapsulated material; Printing on smoking articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10083Electromechanical or electro-acoustic component, e.g. microphone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0514Photodevelopable thick film, e.g. conductive or insulating paste

Definitions

  • the present invention relates to a conductive ion ink composition, and more particularly, to a highly conductive ion ink composition having excellent oxidative stability and dispersibility, a method of manufacturing the same, and a method of forming a high conductive pattern or film on a substrate using the same.
  • the direct printing method using metal particles which reduce the process cost and time in forming a wiring or an electrode, has attracted much attention.
  • the direct printing method is directly wired, so the environmental pollution and the process cost is significantly lower than the conventional deposition and etching methods.
  • the role of metal ink is very important to realize printing technology. This is because the characteristics of the metal fine powder used, the size of the particles, the degree of dispersion of the metal powder, and the like have a great influence on the characteristics of the wiring to be formed later.
  • wiring is the most important property of electrical conductivity, and many studies have been conducted on materials such as platinum, silver, copper, and aluminum, which are known as materials having good electrical properties.
  • copper has a high melting point due to deterioration of electrical characteristics due to oxidation problems in the air for use in wiring such as displays, environmental problems and high melting points such as deposition and etching using expensive vacuum equipment. Due to the difficulty of low temperature sintering, its use is currently limited.
  • This problem can be solved using the printing method and the particle size of the metal powder.
  • the specific surface area of the particles increases, the amount of heat absorption increases, so that the particles can be sintered even at a low sintering temperature and can be used for a substrate that cannot be applied at a high temperature.
  • the particle size is small, it is possible to form a thin film with high density, thereby improving electrical characteristics.
  • copper has a property of being well oxidized in the air, and thus has a disadvantage that it is more easily oxidized due to the large surface area if it has a small particle size. It has a relatively high electrical resistance value and copper wiring has a problem that it is difficult to maintain good characteristics peculiar to copper.
  • the size of the metal particles is reduced to nano size in the ink manufacturing, there are many problems in securing the dispersibility of the ink due to the strong cohesive force occurring on the surface of the particles.
  • metal compounds such as silver nitrate, metal salts, or copper sulfate in aqueous solutions or organic solvents, as in Korean Patent Publication No. 10-2011-0064153, Korean Patent Publication No. 10-2012-0036476, US Patent Publication No. 2010/038300, and the like. It reacts with other additives to form fine particles, which are used as metal powder inks.
  • these methods have high problems in manufacturing cost, complicated process, and the use of metal powder as described above, resulting in poor dispersion stability of the ink in the ink or high heat treatment temperature.
  • an object of the present invention is to solve the above problems, and to provide a conductive metal ink composition having excellent oxidation stability and dispersibility.
  • the present invention provides a method for producing a highly conductive metal ion ink which is excellent in oxidation stability using a solution method at room temperature and does not have particles and other impurities in the ink and thus does not need to secure a separate dispersion stability.
  • the present invention also provides a method of forming a metal pattern or film having excellent electrical conductivity by printing and heat-treating the substrate using a highly conductive metal ion ink prepared according to the above method.
  • the present invention to solve the above problems,
  • Conductive metal precursors A conductive metal ion ink composition comprising a metal ion generator and a solvent,
  • the metal precursor is represented by the following [Formula 1],
  • the solvent is distilled water, acetone, ethanol, methanol, 2-methoxyethoxyethanol, isopropanol, butanol, diethanolamine (DEA), triethanolamine (TEA), ethylene glycol (EG), diethylene glycol (DEG), toluene , N-methyl-2-pyrrolidone and mixtures thereof,
  • the metal ion generator is ammonia water (NH 4 OH), formic acid (HCOOH), citric acid (C 6 H 8 O 7 ), malic acid (C 4 H 6 O 6 ), hydrazine (N 2 H 4 H 2 O), sodium Borohydride (H 4 BNa), sodium chloride (NaCl), sodium hydroxide (NaOH), sodium phosphinate monohydrate (SPM), ammonium chloride (NH 4 OH), potassium bromide (KBr), Cetyltrimethylammonium bromide (CTBA) and mixtures thereof are provided.
  • M is Ag, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al , Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu and Ac is a metal selected from,
  • X is selected from acetates, nitrates, nitrites, chlorides, sulfates, hydroxides and combinations thereof,
  • N is determined according to the valence of M.
  • the conductive metal ion ink composition may include 15-25 parts by weight of metal ions derived from the metal precursor based on 100 parts by weight of the conductive metal ion ink composition.
  • the step (b) may be optically sintered by using an optical pulsed device (Intense Pulsed Light, IPL),
  • IPL Intelligent Pulsed Light
  • the photoplastic device uses a short white pulse, wherein the short white pulse has a pulse duration of 1-10 ms, a pulse pause of 1-50 ms, a number of pulses of 1-100 and a pulse of 1-80 J / cm 2. It is characterized by having energy.
  • the metal ink composition according to the present invention is excellent in oxidative stability and dispersibility to form a fine and uniform conductive pattern or film at a high density, and at the same time, it is possible to realize high electrical conductivity.
  • the ink composition is prepared using a solution method at room temperature, and a conductive pattern or film is formed using a printing process, so that the manufacturing process efficiency and the pattern forming process efficiency of the conductive ink composition are excellent, and the area of the conductive film is increased and the continuous process is performed. It is possible to form by.
  • the formed conductive pattern or film further improves electrical characteristics by a heat treatment process using a photoplastic device.
  • FIG. 1 is an image of a copper conductive film prepared by Example 1 according to the present invention
  • Figure 1a is an image before heat treatment after coating with a roller ball pen
  • Figure 1b is an image when heat treatment after coating with a roller ball pen
  • Figure 1c Is an image obtained by heat-treatment using a photoplastic device (IPL) according to the present invention after spin coating
  • FIG. 1D is a copper conductive pattern image prepared by inkjet printing.
  • Example 2 is an XRD graph of a copper conductive film prepared by Example 1 according to the present invention.
  • FIG. 3 is an XRD graph of a copper conductive film prepared by Comparative Example 1.
  • FIG. 4 is an XRD graph of a copper conductive film prepared by Comparative Example 2.
  • One aspect of the present invention relates to a conductive ink composition capable of forming wiring using a printing technique on a substrate, characterized in that it comprises a conductive metal precursor, a metal ion generator and a solvent.
  • the metal precursor is represented by the following [Formula 1] Ag, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd And metal salts such as Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu, Ac.
  • M is Ag, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al , Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu and Ac is a metal selected from,
  • X is selected from acetates, nitrates, nitrites, chlorides, sulfates, hydroxides and combinations thereof,
  • N is determined according to the valence of M.
  • a solvent for dissolving the metal precursor distilled water, acetone, ethanol, methanol, 2-methoxyethoxyethanol, isopropanol, butanol, diethanolamine (DEA), triethanolamine (TEA), ethylene glycol (EG), diethylene glycol (DEG), toluene, N-methyl-2-pyrrolidone or mixtures thereof are used.
  • the metal ion generator is ammonia water (NH 4 OH), formic acid (HCOOH), citric acid (C 6 H 8 O 7 ), malic acid (C 4 H 6 O 6 ), hydrazine (N 2 H 4 H 2 O) Sodium borohydride (H 4 BNa), sodium chloride (NaCl), sodium hydroxide (NaOH), sodium phosphinate monohydrate (SPM), ammonium chloride (NH 4 OH), potassium bromide (KBr ), Cetyltrimethylammonium bromide (CTBA) or mixtures thereof.
  • Another aspect of the invention relates to a method for producing a conductive metal ink composition, characterized in that it comprises the following steps.
  • the conductive metal ink composition according to the present invention first, after dispersing the metal precursor and the ammonia water in distilled water, stirring to confirm the generation of metal ions while preparing the first mixed solution, the formic acid and citric acid are further added to completely remove the metal ions. Then, 2-methoxyethoxyethanol is added thereto so that the concentration of metal ions generated in the mixed solution is 15-25%.
  • the conductive metal ion ink should be free from coating and patterning on the substrate by the printing process, and there should be no coupling phenomenon due to surface tension and solvent evaporation. Therefore, 2-methoxyethoxyethanol is added to the first mixed solution. The final metal ion ink composition is prepared.
  • the metal ions are completely ionized to be stably dispersed in the ink. Since the metal precursor is not precipitated in the mixed solution any more, it is possible to prepare a metal ink composition containing only pure metal ions.
  • ultrasonic dispersion is performed for uniform dispersion in a solvent, and the dispersion is performed for 1-10 minutes in an ultrasonic dispersion machine having a power of 300-500 W.
  • Another aspect of the invention relates to a method for forming a conductive pattern or film on a substrate using the metal ink composition, characterized in that it comprises the following steps.
  • the substrate is a substrate having excellent reactivity with respect to the metal ion ink so that a thin film or a pattern can be easily formed through a printing process.
  • the substrate is made of various materials such as metal, glass, silicon, ceramic, plastic, paper, and fiber.
  • the coating of the conductive ink composition is made by a method selected from spin coating, roll-to-roll coating, inkjet printing, and spray coating, screen printing, flexographic printing gravure printing, offset printing gravure offset printing, reverse gravure offset printing, slots It can be made by a method selected from die printing, roller ball pen printing and imprint.
  • the conductive matte or film coated by the step (a) is subjected to a drying process, and after drying, the film is subjected to a process of improving thin film properties such as conductivity of the pattern and adhesion to the substrate by using heat or light.
  • the step (b) it is characterized in that the light sintering using an optical pulsed device (Intense Pulsed Light, IPL), the post-treatment of the conductive pattern or the film according to the invention according to the post-treatment instead of heat treatment
  • IPL Intense Pulsed Light
  • the use of light sintering can reduce the sintering time to a short time of up to several ms without affecting the substrate, so that the characteristic of the conductive film is better than that of thermal sintering.
  • the photoplastic device uses short white pulses, which are pulse durations of 1-10 ms, pulse pause times of 1-50 ms, number of pulses of 1-100 and pulses of 1-80 J / cm 2. It is characterized by having energy.
  • FIG. 1 is a photograph of before (a) and after (b) IPL treatment of a copper conductive film characterized with a ballpoint pen by the method of Example 1, and XRD analysis thereof showed pure copper conduction as shown in FIG. You can see that it exists only as a film.
  • (c) is a spin-coated copper conductive film photograph
  • (d) is a copper conductive pattern photograph produced by inkjet printing.
  • Example 1 40 mL of DI water was added at room temperature, 20 g of copper hydroxide (Copper (II) hydroxide) and 5 g of ammonia water (NH 4 OH) were added, followed by stirring for 30 minutes.
  • a copper ion ink was prepared in the same manner as in Example 1 except for the content of the ammonia water solution, and a copper conductive film was formed in the same manner as in Example 1.
  • FIG 3 is a XRD graph of a copper conductive film prepared by the method of Comparative Example 1 shows some oxidized Cu 2 O peak in the copper pattern.
  • Example 1 40 mL of DI water was added at room temperature, 20 g of copper hydroxide (Copper (II) hydroxide) and 30 g of ammonia water (NH 4 OH) were added, followed by stirring for 30 minutes. To the solution was slowly added 10 g of formic acid and 1 g of citric acid. A copper ion ink was prepared in the same manner as in Example 1 except for the contents of the formic acid and citric acid solution, and a copper conductive film was formed in the same manner as in Example 1.
  • Copper (II) hydroxide Copper (II) hydroxide
  • NH 4 OH ammonia water
  • Comparative Example 2 also can be confirmed that the copper hydroxide is precipitated because the complete ionization does not occur as in Comparative Example 1.
  • Figure 4 below also shows a small amount of Cu 2 O peak in the XRD graph of the copper conductive film prepared by the method of Comparative Example 2.
  • Example 1 a copper conductive film was formed in the same manner as in Example 1, except that an existing heat treatment method was used instead of optical sintering using IPL.
  • the heat treatment method used a heat treatment for 20 minutes at a temperature of 100 °C or more using a hot plate and a heat treatment oven.
  • Table 1 below shows the electrical characteristics (resistance) of the copper conductive films prepared according to Examples 1 to 4 above.
  • a highly conductive metal ion ink and a highly conductive film using the same can be easily produced at room temperature, thereby providing excellent processability.
  • the metal powder particles do not exist, the dispersibility in the ink does not have to be considered, and the storage stability of the ink can be greatly increased.
  • the present invention uses such a metal ion ink, and when the printing method is applied, large area is easy, and manufacturing by a continuous process can be easily utilized in a wide range of wiring formation.
  • Applications include wireless electronic tags (RFID), microelectromechanical technology (MEMS), displays, thin film transistors and PCBs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Conductive Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

본 발명은 전도성 이온 잉크 조성물, 그 제조방법 및 이를 이용한 고전도성 패턴 또는 막의 형성방법에 관한 것으로서, 본 발명에 따른 금속 잉크 조성물은 산화안정성 및 분산성이 우수하여 미세하고 균일한 전도성 패턴 또는 막을 고밀도로 형성할 수 있음과 동시에 높은 전기전도도를 구현할 수 있다. 또한, 실온에서 용액법을 이용하여 잉크 조성물을 제조하고, 인쇄공정을 이용하여 전도성 패턴 또는 막을 형성하므로 전도성 잉크 조성물의 제조공정 효율이 및 패턴 형성공정 효율이 우수하고, 전도성 막의 대면적화와 연속공정에 의한 형성이 가능하다. 또한, 형성된 전도성 패턴 또는 막은 광소성 장치를 이용한 열처리 공정에 의해서 전기적 특성이 더욱 향상된다.

Description

전도성 이온 잉크 조성물, 그 제조방법 및 이를 이용한 고전도성 패턴 또는 막의 형성방법
본 발명은 전도성 이온 잉크 조성물에 관한 것으로서, 더욱 구체적으로는 산화안정성과 분산성이 우수한 고전도성 이온 잉크 조성물과 그 제조방법, 이를 이용하여 기판에 고전도성 패턴 또는 막을 형성하는 방법에 관한 것이다.
최근 배선이나 전극의 형성에 있어 공정비용 및 시간이 절감되는 금속입자를 이용한 직접 인쇄 방식이 많은 주목을 받고 있다. 직접 인쇄방식은 직접적으로 배선을 이루기 때문에 환경오염 및 공정비용이 기존의 증착, 식각 방식에 비하여 현저하게 낮은 장점이 있다. 인쇄 기술을 실현하기 위해서는 금속 잉크의 역할이 매우 중요하다. 사용되는 금속 미세 분말의 특성, 입자의 크기, 금속 분말의 분산 정도 등이 추후 형성되는 배선의 특성에 큰 영향을 끼치기 때문이다. 특히, 배선은 전기전도도가 가장 중요한 특성으로서, 전기적 특성이 좋은 재료로 알려진 백금, 은, 구리, 알루미늄 등의 물질에 대한 연구가 많이 진행되어 왔다.
하지만, 많은 금속들 중 알루미늄과 구리를 제외하고는 귀금속으로 사용되어 비싸다는 단점을 지니고 있으며, 현재는 주로 은 나노 입자를 이용한 연구가 진행되고 있으나, 이 역시 고비용으로 인한 산업적 활용에 많은 제약이 따르며, 또한 Ag는 원자 이동(atomic migration) 또는 이온 이동(ion migration or electrochemical migration)이 쉽게 발생하는 것으로 알려져 있다. 그리고, 알루미늄의 경우에는 현재 가장 많이 사용되는 재료로서 많은 연구가 되어 왔으나 구리에 비하면 전기전도도가 60% 정도 밖에 되지 않는 문제점을 가지고 있다.
따라서, 전자기기의 고기능화에 따라 가격이 저렴하고 고품질의 특징을 가진 구리에 대해서 많은 연구가 필요하다. 하지만, 구리는 디스플레이 등의 배선에 사용하기에는 공기 중 산화되는 문제점으로 인해 전기적 특성의 저하, 그리고 고비용의 진공장비 등을 이용한 증착 및 식각 등의 비용적인 문제와 환경적인 문제, 더욱이 높은 융점을 가지고 있어 저온 소결이 어렵다는 특성 때문에 현재는 사용이 제한되고 있다.
이러한 문제는 인쇄 방식 및 금속 분말의 입자 크기를 이용하여 해결할 수 있다. 즉, 나노 크기의 입자를 이용할 경우, 입자의 비표면적이 커 열 흡수량이 증가하여 낮은 소결 온도에서도 소결이 가능하여 온도를 높게 가할 수 없는 기판 등에도 사용이 가능하다. 이뿐만 아니라 입자 크기가 작으면 밀도 높은 박막 형성이 가능하므로 전기적인 특성을 향상시킬 수 있다.
다만, 나노 크기의 구리 분말의 경우에는 상술한 바와 같이, 구리는 공기 중에서 산화가 잘된다는 특성이 있어 작은 입자 크기를 지닌다면 큰 표면적으로 인해 더욱 쉽게 산화 된다는 단점이 있으며, 이로 인해 순수한 구리에 비하여 비교적 높은 전기적 저항값을 지니게 되고 구리 배선은 구리 특유의 좋은 특성을 유지하기 어렵게 된다는 문제점이 있다. 또한, 잉크 제조시 금속 입자의 크기가 나노 크기로 줄어들 경우 입자들 표면에서 일어나는 강한 응집력으로 인해 잉크의 분산성을 확보하는데 많은 문제점이 있다.
금속 분말 잉크 관련 종래 기술로는 한국 공개특허 10-2011-0064153, 한국 공개특허 10-2012-0036476, 미국 공개특허 2010/038300 등에서와 같이 질산은이나 금속염 또는 황산구리와 같은 금속 화합물을 수용액 또는 유기용매 상에서 다른 첨가제와 반응시켜 미세입자를 형성시켜 금속 분말 잉크로 사용하고 있다. 그러나, 이러한 방법들은 제조비용이 높고, 공정이 복잡하고 앞서 설명한 바와 같이 금속 분말을 이용함으로써 잉크내의 입자들의 분산 안정성이 떨어지거나 열처리 온도가 높아 다양한 기판에 사용하기에는 많은 문제점이 있다.
따라서, 본 발명이 해결하고자 하는 과제는 상기와 같은 문제점을 해결하기 위한 것으로서, 산화안정성 및 분산성이 우수한 전도성 금속 잉크 조성물을 제공하는 것이다.
또한, 실온에서 용액법을 이용하여 산화안정성이 우수하며, 잉크 내에 입자 및 기타 불순물들이 존재하지 않아 별도의 분산 안정성을 확보할 필요가 없는 고전도성의 금속 이온 잉크를 제조하는 방법을 제공하는 것이다.
또한, 본 발명은 상기 방법에 따라 제조된 고전도성 금속 이온 잉크를 이용하여 기판에 인쇄 후 열처리하여 우수한 전기전도성을 갖는 금속 패턴 또는 막을 형성하는 방법을 제공하는 것이다.
본 발명은 상기 과제를 해결하기 위하여,
전도성 금속 전구체; 금속이온 발생제 및 용매를 포함하는 전도성 금속 이온 잉크 조성물로서,
상기 금속 전구체는 하기 [화학식 1]로 표시되는 것이고,
상기 용매는 증류수, 아세톤, 에탄올, 메탄올, 2-메톡시에톡시에탄올, 이소프로판올, 부탄올, 디에탄올아민(DEA), 트리에탄올아민(TEA), 에틸렌글리콜(EG), 디에틸렌글리콜(DEG), 톨루엔, N-메틸-2-피롤리돈 및 이들의 혼합물 중에서 선택되며,
상기 금속이온 발생제는 암모니아수(NH4OH), 포름산(HCOOH), 시트르산(C6H8O7), 말산(C4H6O6), 하이드라진(N2H4H2O), 소듐보로하이드라이드(H4BNa), 쇼듐크롤라이드(NaCl), 쇼듐하이드록사이드(NaOH), 소듐포스피네이트모노하이드레이트(SPM), 암모늄크롤라이드(NH4OH), 포타슘브로마이드(KBr), 세틸트리메틸암모늄브로마이드(CTBA) 및 이들의 혼합물 중에서 선택되는 것을 특징으로 하는 전도성 금속 이온 잉크 조성물을 제공한다.
[화학식 1]
M(X)n
상기 [화학식 1]에서,
상기 M은 Ag, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu 및 Ac 중에서 선택되는 금속이고,
상기 X는 아세테이트, 나이트레이트, 나이트라이트, 클로라이드, 설페이트, 하이드록사이드 및 이들의 조합 중에서 선택되며,
상기 n은 상기 M의 원자가에 따라서 결정된다.
본 발명의 일 실시예에 의하면, 상기 전도성 금속 이온 잉크 조성물은 상기 금속 전구체로부터 유도된 금속 이온을 전도성 금속 이온 잉크 조성물 100 중량부 기준 15-25 중량부로 포함할 수 있다.
또한, 본 발명은 상기 과제를 해결하기 위하여,
(a) 금속 전구체 및 암모니아수를 증류수에 분산시킨 후, 교반하여 제1 혼합용액을 제조하는 단계;
(b) 상기 혼합용액에 포름산 및 시트르산을 더 첨가한 후, 교반시켜 제2 혼합용액을 제조하는 단계;
(c) 상기 제2 혼합용액에 2-메톡시에톡시에탄올를 혼합하는 단계;를 포함하는 전도성 금속 이온 잉크 조성물의 제조방법을 제공한다.
또한, 본 발명은 상기 과제를 해결하기 위하여,
상기 전도성 금속 이온 잉크 조성물을 기판에 코팅하여 전도성 패턴 또는 막을 형성하는 단계; 및
(b) 상기 전도성 막을 광소결하는 단계;를 포함하는 전도성 패턴 또는 막의 형성방법을 제공한다.
본 발명의 일 실시예에 의하면, 상기 (b) 단계는 광소성 장치(Intense Pulsed Light, IPL)를 이용하여 광소결할 수 있고,
상기 광소성 장치는 백색광 단펄스를 이용하는 것으로서, 상기 백색광 단펄스는 1-10 ms의 펄스 지속 시간, 1-50 ms의 펄스 휴지 시간, 1-100 개의 펄스 수 및 1-80 J/㎠의 펄스 에너지를 갖는 것을 특징으로 한다.
본 발명에 따른 금속 잉크 조성물은 산화안정성 및 분산성이 우수하여 미세하고 균일한 전도성 패턴 또는 막을 고밀도로 형성할 수 있음과 동시에 높은 전기전도도를 구현할 수 있다. 또한, 실온에서 용액법을 이용하여 잉크 조성물을 제조하고, 인쇄공정을 이용하여 전도성 패턴 또는 막을 형성하므로 전도성 잉크 조성물의 제조공정 효율이 및 패턴 형성공정 효율이 우수하고, 전도성 막의 대면적화와 연속공정에 의한 형성이 가능하다. 또한, 형성된 전도성 패턴 또는 막은 광소성 장치를 이용한 열처리 공정에 의해서 전기적 특성이 더욱 향상된다.
도 1은 본 발명에 따른 실시예 1에 의해서 제조된 구리 전도성 막의 이미지로서, 도 1a는 롤러 볼펜으로 코팅 후 열처리 전의 이미지이고, 도 1b는 롤러 볼펜으로 코팅 후 열처리 한 경우의 이미지이며, 도 1c는 스핀 코팅후 본 발명에 따라 광소성장치(IPL)를 이용하여 열처리한 경우의 이미지이고, 도 1d는 잉크젯 프린팅하여 제조된 구리 전도 패턴 이미지이다.
도 2는 본 발명에 따른 실시예 1에 의해서 제조된 구리 전도성 막의 XRD 그래프이다.
도 3은 비교예 1에 의해서 제조된 구리 전도성 막의 XRD 그래프이다.
도 4은 비교예 2에 의해서 제조된 구리 전도성 막의 XRD 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 발명의 일 측면은 기판에 인쇄 기술을 이용하여 배선을 형성할 수 있는 전도성 잉크 조성물에 관한 것으로서, 전도성 금속 전구체, 금속이온 발생제 및 용매를 포함하는 것을 특징으로 한다.
상기 금속 전구체는 하기 [화학식 1]로 표시되는 것으로서 Ag, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu, Ac 등의 금속염일 수 있다.
[화학식 1]
M(X)n
상기 [화학식 1]에서,
상기 M은 Ag, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu 및 Ac 중에서 선택되는 금속이고,
상기 X는 아세테이트, 나이트레이트, 나이트라이트, 클로라이드, 설페이트, 하이드록사이드 및 이들의 조합 중에서 선택되며,
상기 n은 상기 M의 원자가에 따라서 결정된다.
상기 금속 전구체를 용해시킬 용매로 증류수, 아세톤, 에탄올, 메탄올, 2-메톡시에톡시에탄올, 이소프로판올, 부탄올, 디에탄올아민(DEA), 트리에탄올아민(TEA), 에틸렌글리콜(EG), 디에틸렌글리콜(DEG), 톨루엔, N-메틸-2-피롤리돈 또는 이들의 혼합물을 사용한다
또한, 상기 금속이온 발생제로는 암모니아수(NH4OH), 포름산(HCOOH), 시트르산(C6H8O7), 말산(C4H6O6), 하이드라진(N2H4H2O), 소듐보로하이드라이드(H4BNa), 쇼듐크롤라이드(NaCl), 쇼듐하이드록사이드(NaOH), 소듐포스피네이트모노하이드레이트(SPM), 암모늄크롤라이드(NH4OH), 포타슘브로마이드(KBr), 세틸트리메틸암모늄브로마이드(CTBA) 또는 이들의 혼합물을 사용한다.
본 발명의 다른 측면은 전도성 금속 잉크 조성물의 제조방법에 관한 것으로서, 하기의 단계를 포함하는 것을 특징으로 한다.
(a) 금속 전구체 및 암모니아수를 증류수에 분산시킨 후, 교반하여 제1 혼합용액을 제조하는 단계,
(b) 상기 제1 혼합용액에 포름산과 시트르산을 더 첨가한 후, 교반시켜 제2 혼합용액을 제조하는 단계,
(c) 상기 제2 혼합용액에 2-메톡시에톡시에탄올을 혼합하는 단계.
즉, 본 발명에 따른 전도성 금속 잉크 조성물은 먼저, 금속 전구체와 암모니아수를 증류수에 분산시켜 교반하여 제1 혼합용액을 제조하면서 금속이온의 발생을 확인한 후, 포름산과 시트르산을 더 추가하여 금속이온을 완전히 발생시키고, 여기에 혼합용액 내에 발생된 금속이온의 농도가 15-25 %가 되도록 2-메톡시에톡시에탄올를 추가한다.
전도성 금속 이온 잉크는 인쇄 공정에 의해서 기판에 충분히 코팅 및 패터닝이 가능한 점도와 표면장력과 용매 증발에 따른 커플링 현상이 없어야 하므로 이를 위하여 제1 혼합용액에 2-메톡시에톡시에탄올을 추가 첨가하여 최종 금속 이온 잉크 조성물을 제조한다.
이 때, 암모니아수는 증류수 100 중량부 기준 70-80 중량부이고, 포름산과 시트르산의 혼합 중량은 증류수 100 중량부 기준 60-65 중량부일 때, 금속이온이 완전히 이온화가 일어나서 잉크 내에서 안정하게 분산되고, 더 이상 혼합용액 내에서 금속 전구체가 석출되지 않아 순수한 금속 이온만이 포함된 금속 잉크 조성물의 제조가 가능하다.
또한, 상기 제조방법에서 용매에 균일한 분산을 위하여 초음파 분산을 실시하고, 파워가 300-500 W인 초음파 분산기에서 1-10분 동안 분산시킨다.
본 발명의 또 다른 측면은 상기 금속 잉크 조성물을 이용하여 기판에 전도성 패턴 또는 막을 형성하는 방법에 관한 것으로서, 하기 단계를 포함하는 것을 특징으로 한다.
(a) 금속 잉크 조성물을 기판에 코팅하여 전도성 패턴 또는 막을 형성하는 단계,
(b) 상기 전도성 막을 광소결하는 단계.
상기 기판은 인쇄공정을 통하여 용이하게 박막이나 패턴 형성이 가능하도록 금속 이온 잉크에 대해서 우수한 반응성을 갖는 기판으로서, 금속, 유리, 실리콘, 세라믹, 플라스틱, 종이, 섬유 등 다양한 재질로 이루어진 것을 사용한다.
또한, 상기 전도성 잉크 조성물의 코팅은 스핀코팅, 롤투롤 코팅, 잉크젯 프린팅 및 스프레이 코팅 중에서 선택되는 방법으로 이루어지거나, 스크린 프린팅, 플렉소 프린팅 그라비아 프린팅, 옵셋 프린팅 그라비아 옵셋 프린팅, 리버스 그라비아 옵셋 프린팅, 슬롯다이 프린팅, 롤러볼펜 프린팅 및 임프린트 중에서 선택되는 방법에 의해서 이루어질 수 있다.
상기 (a) 단계에 의해서 코팅된 전도성 매턴 또는 막은 건조과정을 거치며, 건조 후에는 열 또는 광을 이용하여 패턴의 전도도, 기판과의 접착력 등의 박막 특성을 향상시키는 과정을 거치는 데, 본 발명에서는 상기 (b) 단계에서와 같이, 광소성 장치(Intense Pulsed Light, IPL)를 이용하여 광소결하는 것을 특징으로 하고, 열에 의한 후처리 대신 광소결로 후처리함에 따라서 본 발명에 따른 전도성 패턴 또는 막의 전기적 특성이 현저히 우수해진다. 또한, 광소결을 이용하므로 기판에 영향을 미치지 않고 소결 시간을 최대 수 ms 정도의 단시간으로 줄일 수 있어서 전도성 막의 특성은 열에 의한 소결보다 더욱 우수해진다.
상기 광소성 장치는 백색광 단펄스를 이용하고, 상기 백색광 단펄스는 1-10 ms의 펄스 지속 시간, 1-50 ms의 펄스 휴지 시간, 1-100 개의 펄스 수 및 1-80 J/㎠의 펄스 에너지를 갖는 것을 특징으로 한다.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않고, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
<실시예>
실시예 1.
(1) 실온에서 DI water 40 mL를 넣고 수산화구리(Copper(Ⅱ) hydroxide)를 20 g, 암모니아수(NH4OH) 30 g을 첨가한 후 30 분간 교반시켰다. 암모니아수가 첨가되기 전에는 구리이온이 발생되지 않으나 암모니아수가 첨가됨에 따라 천천히 구리 이온의 색인 푸른색을 띄었다.
상기 용액에 포름산 20 g, 구연산 5 g을 천천히 첨가하여 30 분간 교반 후에는 구리 이온이 완전히 용해되에 진한 푸른색을 띄었다. 이와 같이 제조된 구리이온을 2-메톡시에톡시에탄올 5 g을 첨가하여, 약 20% 농도의 구리이온 잉크 조성물을 제조하였다.
(2) 이후 볼펜(rollerball pen)에 잉크를 주입하여 글을 쓰는 방법, 스핀코팅을 이용해 구리 전도성 막을 형성하는 방법, 또는 잉크젯 프린팅을 이용하여 패턴을 형성하였고, 이후 IPL 펄스광을 이용하여 전도성 막을 소결하였다. 이때 펄스의 펄스 지속 시간은 2 ms이며, 펄스 휴지 시간은 30 ms이며, 펄스 수는 70개이고, 펄스 에너지는 39.5 J/㎠이고, 전압은 310 V이었다.
하기 도 1은 실시예 1의 방법에 의해서 볼펜으로 문자화한 구리 전도성 막의 IPL 처리 전(a), 후(b)의 사진이며, 이의 XRD를 분석한 결과, 하기 도 2에 나타난 바와 같이 순수한 구리 전도막으로만 존재하는 것을 확인할 수 있다. 또한, (c)는 스핀 코팅한 구리 전도막 사진이며, (d)는 잉크젯 프린팅하여 제조된 구리 전도 패턴 사진이다.
비교예 1.
실온에서 DI water 40 mL를 넣고 수산화구리(Copper(Ⅱ) hydroxide)를 20 g, 암모니아수(NH4OH) 5 g을 첨가 후 30 분간 교반시켰다. 상기 암모니아수 용액의 함량을 제외하고는 상기 실시예 1과 동일한 방법으로 구리 이온 잉크를 제조하고, 상기 실시예 1과 동일한 방법으로 구리 전도성 막을 형성하였다.
비교예 1에 따르면 완전한 이온화가 일어나지 않아 수산화구리가 석출되는 것을 확인할 수 있다.
하기 도 3은 비교예 1의 방법에 의해 제조 된 구리 전도성 막의 XRD 그래프로 구리 패턴에 일부 산화된 Cu2O 피크가 나타난다.
비교예 2.
실온에서 DI water 40 mL를 넣고 수산화구리(Copper(Ⅱ) hydroxide)를 20 g, 암모니아수(NH4OH) 30 g을 첨가 후 30 분간 교반시켯다. 상기 용액에 포름산 10 g, 시트르산 1 g을 천천히 첨가하였다. 상기 포름산 및 구연산 용액의 함량을 제외하고는 상기 실시예 1과 동일한 방법으로 구리 이온 잉크를 제조하고, 상기 실시예 1과 동일한 방법으로 구리 전도성 막을 형성하였다.
비교예 2 역시 상기 비교예 1과 같이 완전한 이온화가 일어나지 않아 수산화구리가 석출되는 것을 확인할 수 있다.
하기 도 4는 비교예 2의 방법에 의해 제조된 구리 전도성 막의 XRD 그래프로 역시 소량의 Cu2O 피크가 나타난다.
비교예 3.
상기 실시예 1에서, IPL을 이용한 광소결 대신 기존의 열처리 방법을 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 구리 전도막을 형성하였다. 상기 열처리 방법은 핫플레이트 및 열처리 오븐을 이용하여 100 ℃ 이상의 온도에서 20 분간 열처리하는 방법을 이용했다.
하기 [표 1]은 상기 실시예 1 내지 실시예 4에 의해서 제조된 구리 전도성 막의 전기적인 특성(저항)을 비교하여 나타내었다.
표 1
Figure PCTKR2012007289-appb-T000001
상기 [표 1]에서 알 수 있듯이, 본 발명의 실시예 1에 따른 구리 이온잉크의 특성이 비교예 2 내지 4보다 월등히 우수하다는 것을 알 수 있다.
이와 같이, 본 발명에 따르면 높은 전도성의 금속 이온 잉크와 이를 이용한 고전도성 막을 상온에서 간편히 제조할 수 있어서 가공성이 우수하다. 또한, 금속 분말 입자가 존재하지 않기 때문에 잉크 내의 분산성을 고려하지 않아도 됨으로써 잉크의 보존 안정성을 크게 높일 수 있다. 또한, 본 발명은 이러한 금속 이온 잉크를 이용하고, 인쇄 방식을 적용할 경우 대면적화가 용이하며, 연속공정에 의한 제조가 용이하여 배선 형성에 폭넓게 활용할 수 있다. 무선전자태그(RFID), 초소형전자기계 기술(MEMS), 디스플레이, 박막트렌지스트, PCB 등 다양한 분야에 활용할 수 있다.

Claims (8)

  1. 전도성 금속 전구체; 금속이온 발생제 및 용매를 포함하는 전도성 금속 이온 잉크 조성물로서,
    상기 금속 전구체는 하기 [화학식 1]로 표시되는 것이고,
    상기 용매는 증류수, 아세톤, 에탄올, 메탄올, 2-메톡시에톡시에탄올, 이소프로판올, 부탄올, 디에탄올아민(DEA), 트리에탄올아민(TEA), 에틸렌글리콜(EG), 디에틸렌글리콜(DEG), 톨루엔, N-메틸-2-피롤리돈 및 이들의 혼합물 중에서 선택되며,
    상기 금속이온 발생제는 암모니아수(NH4OH), 포름산(HCOOH), 시트르산(C6H8O7), 말산(C4H6O6), 하이드라진(N2H4H2O), 소듐보로하이드라이드(H4BNa), 쇼듐크롤라이드(NaCl), 쇼듐하이드록사이드(NaOH), 소듐포스피네이트모노하이드레이트(SPM), 암모늄크롤라이드(NH4OH), 포타슘브로마이드(KBr), 세틸트리메틸암모늄브로마이드(CTBA) 및 이들의 혼합물 중에서 선택되는 것을 특징으로 하는 전도성 금속 이온 잉크 조성물.
    [화학식 1]
    M(X)n
    상기 [화학식 1]에서,
    상기 M은 Ag, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu 및 Ac 중에서 선택되는 금속이고,
    상기 X는 아세테이트, 나이트레이트, 나이트라이트, 클로라이드, 설페이트, 하이드록사이드 및 이들의 조합 중에서 선택되며,
    상기 n은 상기 M의 원자가에 따라서 결정된다.
  2. 제 1 항에 있어서,
    상기 전도성 금속 이온 잉크 조성물은 상기 금속 전구체로부터 유도된 금속 이온을 전도성 금속 이온 잉크 조성물 100 중량부 기준 15-25 중량부로 포함하는 것을 특징으로 하는 전도성 금속 이온 잉크 조성물.
  3. (a) 금속 전구체 및 암모니아수를 증류수에 분산시킨 후, 교반하여 제1 혼합용액을 제조하는 단계;
    (b) 상기 혼합용액에 포름산 및 구연산을 더 첨가한 후, 교반시켜 제2 혼합용액을 제조하는 단계;
    (c) 상기 제2 혼합용액에 2-메톡시에톡시에탄올를 혼합하는 단계;를 포함하고,
    상기 금속 전구체는 하기 [화학식 1]로 표시되는 것을 특징으로 하는 전도성 금속 이온 잉크 조성물의 제조방법.
    [화학식 1]
    M(X)n
    상기 [화학식 1]에서,
    상기 M은 Ag, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu 및 Ac 중에서 선택되는 금속이고,
    상기 X는 아세테이트, 나이트레이트, 나이트라이트, 클로라이드, 설페이트, 하이드록사이드 및 이들의 조합 중에서 선택되며,
    상기 n은 상기 M의 원자가에 따라서 결정된다.
  4. 제 3 항에 있어서,
    상기 전도성 금속 이온 잉크는 상기 금속 전구체로부터 유도된 금속 이온을 전도성 금속 이온 잉크 100 중량부 기준 15-25 중량부로 포함하는 것을 특징으로 하는 전도성 금속 이온 잉크 조성물의 제조방법.
  5. (a) 제 1 항 내지 제 2 항 중 어느 한 항에 따른 전도성 금속 이온 잉크 조성물을 기판에 코팅하여 전도성 패턴 또는 막을 형성하는 단계; 및
    (b) 상기 전도성 막을 광소결하는 단계;를 포함하는 전도성 패턴 또는 막의 형성방법.
  6. 제 5 항에 있어서,
    상기 (a) 단계의 코팅은 스핀코팅, 롤투롤 코팅 및 스프레이 코팅 중에서 선택되는 방법;으로 이루어지거나,
    잉크젯 프린팅, 스크린 프린팅, 플렉소 프린팅 그라비아 프린팅, 옵셋 프린팅 그라비아 옵셋 프린팅, 리버스 그라비아 옵셋 프린팅, 슬롯다이 프린팅, 롤러볼펜 프린팅 및 임프린트 중에서 선택되는 방법;에 의해서 이루어지는 것을 특징으로 하는 전도성 패턴 또는 막의 형성방법.
  7. 제 5 항에 있어서,
    상기 (b) 단계는 광소성 장치(Intense Pulsed Light, IPL)를 이용하여 광소결하는 것을 특징으로 하는 전도성 패턴 또는 막의 형성방법.
  8. 제 7 항에 있어서,
    상기 광소성 장치는 백색광 단펄스를 이용하고, 상기 백색광 단펄스는 1-10 ms의 펄스 지속 시간, 1-50 ms의 펄스 휴지 시간, 1-100 개의 펄스 수 및 1-80 J/㎠의 펄스 에너지를 갖는 것을 특징으로 하는 전도성 패턴 또는 막의 형성방법.
PCT/KR2012/007289 2012-08-27 2012-09-11 전도성 이온 잉크 조성물, 그 제조방법 및 이를 이용한 고전도성 패턴 또는 막의 형성방법 WO2014034996A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120093800A KR101401571B1 (ko) 2012-08-27 2012-08-27 전도성 이온 잉크 조성물, 그 제조방법 및 이를 이용한 고전도성 패턴 또는 막의 형성방법
KR10-2012-0093800 2012-08-27

Publications (1)

Publication Number Publication Date
WO2014034996A1 true WO2014034996A1 (ko) 2014-03-06

Family

ID=50183786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007289 WO2014034996A1 (ko) 2012-08-27 2012-09-11 전도성 이온 잉크 조성물, 그 제조방법 및 이를 이용한 고전도성 패턴 또는 막의 형성방법

Country Status (2)

Country Link
KR (1) KR101401571B1 (ko)
WO (1) WO2014034996A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016033519A1 (en) * 2014-08-29 2016-03-03 University Of Louisville Research Foundation, Inc. Core-shell nanostructures and related inks, films, and methods
CN105567012A (zh) * 2016-03-14 2016-05-11 宁波江东索雷斯电子科技有限公司 一种稳定光固化导电油墨的制备方法
WO2019025970A1 (en) * 2017-08-01 2019-02-07 National Research Council Of Canada COPPER INK

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637884B1 (ko) * 2014-06-10 2016-07-08 한국과학기술연구원 금속 나노선을 포함하는 전도성 잉크 조성물 및 이를 이용한 전도성 패턴 또는 막의 제조방법
KR101785350B1 (ko) * 2014-07-18 2017-10-17 한국화학연구원 광소결을 이용한 전도성 금속박막의 제조방법
KR101672734B1 (ko) * 2015-01-30 2016-11-08 한국기계연구원 롤투롤 ir-ipl 열처리 장치를 구비하는 인쇄 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080073420A (ko) * 2007-02-06 2008-08-11 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
KR20100088483A (ko) * 2009-01-30 2010-08-09 삼성전자주식회사 전도성 금속이온 잉크 조성물 및 이의 제조방법
KR20120029119A (ko) * 2010-09-16 2012-03-26 주식회사 상보 터치패널용 투명도전막 및 그 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100080120A (ko) * 2008-12-31 2010-07-08 한국생산기술연구원 인쇄회로 소결방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080073420A (ko) * 2007-02-06 2008-08-11 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
KR20100088483A (ko) * 2009-01-30 2010-08-09 삼성전자주식회사 전도성 금속이온 잉크 조성물 및 이의 제조방법
KR20120029119A (ko) * 2010-09-16 2012-03-26 주식회사 상보 터치패널용 투명도전막 및 그 제조방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016033519A1 (en) * 2014-08-29 2016-03-03 University Of Louisville Research Foundation, Inc. Core-shell nanostructures and related inks, films, and methods
US20170253758A1 (en) * 2014-08-29 2017-09-07 University Of Louisville Research Foundation, Inc. Core-shell nanostructures and related inks, films and methods
US10563080B2 (en) 2014-08-29 2020-02-18 University Of Louisville Research Foundation, Inc. Core-shell nanostructures and related inks, films and methods
CN105567012A (zh) * 2016-03-14 2016-05-11 宁波江东索雷斯电子科技有限公司 一种稳定光固化导电油墨的制备方法
WO2019025970A1 (en) * 2017-08-01 2019-02-07 National Research Council Of Canada COPPER INK
US11505712B2 (en) 2017-08-01 2022-11-22 National Research Council Of Canada Copper ink

Also Published As

Publication number Publication date
KR20140028208A (ko) 2014-03-10
KR101401571B1 (ko) 2014-06-05

Similar Documents

Publication Publication Date Title
WO2014034996A1 (ko) 전도성 이온 잉크 조성물, 그 제조방법 및 이를 이용한 고전도성 패턴 또는 막의 형성방법
CN104946022B (zh) 一种高稳定性无颗粒型银基导电墨水及其制备方法
WO2012026791A2 (ko) 전도성 금속 잉크 조성물 및 전도성 패턴의 형성방법
CN102321402A (zh) 一种无颗粒型透明导电墨水及其制备方法
WO2017026722A1 (ko) 고온 소결형 도전성 페이스트용 은 분말의 제조방법
WO2018080092A1 (ko) 은 분말 및 이의 제조방법
WO2015178696A1 (ko) 전도성 조성물
KR20140044743A (ko) 전도성 하이브리드 구리잉크 및 이를 이용한 광소결 방법
JP2010504612A (ja) 導電膜形成のための銀ペースト
US20060251818A1 (en) Method for forming transparent conductive film and transparent electrode
JP2009527076A (ja) 導電線パターン形成のための銀オルガノゾルインク
TW201341087A (zh) 銀微粒子及其製造法與含有該銀微粒子之導電性糊劑、導電性膜及電子裝置
CN104341860A (zh) 纳米导电墨水及其制备方法
JP5001944B2 (ja) 導電線パターン形成のための銀オルガノゾルインク
JP2009170907A (ja) 不安定化剤を用いて金属ナノ粒子から安定剤を除去する方法
WO2014073771A1 (ko) 코어-쉘 구조를 갖는 나노와이어의 제조방법
WO2018199644A1 (ko) 3d 프린팅용 은 잉크 및 이를 이용한 3d 프린팅 방법
WO2019031706A1 (ko) 광 흡수 계수가 우수한 전도성 mod 잉크 조성물 및 이를 이용한 금속 박막 형성방법
WO2015009090A1 (ko) 투명 도전성 박막 형성용 코어-쉘 나노 입자, 및 이를 사용한 투명 도전성 박막의 제조 방법
WO2016159609A1 (ko) 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극
WO2022059991A1 (ko) 금속나노입자의 제조방법 및 장치
WO2020067601A1 (ko) 도금용 촉매 잉크 및 이를 이용한 무전해 도금 방법
WO2014069698A1 (ko) 내산화성 구리 나노 입자의 제조방법 및 내산화성 구리 나노 입자
WO2013141172A1 (ja) 導電インクおよび導体付き基材の製造方法
WO2010032937A2 (ko) 전도성 금속 전극 형성용 잉크조성물 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883467

Country of ref document: EP

Kind code of ref document: A1