WO2018080092A1 - 은 분말 및 이의 제조방법 - Google Patents

은 분말 및 이의 제조방법 Download PDF

Info

Publication number
WO2018080092A1
WO2018080092A1 PCT/KR2017/011508 KR2017011508W WO2018080092A1 WO 2018080092 A1 WO2018080092 A1 WO 2018080092A1 KR 2017011508 W KR2017011508 W KR 2017011508W WO 2018080092 A1 WO2018080092 A1 WO 2018080092A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver powder
silver
reaction solution
acid
powder
Prior art date
Application number
PCT/KR2017/011508
Other languages
English (en)
French (fr)
Inventor
최재원
강태훈
이미영
이창근
진우민
권태현
Original Assignee
엘에스니꼬동제련 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스니꼬동제련 주식회사 filed Critical 엘에스니꼬동제련 주식회사
Publication of WO2018080092A1 publication Critical patent/WO2018080092A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer

Definitions

  • the present invention relates to a silver powder and a method of manufacturing the same, and more particularly, to a silver paste for a conductive paste for forming an electrode from an electronic component such as a solar cell electrode, an internal electrode of a multilayer capacitor, a conductor pattern of a circuit board, and a manufacturing method thereof.
  • the conductive metal paste is a paste in which electricity flows in a dried coating film having a coating property capable of forming a coating film, and the organic component is volatilized by a resin hardening type that secures conduction by squeezing the conductive filler by curing the resin and ensuring high conduction.
  • a conductive filler is sintered to secure conduction.
  • the sintered conductive paste is generally a fluid composition in which a conductive filler (metal filler) is dispersed in a vehicle composed of a resin binder and a solvent, and is widely used for forming an electric circuit or forming an external electrode of a ceramic capacitor.
  • silver powder In general, well-dispersed silver powder of uniform size among metal powders is highly conductive, chemically stable, and inexpensive, and thus is used as an important material for various electronic industries as conductive inks, pastes, and adhesives.
  • Silver powder is divided into spherical, flake and agglomerated according to its shape, and silver powder of a suitable form is applied according to the application field.
  • Fine conductive metal powder is used as the conductive filler, and the organic material is easily formed by capping the powder inside the powder during the wet reduction method, which has a density lower than the theoretical density of the metal and remains during sintering. Due to the xanthan, there is a problem that the electrical conductivity of the coating film prepared using the conductive paste is also lowered.
  • the line width of the electrode should be reduced because the front electrode of the solar cell should minimize the loss due to light absorption or reflection due to the metal electrode Since the height of the electrode needs to be increased for resistance, it greatly affects the electrode line width and the electrical conductivity formed according to the shrinkage property of the metal powder included in the paste.
  • Prior patent document (Korean Patent Publication No. 10-2014-7025084) produces a spherical silver powder having pores closed inside the particles by generating cavitation using ultrasonic waves, and having the same particle size as the conventional silver powder.
  • a method for producing silver powders that are calcinable at lower temperatures is disclosed.
  • the shrinkage rate during sintering in the electrode forming process may be advantageous to form a fine pattern, but the amount of organic matter remaining in the pores in the silver powder manufacturing process increases, resulting in a final increase.
  • the electrical conductivity is lowered in the application used as, because the ultrasonic equipment must be introduced separately in order to form a void inside the silver powder, there is a problem that the manufacturing cost increases, the process is complicated.
  • the present invention does not introduce a separate equipment and process, and does not form pores, and thus provides a method of preparing silver powder having a high shrinkage rate during sintering even though the organic content is low.
  • the present invention is a silver powder suitable for use in a high-temperature sintered conductive paste of 600 °C or more, to provide a silver powder excellent in the resistivity characteristics showing a high shrinkage rate shrinkage occurs when sintering is started at a low temperature and a method for producing the same.
  • the present invention provides a reaction solution preparation step (S21) for preparing a first reaction solution containing silver ions, ammonia, and an organic acid alkali metal salt and a second reaction solution including a reducing agent, and reacting the first reaction solution and the second reaction solution. It provides a silver powder manufacturing method comprising a; silver salt reduction step (S2) comprising a precipitation step (S22) to obtain a silver powder.
  • the organic acid alkali metal salt is acetic acid (CH 3 COOH), formic acid (CH 2 O 2 ), oxalic acid (C 2 H 2 O 4 ), lactic acid (C 3 H 6 O 3 ), citric acid (C 6 H 8 O 7 ) , Fumaric acid (C 4 H 4 O 4 ), citric acid (C 6 H 8 O 7 ), butyric acid (C 4 H 8 O 2 ), propionic acid (CH 3 CH 2 COOH) and uric acid (C 5 H 4 N 4 O 3 ) any one or more organic acids selected from the group consisting of one or more selected from the group consisting of lithium (Li), sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) It is characterized by including what the metal formed the salt.
  • the organic acid alkali metal salt is added in an amount of 5 to 30 g based on 80 mL of silver nitrate (AgNO 3 ) of 500 g / L containing silver ions. .
  • reaction solution production step (S21) by adjusting the amount of ammonia added in the reaction solution production step (S21) it is characterized in that the pH of the first reaction solution to be adjusted to 8 to 11.
  • the present invention is a silver powder having an average particle size (D50) of 0.1 to 10 ⁇ m, the sintering start temperature is 300 to 450 °C at 50 °C / min, 800 °C elevated conditions, characterized in that the shrinkage is 20 to 30% Gives a powder.
  • D50 average particle size
  • the silver powder is characterized in that the shrinkage rate in the range of 400 °C to 600 °C within 3 °C to 5% / min, 50 °C / min, 800 °C temperature conditions.
  • the specific resistance of the conductive film formed by using the conductive paste containing the silver powder is characterized in that 3.5 ⁇ 10 -6 mm or less.
  • Silver powder having an average particle size (D50) has a particle size of about the same as the spherical silver powder produced by the conventional wet reduction method by adding an organic acid alkali metal salt in the production method, 50
  • the sintering start temperature is 300 to 450 °C
  • the shrinkage rate is 20 to 30% It can be prepared, using a paste containing the silver powder can be produced a silver powder exhibiting a characteristic that the specific resistance of the conductive film fired to 750 °C in the simulation equipment with a belt of 3.5 ⁇ 10 -6 ⁇ m or less.
  • Method for producing a silver powder according to an embodiment of the present invention is a silver salt manufacturing step (S1); Silver salt reduction step (S2); Purification step such as filtration and washing (S3); And a surface treatment step (S4).
  • the production method of silver powder according to the present invention necessarily includes a silver salt reduction step (S2), other steps can be omitted.
  • Silver salt preparation step (S1) according to an embodiment of the present invention to prepare a silver salt solution containing silver ions (Ag +) by acid treatment of silver (Ag +) in the form of ingots, ribs, granules
  • the silver salt solution may be prepared by directly preparing a silver salt solution through this step, but commercially available silver nitrate may proceed to a later step using a silver salt complex or a silver intermediate solution.
  • Silver salt reduction step according to an embodiment of the present invention is a step of depositing silver particles by reducing the silver ions by adding a reducing agent and ammonia to the silver salt solution, silver ions, ammonia and organic acid alkali
  • the organic acid alkali metal salt is added to the silver salt solution containing silver ions, and the pH is adjusted with ammonia to prepare a first reaction solution.
  • the silver ions are not limited as long as they are in the form of silver cations.
  • it may be silver nitrate (AgNO 3 ), a silver salt complex or a silver intermediate.
  • AgNO 3 silver nitrate
  • AgNO 3 silver nitrate
  • the organic acid alkali metal salt may be acetic acid (CH 3 COOH), formic acid (CH 2 O 2 ), oxalic acid (C 2 H 2 O 4 ), lactic acid (C 3 H 6 O 3 ), citric acid (C 6 H 8 O 7 ), Fumaric Acid (C 4 H 4 O 4 ), Citric Acid (C 6 H 8 O 7 ), Butyric Acid (C 4 H 8 O 2 ), Propionic Acid (CH 3 CH 2 COOH) and Uric Acid (C 5 H 4 N 4 O 3 Any one or more organic acids (short chain fatty acids) selected from the group consisting of) selected from the group consisting of lithium (Li), sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) The thing in which one or more types of metal formed the salt is mentioned.
  • at least one selected from the group consisting of potassium acetate (CH 3 COOK), potassium formate (HCOOK) and potassium oxalate (C 2 K 2 O 4 ) may be used.
  • the organic acid alkali metal salt is added in an amount of 5 to 30 g based on 80 mL of the 500 g / L silver nitrate (AgNO 3 ). Adding an organic acid alkali metal salt in the above range provides the effect of lowering the sintering start temperature and increasing the shrinkage rate. If the amount is less than 5g, the effect is insignificant, and if it is more than 30g, the effect is similar to that of the amount below.
  • Ammonia may be used in the form of an aqueous solution.
  • a 25% aqueous ammonia solution 70 to 350 mL is added to 80 mL of 500 g / L silver nitrate (AgNO 3 ).
  • AgNO 3 500 g / L silver nitrate
  • ammonia is added in excess of 350ml, the effect of reducing heat shrinkage is insignificant, and when ammonia is added below 70ml, there is a problem in that the size of the prepared silver powder is reduced and the shape is angled.
  • the ammonia includes its derivatives. By using ammonia, the pH condition at which reduction occurs in the precipitation step (S22) described later is adjusted to 8 to 11.
  • the first reaction solution containing silver ions, ammonia, and an organic acid alkali metal salt may be prepared in the form of a slurry by adding silver ions, ammonia, and an organic acid alkali metal salt to a solvent such as water, stirring, and dissolving the same. Can be.
  • Reaction liquid preparation step (S21) according to an embodiment of the present invention also prepares a second reaction liquid containing a reducing agent.
  • the reducing agent may be at least one selected from the group consisting of ascorbic acid, alkanolamine, hydroquinone, hydrazine and formalin, and among these, hydroquinone may be preferably selected.
  • the content of the reducing agent is preferably contained 10 to 30g with respect to 80mL of 500g / L silver nitrate (AgNO 3 ) contained in the first reaction solution. If less than 10g is used, all of the silver ions may not be reduced, and if more than 30g is used, the organic content may increase, which may be a problem.
  • the second reaction solution containing a reducing agent may be prepared in an aqueous solution state by adding a reducing agent to a solvent such as water and stirring the solution.
  • Precipitation step (S22) is a step of obtaining a silver powder by reacting the first reaction solution and the second reaction solution, stirring the first reaction solution prepared by the reaction solution preparation step (S21)
  • the second reaction liquid can be added slowly or collectively and reacted in the state where it is.
  • the batch reaction may be completed in a short time to collectively add the bulk to prevent aggregation of the particles and to improve dispersibility.
  • dispersant examples include fatty acids, fatty acid salts, surfactants, organometallics, chelate formers and protective colloids.
  • the remaining organic matter content may be increased, so it is desirable to control the particle size, the remaining organic matter content, and the crystallite diameter of the silver powder without adding the dispersant.
  • Purification step (S3) is a silver salt reduction step (S2) after completing the silver particle precipitation reaction to remove and wash the silver powder dispersed in an aqueous solution or slurry using filtration and the like Step S31 is included. More specifically, after the silver particles in the silver powder dispersion are precipitated, the supernatant of the dispersion is discarded and filtered using a centrifuge, and the filter medium is washed with pure water. The washing process must be done by completely removing the wash water from which the powder has been washed. Therefore, the water content is reduced to less than 10%. It is also possible to optionally add the aforementioned dispersants to the reaction complete solution prior to filtration to prevent aggregation of the silver powder.
  • the purification step (S3) may further comprise a drying and disintegration step (S34) after washing.
  • Surface treatment step (S4) is a step of hydrophobizing the hydrophilic surface of the silver powder, it may be made selectively. More specifically, after controlling the moisture content of the wet cake (wet cake) obtained after filtration to less than 10% can be added to the surface treatment agent for the surface treatment of the silver powder and the moisture content can be adjusted to 70% to 85%. Thereafter, silver powder can be obtained through drying and pulverization. When surface treatment of silver powder, the powder should be well dispersed, and the surface treatment is sufficient. If the water content is low, the dispersion efficiency is poor, so it is better to surface-treat a certain amount with water content.
  • the method for preparing silver powder according to the present invention is a method for producing silver powder having an average particle size (D50) of 0.1 to 10 ⁇ m, the same amount as that of the spherical silver powder prepared by the conventional wet reduction method by adding an organic acid alkali metal salt.
  • the sintering start temperature is 300 to 450 °C
  • the 1st reaction liquid was made to stir, the 2nd reaction liquid was added to this 1st reaction liquid collectively, and it stirred for 10 more minutes after completion
  • stirring was stopped the particles in the mixed solution were allowed to settle, the supernatant of the mixed solution was discarded, the mixed solution was filtered using a centrifugal separator, the media was washed with pure water, dried, and silver powder was obtained.
  • the 1st reaction liquid was made to stir, the 2nd reaction liquid was added to this 1st reaction liquid collectively, and it stirred for 10 more minutes after completion
  • stirring was stopped the particles in the mixed solution were allowed to settle, the supernatant of the mixed solution was discarded, the mixed solution was filtered using a centrifugal separator, the media was washed with pure water, dried, and silver powder was obtained.
  • the 1st reaction liquid was made to stir, the 2nd reaction liquid was added to this 1st reaction liquid collectively, and it stirred for 10 more minutes after completion
  • stirring was stopped the particles in the mixed solution were allowed to settle, the supernatant of the mixed solution was discarded, the mixed solution was filtered using a centrifugal separator, the media was washed with pure water, dried, and silver powder was obtained.
  • the 1st reaction liquid was made to stir, the 2nd reaction liquid was added to this 1st reaction liquid collectively, and it stirred for 10 more minutes after completion
  • stirring was stopped the particles in the mixed solution were allowed to settle, the supernatant of the mixed solution was discarded, the mixed solution was filtered using a centrifugal separator, the media was washed with pure water, dried, and silver powder was obtained.
  • the silver powders prepared according to the above Examples and Comparative Examples were measured using a scanning electron microscope manufactured by JEOL, and then averaged by measuring the diameter size of each of the 100 powders, and then measuring the SEM size ( ⁇ m).
  • Table 2 shows the SEM images taken in FIGS. 1 to 4. 1 shows the silver powder of Example 1, FIG. 2 shows the silver powder of Example 2, FIG. 3 shows the silver powder of Example 3, and FIG. 4 shows the SEM image of the silver powder of Comparative Example 1.
  • FIG. 1 shows the silver powder of Example 1
  • FIG. 2 shows the silver powder of Example 2
  • FIG. 3 shows the silver powder of Example 3
  • FIG. 4 shows the SEM image of the silver powder of Comparative Example 1.
  • FIG. 1 shows the silver powder of Example 1
  • FIG. 2 shows the silver powder of Example 2
  • FIG. 3 shows the silver powder of Example 3
  • FIG. 4 shows the SEM image of the silver powder of Comparative Example 1.
  • FIG. 1 shows the silver powder of Example 1
  • FIG. 2 shows the silver powder of Example 2
  • Powder X-ray diffraction was performed on the silver powders prepared according to the above Examples and Comparative Examples using an X-ray diffractometer X'pert manufactured by PANalytical, and the scherrer equation was obtained from the peak position and half width of the diffraction angle of the obtained [111] plane. It is shown in Table 2 by measuring the crystallite diameter ( ⁇ ) using.
  • TGA analysis was performed in air in a range from room temperature to 500 ° C. at an elevated temperature rate of 10 ° C./min to measure organic matter content. The results are shown in Table 2 below.
  • the prepared paste was printed on an alumina substrate and calcined to 750 ° C. using a simulation apparatus with a belt to obtain a conductive film.
  • the resistivity of the obtained conductive film was measured by a four probe method using a resistivity measuring instrument (Loresta-GX MCP-T700 from MITSUBISHI) and is shown in Table 2 below.
  • the silver powder prepared according to the present invention has the same particle size as the silver powder prepared according to the conventional method. It can be seen that it does not increase significantly (Example 1) or the residual organic matter content is low (Examples 2 and 3) when compared.
  • the sintering start temperature of the silver powder according to the present invention is lower than that of the comparative example, and exhibits a fast shrinkage rate at a temperature range of 400 to 600 ° C., so that the front surface of the solar cell using the conductive paste containing the silver powder according to the present invention.
  • the final shrinkage rate after firing is high and the firing density is high, so the electrical conductivity of the solar cell is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

본 발명은 은 이온, 암모니아 및 유기산 알칼리 금속염을 포함하는 제1 반응액 및 환원제를 포함하는 제2 반응액을 제조하는 반응액제조단계(S21) 및 제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 석출단계(S22)를 포함하는 은 염 환원단계(S2);를 포함하는 은 분말 제조방법에 관한 것으로, 알칼리 금속염을 이용함으로써 제조되는 은 분말의 소결 특성을 조절할 수 있다.

Description

은 분말 및 이의 제조방법
본 발명은 은 분말 및 그 제조방법에 관한 것으로서 특히 태양전지용 전극이나 적층 콘덴서의 내부전극, 회로 기판의 도체 패턴 등 전자 부품에서 전극을 형성시키기 위한 도전성 페이스트용 은 분말 및 그 제조 방법에 관한 것이다.
전도성 금속 페이스트는 도막 형성이 가능한 도포 적성을 갖고 건조된 도막에 전기가 흐르는 페이스트로서, 수지의 경화에 의해 도전성 필러가 압착되어 도통(導通)을 확보하는 수지경화형과 고온소결에 의해 유기 성분이 휘발하고 도전성 필러가 소결하여 도통을 확보하는 소결형이 있다. 이 중 소결형 도전성 페이스트는 일반적으로 수지계 바인더와 용매로 이루어지는 비히클 중에 도전성 필러(금속 필러)를 분산시킨 유동성 조성물이며, 전기 회로의 형성이나 세라믹 콘덴서의 외부 전극의 형성 등에 널리 사용되고 있다.
일반적으로 금속 분말 중에서 균일한 크기의 잘 분산된 은(Silver) 분말은 전도성이 높고, 화학적으로 안정하며, 가격이 저렴하여 전도성 잉크나 페이스트(Pastes) 그리고 접착제로서 여러 가지 전자 산업에 중요한 재료로서 활용될 수 있다. 은 분말은 형상에 따라 구형, 플레이크형, 응집형으로 나눠지며, 응용분야에 따라 적합한 형태의 은 분말을 적용하여 사용하고 있다.
도전성 필러로 미립의 금속 분말이 사용되는데 습식환원법을 이용하여 분말 제조시 분말 내부에 유기물이 캡핑(Capping)되어 형성되기 쉬운데, 이는 상기 금속의 이론 밀도보다 낮은 밀도를 갖게 되며, 소결 시 남게 되는 유기물 잔탄으로 인하여 도전성 페이스트를 이용하여 제조한 도막의 전기 전도도 역시 낮아지는 문제점이 있다.
한편, 금속 분말을 포함하는 페이스트를 이용하여 태양전지의 전극을 형성하는 경우, 태양전지의 전면 전극은 금속 전극으로 인한 빛 흡수나 반사로 인한 손실을 최소화해야 하기 때문에 전극의 선폭은 감소되어야 하며 전극 저항을 위하여 전극의 높이는 증가시켜야 하기 때문에, 페이스트에 포함되는 금속 분말의 소결 시 수축 특성에 따라 형성되는 전극 선폭 및 전기전도성에 큰 영향을 미치게 된다.
선행 특허문헌(한국 공개특허 제10-2014-7025084호)에는 초음파를 사용하여 캐비테이션을 발생시켜 입자 내부에 폐쇄된 공극을 갖는 구상의 은분을 제조하여 종래의 은 분말과 동일한 정도의 입경을 가지면서 보다 낮은 온도에서 소성 가능한 은 분말을 제조하는 방법을 개시하고 있다.
그러나 선행 기술의 경우 은 분말의 입자 내부에 공극을 포함하기 때문에 전극 형성 공정에 있어서 소결 시 수축률이 높아 미세 패턴 형성에는 유리할 수 있으나 은 분말 제조과정에서 공극에 잔존하게 되는 유기물의 함량이 증가하여 최종적으로 사용되는 어플리케이션 내에서 전기 전도성이 저하되는 문제점이 있으며, 은 분말 내부에 공극을 형성하기 위하여 별도로 초음파 장비를 도입해야 하기 때문에 제조 비용이 상승하고, 공정이 복잡해지는 문제점이 있다.
이에 본 발명을 통해 별도의 장비 및 공정을 도입하지 않으며, 기공을 형성하지 않아 유기물 함량이 낮으면서도 소결 시 수축률이 높은 은 분말의 제조방법을 제공하고자 한다.
본 발명은 600℃ 이상의 고온 소결형 도전성 페이스트에 사용되기 적합한 은 분말로써, 낮은 온도에서 소결이 시작되면서 수축이 빠르게 일어나 높은 수축률을 나타내는 비저항 특성이 우수한 은 분말 및 이의 제조방법을 제공하는 것이다.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 은 이온, 암모니아 및 유기산 알칼리 금속염을 포함하는 제1 반응액 및 환원제를 포함하는 제2 반응액을 제조하는 반응액제조단계(S21) 및 제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 석출단계(S22)를 포함하는 은 염 환원단계(S2);를 포함하는 은 분말 제조방법을 제공한다.
또한 상기 유기산 알칼리 금속염은 초산(CH3COOH), 포름산(CH2O2), 옥살산(C2H2O4), 젖산(C3H6O3), 시트르산(C6H8O7), 푸마르산(C4H4O4), 구연산(C6H8O7), 뷰티르산(C4H8O2), 프로피온산(CH3CH2COOH) 및 요산(C5H4N4O3) 으로 구성되는 군에서 선택되는 어느 1종 이상의 유기산과 리튬(Li), 나트륨(Na), 칼륨(K), 칼슘(Ca) 및 마그네슘(Mg)으로 구성되는 군에서 선택되는 어느 1종 이상의 금속이 염을 형성한 것을 포함하는 것을 특징으로 한다.
또한 상기 반응액제조단계(S21)에서 상기 제1 반응액은 상기 은 이온을 포함하는 500g/L의 질산은(AgNO3) 80mL에 대하여 상기 유기산 알칼리 금속염을 5 내지 30 g으로 첨가하는 것을 특징으로 한다.
또한 상기 반응액제조단계(S21)에서 암모니아를 첨가량을 조절하여 상기 제1 반응액의 pH가 8 내지 11 이 되도록 조절하는 것을 특징으로 한다.
또한 본 발명은 평균 입자 크기(D50)가 0.1 내지 10μm인 은 분말로서, 50℃/min, 800℃ 승온 조건에서 소결개시온도가 300 내지 450℃이고, 수축률이 20 내지 30% 인 것을 특징으로 하는 은 분말을 제공한다.
또한 상기 은 분말은 50℃/min, 800℃ 승온 조건 내에서, 400℃ 내지 600℃ 구간에서의 수축 속도가 3 내지 5%/min 인 것을 특징으로 한다.
또한 상기 은 분말을 포함하는 도전성 페이스트를 이용하여 형성된 도전막의 비저항은 3.5×10-6 Ωm 이하인 것을 특징으로 한다.
본 발명에 따른 평균 입자 크기(D50)가 0.1 내지 10μm인 은 분말은 제조방법에 있어서 유기산 알칼리 금속염을 첨가함으로써 종래의 습식 환원법에 의해 제조된 구형의 은 분말과 동일한 정도의 입자 크기를 가지며, 50℃/min, 800℃ 승온 조건 내에서, 소결개시온도가 300 내지 450℃이고, 400℃ 내지 600℃ 승온 구간에서 3 내지 5%/min 수축 속도를 가지며, 수축률이 20 내지 30 %인 은 분말을 제조할 수 있으며, 상기 은 분말을 포함하는 페이스트를 이용하여 벨트로 모사설비에서 750℃까지 소성시킨 도전막의 비저항이 3.5×10-6 Ωm 이하인 특성을 나타내는 은 분말을 제조할 수 있다.
도 1 내지 도 4는 본 발명의 실시예 및 비교예에 따라 제조된 은 분말의 SEM 이미지를 나타낸 것이다.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.
본 발명의 일실시예에 따른 은 분말의 제조방법은 은 염 제조단계(S1); 은 염 환원단계(S2); 여과 및 세척 등 정제단계(S3); 및 표면처리단계(S4);를 포함하여 이루어진다. 본 발명에 따른 은 분말의 제조방법은 은 염 환원단계(S2)를 반드시 포함하고, 이외의 단계는 생략 가능하다.
1. 은 염 제조단계(S1)
본 발명의 일실시예에 따른 은 염 제조단계(S1)는 잉곳, 립, 그래뉼 형태의 은(silver, Ag)을 산처리하여 은 이온(Ag+)을 포함하는 은 염(silver salt) 용액을 제조하는 단계로서, 본 단계를 거쳐 은 염 용액을 직접 제조하여 은 분말을 제조할 수 있으나, 시중에서 구입한 질산은, 은염착체 또는 은 중간체 용액을 이용하여 이 후 단계를 진행할 수 있다.
2. 은 염 환원단계(S2)
본 발명의 일실시예에 따른 은 염 환원단계(S2)는 은 염 용액에 환원제 및 암모니아를 첨가하여 은 이온을 환원시켜 은 입자(silver particle)를 석출하는 단계로서, 은 이온, 암모니아 및 유기산 알칼리 금속염을 포함하는 제1 반응액 및 환원제를 포함하는 제2 반응액을 제조하는 반응액제조단계(S21) 및 제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 석출단계(S22)를 포함한다.
본 발명의 일실시예에 따른 반응액제조단계(S21)는 은 이온을 포함하는 은 염 용액에 유기산 알칼리 금속염을 첨가하고 암모니아로 pH를 조절하여 교반 용해시켜 제 1 반응액을 제조한다.
상기 은 이온은 은 양이온의 형태라면 제한되지 않는다. 일례로 질산은(AgNO3), 은 염 착체 또는 은 중간체일 수 있다. 이하 500g/L의 질산은(AgNO3) 80mL를 기준으로 기타 다른 성분의 함량 등을 설명한다.
본 발명은 제1 반응액에 유기산 알칼리 금속염을 첨가하고 암모니아로 pH를 조절함으로써 낮은 온도에서 소결이 시작되고 특정 온도 구간에서의 수축 속도가 빠르며, 최종 수축률이 높은 은 분말을 제조할 수 있다.
상기 유기산 알칼리 금속염은 초산(CH3COOH), 포름산(CH2O2), 옥살산(C2H2O4), 젖산(C3H6O3), 시트르산(C6H8O7), 푸마르산(C4H4O4), 구연산(C6H8O7), 뷰티르산(C4H8O2), 프로피온산(CH3CH2COOH) 및 요산(C5H4N4O3) 으로 구성되는 군에서 선택되는 어느 1종 이상의 유기산(단쇄지방산)과 리튬(Li), 나트륨(Na), 칼륨(K), 칼슘(Ca) 및 마그네슘(Mg)으로 구성되는 군에서 선택되는 어느 1종 이상의 금속이 염을 형성한 것을 들 수 있다. 바람직하게는 초산 칼륨(CH3COOK), 포름산 칼륨(HCOOK) 및 옥살산 칼륨(C2K2O4)으로 구성되는 군에서 선택되는 어느 1종 이상을 사용하는 것이 좋다.
상기 유기산 알칼리 금속염은 상기 500g/L의 질산은(AgNO3) 80mL에 대하여 5 내지 30g 첨가된다. 유기산 알칼리 금속염을 상기 범위로 첨가하여 소결 개시온도를 낮추고 수축속도를 높이는 효과를 제공한다. 5g 미만 첨가시 효과가 미비하며 30g 초과 첨가 시에는 그 이하로 첨가되는 경우와 효과가 유사하여 30g으로 제한한다.
암모니아(NH3)는 수용액 형태로 사용될 수 있으며, 예를 들어 25% 암모니아 수용액을 사용하는 경우 500g/L의 질산은(AgNO3) 80mL에 대하여 70 내지 350mL 첨가한다. 암모니아가 350ml를 초과하여 첨가되는 경우 열수축율 감소 효과가 미비하며, 암모니아가 70ml 미만으로 첨가되는 경우 제조된 은 분말의 크기(size)가 감소하고 형상이 각지는 문제점이 있다. 상기 암모니아는 그 유도체를 포함한다. 암모니아를 사용함으로써 후술할 석출단계(S22)에서 환원이 일어나는 pH 조건을 8 내지 11로 조절한다.
은 이온, 암모니아 및 유기산 알칼리 금속염을 포함하는 제1 반응액은 물 등의 용제에 은 이온, 암모니아, 유기산 알칼리 금속염을 첨가하고 교반하여 용해시켜 수용액 상태로 제조될 수 있으며, 또한 슬러리 형태로 제조될 수 있다.
본 발명의 일실시예에 따른 반응액제조단계(S21)는 또한 환원제를 포함하는 제2 반응액을 제조한다.
상기 환원제는 아스코르브산, 알칸올아민, 하이드로퀴논, 히드라진 및 포르말린으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있으며, 이 중에서 하이드로퀴논을 바람직하게 선택할 수 있다. 환원제의 함량은 제1 반응액에 포함되는 500g/L의 질산은(AgNO3) 80mL 대하여 10 내지 30g 포함되는 것이 바람직하다. 10g 미만을 사용하는 경우, 은 이온이 모두 환원되지 않을 수 있고, 30g을 초과하여 사용하는 경우 유기물 함량이 증가하여 문제가 될 수 있다.
환원제를 포함하는 제2 반응액은 물 등의 용매에 환원제를 첨가하고 교반하여 용해시켜 수용액 상태로 제조될 수 있다.
본 발명의 일실시예에 따른 석출단계(S22)는 제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 단계로서, 반응액제조단계(S21)에 의해 제조된 제1 반응액을 교반하는 상태에서 제2 반응액을 천천히 첨가하거나, 일괄 첨가하여 반응시킬 수 있다. 바람직하기로는 일괄 첨가하는 것이 빠른 시간 내에 환원 반응이 일괄 종료되어 입자끼리의 응집을 방지하고 분산성을 높일 수 있어 좋다.
한편, 본 발명의 실시예에서는 은 입자의 분산성 향상 및 응집 방지를 위해 상기 분산제가 더 첨가되어 반응시키는 것을 권리범위에서 제외하지 않는다. 분산제의 예로는 지방산, 지방산염, 계면활성제, 유기 금속, 킬레이트 형성제 및 보호 콜로이드 등을 들 수 있다.
그러나, 상기 분산제가 첨가되는 경우, 잔존 유기물 함량이 증가하여 문제될 수 있으므로, 분산제의 첨가 없이 은 분말의 입경, 잔존 유기물 함량 및 결정자 지름을 제어하는 것이 바람직하다.
3. 정제단계(S3)
본 발명의 일실시예에 따른 정제단계(S3)는 은 염 환원단계(S2)를 통해 은 입자 석출 반응을 완료한 후 수용액 또는 슬러리 내에 분산되어 있는 은 분말을 여과 등을 이용하여 분리하고 세척하는 단계(S31)를 포함한다. 더욱 구체적으로는 은 분말 분산액 중의 은 입자를 침강시킨 후, 분산액의 상등액을 버리고 원심분리기를 이용하여 여과하고, 여재를 순수로 세정한다. 세척을 하는 과정은 분말을 세척한 세척수를 완전히 제거를 해야 이루어 진다. 따라서 함수율 10% 미만으로 감소시킨다. 선택적으로 여과 전에 반응 완료 용액에 상기 언급된 분산제를 첨가하여 은 분말의 응집을 방지하는 것도 가능하다.
또한 본 발명의 일실시예에 따른 정제단계(S3)는 세척 후 건조 및 해쇄단계(S34)를 더 포함할 수 있다.
4. 표면처리단계(S4)
본 발명의 일실시예에 따른 표면처리단계(S4)는 은 분말의 친수 표면을 소수화하는 단계로서, 선택적으로 이루어질 수 있다. 더욱 구체적으로는 여과 후 얻어지는 습윤 케이크(wet cake)의 함수율을 10% 미만으로 조절한 후 은 분말의 표면처리를 위해 표면처리제를 첨가하고 함수율을 70% ~ 85%로 조절할 수 있다. 이 후 건조, 해쇄 과정을 거쳐 은 분말을 얻을 수 있다. 은 분말을 표면처리할 때 분말의 분산이 잘 되어야 표면처리가 충분히 이루어지고, 함수율이 낮으면 분산 효율이 떨어지기 때문에 일정량을 함수율을 가지고 표면처리를 하는 것이 좋다.
본 발명에 따른 은 분말의 제조방법은 평균 입자 크기(D50)가 0.1 내지 10μm인 은 분말의 제조방법으로서 유기산 알칼리 금속염을 첨가함으로써 종래의 습식 환원법에 의해 제조된 구형의 은 분말과 동일한 정도의 입자 크기를 가지며, 50℃/min, 800℃ 승온 조건 내에서, 소결개시온도가 300 내지 450℃이고, 400℃ 내지 600℃ 승온 구간에서 3 내지 5%/min 수축 속도를 가지며, 수축률이 20 내지 30 %인 은 분말을 제조할 수 있으며, 상기 은 분말을 포함하는 페이스트를 이용하여 벨트로 모사설비에서 750℃까지 소성시킨 도전막의 비저항이 3.5*10-6 Ωm 이하인 특성을 나타내는 은 분말을 제조할 수 있다.
실시예 및 비교예
(1) 실시예 1
상온의 순수 850g에 500g/L의 질산은 80ml, 초산칼륨 10g, 암모니아(농도 25%) 70ml을 넣고 교반하여 용해시켜 제1 반응액을 조제하였다(표 1 참고). 한편 상온의 순수 1000g에 하이드로퀴논 20g을 넣고 교반하여 용해시켜 제2 반응액을 조제하였다.
이어서, 제1 반응액을 교반한 상태로 하고, 이 제1 반응액에 제2 반응액을 일괄 첨가하여, 첨가 종료 후부터 10분간 더 교반하여 혼합액 중에서 입자를 성장시켰다. 그 후 교반을 멈추고, 혼합액 중의 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고, 건조하여, 은분을 얻었다.
(2) 실시예 2
상온의 순수 830g에 500g/L의 질산은 80ml, 초산칼륨 및 옥살산칼륨 각각 10g, 암모니아(농도 25%) 90ml을 넣고 교반하여 용해시켜 제1 반응액을 조제하였다(표 1 참고). 한편 상온의 순수 1000g에 하이드로퀴논 20g을 넣고 교반하여 용해시켜 제2 반응액을 조제하였다.
이어서, 제1 반응액을 교반한 상태로 하고, 이 제1 반응액에 제2 반응액을 일괄 첨가하여, 첨가 종료 후부터 10분간 더 교반하여 혼합액 중에서 입자를 성장시켰다. 그 후 교반을 멈추고, 혼합액 중의 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고, 건조하여, 은분을 얻었다.
(3) 실시예 3
상온의 순수 792g에 500g/L의 질산은 80ml, 옥살산칼륨 19g, 암모니아(농도 25%) 128ml을 넣고 교반하여 용해시켜 제1 반응액을 조제하였다. 한편 상온의 순수 1000g에 하이드로퀴논 20g을 넣고 교반하여 용해시켜 제2 반응액을 조제하였다(표 1 참고).
이어서, 제1 반응액을 교반한 상태로 하고, 이 제1 반응액에 제2 반응액을 일괄 첨가하여, 첨가 종료 후부터 10분간 더 교반하여 혼합액 중에서 입자를 성장시켰다. 그 후 교반을 멈추고, 혼합액 중의 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고, 건조하여, 은분을 얻었다.
(4) 비교예
상온의 순수 837g에 500g/L의 질산은 80ml, 암모니아(농도 25%) 71ml 및 질산 12ml를 넣고 교반하여 용해시켜 제1 반응액을 조제하였다(표 1 참고). 한편 상온의 순수 1000g에 하이드로퀴논 20g을 넣고 교반하여 용해시켜 제2 반응액을 조제하였다.
이어서, 제1 반응액을 교반한 상태로 하고, 이 제1 반응액에 제2 반응액을 일괄 첨가하여, 첨가 종료 후부터 10분간 더 교반하여 혼합액 중에서 입자를 성장시켰다. 그 후 교반을 멈추고, 혼합액 중의 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고, 건조하여, 은분을 얻었다.
제1 수용액
순수(g) 질산은(ml) 암모니아(ml) 초산칼륨 (g) 초산칼륨 & 옥살산칼륨(g) 옥살산칼륨(g) 질산(ml)
실시예1 850 80 70 10
실시예2 830 80 90 20
실시예3 792 80 128 19
비교예1 837 80 71 12
실험예
(1) SEM size 측정
상기 실시예 및 비교예에 따라 제조된 은 분말에 대하여 지올(JEOL) 회사제 주사전자현미경을 이용하여, 파우더 100개 각각의 지름 크기를 측정한 후 평균을 내어 SEM size(μm)를 측정하여 하기 표 2에 나타내었으며, 촬영한 SEM 이미지를 도 1 내지 4에 나타내었다. 도 1은 실시예 1의 은 분말을, 도 2는 실시예 2의 은 분말을, 도 3은 실시예 3의 은 분말을, 도 4는 비교예 1의 은 분말의 SEM 이미지를 나타낸 것이다.
(2) XRD
상기 실시예 및 비교예에 따라 제조된 은 분말에 대하여 PANalytical 회사제 X선 회절 장치 X'pert를 이용하여 분말 X선 회절을 행하고, 얻어진 [111]면의 회절각 피크 위치와 반가폭으로부터 scherrer equation을 이용하여 결정자 지름(Å)을 측정하여 하기 표 2에 나타내었다.
(3) 유기물 함량(감열 감량, Ignition loss)
세이코 인스트루먼트(Seiko instrument) 회사제 TG/DTA EXART6600을 이용하여, 공기 중, 승온 속도 10℃/min로 상온에서 500℃까지의 범위에서 TGA 분석을 행하여 유기물 함량을 측정하였다. 그 결과를 하기 표 2에 나타내었다.
(4) TMA(Thermogravimetric analyzer) 및 비저항
본 발명에 따른 은 분말의 소결 특성 및 도전성을 평가하기 위하여 상기 실시예 및 비교예에 따라 제조된 은분말 87g, 에틸 셀룰로즈 수지(STD200) 10% 1g, 유기 용매(디에틸렌글리콜 모노에틸 에테르 아세테이트) 12g를 혼합하고 3-롤 밀로 혼련하여 페이스트를 제조하였다.
상기 제조된 페이스트를 200μm2 면적으로 알루미나 기판 상에 도포하고 TMA(Thermomechanical Analysis) 를 통하여 50℃/min, 800℃ 승온한 경우 소결개시온도(℃), 400℃ 내지 600℃ 구간에서의 수축 속도(%/min) 및 면적 수축률(%)을 측정하여 하기 표 2에 나타내었다.
또한 상기 제조된 페이스트를 알루미나 기판 상에 인쇄하고 벨트로 모사설비를 이용하여 750℃까지 소성하여 도전막을 얻었다. 얻어진 도전막의 비저항(Ωm)을 저항률 측정기(MITSUBISHI의 Loresta-GX MCP-T700)를 사용하여 4탐침법으로 측정하여 하기 표 2에 나타내었다.
SEM size(㎛) XRD(Å) IGL(%) 소결개시온도(℃) 수축 속도(%/min) 수축률(%) 비저항(Ωm)
실시예1 1.39 280 1.07 375 3.25 24 3.38*10^-6
실시예2 1.20 301 0.55 350 4.5 26 3.28*10^-6
실시예3 1.20 327 0.63 360 3.75 24 3.26*10^-6
비교예1 1.38 247 0.71 500 2.5 16 3.88*10^-6
상기 표 2에 나타나는 것과 같이 본 발명에 따라 제조된 은 분말은 종래의 방법에 따라 제조된 은 분말과 동일한 정도의 입자 크기를 갖는 것을 알 수 있으며, 유기물 함량 역시 유기산 알칼리 금속염을 첨가하더라도 비교예와 비교했을 때 크게 증가하지 않거나(실시예 1) 오히려 잔존 유기물 함량이 낮은 것(실시예 2, 3)을 알 수 있다.
또한 본 발명에 따른 은 분말의 소결개시온도가 비교예에 비해 낮으며, 400 내지 600℃ 승온 구간에서 빠른 수축 속도를 나타내므로 본 발명에 따른 은 분말을 포함하는 도전성 페이스트를 이용하여 태양전지의 전면 전극을 형성하는 경우 소성 후 최종 수축률이 높고 소성밀도가 높아져 태양전지 셀의 전기전도성이 우수한 것으로 사료된다.
또한 도 1 내지 3에 나타나는 것처럼 은 분말 입자 내부에 공극(여기서 공극이라 함은 SEM 이미지 상 나타나는 기공의 최단 직경이 50nm 이상인 것을 공극이라고 본다.)을 갖지 않으면서도 수축률이 높은 특성을 나타내며, 이를 포함하여 형성된 도전막의 비저항이 낮아 전기전도성이 우수한 것을 알 수 있다. 높은 수축률을 가져 태양전지 전면 전극 형성 시 40μm 이하의 미세 패턴을 형성하는데 적합하게 사용될 수 있으며 제조된 전극의 저항을 낮출 수 있다.
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 은 이온, 암모니아 및 유기산 알칼리 금속염을 포함하는 제1 반응액 및 환원제를 포함하는 제2 반응액을 제조하는 반응액제조단계(S21) 및
    제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 석출단계(S22)를 포함하는 은 염 환원단계(S2);를 포함하는 은 분말 제조방법.
  2. 제1항에 있어서,
    상기 유기산 알칼리 금속염은 초산(CH3COOH), 포름산(CH2O2), 옥살산(C2H2O4), 젖산(C3H6O3), 시트르산(C6H8O7), 푸마르산(C4H4O4), 구연산(C6H8O7), 뷰티르산(C4H8O2), 프로피온산(CH3CH2COOH) 및 요산(C5H4N4O3) 으로 구성되는 군에서 선택되는 어느 1종 이상의 유기산과 리튬(Li), 나트륨(Na), 칼륨(K), 칼슘(Ca) 및 마그네슘(Mg)으로 구성되는 군에서 선택되는 어느 1종 이상의 금속이 염을 형성한 것을 포함하는 것을 특징으로 하는 은 분말 제조방법.
  3. 제1항에 있어서,
    상기 반응액제조단계(S21)에서 암모니아를 첨가량을 조절하여 상기 제1 반응액의 pH가 8 내지 11 이 되도록 조절하는 것을 특징으로 하는 은 분말 제조방법.
  4. 제1항에 있어서,
    상기 반응액제조단계(S21)에서 상기 제1 반응액은 상기 은 이온을 포함하는 500g/L의 질산은(AgNO3) 80mL에 대하여 상기 유기산 알칼리 금속염을 5 내지 30 g으로 첨가하는 것을 특징으로 하는 은 분말 제조방법.
  5. 제1항에 있어서,
    상기 반응액제조단계(S21)에서 상기 제1 반응액은 상기 은 이온을 포함하는 500g/L의 질산은(AgNO3) 80mL에 대하여 상기 암모니아를 70 내지 350 mL로 첨가하는 것을 특징으로 하는 은 분말 제조방법.
  6. 제1항에 있어서,
    상기 환원제는 아스코르브산, 알칸올아민, 하이드로퀴논, 히드라진 및 포르말린으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 은 분말 제조방법.
  7. 제1항에 있어서,
    상기 석출단계(S22)는 상기 제1 반응액을 교반하는 상태에서 상기 제2 반응액을 첨가하거나 일괄 첨가하여 반응시키는 단계인 것을 특징으로 하는 고온 소결형 은 분말 제조방법.
  8. 평균 입자 크기(D50)가 0.1 내지 10μm인 은 분말로서,
    상기 은 분말은 50℃/min, 800℃ 승온 조건에서 소결개시온도가 300 내지 450℃이고, 수축률이 20 내지 30% 인 것을 특징으로 하는 은 분말.
  9. 제8항에 있어서,
    상기 은 분말은 50℃/min, 800℃ 승온 조건 내에서, 400℃ 내지 600℃ 구간에서의 수축 속도가 3 내지 5%/min 인 것을 특징으로 하는 은 분말.
  10. 제8항에 있어서,
    상기 은 분말을 포함하는 도전성 페이스트를 이용하여 형성된 도전막의 비저항은 3.5×10-6 Ωm 이하인 것을 특징으로 하는 은 분말.
PCT/KR2017/011508 2016-10-31 2017-10-18 은 분말 및 이의 제조방법 WO2018080092A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160143681A KR101927476B1 (ko) 2016-10-31 2016-10-31 은 분말 및 이의 제조방법
KR10-2016-0143681 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018080092A1 true WO2018080092A1 (ko) 2018-05-03

Family

ID=62025221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011508 WO2018080092A1 (ko) 2016-10-31 2017-10-18 은 분말 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101927476B1 (ko)
WO (1) WO2018080092A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860698A (zh) * 2019-11-12 2020-03-06 广东羚光新材料股份有限公司 一种网状银粉及其制备方法和应用
CN111526955A (zh) * 2017-10-31 2020-08-11 LS-Nikko铜制炼株式会社 银粉末的制造方法以及包含银粉末的导电性浆料
CN111673091A (zh) * 2020-06-18 2020-09-18 宁夏中色新材料有限公司 一种低分散剂含量和高导电性的银粉制备方法及银粉
CN113365767A (zh) * 2018-11-30 2021-09-07 LS-Nikko铜制炼株式会社 可调节收缩率的银粉末的制造方法
CN115780821A (zh) * 2022-11-28 2023-03-14 苏州银瑞光电材料科技有限公司 一种高振实密度片状银粉的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102061719B1 (ko) * 2017-10-30 2020-01-02 엘에스니꼬동제련 주식회사 은 분말 및 이의 제조방법
JP6859305B2 (ja) * 2018-09-28 2021-04-14 Dowaエレクトロニクス株式会社 銀粉およびその製造方法ならびに導電性ペースト
KR20200061193A (ko) * 2018-11-23 2020-06-02 엘에스니꼬동제련 주식회사 단분산 은 분말의 제조방법
KR102178011B1 (ko) * 2018-11-30 2020-11-12 엘에스니꼬동제련 주식회사 응집도를 조절하는 은 분말의 제조방법
KR102197542B1 (ko) * 2018-11-30 2020-12-31 엘에스니꼬동제련 주식회사 세척 특성이 개선된 은 분말의 제조방법
KR102178010B1 (ko) * 2018-11-30 2020-11-12 엘에스니꼬동제련 주식회사 세척이 용이한 은 분말의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118868A (ja) * 1993-10-20 1995-05-09 Sumitomo Metal Mining Co Ltd パラジウム被覆球状銀粉の製造方法
JP2001107101A (ja) * 1999-10-12 2001-04-17 Mitsui Mining & Smelting Co Ltd 高分散性球状銀粉末及びその製造方法
KR20080017838A (ko) * 2006-08-22 2008-02-27 씨엠에스테크놀로지(주) 입자 크기의 제어가 가능한 나노 은 콜로이드 용액의제조방법 및 이로부터 얻어지는 나노 은
JP2010133015A (ja) * 2008-10-27 2010-06-17 Furukawa Electric Co Ltd:The 銅微粒子分散水溶液の製造方法、及び銅微粒子分散水溶液の保管方法
JP5590289B2 (ja) * 2008-10-22 2014-09-17 三菱マテリアル株式会社 銀ペーストの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564036B1 (ko) * 2003-12-23 2006-03-24 (주)창성 공동환원제를 이용한 구상형 은분말의 제조방법
JP2005330529A (ja) * 2004-05-19 2005-12-02 Dowa Mining Co Ltd 球状銀粉およびその製造方法
JP5032005B2 (ja) * 2005-07-05 2012-09-26 三井金属鉱業株式会社 高結晶銀粉及びその高結晶銀粉の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118868A (ja) * 1993-10-20 1995-05-09 Sumitomo Metal Mining Co Ltd パラジウム被覆球状銀粉の製造方法
JP2001107101A (ja) * 1999-10-12 2001-04-17 Mitsui Mining & Smelting Co Ltd 高分散性球状銀粉末及びその製造方法
KR20080017838A (ko) * 2006-08-22 2008-02-27 씨엠에스테크놀로지(주) 입자 크기의 제어가 가능한 나노 은 콜로이드 용액의제조방법 및 이로부터 얻어지는 나노 은
JP5590289B2 (ja) * 2008-10-22 2014-09-17 三菱マテリアル株式会社 銀ペーストの製造方法
JP2010133015A (ja) * 2008-10-27 2010-06-17 Furukawa Electric Co Ltd:The 銅微粒子分散水溶液の製造方法、及び銅微粒子分散水溶液の保管方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526955A (zh) * 2017-10-31 2020-08-11 LS-Nikko铜制炼株式会社 银粉末的制造方法以及包含银粉末的导电性浆料
CN113365767A (zh) * 2018-11-30 2021-09-07 LS-Nikko铜制炼株式会社 可调节收缩率的银粉末的制造方法
US20220023947A1 (en) * 2018-11-30 2022-01-27 Ls-Nikko Copper Inc. Method for producing silver powder with adjustable shrinkage
CN113365767B (zh) * 2018-11-30 2024-07-02 韩国Ls先进金属材料株式会社 可调节收缩率的银粉末的制造方法
US12090556B2 (en) * 2018-11-30 2024-09-17 Ls Mnm Inc. Method for producing silver powder with adjustable shrinkage
CN110860698A (zh) * 2019-11-12 2020-03-06 广东羚光新材料股份有限公司 一种网状银粉及其制备方法和应用
CN110860698B (zh) * 2019-11-12 2022-09-13 广东羚光新材料股份有限公司 一种网状银粉及其制备方法和应用
CN111673091A (zh) * 2020-06-18 2020-09-18 宁夏中色新材料有限公司 一种低分散剂含量和高导电性的银粉制备方法及银粉
CN111673091B (zh) * 2020-06-18 2022-10-21 宁夏中色新材料有限公司 一种低分散剂含量和高导电性的银粉制备方法及银粉
CN115780821A (zh) * 2022-11-28 2023-03-14 苏州银瑞光电材料科技有限公司 一种高振实密度片状银粉的制备方法
CN115780821B (zh) * 2022-11-28 2024-06-11 苏州银瑞光电材料科技有限公司 一种高振实密度片状银粉的制备方法

Also Published As

Publication number Publication date
KR101927476B1 (ko) 2018-12-10
KR20180047529A (ko) 2018-05-10

Similar Documents

Publication Publication Date Title
WO2018080092A1 (ko) 은 분말 및 이의 제조방법
WO2017026722A1 (ko) 고온 소결형 도전성 페이스트용 은 분말의 제조방법
KR101141839B1 (ko) 은분 및 그의 제조 방법
TW200536636A (en) Highly crystalline silver powder and method for production thereof
WO2018226001A1 (ko) 은 입자 및 이의 제조방법
JP6982688B2 (ja) 表面処理された銀粉末及びその製造方法
TW201341087A (zh) 銀微粒子及其製造法與含有該銀微粒子之導電性糊劑、導電性膜及電子裝置
KR102007857B1 (ko) 표면 처리된 은 분말 및 이의 제조방법
WO2020071841A1 (ko) 은 분말 및 이의 제조 방법
KR20180047527A (ko) 표면 처리된 은 분말 및 이의 제조방법
WO2020138949A2 (ko) 구형 은 분말 및 이의 제조방법
WO2018070817A1 (ko) 고온 소결형 은 분말 및 이의 제조방법
WO2019088507A1 (ko) 은 분말 및 이의 제조방법
WO2020111903A1 (ko) 수축률 조절이 가능한 은 분말의 제조방법
WO2020106120A1 (ko) 단분산 은 분말의 제조방법
WO2018070818A1 (ko) 태양전지 전극용 은 분말 및 이를 포함하는 도전성 페이스트
WO2018043995A1 (ko) 비표면적이 증가된 은 분말의 제조방법
WO2018066724A1 (ko) 은 분말의 제조방법
WO2018080091A1 (ko) 은 분말 및 이의 제조방법
KR102178010B1 (ko) 세척이 용이한 은 분말의 제조방법
WO2019088508A1 (ko) 은 분말의 제조방법 및 은 분말을 포함하는 도전성 페이스트
KR102197542B1 (ko) 세척 특성이 개선된 은 분말의 제조방법
KR102081183B1 (ko) 은 분말의 제조방법
KR102061718B1 (ko) 표면 처리된 은 분말 및 이의 제조방법
WO2018066722A1 (ko) 응집형 은 분말을 이용한 플레이크형 은 분말의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864253

Country of ref document: EP

Kind code of ref document: A1