WO2014034818A1 - 標的核酸の分析方法、キットおよび分析機器 - Google Patents

標的核酸の分析方法、キットおよび分析機器 Download PDF

Info

Publication number
WO2014034818A1
WO2014034818A1 PCT/JP2013/073233 JP2013073233W WO2014034818A1 WO 2014034818 A1 WO2014034818 A1 WO 2014034818A1 JP 2013073233 W JP2013073233 W JP 2013073233W WO 2014034818 A1 WO2014034818 A1 WO 2014034818A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
nucleic acid
group
analysis method
formulas
Prior art date
Application number
PCT/JP2013/073233
Other languages
English (en)
French (fr)
Inventor
林崎 良英
昌可 伊藤
貴博 荒川
健悟 臼井
想太郎 上村
康正 三谷
Original Assignee
株式会社ダナフォーム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダナフォーム filed Critical 株式会社ダナフォーム
Priority to JP2014508640A priority Critical patent/JP5598784B2/ja
Priority to US14/414,324 priority patent/US10066264B2/en
Priority to EA201590455A priority patent/EA032482B1/ru
Priority to EP13832285.4A priority patent/EP2891714B1/en
Publication of WO2014034818A1 publication Critical patent/WO2014034818A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/04Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups one >CH- group, e.g. cyanines, isocyanines, pseudocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/06Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups three >CH- groups, e.g. carbocyanines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a target nucleic acid analysis method, kit, and analysis instrument.
  • the genotype analysis including single nucleotide polymorphism (SNP) and gene mutation can be said to be a base that provides the basis for “tailor-made medicine”, and the necessity thereof is rapidly increasing.
  • SNP single nucleotide polymorphism
  • the US Food and Drug Administration is in the direction of obliging to attach information on SNPs and genetic mutations concerning the effects of drugs when applying for new drugs. Is growing.
  • Instruments for measuring nucleic acid copy number and mutation are widely used academically and clinically. Many biomarkers that can predict drug reactivity, prognosis, etc. have been discovered by looking at the copy number and mutation of one gene. Examples include Iressa, Herceptin and the like. However, there are not many examples that can be predicted sharply with only one biomarker, and homeostasis is maintained in a living body controlled by various networks.
  • Non-Patent Documents 1 to 3 the concept of Basin Network in which transcription factors and non-protein-encoding RNA (ncRNA) form each other has been proposed.
  • ncRNA non-protein-encoding RNA
  • the Basin Network is a regulatory network at the level of nuclear transcription. Actually, however, the epigenetic state of nuclear genomic DNA (modification such as heterochromatin formation and DNA methylation) and degradation metabolism of RNA itself such as RNA interference. In addition, the level of RNA translation, and the level of protein function by direct binding to protein are also regulated. As a result, by looking at only one gene in the state of RNA or DNA, it is not inferred how these networks function. In order to diagnose cancer prognosis and responsiveness to the drugs listed below (Responder and Non-responder), the technology must be able to measure and define the functional state of cells.
  • an object of the present invention is to provide a target nucleic acid analysis method, kit, and analysis instrument that can quickly and easily analyze a target nucleic acid.
  • the analysis method of the present invention comprises: A method for analyzing a target nucleic acid in a sample, comprising: Contacting the sample with a primer or probe capable of hybridizing to the target nucleic acid and a label, and analyzing the target nucleic acid in the sample;
  • the primer or probe is immobilized on a solid phase,
  • the label is a label that quenches when the primer or probe does not hybridize with the target nucleic acid, and emits light when the primer or probe hybridizes with the target nucleic acid, Analysis is performed by detecting light emission of the label.
  • the kit of the present invention is a kit for performing the analysis method of the present invention, and the kit includes the primer or probe, the label, and a support for immobilizing the primer or probe,
  • the support is a kit containing the solid phase.
  • the analytical instrument of the present invention is an analytical instrument for performing the analytical method of the present invention, and is an analytical instrument including luminescence detection means for detecting luminescence of the label.
  • the target nucleic acid analysis method, kit, and analytical instrument of the present invention it is possible to analyze the target nucleic acid quickly and easily.
  • FIG. 1 is a photograph showing that an amplification product of a target nucleic acid is generated when a primer pair is used in Example 1.
  • FIG. 2 is a photograph showing that in Example 1, when only the forward primer was used, the generation of the amplification product of the target nucleic acid could not be observed.
  • FIG. 3 is a photograph showing the quality check result of oligo synthesis in Example 2-A.
  • FIG. 4 is a diagram showing the results of electrophoresis of the product after PCR in Example 2-B.
  • FIG. 5 is a photograph showing the results of synthesis of template DNA for actin beta messenger RNA synthesis in Example 2-C.
  • FIG. 6 is a diagram showing the results of actin beta messenger RNA synthesis using CUGA 7 in vitro Transcription Kit in Example 2-C.
  • FIG. 7 shows the results of an operation check of the Bioer Technology Gene-Pro thermal cycler equipped with the GenePro Insitu “Japanese Version” B-4 block in Example 2-D and the PCR reaction in the reaction chamber prepared with the slide glass. Indicates confirmation.
  • FIG. 8 is a photograph showing the results of observation with a fluorescence microscope in Example 2-E.
  • FIG. 9 is a photograph showing the results of observation with a fluorescence microscope in Example 2-E.
  • FIG. 10 is a photograph showing the results of observation with a fluorescence microscope in Example 2-E.
  • FIG. 11 is a photograph showing a fluorescence microscope observation result of the cover glass after solid-phase PCR in Example 2-F.
  • FIG. 12 shows the result of electrophoresis of the sample after two-step RT-PCR in Example 2-G.
  • FIG. 13 shows the result of electrophoresis of the sample after one-step RT-PCR in Example 2-H.
  • FIG. 14 shows the result of electrophoresis of a sample after one-step RT-PCR reacted in a chamber made of a glass substrate in Example 2-I.
  • FIG. 15 is a photograph showing a fluorescence microscope observation result of a cover glass after bridge RT-PCR in Example 2-J.
  • FIG. 16 is a photograph showing a fluorescence microscope observation result of the cover glass after bridge RT-PCR in Example 2-J.
  • FIG. 17 is a photograph showing a fluorescence microscope observation result (messenger RNA concentration) of a cover glass after bridge RT-PCR in Example 2-K.
  • FIG. 18 is a photograph showing a fluorescence microscope observation result (messenger RNA concentration) of a cover glass after bridge RT-PCR in Example 2-K.
  • FIG. 19 is a photograph showing a fluorescence microscope observation result (messenger RNA concentration) of the cover glass after bridge RT-PCR in Example 2-K.
  • FIG. 20 is a photograph showing a fluorescence microscope observation result (messenger RNA concentration) of the cover glass after bridge RT-PCR in Example 2-K.
  • FIG. 21 is a photograph showing a fluorescence microscope observation result (number of PCR cycles) of the cover glass after bridge RT-PCR in Example 2-L.
  • FIG. 22 is a photograph showing a fluorescence microscope observation result (PCR cycle number) of the cover glass after bridge RT-PCR in Example 2-L.
  • FIG. 23 is a photograph showing a fluorescence microscope observation result (number of PCR cycles) of the cover glass after bridge RT-PCR in Example 2-L.
  • FIG. 24 is a photograph showing a fluorescence microscope observation result (PCR cycle number) of the cover glass after bridge RT-PCR in Example 2-L.
  • FIG. 25 is a photograph showing a fluorescence microscope observation result (PCR cycle number) of the cover glass after bridge RT-PCR in Example 2-L.
  • FIG. 26 is a photograph showing a result of bridge RT-PCR using a fluorescent-labeled immobilized specific primer set in Example 2-M.
  • FIG. 27 is a photograph showing the results of bridge RT-PCR using a fluorescent-labeled immobilized specific primer set in Example 2-M.
  • FIG. 28 is a diagram schematically illustrating an example of how the E probe is used. Hybridization with a specimen sample is performed on a microarray on which an E probe is immobilized, and the presence or absence of a target product or the presence or absence of mutation is measured by detecting a fluorescent signal. In addition, by washing the microarray, the same microarray can be used for the same detection, without requiring special modifications to the specimen sample, and without the need for a special chromogenic enzyme reaction after hybridization. The microarray can be used repeatedly.
  • FIG. 29 is a diagram schematically showing an application example of the E primer to bridge PCR. On the microarray on which the E primer is immobilized, the specimen sample is annealed and bridge PCR is performed, and the presence or absence of the target product or the presence or absence of mutation is measured by detecting the fluorescent signal.
  • a method for analyzing a target nucleic acid in a sample comprising: Contacting the sample with a primer or probe capable of hybridizing to the target nucleic acid and a label, and analyzing the target nucleic acid in the sample;
  • the primer or probe is immobilized on a solid phase,
  • the label is a label that quenches when the primer or probe does not hybridize with the target nucleic acid, and emits light when the primer or probe hybridizes with the target nucleic acid
  • An analysis method comprising performing analysis by detecting luminescence of the label.
  • [2] The analysis method according to [1], wherein after the analysis of the target nucleic acid, the target nucleic acid is removed and the primer or probe is reused.
  • [3] The analysis method according to [1] or [2], wherein the target nucleic acid includes a plurality of types, and each of the plurality of types of target nucleic acids is detected.
  • [4] The analysis method according to any one of [1] to [3], wherein the primer or probe is of a plurality of types.
  • [5] The analysis method according to any one of [1] to [4], wherein the surface of the solid phase on which the primer or probe is fixed is a flat surface, a chip flat surface, a spherical surface, or a three-dimensional surface.
  • the primer or probe is a nucleic acid molecule comprising at least one structure represented by the following formula (16), (16b), (17), (17b), (18) or (18b): [9] Analysis method.
  • B is an atomic group having a natural nucleobase (adenine, guanine, cytosine, thymine or uracil) skeleton or an artificial nucleobase skeleton
  • E is (I) an atomic group having a structure derived from a deoxyribose skeleton, a ribose skeleton, or any of them, or (ii) an atomic group having a peptide structure or a peptoid structure
  • Z 11 and Z 12 are each a fluorescent atomic group exhibiting an exciton effect, and may be the same or different
  • L 1 , L 2 and L 3 are each a linker (a bridging atom or an atomic group), the main chain length (
  • Z 11 and Z 12 are each independently an atomic group represented by any one of the following formulas (7) (9), The method according to any one of [12] From [10].
  • X 1 and X 2 are S, O or Se
  • n ′′ is 0 or a positive integer
  • R 1 to R 10 and R 13 to R 21 are each independently a hydrogen atom, a halogen atom, a lower alkyl group, a lower alkoxy group, a nitro group, or an amino group
  • One of R 11 and R 12 is a linking group bonded to L 1 or L 2 in the formulas (16), (17), (16b) and (17b), and the other is a hydrogen atom or a lower group.
  • R 15 may be the same or different when a plurality of R 15 are present in the formula (7), (8) or (9), R 16 may be the same or different when there are a plurality of R 16 in the formula (7), (8) or (9), And X 1, X 2 and R 1 ⁇ R 21 in Z 11, and X 1, X 2 and R 1 ⁇ R 21 in Z 12, may be the same or different from each other.
  • the lower alkyl group is a linear or branched alkyl group having 1 to 6 carbon atoms
  • the lower alkoxy group is a linear or branched alkoxy group having 1 to 6 carbon atoms.
  • the linking group is a polymethylene carbonyl group having 2 or more carbon atoms, and L 1 in the formulas (16), (16b), (17) and (17b) in the carbonyl group moiety or bound to L 2, [13] or [14] the method according.
  • Z 11 and Z 12 are each independently an atomic group represented by the formula (7) or (8), The analytical method according to any one of [13] to [15], wherein Z 11 and Z 12 represented by the formula (7) or (8) are a group represented by the following formula (19) or (20): .
  • X 1 , R 1 to R 10 , R 13 and R 14 , R 11 and R 12 are the same as those in the above formulas (7) to (9).
  • Z 11 and Z 12 are each independently an atomic group represented by the formula (19),
  • X 1 is S;
  • R 1 to R 10 are hydrogen atoms;
  • One of R 11 and R 12 is a linking group bonded to L 1 or L 2 in the formulas (16), (17), (16b) and (17b), and the other is a methyl group.
  • Z 11 and Z 12 are each independently an atomic group represented by the formula (19),
  • X 1 is S
  • R 1 , R 4 , R 5 , R 6 , R 7 , R 9 and R 10 are hydrogen atoms
  • R 2 , R 3 and R 12 are methyl groups
  • R 8 is a halogen atom
  • Z 11 and Z 12 are each independently an atomic group represented by the formula (7),
  • X 1 is S;
  • n is 1, R 1 to R 10 , R 15 , R 16 and R 17 are hydrogen atoms;
  • R 11 is a linking group that binds to L 1 or L 2 in the formulas (16), (17), (16b), (17b), (18), and (18b);
  • Z 11 and Z 12 are each independently an atomic group represented by any of the following chemical formulas. In the above chemical formulas, n is a positive integer.
  • B is an atomic group having an artificial nucleobase skeleton, and the artificial nucleobase is 2-amino-6- (N, N-dimethylamino) purine pyridine-2-one, 5-methylpyridin-2-one, 2-amino-6- (2-thienyl) purine, pyrrole-2-carbaldehyde, 9-methylimidazo [(4,5) -b] pyridine, 5-iodo-2-oxo (1H) pyridine 2-oxo- [1H] pyridine, 2-amino-6- (2-thiazolyl) purine, 7- (2-thienyl) -imidazo [4,5-b] pyridine, bromothymine, azaadenine or azaguanine [10] to [20]
  • the analysis method in any one of.
  • the Pu is an atomic group having a covalent bond bonded to E at the 9-position and a covalent bond bonded to the linker moiety at the 8-position among the condensed rings represented by the following formula (12). , The Pu der.
  • the structure represented by the formula (16) is a structure represented by the following formula (16-1) or (16-2):
  • the structure represented by the formula (16b) is a structure represented by the following formula (16b-1) or (16b-2):
  • the structure represented by the formula (17) is a structure represented by the following formula (17-1):
  • the structure represented by the formula (17b) is a structure represented by the following formula (17b-1):
  • the structure represented by the formula (18) is a structure represented by the following formula (18-1),
  • the structure represented by the formula (18b) is a structure represented by the following formula (18b-1). [10]
  • l, m and n ′ are arbitrary and may be the same or different, and may or may not contain C, N, O, S, P and Si, respectively, in the main chain;
  • the main chain may or may not contain a single bond, a double bond, a triple bond, an amide bond, an ester bond, a disulfide bond, an imino group, an ether bond, a thioether bond, and a thioester bond
  • B, E, Z 11 , Z 12 and b are the same as the above formulas (16), (16b), (17), (17b), (18) and (18b),
  • one or more O atoms in the phosphoric acid bridge may be substituted with S atoms.
  • nucleic acid molecule is a nucleotide structure represented by the following chemical formula 106, 110, 113, 117, 120, 122, 123, 124 or 114-2, or a geometric isomer, stereoisomer or salt thereof:
  • the analysis method according to [10] which is a nucleic acid molecule containing one.
  • n is a positive integer.
  • the primer or probe is a primer; Contacting the primer with the sample to hybridize the primer to the target nucleic acid to perform an amplification reaction of the target nucleic acid; Furthermore, the analysis method according to any one of [1] to [27], wherein the target nucleic acid is analyzed by continuously measuring the amplification degree of the target nucleic acid in the amplification reaction.
  • the primer is a pair of primers; Each of the pair of primers includes the label as a part of the primer because the label is covalently bonded.
  • Each of the labels covalently bonded to the pair of primers is a fluorescent atomic group that exhibits an exciton effect, The labels are different from each other, In the bridge PCR method, the fluorescence intensity is not generated, or the fluorescence intensity is analyzed by generating fluorescence of one to three colors, or by causing a difference in the fluorescence intensity of each label.
  • the analysis method wherein the detection of the presence or absence of mutations at a plurality of loci in the target nucleic acid or the expression level analysis of the plurality of loci is simultaneously performed by measuring the difference.
  • the primer is a pair of primers; Each of the pair of primers includes the label as a part of the primer because the label is covalently bonded. Each of the labels covalently bonded to the pair of primers is a fluorescent atomic group that exhibits an exciton effect, The labels are different from each other, In the bridge PCR method, the fluorescence intensity is not generated, or the fluorescence intensity is analyzed by generating fluorescence of one to three colors, or by causing a difference in the fluorescence intensity of each label.
  • the primer is a pair of primers; Each of the pair of primers includes the label as a part of the primer because the label is covalently bonded. Each of the labels covalently bonded to the pair of primers is a fluorescent atomic group that exhibits an exciton effect, The labels are different from each other, In the bridge PCR method, the fluorescence intensity is not generated, or the fluorescence intensity is analyzed by generating fluorescence of one to three colors, or by causing a difference in the fluorescence intensity of each label.
  • the target nucleic acid is RNA; Furthermore, a reverse transcription reaction of the RNA is performed, The analysis method according to any one of [28] to [34], wherein the reverse transcription reaction is performed on the solid phase to which the primer is fixed before the amplification reaction or simultaneously with the amplification reaction.
  • [36] The analysis method according to any one of [28] to [35], wherein the amplification reaction is performed using DNA polymerase, RNA polymerase, reverse transcriptase (reverse transcription polymerase) or RNA-dependent RNA polymerase.
  • the melting curve analysis is performed using a probe, The analysis method according to [37], wherein the probe includes a fluorescent atomic group exhibiting an exciton effect.
  • a kit for performing the analysis method according to any one of [1] to [42] includes the primer or probe, the label, and a support for immobilizing the primer or probe, A kit in which the support comprises the solid phase.
  • An analytical instrument for performing the analytical method according to any one of [1] to [42] An analytical instrument comprising luminescence detection means for detecting luminescence of the label.
  • the analytical instrument according to [44] further comprising means for acquiring data of at least one snapshot.
  • polynucleotide or “oligonucleotide” means a nucleic acid, and includes both DNA and RNA.
  • the DNA includes any of cDNA, genomic DNA, and synthetic DNA.
  • the RNA includes total RNA, mRNA, rRNA, siRNA, miRNA, snRNA, snoRNA, non-coding RNA, and synthetic RNA.
  • the terms “polynucleotide” or “oligonucleotide” shall be used interchangeably herein with the term “nucleic acid”.
  • the “gene” includes not only double-stranded DNA and RNA but also each single-stranded DNA such as a positive strand (or sense strand) or a complementary strand (or antisense strand) constituting the same. Intentionally used. Moreover, it is not particularly limited by its base sequence or sequence chain length.
  • “gene” refers to double-stranded DNA including human genomic DNA, single-stranded DNA including cDNA (positive strand), and single-stranded DNA having a sequence complementary to the positive strand (complementary). Chain), and fragments thereof, as well as the human genome.
  • the “gene” is not limited to the “gene” represented by a specific base sequence (or SEQ ID NO), but also RNA having a biological function equivalent to RNA encoded by these, for example, homologs (ie, homologs), Variants such as genetic polymorphisms, and “nucleic acids” encoding derivatives are included.
  • a “nucleic acid” encoding such a homologue, variant or derivative is a hybrid with a base sequence or a complementary sequence of a base sequence in which u is t in a specific stringent condition.
  • a “nucleic acid” having a base sequence for soybean can be mentioned.
  • “gene” does not ask for distinction of functional regions, but also means that it includes, for example, an expression control region, a coding region, an exon, or an intron.
  • transcript means RNA synthesized using a DNA sequence of a gene as a template.
  • RNA polymerase is synthesized when RNA polymerase binds to a site called a promoter located upstream of the gene and ribonucleotides are bound to the 3 ′ end so as to be complementary to the DNA base sequence.
  • RNAs include not only the gene itself, but also the entire region from the transcription start point to the end of the poly A sequence, including the coding region, expression control region, exon and intron.
  • miRNA is transcribed as an RNA precursor having a hairpin-like structure, cleaved by a dsRNA cleaving enzyme having RNase III cleavage activity, incorporated into a protein complex called RISC, and mRNA translational inhibition. Means something involved.
  • miRNA includes not only “miRNA” represented by a specific base sequence (or SEQ ID NO) but also a precursor of the “miRNA” (pre-miRNA, pri-miRNA). Also included are miRNAs that have biological functions equivalent to the encoded miRNA, eg, homologues (ie, homologs), variants such as genetic polymorphisms, and “miRNAs” that encode derivatives.
  • the “probe” is not particularly limited.
  • a complementary polynucleotide or the like is meant.
  • the “primer” is not particularly limited, but, for example, an E primer and a continuous polynucleotide that specifically recognizes and amplifies RNA generated by gene expression or a polynucleotide derived therefrom and / or complementary thereto. Meaning a polynucleotide or the like.
  • a “complementary polynucleotide (complementary strand, reverse strand)” is a full-length sequence of a polynucleotide comprising a base sequence defined by a sequence number or a base sequence in which u is t in the base sequence, Or a partially complementary polynucleotide based on a base pair relationship such as A: T (U) and G: C with respect to a partial sequence thereof (for convenience, this is referred to as a positive strand). Show.
  • Such a complementary strand is not limited to the case where it forms a completely complementary sequence with the base sequence of the target positive strand, but has a complementary relationship that allows it to hybridize with the target positive strand under stringent conditions. It doesn't matter.
  • stringent conditions refers to conditions under which a probe hybridizes to its target sequence to a detectably greater extent (eg, at least 1.2 times background) than to other sequences. Means that. Stringent conditions are sequence-dependent and vary greatly depending on the environment in which hybridization is performed. By controlling the stringency of the hybridization and / or wash conditions, target sequences that are 100% complementary to the probe can be identified.
  • the term “mutant” means, in the case of a nucleic acid, a natural variant caused by polymorphism, mutation, etc., or a base sequence in which u is t in the base sequence, or a partial sequence thereof having 1, 2 Or a mutant comprising 3 or more, preferably 1 or 2 base deletions, substitutions, additions or insertions, or a miRNA precursor RNA base sequence, or a base sequence in which u is t in the base sequence Or a variant containing one or more base deletions, substitutions, additions or insertions in the partial sequence, or about 50% or more of each of the base sequences or a partial sequence thereof, about 70% or more, about 80% or more, about 90% or more, about 95% or more, about 97% or more, about 98% or more, a variant showing% identity of about 99% or more, or the base sequence or a partial sequence thereof Including A nucleic acid that hybridizes with a renucleotide or oligonucleotide
  • % identity can be generally determined using a BLAST or FASTA protein or gene search system, with or without introducing a gap.
  • “derivative” means E probe, E primer, modified nucleic acid, non-limiting labeling derivative such as fluorophore, etc., modified nucleotide (for example, halogen, alkyl such as methyl, alkoxy such as methoxy, thio, Derivatives containing nucleotides and bases containing groups such as carboxymethyl, nucleotides subjected to double bond saturation, deamination, substitution of oxygen molecules with sulfur molecules, etc., PNA (peptide nucleic acid), etc. Is included.
  • “Analysis” in the present invention includes, for example, qualitative analysis, quantitative analysis, semi-quantitative analysis, and mutation detection.
  • ⁇ prediction, determination, detection or diagnosis '' is not particularly limited.
  • ⁇ prediction, determination, detection or diagnosis '' is not particularly limited.
  • the degree of morbidity, the presence or absence of improvement, and the degree of improvement means those used directly or indirectly for screening candidate substances useful for the prevention, amelioration or treatment of cancer and other diseases.
  • nucleotides, oligonucleotides and polynucleotides are used as probes for detecting the gene expressed in vivo, in tissues or cells based on the above properties, and for amplifying the gene expressed in vivo. It can be effectively used as a primer.
  • the “sample” to be predicted, determined, detected or diagnosed is not particularly limited.
  • a gene or a gene to be expressed changes with the occurrence of cancer or other diseases and changes in health status.
  • a biological sample sample Specifically, tissues and their surrounding vessels, lymph nodes and organs, organs suspected of metastasis, and blood, urine, saliva, feces, hair, skin, sweat, etc. that can be collected from other living organisms means.
  • the target nucleic acid analysis method of the present invention has, for example, the following characteristics. However, these descriptions are merely examples and do not limit the present invention.
  • the target nucleic acid analysis method is required to satisfy, for example, the following conditions (1) to (3).
  • (1) A technique for quantitatively measuring a plurality of sitting positions simultaneously.
  • (2) A highly sensitive technique capable of measuring a small amount of expressed RNA such as a transcription factor.
  • (3) To be able to use these in clinical practice, it is a very quick and simple technique.
  • microarrays are generally used.
  • a microarray is one in which a label such as a fluorescent dye is put on the RNA (DNA) of a sample with a reverse transcription polymerase (DNA polymerase), and this labeled nucleic acid is hybridized on a solid-phased chip for detection.
  • DNA reverse transcription polymerase
  • a microarray is one in which a label such as a fluorescent dye is put on the RNA (DNA) of a sample with a reverse transcription polymerase (DNA polymerase), and this labeled nucleic acid is hybridized on a solid-phased chip for detection.
  • DNA polymerase reverse transcription polymerase
  • qRT-PCR and qPCR are used as methods with good sensitivity.
  • separate primers must be designed for each target sequence of each gene (locus).
  • locus the target sequence of each gene
  • the template RNA or DNA must be divided into the number of reaction solutions and placed in each reaction solution. Therefore, when there is only a very small amount of nucleic acid sample, this method naturally limits the number even when measuring multiple genes (multilocus).
  • Probes or primers using base sequences corresponding to hundreds to tens of thousands of genes are fixed on the microarray.
  • the gene in the sample binds to the probe or the primer, and the amount of gene in the test sample can be known by measuring the amount of binding by some means.
  • a probe to be immobilized on the microarray or a gene corresponding to the probe can be freely selected.
  • Genes that can serve as cancer markers by comparing the gene expression levels in samples using cancerous lesions of cancer patients and normal tissues of cancer patients, which are samples collected at the time of surgery or endoscopy It is also possible to estimate the group.
  • the gene expression pattern in the health condition and the gene expression pattern that has a problem with the health condition it is possible to test and diagnose even in the preliminary patients who have no subjective symptoms of the disease Become.
  • Microarrays have the advantage of being able to see multiple loci and measuring multiple loci with a single labeled nucleic acid solution, but it takes time and effort to amplify and label, and it takes time to hybridize the target nucleic acid with the primer or probe.
  • the detection sensitivity is not so good.
  • the spectrum range is narrow, only known sequences can be detected, and mutation detection has many problems such as low S / N ratio and poor determination accuracy.
  • multiplex quantitative PCR is more sensitive, has a wider spectral range, and can measure the amount of gene in the template with rise time (Ct) during amplification, and write a melting curve.
  • Ct rise time
  • mutation information can be obtained.
  • it is necessary to design different primers for each target nucleic acid which is cumbersome, time consuming and laborious, and requires separate reaction in separate tubes for each position in order to create separate reaction systems.
  • a lot of template nucleic acid is required because the number of loci to be detected is time-consuming and the template nucleic acid (RNA, DNA) must be divided into the number of reactions.
  • Bridge Multiple qRT-PCR has considerable advantages.
  • a separate reaction system is not required (for bridge PCR, see, for example, JP 10-505492 A).
  • the reaction can be carried out in one liquid phase, and it is not necessary to carry out the reaction in a separate tube for each position. Since there is no need to separate the number of loci, and it is not necessary to divide the template nucleic acid (RNA, DNA) or the like into the number of reactions, it is possible to carry out with a small amount of template nucleic acid.
  • RNA from a single cell can be used to measure a large amount of loci, and can be reacted in a total volume of 1 microliter or less (perhaps 50 nanoliters is possible with a 1 mm square chip).
  • it is also effective to add RNaseH in advance.
  • exciton primer (E primer, for example, refer to Japanese Patent No. 4761086 and Japanese Patent No. 4370385) is applied to the above Bridge Multiple qRT-PCR, there is no need to label the target nucleic acid, and RNA, DNA, etc. are measured. Detection is possible simply by placing the power sample on the chip. Sensitivity is improved compared to Multiple qRT-PCR, and other advantages are considered to be equal to or better than Multiple qRT-PCR. Unlike the liquid phase, by changing the wavelength of the dye, multiple samples can be measured on a single chip, different regions of one gene, or different genes simultaneously. This meets the essential requirements for clinical test kits because it allows internal controls to be placed on all reactions.
  • a microarray using an exciton probe does not need to be fluorescently labeled on a PCR amplification product, which is the purpose of detection. After detection of hybridization, the microarray is washed and the next sample is added.
  • E probe exciton probe
  • multiple samples can be quantified with one array instead of one sample / tube like qRT-PCR, and amplification and labeling steps such as cRNA preparation in a microarray are separately performed. There is no need to do this, and everything can be done on the array.
  • the clusters formed by bridge PCR are considerably smaller than the spots of the array, and digital counting is possible in a range where the cluster density is low. Therefore, not only cluster counting but also quantification by fluorescence intensity is possible. Furthermore, since the fluorescence intensity is maintained by the cluster even in the low fluorescence range (because it does not spread and dilute over the entire spot), it is expected that the dynamic range in a very small area is wider than the microarray.
  • the E primer only the amplified cluster emits fluorescence and can be easily measured without any special work.
  • an amplification process that is, a cluster
  • bridge PCR an amplification process using bridge PCR
  • a laser light source is not required for excitation, and detection is possible with a simple lamp light source.
  • the fluorescence detection camera does not require an ultra-sensitive EMCCD camera, and can be measured sufficiently with a normal CCD camera. That is, there is an advantage that the measuring device can be simplified.
  • the amplified cluster emits fluorescence, the background light is reduced and a clearer image can be obtained.
  • the nucleic acid analysis method of the present invention can be performed using, for example, a DNA chip.
  • a DNA chip for example, a DNA chip.
  • the DNA chip (or microarray) is formed, for example, by immobilizing at least one of the above-described oligonucleotide derivatives. Immobilization is a concept that includes adsorption, and also includes a bond such as a covalent bond.
  • the spot diameter of DNA on the substrate surface when preparing a DNA chip (or microarray) is usually 0.5 to 20000 ⁇ m, more preferably 5 to 2000 ⁇ m, and more preferably about 50 to 200 ⁇ m.
  • the spot pitch is not particularly limited, and is usually 1 to 50000 ⁇ m, more preferably 10 to 5000 ⁇ m, and more preferably about 100 to 500 ⁇ m.
  • Examples of the carrier used for the DNA chip (or microarray) include glass such as microporous glass and porous glass, magnetic beads having polystyrene, metal, ferrite and the surface covered with glycine methacrylate as the core. It is not limited to.
  • the shape of the carrier may be any shape such as a plate shape (substrate shape) or a bead shape.
  • the DNA chip may be one using a probe on carrier method.
  • the probe-on-carrier method is a method of synthesizing a DNA probe on a microporous glass (CPG), which is the most suitable material for DNA synthesis, and then binding the DNA probe bound to CPG without separating the probe molecule from the CPG carrier. It means a method used for detecting SNPs.
  • the size of CPG used is preferably a particle size of 50 to 50,000, more preferably 500 to 5,000.
  • the DNA synthesis reaction efficiency is as high as 99.8% or more, there is an advantage that the purity of the DNA probe can be increased and the accuracy of the DNA chip is greatly improved. Furthermore, CPGs having the necessary DNA probes can be mass-produced, and cost reduction and higher quality control can be performed. In addition, most of the conventional DNA chips are two-dimensionally detected on the glass slide plane, whereas the probe-on-carrier method uses CPG, so that three-dimensional detection is possible. DNA probes can be arranged at high density, and high sensitivity detection is possible.
  • the Si—O bond in the linker portion is cleaved in the process of removing the protecting group in the nucleic acid base portion (ammonia treatment), resulting in about 90 % DNA probe may be detached from the surface of the carrier.
  • a method of binding the oligonucleotide derivative via a suitable linker for example, by a method such as a metal-sulfur bond can be mentioned.
  • the oligonucleotide derivative to be immobilized on the carrier surface may be not only one type but also two or more types.
  • the substituent that is not bound to the carrier may be bound with a fluorescent molecule, a quenching molecule, or the like in order to be used for detection when used as a DNA chip or the like.
  • a DNA chip can be used for a method of identifying a nucleic acid in a sample.
  • a sample and a DNA chip (or microarray) are hybridized.
  • a sample can be added to the oligonucleotide derivative fixed on the DNA chip (or microarray), for example, about 0.01 ⁇ M to 1000 ⁇ M.
  • the hybridization conditions vary depending on the type of the polynucleotide derivative, but for example, a temperature of 0 to 100 ° C., more preferably 20 to 90 ° C., more preferably 30 to 80 ° C., for example, several seconds to several tens of hours. However, it is not limited to this condition range.
  • oligonucleotide derivatives can be used for nucleic acid identification methods and gene detection.
  • the gene detection method include real-time PCR in addition to the above-described DNA chip and microarray, but are not limited thereto.
  • detection is not particularly limited. For example, it means that fluorescent signals of probes or primers amplified in a spot shape on a chip substrate are comprehensively detected by fluorescence images.
  • a detection apparatus a general fluorescence microscope is necessary, but it is particularly desirable to have a light source for exciting an E probe or E primer, a dichroic mirror, an excitation filter, a fluorescence filter, and a camera for detection.
  • the same image scan needs to be performed many times with high accuracy and over a wide range, so a controllable stage with high positional accuracy is required.
  • Detection cameras include those capable of non-amplifying or amplifying the fluorescence signal, as well as line scan cameras capable of acquiring images continuously over a wide range.
  • the method for identifying a nucleotide in a target nucleic acid includes a step of hybridizing, annealing, or extending an oligonucleotide derivative or the like with a target nucleic acid in a sample: and a step of detecting a hybridized product or an amplified product.
  • an oligonucleotide derivative is first hybridized with a target nucleic acid in a sample.
  • the sample to be used is not particularly limited as long as it contains a nucleic acid, and examples thereof include cell extracts, body fluids such as blood, PCR products, oligonucleotides, and the like.
  • the conditions for primer and probe hybridization are as described above.
  • the 5 'end of the primer is immobilized on a support, and an extension reaction occurs when the primer is annealed to the target product. Further, by repeating heat denaturation, annealing, and extension reaction on the support, the amplification product is obtained when the target amplification region of the target biological sample exists.
  • an E primer containing a sequence specific to the target amplification region is solid-phased on the microarray so that only the portion where the E primer is solid-phased when the target amplification occurs. Thus, the amplification reaction occurs, and the fluorescence signal of the E primer can be measured as it is.
  • the exciton effect is an effect in which, for example, a plurality of dyes gather in parallel to form an H-aggregate, so that almost no fluorescence is emitted.
  • This effect is due to the fact that the excited state of the dye is split into two energy levels by Davydov splitting, excitation to the upper energy level ⁇ internal conversion to the lower energy level ⁇ emission is thermally forbidden. It is thought to occur.
  • these descriptions do not limit the present invention at all.
  • the exciton effect can be confirmed by the fact that the absorption band of the dye forming the H aggregate appears at a wavelength shorter than the absorption band of the single dye.
  • dyes exhibiting such effects include thiazole orange and derivatives thereof, oxazole yellow and derivatives thereof, cyanine and derivatives thereof, hemicyanine and derivatives thereof, methyl red and derivatives thereof, and generally cyanine dyes and azo dyes.
  • a group of dyes called can be mentioned. According to the exciton effect, for example, when the fluorescent dye of the present invention is bound to a nucleic acid, the fluorescence intensity in a single-stranded state is suppressed, and a double helix structure can be detected more effectively.
  • the E primer or E probe may be, for example, a nucleic acid molecule having the structure described in Japanese Patent No. 4370385, or may be, for example, a nucleic acid molecule having the structure described below.
  • the structure of the nucleic acid molecule includes, for example, at least one structure represented by the following formula (16), (16b), (17), (17b), (18) or (18b): It may be a labeled nucleic acid. These tautomers or stereoisomers, or salts thereof are also included in the labeled nucleic acid in the present invention.
  • a structure represented by the following formulas having atomic groups Z 11 and Z 12 exhibiting fluorescence may be referred to as a “label structure”.
  • the labeled nucleic acid containing the label structure may be referred to as a “labeled probe”.
  • the “target nucleic acid sequence” includes not only a nucleic acid sequence for amplification but also a sequence complementary thereto.
  • B is an atomic group having a natural nucleobase (adenine, guanine, cytosine, thymine or uracil) skeleton or an artificial nucleobase skeleton
  • E is (I) an atomic group having a structure derived from a deoxyribose skeleton, a ribose skeleton, or any of them, or (ii) an atomic group having a peptide structure or a peptoid structure
  • Z 11 and Z 12 are each an atomic group that exhibits fluorescence, and may be the same or different
  • L 1 , L 2 and L 3 are each a linker (a bridging atom or an atomic group)
  • the main chain length (the number of main chain atoms) is arbitrary
  • C, N, O, S, P and Si may or may not contain each, and in the main chain, single bond, double bond, triple bond, amide bond, ester
  • the main chain lengths (number of main chain atoms) of L 1 , L 2 and L 3 are each 2 or more It is preferable that it is an integer.
  • the upper limit of the main chain length (number of main chain atoms) of L 1 , L 2 and L 3 is not particularly limited, but is, for example, 100 or less, more preferably 30 or less, and particularly preferably 10 or less.
  • Z 11 and Z 12 are fluorescent atomic groups showing the exciton effect. Thereby, the environmental change around the fluorescent dye when bound to the target sequence, for example, the increase in fluorescence when the double helical structure is formed is large, and the target sequence can be detected more effectively.
  • Z 11 and Z 12 may be any fluorescent atomic group exhibiting an exciton effect, and are not particularly limited. More preferably, Z 11 and Z 12 are each independently a group derived from thiazole orange, oxazole yellow, cyanine, hemicyanine, other cyanine dyes, methyl red, azo dyes or derivatives thereof. In addition, groups derived from other known dyes can also be used as appropriate. Many fluorescent dyes that change fluorescence intensity by binding to nucleic acids such as DNA have been reported. In a typical example, ethidium bromide is known to exhibit strong fluorescence by intercalating into the double helix structure of DNA and is frequently used for DNA detection.
  • fluorescent dyes that can control the fluorescence intensity according to the microscopic polarity, such as pyrenecarboxamide and prodan, are also known.
  • the thiazole orange is a fluorescent dye in which a benzothiazole ring and a quinoline ring are connected by a methine group.
  • Other examples include dyes such as fluorescein, Cy5, and Cy3.
  • Z 11 and Z 12 are each independently an atomic group represented by any one of the following formulas (7) to (9).
  • X 1 and X 2 are S, Se or O; n ′′ is 0 or a positive integer; R 1 to R 10 and R 13 to R 21 are each independently a hydrogen atom, a halogen atom, a lower alkyl group, a lower alkoxy group, a nitro group, or an amino group,
  • R 11 and R 12 is a linking group that binds to L 1 or L 2 in the formulas (16), (17), (16b), (17b), (18), and (18b).
  • R 15 may be the same or different when a plurality of R 15 are present in the formula (7), (8) or (9), R 16 may be the same or different when there are a plurality of R 16 in the formula (7), (8) or (9), And X 1, X 2 and R 1 ⁇ R 21 in Z 11, and X 1, X 2 and R 1 ⁇ R 21 in Z 12, may be the same or different from each other.
  • the lower alkyl group is a linear or branched alkyl group having 1 to 6 carbon atoms, and the lower alkoxy group is 1 to carbon atoms. More preferably, it is a 6 straight-chain or branched alkoxy group.
  • the linking group is a polymethylene carbonyl group having 2 or more carbon atoms, and in the carbonyl group portion, the formulas (16), (16b), ( More preferably, it binds to L 1 or L 2 in 17), (17b), (18) and (18b).
  • the upper limit of the carbon number of the polymethylenecarbonyl group is not particularly limited, but is, for example, 100 or less, preferably 50 or less, more preferably 30 or less, and particularly preferably 10 or less.
  • Z 11 and Z 12 are represented by the above formulas (7) to (9), for example, each independently is more preferably a group represented by the following formula (19) or (20).
  • X 1 represents —S— or —O—.
  • R 1 to R 10 , R 13 and R 14 each independently represent a hydrogen atom, a halogen atom, a lower alkyl group, a lower alkoxy group, a nitro group or an amino group.
  • One of R 11 and R 12 represents a linking group bonded to L 1 and L 2 in the formulas (16), (17), (16b), (17b), (18) and (18b), and R The other of 11 and R 12 represents a hydrogen atom or a lower alkyl group.
  • Z 11 and Z 12 are each independently an atomic group represented by any one of the following chemical formulas.
  • n is a positive integer and is particularly preferably in the range of 2-6.
  • B may have a natural nucleobase skeleton. It may have a skeleton.
  • B is preferably a structure represented by Py (pyrimidine ring), Py der., Pu (purine ring), or Pu der.
  • Py is an atomic group having a covalent bond bonded to E at the 1-position and a covalent bond bonded to the linker moiety at the 5-position among the 6-membered ring represented by the following formula (11). Yes, The Py der.
  • the Pu is an atomic group having a covalent bond bonded to E at the 9-position and a covalent bond bonded to the linker moiety at the 8-position among the condensed rings represented by the following formula (12). , The Pu der.
  • the nucleic acid molecule in the nucleic acid probe of the present invention is, for example, a nucleotide structure represented by the following chemical formula 106, 110, 113, 117, 120, 122, 123, 124, or 114-2, or a geometric isomer thereof, It may contain at least one structure which is a stereoisomer or a salt.
  • the linker length n is a positive integer, and preferably in the range of 2-6.
  • the number of the label structures contained in the nucleic acid probe of the present invention is not particularly limited, but is, for example, about 1 to 100, preferably about 1 to 20.
  • the site including the labeled structure is not particularly limited.
  • the basic skeleton of each nucleic acid is not particularly limited.
  • oligonucleotide, modified oligonucleotide, oligonucleoside, modified oligonucleoside, polynucleotide, modified polynucleotide, polynucleoside It may be a modified polynucleoside, DNA, modified DNA, RNA, modified DNA, LNA, PNA (peptide nucleic acid), or any of these chimeric molecules, or any other structure.
  • the basic skeleton of the nucleic acid may be natural or artificially synthesized.
  • the nucleic acid probe of the present invention for example, the nucleic acid only needs to be capable of forming a base pair bond.
  • the nucleic acid may function as a template for complementary strand synthesis. .
  • the nucleic acid may be, for example, a nucleotide derivative partially or entirely composed of an artificial structure.
  • Examples of the artificial base constituting the nucleic acid include 2-amino-6- (N, N-dimethylamino) purinepyridin-2-one, 5-methylpyridin-2-one, 2-amino-6- (2-thienyl) purine, pyrrole-2-carbaldehyde, 9-Methylimidazo [(4,5) -b] pyridine, 5-iodo-2-oxo (1H) pyridine 2-oxo- (1H) pyridine, 2-amino-6- (2 -thiazolyl) purine, 7- (2-thienyl) -imidazo [4,5-b] pyridine and the like, but are not limited thereto.
  • the basic skeleton is preferably, for example, an oligonucleotide, a polynucleotide, DNA, or a modified product thereof.
  • “nucleotide” may be, for example, either deoxynucleotide or ribonucleotide
  • “oligonucleotide” and “polynucleotide” are composed of, for example, either deoxynucleotide or ribonucleotide. It may also be included.
  • the number of bases constituting the nucleic acid is not particularly limited.
  • nucleic acid is generally synonymous with the term polynucleotide.
  • oligonucleotide is generally used as a term indicating a polynucleotide having a particularly small number of bases. In general, for example, a polynucleotide having a length of 2 to 100 bases, more generally about 2 to 50 bases is called an “oligonucleotide”, but is not limited to these numerical values.
  • polynucleotide is used in the present invention to include, for example, polynucleotides and oligonucleotides, and artificially synthesized nucleic acids such as peptide nucleic acids, morpholino nucleic acids, methylphosphonate nucleic acids, S-oligonucleic acids.
  • the peptide nucleic acid generally has a structure in which the deoxyribose main chain of the oligonucleotide is substituted with the peptide main chain.
  • Examples of the peptide main chain include a repeating unit of N- (2-aminoethyl) glycine linked by an amide bond.
  • Examples of the base to be bound to the peptide main chain of PNA include, for example, naturally occurring bases such as thymine, cytosine, adenine, guanine, inosine, uracil, 5-methylcytosine, thiouracil and 2,6-diaminopurine, bromothymine, azaadenine And artificial bases such as azaguanine, but are not limited thereto.
  • LNA is generally a nucleic acid having two circular structures in which the 2′-position oxygen atom and the 4′-position carbon atom of ribose are linked by a methylene bridge in the sugar-phosphate skeleton.
  • the number of bases constituting the E primer or E probe is not particularly limited, but is, for example, about 3 to 100, preferably 6 to 50, more preferably 6 to 25.
  • the raw material of the E primer or E probe is not particularly limited, and may be, for example, the following compounds, nucleic acids, or labeling substances.
  • the compound is a compound having a structure derived from a mononucleoside or a mononucleotide, wherein the structure is represented by the following formula (1), (1b) or (1c), a tautomer or stereo Isomer, or a salt thereof.
  • B is an atomic group having a natural nucleobase (adenine, guanine, cytosine, thymine or uracil) skeleton or an artificial nucleobase skeleton
  • E is (I) an atomic group having a structure derived from a deoxyribose skeleton, a ribose skeleton, or any of them, or (ii) an atomic group having a peptide structure or a peptoid structure
  • Z 11 and Z 12 are each a hydrogen atom, a protecting group, or a fluorescent atomic group, and may be the same or different
  • Q is When E is the atomic group of (i), it is O, When E is the atomic group of (ii), it is NH, X is When E is the atomic group of (i), a hydrogen atom, a hydroxyl-protecting group that can be deprotected with an acid, a phosphoric acid group (mono
  • E is an atomic group having a main chain structure of, for example, DNA, modified DNA, RNA, modified RNA, LNA, or PNA (peptide nucleic acid). preferable.
  • A is a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, or an electron withdrawing group
  • M and J are each CH 2 , NH, O or S, and may be the same or different
  • B, X and Y are respectively the same as the formula (1), (1b) or (1c)
  • one or more O atoms in the phosphoric acid bridge may be substituted with S atoms.
  • E is preferably an atomic group having a main chain structure of DNA, modified DNA, RNA, or modified DNA from the viewpoint of easiness of synthesis or the like, but the main chain of LNA or PNA (peptide nucleic acid) It may be an atomic group having a structure.
  • the alkyl group is preferably a methyl group
  • the alkoxy group is a methoxy group
  • the electron-withdrawing group is preferably a halogen
  • the main chain lengths (number of main chain atoms) of L 1 , L 2 and L 3 are each preferably an integer of 2 or more.
  • the upper limit of the main chain lengths (number of main chain atoms) of L 1 , L 2 and L 3 is not particularly limited as described above, and is, for example, 100 or less.
  • the compound is preferably, for example, a compound represented by the following formula (5), (6), (6b) or (6c), a tautomer or stereoisomer thereof, or a salt thereof.
  • l, m and n ′ may be arbitrary and may be the same or different, and C, N, O, S may be present in the main chain.
  • P and Si may or may not be contained, and in the main chain, single bond, double bond, triple bond, amide bond, ester bond, disulfide bond, imino group, ether bond, thioether A bond and a thioester bond may or may not be included, and B, E, Z 11 , Z 12 , b, X, Y and T are the same as those in the above formulas (1) and (1b). is there.
  • l, m and n are each preferably an integer of 2 or more.
  • the upper limit of l, m, and n is not particularly limited, but is, for example, 100 or less, more preferably 30 or less, and particularly preferably 10 or less.
  • Z 11 and Z 12 are preferably atomic groups exhibiting an exciton effect.
  • the increase in fluorescence when the double helical structure is formed is large, and the double helical structure can be detected more effectively.
  • Z 11 and Z 12 are not atomic groups exhibiting an exciton effect, or only one atomic group (pigment) exhibiting fluorescence is introduced in one molecule, It is possible to detect the double helix structure effectively.
  • Z 11 and Z 12 are preferably atomic groups having fluorescence.
  • the atomic group having fluorescence is not particularly limited. More preferably, Z 11 and Z 12 are each independently a group derived from thiazole orange, oxazole yellow, cyanine, hemicyanine, other cyanine dyes, methyl red, azo dyes or derivatives thereof.
  • groups derived from other known dyes can also be used as appropriate.
  • Many fluorescent dyes that change fluorescence intensity by binding to nucleic acids such as DNA have been reported. In a typical example, ethidium bromide is known to exhibit strong fluorescence by intercalating into the double helix structure of DNA, and is frequently used for DNA detection.
  • fluorescent dyes capable of controlling the fluorescence intensity according to the microscopic polarity, such as pyrenecarboxamide and prodan.
  • the thiazole orange is a fluorescent dye in which a benzothiazole ring and a quinoline ring are connected by a methine group. To give.
  • Other examples include dyes such as fluorescein and Cy3.
  • Z 11 and Z 12 are more preferably, for example, each independently an atomic group represented by any one of the following formulas (7) to (9).
  • R 11 and R 12 is L 1 or L 2 in the formula (1), (1b) or (1c), and in the formula (5), (6), (6b) or (6c).
  • R 15 may be the same or different when a plurality of R 15 are present in the formula (7), (8) or (9), R 16 may be the same or different when there are a plurality of R 16 in the formula (7), (8) or (9), And X 1 and R 1 ⁇ R 21 in Z 11, and X 1 and R 1 ⁇ R 21 in Z 12, may be the same or different from each other.
  • the lower alkyl group is a linear or branched alkyl group having 1 to 6 carbon atoms, and the lower alkoxy group is 1 to 6 carbon atoms. More preferably, it is a linear or branched alkoxy group.
  • the linking group is a polymethylene carbonyl group having 2 or more carbon atoms, and the carbonyl group moiety includes the formula (1), (1b) or (1c It is more preferable to bind to L 1 or L 2 in the formula ( 1 ) or NH in the formula (5), (6), (6b) or (6c).
  • the upper limit of the carbon number of the polymethylenecarbonyl group is not particularly limited, but is, for example, 100 or less.
  • Z 11 and Z 12 are represented by the above formulas (7) to (9), for example, each independently is more preferably a group represented by the following formula (19) or (20).
  • X 1 represents —S— or —O—.
  • R 1 to R 10 , R 13 and R 14 each independently represent a hydrogen atom, a halogen atom, a lower alkyl group, a lower alkoxy group, a nitro group or an amino group.
  • One of R 11 and R 12 is L 1 or L 2 in the formula (1), (1b) or (1c), NH in the formula (5), (6), (6b) or (6c).
  • the other of R 11 and R 12 represents a hydrogen atom or a lower alkyl group.
  • the compound may be, for example, a compound having a structure represented by the following formula (10), a tautomer or stereoisomer thereof, or a salt thereof.
  • formula (10) E, Z 11 , Z 12 , Q, X and Y are the same as those in the formula (1).
  • B may have a natural nucleobase skeleton, but may have an artificial nucleobase skeleton as described above.
  • B is preferably a structure represented by Py, Py der., Pu, or Pu der.
  • the Py is an atomic group having a covalent bond bonded to E at the 1-position and a covalent bond bonded to the linker moiety at the 5-position among the 6-membered ring represented by the following formula (11). Yes, The Py der.
  • the Pu is an atomic group having a covalent bond bonded to E at the 9-position and a covalent bond bonded to the linker moiety at the 8-position among the condensed rings represented by the following formula (12). , The Pu der.
  • the compound may be, for example, a compound represented by the following formula (13) or (14), a tautomer or stereoisomer thereof, or a salt thereof.
  • E, Z 11 , Z 12, Q, X and Y are the same as those in the formula (1), Py, Py der ., Pu, and Pu der., The As defined above.
  • the phosphoramidite group is preferably represented by, for example, the following formula (15).
  • -P (OR 22 ) N (R 23 ) (R 24 ) (15)
  • R 22 is a protecting group for a phosphate group
  • R 23 and R 24 are an alkyl group or an aryl group.
  • R 15 is a cyanoethyl group
  • the alkyl group is an isopropyl group
  • the aryl group is a phenyl group.
  • the compound represented by the formula (1) may be a compound represented by the following formula (21).
  • A represents a hydrogen atom or a hydroxyl group.
  • A is a hydrogen atom.
  • B represents an adenine, guanine, cytosine, thymine or uracil residue.
  • adenine and guanine are bonded to a double bond at the 8-position, and cytosine, thymine or uracil is bonded to a double bond at the 5-position.
  • Z 11 and Z 12 each independently represent a fluorescent atomic group, a hydrogen atom, or an amino-protecting group, and a residue of a thiazole orange derivative or an oxazole yellow derivative is particularly preferable.
  • X represents a hydrogen atom, a protective group for a hydroxyl group that can be deprotected with an acid, or a monophosphate group, a diphosphate group, or a triphosphate group.
  • Y represents a hydrogen atom, a hydroxyl protecting group, or a phosphoramidite group.
  • the compound represented by the formula (21) is more preferably represented by the following formula (22), for example.
  • A represents a hydrogen atom or a hydroxyl group.
  • Z 11 and Z 12 each independently represent a fluorescent atomic group, a hydrogen atom, or an amino-protecting group, and a residue of a thiazole orange derivative or an oxazole yellow derivative is particularly preferable.
  • X represents a hydrogen atom, a protective group for a hydroxyl group that can be deprotected with an acid, or a monophosphate group, a diphosphate group, or a triphosphate group.
  • Y represents a hydrogen atom, a hydroxyl protecting group, or a phosphoramidite group.
  • nucleic acid detection can be improved by binding a fluorescent substance, a chemiluminescent substance, etc. to produce a labeled nucleic acid.
  • nucleic acid can be easily detected by labeling with a specific fluorescent substance as in the case where Z 11 and Z 12 are fluorescent atomic groups.
  • the compound in which Z 11 and Z 12 are fluorescent atomic groups is modified with two fluorescent molecules, for example, thiazole orange derivative or oxazole yellow derivative.
  • Nucleoside or nucleotide A probe composed of a single-stranded nucleic acid containing such a compound causes quenching due to exciton coupling, so that fluorescence is extremely weak in the state of the probe alone, but it emits strong fluorescence when hybridized with DNA or RNA. Show.
  • the fluorescence of thiazole orange derivative or oxazole yellow derivative is strongly suppressed by its distorted structure, but thiazole orange derivative or oxazole yellow derivative is bonded to DNA to eliminate and fix the structural distortion.
  • Fluorescence can be detected by excitation using, for example, a 488 nm, 514 nm Ar laser, but is not limited thereto.
  • the compound represented by the formula (1), (1b) or (1c) can be used for synthesis of an E primer or an E probe (labeled nucleic acid), for example. That is, the compound can be used as a nucleic acid labeling substance (nucleic acid labeling reagent).
  • each of the atomic groups Z 11 and Z 12 may be a fluorescent atomic group, but may be a hydrogen atom or a protecting group.
  • the labeled probe of the present invention can be produced. If the atomic groups Z 11 and Z 12 are hydrogen atoms or protective groups, these atoms and groups are further fluorescent.
  • the labeled probe of the present invention can be produced by substituting with an atomic group exhibiting sex.
  • the number of the compounds of the formula (1), (1b) or (1c) contained in the E primer or E probe is not particularly limited, but is, for example, about 1 to 100, preferably about 1 to 20.
  • the compound or nucleic acid may have a structure represented by any of the following formulas (23) to (25), for example. Thereby, for example, it can be preferably used as a fluorescent probe into which a dye is introduced.
  • compounds suitable as fluorescent probes are not limited to these.
  • two dyes are linked to the base B.
  • the site where base B binds to the linker is not particularly limited.
  • pyrimidine is linked to the linker at one of 4-position, 5-position or 6-position, purine 2-position, 3-position, 6-position, 7-position or 8-position.
  • the linker has one base connection site, branches into two or more in the middle, and is linked to the dye at the end.
  • bonds formed by metal catalyzed double ring or triple bond reactions ring-forming condensation reactions, Michael addition reactions, amide bonds, ester bonds, disulfide bonds, and imine formation.
  • a bond formed by reaction or the like can be used.
  • length (l, m, n) is free, single bond, double bond, triple bond, amide bond, ester bond, disulfide bond, amine, imine, ether bond, thioether bond, thioester bond, etc. May be included. Moreover, it is preferable not to disturb the exciton effect caused by dimerization.
  • deoxyribonucleotide which is a partial structure of DNA
  • the nucleic acid backbone is ribonucleotide (RNA), 2′-O-methyl RNA, 2′-fluoro DNA, etc. It may be a sugar-modified nucleic acid, a phosphate-modified nucleic acid such as a phosphorothioate nucleic acid, or a functional nucleic acid such as PNA or LNA (BNA).
  • two dyes are linked to the base B.
  • the two linkers each have one base connection site and are linked to the dye at the other end.
  • bonds formed by metal catalyzed double ring or triple bond reactions ring-forming condensation reactions, Michael addition reactions, amide bonds, ester bonds, disulfide bonds, and imine formation.
  • a bond formed by reaction or the like can be used.
  • Linkers are free in length (l, m) and include single bonds, double bonds, triple bonds, amide bonds, ester bonds, disulfide bonds, amines, imines, ether bonds, thioether bonds, thioester bonds, etc. But you can. Moreover, it is preferable not to disturb the exciton effect caused by dimerization. It is preferable to use a dye that exhibits an exciton effect by dimerization, and the portion connected to the linker may be any portion of the dye.
  • deoxyribonucleotide which is a partial structure of DNA, is shown. Instead, the nucleic acid backbone is ribonucleotide (RNA), 2′-O-methyl RNA or 2′-fluoro DNA.
  • It may be a sugar-modified nucleic acid such as phosphoric acid, a phosphoric acid-modified nucleic acid such as phosphorothioate nucleic acid, or a functional nucleic acid such as PNA or LNA (BNA).
  • a sugar-modified nucleic acid such as phosphoric acid
  • a phosphoric acid-modified nucleic acid such as phosphorothioate nucleic acid
  • a functional nucleic acid such as PNA or LNA (BNA).
  • one dye (Fluo) is linked to each base (B 1 , B 2 ) of consecutive nucleotides.
  • the position at which each base binds to the linker is not particularly limited.
  • pyrimidine is linked to the linker at one of 4-position, 5-position or 6-position, purine 2-position, 3-position, 6-position, 7-position or 8-position.
  • the two linkers each have one base connection site and are linked to the dye at the other end.
  • bonds formed by metal catalyzed double ring or triple bond reactions ring-forming condensation reactions, Michael addition reactions, amide bonds, ester bonds, disulfide bonds, and imine formation.
  • a bond formed by reaction or the like can be used.
  • length (l, m) is free and includes single, double, triple, amide, ester, disulfide, amine, imine, ether, thioether, thioester, etc. But you can. Moreover, it is preferable not to disturb the exciton effect caused by dimerization. It is preferable to use a dye that exhibits an exciton effect by dimerization, and the portion connected to the linker may be any portion of the dye.
  • deoxyribonucleotide which is a partial structure of DNA, is shown. Instead, the nucleic acid skeleton is not only ribonucleotide (RNA) but also 2′-O-methyl RNA or 2′-fluoro DNA.
  • It may be a sugar-modified nucleic acid such as phosphoric acid, a phosphoric acid-modified nucleic acid such as phosphorothioate nucleic acid, or a functional nucleic acid such as PNA or LNA (BNA).
  • a sugar-modified nucleic acid such as phosphoric acid
  • a phosphoric acid-modified nucleic acid such as phosphorothioate nucleic acid
  • a functional nucleic acid such as PNA or LNA (BNA).
  • the compound or nucleic acid for example, the labeled nucleic acid of the present invention
  • an isomer such as a tautomer or a stereoisomer (eg, geometric isomer, conformer and optical isomer)
  • Any isomer can be used in the present invention.
  • the compound or nucleic acid salt may be an acid addition salt or a base addition salt.
  • the acid forming the acid addition salt may be an inorganic acid or an organic acid
  • the base forming the base addition salt may be an inorganic base or an organic base.
  • the inorganic acid is not particularly limited.
  • sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypofluorite, hypochlorous acid, hypobromite Hypoarousous acid, fluorinated acid, chlorous acid, bromic acid, iodic acid, fluoric acid, chloric acid, bromic acid, iodic acid, perfluoric acid, perchloric acid, perbromic acid, periodic acid, etc.
  • the organic acid is not particularly limited, and examples thereof include p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromobenzenesulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, and acetic acid.
  • the inorganic base is not particularly limited, and examples thereof include ammonium hydroxide, alkali metal hydroxides, alkaline earth metal hydroxides, carbonates and hydrogen carbonates, and more specifically, for example, Examples thereof include sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, calcium hydroxide and calcium carbonate.
  • the organic base is not particularly limited, and examples thereof include ethanolamine, triethylamine, and tris (hydroxymethyl) aminomethane.
  • the method for producing these salts is not particularly limited, and for example, the salt can be produced by a method such as appropriately adding the acid or base as described above to the electron donor / acceptor linking molecule by a known method. Further, when an isomer exists in a substituent or the like, any isomer may be used. For example, in the case of “naphthyl group”, it may be a 1-naphthyl group or a 2-naphthyl group.
  • the alkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • groups containing an alkyl group in the structure alkylamino group, alkoxy group, etc.).
  • the perfluoroalkyl group is not particularly limited, but is derived from, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • groups containing a perfluoroalkyl group in the structure perfluoroalkylsulfonyl group, perfluoroacyl group, etc.
  • the acyl group is not particularly limited.
  • acyl group For example, formyl group, acetyl group, propionyl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, hexanoyl group, cyclohexanoyl group, benzoyl group, ethoxycarbonyl
  • the carbon number of the acyl group includes carbonyl carbon.
  • an alkanoyl group having 1 carbon atom refers to a formyl group.
  • halogen refers to any halogen element, and examples thereof include fluorine, chlorine, bromine and iodine.
  • the amino-protecting group is not particularly limited, and examples thereof include a trifluoroacetyl group, a formyl group, a C1-6 alkyl-carbonyl group (for example, acetyl, ethylcarbonyl), C1-6 alkyl- Sulfonyl group, tert-butyloxycarbonyl group (hereinafter also referred to as Boc), benzyloxycarbonyl group, allyloxycarbonyl group, fluorenylmethyloxycarbonyl group, arylcarbonyl group (eg, phenylcarbonyl, naphthylcarbonyl, etc.), arylsulfonyl Groups (eg, phenylsulfonyl, naphthylsulfonyl, etc.), C1-6 alkyloxy
  • halogen atoms for example, fluorine, chlorine, bromine, etc.
  • nitro group etc.
  • Specific examples thereof include p-nitrobenzyloxycarbonyl group, p-chlorobenzyl.
  • examples include oxycarbonyl group, m-chlorobenzyloxycarbonyl group, p-methoxybenzyloxycarbonyl group and the like.
  • the hydroxyl-protecting group (including those that can be deprotected with an acid) is not particularly limited, and examples thereof include a dimethoxytrityl group, a monomethoxytrityl group, and a pixyl group.
  • the production method of the E primer or E probe is not particularly limited, and for example, a known synthesis method (production method) may be referred to as appropriate. Specifically, for example, the method disclosed in Japanese Patent No. 4370385 may be referred to as follows.
  • A represents a hydrogen atom or a hydroxyl group.
  • B represents an adenine, guanine, cytosine, thymine or uracil residue.
  • a production method (synthesis method) applicable to the production of E primer or E probe for example, there are the following methods. That is, first, as a simple labeling method for DNA, a method of reacting an active amino group in DNA with an activated carboxyl group in a labeling agent in a buffer solution is widely used. This method is applicable to the production of any of the compounds or nucleic acids of the present invention, and is particularly applicable to the introduction of linkers or dyes. As a method for introducing an amino group, there is a method using Amino modifier phosphoramidite sold by GLEN RESEARCH.
  • the atomic groups Z 11 and Z 12 can be converted, for example, from a protecting group to a hydrogen atom (the protecting group is removed), and further substituted from the hydrogen atom with a fluorescent atomic group (dye).
  • the method for removing the protecting group is not particularly limited, and a known method can be appropriately used.
  • the method of substitution with a fluorescent atomic group (dye) is not particularly limited, and for example, the compound or nucleic acid of the present invention in which Z 11 and Z 12 are hydrogen atoms and a fluorescent molecule (dye) are appropriately reacted. Just do it.
  • Z 11 and Z 12 are an active amino group because it easily reacts with a fluorescent molecule (dye), and it is more preferable that both Z 11 and Z 12 are active amino groups.
  • the fluorescent molecule (dye) is not particularly limited.
  • the compound represented by any one of the above formulas (7) to (9) (wherein R 11 and R 12 are each a hydrogen atom or a lower alkyl group) Or a carboxypolymethylene group).
  • the step of removing the protecting group and the step of substituting with a fluorescent atomic group (dye) may be performed before polymerization (nucleic acid synthesis). Or later.
  • an atomic group (dye) having fluorescence after polymerization (nucleic acid synthesis) from the viewpoint of preventing the dye part from being damaged in the synthesis step.
  • the dye is not particularly limited, and any dye can be used.
  • a cyanine dye is preferable, and thiazole orange is particularly preferable.
  • a cyanine dye has a chemical structure in which two heterocycles having heteroatoms are connected by a methine linker. It is possible to synthesize fluorescent dyes with various excitation and emission wavelengths by changing the type of heterocyclic ring and the length of the methine linker, or introducing a substituent into the heterocyclic ring.
  • linker introduction for DNA introduction is relatively easy. Thiazole orange emits little fluorescence in water, but emits strong fluorescence by interacting with DNA or RNA.
  • thiazole orange dye is well known, for example, H.S.Rye, M.A.Quesada, K.Peck, R.A. Mathies and A.N.Glazer, High- sensitivity two-color detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange, Nucleic Acids Res., 1991, 19, 327-33; and L. G. Lee, C.L.Chen A. Chiu, Thiazole orange: a new dye for reticulocyte analysis, Cytometry, 1986, 7, 508-17 can be used.
  • the basic skeleton of the E primer or E probe is not particularly limited as described above.
  • the oligonucleotide, the modified oligonucleotide, the oligonucleoside, the modified oligonucleoside, the polynucleotide, the modified polynucleotide, the polynucleoside, the modification It may be any of a polynucleoside, DNA, modified DNA, RNA, modified DNA, LNA, or PNA (peptide nucleic acid), or any other structure. It is preferable to use DNA, modified DNA, RNA, or modified DNA as a basic skeleton because it is easier to synthesize and can be easily replaced with a dye (introduction of dye molecules).
  • a method for introducing a dye molecule into LNA or PNA is not particularly limited, and a known method can be appropriately used. Specifically, for example, Analytical Biochemistry 2000, 281, 26-35. Svanvik, N., Westman, G., Wang, D., Kubista, M. (2000) Anal Biochem. 281, 26-35. Hrdlicka, P. J., Babu, B. R., Sorensen, M. D., Harris, N., Wengel, J. (2005) J. Am. Chem. Soc. 127, 13293-13299. Can do.
  • Oligonucleotides, modified oligonucleotides, oligonucleosides, modified oligonucleotides, polynucleotides, modified polynucleotides, polynucleosides, modified polynucleosides, DNA, modified DNA, RNA, or methods for synthesizing nucleic acids based on modified DNA are well known
  • it can be synthesized by the so-called phosphoramidite method.
  • the phosphoramidite reagent used as the raw material can also be easily synthesized by a known method.
  • the nucleic acid of the present invention is DNA, particularly a short oligo DNA, it can be easily synthesized by, for example, an automatic DNA synthesizer.
  • a long-chain nucleic acid can be synthesized by PCR or the like.
  • the binding site between the DNA and the dye molecule is not particularly limited as described above.
  • the 5-position of thymidine is particularly preferable.
  • triphosphate a nucleotide derivative obtained by extending various substituents from the 5-position of thymidine, has relatively good introduction efficiency by DNA polymerase. Thereby, for example, simple synthesis is possible not only when the nucleic acid of the present invention is a short oligo DNA but also when it is a long DNA.
  • the fluorescent probe (labeled nucleic acid) of the present invention which is a single-stranded DNA using, for example, thiazole orange
  • the fluorescent probe (labeled nucleic acid) of the present invention is, for example: It has the advantage that it can be prepared and is synthetically easy, and (2) it is possible to produce a long-chain fluorescent probe by reacting a long-chain DNA prepared enzymatically with a dye. For example, it can be excited by light having a relatively long wavelength near 500 nm.
  • the fluorescent atomic group is, for example, (I) Two planar chemical structures in one molecule are not in the same plane but exist at a certain angle, but when the molecule intercalates or grooves binds to a nucleic acid, two planar chemical structures are present.
  • Fluorescence emission is caused by arranging the structures so that they are aligned in the same plane, (Ii) When the two or more dye molecules do not exhibit fluorescence due to the exciton effect that occurs due to the assembly in parallel, but when these molecules intercalate or groove bind to a target molecule, such as a nucleic acid, It is composed of two or more dye molecule groups that generate fluorescence when the aggregated state is solved, or (Iii) When the two or more dye molecules do not exhibit fluorescence due to the exciton effect that occurs due to the assembly in parallel, but when these molecules intercalate or groove bind to a target molecule, eg, a nucleic acid, It has the chemical structure of two or more dye molecules in which fluorescence emission occurs when the aggregate state is solved in the same molecule.
  • the dye molecule is preferably the molecule described in (i).
  • Z 11 and Z 12 are atomic groups exhibiting an exciton effect, so that the environmental change around the fluorescent dye when bound to the target molecule, for example, the fluorescence when DNA becomes double-stranded The increase is greater and can be detected more effectively.
  • the dye is not particularly limited, and any dye can be used.
  • a cyanine dye is preferable, and thiazole orange is particularly preferable.
  • a cyanine dye has a chemical structure in which two heterocycles having heteroatoms are connected by a methine linker. It is possible to synthesize fluorescent dyes with various excitation and emission wavelengths by changing the type of heterocyclic ring and the length of the methine linker, or introducing a substituent into the heterocyclic ring.
  • linker introduction for DNA introduction is relatively easy. Thiazole orange emits little fluorescence in water, but emits strong fluorescence by interacting with DNA or RNA.
  • thiazole orange dye is well known.
  • H. S. Rye, M. A. Quesada, K. Peck, R. A. Mathies and A. N. Glazer High- sensitivity two-color detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange, Nucleic Acids Res., 1991, 19, 327-33; and L. G. Lee, C.L.Chen A. Chiu, Thiazole orange: a new dye for reticulocyte analysis, Cytometry, 1986, 7, 508-17 can be used.
  • Nucleic acid molecules were synthesized based on or according to the following synthesis examples. These synthesis methods (manufacturing methods) are the same as the synthesis methods described in Examples of Japanese Patent No. 4370385.
  • Oligo DNA synthesis by a DNA automatic synthesizer using Compound 104 was performed by a normal phosphoramidite method (DMTr OFF) at a 1 ⁇ mol scale, and DNA oligomers having the sequences shown in Examples described later were synthesized. Deprotection was carried out with concentrated aqueous ammonia (28% by mass) at 55 ° C. for 16 hours.
  • Ammonia was volatilized by speedback, passed through a 0.45 ⁇ m filter, and the excised DNA oligomer was analyzed by reverse phase HPLC, and the peak that appeared at about 10.5 minutes was purified (CHEMCOBOND 5-ODS-H (trade name) 10 ⁇ 150mm, 3mL / min, 5-30 % CH 3 CN / 50mM TEAA buffer pH 7 (20 minutes), detected at 260 nm).
  • the purified product was confirmed to have the target sequence by measuring the molecular weight in the negative mode of MALDI TOF mass.
  • each purified DNA was treated with bovine intestinal alkaline phosphatase (50 U / mL), snake venom phosphodiesterase (0.15 U / mL) and P1 nuclease (50 U / mL). Complete digestion at 16 ° C for 16 hours. The obtained digestive juice was analyzed by HPLC of a CHEMCOBOND 5-ODS-H (trade name) column (4.6 ⁇ 150 mm). At that time, 0.1 M TEAA (pH 7.0) was used as a developing solution, and the flow rate was 1.0 mL / min.
  • the concentration of the synthesized DNA was determined by comparison with the peak area of a standard solution containing dA, dC, dG and dT at a concentration of 0.1 mM. Furthermore, the synthesized DNA was also identified by MALDI TOF mass spectrum.
  • a DNA oligomer (oligonucleotide) 110 having a structure derived from thiazole orange at two positions in one molecule was synthesized. More details are as follows.
  • the thiazole orange derivative 107 was synthesized as shown in Scheme 5 below with reference to Organic Letters 2000, 6, 517-519.
  • N-methylquinolinium iodide (Compound 111) was synthesized according to the description in the literature. Specifically, in 42 mL of anhydrous dioxane, 2.4 mL of quinoline and 4 mL of methyl iodide were added and stirred at 150 ° C. for 1 hour, and then the precipitate was collected by filtration, washed with ether and petroleum ether, dried, N- Methylquinolinium iodide (Compound 111) was obtained.
  • carboxypropyl) -2-methylbenzothiazolium bromide was synthesized, it was obtained in a yield of 22%.
  • DNA oligomer (oligonucleotide) 110 modified with two molecules of thiazole orange DNA oligomer (oligonucleotide) 105 having two active amino groups was synthesized automatically in the same manner as in Intermediate Synthesis Example 4. It was synthesized by a conventional method using a machine. Next, this DNA oligomer (oligonucleotide) 105 is reacted with N-hydroxysuccinimidyl ester (compound 109) to form a DNA oligomer (nucleic acid molecule having two structures in one molecule derived from thiazole orange) Oligonucleotide) 110 was synthesized.
  • DNA oligomer 105 (strand concentration: 320 ⁇ M), 10 ⁇ L of Na 2 CO 3 / NaHCO 3 buffer (1M, pH 9.0) and 60 ⁇ L of H 2 O were mixed, and N-hydroxysuccinimidyl ester ( 100 ⁇ L of Compound 109) in DMF (20 mM) was added and mixed well.
  • Example 1 [Molecular count experiment of actin beta messenger RNA by bridge RT-PCR using a solid-phase specific primer set] 1.
  • a reaction chamber was created by attaching an adhesive frame (Takara Bio) to the biotin-coated surface of a biotin-coated slide glass (Alliance Technology).
  • a 25 microliter reaction solution was added to a chamber on a slide glass in which only a primer pair and a forward primer were solid-phased, and the chamber was closed with a cover film (Takara Bio Inc.). 5.
  • a glass slide is placed in the reaction chamber of a Gene-Pro thermal cycler (Bioer Technology) equipped with the GenePro Insitu “Japanese Version” B-4 block, heated to 55 ° C for 30 minutes, 94 ° C for 4 minutes, and then 94 ° C for 1 minute The temperature cycle of 60 ° C for 1 minute and 68 ° C for 1 minute was repeated 40 times. Thereafter, the reaction was terminated by incubation at 68 ° C. for 5 minutes. 6).
  • Example 2 [Example 2-A. Primer design and primer quality confirmation]
  • the following primer oligos were designed for the human actin beta messenger gene sequence (NCBI reference sequence: NM_001101.3).
  • U (exciton dye short wavelength (510/530) labeled T) and Z (exciton dye long wavelength (570/590) labeled T) are respectively represented by the following chemical formulas.
  • the structure of U (exciton dye short wavelength (510/530) labeled T) is the same as the exciton dye labeled T structure of the DNA oligomer (oligonucleotide) 110.
  • Nucleic acid containing U (exciton dye short wavelength (510/530) labeled T) was synthesized according to the above synthesis example.
  • synthesis of a nucleic acid containing Z (exciton dye long wavelength (570/590) labeled T) was also performed according to the method of the above synthesis example.
  • ACTB-T7RNAF primer (5'-CTAATACGACTCACTATAGGGAGAATGGATGATGATATCGCCGCGCT-3 ': SEQ ID NO: 3)
  • ACTB-RNAR primer (5'-CATTTTTAAGGTGTGCACTTTTATTCAACTGGTC-3 ': SEQ ID NO: 4)
  • ACTB-5'F primer (5'-GGCATGGGTCAGAAGGATT-3 ': SEQ ID NO: 5)
  • ACTB-5'R primer (5'-AGGTGTGGTGCCAGATTTTC-3 ': SEQ ID NO: 6)
  • ACTB-5'F_5'Bio Primer (5'-GGCATGGGTCAGAAGGATT-3 ', 5' terminal biotinylation: SEQ ID NO: 7)
  • ACTB-5'R_5'Bio Primer (5'-AGGTGTGGTGCCAGATTTTC-3 ', 5' biotinylation: SEQ ID NO: 8)
  • Oligo synthesis was commissioned to Operon Biotechnology Co., Ltd.
  • the synthesis method was the same as or similar to the synthesis method of the DNA oligomer (oligonucleotide) 110 as described above.
  • the quality of the synthesized primer oligo was confirmed by the following method. 1. Escherichia coli clone AK025375 containing human actin beta cDNA was streaked on LB agar medium containing ampicillin from the cDNA clone collection held in the RIKEN Omics-based research area, and a single colony was obtained after overnight culture at 37 ° C. 2. Single colonies were scraped and suspended in 10 microliters of sterile distilled water. 3.
  • ACTB-5′F primer 5′-GGCATGGGTCAGAAGGATT-3 ′: SEQ ID NO: 5
  • ACTB-5′R primer 5′-AGGTGTGGTGCCAGATTTTC-3 ′: SEQ ID NO: 6
  • A 0.5 ⁇ M ACTB-T7RNAF primer
  • washing buffer (4.5 mol / liter sodium chloride, 50 mmol / liter containing ethylenediaminetetraacetic acid) was added to suspend, set on a magnetic plate, allowed to stand for 3 minutes, and then the supernatant was removed. Washing with wash buffer was repeated a total of 3 times, and finally 200 microliters of wash buffer was added and resuspended. 7). Collect 20 microliters of sample to which primer pairs (A), (C), and (D) were added, add 2.2 microliters of 10 x RNaseOne buffer, and resuspend MPG Streptavidin beads in 51.8 ml. After the addition of microliter, it was incubated at 37 ° C. for 30 minutes.
  • the suspension was suspended 10 times using a pipetter every 5 minutes. After incubation, the sample was set on a magnetic plate and allowed to stand for 5 minutes. The supernatant was collected and used as a sample after MPG Streptavidin beads supplementation treatment. 8).
  • a 1.0% agarose gel was prepared and electrophoresed at 100 V for 70 minutes under TAE buffer. After completion of the electrophoresis, staining was performed at room temperature for 10 minutes while shaking with SYBR Gold. After the staining, the gel was taken out and the band was confirmed under ultraviolet irradiation.
  • FIG. 3 is a photograph showing the quality check result of oligo synthesis.
  • (Description of FIG. 3) -: No primer biotinylation +: With primer biotinylation
  • Lane 1 Marker lane 2: Marker lane 3: Empty lane
  • Lane 4 Sample after PCR with primer set B
  • Lane 5 Sample lane after PCR with primer set A
  • 6 Sample lane after PCR with primer set C
  • Sample lane after PCR with primer set D 8 Supernatant sample lane after contacting the sample after PCR with primer set A with streptavidin beads
  • 9 Primer set Supernatant sample lane after contacting sample after PCR with C to streptavidin beads: supernatant sample after contacting sample after PCR with primer set D to streptavidin beads
  • Example 2-B Preparation of actin beta DNA
  • a single colony of E. coli clone AK025375 containing human actin beta cDNA was scraped and suspended in 10 microliters of sterile distilled water.
  • 2. Prepare a 0.2 ml PCR tube, 1 mM magnesium chloride, 0.16 mM dNTP, 0.5 ⁇ M ACTB-5′F primer (5′-GGCATGGGTCAGAAGGATT-3 ′: SEQ ID NO: 5), 0.5 ⁇ M in the buffer for HotStar Taq.
  • Agencourt AMPure XP (Beckman Coulter) was added to 50 microliters of the reaction solution and mixed, and the mixture was allowed to stand at room temperature for 30 minutes. After 30 minutes, place on the magnet plate and let stand for 5 minutes. The supernatant was discarded so as not to suck the beads, 200 microliters of 70% ethanol was added and allowed to stand for 15 seconds. After ethanol was discarded, 200 microliters of 70% ethanol was added again and left for 15 seconds. After discarding the ethanol, it was dried for 3 minutes, taking care not to get dust. After drying, it was removed from the magnet plate, and 41 microliters of sterile distilled water was added and mixed well. It was placed on the magnetic plate again and allowed to stand for 5 minutes, and then 40 microliters of the supernatant was collected. 5. The sample solution was measured using a bioanalyzer DNA1000 kit (Agilent Technology Co., Ltd.).
  • FIG. 4 is a diagram showing the result of electrophoresis of the product after PCR. As shown in the figure, it was confirmed that a PCR product having a size of 133 bp could be synthesized as intended. This was used as a template for solid-phase PCR to be performed in the future.
  • Example 2-C Preparation of actin beta messenger RNA
  • the collected template DNA for actin beta messenger RNA synthesis was subjected to electrophoresis at 100 V for 70 minutes under 1.0% agarose gel and TAE buffer. After completion of the electrophoresis, staining was performed at room temperature for 10 minutes while shaking with a TAE buffer containing SYBR Gold. After the staining, the gel was taken out and the band was confirmed under ultraviolet irradiation. The concentration of the product after PCR was measured with NanoDrop 8000 (Thermo SCIENTIFIC). 6).
  • FIG. 5 is a photograph showing the result of synthesis of template DNA for actin beta messenger RNA synthesis.
  • the template DNA was synthesized by changing the amount of suspension of E. coli clone AK025375 containing human actin beta cDNA added during PCR to 1 microliter, 2 microliters, 5 microliters, and 10 microliters. Went.
  • a template DNA for actin beta messenger RNA synthesis having a target size of 1751 bp could be synthesized by adding 1-5 microliters of suspension.
  • FIG. 6 shows the results of actin beta messenger RNA synthesis using CUGA 7 in vitro Transcription Kit. As shown in the figure, the target RNA product having a size of 1730 bp could be synthesized.
  • L Marker lane 1: Sample after RNA synthesis (no dilution)
  • Lane 2 Sample after RNA synthesis (diluted 10 times with RNase free distilled water)
  • Lane 3 Sample after RNA synthesis (100-fold dilution with RNase free distilled water)
  • Lane 4 Sample after RNA synthesis (diluted 100 times with RNase free distilled water)
  • Lane 5 Sample after RNA synthesis (1000-fold dilution with RNase-free distilled water)
  • Lane 6 Sample after RNA synthesis (10,000-fold dilution with RNase-free distilled water)
  • Example 2-D Confirmation of thermal cycler operation and PCR on slide glass substrate
  • a reaction chamber was prepared by attaching an adhesive frame (Takara Bio seal TakaraSlide seal for in situ PCR) to the slide glass.
  • An adhesive frame TakaraSlide seal for in situ PCR
  • a single colony of E. coli clone AK025375 containing human actin beta cDNA was scraped and suspended in 100 microliters of sterile distilled water. 3.
  • Platinum Taq buffer forward: 5'-GGCATGGGTCAGAAGGATT-3 ', reverse: 5'-AGGTGTGGTGCCAGATTTTC-3', each 0.2 ⁇ M
  • Platinum Taq DNA Polymerase Invitrogen.
  • 25 microliters of the PCR reaction solution was added to the reaction chamber, and the chamber was closed with a cover film (Takara Bio seal Takara Slide Seal for in situ PCR).
  • FIG. 7 shows the results of the operation check of the Bioer Technology Gene-Pro thermal cycler equipped with the GenePro Insitu “Japanese Version” B-4 block and the confirmation of the PCR reaction in the reaction chamber made of the slide glass.
  • a PCR product having a size of 133 bp could be synthesized in the same manner as in the PCR experiment (Example 2-A. Lane 5) performed in a PCR tube (though it was clearly confirmed with a thin line). Thereby, it was confirmed that the PCR reaction proceeded in the reaction chamber made of the slide chamber and the operation check of the thermal cycler.
  • L Marker lane 1: Sample after PCR
  • Example 2-E Confirmation of binding of biotinylated primer to biotin-coated cover glass
  • a specific primer (5'-AAAAAAAAAAGGCATGGGTCAGAAGGATT-3 ') was biotinylated at the 5' end and labeled with Cy5 at the 3 'end (ACTB-5'F_5'BioM_Cy5: SEQ ID NO: 15).
  • a reaction chamber was created by attaching an adhesive frame (Takara Bio seals for in situ PCR) to the biotin-coated surface of biotin-coated cover glass (Alliance Technology Biotin / cover slip / Bio_02-C).
  • FIG. 8, FIG. 9 and FIG. 10 are photographs showing the observation results with a fluorescence microscope.
  • Negative control no streptavidin, 200 pM Cy5-labeled biotinylated primer added, washed after incubation
  • 50 pM Cy5 oligo streptavidin
  • Wash after addition 50pM Cy5 labeled biotinylated primer added, washed after incubation
  • 200pM Cy5 oligo wash after added streptavidin, 200pM Cy5 labeled biotinylated primer added, washed after incubation.
  • the fluorescent spot derived from Cy5 labeled on the biotinylated primer changes in a concentration-dependent manner, and the fluorescent spot is not visible at all in the negative control image without streptavidin added. It was confirmed that the primer binding was successful. It was also confirmed that the washing method used in this method was effective for removing non-specific biotinylated primers.
  • Example 2-F Validity of PCR reaction system and solid-phase PCR in a chamber made of glass substrate using prepared actin beta DNA
  • Specific primer forward: 5'-AAA AAA AAA AGG CAT GGG TCA GAA GGA TT-3 ': SEQ ID NO: 1
  • Primers with biotinylated 5 ′ ends were synthesized.
  • a reaction chamber was prepared by attaching an adhesive frame (Takara Bio seals for in situ PCR) to the biotin-coated surface of a biotin-coated cover glass (Alliance Technology Biotin / cover slip / Bio_02-C).
  • streptavidin protein solution prepared in physiological saline with glycerol in the chamber and cover with a petri dish lid to prevent drying, then leave it at 37 ° C for 30 minutes to leave streptavidin protein was immobilized on the surface of a slide glass. After immobilization, the cells were washed 3 times with physiological saline to remove excess streptavidin protein. 3. Glycerol was added to physiological saline to 10% glycerol, and two types of biotinylated forward primer and reverse primer were added to a final concentration of 3.3 ⁇ mol / liter.
  • a reaction solution was prepared by mixing 1.5 mM magnesium chloride, 0.2 mM dNTP, SYBR Green solution, and 1 unit Platinum Taq DNA polymerase (Invitrogen) in Platinum Taq buffer, and actin beta DNA was added to 20 pM.
  • FIG. 11 is a photograph showing a result of observation of the cover glass after solid-phase PCR by a fluorescence microscope. As shown in the figure, since the fluorescent spot by SYBR Green could be confirmed, it was confirmed that a double-stranded DNA cluster was formed by solid-phase PCR.
  • Example 2-G Confirmation of the effectiveness of the two-step RT-PCR reaction system using the prepared actin beta messenger RNA
  • 1. Prepare 1 microliter ACTB-5'R primer 2 microliters, 10 mM dNTP 1 microliter, actin beta messenger RNA added to 1 microgram / microliter 10 microliter solution in 0.2 microliter PCR tube, GeneAmp PCR It was set in a System 9700 thermal cycler (Applied Biosystems) and incubated at 65 ° C. for 5 minutes. After incubation, it was cooled on ice for 2 minutes.
  • FIG. 12 shows the result of electrophoresis of the sample after two-step RT-PCR.
  • Lanes 1-3 Sample after reverse transcription (1: No dilution 2: 5-fold dilution 3: Negative control (no RNA template))
  • Lanes 4-6 Sample after PCR (4: undiluted 5: 5-fold diluted 6: negative control (no RNA template))
  • Example 2-H Validity of one-step RT-PCR reaction system
  • Primer mix specific for 1.6 mM magnesium sulfate, 0.2 mM dNTP, actin beta messenger RNA in Platinum Taq buffer in 0.2 ml PCR tube forward: 5'-GGCATGGGTCAGAAGGATT-3 ': SEQ ID NO: 16, reverse : 5′-AGGTGTGGTGCCAGATTTTC-3 ′: SEQ ID NO: 17, each 0.2 ⁇ M
  • final concentration 0.5 ⁇ g / ⁇ l actin beta messenger RNA
  • FIG. 13 shows the result of electrophoresis of the sample after one-step RT-PCR. As shown in the figure, a 133 bp band, which was the target product, was confirmed, confirming that the one-step RT-PCR reaction system worked well. It was confirmed that the reverse transcriptase SuperScriptIII 100, 200, and 500 units functioned well. (Explanation of FIG.
  • Example 2-I Confirmation of the effectiveness of a one-step RT-PCR reaction system in a chamber made of glass substrate.
  • a reaction chamber was prepared by attaching an adhesive frame (Takara Bio seal TakaraSlide seal for in situ PCR) to the slide glass. 2.
  • reaction solution 25 microliters was added to the reaction chamber, and the chamber was closed with a cover film (Takara Bio sealant for in situ PCR). 4).
  • a slide glass containing the above reaction solution is placed in the reaction chamber of the Gene-Pro thermal cycler of Bioer Technology with GenePro Insitu “Japanese Version” B-4 block, and heated at 55 ° C for 30 minutes and 94 ° C for 4 minutes.
  • the temperature cycle of 94 ° C. for 1 minute, 60 ° C. for 1 minute, and 68 ° C. for 1 minute was repeated 40 times. Thereafter, the reaction was terminated by incubation at 68 ° C. for 5 minutes. 5.
  • FIG. 14 shows the result of electrophoresis of a sample after one-step RT-PCR reacted in a chamber made of a glass substrate. As shown in the figure, since the 133 bp band as the target product was confirmed, it was confirmed that the one-step RT-PCR reaction system reacted in a chamber made of a glass substrate worked well.
  • L Marker lanes 1-3: Sample after one-step RT-PCR
  • Example 2-J 1. Molecular counting experiment of actin beta messenger RNA by bridge RT-PCR using solid phase specific primer set Specific primer (forward: 5'-AAA AAA AAA AGG CAT GGG TCA GAA GGA TT-3 ': SEQ ID NO: 1, reverse: 5'-AAA AAA AAA AAG GTG TGG TGC CAG ATT TTC-3': SEQ ID NO: 2) Primers with biotinylated 5 ′ ends were synthesized. 2.
  • a reaction chamber was prepared by attaching an adhesive frame (Takara Bio seals for in situ PCR) to the biotin-coated surface of a biotin-coated cover glass (Alliance Technology Biotin / cover slip / Bio_02-C).
  • the forward primer was added to a final concentration of 6.6 ⁇ mol / liter for negative control.
  • a biotinylated primer pair or a biotinylated forward primer for negative control was immobilized. After immobilization, the excess primer was removed by washing 3 times with physiological saline. 4).
  • Reverse transcription and PCR in which Platinum Taq buffer is mixed with 1.6 mM magnesium sulfate, 0.2 mM dNTP, SYBR Green solution, 200 units SuperScript III (Invitrogen), 2 units Platinum Taq DNA polymerase (Invitrogen) are performed in the same reaction solution.
  • a reaction solution was prepared, and actin beta messenger RNA was added to 100 pM. 25 microliter reaction liquid was added to the chamber on the cover glass which solidified only the forward primer only for the primer pair and the negative control, respectively, and the chamber was closed with a cover film (Takara Bio sealer for in situ PCR). 5.
  • FIGS. 15 and 16 are photographs showing the results of observation of the cover glass after bridge RT-PCR with a fluorescence microscope. Negative control (only forward primer immobilized, 100 nM actin beta messenger RNA added) and 100 pM actin beta messenger, respectively. The result of RNA addition is shown. As shown in the figure, a fluorescent spot derived from SYBR Green could be confirmed only in the reaction chamber in which both the forward primer and the reverse primer were immobilized. This confirmed that the fluorescent spot was derived from the double-stranded DNA cluster, and that the bridge RT-PCR reaction system proceeded well with the immobilized primer pair.
  • Example 2-K Molecular counting experiment of actin beta messenger RNA by bridge RT-PCR using solid phase specific primer set (reproducibility of template messenger RNA concentration and amplification confirmation)]
  • Specific primer forward: 5'-AAA AAA AAA AGG CAT GGG TCA GAA GGA TT-3 ': SEQ ID NO: 1
  • Primers with biotinylated 5 ′ ends were synthesized. 2.
  • a reaction chamber was prepared by attaching an adhesive frame (Takara Bio seals for in situ PCR) to the biotin-coated surface of a biotin-coated cover glass (Alliance Technology Biotin / cover slip / Bio_02-C).
  • a biotin-coated cover glass supplemented with physiological saline supplemented with glycerol prepared by adding RNase-free water instead of streptavidin was also prepared. 3.
  • Actin beta messenger RNA was added to each so as to be 100 nM, 100 pM, and 100 fM.
  • a 25 microliter reaction solution was added to the chamber on the cover glass on which the primer pair was immobilized or the cover glass for negative control, and the chamber was closed with a cover film (Takara Bio seal Takara Slide seal for in situ PCR). 5.
  • a cover glass is placed in the reaction chamber of the Gene-Pro thermal cycler of Bioer Technology, equipped with the GenePro Insitu “Japanese Version” B-4 block. A temperature cycle of 1 ° C. and 68 ° C. for 1 minute was repeated 40 times. Thereafter, the reaction was terminated by incubation at 68 ° C. for 5 minutes. 6). After the reaction, the cover glass was excited with a Nikon Eclipse Ti fluorescence microscope at an excitation wavelength of 470 nm, and fluorescence at 525 nm was observed.
  • FIG. 17, FIG. 18, FIG. 19 and FIG. 20 are photographs showing fluorescence microscope observation results (messenger RNA concentration) of the cover glass after bridge RT-PCR, and negative controls (without streptavidin, 100 nM actin beta messenger RNA, respectively. Addition), 100 fM actin beta messenger RNA addition, 100 pM actin beta messenger RNA addition, and 100 nM actin beta messenger RNA addition. As shown in the figure, the number of SYBR Green-derived fluorescent spots increased as the amount of actin beta messenger RNA added with 100 fM, 100 pM, and 100 nM increased.
  • Example 2-L Molecular counting experiment of actin beta messenger RNA by bridge RT-PCR using immobilized primer set (number of PCR cycles)]
  • Specific primer forward: 5'-AAA AAA AAA AGG CAT GGG TCA GAA GGA TT-3 ': SEQ ID NO: 1
  • Primers with biotinylated 5 ′ ends were synthesized.
  • a reaction chamber was prepared by attaching an adhesive frame (Takara Bio seals for in situ PCR) to the biotin-coated surface of a biotin-coated cover glass (Alliance Technology Biotin / cover slip / Bio_02-C).
  • the forward primer was added to a final concentration of 6.6 ⁇ mol / liter for negative control.
  • the excess primer was removed by washing 3 times with physiological saline. 4).
  • Reverse transcription and PCR in which Platinum Taq buffer is mixed with 1.6 mM magnesium sulfate, 0.2 mM dNTP, SYBR Green solution, 200 units SuperScript III (Invitrogen) and 2 units Platinum Taq DNA polymerase (Invitrogen) are performed in the same reaction solution.
  • a reaction solution was prepared, and actin beta messenger RNA was added to 100 pM.
  • a 25 microliter reaction solution was added to the chamber on the cover glass on which the primer pair was immobilized or the cover glass for negative control, and the chamber was closed with a cover film (Takara Bio seal Takara Slide seal for in situ PCR). 5.
  • a cover glass is placed in the reaction chamber of the Gene-Pro thermal cycler of Bioer Technology, equipped with the GenePro Insitu “Japanese Version” B-4 block, heated at 55 ° C for 30 minutes, 94 ° C for 4 minutes, and then at 94 ° C for 1 minute, 60 A temperature cycle of 1 ° C. and 68 ° C. for 1 minute was repeated 10, 20, 30, 40 times. 6). After each cycle, the cover glass was taken out and stored refrigerated at 4 ° C., protected from light. Excitation was performed with a Nikon Eclipse Ti fluorescence microscope at an excitation wavelength of 470 nm, and fluorescence at 525 nm was observed.
  • FIG. 21, FIG. 22, FIG. 23, FIG. 24 and FIG. 25 are photographs showing fluorescence microscope observation results (the number of PCR cycles) of the cover glass after bridge RT-PCR. ), PCR 10 cycles, PCR 20 cycles, PCR 30 cycles, and PCR 40 cycles. Up to 20 cycles, the formation of DNA clusters by bridge PCR could not be confirmed by this observation method, and DNA clusters were visible after 30 cycles.
  • Example 2-M Molecular counting experiment of actin beta messenger RNA by bridge RT-PCR using solid phase specific primer set labeled with autofluorescent / quenching fluorescent dye
  • ACTB-5'F_ExS (5'-GGCATGGGT * CAGAAGGATT-3) which is a fluorescent primer that excites and quenches (exciton primer, S. Ikeda, A. Okamoto, Chem. Asian J.
  • a reaction chamber was prepared by attaching an adhesive frame (Takara Bio seals for in situ PCR) to the biotin-coated surface of a biotin-coated cover glass (Alliance Technology Biotin / cover slip / Bio_02-C).
  • streptavidin protein solution prepared in physiological saline with glycerol in the chamber and cover with a petri dish lid to prevent drying, then leave it at 37 ° C for 30 minutes to leave streptavidin protein was immobilized on the surface of a slide glass. After immobilization, the cells were washed 3 times with physiological saline to remove excess streptavidin protein. 3.
  • Glycerol is added to physiological saline to 10% glycerol, biotinylated exciton forward primer to a final concentration of 3.3 ⁇ mol / liter and biotinylated exciton reverse primer to a final concentration of 3.3 ⁇ mol / liter Or the forward primer alone was added to a final concentration of 6.6 micromol / liter for negative control.
  • Reaction in which reverse transcription and PCR can be performed in the same reaction solution by mixing 1.6 mM magnesium sulfate, 0.2 mM dNTP, 200 units SuperScript III (Invitrogen), and 2 units Platinum Taq DNA polymerase (Invitrogen) in Platinum Taq buffer.
  • a solution was prepared, and actin beta messenger RNA was added to 100 pM. 25 microliters of the reaction solution was added to a chamber on the cover glass on which the primer pair was immobilized or the cover glass for negative control, and the chamber was closed with a cover film (Takara Bio sealer for in situ PCR). 5.
  • a cover glass is placed in the reaction chamber of the Gene-Pro thermal cycler of Bioer Technology, equipped with the GenePro Insitu “Japanese Version” B-4 block, heated at 55 ° C for 30 minutes, 94 ° C for 4 minutes, and then at 94 ° C for 1 minute, 60
  • the reaction was repeated 40 times at a temperature cycle of 1 ° C and 68 ° C for 1 minute. Thereafter, the reaction was terminated by incubation at 68 ° C. for 5 minutes. 6).
  • the cover glass was excited with a Nikon Eclipse Ti fluorescence microscope at an excitation wavelength of 470 nm, and fluorescence at 520 nm was observed.
  • FIG. 26 and FIG. 27 are photographs showing the results of bridge RT-PCR using a fluorescent-labeled solid-phase specific primer set, and negative control (only forward primer was solid-phased, 100 pM actin beta messenger RNA was added, respectively) ), And exciton forward primer / exciton reverse primer immobilized and 100 pM actin beta messenger RNA added.
  • a fluorescent primer exciton primer
  • a fluorescent spot derived from a DNA cluster after RT-PCR is the same as when SYBR Green is added I was able to confirm.
  • a composition for prediction, determination, detection or diagnosis useful for predicting, determining, detecting or diagnosing health status and various diseases, health status and various diseases using the composition Prognosis prediction, determination, detection or diagnosis method, and health condition and various disease prognosis prediction, determination, detection or diagnosis kits and devices using the composition, for example, for diseases in the medical field
  • the present invention is industrially useful because it can provide good results for inspection, diagnosis, and the like.

Abstract

 迅速かつ簡便に標的核酸の分析を行うことが可能な、標的核酸の分析方法を提供する。 前記目的を達成するために、本発明の分析方法は、 試料中の標的核酸の分析方法であって、 前記試料を、前記標的核酸にハイブリダイズすることが可能なプライマー又はプローブと、標識とに接触させて、前記試料中の前記標的核酸の分析を行い、 前記プライマー又はプローブは、固相に固定されており、 前記標識は、前記プライマー又はプローブが前記標的核酸とハイブリダイズしない場合は消光し、前記プライマー又はプローブが前記標的核酸とハイブリダイズした場合は発光する標識であり、 前記標識の発光の検出により分析を行うことを特徴とする。

Description

標的核酸の分析方法、キットおよび分析機器
 本発明は、標的核酸の分析方法、キットおよび分析機器に関する。
 一塩基遺伝子多型(SNP)や遺伝子変異を含む遺伝子型解析は、「テーラーメイド医療」の根拠を提供する拠点ともいえ、その必要性が急速に高まっている。医薬品の副作用を低減させるために、米国食品医薬品局は新薬の申請の際に薬剤の効果に関するSNPや遺伝子変異の情報の添付を義務付ける方向にあり、我が国においてもSNPや遺伝子変異の解析の必要性が高まっている。
 核酸のコピー数や変異を測定する機器は、学術上、臨床上、汎用される。一つの遺伝子のコピー数や変異を見ることによって、薬の反応性や予後などが予測できるバイオマーカーが多く発見されている。たとえば、イレッサ、ハーセプチンなどが例に挙げられる。しかし、たった一つのバイオマーカーで、切れ味よく予測できる例はそれほど多くはなく、生体内は、さまざまなネットワークによって、制御されてホメオスターシスが保たれている。
 特に最近、転写因子や非タンパクコードRNA(ncRNA)がお互いに形成するBasin Networkの概念が提唱されている(非特許文献1~3)。細胞が形質を維持するためには、必ず限られた数の転写因子とncRNAが、セントラルドグマのあらゆるレベルで作用しあい、特に、転写レベルの調節の寄与度は大きいと考えられている。これらの特定の転写因子やncRNAの核内濃度は一定であるかもしくは振動しており、決して、核内濃度は発散しない。一度発散すると、核内の転写因子・ncRNA間で形成しているネットワークのバランスが変化して、次のネットワーク形態に変化し、細胞は分化、癌化、老化、などの次の表現形質を示すようになる。
Nature Genetics 41, 553-562 (2009) Nature Genetics 41, 563-571 (2009) Nature Genetics 41, 572-578 (2009)
 前記Basin Networkは、核内転写レベルの調節ネットワークであるが、実際は、核内ゲノムDNAのエピゲノムの状態(ヘテロクロマチン形成やDNAのメチレーションなどの修飾)、RNA干渉のようにRNAそのものの分解代謝や、RNAの翻訳レベル、さらに、直接タンパク質への結合などによるタンパク質が機能するレベルのステップにも調節が行われている。その結果として、RNAやDNAの状態をたった一つの遺伝子をみることで、これらのネットワークが、どのように機能しているのかということは推し量れないのが現状である。ガンの予後診断、下記に記す薬への反応性(ResponderとNon-responder)などの診断を行うためには、細胞の機能状態を計測、定義できる技術でなくてはならない。しかも、これらの調節状態に寄与する転写因子やncRNAなどの遺伝子は、もともと発現量が低く、生理活性を持つ発現量が低い状態での発現量の変化を検出する必要がある。さらに、実際の臨床では、外来・手術室などで簡便にはかることができ、すぐにその場で結果を出すことが要求される。
 そこで、本発明は、迅速かつ簡便に標的核酸の分析を行うことが可能な、標的核酸の分析方法、キットおよび分析機器を提供することを目的とする。
 前記目的を達成するために、本発明の分析方法は、
試料中の標的核酸の分析方法であって、
前記試料を、前記標的核酸にハイブリダイズすることが可能なプライマー又はプローブと、標識とに接触させて、前記試料中の前記標的核酸の分析を行い、
前記プライマー又はプローブは、固相に固定されており、
前記標識は、前記プライマー又はプローブが前記標的核酸とハイブリダイズしない場合は消光し、前記プライマー又はプローブが前記標的核酸とハイブリダイズした場合は発光する標識であり、
前記標識の発光の検出により分析を行うことを特徴とする。
 本発明のキットは、前記本発明の分析方法を行うためのキットであり、前記キットが、前記プライマー又はプローブと、前記標識と、前記プライマー又はプローブを固定するための支持体とを含み、前記支持体が、前記固相を含むキットである。
 本発明の分析機器は、前記本発明の分析方法を行うための分析機器であり、前記標識の発光を検出するための発光検出手段を含む分析機器である。
 本発明の標的核酸の分析方法、キットおよび分析機器によれば、迅速かつ簡便に標的核酸の分析を行うことが可能である。
図1は、実施例1において、プライマー対を用いた場合、目的核酸の増幅産物が生成されていることを示す写真である。 図2は、実施例1において、フォワードプライマーのみを用いた場合、目的核酸の増幅産物の生成が観察できなかったことを示す写真である。 図3は、実施例2-Aにおいて、オリゴ合成の品質チェック結果を示す写真である。 図4は、実施例2-Bにおいて、PCR後産物の電気泳動結果を示す図である。 図5は、実施例2-Cにおいて、アクチンベータメッセンジャーRNA合成用鋳型DNAの合成結果を示す写真である。 図6は、実施例2-Cにおいて、CUGA 7 in vitro Transcription KitによるアクチンベータメッセンジャーRNA合成結果を示す図である。 図7は、実施例2-Dにおいて、GenePro Insitu “Japanese Version” B-4 ブロックを装着したBioer Technology社Gene-Proサーマルサイクラーの動作チェック結果とスライドガラスで作製した反応チャンバー内でのPCR反応の確認を示すものである。 図8は、実施例2-Eにおいて、蛍光顕微鏡での観察結果を示す写真である。 図9は、実施例2-Eにおいて、蛍光顕微鏡での観察結果を示す写真である。 図10は、実施例2-Eにおいて、蛍光顕微鏡での観察結果を示す写真である。 図11は、実施例2-Fにおいて、固相化PCR後カバーガラスの蛍光顕微鏡観察結果を示す写真である。 図12は、実施例2-Gにおいて、ツーステップRT-PCR後サンプルの電気泳動結果を示すものである。 図13は、実施例2-Hにおいて、ワンステップRT-PCR後サンプルの電気泳動結果を示すものである。 図14は、実施例2-Iにおいて、ガラス基板で作製したチャンバー内で反応させたワンステップRT-PCR後サンプルの電気泳動結果を示す。 図15は、実施例2-Jにおいて、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果を示す写真である。 図16は、実施例2-Jにおいて、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果を示す写真である。 図17は、実施例2-Kにおいて、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果(メッセンジャーRNA濃度)を示す写真である。 図18は、実施例2-Kにおいて、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果(メッセンジャーRNA濃度)を示す写真である。 図19は、実施例2-Kにおいて、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果(メッセンジャーRNA濃度)を示す写真である。 図20は、実施例2-Kにおいて、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果(メッセンジャーRNA濃度)を示す写真である。 図21は、実施例2-Lにおいて、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果(PCRサイクル数)を示す写真である。 図22は、実施例2-Lにおいて、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果(PCRサイクル数)を示す写真である。 図23は、実施例2-Lにおいて、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果(PCRサイクル数)を示す写真である。 図24は、実施例2-Lにおいて、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果(PCRサイクル数)を示す写真である。 図25は、実施例2-Lにおいて、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果(PCRサイクル数)を示す写真である。 図26は、実施例2-Mにおいて、蛍光標識した固相化特異的プライマーセットを用いたブリッジRT-PCRの結果を示す写真である。 図27は、実施例2-Mにおいて、蛍光標識した固相化特異的プライマーセットを用いたブリッジRT-PCRの結果を示す写真である。 図28は、Eプローブの使用形態の一例を模式的に示す図である。Eプローブを固相化したマイクロアレイ上で、検体サンプルとハイブリダイゼーションを行い、蛍光シグナルを検出することで目的の産物の有無や変異の有無を測定する。さらに、そのマイクロアレイを洗浄することで、同一のマイクロアレイを用いて、同様な検出が可能になり、検体サンプルに特殊な修飾をすることなく、さらにはハイブリダイゼーション後に特別な発色酵素反応を必要としない繰り返し使用可能なマイクロアレイとなる。 図29は、EプライマーのブリッジPCRへの適用例を模式的に示す図である。Eプライマーを固相化したマイクロアレイ上で、検体サンプルとアニーリングさせブリッジPCRを行い、蛍光シグナルを検出することで目的の産物の有無や変異の有無を測定する。
 以下、本発明について、例を挙げてさらに具体的に説明する。ただし、本発明は、以下の説明により限定されない。
 本発明は、例えば、下記[1]~[46]のようにも記載し得るが、これには限定されない。
 
[1]
試料中の標的核酸の分析方法であって、
前記試料を、前記標的核酸にハイブリダイズすることが可能なプライマー又はプローブと、標識とに接触させて、前記試料中の前記標的核酸の分析を行い、
前記プライマー又はプローブは、固相に固定されており、
前記標識は、前記プライマー又はプローブが前記標的核酸とハイブリダイズしない場合は消光し、前記プライマー又はプローブが前記標的核酸とハイブリダイズした場合は発光する標識であり、
前記標識の発光の検出により分析を行うことを特徴とする分析方法。
 
[2]
前記標的核酸の分析後、前記標的核酸を除去し、前記プライマー又はプローブを再利用する[1]に記載の分析方法。
 
[3]
前記標的核酸が複数種類であり、前記複数種類の標的核酸をそれぞれ検出する[1]または[2]に記載の分析方法。
 
[4]
前記プライマー又はプローブが、複数種類である[1]から[3]のいずれかに記載の分析方法。
 
[5]
前記プライマー又はプローブが固定された前記固相の表面が、平面、チップ平面、球体表面または立体表面である[1]から[4]のいずれかに記載の分析方法。
 
[6]
前記固相の表面が、バックグラウンドを軽減するコーティングがされた表面である[1]から[5]のいずれかに記載の分析方法。
 
[7]
前記バックグラウンドを軽減するコーティングが、グラフト重合処理によるコーティングである[6]記載の分析方法。
 
[8]
前記プライマー又はプローブの前記標識が、エキシトン効果を示す蛍光性原子団である[1]から[7]のいずれかに記載の分析方法。
 
[9]
 前記プライマー又はプローブが、前記標識を、前記プライマー又はプローブの一部として含み、
 前記標識が、前記プライマー又はプローブに共有結合している[1]から[8]のいずれかに記載の分析方法。
 
[10]
 前記プライマー又はプローブが、下記式(16)、(16b)、(17)、(17b)、(18)または(18b)で表される構造を少なくとも一つ含む核酸分子である[9]記載の分析方法。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
前記式(16)、(16b)、(17)、(17b)、(18)および(18b)中、
Bは、天然核酸塩基(アデニン、グアニン、シトシン、チミンまたはウラシル)骨格または人工核酸塩基骨格を有する原子団であり、
Eは、
(i)デオキシリボース骨格、リボース骨格、もしくはそれらのいずれかから誘導される構造を有する原子団、または
(ii)ペプチド構造もしくはペプトイド構造を有する原子団であり、
11およびZ12は、それぞれ、エキシトン効果を示す蛍光性原子団であり、同一でも異なっていてもよく、
、LおよびLは、それぞれ、リンカー(架橋原子または原子団)であり、主鎖長(主鎖原子数)は任意であり、主鎖中に、C、N、O、S、PおよびSiを、それぞれ含んでいても含んでいなくても良く、主鎖中に、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、イミノ基、エーテル結合、チオエーテル結合およびチオエステル結合を、それぞれ含んでいても含んでいなくても良く、L、LおよびLは、互いに同一でも異なっていても良く、
Dは、CR、N、P、P=O、BもしくはSiRであり、Rは、水素原子、アルキル基または任意の置換基であり、
bは、単結合、二重結合もしくは三重結合であるか、
または、前記式(16)および(16b)中、LおよびLは前記リンカーであり、L、Dおよびbは存在せず、LおよびLがBに直接結合していてもよく、
ただし、
前記式(16)、(17)および(18)中、Eは、前記(i)の原子団であり、リン酸架橋中の少なくとも一つのO原子がS原子で置換されていても良く、
前記式(16b)、(17b)および(18b)中、Eは、前記(ii)の原子団であり、
前記式(17)および(17b)中、各Bは、同一でも異なっていても良く、各Eは、同一でも異なっていても良い。
 
[11]
前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、
、LおよびLの主鎖長(主鎖原子数)が、それぞれ2以上の整数である、[10]記載の分析方法。
 
[12]
前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、
11およびZ12が、それぞれ独立に、チアゾールオレンジ、オキサゾールイエロー、シアニン、ヘミシアニン、その他のシアニン色素、メチルレッド、アゾ色素、ビオチンまたはそれらの誘導体から誘導される基である、[10]または[11]記載の分析方法。
 
[13]
11およびZ12が、それぞれ独立に、下記式(7)から(9)のいずれかで表される原子団である、[10]から[12]のいずれかに記載の分析方法。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000044
式(7)~(9)中、
およびXは、S、OまたはSeであり、
n’’は、0または正の整数であり、
~R10、R13~R21は、それぞれ独立に、水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ニトロ基、またはアミノ基であり、
11およびR12のうち、一方は、前記式(16)、(17)、(16b)および(17b)中のLもしくはLに結合する連結基であり、他方は、水素原子または低級アルキル基であり、
15は、式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
16は、式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
11中のX、XおよびR~R21と、Z12中のX、XおよびR~R21とは、互いに同一でも異なっていてもよい。
 
[14]
前記式(7)~(9)中、
~R21において、前記低級アルキル基が、炭素数1~6の直鎖または分枝アルキル基であり、前記低級アルコキシ基が、炭素数1~6の直鎖または分枝アルコキシ基である、[13]記載の分析方法。
 
[15]
前記式(7)~(9)中、
11およびR12において、前記連結基が、炭素数2以上のポリメチレンカルボニル基であり、カルボニル基部分で前記式(16)、(16b)、(17)および(17b)中のLもしくはLに結合する、[13]または[14]記載の分析方法。
 
[16]
11およびZ12が、それぞれ独立に、前記式(7)または(8)で表される原子団であり、
前記式(7)または(8)で表されるZ11およびZ12が、下記式(19)または(20)で示される基である[13]から[15]のいずれかに記載の分析方法。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
前記式(19)および(20)中、
、RからR10、R13およびR14、R11ならびにR12は、前記式(7)~(9)と同じである。
 
[17]
11およびZ12が、それぞれ独立に、前記式(19)で表される原子団であり、
前記式(19)中、
は、Sであり、
からR10は、水素原子であり、
11およびR12のうち、一方は、前記式(16)、(17)、(16b)および(17b)中のLもしくはLに結合する連結基であり、他方は、メチル基である、[16]記載の分析方法。
 
[18]
11およびZ12が、それぞれ独立に、前記式(19)で表される原子団であり、
前記式(19)中、
は、Sであり、
、R、R、R、R、RおよびR10は、水素原子であり、
、RおよびR12は、メチル基であり、
は、ハロゲン原子であり、
11は、前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中のLもしくはLに結合する連結基である、[16]記載の分析方法。
 
[19]
11およびZ12が、それぞれ独立に、前記式(7)で表される原子団であり、
前記式(7)中、
は、Sであり、
nは、1であり、
からR10、R15、R16およびR17は、水素原子であり、
11は、前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中のLもしくはLに結合する連結基であり、
12は、メチル基である、[13]記載の分析方法。
 
[20]
11およびZ12が、それぞれ独立に、下記の各化学式のいずれかで表される原子団である、[13]記載の分析方法。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
上記各化学式中、
nは、正の整数である。
 
[21]
前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、
Bが、天然核酸塩基(アデニン、グアニン、シトシン、チミンまたはウラシル)骨格を有する原子団である[10]から[20]のいずれかに記載の分析方法。
 
[22]
前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、
Bが、人工核酸塩基骨格を有する原子団であり、前記人工核酸塩基が、2-アミノ-6-(N,N-ジメチルアミノ)プリン ピリジン-2-オン、5-メチルピリジン-2-オン、2-アミノ-6-(2-チエニル)プリン、ピロール-2-カルボアルデヒド、9-メチルイミダゾ[(4,5)-b]ピリジン、5-ヨード-2-オキソ(1H)ピリジン 2-オキソ-(1H)ピリジン、2-アミノ-6-(2-チアゾリル)プリン、7-(2-チエニル)-イミダゾ[4,5-b]ピリジン、ブロモチミン、アザアデニンまたはアザグアニンである[10]から[20]のいずれかに記載の分析方法。
 
[23]
前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、
Bが、人工核酸塩基骨格を有する原子団であり、前記人工核酸塩基が、Py、Py der.、Pu、またはPu der.である[10]から[20]のいずれかに記載の分析方法。
前記Pyとは、下記式(11)で表記される6員環のうち、1位にEと結合する共有結合手を有し、5位にリンカー部と結合する共有結合手を有する原子団であり、
前記Py der.とは、前記Pyの6員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良く、
前記Puとは、下記式(12)で表記される縮合環のうち、9位にEと結合する共有結合手を有し、8位にリンカー部と結合する共有結合手を有する原子団であり、
前記Pu der.とは、前記Puの5員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良い。
Figure JPOXMLDOC01-appb-C000053
[24]
前記式(16)で表される構造が、下記式(16-1)または(16-2)で表される構造であり、
前記式(16b)で表される構造が、下記式(16b-1)または(16b-2)で表される構造であり、
前記式(17)で表される構造が、下記式(17-1)で表される構造であり、
前記式(17b)で表される構造が、下記式(17b-1)で表される構造であり、
前記式(18)で表される構造が、下記式(18-1)で表される構造であり、
前記式(18b)で表される構造が、下記式(18b-1)で表される構造である、
[10]から[23]のいずれかに記載の分析方法。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
前記式(16-1)、(16-2)、(16b-1)、(16b-2)、(17-1)、(17b-1)、(18-1)および(18b-1)中、
l、mおよびn’は任意であり、同一でも異なっていても良く、主鎖中に、C、N、O、S、PおよびSiを、それぞれ含んでいても含んでいなくても良く、主鎖中に、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、イミノ基、エーテル結合、チオエーテル結合およびチオエステル結合を、それぞれ含んでいても含んでいなくても良く、
B、E、Z11、Z12およびbは、前記式(16)、(16b)、(17)、(17b)、(18)および(18b)と同じであり、
前記式(16-1)、(16-2)、(17-1)および(18-1)において、リン酸架橋中のO原子は、1つ以上がS原子で置換されていてもよい。
 
[25]
前記式(16-1)、(16-2)、(16b-1)、(16b-2)、(17-1)、(17b-1)、(18-1)および(18b-1)中、
l、mおよびnは、それぞれ、2以上の整数である、[24]記載の分析方法。
 
[26]
前記核酸分子が、下記化学式106、110、113、117、120、122、123、124または114-2で表されるヌクレオチド構造、またはそれらの幾何異性体、立体異性体もしくは塩である構造を少なくとも一つ含む核酸分子である、[10]記載の分析方法。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
上記化学式106、110、113、117、120、122、123、124および114-2中、nは正の整数である。
 
[27]
前記リンカー長nが2~6の範囲である、[20]または[26]記載の分析方法。
 
[28]
前記プライマー又はプローブが、プライマーであり、
前記プライマーを前記試料に接触させることにより、前記プライマーを前記標的核酸にハイブリダイズさせて前記標的核酸の増幅反応を行い、
さらに、前記増幅反応における前記標的核酸の増幅度を継時的に計測することにより、前記標的核酸の分析を行う[1]から[27]のいずれか1項に記載の分析方法。
 
[29]
前記標的核酸の増幅反応を、ブリッジPCR法で行う[28]記載の分析方法。
 
[30]
前記プライマーが、一対のプライマーであり、
前記一対のプライマーは、それぞれ、前記標識が共有結合していることにより、前記標識を前記プライマーの一部として含み、
前記一対のプライマーに共有結合した前記各標識は、それぞれ、エキシトン効果を示す蛍光性原子団であり、
前記各標識は、互いに異なり、
前記ブリッジPCR法において、蛍光を生じさせないか、又は、1色ないし3色の蛍光を生じさせて蛍光色を解析することにより、又は、前記各標識の蛍光強度に差を生じさせて前記蛍光強度差を測定することにより、前記標的核酸における複数座位の変異有無検出又は前記複数座位の発現量分析を同時に行う請求項[29]記載の分析方法。
 
[31]
前記プライマーが、一対のプライマーであり、
前記一対のプライマーは、それぞれ、前記標識が共有結合していることにより、前記標識を前記プライマーの一部として含み、
前記一対のプライマーに共有結合した前記各標識は、それぞれ、エキシトン効果を示す蛍光性原子団であり、
前記各標識は、互いに異なり、
前記ブリッジPCR法において、蛍光を生じさせないか、又は、1色ないし3色の蛍光を生じさせて蛍光色を解析することにより、又は、前記各標識の蛍光強度に差を生じさせて前記蛍光強度差を測定することにより、前記標的核酸を含む試料全体における変異の割合を測定する請求項[29]記載の分析方法。
 
[32]
前記プライマーが、一対のプライマーであり、
前記一対のプライマーは、それぞれ、前記標識が共有結合していることにより、前記標識を前記プライマーの一部として含み、
前記一対のプライマーに共有結合した前記各標識は、それぞれ、エキシトン効果を示す蛍光性原子団であり、
前記各標識は、互いに異なり、
前記ブリッジPCR法において、蛍光を生じさせないか、又は、1色ないし3色の蛍光を生じさせて蛍光色を解析することにより、又は、前記各標識の蛍光強度に差を生じさせて前記蛍光強度差を測定することにより、前記標的核酸を含む試料の品質を確認する請求項[29]記載の分析方法。
 
[33]
前記標的核酸の増幅反応を、等温増幅法で行う[28]記載の分析方法。
 
[34]
前記プライマーの2点以上のスポットが、前記固相に任意の位置関係で固定されている[28]から[33]のいずれかに記載の分析方法。
 
[35]
前記標的核酸が、RNAであり、
さらに、前記RNAの逆転写反応を行い、
前記逆転写反応を、前記プライマーが固定された前記固相で、前記増幅反応の前または前記増幅反応と同時に行う、[28]から[34]のいずれかに記載の分析方法。
 
[36]
前記増幅反応を、DNAポリメラーゼ、RNAポリメラーゼ、逆転写酵素(逆転写ポリメラーゼ)又はRNA依存RNAポリメラーゼを用いて行う、[28]から[35]のいずれかに記載の分析方法。
 
[37]
前記増幅反応後、融解曲線解析を行うことによって前記標的核酸の変異の有無を検出する[28]から[36]のいずれかに記載の分析方法。
 
[38]
前記融解曲線解析を、プローブを用いて行い、
前記プローブが、エキシトン効果を示す蛍光性原子団を含む[37]に記載の分析方法。
 
[39]
エキシトン効果を示す蛍光性原子団を含む前記プローブを、複数種類用いる[38]記載の分析方法。
 
[40]
前記プライマー又はプローブが、プローブである[1]から[27]のいずれかに記載の製造方法。
 
[41]
前記試料は、あらかじめ増幅された前記標的核酸を含む[40]記載の分析方法。
 
[42]
さらに、融解曲線解析を行うことによって前記標的核酸中の変異の有無を検出する[40]または[41]記載の分析方法。
 
[43]
[1]から[42]のいずれかに記載の分析方法を行うためのキットであり、
前記キットが、前記プライマー又はプローブと、前記標識と、前記プライマー又はプローブを固定するための支持体とを含み、
前記支持体が、前記固相を含むキット。
 
[44]
[1]から[42]のいずれかに記載の分析方法を行うための分析機器であり、
前記標識の発光を検出するための発光検出手段を含む分析機器。
 
[45]
少なくとも1点以上のスナップショットのデータを取得するための手段を有する、[44]記載の分析機器。
 
[46]
継時的にデータを取得するための手段を有する、[44]または[45]記載の分析機器。
[用語]
 本発明の(本明細書中で使用する)いくつかの用語について、以下のとおり説明する。なお、特に定義しない用語については、その用語の一般的な意味どおりに解釈すべきものとする。また、DNA、RNA、ヌクレオチド、ポリヌクレオチド、などの略号による表示は、「塩基配列又はアミノ酸配列を含む明細書等の作成のためのガイドライン」(日本国特許庁編)及び当技術分野における慣用に従って使用する。
 本発明において「ポリヌクレオチド」または「オリゴヌクレオチド」とは、核酸を意味し、DNA及びRNAのいずれも包含する。上記DNAには、cDNA、ゲノムDNA、及び合成DNAのいずれもが含まれる。また、上記RNAには、total RNA、mRNA、rRNA、siRNA、miRNA、snRNA、snoRNA、non-coding RNA及び合成RNAのいずれもが含まれる。さらに、本明細書では、「ポリヌクレオチド」または「オリゴヌクレオチド」の用語は、「核酸」の用語と互換的に使用されるものとする。
 本発明において「遺伝子」とは、2本鎖DNAおよびRNAのみならず、それを構成する正鎖(又はセンス鎖)又は相補鎖(又はアンチセンス鎖)などの各1本鎖DNAを含むことを意図して使用されている。また、その塩基配列や配列鎖長によって特に制限されるものではない。
 本発明において「遺伝子」は、特に言及しない限り、ヒトゲノムDNAを含む2本鎖DNA、cDNAを含む1本鎖DNA(正鎖)、該正鎖と相補的な配列を有する1本鎖DNA(相補鎖)、及び、これらの断片、さらにヒトゲノムのいずれも含む。その「遺伝子」は特定の塩基配列(又は配列番号)で示される「遺伝子」だけではなく、これらによってコードされるRNAと生物学的機能が同等であるRNA、例えば同族体(すなわち、ホモログ)、遺伝子多型などの変異体、及び誘導体をコードする「核酸」が含まれる。そのような同族体、変異体又は誘導体をコードする「核酸」としては、ある特定のストリンジェントな条件下で、塩基配列、もしくは該塩基配列においてuがtである塩基配列、の相補配列とハイブリダイズする塩基配列を有する「核酸」を挙げることができる。また、「遺伝子」は、機能領域の別を問うものではなく、例えば発現制御領域、コード領域、エキソン又はイントロンを含むことも意味する。
 本発明において「転写産物」とは、遺伝子のDNA配列を鋳型にして合成されたRNAのことを意味する。RNAポリメラーゼが遺伝子の上流にあるプロモーターと呼ばれる部位に結合し、DNAの塩基配列に相補的になるように3'末端にリボヌクレオチドを結合させていくうえでRNAが合成される。これらのRNAには遺伝子そのもののみならず、コード領域、発現制御領域、エキソンやイントロンをはじめとした様々な転写開始点からポリA配列の末端にいたるまでの全配列が含まれることを意味する。
 本発明において「マイクロRNA(miRNA)」は、ヘアピン様構造のRNA前駆体として転写され、RNase III切断活性を有するdsRNA切断酵素により切断され、RISCと称するタンパク質複合体に取り込まれ、mRNAの翻訳抑制に関与するものを意味する。本明細書で使用する「miRNA」は特定の塩基配列(又は配列番号)で示される「miRNA」だけではなく、該「miRNA」の前駆体(pre-miRNA、pri-miRNA)を含み、これらによってコードされるmiRNAと生物学的機能が同等であるmiRNA、例えば同族体(すなわち、ホモログ)、遺伝子多型などの変異体、及び誘導体をコードする「miRNA」も包含する。
 本発明において「プローブ」とは、特に限定されないが、例えば、Eプローブならびに、遺伝子の発現によって生じたRNA又はそれに由来するポリヌクレオチドを特異的に検出するために使用されるポリヌクレオチド及び/又はそれに相補的なポリヌクレオチドなどを意味する。
 「プライマー」とは、特に限定されないが、例えば、Eプライマーならびに、遺伝子の発現によって生じたRNA又はそれに由来するポリヌクレオチドを特異的に認識し、増幅する、連続するポリヌクレオチド及び/又はそれに相補的なポリヌクレオチドなどを意味する。
 本発明において「相補的なポリヌクレオチド(相補鎖、逆鎖)」とは、配列番号によって定義される塩基配列、もしくは該塩基配列においてuがtである塩基配列、からなるポリヌクレオチドの全長配列、又はその部分配列、(ここでは便宜上、これを正鎖と呼ぶ)に対してA:T(U)、G:Cといった塩基対関係に基づいて、塩基的に相補的な関係にあるポリヌクレオチドを示す。かかる相補鎖は、対象とする正鎖の塩基配列と完全に相補配列を形成する場合に限らず、対象とする正鎖とストリンジェントな条件でハイブリダイズできる程度の相補関係を有するものであってもかまわない。
 本発明において「ストリンジェントな条件」とは、プローブが他の配列に対するよりも、検出可能により大きな程度(例えばバックグラウンドよりも少なくとも1.2倍)で、その標的配列に対してハイブリダイズする条件のことを意味する。ストリンジェントな条件は配列依存性であり、ハイブリダイゼーションが行われる環境によって大きく異なる。ハイブリダイゼーション及び/又は洗浄条件のストリンジェンシーを制御することにより、プローブに対して100%相補的である標的配列が同定され得る。
 本発明において「変異体」とは、核酸の場合、多型性、突然変異などに起因した天然の変異体、もしくは該塩基配列においてuがtである塩基配列、又はその部分配列において1、2もしくは3又はそれ以上、好ましくは1もしくは2個の塩基の欠失、置換、付加又は挿入を含む変異体、あるいはmiRNAの前駆体RNAの塩基配列、もしくは該塩基配列においてuがtである塩基配列、又はその部分配列において1又は2以上、好ましくは1又は数個の塩基の欠失、置換、付加又は挿入を含む変異体、または該塩基配列の各々又はその部分配列と約50%以上、約70%以上、約80%以上、約90%以上、約95%以上、約97%以上、約98%以上、約99%以上の%同一性を示す変異体、あるいは該塩基配列又はその部分配列を含むポリヌクレオチド又はオリゴヌクレオチドと上記定義のストリンジェントな条件でハイブリダイズする核酸を示す。
 本発明において「%同一性」は、一般的にBLASTやFASTAによるタンパク質又は遺伝子の検索システムを用いて、ギャップを導入して、又はギャップを導入しないで、決定することができる。
 本発明において「誘導体」とは、Eプローブ、Eプライマー、修飾核酸、非限定的に例えば、蛍光団などによるラベル化誘導体、修飾ヌクレオチド(例えばハロゲン、メチルなどのアルキル、メトキシなどのアルコキシ、チオ、カルボキシメチルなどの基を含むヌクレオチド及び塩基の再構成、二重結合の飽和、脱アミノ化、酸素分子の硫黄分子への置換などを受けたヌクレオチドなど)を含む誘導体、PNA(peptide nucleic acid)などを含むことを示す。
 本発明における「分析」には、例えば、定性分析、定量分析、半定量分析、変異検出が含まれる。
 本発明において「予測、判定、検出又は診断」とは、特に限定されないが、例えば、がんやその他の疾患の罹患の有無、罹患の程度もしくは改善の有無や改善の程度を診断するために、がんやその他の疾患の予防、改善又は治療に有用な候補物質をスクリーニングするために、直接又は間接的に利用されるものを意味する。これにはがんやその他の疾患の罹患に関連して生体内、特に組織や血液中において発現が変動する遺伝子を特異的に認識し、また結合することのできるヌクレオチド、オリゴヌクレオチド及びポリヌクレオチドを含む。これらのヌクレオチド、オリゴヌクレオチド及びポリヌクレオチドは、上記性質に基づいて生体内、組織や細胞内などで発現した上記遺伝子を検出するためのプローブとして、また生体内で発現した上記遺伝子を増幅するためのプライマーとして有効に利用することが可能である。
 本発明において予測、判定、検出又は診断の対象となる「試料」とは、特に限定されないが、例えば、がんやその他の疾患ならびに健康状態の変化の発生にともない遺伝子、または発現する遺伝子が変化する生体サンプル試料のことをいう。具体的には組織及びその周辺の脈管、リンパ節及び臓器、また転移が疑われる臓器、および血液、尿、唾液、便、毛髪、皮膚、汗などを含み、その他生体から採取可能なものを意味する。
[本発明の標的核酸の分析方法]
 本発明の標的核酸の分析方法は、例えば、以下のような特徴を有する。ただし、これらの説明は例示であり、本発明を何ら限定しない。
 前述のBasin Networkの問題点などから、標的核酸の分析方法には、例えば、下記条件(1)~(3)を満たすことが求められる。
 
(1)複数の座位を同時に定量的に計測する技術であること。
(2)転写因子など微量の発現量のRNAを計測することができる感度が高い技術であること。
(3)これらを実際に臨床で用いられるためには、非常に迅速かつ簡便な技術であること。
 近年は、薬も、ResponderとNon-responderを区別するマーカーがないことには、認可が困難であり、実用に届かないことが多い。下記に詳述するように、ネットワークが薬の反応性や予後などを支配しているわけであるから、当然、たった一つの遺伝子を見ることにより、臨床上有用な情報を予測することは非常に難しいし、論理的に無理がある。システムバイオロジーを見ることにより、これらの臨床上の予測情報を収集する動きがある。
 そこで、一つの個体から採取されたサンプルの多座位を計測する技術が待たれる。さらに、システムバイオロジー的に計測、判定をするためには、多座位を一度に、計測することが必要になってくる。しかも、臨床の場では、POCTが期待され、外来、病棟、手術室などで、すぐに患者のサンプルから情報を得ることが重要になってきているため、簡便に、迅速に計測できる技術が待たれる。
 これらの目的には、一般に、マイクロアレイが用いられている。マイクロアレイは、検体のRNA(DNA)に逆転写ポリメラーゼ(DNAポリメラーゼ)で蛍光色素などの標識を入れ、この標識核酸を固相化されているチップの上にハイブリダイゼーションさせて検出するものであるが、バックグラウンドを除くために余分な標識核酸を除く操作が必要であり、非常に手間と時間がかかる。さらに、スキャンを行う必要があるので、全体として所要時間がかかるなどの問題点がある。一度にたくさんの遺伝子を解析するためには、このようなマイクロアレイなどの技術が必要であるが、余分な標識核酸を洗浄除去しなければならないなど作業上の手間暇がかかり、操作が煩雑で、結果の再現性があまり高くないなど問題点が多い。
 一方で、感度がよい方法としてqRT-PCR、qPCRが用いられているが、この手法は、一つ一つの遺伝子(座位)の標的配列に関して、各々別々のプライマーを設計しなくてはならない。これらのプライマーが別々の異なる反応液(チューブ内)で反応するために、鋳型となるRNAやDNAは、その反応液の数に分割して各々の反応液の中に入れなくてはならない。したがって、非常に少量の核酸サンプルしかない場合は、この方法では、複数の遺伝子(多座位)を測定するときにも、その数は自ずと制限される。
 つまり、qRT-PCRやqPCRの時には、測定するべき標的領域数(座位数)の反応液に分けなければならないが、分配するときには、必ず物理的にその量にぶれが生じることになり、測定に誤差が生じる。さらに、各反応液間でプライマーの配列および標的配列が異なるので、これらの増幅効率は一定にはならない。このように、反応液分配による誤差があるために、現在のqRT-PCRやqPCRでは増幅率による誤差を正確に測定できない。
 マイクロアレイには数百から数万種の遺伝子に対応した塩基配列を利用したプローブまたはプライマーが固定されている。被検試料をマイクロアレイに添加することによって試料中の遺伝子がプローブまたはプライマーと結合し、この結合量を何らかの手段によって測定することにより、被検試料中の遺伝子量を知ることができる。マイクロアレイ上に固定化するプローブまたはプローブに対応した遺伝子の選択は自由である。
 手術時又は内視鏡検査時に採取した試料であるがん患者のがん病変部とがん患者の正常組織部を用いて、試料中の遺伝子発現量を比較することによってがんマーカーとなりうる遺伝子群を推定することも可能である。また、健康状態を知るために、健康状態時の遺伝子発現パターンと健康状態に問題がある遺伝子発現パターンを比較することで、疾患に対する自覚症状がないような予備患者においても検査、診断が可能になる。
 マイクロアレイは多座位を見ることができ、一つの標識核酸溶液で多座位を計測できる利点があるが、増幅し標識を入れる手間がかかり、目的核酸とプライマーまたはプローブのハイブリダイゼーションに時間がかかり、その検出感度はあまり良くない。さらに、スペクトルレンジが狭く、既知配列しか検出できず、変異検出にはS/N比が低く判定の精度があまり良くないなどの問題点が多くある。
 それに比べマルチプレックスな定量PCR(qRT-PCR)は、感度が良く、スペクトルレンジも広く、増幅している間に立ち上がり時間(Ct)で鋳型の遺伝子量の測定が可能であり、融解曲線を書かせることで変異情報が得られる利点がある。逆に、標的核酸の一つ一つに対して別のプライマーをデザインする必要があり、煩雑で時間と手間がかかり、別々の反応系とするために、一座位ずつ別々のチューブで反応させる必要がある。検出したい座位の数だけ、取り分ける手間がかかり、さらに、鋳型とする核酸(RNA,DNA)などを反応数分に分けなければならず、大量の鋳型核酸が必要となる問題点もある。
 これらの欠点を補うように、Bridge Multiple qRT-PCRとするとかなりの利点がある。チップ上のブリッジPCRであれば、チップの上にプライマーが固定してあるので、別々の反応系が不要となる(ブリッジPCRについては、例えば、特表平10-505492号公報参照)。一つの液相で反応でき、一座位ずつ別々のチューブで反応させる必要がない。座位数分を取り分ける手間がかからず、さらに、鋳型とする核酸(RNA,DNA)などを反応数分に分ける必要がないので、少量の鋳型核酸で実行可能となる。特に、一細胞からのRNAで大量の座位の計測が可能になり、全量1マイクロリットル以下で反応可能(おそらく、1ミリ角のチップなら、50ナノリットルでも可能)となる。目的によっては予めRNaseHを添加しておくことも効果的である。
 さらに、エキシトンプライマー(Eプライマー、例えば、特許第4761086号公報および特許第4370385号公報参照)を上記Bridge Multiple qRT-PCRに適用すると、標的核酸を標識する必要がなく、RNA、DNAなどの計測するべきサンプルをそのままチップ上にかけるだけで検出可能になる。感度は、Multiple qRT-PCRに比べて向上し、その他の利点もMultiple qRT-PCRと同等以上と考えられる。液相と違い、色素の波長を変えることで、複数のサンプルを一チップで、または、一つの遺伝子の異なる領域、または、異なる遺伝子を同時に計測できる。これは、すべての反応に内部コントロールを置くことができるので、臨床検査キットに必須な条件を満たしている。特に、エキシトンプローブ(Eプローブ)を使用したマイクロアレイは、検出目的である例えばPCR増幅産物を蛍光標識などすることは必要なく、ハイブリダイゼーションの検出後、そのマイクロアレイを洗浄し、次の検体を添加することで、特別な標識や発色反応をさせることなく何度でもマイクロアレイを再利用できるメリットがある。今日のエコロジーのことを考慮しても再利用可能なマイクロアレイは非常に需要である。
 さらに具体的に説明すると、本発明を利用することで、qRT-PCRのような1サンプル/チューブではなく一枚のアレイで多検体を定量可能となり、マイクロアレイにおけるcRNA調製といった増幅・標識工程を別途行う必要がなく、全てをアレイ上で行うことが可能となる。また、ブリッジPCRにより形成されるクラスターはアレイのスポットに比べて相当に小さく、クラスター密度が低い範囲ではデジタルカウントが可能となるので、クラスターのカウントだけでなく、蛍光強度による定量も可能である。さらに、低蛍光レンジでも蛍光強度はクラスターにより維持されるため(スポット全体に広がって希釈されるようなことがないので)、マイクロアレイよりも微量域のダイナミックレンジが広くなることが期待される。特に、Eプライマーの利用により、増幅したクラスターだけが蛍光を発し、特別な作業を伴わず簡便に測定することができる。
 本発明において、蛍光を検出、計測する場合、ブリッジPCRを用いた増幅過程(つまりクラスター)を蛍光観察するので励起用にレーザー光源が必要なく、簡単なランプ光源で検出可能になる。また、蛍光検出用カメラも超高感度EMCCDカメラを必要とせず、通常のCCDカメラで十分に測定が可能である。つまり、計測機器が簡素化できる利点がある。本発明において、増幅したクラスターだけが蛍光を発するので背景光が減り、よりクリアな像が取得できる。さらに、より広領域をハイスピードでスキャンする場合にラインスキャン法を用いることも可能である。この方法を用いることで、ステージを一定速度で動かし続けながら動画を取得し、あとから一枚の広領域静止画を作成することも可能となる。この方法を用いるとステージの移動限界にもよるが、原理的には多検体の種類がどれだけ増えても(どれだけ広領域でも)対応することができる。
 本発明の核酸の分析方法は、例えば、DNAチップを用いて行うことができる。以下に、DNAチップについて例を挙げて説明する。
 DNAチップ(又はマイクロアレイ)は、例えば、上述したオリゴヌクレオチド誘導体の少なくとも1つ以上を固定化させてなる。固定化とは、吸着も含む概念であり、また共有結合等による結合も含まれることを意味する。
 DNAチップ(又はマイクロアレイ)を作成する際の基板表面へのDNAのスポット径に特に制限はないが、通常は0.5~20000μm、より好ましくは5~2000μm、より好ましくは50~200μm程度である。また、スポットピッチに特に制限はなく、通常は1~50000μm、より好ましくは10~5000μm、より好ましくは100~500μm程度である。
 DNAチップ(又はマイクロアレイ)に用いられる担体としては、例えば、微小多孔質ガラス、ポーラスガラス等のガラス、ポリスチレン、金属、フェライトを芯にグリシンメタクリレートで表面を覆った磁性ビーズ等が挙げられるが、これらに限定されるものではない。また、担体の形状は、板状(基板状)、ビーズ状等、どのような形状のものであってもよい。
 DNAチップは、ブローブオンキャリア法を用いたものであってもかまわない。プローブオンキャリア法とは、DNA合成に最も適した素材とされる微小多孔質ガラス(CPG)上でDNAプローブを合成した後、プローブ分子をCPG担体から切り離すことなく、CPGに結合したDNAプローブを用いてSNPs検出に用いる手法のことを意味する。用いられるCPGのサイズは、好ましくは粒径が50Åから50000Å、より好ましくは500Åから5,000Åである。このプローブオンキャリア法を用いることにより、DNAプローブの基板への固定化操作を省略することができるため、DNAチップ合成のハイスループット化ができる。DNA合成反応効率が99.8%以上と非常に高いため、DNAプローブの純度を高くすることができ、DNAチップの正確性が大幅に向上するという利点がある。さらに、必要なDNAプローブを有するCPGは、大量生産が可能であり、コストの低減や、より質の高い品質管理ができる。また、従来のDNAチップは、ほとんどがスライドガラス平面上で二次元的に検出を行っていたのに対し、プローブオンキャリア法では、CPGを用いているため、三次元的な検出が可能となり、DNAプローブの高密度な配置が可能となり、高い感度の検出が可能となる。
 上述した、プローブオンキャリア法に、既存のDNA合成システムを適用した場合、核酸塩基部の保護基を除去する過程(アンモニア処理)で、リンカー部分のSi-O結合が切断されてしまい、約90%のDNAプローブが担体表面から脱離してしまうという現象が見られることがある。
 担体表面に、オリゴヌクレオチド誘導体を固定化する場合には、オリゴヌクレオチド誘導体を適当なリンカーを介して、例えば金属-硫黄結合等の方法によって結合させる方法が挙げられる。また、担体表面に固定化させるオリゴヌクレオチド誘導体は1種類のみならず、2種類以上であってもよい。また、担体と結合していない方の置換基は、DNAチップ等として用いた際の検出に用いるために、蛍光分子、消光分子等を結合させてもよい。
 DNAチップ(又はマイクロアレイ)は、試料中の核酸の同定方法等に用いることができる。方法としては、まず、試料と、DNAチップ(又はマイクロアレイ)とをハイブリダイズさせる。ハイブリダイズに際しては、DNAチップ(又はマイクロアレイ)に固定されたオリゴヌクレオチド誘導体に対し、試料を例えば0.01μM~1000μM程度添加することができる。また、ハイブリダイズの条件は、ポリヌクレオチド誘導体の種類によって異なるが、例えば0~100℃、より好ましくは20~90℃、より好ましくは30~80℃の温度で、例えば数秒~数十時間程度であるが、この条件範囲に限定されるわけではない。
 ハイブリダイズ終了後は、チップの種類に適した洗浄液で2~5回洗浄を行う。このように、オリゴヌクレオチド誘導体は、核酸の同定方法や遺伝子検出に用いることができる。遺伝子検出の手法としては、上述した、DNAチップ、マイクロアレイに加え、リアルタイムPCRが挙げられるが、これらに限定されるわけではない。
 本発明において「検出」とは、特に限定されないが、例えば、チップ基板上にスポット状に増幅されたプローブまたはプライマーの蛍光シグナルを蛍光画像により網羅的に検出することを示す。検出装置としては一般的な蛍光顕微鏡が必要であるが、特に、Eプローブ又はEプライマーを励起するための光源、ダイクロイックミラー、励起フィルタ、蛍光フィルタ及び検出のためのカメラを有するのが望ましい。及び、Eプローブ又はEプライマーの蛍光強度を時系列的に計測するためには、同じ画像スキャンを何度も精度良くかつ広範囲で行う必要があるため、位置精度の高い制御可能なステージが必要となる。検出カメラは蛍光シグナルを非増幅あるいは増幅可能なもの、ならびに広範囲に連続的に画像の取得できるラインスキャンカメラも含む。
 標的核酸中のヌクレオチドの同定方法は、オリゴヌクレオチド誘導体などを、試料中の標的核酸とハイブリダイズ、またはアニーリング、伸長反応させる工程:及びハイブリダイズ産物または、増幅産物を検出する工程を有する。本発明の標的核酸中のヌクレオチドの同定方法においては、最初にオリゴヌクレオチド誘導体を、試料中の標的核酸とハイブリダイズさせる。用いられる試料としては、特に制限はなく、核酸を含むものであればよく、例えば、細胞抽出液、血液等の体液、PCR産物、オリゴヌクレオチド等が挙げられる。プライマーやプローブのハイブリダイズの条件は上述した通りである。
 生体サンプルの増幅させる方法にブリッジPCR法がある。当該ブリッジPCR法において、そのプライマーの5’末端は支持体に固相化されており、目的産物にプライマーがアニーリングした時に伸長反応がおきる。さらに、熱変性、アニーリング、伸長反応を支持体上で繰り返すことで、目的の生体サンプルの目的増幅領域が存在した時に、その増幅産物が得られる。特に、本発明において、目的増幅領域に特異的な配列を含むEプライマーをマイクロアレイに固相しておくことで、その目的増幅が起きた時のみに、そのEプライマーが固相されている部分のみで増幅反応が起き、そのままEプライマーの蛍光シグナルを測定することが可能となる。
 エキシトン効果(exciton coupling)とは、例えば、複数の色素が並行に集合し、H会合体(H-aggregate)を形成することにより、ほとんど蛍光発光を示さなくなる効果である。この効果は、色素の励起状態が、Davydov splittingにより2つのエネルギーレベルに分裂し、上位エネルギーレベルへの励起→下位エネルギーレベルへの内部変換(internal conversion)→発光が熱的に禁制、という理由で生じると考えられる。ただし、これらの説明は、本発明を何ら制限しない。エキシトン効果が起こりうることは、H会合体を形成した色素の吸収バンドが単一の色素の吸収バンドより短い波長に現れることで確認できる。このような効果を示す色素としては、例えば、チアゾールオレンジとその誘導体、オキサゾールイエローとその誘導体、シアニンとその誘導体、ヘミシアニンとその誘導体、メチルレッドとその誘導体、ほか一般的にシアニン色素、アゾ色素と呼ばれる色素群が挙げられる。エキシトン効果によれば、例えば、本発明の蛍光色素を核酸に結合させた場合、一本鎖状態での蛍光強度を抑え、二重らせん構造を一層効果的に検出可能である。
 EプライマーまたはEプローブとは、例えば、特許第4370385号公報に記載の構造の核酸分子でも良く、また、例えば、以下に説明する構造の核酸分子でも良い。
 本発明の核酸プローブにおいて、核酸分子の構造は、例えば、下記式(16)、(16b)、(17)、(17b)、(18)または(18b)で表される構造を少なくとも一つ含む標識核酸であっても良い。また、これらの互変異性体若しくは立体異性体、またはそれらの塩も、本発明における標識核酸に含まれる。以下、蛍光性を示す原子団Z11およびZ12を有する、下記各式で表される構造を、「標識構造」といることがある。また、前記標識構造を含む前記標識核酸を「標識プローブ」ということがある。
 本発明において、「標的核酸配列」とは、増幅目的の核酸配列だけでなく、これに相補的な配列も含む。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
 式(16)、(16b)、(17)、(17b)、(18)および(18b)中、
Bは、天然核酸塩基(アデニン、グアニン、シトシン、チミンまたはウラシル)骨格または人工核酸塩基骨格を有する原子団であり、
Eは、
(i)デオキシリボース骨格、リボース骨格、もしくはそれらのいずれかから誘導される構造を有する原子団、または
(ii)ペプチド構造もしくはペプトイド構造を有する原子団であり、
11およびZ12は、それぞれ、蛍光性を示す原子団であり、同一でも異なっていてもよく、
、LおよびLは、それぞれ、リンカー(架橋原子または原子団)であり、主鎖長(主鎖原子数)は任意であり、主鎖中に、C、N、O、S、PおよびSiを、それぞれ含んでいても含んでいなくても良く、主鎖中に、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、イミノ基、エーテル結合、チオエーテル結合およびチオエステル結合を、それぞれ含んでいても含んでいなくても良く、L、LおよびLは、互いに同一でも異なっていても良く、
Dは、CR、N、P、P=O、BもしくはSiRであり、Rは、水素原子、アルキル基または任意の置換基であり、
bは、単結合、二重結合もしくは三重結合であるか、
または、前記式(16)および(16b)中、LおよびLは前記リンカーであり、L、Dおよびbは存在せず、LおよびLがBに直接結合していてもよく、
ただし、
式(16)、(17)および(18)中、Eは、前記(i)の原子団であり、リン酸架橋中の少なくとも一つのO原子がS原子で置換されていても良く、
式(16b)、(17b)および(18b)中、Eは、前記(ii)の原子団であり、
式(17)および(17b)中、各Bは、同一でも異なっていても良く、各Eは、同一でも異なっていても良い。
 前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、L、LおよびLの主鎖長(主鎖原子数)は、それぞれ2以上の整数であることが好ましい。L、LおよびLの主鎖長(主鎖原子数)は、上限は特に制限されないが、例えば100以下であり、より好ましくは30以下であり、特に好ましくは10以下である。
 Z11およびZ12は、エキシトン効果を示す蛍光性原子団である。これにより、ターゲット配列と結合したときの蛍光色素周りの環境変化、例えば、二重らせん構造となったときの蛍光の増大が大きく、ターゲット配列をいっそう効果的に検出することができる。
 Z11およびZ12は、エキシトン効果を示す蛍光性原子団であればよく、特に制限されない。Z11およびZ12は、例えば、それぞれ独立に、チアゾールオレンジ、オキサゾールイエロー、シアニン、ヘミシアニン、その他のシアニン色素、メチルレッド、アゾ色素またはそれらの誘導体から誘導される基であることがより好ましい。また、その他の公知の色素から誘導される基も、適宜用いることができる。DNA等の核酸に結合することによって蛍光強度を変化させる蛍光色素は、数多く報告されている。典型的な例では、エチジウムブロミドがDNAの二重らせん構造にインターカレーションして強い蛍光を示すことが知られており、DNA検出に多用されている。また、ピレンカルボキシアミドやプロダンのような微視的極性に応じて蛍光強度を制御できる蛍光色素も知られている。また、前記チアゾールオレンジは、ベンゾチアゾール環とキノリン環をメチン基で連結した蛍光色素であり、通常微弱な蛍光を示すが、二重らせん構造をもつDNAにインターカレーションすることによって強い蛍光発光を与えるようになる。その他、例えば、フルオレセインやCy5、Cy3等の色素も挙げられる。
 Z11およびZ12は、それぞれ独立に、下記式(7)から(9)のいずれかで表される原子団であることがより好ましい。
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
 前記式(7)~(9)中、
およびXは、S、SeまたはOであり、
n’’は、0または正の整数であり、
~R10、R13~R21は、それぞれ独立に、水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ニトロ基、またはアミノ基であり、
11およびR12のうち、一方は、前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中のLもしくはLに結合する連結基であり、他方は、水素原子または低級アルキル基であり、
15は、前記式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
16は、前記式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
11中のX、XおよびR~R21と、Z12中のX、XおよびR~R21とは、互いに同一でも異なっていてもよい。
 前記式(7)~(9)中、R~R21において、前記低級アルキル基が、炭素数1~6の直鎖または分枝アルキル基であり、前記低級アルコキシ基が、炭素数1~6の直鎖または分枝アルコキシ基であることがさらに好ましい。
 前記式(7)~(9)中、R11およびR12において、前記連結基が、炭素数2以上のポリメチレンカルボニル基であり、カルボニル基部分で前記式(16)、(16b)、(17)、(17b)、(18)および(18b)中のLもしくはLに結合することがさらに好ましい。前記ポリメチレンカルボニル基の炭素数は、その上限は特に制限されないが、例えば100以下、好ましくは50以下、より好ましくは30以下、特に好ましくは10以下である。
 Z11およびZ12は、前記式(7)~(9)で表される場合は、例えば、それぞれ独立に、下記式(19)または(20)で示される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
 前記式(19)および(20)中、Xは-S-又は-O-を示す。RからR10、R13およびR14はそれぞれ独立に水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ニトロ基、又はアミノ基を示す。R11及びR12の一方は、前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中のLおよびLに結合する連結基を示し、R11及びR12の他方は水素原子、または低級アルキル基を示す。
 また、Z11およびZ12が、それぞれ独立に、下記の各化学式のいずれかで表される原子団であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
上記各化学式中、
nは、正の整数であり、2~6の範囲であることが特に好ましい。
 前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、Bは、天然核酸塩基骨格を有していても良いが、前述の通り、人工核酸塩基骨格を有していてもよい。例えば、Bが、Py(ピリミジン環)、Py der.、Pu(プリン環)、またはPu der.で表される構造であることが好ましい。ただし、
前記Pyとは、下記式(11)で表記される6員環のうち、1位にEと結合する共有結合手を有し、5位にリンカー部と結合する共有結合手を有する原子団であり、
前記Py der.とは、前記Pyの6員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良く、
前記Puとは、下記式(12)で表記される縮合環のうち、9位にEと結合する共有結合手を有し、8位にリンカー部と結合する共有結合手を有する原子団であり、
前記Pu der.とは、前記Puの5員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良い。
Figure JPOXMLDOC01-appb-C000088
 また、本発明の核酸プローブにおける前記核酸分子は、例えば、下記化学式106、110、113、117、120、122、123、124または114-2で表されるヌクレオチド構造、またはそれらの幾何異性体、立体異性体もしくは塩である構造を少なくとも一つ含んでいても良い。
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
上記化学式106、110、113、117、120、122、123、124および114-2中、リンカー長nは、正の整数であり、2~6の範囲であることが好ましい。
 本発明の核酸プローブに含まれる前記標識構造の数は、特に限定されないが、例えば、1~100個程度、好ましくは、1から20個程度である。また、前記標識プローブにおいて、前記標識構造が含まれる部位も特に制限されない。
 本発明の核酸プローブ(標識プローブ)において、それぞれの核酸の基本骨格は、特に制限されず、例えば、オリゴヌクレオチド、修飾オリゴヌクレオチド、オリゴヌクレオシド、修飾オリゴヌクレオシド、ポリヌクレオチド、修飾ポリヌクレオチド、ポリヌクレオシド、修飾ポリヌクレオシド、DNA、修飾DNA、RNA、修飾DNA、LNA、PNA(ペプチド核酸)、または、これらキメラ分子のいずれであっても良いし、その他の構造であっても良い。また、前記核酸の基本骨格は、天然のものであっても、人工的に合成されたものであってもよい。前記核酸は、本発明の核酸プローブの場合、例えば、塩基対結合を形成し得るものであればよく、核酸試料や標的核酸配列の場合、例えば、相補鎖合成のための鋳型として機能すればよい。このため、前記核酸は、例えば、部分的に、または、全体が完全に人工的な構造からなるヌクレオチド誘導体であってもよい。前記核酸を構成する人工塩基としては、例えば、2-amino-6-(N,N-dimethylamino)purinepyridin-2-one、5-methylpyridin-2-one、2-amino-6-(2-thienyl)purine、pyrrole-2-carbaldehyde、9-Methylimidazo[(4,5)-b]pyridine、5-iodo-2-oxo(1H)pyridine 2-oxo-(1H)pyridine、2-amino-6-(2-thiazolyl)purine、7-(2-thienyl)-imidazo[4,5-b]pyridine等があげられるが、これには限定されない。本発明の核酸プローブとしては、基本骨格は、例えば、オリゴヌクレオチド、ポリヌクレオチド、DNA、それらの修飾体であることが好ましい。本発明において、「ヌクレオチド」とは、例えば、デオキシヌクレオチドおよびリボヌクレオチドのいずれであってもよく、「オリゴヌクレオチド」および「ポリヌクレオチド」は、例えば、デオキシヌクレオチドおよびリボヌクレオチドのいずれか一方から構成されてもよいし、両者を含んでもよい。本発明において、核酸の構成塩基数は、特に制限されない。核酸という用語は、一般に、ポリヌクレオチドという用語と同義である。オリゴヌクレオチドという用語は、一般に、ポリヌクレオチドの中でも、特に構成塩基数が少ないものを示す用語として用いる。一般には、例えば、2~100塩基長、より一般的には2~50塩基長程度のポリヌクレオチドを「オリゴヌクレオチド」と呼ぶが、これらの数値に限定されるものではない。ポリヌクレオチドという用語は、本発明において、例えば、ポリヌクレオチドおよびオリゴヌクレオチド、ならびに、ペプチド核酸、モルホリノ核酸、メチルフォスフォネート核酸、S-オリゴ核酸などの人工合成核酸をも含むものとする。
 前記ペプチド核酸(PNA)は、一般に、オリゴヌクレオチドのデオキシリボース主鎖が、ペプチド主鎖で置換された構造を有する。前記ペプチド主鎖としては、例えば、アミド結合によって結合したN-(2-アミノエチル)グリシンの反復単位があげられる。PNAのペプチド主鎖に結合させる塩基としては、例えば、チミン、シトシン、アデニン、グアニン、イノシン、ウラシル、5-メチルシトシン、チオウラシルおよび2,6-ジアミノプリン等の天然に存在する塩基、ブロモチミン、アザアデニンおよびアザグアニン等の人工塩基があげられるが、これに限定されない。
 LNAは、一般に、糖-リン酸骨格において、リボースの2'位の酸素原子と4'位の炭素原子との間がメチレン架橋で結合された、2つの環状構造を持つ核酸である。LNAを含むオリゴヌクレオチドがDNAとアニールすると、二本鎖のコンフォメーションが変化し、熱安定性が上昇する。LNAは、通常のオリゴヌクレオチドに比較して核酸に対する結合力が強いため、例えば、オリゴヌクレオチドの設計条件によって、より確実、強固なハイブリダイゼーションが可能となる。
 EプライマーまたはEプローブを構成する塩基数は、特に限定されないが、例えば、3~100程度、好ましくは6~50、より好ましくは6~25である。
 EプライマーまたはEプローブの原料は特に限定されないが、例えば、以下に示す化合物、核酸または標識物質であっても良い。
 前記化合物は、モノヌクレオシドまたはモノヌクレオチドから誘導される構造を有する化合物であって、前記構造が下記式(1)、(1b)または(1c)で表される化合物、その互変異性体若しくは立体異性体、またはそれらの塩である。
Figure JPOXMLDOC01-appb-C000098
 前記式(1)、(1b)および(1c)中、
Bは、天然核酸塩基(アデニン、グアニン、シトシン、チミンまたはウラシル)骨格または人工核酸塩基骨格を有する原子団であり、
Eは、
(i)デオキシリボース骨格、リボース骨格、もしくはそれらのいずれかから誘導される構造を有する原子団、または
(ii)ペプチド構造もしくはペプトイド構造を有する原子団であり、
11およびZ12は、それぞれ、水素原子、保護基、または蛍光性を示す原子団であり、同一でも異なっていてもよく、
Qは、
Eが前記(i)の原子団である場合はOであり、
Eが前記(ii)の原子団である場合はNHであり、
Xは、
Eが前記(i)の原子団である場合は、水素原子、酸で脱保護することが可能な水酸基の保護基、リン酸基(モノホスフェート基)、二リン酸基(ジホスフェート基)、または三リン酸基(トリホスフェート基)であり、
Eが前記(ii)の原子団である場合は、水素原子またはアミノ基の保護基であり、
Yは、
Eが前記(i)の原子団である場合は、水素原子、水酸基の保護基、またはホスホロアミダイト基であり、
Eが前記(ii)の原子団である場合は、水素原子または保護基であり、
、LおよびLは、それぞれ、リンカー(架橋原子または原子団)であり、主鎖長(主鎖原子数)は任意であり、主鎖中に、C、N、O、S、PおよびSiを、それぞれ含んでいても含んでいなくても良く、主鎖中に、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、イミノ基、エーテル結合、チオエーテル結合およびチオエステル結合を、それぞれ含んでいても含んでいなくても良く、L、LおよびLは、互いに同一でも異なっていても良く、
Dは、CR、N、P、P=O、BもしくはSiRであり、Rは、水素原子、アルキル基または任意の置換基であり、
bは、単結合、二重結合もしくは三重結合であるか、
または、前記式(1)中、LおよびLは前記リンカーであり、L、Dおよびbは存在せず、LおよびLがBに直接結合していてもよく、
前記式(1b)中、Tは、
Eが前記(i)の原子団である場合は、リン酸架橋(PO )であり、1以上の酸素原子(O)が硫黄原子(S)で置換されていても良く、
Eが前記(ii)の原子団である場合は、NHである。
 前記式(1)、(1b)および(1c)中、Eは、例えば、DNA、修飾DNA、RNA、修飾RNA、LNA、またはPNA(ペプチド核酸)の主鎖構造を有する原子団であることが好ましい。
 また、前記式(1)および(1c)中、
Figure JPOXMLDOC01-appb-C000099
で表される原子団が、下記式(2)~(4)のいずれかで表される原子団であり、
Figure JPOXMLDOC01-appb-C000100
前記式(1b)中、
Figure JPOXMLDOC01-appb-C000101
で表される原子団が、下記式(2b)~(4b)のいずれかで表される原子団であることが好ましい。
Figure JPOXMLDOC01-appb-C000102
 前記式(2)~(4)および(2b)~(4b)中、
Aは、水素原子、水酸基、アルキル基、アルコキシ基、または電子吸引基であり、
MおよびJは、それぞれ、CH、NH、OまたはSであり、同一でも異なっていても良く、
B、XおよびYは、それぞれ、前記式(1)、(1b)または(1c)と同じであり、
前記式(2)、(3)、(2b)および(3b)において、リン酸架橋中のO原子は、1つ以上がS原子で置換されていてもよい。
 Eは、例えば、DNA、修飾DNA、RNA、または修飾DNAの主鎖構造を有する原子団であることが、合成の容易さ等の観点から好ましいが、LNA、またはPNA(ペプチド核酸)の主鎖構造を有する原子団であっても良い。
 前記式(2)および(2b)中、Aにおいて、例えば、前記アルキル基がメチル基であり、前記アルコキシ基がメトキシ基であり、前記電子吸引基がハロゲンであることが好ましい。
 前記式(1)、(1b)または(1c)中、L、LおよびLの主鎖長(主鎖原子数)が、それぞれ2以上の整数であることが好ましい。L、LおよびLの主鎖長(主鎖原子数)は、前述と同様に、上限は特に制限されず、例えば100以下である。
 前記化合物は、例えば、下記式(5)、(6)、(6b)または(6c)で表される化合物、その互変異性体若しくは立体異性体、またはそれらの塩であることが好ましい。
Figure JPOXMLDOC01-appb-C000103
 前記式(5)、(6)、(6b)および(6c)中、l、mおよびn’は任意であり、同一でも異なっていても良く、主鎖中に、C、N、O、S、PおよびSiを、それぞれ含んでいても含んでいなくても良く、主鎖中に、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、イミノ基、エーテル結合、チオエーテル結合およびチオエステル結合を、それぞれ含んでいても含んでいなくても良く、B、E、Z11、Z12、b、X、YおよびTは、前記式(1)および(1b)と同じである。前記式(5)、(6)、(6b)および(6c)中、l、mおよびnが、それぞれ、2以上の整数であることが好ましい。l、mおよびnの上限は特に制限されないが、例えば100以下であり、より好ましくは30以下であり、特に好ましくは10以下である。
 前記化合物において、Z11およびZ12が、エキシトン効果を示す原子団であることが好ましい。これにより、例えば、二重らせん構造となったときの蛍光の増大が大きく、二重らせん構造をいっそう効果的に検出することができる。ただし、前記化合物においては、Z11およびZ12が、エキシトン効果を示す原子団でなくても、また、蛍光性を示す原子団(色素)が1分子中に1個のみ導入されていても、二重らせん構造を効果的に検出することは可能である。
 Z11およびZ12は、例えば、前述の通り、蛍光性を有する原子団であることが好ましい。前記蛍光性を有する原子団は、特に制限されない。Z11およびZ12は、例えば、それぞれ独立に、チアゾールオレンジ、オキサゾールイエロー、シアニン、ヘミシアニン、その他のシアニン色素、メチルレッド、アゾ色素またはそれらの誘導体から誘導される基であることがより好ましい。また、その他の公知の色素から誘導される基も、適宜用いることができる。DNA等の核酸に結合することによって蛍光強度を変化させる蛍光色素は、数多く報告されている。典型的な例では、エチジウムブロミドがDNAの二重らせん構造にインターカレーションして強い蛍光を示すことが知られており、DNA検出に多用されている。また、ピレンカルボキシアミドやプロダンのような微視的極性に応じて蛍光強度を制御できる蛍光色素も知られている。また、前記チアゾールオレンジは、ベンゾチアゾール環とキノリン環をメチン基で連結した蛍光色素であり、通常微弱な蛍光を示すが、二重らせん構造をもつDNAにインターカレーションすることによって強い蛍光発光を与えるようになる。その他、例えば、フルオレセインやCy3等の色素も挙げられる。
 また、Z11およびZ12は、例えば、それぞれ独立に、下記式(7)から(9)のいずれかで表される原子団であることがより好ましい。
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
 前記式(7)~(9)中、
は、S、OまたはSeであり、
n’’は、0または正の整数であり、
~R10、R13~R21は、それぞれ独立に、水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ニトロ基、またはアミノ基であり、
11およびR12のうち、一方は、前記式(1)、(1b)または(1c)中のLもしくはL、前記式(5)、(6)、(6b)または(6c)中のNHに結合する連結基であり、他方は、水素原子または低級アルキル基であり、
15は、式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
16は、式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
11中のXおよびR~R21と、Z12中のXおよびR~R21とは、互いに同一でも異なっていてもよい。
 式(7)~(9)中、R~R21において、前記低級アルキル基が、炭素数1~6の直鎖または分枝アルキル基であり、前記低級アルコキシ基が、炭素数1~6の直鎖または分枝アルコキシ基であることがさらに好ましい。
 式(7)~(9)中、R11およびR12において、前記連結基が、炭素数2以上のポリメチレンカルボニル基であり、カルボニル基部分で前記式(1)、(1b)または(1c)中のLもしくはL、前記式(5)、(6)、(6b)または(6c)中のNHに結合することがさらに好ましい。前記ポリメチレンカルボニル基の炭素数は、その上限は特に制限されないが、例えば100以下である。
 Z11およびZ12は、前記式(7)~(9)で表される場合は、例えば、それぞれ独立に、下記式(19)または(20)で示される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
 前記式(19)および(20)中、Xは-S-又は-O-を示す。RからR10、R13およびR14はそれぞれ独立に水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ニトロ基、又はアミノ基を示す。R11及びR12の一方は、前記式(1)、(1b)または(1c)中のLもしくはL、前記式(5)、(6)、(6b)または(6c)中のNHに結合する連結基を示し、R11及びR12の他方は水素原子、または低級アルキル基を示す。
 前記化合物は、例えば、下記式(10)で表される構造を有する化合物、その互変異性体若しくは立体異性体、またはそれらの塩であっても良い。
Figure JPOXMLDOC01-appb-C000109
式(10)中、
E、Z11、Z12、Q、XおよびYは、前記式(1)と同じである。
 前記式(1)、(1b)および(1c)中、Bは、天然核酸塩基骨格を有していても良いが、前述の通り、人工核酸塩基骨格を有していてもよい。
例えば、Bが、Py、Py der.、Pu、またはPu der.で表される構造であることが好ましい。ただし、
前記Pyとは、下記式(11)で表記される6員環のうち、1位にEと結合する共有結合手を有し、5位にリンカー部と結合する共有結合手を有する原子団であり、
前記Py der.とは、前記Pyの6員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良く、
前記Puとは、下記式(12)で表記される縮合環のうち、9位にEと結合する共有結合手を有し、8位にリンカー部と結合する共有結合手を有する原子団であり、
前記Pu der.とは、前記Puの5員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良い。
Figure JPOXMLDOC01-appb-C000110
 前記化合物は、例えば、下記式(13)または(14)で表される化合物、その互変異性体若しくは立体異性体、またはそれらの塩であっても良い。
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
前記式(13)および(14)中、E、Z11、Z12、Q、XおよびYは、前記式(1)と同じであり、Py、Py der.、Pu、およびPu der.は、前述の定義のとおりである。
 前記化合物がホスホロアミダイト基を有する場合、前記ホスホロアミダイト基は、例えば、下記式(15)で表されることが好ましい。
-P(OR22)N(R23)(R24) (15)
式(15)中、R22はリン酸基の保護基であり、R23およびR24はアルキル基、またはアリール基である。
前記式(15)において、R15がシアノエチル基であり、R16およびR17において、前記アルキル基がイソプロピル基であり、前記アリール基がフェニル基であることがより好ましい。
 前記化合物において、例えば、前記式(1)で表される化合物が、下記式(21)で表される化合物であっても良い。
Figure JPOXMLDOC01-appb-C000113
 式(21)中、Aは水素原子または水酸基を示す。好ましくは、Aは水素原子である。Bはアデニン、グアニン、シトシン、チミンまたはウラシルの残基を示す。例えば、アデニン及びグアニンは、8位で二重結合と結合し、シトシン、チミン又はウラシルは5位で二重結合と結合している。Z11及びZ12は各々独立に、蛍光性を示す原子団、水素原子、またはアミノ基の保護基を示し、チアゾールオレンジ誘導体、又はオキサゾールイエロー誘導体の残基が特に好ましい。Xは、水素原子、酸で脱保護できる水酸基の保護基、あるいはモノホスフェート基、ジホスフェート基又はトリホスフェート基を示す。Yは水素原子、水酸基の保護基、又はホスホロアミダイト基である。
 前記式(21)で表される化合物は、例えば、下記式(22)で表されることがより好ましい。
Figure JPOXMLDOC01-appb-C000114
 前記式(22)中、Aは水素原子または水酸基を示す。Z11及びZ12は各々独立に、蛍光性を示す原子団、水素原子、又はアミノ基の保護基を示し、チアゾールオレンジ誘導体、又はオキサゾールイエロー誘導体の残基が特に好ましい。Xは、水素原子、酸で脱保護できる水酸基の保護基、あるいはモノホスフェート基、ジホスフェート基又はトリホスフェート基を示す。Yは水素原子、水酸基の保護基、又はホスホロアミダイト基である。
 前記式(21)または(22)の化合物において、Z11およびZ12が水素原子、又はアミノ基の保護基である場合は、一分子中に2つのアミノ基(又は保護されたアミノ基)を有することから、これらのアミノ基を利用して一分子中に2分子の標識分子を導入することができる。例えば、蛍光物質、化学発光物質などを結合して、標識核酸を製造することにより、核酸検出の感度を向上させることが可能である。さらにZ11およびZ12が蛍光性を示す原子団である場合のように、特定の蛍光物質で標識することにより、核酸の検出を簡便に行うことも可能である。
 また、前記式(21)または(22)の化合物において、Z11およびZ12が蛍光性を示す原子団である化合物は、2分子の蛍光性分子、例えば、チアゾールオレンジ誘導体又はオキサゾールイエロー誘導体で修飾したヌクレオシドまたはヌクレオチドである。このような化合物を含む一本鎖核酸からなるプローブは、エキシトンカップリングによる消光が引き起こされることにより、プローブのみの状態では蛍光は極めて弱いが、DNA又はRNAとハイブリダイズすることにより強い蛍光発光を示す。すなわち、例えば、チアゾールオレンジ誘導体又はオキサゾールイエロー誘導体の蛍光は、そのひずんだ構造により強く抑制されているが、チアゾールオレンジ誘導体又はオキサゾールイエロー誘導体は、DNAに結合することにより、構造のひずみが解消・固定化され、強い蛍光を示すようになる。蛍光は、例えば、488nm、514nmのArレーザーを使用して励起することにより検出できるが、これに限定されない。
 前記式(1)、(1b)または(1c)で表される化合物は、例えば、EプライマーまたはEプローブ(標識核酸)の合成に供することができる。すなわち、前記化合物は、核酸の標識物質(核酸ラベル化試薬)として用いることができる。例えば、前記式(1)、(1b)または(1c)で表される化合物をヌクレオチド基質として用いて、一本核酸を鋳型とした核酸合成反応を行うことによって、あるいは、前記式(1)、(1b)または(1c)で表される化合物を用いて一本鎖核酸を化学合成(例えば、核酸自動合成機を用いたホスホロアミダイト法などの化学合成法)することによって、一分子中に前記化合物を少なくとも1分子以上含む核酸を製造することができる。このとき、前記原子団Z11およびZ12は、それぞれ、蛍光性を示す原子団であっても良いが、水素原子または保護基であっても良い。前記原子団Z11およびZ12が、例えば、蛍光性を示す原子団であれば、本発明の標識プローブを製造でき、水素原子または保護基であれば、さらに、これらの原子や基を、蛍光性を示す原子団で置換することにより、本発明の標識プローブを製造できる。
 EプライマーまたはEプローブに含まれる前記式(1)、(1b)または(1c)の化合物の数は特に限定されないが、例えば、1~100個程度、好ましくは1から20個程度である。
 前記化合物または核酸(標識プローブ)は、例えば、下記式(23)~(25)のいずれかで表される構造を有していても良い。これにより、例えば、色素を導入した蛍光プローブとして好ましく用いることができる。ただし、蛍光プローブとして好適な化合物は、これらに限定されない。
Figure JPOXMLDOC01-appb-C000115
 前記式(23)において、塩基Bには、2個の色素(Fluo)が連結している。塩基Bがリンカーと結合する部位は特に制限されないが、例えば、ピリミジン4位、5位もしくは6位、プリン2位、3位、6位、7位もしくは8位のうち1ヶ所でリンカーに連結している。リンカーは、1ヶ所の塩基接続部位を有し、途中で2つ以上に分岐し、末端で色素と連結する。塩基もしくは色素との連結方法は、二重結合や三重結合に対する金属触媒反応や環形成縮合反応やマイケル付加反応などにより形成される結合のほかにも、アミド結合、エステル結合、ジスルフィド結合、イミン形成反応などにより形成される結合を用いることができる。リンカーについては、長さ(l, m, n)は自由であり、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、アミン、イミン、エーテル結合、チオエーテル結合、チオエステル結合などを含んでもよい。また、2量化によって引き起こされるエキシトン効果を妨げないことが好ましい。分岐部(X)は、炭素、ケイ素、窒素、リン、ホウ素の各原子であり、プロトネーション(例えばNH+)や酸化(例えばP=O)が起こっていてもよい。色素は2量化によってエキシトン効果を示すものを用いることが好ましく、リンカーと接続する箇所は色素のどの部分でもよい。式(23)中では、DNAの部分構造であるデオキシリボヌクレオチドが示されているが、それに代わって核酸骨格がリボヌクレオチド(RNA)のほか、2’-O-メチルRNAや2’-フルオロDNAなどの糖修飾核酸、ホスホロチオエート核酸などのリン酸修飾核酸、PNAやLNA(BNA)などの機能性核酸でもよい。
Figure JPOXMLDOC01-appb-C000116
 前記式(24)中、塩基Bには、2個の色素(Fluo)が連結している。塩基Bとリンカーとの結合箇所は、特に制限されないが、例えば、ピリミジン4位、5位もしくは6位、プリン2位、3位、6位、7位もしくは8位のうち2ヶ所でリンカーに連結している。2つのリンカーは、それぞれ1ヶ所の塩基接続部位を有し、もうひとつの末端で色素と連結する。塩基もしくは色素との連結方法は、二重結合や三重結合に対する金属触媒反応や環形成縮合反応やマイケル付加反応などにより形成される結合のほかにも、アミド結合、エステル結合、ジスルフィド結合、イミン形成反応などにより形成される結合を用いることができる。リンカーについては、長さ(l, m)は自由であり、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、アミン、イミン、エーテル結合、チオエーテル結合、チオエステル結合などを含んでもよい。また、2量化によって引き起こされるエキシトン効果を妨げないことが好ましい。色素は2量化によってエキシトン効果を示すものを用いることが好ましく、リンカーと接続する箇所は色素のどの部分でもよい。前記式(24)中では、DNAの部分構造であるデオキシリボヌクレオチドが示されているが、それに代わって核酸骨格がリボヌクレオチド(RNA)のほか、2’-O-メチルRNAや2’-フルオロDNAなどの糖修飾核酸、ホスホロチオエート核酸などのリン酸修飾核酸、PNAやLNA(BNA)などの機能性核酸でもよい。
Figure JPOXMLDOC01-appb-C000117
 前記式(25)においては、連続するヌクレオチドの各塩基(B1,B2)にそれぞれ1個の色素(Fluo)を連結している。各塩基がリンカーと結合する箇所は特に制限されないが、例えば、ピリミジン4位、5位もしくは6位、プリン2位、3位、6位、7位もしくは8位のうち1ヶ所でリンカーに連結している。2つのリンカーは、それぞれ1ヶ所の塩基接続部位を有し、もうひとつの末端で色素と連結する。塩基もしくは色素との連結方法は、二重結合や三重結合に対する金属触媒反応や環形成縮合反応やマイケル付加反応などにより形成される結合のほかにも、アミド結合、エステル結合、ジスルフィド結合、イミン形成反応などにより形成される結合を用いることができる。リンカーについては、長さ(l, m)は自由であり、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、アミン、イミン、エーテル結合、チオエーテル結合、チオエステル結合などを含んでもよい。また、2量化によって引き起こされるエキシトン効果を妨げないことが好ましい。色素は2量化によってエキシトン効果を示すものを用いることが好ましく、リンカーと接続する箇所は色素のどの部分でもよい。前記式(25)中では、DNAの部分構造であるデオキシリボヌクレオチドが示されているが、それに代わって核酸骨格がリボヌクレオチド(RNA)のほか、2’-O-メチルRNAや2’-フルオロDNAなどの糖修飾核酸、ホスホロチオエート核酸などのリン酸修飾核酸、PNAやLNA(BNA)などの機能性核酸でもよい。
 なお、前記化合物または核酸(例えば、本発明の標識核酸)に互変異性体または立体異性体(例:幾何異性体、配座異性体および光学異性体)等の異性体が存在する場合は、いずれの異性体も本発明に用いることができる。また、前記化合物または核酸の塩は、酸付加塩でも良いが、塩基付加塩でも良い。さらに、前記酸付加塩を形成する酸は無機酸でも有機酸でも良く、前記塩基付加塩を形成する塩基は無機塩基でも有機塩基でも良い。前記無機酸としては、特に限定されないが、例えば、硫酸、リン酸、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜フッ素酸、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、亜フッ素酸、亜塩素酸、亜臭素酸、亜ヨウ素酸、フッ素酸、塩素酸、臭素酸、ヨウ素酸、過フッ素酸、過塩素酸、過臭素酸、および過ヨウ素酸等があげられる。前記有機酸も特に限定されないが、例えば、p-トルエンスルホン酸、メタンスルホン酸、シュウ酸、p-ブロモベンゼンスルホン酸、炭酸、コハク酸、クエン酸、安息香酸および酢酸等があげられる。前記無機塩基としては、特に限定されないが、例えば、水酸化アンモニウム、アルカリ金属水酸化物、アルカリ土類金属水酸化物、炭酸塩および炭酸水素塩等があげられ、より具体的には、例えば、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化カルシウムおよび炭酸カルシウム等があげられる。前記有機塩基も特に限定されないが、例えば、エタノールアミン、トリエチルアミンおよびトリス(ヒドロキシメチル)アミノメタン等があげられる。これらの塩の製造方法も特に限定されず、例えば、前記電子供与体・受容体連結分子に、前記のような酸や塩基を公知の方法により適宜付加させる等の方法で製造することができる。また、置換基等に異性体が存在する場合はどの異性体でも良く、例えば、「ナフチル基」という場合は、1-ナフチル基でも2-ナフチル基でも良い。
 また、本発明において、アルキル基としては、特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基およびtert-ブチル基等が挙げられ、アルキル基を構造中に含む基(アルキルアミノ基、アルコキシ基等)においても同様である。また、ペルフルオロアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基およびtert-ブチル基等から誘導されるペルフルオロアルキル基が挙げられ、ペルフルオロアルキル基を構造中に含む基(ペルフルオロアルキルスルホニル基、ペルフルオロアシル基等)においても同様である。本発明において、アシル基としては、特に限定されないが、例えば、ホルミル基、アセチル基、プロピオニル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基、シクロヘキサノイル基、ベンゾイル基、エトキシカルボニル基、等が挙げられ、アシル基を構造中に含む基(アシルオキシ基、アルカノイルオキシ基等)においても同様である。また、本発明において、アシル基の炭素数にはカルボニル炭素を含み、例えば、炭素数1のアルカノイル基(アシル基)とはホルミル基を指すものとする。さらに、本発明において、「ハロゲン」とは、任意のハロゲン元素を指すが、例えば、フッ素、塩素、臭素およびヨウ素が挙げられる。また、本発明において、アミノ基の保護基としては、特に制限されないが、例えば、トリフルオロアセチル基、ホルミル基、C1-6アルキル-カルボニル基(例えばアセチル、エチルカルボニル等)、C1-6アルキル-スルホニル基、tert-ブチルオキシカルボニル基(以下、Bocとも称する)、ベンジルオキシカルボニル基、アリルオキシカルボニル基、フルオレニルメチルオキシカルボニル基、アリールカルボニル基(例えばフェニルカルボニル、ナフチルカルボニル等)、アリールスルホニル基(例えばフェニルスルホニル、ナフチルスルホニル等)、C1-6アルキルオキシ-カルボニル基(例えば、メトキシカルボニル、エトキシカルボニル等)、C7-10アラルキル-カルボニル基(例えばベンジルカルボニル等)、メチル基、アラルキル基(例えばベンジル、ジフェニルメチル、トリチル基等)、等が用いられる。これらの基は1ないし3個のハロゲン原子(例えばフッ素、塩素、臭素等)、ニトロ基等で置換されていてもよく、その具体例としては、p-ニトロベンジルオキシカルボニル基、p-クロロベンジルオキシカルボニル基、m-クロロベンジルオキシカルボニル基、p-メトキシベンジルオキシカルボニル基などが挙げられる。また、本発明において、水酸基の保護基(酸で脱保護することが可能なものを含む)としては、特に制限されないが、例えば、ジメトキシトリチル基、モノメトキシトリチル基、ピクシル基などが挙げられる。
 EプライマーまたはEプローブの製造方法は、特に限定されず、例えば、公知の合成方法(製造方法)を適宜参考にしても良い。具体的には、例えば、以下のように、特許第4370385号公報に開示されている方法を参考にしても良い。
 一例として、前記式(21)で表される化合物の場合は、下記式(26)で示される化合物のカルボキシル基を活性化した後、トリス(2-アミノエチル)アミンを反応させる工程;アミノ基を保護する工程:及び上記で得られた化合物中に存在する水酸基を保護基で保護する反応と、得られた化合物中に存在する水酸基にリン酸又はホスホロアミダイト基を付加する反応とを行う工程を含む製造方法により製造してもよい。
Figure JPOXMLDOC01-appb-C000118
前記式(26)中、Aは水素原子または水酸基を示す。Bはアデニン、グアニン、シトシン、チミン又はウラシルの残基を示す。
 EプライマーまたはEプローブの製造に応用できる製造方法(合成方法)としては、例えば、以下の方法がある。すなわち、まず、DNAの簡便なラベル化法として、DNA中の活性なアミノ基とラベル化剤中の活性化されたカルボキシル基とを緩衝溶液中で反応させる方法が広く用いられている。この方法は、本発明の化合物または核酸のいずれの製造にも応用可能であり、特に、リンカーまたは色素の導入に応用できる。アミノ基の導入法としては、GLEN RESEARCH社が販売しているAmino modifierホスホロアミダイトを利用する方法などがある。
 前記原子団Z11およびZ12は、例えば、保護基から水素原子に変換し(保護基を外し)、さらに、水素原子から、蛍光性を有する原子団(色素)で置換することができる。保護基を外す方法は特に制限されず、公知の方法を適宜用いることができる。蛍光性を有する原子団(色素)で置換する方法も特に制限されず、例えば、Z11およびZ12が水素原子である本発明の化合物または核酸と、蛍光性分子(色素)とを適宜反応させればよい。例えば、Z11およびZ12の少なくとも一方が活性アミノ基であると、蛍光性分子(色素)と反応しやすいため好ましく、Z11およびZ12の両方が活性アミノ基であることがより好ましい。蛍光性分子(色素)も特に制限されないが、例えば、前記式(7)~(9)のいずれかで表される化合物(ただし、R11およびR12のいずれもが、水素原子もしくは低級アルキル基、またはカルボキシポリメチレン基である)であっても良い。また、核酸(ポリヌクレオチド、ポリヌクレオシド、オリゴヌクレオチドまたはオリゴヌクレオシド)の場合、保護基を外す工程および蛍光性を有する原子団(色素)で置換する工程は、重合(核酸合成)の前でもよいし、後でもよい。例えば、合成工程で色素部分がダメージを受けることを防止する観点から、重合(核酸合成)の後に蛍光性を有する原子団(色素)を導入することが好ましい。
 色素としては、前述の通り、特に制限されず、あらゆる色素が使用可能であるが、例えば、シアニン色素が好ましく、チアゾールオレンジが特に好ましい。シアニン色素は、例えば、ヘテロ原子を有する2つの複素環がメチンリンカーで結ばれた化学構造をしている。複素環の種類やメチンリンカーの長さを変えること、または複素環への置換基導入などにより、さまざまな励起・発光波長の蛍光色素を合成することが可能である。また、DNA導入のためのリンカー導入も比較的容易である。なお、チアゾールオレンジは水中でほとんど蛍光を出さないが、DNAまたはRNAと相互作用することにより強い蛍光を発する。核酸との相互作用により、色素分子間の相互作用が抑制されること、そして色素分子の2つの複素環の間のメチンリンカー周りの回転が抑制されることが蛍光強度の増加につながると考えられている。なお、チアゾールオレンジ色素の使用方法については、良く知られているが、例えば、H. S. Rye, M. A. Quesada, K. Peck, R. A. Mathies and A. N. Glazer, High-sensitivity two-color detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange, Nucleic Acids Res., 1991, 19, 327-33;及びL. G. Lee, C. H. Chen and L. A. Chiu, Thiazole orange: a new dye for reticulocyte analysis, Cytometry, 1986, 7, 508-17を参照して用いることができる。
 本発明において、EプライマーまたはEプローブの基本骨格は、前述の通り、特に制限されず、例えば、オリゴヌクレオチド、修飾オリゴヌクレオチド、オリゴヌクレオシド、修飾オリゴヌクレオシド、ポリヌクレオチド、修飾ポリヌクレオチド、ポリヌクレオシド、修飾ポリヌクレオシド、DNA、修飾DNA、RNA、修飾DNA、LNA、またはPNA(ペプチド核酸)のいずれであっても良いし、その他の構造であっても良い。DNA、修飾DNA、RNA、または修飾DNAを基本骨格とする方が合成が容易であり、色素での置換(色素分子の導入)等もしやすいため好ましい。LNAまたはPNAに色素分子を導入する方法は特に制限されず、公知の方法を適宜用いることができる。具体的には、例えば、Analytical Biochemistry 2000, 281, 26-35. Svanvik, N., Westman, G., Wang, D., Kubista, M. (2000) Anal Biochem. 281, 26-35. Hrdlicka, P. J., Babu, B. R., Sorensen, M. D., Harrit, N., Wengel, J. (2005) J. Am. Chem. Soc. 127, 13293-13299.等を参照することができる。
 オリゴヌクレオチド、修飾オリゴヌクレオチド、オリゴヌクレオシド、修飾オリゴヌクレオシド、ポリヌクレオチド、修飾ポリヌクレオチド、ポリヌクレオシド、修飾ポリヌクレオシド、DNA、修飾DNA、RNA、または修飾DNAを基本骨格とする核酸の合成方法は良く知られており、例えば、いわゆるホスホロアミダイト法等により合成することができる。その原料となるホスホロアミダイト試薬も、公知の方法で簡便に合成することができる。本発明の核酸がDNA、特に短いオリゴDNAの場合、例えば、DNA自動合成機等で簡便に合成することができる。また、例えば、PCR等により、長鎖状の核酸(DNA)等を合成することもできる。DNAと色素分子との結合箇所は、前述の通り特に制限されないが、例えば、チミジンの5位が特に好ましい。チミジンの5位からさまざまな置換基を伸ばしたヌクレオチド誘導体の三リン酸はDNAポリメラーゼによる導入効率が比較的良いことが知られている。これにより、例えば、本発明の核酸が、短いオリゴDNAである場合のみならず、長鎖DNAである場合にも簡便な合成が可能である。
 特に、例えば、チアゾールオレンジを利用した、一本鎖DNAである本発明の蛍光プローブ(標識核酸)は、例えば、(1)DNA自動合成機で合成したDNAに緩衝溶液中で色素をつけるだけで調製でき、合成的に容易である、(2)酵素的に調製した長鎖DNAと色素を反応させることで、長鎖の蛍光プローブの作製も可能である、などの利点を有している。また、例えば、500nm付近の比較的長波長の光で励起できる。
 次に、EプライマーまたはEプローブが有する蛍光性原子団について説明する。前記蛍光性原子団は、例えば、
(i) 一つの分子内の二つの平面化学構造が同一平面内ではなく、ある一定の角度をもって存在するが、その分子が核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには二つの平面化学構造が同一平面内に並ぶように配置することによって蛍光発光が生じるものであるか、
(ii)2つ以上の色素分子が並行に集合するために生じるエキシトン効果によって蛍光発光を示さないが、それらの分子がターゲット分子、たとえば核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには、前記集合状態が解けることにより蛍光発光が生じる2つ以上の色素分子群からなるものであるか、または、
(iii)2つ以上の色素分子が並行に集合するために生じるエキシトン効果によって蛍光発光を示さないが、それらの分子がターゲット分子、たとえば核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには、前記集合状態が解けることにより蛍光発光が生じる2つ以上の色素分子の化学構造を同一分子内に有することを特徴とするものである。
前記(ii)または(iii)の場合において、前記色素分子が、前記(i)記載の分子であることが好ましい。
 前記式中、Z11およびZ12が、エキシトン効果を示す原子団であることにより、ターゲット分子と結合したときの蛍光色素周りの環境変化、例えばDNAが2本鎖形成となったときの蛍光の増大が大きくなり、いっそう効果的に検出することができる。
 色素としては、前述の通り、特に制限されず、あらゆる色素が使用可能であるが、例えば、シアニン色素が好ましく、チアゾールオレンジが特に好ましい。シアニン色素は、例えば、ヘテロ原子を有する2つの複素環がメチンリンカーで結ばれた化学構造をしている。複素環の種類やメチンリンカーの長さを変えること、または複素環への置換基導入などにより、さまざまな励起・発光波長の蛍光色素を合成することが可能である。また、DNA導入のためのリンカー導入も比較的容易である。なお、チアゾールオレンジは水中でほとんど蛍光を出さないが、DNAまたはRNAと相互作用することにより強い蛍光を発する。核酸との相互作用により、色素分子間の相互作用が抑制されること、そして色素分子の2つの複素環の間のメチンリンカー周りの回転が抑制されることが蛍光強度の増加につながると考えられている。なお、チアゾールオレンジ色素の使用方法については、良く知られているが、例えば、H. S. Rye, M. A. Quesada, K. Peck, R. A. Mathies and A. N. Glazer, High-sensitivity two-color detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange, Nucleic Acids Res., 1991, 19, 327-33;及びL. G. Lee, C. H. Chen and L. A. Chiu, Thiazole orange: a new dye for reticulocyte analysis, Cytometry, 1986, 7, 508-17を参照して用いることができる。
 以下に実施例を記載する。ただし本発明は、以下の実施例によりなんら制限および限定されない。
 核酸分子の合成は、以下の合成例に基づき、またはこれに準じて行った。これらの合成方法(製造方法)は、特許第4370385号の実施例に記載の合成方法と同様である。
[中間体合成例1~3]
 下記スキーム1にしたがって、2つの活性アミノ基がそれぞれトリフルオロアセチル基で保護された化合物102および103を合成(製造)し、さらに、ホスホロアミダイト104を合成した。
Figure JPOXMLDOC01-appb-C000119
スキーム1 反応試薬と反応条件 (a) (i) N-hydroxysuccinimide, EDC/DMF, (ii) tris(2-aminoethyl)- amine/CH3CN, (iii) CF3COOEt, Et3N; (b) DMTrCl/pyridine; (c) 2-cyanoethyl-N,N,N',N'-tetraisopropyl phosphoramidite, 1H-tetrazole/CH3CN.
 前記スキーム1について、より詳しくは以下の通りである。
[中間体合成例1:2-[2-[N,N-ビス(2-トリフルオロアセトアミドエチル)]-アミノエチル]カルバモイル-(E)-ビニル)-2'-デオキシウリジン(2-[2-[N,N-bis(2- trifluoroacetamidoethyl)]-aminoethyl]carbamoyl-(E)-vinyl)-2'- deoxyuridine、化合物102)の合成]
 出発原料の(E)-5-(2-カルボキシビニル)-2'-デオキシウリジン((E)-5-(2-carboxyvinyl)-2'- deoxyuridine、化合物101)は、Tetrahedron 1987, 43, 20, 4601-4607に従って合成した。すなわち、まず、430mgの酢酸パラジウム(II)(FW224.51)と1.05gのトリフェニルホスフィン (FW262.29)に71mLの1,4-ジオキサンを加え、さらに7.1mLのトリエチルアミン(FW101.19, d=0.726)を加え、70℃で加熱撹拌した。反応溶液が赤褐色から黒褐色に変化したら14.2gの2'-デオキシ-5-ヨードウリジン (FW354.10)と7.0mLのアクリル酸メチル(FW86.09,d=0.956)を1,4-ジオキサンに懸濁させたものを加え、125℃で1時間加熱還流させた。その後、熱いうちにろ過し、メタノールで残さを洗浄し、ろ液を回収した。そのろ液から溶媒を減圧留去した後、シリカゲルカラムで生成物を精製した(5-10% メタノール/ジクロロメタン)。集めたフラクションの溶媒を減圧留去し、残った白色固体を減圧下で乾燥した。その乾燥固体に約100mLの超純水を加え、3.21gの水酸化ナトリウム(FW40.00)を加え、25℃で終夜撹拌した。その後、濃塩酸を加えて溶液を酸性にし、生じた沈殿をろ過、超純水で洗浄し、減圧下で乾燥した。これにより、目的化合物(化合物101)8.10g(収率68%)を白色粉末として得た。なお、前記白色粉末が目的化合物101であることは、1HNMR測定値が文献値と一致することから確認した。また、13CNMR測定値を以下に記す。
(E)-5-(2-カルボキシビニル)-2'-デオキシウリジン(化合物101):13CNMR(DMSO-d6):δ168.1, 161.8, 149.3, 143.5, 137.5, 117.8, 108.4, 87.6, 84.8, 69.7, 60.8, 40.1.
 次に、1.20gの(E)-5-(2-カルボキシビニル)-2'-デオキシウリジン101(分子量298.25)と925mgのN-ヒドロキシスクシンイミド(分子量115.09)と1.54gの1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(分子量191.70)を撹拌子の入ったナスフラスコに入れ、20mLのDMFを加えて、25℃で16時間撹拌した。約1mLの酢酸を加え、300mLの塩化メチレンと100mLの超純水を加え、激しく撹拌した。水層を除き、さらに100mLの超純水を加え、同様に2回洗浄した。生じた沈殿をろ過し、塩化メチレンで洗浄し、減圧下で乾燥した。ろ液から溶媒を留去し、生じた沈殿に塩化メチレンを加えて、沈殿を前記と同様に回収した。回収した沈殿を全て合わせ、それを80mLのアセトニトリルに懸濁させ、激しく撹拌した。そこに3.0mLのトリス(2-アミノエチル)アミン(分子量146.23, d=0.976)を一気に加え、25℃でさらに10分間撹拌した。その後、4.8mLのトリフルオロ酢酸エチル(分子量142.08, d=1.194)を加え、さらに5.6mLのトリエチルアミン(分子量101.19, d=0.726)を加え、25℃で3時間撹拌した。溶媒を留去し、シリカゲルカラムで精製した(5-10% MeOH/CH2Cl2)。溶媒を留去し、少量のアセトンに溶解させ、エーテルを加えると白色沈殿を生じた。ろ過、エーテルで洗浄後、減圧下で乾燥し、884mg(33.5%)の目的物質(化合物102)を得た。
 なお、原料、溶媒等の使用量、反応時間および工程を若干変化させる以外は上記と同様に合成したところ、収率を37%まで向上させることができた。すなわち、597mg(2.0mmol)の(E)-5-(2-カルボキシビニル)-2'-デオキシウリジン101(分子量298.25)と460mg(4.0mmol)のN-ヒドロキシスクシンイミド(分子量115.09)と(767mg, 4.0mmol)の1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド ヒドロクロリド(分子量191.70)を撹拌子の入ったナスフラスコに入れ、5.0mLのDMFを加えて、25℃で3時間撹拌した。約0.5mLの酢酸を加え、100mLの塩化メチレンと100mLの超純水を加え、激しく撹拌した。生じた沈殿をろ過し、水で洗浄し、減圧下で終夜乾燥させた。得られた白色の残渣を50mLのアセトニトリルに懸濁させ、激しく撹拌した。そこに3.0mL(20mmol)のトリス(2-アミノエチル)アミン(分子量146.23, d=0.976)を一気に加え、25℃でさらに10分間撹拌した。その後、4.8mLのトリフルオロ酢酸エチル(分子量142.08, d=1.194)を加え、さらに5.6mL(40mmol)のトリエチルアミン(分子量101.19, d=0.726)を加え、25℃で16時間撹拌した。溶媒を留去し、シリカゲルカラムで精製した(5-10% MeOH/CH2Cl2)。溶媒を留去し、少量のアセトンに溶解させ、エーテルを加えると白色沈殿を生じた。ろ過、エーテルで洗浄後、減圧下で乾燥し、453mg(37%)の目的物質(化合物102)を白色粉末として得た。以下に、化合物102の機器分析値を示す。
2-[2-[N,N-ビス (2-トリフルオロアセトアミドエチル)]-アミノエチル]カルバモイル-(E)-ビニル)-2'-デオキシウリジン(化合物102):
1HNMR(CD3OD):δ8.35(s,1H), 7.22(d, J=15.6Hz, 1H), 7.04(d, J=15.6Hz, 1H), 6.26(t, J=6.6Hz, 1H), 4.44-4.41(m, 1H), 3.96-3.94(m, 1H), 3.84(dd, J=12.2, 2.9Hz, 1H), 3.76(dd, J=12.2, 3.4Hz, 1H), 3.37-3.30(m, 6H), 2.72-2.66(m, 6H), 2.38-2.23(m, 2H).13CNMR(CD3OD):δ169.3, 163.7, 159.1(q,J=36.4Hz), 151.2, 143.8, 134.3, 122.0, 117.5(q,J=286Hz), 110.9, 89.1, 87.0, 71.9, 62.5, 54.4, 53.9, 41.7, 38.9, 38.7. HRMS(ESI) calcd for C22H29F6N6O8 ([M+H]+) 619.1951, found 619.1943.
[中間体合成例2:5'-O-ジメトキシトリチル-(2-[2-[N,N-ビス(2-トリフルオロアセタミドエチル)]-アミノエチル]カルバモイル -(E)-ビニル)-2'-デオキシウリジン(5'-O-DMTr-(2-[2-[N,N-bis(2- trifluoroacetamidoethyl)]-aminoethyl]carbamoyl-(E)-vinyl)-2'- deoxyuridine、化合物103)の合成]
 化合物102の5'-水酸基をDMTr基で保護し、化合物103を得た。すなわち、まず、618mgの化合物102(分子量618.48)と373mgの4,4'-ジメトキシトリチルクロリド(分子量338.83)を撹拌子の入ったナスフラスコに入れ、10mLのピリジンを加えて、25°で16時間撹拌した。少量の水を加え、溶媒を留去し、シリカゲルカラムで精製した(2-4% MeOH, 1% Et3N/CH2Cl2)。目的化合物103を含むフラクションの溶媒を留去し、735.2mg(79.8%)の目的物質(化合物103)を得た。以下に、化合物103の機器分析値を示す。
5'-O-(ジメトキシトリチル)-(2-[2-[N,N-ビス(2-トリフルオロアセタミドエチル)]-アミノエチル]カルバモイル-(E)-ビニル)-2'-デオキシウリジン(化合物103):
1HNMR(CD3OD):δ7.91(s, 1H), 7.39-7.11(m, 9H), 7.02(d, J=15.6Hz, 1H), 6.93(d, J=15.6Hz, 1H), 6.80-6.78(m, 4H), 6.17(t, J=6.6Hz, 1H), 4.38-4.35(m, 1H), 4.06-4.04(m, 1H), 3.68(s, 6H), 3.32-3.22(m, 8H), 2.66-2.55(m, 6H), 2.40(ddd, J=13.7, 5.9, 2.9Hz, 1H), 2.33-2.26(m, 1H).13CNMR(CD3OD):δ168.9, 163.7, 160.1, 159.1(q, J=36.9Hz), 151.0, 146.1, 143.0, 137.0, 136.9, 134.1, 131.24, 131.16, 129.2, 128.9, 128.0, 122.5, 117.5(q, J=286.7Hz), 114.2, 110.9, 88.1, 87.9, 87.6, 72.6, 65.0, 55.7, 54.2, 53.9, 41.7, 38.9, 38.6. HRMS(ESI) calcd for C43H47F6N6O10([M+H]+) 921.3258, found 921.3265.
[中間体合成例3:5'-O-(ジメトキシトリチル)-(2-[2-[N,N-ビス(2-トリフルオロアセタミドエチル)]-アミノエチル]カルバモイル -(E)-ビニル)-2'-デオキシウリジン 3'-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト(5'-O-DMTr-(2-[2-[N,N-bis(2-trifluoroacetamidoethyl)]-aminoethyl]carbamoyl-(E)-vinyl)-2'-deoxyuridine, 3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite、化合物104)の合成]
 188mg(0.20mmol)の化合物103(分子量920.85)をCH3CNと共沸させ、28.6mg(0.40mmol)の1H-テトラゾール(分子量70.05)を加え、真空ポンプで一晩吸引乾燥した。5.1mLのCH3CNを加えて試薬を溶解後、撹拌し、194μL(0.60mmol)の2-シアノエチル-N,N,N',N'-テトライソプロピルホスホロアミダイト(分子量 301.41, d=0.949)を一気に加え25℃で2時間撹拌した。50mLの酢酸エチルと50mLの飽和重曹水を混合したものを加え、分液し、有機層を飽和食塩水で 洗浄後、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ過により除去した後、溶媒を留去した。この分液による粗生成物をCH3CN共沸後、収率100%で生成物(化合物104)を得たと仮定して0.1MのCH3CN溶液とし、DNA合成に使用した。なお、化合物104が得られていることは、前記粗生成物の31PNMR(CDCl3)とHRMS(ESI)から確認した。これらの値を以下に示す。
化合物104:
31PNMR(CDCl3) δ 149.686, 149.430; HRMS (ESI) calcd for C52H64F6N8O11P([M+H]+) 1121.4336, found 1121.4342.
[中間体合成例4:DNAオリゴマー合成]
Figure JPOXMLDOC01-appb-C000120
 化合物104を用いたDNA自動合成機によるオリゴDNA合成は、1μmolスケールで通常のホスホロアミダイト法(DMTr OFF)によって行い、後述の実施例に示す配列のDNAオリゴマーを合成した。脱保護は、濃アンモニア水(28質量%)により、55℃で16時間行った。スピードバックでアンモニアを揮発させ、0.45μmフィルターに通した後、切り出したDNAオリゴマーを逆相HPLCにより分析し、約10.5分に現れたピークを精製した(CHEMCOBOND 5-ODS-H(商品名)10×150mm、3mL/min、5-30% CH3CN/50mM TEAAバッファー pH7(20分)、260nmで検出)。精製した生成物はMALDI TOFマスのネガティブモードにより分子量を測定し、目的の配列を有することが確認された。
 なお、合成した各DNAの濃度を決定するために、精製した各DNAを、ウシ腸アルカリホスファターゼ(50U/mL)、ヘビ毒液ホスホジエステラーゼ(0.15U/mL)およびP1ヌクレアーゼ(50U/mL)により、25℃で16時間かけて完全消化した。得られた消化液を、CHEMCOBOND 5-ODS-H(商品名)カラム(4.6×150mm)のHPLCで解析した。その際、展開液としては0.1M TEAA(pH 7.0)を用い、流速は1.0mL/minとした。前記合成したDNAの濃度は、dA、dC、dGおよびdTをそれぞれ0.1mM濃度で含む標準溶液の ピーク面積と比較して決定した。さらに、前記合成したDNAは、MALDI TOFマススペクトルによっても同定した。
[核酸分子合成例:チアゾールオレンジから誘導される構造を1分子中に2箇所有する核酸分子の合成]
Figure JPOXMLDOC01-appb-C000121
 上記スキーム4の通り、チアゾールオレンジから誘導される構造を1分子中に2箇所有するDNAオリゴマー(オリゴヌクレオチド)110を合成した。より詳しくは、以下の通りである。
 チアゾールオレンジ誘導体107の合成は、Organic Letters 2000, 6, 517-519を参考に下記スキーム5の通り行った。
Figure JPOXMLDOC01-appb-C000122
(1)N-メチルキノリニウムヨージド(化合物111)の合成
 まず、N-メチルキノリニウムヨージド(化合物111)を、前記文献の記載に従って合成した。具体的には、無水ジオキサン42mL中に、キノリン2.4mLとヨウ化メチル4mLを加え、150℃で1時間撹拌した後、ろ過によって沈殿物を集め、エーテル及び石油エーテルで洗浄、乾燥し、N-メチルキノリニウムヨージド(化合物111)を得た。
(2)3-(4-カルボキシブチル)-2-メチルベンゾチアゾリウム ブロミド(化合物112)の合成
 8mLの2-メチルベンゾチアゾール(FW149.21, d=1.173)と9.4gの5-ブロモ吉草酸(5-ブロモペンタン酸)(FW181.03)を110℃で16時間撹拌した。粗生成物を室温に冷却し、生じた固体をメタノール20mLに懸濁させ、さらにエーテル40mLを加えた。生じた沈殿をろ過し、ジオキサンで2-メチルベンゾチアゾールの匂いがなくなるまで洗浄し、エーテルでさらに洗浄し、減圧下で乾燥して9.8gの白色粉末を得た。この白色粉末の1HNMRを測定したところ、2位がアルキル化された目的物3-(4-カルボキシブチル)-2-メチルベンゾチアゾリウム ブロミド(化合物112)と、2位がアルキル化されていない3-(4-カルボキシブチル)-ベンゾチアゾリウム ブロミドとの混合物であった。プロトンのピーク比は、アルキル化されていないもの:アルキル化されたもの=10:3であった。この粗生成物を、そのまま次の反応に用いた。
(3)1-メチル-4-[{3-(4-カルボキシブチル)-2(3H)-ベンゾチアゾリリデン}メチル]キノリニウム ブロミド(化合物107)の合成
 上記(2)で得られた、3-(4-カルボキシブチル)-2-メチルベンゾチアゾリウム ブロミド(化合物112)を含む粗生成物2.18gと、700mgのN-メチルキノリニウムヨージド(化合物111)(FW271.10)を、3.6mLのトリエチルアミン(FW101.19, d=0.726)存在下、10mLの塩化メチレン中、25℃で2時間撹拌した。その後、エーテル50mLを加え、生じた沈殿を濾取し、エーテルで洗浄し、減圧下で乾燥した。その沈殿を超純水50mLに懸濁させ、濾取し、超純水で洗浄し、減圧下で乾燥した。さらに前記沈殿をアセトニトリル50mLに懸濁させ、濾取し、アセトニトリルで洗浄し、減圧下で乾燥させて307.5mgの赤色粉末を得た(収率25.3%)。この赤色粉末が目的物(化合物107)であることは、1HNMRスペクトルを文献値と対比して確認した。
 また、3-(4-カルボキシブチル)-2-メチルベンゾチアゾリウム ブロミド(化合物112)および1-メチル-4-[{3-(4-カルボキシブチル)-2(3H)-ベンゾチアゾリリデン}メチル]キノリニウム ブロミド(化合物107)は、以下のようにしても合成することができた。すなわち、まず、11.7mL(92mmol)の2-メチルベンゾチアゾール(FW149.21, d=1.173)と13.7g(76mmol)の5-ブロモ吉草酸(5-ブロモペンタン酸)(FW181.03)を150℃で1時間撹拌した。粗生成物を室温に冷却し、生じた固体をメタノール50mLに懸濁させ、さらにエーテル200mLを加えた。生じた沈殿をろ過し、エーテルで洗浄し、減圧下で乾燥して19.2gの淡紫色粉末を得た。この粉末は、目的化合物112(3-(4-カルボキシブチル)-2-メチルベンゾチアゾリウム ブロミド)と2-メチルベンゾチアゾリウムブロミドとの混合物であった。この混合物を1HNMR(in DMSO-d6)測定し、8.5ppmのピーク(目的化合物112由来)と、8.0ppmのピーク(2-メチルベンゾチアゾリウムブロミド由来)とのピーク面積比から、目的化合物112の収量を9.82g(14mmol, 32%)と算出した。この混合物(粗生成物)は、精製せずに次の反応に使用した。なお、5-ブロモ吉草酸(5-ブロモペンタン酸)を4-ブロモ酪酸(4-ブロモブタン酸)に変える以外は同様の方法でリンカー(カルボキシル基に連結したポリメチレン鎖)の炭素数n=3の3-(4-カルボキシプロピル)-2-メチルベンゾチアゾリウム ブロミドを合成したところ、収率4%で得られた。また、5-ブロモ吉草酸(5-ブロモペンタン酸)を6-ブロモヘキサン酸に変える以外は同様の方法でリンカー(カルボキシル基に連結したポリメチレン鎖)の炭素数n=5の3-(4-カルボキシペンチル)-2-メチルベンゾチアゾリウムブロミドを合成したところ、収率35%で得られた。さらに、5-ブロモ吉草酸(5-ブロモペンタン酸)を7-ブロモヘプタン酸に変える以外は同様の方法でリンカー(カルボキシル基に連結したポリメチレン鎖)の炭素数n=6の3-(4-カルボキシプロピル)-2-メチルベンゾチアゾリウム ブロミドを合成したところ、収率22%で得られた。
 次に、化合物112(3-(4-カルボキシブチル)-2-メチルベンゾチアゾリウム ブロミド)と2-メチルベンゾチアゾリウムブロミドとを含む前記混合物(粗生成物)3.24gに、1.36g(5.0mmol)のN-メチルキノリニウム ヨージド(化合物111)(FW271.10)、7.0mL(50mmol)のトリエチルアミン(FW101.19, d=0.726)、および100mLの塩化メチレンを加え、透明な溶液を得た。この溶液を、25℃で16時間攪拌した。その後、溶媒を減圧留去した。残渣にアセトン(200mL)を加え、得られた沈殿を濾取し、アセトンで洗浄した。そうして得られた残渣を減圧乾燥し、乾燥後の赤色残渣を蒸留水(50mL)で洗浄した。これをさらに濾取し、蒸留水で洗浄し、減圧下で乾燥させて、目的物(化合物107)を赤色粉末として得た(654mg, 1.39mmol, 28%)この赤色粉末が目的物(化合物107)であることは、1HNMRスペクトルを文献値と対比して確認した。以下に、1HNMRおよび13CNMR(DMSO-d6)のピーク値と、HRMS(ESI)の測定値を示す。
化合物107:1HNMR(DMSO-d6):δ 8.74(d, J=8.3Hz, 1H), 8.51(d, J=7.3Hz, 1H), 7.94-7.89(m, 3H), 7.74-7.70(m, 1H), 7.65(d, J=8.3Hz, 1H), 7.55-7.51(m, 1H), 7.36-7.32(m, 1H), 7.21(d, J=7.3Hz, 1H), 6.83(s, 1H), 4.47(t, J=7.1Hz, 2H), 4.07(s, 3H), 2.22(t, J=6.6Hz, 1H), 1.77-1.63(m, 4H); 13CNMR(DMSO-d6, 60℃) δ 174.6, 158.8, 148.4, 144.5, 139.5, 137.6, 132.7, 127.9, 126.8, 125.5, 124.1, 123.7, 123.6, 122.4, 117.5, 112.6, 107.6, 87.4, 45.6, 42.0, 35.5, 26.2, 22.3; HRMS (ESI) calcd for C23H23N2O2S ([M.Br]+) 391.1480, found 391.1475.
 なお、リンカー(カルボキシル基に連結したポリメチレン鎖)の炭素数n=3の4-((3-(3-カルボキシプロピル)ベンゾ[d]チアゾール-2(3H)-イリデン)メチル)-1-メチルキノリニウム ブロミドを、前記3-(4-カルボキシプロピル)-2-メチルベンゾチアゾリウム ブロミドと2-メチルベンゾチアゾリウム ブロミドの混合物から上記化合物107と同様の方法で合成したところ、収率43%で得られた。以下に、機器分析値を示す。
4-((3-(3-カルボキシプロピル)ベンゾ[d]チアゾール-2(3H)-イリデン)メチル)-1-メチルキノリニウムブロミド:
1HNMR (DMSO-d6) δ 8.85 (d, J=8.3Hz, 1H), 8.59 (d, J=7.3Hz, 1H), 8.02.7.93 (m, 3H), 7.78.7.70 (m, 2H), 7.61.7.57 (m, 1H), 7.42.7.38 (m, 1H), 7.31 (d, J=6.8Hz, 1H), 7.04 (s, 1H), 4.47 (t, J=8.1Hz, 2H), 4.13 (s, 3H), 2.52.2.48 (m, 2H), 1.99.1.92 (m, 2H); 13CNMR (DMSO-d6, 60℃) δ 174.3, 158.9, 148.6, 144.5, 139.5, 137.7, 132.7, 127.9, 126.7, 125.6, 124.1, 124.0, 123.7, 122.5, 117.5, 112.5, 107.6, 87.7, 45.6, 42.0, 31.6, 22.4; HRMS (ESI) calcd for C22H21N2O2S ([M.Br]+) 377.1324, found 377.1316.
 また、リンカー(カルボキシル基に連結したポリメチレン鎖)の炭素数n=5の4-((3-(3-カルボキシペンチル)ベンゾ[d]チアゾール-2(3H)-イリデン)メチル)-1-メチルキノリニウムブロミドを、前記3-(4-カルボキシペンチル)-2-メチルベンゾチアゾリウム ブロミドと2-メチルベンゾチアゾリウム ブロミドの混合物から上記化合物107と同様の方法で合成したところ、収率26%で得られた。以下に、機器分析値を示す。
4-((3-(3-カルボキシペンチル)ベンゾ[d]チアゾール-2(3H)-イリデン)メチル)-1-メチルキノリニウムブロミド:
1HNMR(DMSO-d6) δ 8.70 (d, J=8.3Hz, 1H), 8.61(d, J=6.8Hz, 1H), 8.05.8.00(m, 3H), 7.80.7.73(m, 2H), 7.60.7.56(m, 1H), 7.41.7.35(m, 2H), 6.89(s, 1H), 4.59(t, J=7.3Hz, 2H), 4.16(s, 3H), 2.19(t, J=7.3Hz, 1H), 1.82.1.75(m, 2H), 1.62.1.43(m, 4H); 13CNMR (DMSO-d6, 60℃) δ 174.5, 159.0, 148.6, 144.7, 139.7, 137.8, 132.9, 127.9, 126.9, 125.2, 124.2, 123.8, 123.6, 122.6, 117.8, 112.6, 107.7, 87.4, 45.6, 42.1, 36.0, 26.3, 25.9, 24.9; HRMS(ESI) calcd for C24H25N2O2S ([M.Br]+) 405.1637, found 405.1632.
 さらに、リンカー(カルボキシル基に連結したポリメチレン鎖)の炭素数n=6の4-((3-(3-カルボキシヘキシル)ベンゾ[d]チアゾール -2(3H)-イリデン)メチル)-1-メチルキノリニウムブロミドを、前記3-(4-カルボキシヘキシル)-2-メチルベンゾチアゾリウム ブロミドと2-メチルベンゾチアゾリウム ブロミドの混合物から上記化合物107と同様の方法で合成したところ、収率22%で得られた。以下に、機器分析値を示す。
4-((3-(3-カルボキシヘキシル)ベンゾ[d]チアゾール-2(3H)-イリデン)メチル)-1-メチルキノリニウムブロミド:
1HNMR(DMSO-d6) δ 8.72(d, J=8.3Hz, 1H), 8.62(d, J=6.8Hz, 1H), 8.07.8.01(m, 3H), 7.81.7.75(m, 2H), 7.62.7.58(m, 1H), 7.42.7.38(m, 2H), 6.92(s, 1H), 4.61(t, J=7.3Hz, 2H), 4.17(s, 3H), 2.18(t, J=7.3Hz, 1H), 1.82.1.75(m, 2H), 1.51.1.32(m, 6H); 13CNMR(DMSO-d6, 60℃) δ 174.0, 159.1, 148.6, 144.7, 139.8, 137.8, 132.9, 127.9, 126.8, 125.0, 124.2, 123.8, 123.6, 122.6, 118.0, 112.7, 107.8, 87.4, 45.5, 42.1, 33.4, 27.9, 26.4, 25.5, 24.1; HRMS(ESI) calcd for C25H27N2O2S ([M.Br]+) 419.1793, found 419.1788.
(4)N-ヒドロキシスクシンイミジルエステル109の合成
 9.4mg(20μmol)の1-メチル-4-[{3-(4-カルボキシブチル)-2(3H)-ベンゾチアゾリリデン}メチル]キノリニウム ブロミド(化合物107)(FW471.41)、4.6mg(40μmol)のN-ヒドロキシコハク酸イミド(化合物108)(FW115.09)、およ び7.6mg(40μmol)のEDC(1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩)(FW191.70)を、1mLのDMF中において25℃で16時間撹拌し、色素(化合物107)のカルボキシ基が活性化されたN-ヒドロキシスクシンイミジルエステル(化合物109)を得た。この反応生成物は、精製せず、反応溶液(色素20mM)をそのままオリゴマーDNA(オリゴヌクレオチド)105との反応に使用した。
 さらに、原料として、化合物107に代えてリンカー(ポリメチレン鎖)の炭素数を変化させた化合物を用いる以外は上記化合物109と同様の方法で、リンカー(ポリメチレン鎖)の炭素数n=3の4-((3-(4-(スクシンイミジルオキシ)-4-オキソブチル)ベンゾ[d]チアゾール-2(3H)-イリデン)メチル)-1-メチルキノリニウム ブロミドを合成した。さらに、同様に、リンカー(ポリメチレン鎖)の炭素数n=5の4-((3-(4-(スクシンイミジルオキシ)-4-オキソヘキシル)ベンゾ[d]チアゾール-2(3H)-イリデン)メチル)-1-メチルキノリニウム ブロミドと、リンカー(ポリメチレン鎖)の炭素数n=6の4-((3-(4-(スクシンイミジルオキシ)-4-オキソヘプチル)ベンゾ[d]チアゾール -2(3H)-イリデン)メチル)-1-メチルキノリニウム ブロミドとを合成した。
(5)2分子のチアゾールオレンジで修飾されたDNAオリゴマー(オリゴヌクレオチド)110の合成
 二つの活性アミノ基を有するDNAオリゴマー(オリゴヌクレオチド)105は、前記中間体合成例4と同様に、DNA自動合成機により通常の方法で合成した。次に、このDNAオリゴマー(オリゴヌクレオチド)105を、N-ヒドロキシスクシンイミジルエステル(化合物109)と反応させ、チアゾールオレンジから誘導される構造を1分子中に2箇所有する核酸分子であるDNAオリゴマー(オリゴヌクレオチド)110を合成した。すなわち、まず、30μLのDNAオリゴマー105(ストランド濃度320μM)と10μLのNa2CO3/NaHCO3 buffer(1M, pH9.0)と60μLのH2Oを混合し、N-ヒドロキシスクシンイミジルエステル(化合物109)のDMF溶液(20mM)100μLを加え、よく混合した。25℃で16時間静置した後、800μLのH2Oを加え、0.45μmのフィルターに通し、逆相HPLCで精製した(CHEMCOBOND 5-ODS-H 10×150mm、3mL/min、5-30% CH3CN/50mM TEAAバッファー(20分)、260nmで検出)。
実施例1
[固相化特異的プライマーセットを用いたブリッジRT-PCRによるアクチンベータメッセンジャーRNAの分子カウント実験]
 
1. 下記配列番号1および2で表される特異的プライマーの5’端をビオチン化したプライマーを合成した。
 
フォワード:5’-AAA AAA AAA AGG CAT GGG TCA GAA GGA TT-3’(配列番号1)
リバース:5’-AAA AAA AAA AAG GTG TGG TGC CAG ATT TTC-3’(配列番号2)
 
2. ビオチンコートスライドガラス(アライアンステクノロジー社)のビオチンコートされている面に粘着フレーム(タカラバイオ社)を貼り付けて反応チャンバーを作成した。そのチャンバー内にグリセロールを添加した生理食塩水で調製した20μg/mlアビジンタンパク質溶液を全面添加して、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置してアビジンタンパク質をスライドガラス表面に固相化した。固相化後、生理食塩水で3回洗浄して、余分なアビジンタンパク質を除去した。
 
3. 生理食塩水に10%グリセロールとなるようにグリセロールを添加し、3.3マイクロモルの濃度に調製したビオチン化プライマーを添加した。このとき、プライマー対溶液及びフォワードプライマーのみの溶液をそれぞれ用意した。アビジン固相化スライドガラスのアビジン固相化チャンバー内にプライマー対溶液もしくはフォワードプライマー溶液を全面添加し、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置して、ビオチン化プライマーを固相化した。固相化後、生理食塩水で3回洗浄して余分なプライマーを除去した。
 
4. Platinum Taq用緩衝液中に1.6mM硫酸マグネシウム、0.2mM dNTP、SYBR Green溶液、200ユニットSuperScriptIII、2ユニットPlatinum Taqを混合した逆転写とPCRを同一反応液中で行うことが出来る反応液を調製し、100pMになるようにアクチンベータメッセンジャーRNAを添加した。プライマー対及びフォワードプライマーのみをそれぞれ固相化したスライドガラス上のチャンバーに25マイクロリットル反応液を添加し、カバーフィルム(タカラバイオ社)でチャンバーを閉じた。
 
5. GenePro Insitu “Japanese Version” B-4 ブロックを装着したGene-Proサーマルサイクラー(Bioer Technology社)の反応チャンバーにスライドガラスを設置し、55℃30分、94℃4分の加熱後、94℃1分、60℃1分、68℃1分の温度サイクルを40回繰り返した。その後、68℃で5分間インキュベートして反応を終了した。
 
6. 反応終了したスライドガラスを蛍光顕微鏡で励起波長470nmにて励起して、525nmの蛍光を観察した。
 
7. この結果、プライマー対を用いた場合、目的核酸の増幅産物が生成されていることを示す、無数のクラスターの蛍光が観察され(図1)、フォワードプライマーのみを用いたときは観察できなかった(図2)。
実施例2
[実施例2-A.プライマーの設計とプライマーの品質確認]
 ヒト アクチンベータメッセンジャー遺伝子配列(NCBIリファレンス配列:NM_001101.3)に対して下記に示すプライマーオリゴを設計した。なお、前記「プライマーオリゴ(以下において、単に「オリゴ」という場合もある。)」は、プライマーであるオリゴヌクレオチドをいう。以下において同様である。
Figure JPOXMLDOC01-appb-T000123
 
 U(エキシトンダイ 短波長(510/530)標識化T)およびZ(エキシトンダイ 長波長(570/590)標識化T)の構造は、それぞれ、下記化学式のとおりである。
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
 U(エキシトンダイ 短波長(510/530)標識化T)の構造は、前記DNAオリゴマー(オリゴヌクレオチド)110が有するエキシトンダイ標識化T構造と同一である。U(エキシトンダイ 短波長(510/530)標識化T)を含む核酸は、前記合成例に従って合成した。また、Z(エキシトンダイ 長波長(570/590)標識化T)を含む核酸の合成も、前記合成例の方法に準じて行った。
 なお、前記表1に示したプライマーオリゴの配列に、下記の配列番号を付す。
 
ACTB-T7RNAF プライマー(5’-CTAATACGACTCACTATAGGGAGAATGGATGATGATATCGCCGCGCT-3’:配列番号3)
ACTB-RNAR プライマー(5’-CATTTTTAAGGTGTGCACTTTTATTCAACTGGTC-3’:配列番号4)
ACTB-5’F プライマー(5’-GGCATGGGTCAGAAGGATT-3’:配列番号5)
ACTB-5’R プライマー(5’-AGGTGTGGTGCCAGATTTTC-3’:配列番号6)
ACTB-5’F_5’Bio プライマー(5’-GGCATGGGTCAGAAGGATT-3’, 5’末ビオチン化:配列番号7)
ACTB-5’R_5’Bio プライマー(5’-AGGTGTGGTGCCAGATTTTC-3’, 5’末ビオチン化:配列番号8)
ACTB-5’F_5’BioM プライマー(5’-AAAAAAAAAAGGCATGGGTCAGAAGGATT-3’, 5’末ビオチン化:配列番号9)
ACTB-5’R_5’BioM プライマー(5’-AAAAAAAAAAAGGTGTGGTGCCAGATTTTC-3’, 5’末ビオチン化:配列番号10)
ACTB-5'F_ExS(5’-GGCATGGGT*CAGAAGGATT-3’, 5’末ビオチン化:配列番号11、T*の位置が標識化T[前記U])
ACTB-5'R_ExS(5’-AGGTGTGGT*GCCAGATTTTC-3’, 5’末ビオチン化:配列番号12、T*の位置が標識化T[前記U])
ACTB-5'F_ExL(5’-GGCATGGGT*CAGAAGGATT-3’, 5’末ビオチン化:配列番号13、T*の位置が標識化T[前記Z])
ACTB-5'R_ExL(5’-AGGTGTGGT*GCCAGATTTTC-3’, 5’末ビオチン化:配列番号14、T*の位置が標識化T[前記Z])
ACTB-5’F_5’BioM_Cy5(5’-AAAAAAAAAAGGCATGGGTCAGAAGGATT-3’)の5’端をビオチン化、3’端をCy5で標識:配列番号15)
 オリゴの合成はオペロンバイオテクノロジー株式会社に依頼した。なお、合成方法は、前述のとおり、DNAオリゴマー(オリゴヌクレオチド)110の合成方法と同じか、またはそれに準じた。合成されたプライマーオリゴは以下の方法で品質を確認した。
 
1. 理化学研究所 オミックス基盤研究領域で保持しているcDNAクローンコレクションからヒト アクチンベータcDNAを含む大腸菌クローンAK025375をアンピシリンを含むLB寒天培地に画線し、37℃ 一晩培養後に単一コロニーを得た。
 
2. 単一コロニーを掻き取り、10マイクロリットルの滅菌蒸留水に懸濁した。
 
3. 0.2ミリリットルのPCR用チューブを用意し、HotStar Taq用緩衝液中に1mM塩化マグネシウム、0.16mM dNTP、1.25ユニットHotStar Taq DNAポリメラーゼ(QIAGEN)を混合した反応液を調製し、前述のアクチンベータcDNAを含む大腸菌クローン懸濁液を1 マイクロリットル添加。そこへ、0.5μM ACTB-5’F プライマー(5’-GGCATGGGTCAGAAGGATT-3’:配列番号5)/0.5μM ACTB-5’R プライマー(5’-AGGTGTGGTGCCAGATTTTC-3’:配列番号6)対(A)もしくは0.5μM ACTB-T7RNAF プライマー(5’-CTAATACGACTCACTATAGGGAGAATGGATGATGATATCGCCGCGCT-3’:配列番号3)/0.5μM ACTB-RNAR プライマー(5’-CATTTTTAAGGTGTGCACTTTTATTCAACTGGTC-3’:配列番号4)対(B)もしくは0.5μM ACTB-5’F_5’Bio プライマー(5’-GGCATGGGTCAGAAGGATT-3’, 5’末ビオチン化:配列番号7)/0.5μM ACTB-5’R_5’Bio プライマー(5’-AGGTGTGGTGCCAGATTTTC-3’, 5’末ビオチン化:配列番号8)対(C)もしくは0.5μM ACTB-5’F_5’BioM プライマー(5’-AAAAAAAAAAGGCATGGGTCAGAAGGATT-3’, 5’末ビオチン化:配列番号9)/0.5μM 
 
ACTB-5’R_5’BioM プライマー(5’-AAAAAAAAAAAGGTGTGGTGCCAGATTTTC-3’, 5’末ビオチン化:配列番号10)対(D)を各々1種類添加して全体で50マイクロリットルのPCR反応溶液を作製した。
 
4. PCR反応溶液を入れた0.2ミリリットルPCRチューブをGeneAmp PCR System 9700 サーマルサイクラー(アプライドバイオシステムズ社)にセットし、95℃15分の加熱後、94℃15秒、60℃30秒、72℃2分の温度サイクルを30回繰り返した。その後、72℃で10分間インキュベートして反応を終了した。
 
5. 反応終了後の反応液50マイクロリットルにAgencourt AMPure XP(Beckman Coulter社)を90マイクロリットル添加して混和後、室温30分で放置した。30分後、マグネットプレート上へ設置し5分静置。ビーズを吸い込まないように上清を捨てて70%濃度エタノール 200マイクロリットルを加えて15秒放置後にエタノールを捨てて再び70%濃度エタノール 200マイクロリットルを加えて15秒放置。エタノールを捨てた後にほこりが入らないように注意しながら3分間乾燥させた。乾燥後、マグネットプレートからはずし、41マイクロリットルの滅菌蒸留水を加えてよく混和させた。再びマグネットプレートに設置して5分静置後、上清を40マイクロリットル回収した。
 
6. MPG Streptavidin beads(タカラバイオ株式会社) を100マイクロリットル分取し、マグネットプレートにセットして3分間静置後上清を取り除いた。100マイクロリットルの洗浄バッファー(4.5モル/リットル 塩化ナトリウム、50ミリモル/リットル エチレンジアミン四酢酸を含む)を加えて懸濁し、マグネットプレートにセットして3分間静置後上清を取り除いた。洗浄バッファーによる洗浄を全部で3回繰り返し、最後に200マイクロリットルの洗浄バッファーを加えて再懸濁した。
 
7. (A)、(C)、(D)のプライマー対を添加したサンプルを20マイクロリットル分取し、10 x RNaseOneバッファーを2.2マイクロリットル添加し、さらに洗浄バッファーで再懸濁したMPG Streptavidin beadsを51.8マイクロリットル添加したのちに37℃で30分間インキュベートした。インキュベートの間、5分ごとにピペッターを用いて10回懸濁した。インキュベート終了後にマグネットプレートにセットして5分間静置し、上清を回収してMPG Streptavidin beads補足処理後サンプルとした。
 
8. 1.0% アガロースゲルを作製し、TAEバッファー下で100V 70分電気泳動した。泳動終了後 SYBR Goldで振盪しながら室温で10分間染色し、染色終了後にゲルを取り出し、紫外線照射下でバンドを確認した。
 図3は、オリゴ合成の品質チェック結果を示す写真である。
(図3の説明)
-:プライマーのビオチン化無し
+:プライマーのビオチン化有り
レーン1:マーカー
レーン2:マーカー
レーン3:空きレーン
レーン4:プライマーセットBによるPCR後のサンプル
レーン5:プライマーセットAによるPCR後のサンプル
レーン6:プライマーセットCによるPCR後のサンプル
レーン7:プライマーセットDによるPCR後のサンプル
レーン8:プライマーセットAによるPCR後のサンプルをストレプトアビジンビーズに接触させた後の上清サンプル
レーン9:プライマーセットCによるPCR後のサンプルをストレプトアビジンビーズに接触させた後の上清サンプル
レーン10:プライマーセットDによるPCR後のサンプルをストレプトアビジンビーズに接触させた後の上清サンプル
レーン4の結果より、アクチンベータメッセンジャーRNAを合成するための鋳型を作製するプライマーオリゴセットがワークすることが確認できた。
レーン5とレーン8の結果より、PCR実験のためのプライマーオリゴセットAがワークすることが確認できた。また、これらのプライマーオリゴはきちんと設計通りビオチン化されていないことが確認できた。
レーン6とレーン9の結果より、プライマーオリゴセットCがワークすることが確認できた。また、これらのプライマーオリゴはきちんと設計通りビオチン化されていることが確認できた。
レーン7とレーン10の結果より、プライマーオリゴセットDがワークすることが確認できた。また、これらのプライマーオリゴはきちんと設計通りビオチン化されていることが確認できた。
[実施例2-B.アクチンベータDNAの調製]
1. ヒト アクチンベータcDNAを含む大腸菌クローンAK025375の単一コロニーを掻き取り、10マイクロリットルの滅菌蒸留水に懸濁した。
 
2. 0.2ミリリットルのPCR用チューブを用意し、HotStar Taq用緩衝液中に1 mM塩化マグネシウム、0.16 mM dNTP、0.5μM ACTB-5’F プライマー(5’-GGCATGGGTCAGAAGGATT-3’:配列番号5)、0.5μM ACTB-5’R プライマー(5’-AGGTGTGGTGCCAGATTTTC-3’:配列番号6)、1.25ユニットHotStar Taq DNAポリメラーゼ(QIAGEN)を混合した反応液を調製し、前述のアクチンベータcDNAを含む大腸菌クローン懸濁液を1 マイクロリットル添加して全体で50マイクロリットルのPCR反応溶液を作製した。
 
3. PCR反応溶液を入れた0.2ミリリットルPCRチューブをGeneAmp PCR System 9700 サーマルサイクラー(アプライドバイオシステムズ社)にセットし、95℃15分の加熱後、94℃15秒、60℃30秒、72℃30秒の温度サイクルを30回繰り返した。その後、72℃で10分間インキュベートして反応を終了した。
 
4. 反応終了後の反応液50マイクロリットルにAgencourt AMPure XP(Beckman Coulter社)を90マイクロリットル添加して混和後、室温30分で放置した。30分後、マグネットプレート上へ設置し5分静置。ビーズを吸い込まないように上清を捨てて70%濃度エタノール 200マイクロリットルを加えて15秒放置後にエタノールを捨てて再び70%濃度エタノール 200マイクロリットルを加えて15秒放置した。エタノールを捨てた後にほこりが入らないように注意しながら3分間乾燥させた。乾燥後、マグネットプレートからはずし、41マイクロリットルの滅菌蒸留水を加えてよく混和させた。再びマグネットプレートに設置して5分静置後、上清を40マイクロリットル回収した。
 
5. 上記サンプル溶液をバイオアナライザ DNA1000 kit(アジレント・テクノロジー株式会社)を用いて測定した。
 図4は、PCR後産物の電気泳動結果を示す図である。図示のように、目的どおり133bpの大きさのPCR産物を合成できたことが確認された。これを今後行う固相化PCRの鋳型として使用することにした。
[実施例2-C.アクチンベータメッセンジャーRNAの調製]
1. ヒト アクチンベータcDNAを含む大腸菌クローンAK025375の単一コロニーを掻き取り、100マイクロリットルの滅菌蒸留水に懸濁した。
 
2. 0.2ミリリットルのPCR用チューブを用意し、KOD-Plus-Neo用緩衝液中に1.5 mM塩化マグネシウム、0.2 mM dNTP、0.3μM ACTB-T7RNAF プライマー(5’-CTAATACGACTCACTATAGGGAGAATGGATGATGATATCGCCGCGCT-3’:配列番号3)、0.3μM ACTB-RNAR プライマー(5’-CATTTTTAAGGTGTGCACTTTTATTCAACTGGTC-3’:配列番号4)、1ユニットKOD-Plus-Neo DNAポリメラーゼ(TOYOBO)を混合した反応液を調製し、前述のアクチンベータcDNAを含む大腸菌クローン懸濁液を1 マイクロリットル、2マイクロリットル、5マイクロリットル、10マイクロリットル添加して全体で50マイクロリットルのPCR反応溶液を4種類作製した。
 
3. PCR反応溶液を入れた0.2ミリリットルPCRチューブをGeneAmp PCR System 9700 サーマルサイクラー(アプライドバイオシステムズ社)にセットし、94℃2分の加熱後、98℃10秒、60℃30秒、68℃1分の温度サイクルを30回繰り返した。その後、68℃で10分間インキュベートして反応を終了した。
 
4. 反応終了後の反応液50マイクロリットルにAgencourt AMPure XP(Beckman Coulter社)を90マイクロリットル添加して混和後、室温30分で放置した。30分後、マグネットプレート上へ設置し5分静置。ビーズを吸い込まないように上清を捨てて70%濃度エタノール 200マイクロリットルを加えて15秒放置後にエタノールを捨てて再び70%濃度エタノール 200マイクロリットルを加えて15秒放置した。エタノールを捨てた後にほこりが入らないように注意しながら3分間乾燥させた。乾燥後、マグネットプレートからはずし、41マイクロリットルの滅菌蒸留水を加えてよく混和させた。再びマグネットプレートに設置して5分静置後、上清を40マイクロリットル回収し、アクチンベータメッセンジャーRNA合成用鋳型DNAとした。
 
5. 回収したアクチンベータメッセンジャーRNA合成用鋳型DNAを1.0% アガロースゲル、TAEバッファー下で100V 70分電気泳動した。泳動終了後 SYBR Goldを含むTAEバッファーで振盪しながら室温で10分間染色し、染色終了後にゲルを取り出し、紫外線照射下でバンドを確認した。PCR後産物の濃度はNanoDrop 8000(Thermo SCIENTIFIC社)で測定した。
 
6. 0.2ミリリットルのPCR用チューブを用意し、 CUGA7 transcription用緩衝液中に1Mジチオスレイトール、0.16mM CTP、0.16mM UTP、0.16mM GTP、0.16mM ATP、1マイクロリットルのCUGA 7 Enzyme Solution(株式会社ニッポンジーン)を混合した反応液を調製し、0.1ピコモル/リットル濃度になるようアクチンベータメッセンジャーRNA合成用鋳型DNAを添加して全体で20マイクロリットルの反応溶液を作製した。37℃ 2時間インキュベートし、インキュベート後に2マイクロリットルのDNase Enzyme Solutionを加えて37℃で30分間インキュベートした。
 
7. 反応終了後の反応液22マイクロリットルにAgencourt AMPure XP(Beckman Coulter社)を39.6マイクロリットル添加して混和後、室温30分で放置した。30分後、マグネットプレート上へ設置し5分静置。ビーズを吸い込まないように上清を捨てて70%濃度エタノール 200マイクロリットルを加えて15秒放置後にエタノールを捨てて再び70%濃度エタノール 200マイクロリットルを加えて15秒放置。エタノールを捨てた後にほこりが入らないように注意しながら3分間乾燥させた。乾燥後、マグネットプレートからはずし、21マイクロリットルの滅菌蒸留水を加えてよく混和させた。再びマグネットプレートに設置して5分静置後、上清を20マイクロリットル回収した。再度21マイクロリットルの滅菌蒸留水を加えてよく混和させた。再びマグネットプレートに設置して5分静置後、上清を20マイクロリットル回収し、前述の回収サンプルと合わせて40マイクロリットルのアクチンベータメッセンジャーRNA溶液を得た。
 
8. アクチンベータメッセンジャーRNA溶液をバイオアナライザ RNA6000 pico kit(アジレント・テクノロジー株式会社)を用いて測定した。濃度はNanoDrop 8000(Thermo SCIENTIFIC社)で測定した。
 図5は、アクチンベータメッセンジャーRNA合成用鋳型DNAの合成結果を示す写真である。同図における前記鋳型DNAの合成は、PCR時に添加するヒト アクチンベータcDNAを含む大腸菌クローンAK025375の懸濁液を1マイクロリットル、2マイクロリットル、5マイクロリットル、10マイクロリットルと添加量を変えてPCRを行った。図示のとおり、懸濁液1-5マイクロリットル添加で1751bpの目的サイズのアクチンベータメッセンジャーRNA合成用鋳型DNAを合成することができた。
 図6は、CUGA 7 in vitro Transcription KitによるアクチンベータメッセンジャーRNA合成結果を示す図である。図示のとおり、目的とする1730bpの大きさのRNA産物を合成することができた。
 
(図6の説明)
L:マーカー
レーン1:RNA合成後サンプル(希釈なし)
レーン2:RNA合成後サンプル(RNase free蒸留水で10倍希釈)
レーン3:RNA合成後サンプル(RNase free蒸留水で100倍希釈)
レーン4:RNA合成後サンプル(RNase free蒸留水で100倍希釈)
レーン5:RNA合成後サンプル(RNase free蒸留水で1000倍希釈)
レーン6:RNA合成後サンプル(RNase free蒸留水で10,000倍希釈)
[実施例2-D.サーマルサイクラーの動作確認及びスライドガラス基板上でのPCRの確認]
1. スライドガラスに粘着フレーム(タカラバイオ社TakaraSlide seal for in situ PCR)を貼り付けて反応チャンバーを作成した。
 
2. ヒト アクチンベータcDNAを含む大腸菌クローンAK025375の単一コロニーを掻き取り、100マイクロリットルの滅菌蒸留水に懸濁した。
 
3. Platinum Taq用緩衝液中に1.5mM塩化マグネシウム、0.2mM dNTP、アクチンベータメッセンジャーRNAに対して特異的なプライマーミックス(フォワード:5’-GGCATGGGTCAGAAGGATT-3’、リバース:5’-AGGTGTGGTGCCAGATTTTC-3’、各々0.2 μM)、1ユニットPlatinum Taq DNA ポリメラーゼ(インビトロジェン)を混合した反応液を調製し、前述のアクチンベータcDNAを含む大腸菌クローン懸濁液を1マイクロリットル添加して全体で50マイクロリットルのPCR反応溶液を作製した。上記PCR反応溶液を反応チャンバー内に25マイクロリットル添加し、カバーフィルム(タカラバイオ社TakaraSlide seal for in situ PCR)でチャンバーを閉じた。
 
フォワード:5’-GGCATGGGTCAGAAGGATT-3’(配列番号16)
リバース:5’-AGGTGTGGTGCCAGATTTTC-3’(配列番号17)
 
4. GenePro Insitu “Japanese Version” B-4 ブロックを装着したBioer Technology社Gene-Proサーマルサイクラーの反応チャンバーに前述の反応液を封入したスライドガラスを設置し、94℃4分の加熱後、94℃1分、60℃1分、72℃1分の温度サイクルを30回繰り返した。その後、72℃で5分間インキュベートして反応を終了した。
 
5. 反応終了したスライドガラスを取り出し、カバーフィルムを剥がしながらピペッターを用いて反応液を20マイクロリットル回収した。回収した反応液20マイクロリットルにAgencourt AMPure XP(Beckman Coulter社)を36マイクロリットル添加して混和後、室温30分で放置した。30分後、マグネットプレート上へ設置し5分静置した。ビーズを吸い込まないように上清を捨てて70%濃度エタノール 200マイクロリットルを加えて15秒放置後にエタノールを捨てて再び70%濃度エタノール 200マイクロリットルを加えて15秒放置。エタノールを捨てた後にほこりが入らないように注意しながら3分間乾燥させた。乾燥後、マグネットプレートからはずし、21マイクロリットルの滅菌蒸留水を加えてよく混和させた。再びマグネットプレートに設置して5分静置後、上清を20マイクロリットル回収した。
 
6. 上記サンプル溶液をバイオアナライザDNA 1000 kit(アジレント・テクノロジー株式会社)を用いて測定した。
 図7は、GenePro Insitu “Japanese Version” B-4 ブロックを装着したBioer Technology社Gene-Proサーマルサイクラーの動作チェック結果とスライドガラスで作製した反応チャンバー内でのPCR反応の確認を示すものである。図示のとおり、PCRチューブで行ったPCR実験(実施例2-A. レーン5)と同様に133bpの大きさのPCR産物を合成することができた(薄いラインながら明確に確認できた)。これにより、サーマルサイクラーの動作確認とスライドガラスで作製した反応チャンバー内でPCR反応が進行することを確認できた。
(図7の説明)
L:マーカー
レーン1: PCR後のサンプル
[実施例2-E.ビオチン化プライマーのビオチンコートカバーガラスへの結合確認]
1. 特異的プライマー(5’-AAAAAAAAAAGGCATGGGTCAGAAGGATT-3’)の5’端をビオチン化、3’端をCy5で標識したプライマー(ACTB-5’F_5’BioM_Cy5:配列番号15)を合成した。
 
2. ビオチンコートカバーガラス(株式会社アライアンステクノロジーBiotin/cover slip/Bio_02-C)のビオチンコートされている面に粘着フレーム(タカラバイオ社製TakaraSlide seal for in situ PCR)を貼り付けて反応チャンバーを作成した。そのチャンバー内にグリセロールを添加した生理食塩水で調製した20μg/mlストレプトアビジンタンパク質溶液を全面添加して、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置してストレプトアビジンタンパク質をスライドガラス表面に固相化した。固相化後、生理食塩水で3回洗浄して、余分なストレプトアビジンタンパク質を除去した。
 
3. 生理食塩水に10%グリセロールとなるようにグリセロールを添加し、最終濃度50ピコモル/リットル濃度、200ピコモル/リットル濃度になるようCy5標識ビオチン化プライマー溶液を各々別々の0.5ミリリットルチューブに50マイクロリットル調製した。ストレプトアビジン固相化カバーガラスのストレプトアビジン固相化チャンバー内にCy5標識ビオチン化プライマー溶液を全面添加し、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置して、Cy5標識ビオチン化プライマーを固相化した。固相化後、生理食塩水で3回洗浄して余分なプライマーを除去した。
 
4. 生理食塩水25マイクロリットルを添加し、カバーフィルム(タカラバイオ社TakaraSlide seal for in situ PCR)でチャンバーを閉じたカバーガラスをニコン社製Eclipse Ti蛍光顕微鏡で励起波長640nmにて励起して、692±20nmの蛍光を観察した。
 図8、図9および図10は、蛍光顕微鏡での観察結果を示す写真であり、それぞれ、ネガティブコントロール(ストレプトアビジンなし、200pM Cy5標識ビオチン化プライマー添加、インキュベート後に洗浄)、50pM Cy5 oligo(ストレプトアビジン添加後wash、50pM Cy5 標識ビオチン化プライマー添加、インキュベート後に洗浄)および200pM Cy5 oligo(ストレプトアビジン添加後wash、200pM Cy5 標識ビオチン化プライマー添加、インキュベート後に洗浄)を示す。図示のとおり、ビオチン化プライマーに標識してあるCy5に由来する蛍光スポットが濃度依存的に変化しており、ストレプトアビジンを加えていないネガティブコントトールの画像では全く蛍光スポットが見えないので、ビオチン化プライマーの結合がうまく行っていることを確認できた。また、本法で用いた洗浄方法が非特異的なビオチン化プライマーを取り除くのに有効なことを確認できた。
[実施例2-F.調製したアクチンベータDNAを用いてガラス基板で作製したチャンバー内でPCR反応系の有効性と固相化PCRの有効性確認]
1. 特異的プライマー(フォワード:5’-AAA AAA AAA AGG CAT GGG TCA GAA GGA TT-3’:配列番号1、リバース:5’-AAA AAA AAA AAG GTG TGG TGC CAG ATT TTC-3’:配列番号2)の5’端をビオチン化したプライマーを合成した。
 
2. ビオチンコートカバーガラス(株式会社アライアンステクノロジーBiotin/cover slip/Bio_02-C)のビオチンコートされている面に粘着フレーム(タカラバイオ社TakaraSlide seal for in situ PCR)を貼り付けて反応チャンバーを作成した。そのチャンバー内にグリセロールを添加した生理食塩水で調製した20μg/mlストレプトアビジンタンパク質溶液を全面添加して、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置してストレプトアビジンタンパク質をスライドガラス表面に固相化した。固相化後、生理食塩水で3回洗浄して、余分なストレプトアビジンタンパク質を除去した。
 
3. 生理食塩水に10%グリセロールとなるようにグリセロールを添加し、最終濃度3.3マイクロモル/リットルになるよう各々ビオチン化フォワードプライマーとリバースプライマーの2種類を添加した。ストレプトアビジン固相化カバーガラスのストレプトアビジン固相化チャンバー内にビオチン化プライマー対溶液を全面添加し、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置して、ビオチン化プライマー対を固相化した。固相化後、生理食塩水で3回洗浄して余分なプライマーを除去した。
 
4. Platinum Taq用緩衝液中に1.5mM塩化マグネシウム、0.2mM dNTP、SYBR Green溶液、1ユニットPlatinum Taq DNAポリメラーゼ(インビトロジェン)を混合した反応液を調製し、20pMになるようにアクチンベータDNAを添加した。プライマー対を固相化したカバーガラス上のチャンバーに25マイクロリットルの反応液を添加し、カバーフィルム(タカラバイオ社TakaraSlide seal for in situ PCR)でチャンバーを閉じた。
 
5. GenePro Insitu “Japanese Version” B-4 ブロックを装着したBioer Technology社製Gene-Proサーマルサイクラーの反応チャンバーにカバーガラスを設置し、94℃4分の加熱後、94℃1分、60℃1分、72℃1分の温度サイクルを40回繰り返した。その後、72℃で10分間インキュベートして反応を終了した。
 
6. 反応終了したカバーガラスをニコン社Eclipse Ti蛍光顕微鏡で励起波長470nmにて励起して、525nmの蛍光を観察した。
 図11は、固相化PCR後カバーガラスの蛍光顕微鏡観察結果を示す写真である。図示のとおり、SYBR Greenによる蛍光スポットを確認することができたので、固相化PCRによる二本鎖DNAのクラスターができていることを確認できた。
[実施例2-G.調製したアクチンベータメッセンジャーRNAを用いてのツーステップRT-PCR反応系の有効性確認]
1. 1μM ACTB-5’Rプライマー 2マイクロリットル、10mM dNTP 1マイクロリットル、アクチンベータメッセンジャーRNAを1マイクログラム/マイクロリットル になるよう添加した10マイクロリットルの溶液を0.2マイクロリットルPCRチューブに作製し、GeneAmp PCR System 9700 サーマルサイクラー(アプライドバイオシステムズ社)にセットし、65℃ 5分間インキュベートした。インキュベート後氷上で2分間冷却した。反応液が入ったチューブにSuperScriptIII用緩衝液、0.1M ジチオスレイトール 2マイクロリットル、25mM 塩化マグネシウム 4マイクロリットルを添加し、GeneAmp PCR System 9700 サーマルサイクラー(アプライドバイオシステムズ社)にセットし、15℃ 20分間インキュベートした。インキュベート後、反応液が入ったチューブにRNaseOUT 1マイクロリットル、200ユニット/マイクロリットル SuperScriptIII 1マイクロリットルを添加してGeneAmp PCR System 9700 サーマルサイクラー(アプライドバイオシステムズ社)にセットし、55℃ 50分、70℃ 10分間反応させた。反応後反応液が入ったチューブを氷上で2分間冷却した。冷却後、50ユニットvRNaseIf(NEW ENGLAND BioLabs) 、2ユニットRNaseH(タカラバイオ) を加えてGeneAmp PCR System 9700 サーマルサイクラー(アプライドバイオシステムズ社)にセットし、37℃ 30分間インキュベートした。
 
2. 反応液22マイクロリットルにAgencourt AMPure XP(Beckman Coulter社)を39.6マイクロリットル添加して混和後、室温30分で放置した。30分後、マグネットプレート上へ設置し5分静置。ビーズを吸い込まないように上清を捨てて70%濃度エタノール 200マイクロリットルを加えて15秒放置後にエタノールを捨てて再び70%濃度エタノール 200マイクロリットルを加えて15秒放置。エタノールを捨てた後にほこりが入らないように注意しながら3分間乾燥させた。乾燥後、マグネットプレートからはずし、21マイクロリットルの滅菌蒸留水を加えてよく混和させた。再びマグネットプレートに設置して5分静置後、上清を20マイクロリットル回収し、これを逆転写反応産物溶液とした。
 
3. 0.2ミリリットルのPCR用チューブを用意し、HotStar Taq用緩衝液中に1mM塩化マグネシウム、0.16mM dNTP、1.25ユニットHotStar Taq DNAポリメラーゼ(QIAGEN)を混合した反応液を調製し、前述の逆転写反応産物溶液を1 マイクロリットル添加した。そこへ、0.5μM ACTB-5’F プライマー(5’-GGCATGGGTCAGAAGGATT-3’:配列番号5)/0.5μM ACTB-5’R (5’-AGGTGTGGTGCCAGATTTTC-3’:配列番号6)プライマー対を添加して全体で50マイクロリットルのPCR反応溶液を作製した。
 
4. PCR反応溶液を入れた0.2マイクロリットルPCRチューブをGeneAmp PCR System 9700 サーマルサイクラー(アプライドバイオシステムズ社)にセットし、95℃15分の加熱後、94℃15秒、60℃30秒、72℃30秒の温度サイクルを30回繰り返した。その後、72℃で10分間インキュベートして反応を終了した。
 
5. 反応液50マイクロリットルにAgencourt AMPure XP(Beckman Coulter社)を90マイクロリットル添加して混和後、室温30分で放置した。30分後、マグネットプレート上へ設置し5分静置。ビーズを吸い込まないように上清を捨てて70%濃度エタノール 200マイクロリットルを加えて15秒放置後にエタノールを捨てて再び70%濃度エタノール 200マイクロリットルを加えて15秒放置。エタノールを捨てた後にほこりが入らないように注意しながら3分間乾燥させた。乾燥後、マグネットプレートからはずし、41マイクロリットルの滅菌蒸留水を加えてよく混和させた。再びマグネットプレートに設置して5分静置後、上清を40マイクロリットル回収し、これをPCR反応溶液とした。
 
6. 上記サンプル溶液をバイオアナライザDNA 1000 kit(アジレント・テクノロジー株式会社)を用いて測定した。
 図12は、ツーステップRT-PCR後サンプルの電気泳動結果を示すものである。
(図12の説明)
レーン1-3:逆転写後のサンプル(1:希釈なし2:5倍希釈3:ネガティブコントロール(RNA鋳型なし))
レーン4-6:PCR後のサンプル(4:希釈なし5:5倍希釈6:ネガティブコントロール(RNA鋳型なし))
 図12のレーン4とレーン5より、133bpの大きさのRT-PCR産物が合成できたので、実施例2-C.で合成したアクチンベータメッセンジャーRNAがRT-PCRの鋳型として使用できることが分かった。また、今回用いたツーステップRT-PCRの反応系がうまく機能することを確認できた。
[実施例2-H.ワンステップRT-PCR反応系の有効性確認]
1. 0.2ミリリットルPCR用チューブにPlatinum Taq用緩衝液中に1.6mM硫酸マグネシウム、0.2mM dNTP、アクチンベータメッセンジャーRNAに対して特異的なプライマーミックス(フォワード:5’-GGCATGGGTCAGAAGGATT-3’:配列番号16、リバース:5’-AGGTGTGGTGCCAGATTTTC-3’:配列番号17、各々0.2μM)、最終濃度0.5μg/μl アクチンベータメッセンジャーRNA 、2ユニットPlatinum Taq DNA ポリメラーゼ(インビトロジェン) を混合した反応液に各々100ユニット、200ユニット、500ユニット SuperScriptIII(インビトロジェン)を添加した逆転写とPCRを同一反応液中で行うことが出来る反応液を調製した。
 
2. 反応溶液を入れた0.2マイクロリットルPCRチューブをGeneAmp PCR System 9700 サーマルサイクラー(アプライドバイオシステムズ社)にセットし、55℃ 30分、94℃ 2分の加熱後、94℃ 15秒、60℃ 30秒、68℃ 30秒の温度サイクルを40回繰り返した。その後、68℃で5分間インキュベートして反応を終了した。
 
3. 反応終了した反応液50マイクロリットルにAgencourt AMPure XP(Beckman Coulter社)を90マイクロリットル添加して混和後、室温30分で放置した。30分後、マグネットプレート上へ設置し5分静置。ビーズを吸い込まないように上清を捨てて70%濃度エタノール 200マイクロリットルを加えて15秒放置後にエタノールを捨てて再び70%濃度エタノール 200マイクロリットルを加えて15秒放置。エタノールを捨てた後に、ほこりが入らないように注意しながら3分間乾燥させた。乾燥後、マグネットプレートからはずし、41マイクロリットルの滅菌蒸留水を加えてよく混和させた。再びマグネットプレートに設置して5分静置後、上清を40マイクロリットル回収した。
 
4. 上記サンプル溶液をバイオアナライザDNA 1000 kit(アジレント・テクノロジー株式会社)を用いて測定した。
 図13は、ワンステップRT-PCR後サンプルの電気泳動結果を示すものである。図示のとおり、目的産物である133bpのバンドを確認できたので、ワンステップRT-PCRの反応系がうまく機能することを確認できた。逆転写酵素SuperScriptIII 100,200,および500ユニットいずれにおいてもうまく機能することを確認できた。
(図13の説明)
L:マーカー
レーン1:RT-PCR後のサンプル希釈なし(SuperScriptIII 100ユニット添加)
レーン2:RT-PCR後のサンプル5倍希釈(SuperScriptIII 100ユニット添加)
レーン3:RT-PCR後のサンプル希釈なし(SuperScriptIII 200ユニット添加)
レーン4:RT-PCR後のサンプル5倍希釈(SuperScriptIII 200ユニット添加)
レーン5:RT-PCR後のサンプル希釈なし(SuperScriptIII 500ユニット添加)
レーン6:RT-PCR後のサンプル5倍希釈(SuperScriptIII 500ユニット添加)
レーン7:RT-PCR後のサンプル希釈なし(鋳型となるアクチンベータメッセンジャーRNAなし、SuperScriptIII 100ユニット添加)
[実施例2-I.ガラス基板で作製したチャンバー内でのワンステップRT-PCR反応系の有効性確認]
1.スライドガラスに粘着フレーム(タカラバイオ社TakaraSlide seal for in situ PCR)を貼り付けて反応チャンバーを作成した。
2.Platinum Taq用緩衝液中に1.6mM硫酸マグネシウム、0.2mM dNTP、アクチンベータメッセンジャーRNAに対して特異的なプライマーミックス(フォワード:5’-GGCATGGGTCAGAAGGATT-3’:配列番号16、リバース:5’-AGGTGTGGTGCCAGATTTTC-3’:配列番号17、各々0.2μM)、200ユニットSuperScriptIII(インビトロジェン)、2ユニットPlatinum Taq DNA ポリメラーゼ(インビトロジェン)を混合した逆転写とPCRを同一反応液中で行うことが出来る反応液を調製し、0.5μg/μlになるようにアクチンベータメッセンジャーRNAを添加した。
 
3. 上記反応液を反応チャンバー内に25マイクロリットル反応液を添加し、カバーフィルム(タカラバイオ社TakaraSlide seal for in situ PCR)でチャンバーを閉じた。
 
4. GenePro Insitu “Japanese Version” B-4 ブロックを装着したBioer Technology社Gene-Proサーマルサイクラーの反応チャンバーに前述の反応液を封入したスライドガラスを設置し、55℃ 30分、94℃ 4分の加熱後、94℃ 1分、60℃ 1分、68℃ 1分の温度サイクルを40回繰り返した。その後、68℃で5分間インキュベートして反応を終了した。
 
5. 反応終了したスライドガラスを取り出し、カバーフィルムを剥がしながらピペッターを用いて反応液を20マイクロリットル回収した。回収した反応液20マイクロリットルにAgencourt AMPure XP(Beckman Coulter社)を36マイクロリットル添加して混和後、室温30分で放置した。30分後、マグネットプレート上へ設置し5分静置。ビーズを吸い込まないように上清を捨てて70%濃度エタノール 200マイクロリットルを加えて15秒放置後にエタノールを捨てて再び70%濃度エタノール 200マイクロリットルを加えて15秒放置。エタノールを捨てた後に、ほこりが入らないように注意しながら3分間乾燥させた。乾燥後、マグネットプレートからはずし、21マイクロリットルの滅菌蒸留水を加えてよく混和させた。再びマグネットプレートに設置して5分静置後、上清を20マイクロリットル回収した。
 
6. 上記サンプル溶液をバイオアナライザDNA 1000 kit(アジレント・テクノロジー株式会社)を用いて測定した。
 図14は、ガラス基板で作製したチャンバー内で反応させたワンステップRT-PCR後サンプルの電気泳動結果を示す。図示のとおり、目的産物である133bpのバンドを確認できたので、ガラス基板で作製したチャンバー内で反応させたワンステップRT-PCRの反応系がうまく機能することを確認できた。
(図14の説明)
L:マーカー
レーン1-3:ワンステップRT-PCR後のサンプル
実施例2-J.固相化特異的プライマーセットを用いたブリッジRT-PCRによるアクチンベータメッセンジャーRNAの分子カウント実験
1. 特異的プライマー(フォワード:5’-AAA AAA AAA AGG CAT GGG TCA GAA GGA TT-3’:配列番号1、リバース:5’-AAA AAA AAA AAG GTG TGG TGC CAG ATT TTC-3’:配列番号2)の5’端をビオチン化したプライマーを合成した。
 
2. ビオチンコートカバーガラス(株式会社アライアンステクノロジーBiotin/cover slip/Bio_02-C)のビオチンコートされている面に粘着フレーム(タカラバイオ社TakaraSlide seal for in situ PCR)を貼り付けて反応チャンバーを作成した。そのチャンバー内にグリセロールを添加した生理食塩水で調製した20μg/mlストレプトアビジンタンパク質溶液を全面添加して、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置してストレプトアビジンタンパク質をスライドガラス表面に固相化した。固相化後、生理食塩水で3回洗浄して、余分なストレプトアビジンタンパク質を除去した。
 
3. 生理食塩水に10%グリセロールとなるようにグリセロールを添加し、最終濃度3.3マイクロモル/リットルになるようビオチン化フォワードプライマーと最終濃度3.3マイクロモル/リットルになるようビオチン化リバースプライマーの2種類を添加、もしくはネガティブコントロール用に最終濃度6.6マイクロモル/リットルになるようフォワードプライマーのみを添加した。ストレプトアビジン固相化カバーガラスのストレプトアビジン固相化チャンバー内にビオチン化プライマー対溶液もしくはネガティブコントロール用のフォワードプライマー溶液を全面添加し、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置して、ビオチン化プライマー対もしくはネガティブコントロール用のビオチン化フォワードプライマーを固相化した。固相化後、生理食塩水で3回洗浄して余分なプライマーを除去した。
 
4. Platinum Taq用緩衝液中に1.6 mM硫酸マグネシウム、0.2 mM dNTP、SYBR Green溶液、200ユニットSuperScriptIII(インビトロジェン)、2ユニットPlatinum Taq DNAポリメラーゼ(インビトロジェン)を混合した逆転写とPCRを同一反応液中で行うことが出来る反応液を調製し、100pMになるようにアクチンベータメッセンジャーRNAを添加した。プライマー対及びネガティブコントロール用にフォワードプライマーのみをそれぞれ固相化したカバーガラス上のチャンバーに25マイクロリットル反応液を添加し、カバーフィルム(タカラバイオ社TakaraSlide seal for in situ PCR)でチャンバーを閉じた。
 
5. GenePro Insitu “Japanese Version” B-4 ブロックを装着したBioer Technology社製Gene-Proサーマルサイクラーの反応チャンバーにカバーガラスを設置し、55℃30分、94℃4分の加熱後、94℃1分、60℃1分、68℃1分の温度サイクルを40回繰り返した。その後、68℃で5分間インキュベートして反応を終了した。
 
6. 反応終了したカバーガラスをニコン社Eclipse Ti蛍光顕微鏡で励起波長470nmにて励起して、525nmの蛍光を観察した。
 図15および図16は、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果を示す写真であり、それぞれ、ネガティブコントロール(フォワードプライマーのみを固相化、100nM アクチンベータメッセンジャーRNA添加)および100pM アクチンベータメッセンジャーRNA添加、の結果を示すものである。図示のとおり、フォワードプライマーとリバースプライマーを両方固相化した反応チャンバー内でのみSYBR Green由来の蛍光スポットを確認できた。このことにより、蛍光スポットが二本鎖DNAクラスターに由来し、固相化したプライマー対でブリッジRT-PCR反応系がうまく進行することを確認することができた。
[実施例2-K.固相化特異的プライマーセットを用いたブリッジRT-PCRによるアクチンベータメッセンジャーRNAの分子カウント実験(鋳型メッセンジャーRNA濃度と増幅の確認の再現性)]
1. 特異的プライマー(フォワード:5’-AAA AAA AAA AGG CAT GGG TCA GAA GGA TT-3’:配列番号1、リバース:5’-AAA AAA AAA AAG GTG TGG TGC CAG ATT TTC-3’:配列番号2)の5’端をビオチン化したプライマーを合成した。
 
2. ビオチンコートカバーガラス(株式会社アライアンステクノロジーBiotin/cover slip/Bio_02-C)のビオチンコートされている面に粘着フレーム(タカラバイオ社TakaraSlide seal for in situ PCR)を貼り付けて反応チャンバーを作成した。そのチャンバー内にグリセロールを添加した生理食塩水で調製した20μg/mlストレプトアビジンタンパク質溶液を全面添加して、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置してストレプトアビジンタンパク質をスライドガラス表面に固相化した。固相化後、生理食塩水で3回洗浄して、余分なストレプトアビジンタンパク質を除去した。また、この時ネガティブコントロールとしてストレプトアビジンの代わりにRNaseフリー水を加えて作製したグリセロールを添加した生理食塩水を添加したビオチンコートカバーガラスも用意した。
 
3. 生理食塩水に10%グリセロールとなるようにグリセロールを添加し、最終濃度3.3マイクロモル/リットルになるようビオチン化フォワードプライマーと最終濃度3.3マイクロモル/リットルになるようビオチン化リバースプライマーの2種類を添加した。ストレプトアビジン固相化カバーガラスのストレプトアビジン固相化チャンバー内とネガティブコントロール用のチャンバー内にビオチン化プライマー対溶液を全面添加し、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置して、ビオチン化プライマー対を固相化した。固相化後、生理食塩水で3回洗浄して余分なプライマーを除去した。
 
4. Platinum Taq用緩衝液中に1.6mM硫酸マグネシウム、0.2mM dNTP、SYBR Green溶液、200ユニットSuperScriptIII(インビトロジェン)、2ユニットPlatinum Taq DNAポリメラーゼ(インビトロジェン)を混合した逆転写とPCRを同一反応液中で行うことが出来る反応液を調製し、100nM、100pM、100fMになるようにそれぞれアクチンベータメッセンジャーRNAを添加した。プライマー対を固相化したカバーガラス、またはネガティブコントロール用のカバーガラス上のチャンバーに25マイクロリットル反応液を添加し、カバーフィルム(タカラバイオ社TakaraSlide seal for in situ PCR)でチャンバーを閉じた。
 
5. GenePro Insitu “Japanese Version” B-4 ブロックを装着したBioer Technology社Gene-Proサーマルサイクラーの反応チャンバーにカバーガラスを設置し、55℃30分、94℃4分の加熱後、94℃1分、60℃1分、68℃1分の温度サイクルを40回繰り返した。その後、68℃で5分間インキュベートして反応を終了した。
 
6. 反応終了したカバーガラスをニコン社Eclipse Ti蛍光顕微鏡で励起波長470nmにて励起して、525nmの蛍光を観察した。
 図17、図18、図19および図20は、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果(メッセンジャーRNA濃度)を示す写真であり、それぞれ、ネガティブコントロール(ストレプトアビジンなし、100nM アクチンベータメッセンジャーRNA添加)、100fM アクチンベータメッセンジャーRNA添加、100pM アクチンベータメッセンジャーRNA添加、および100nM アクチンベータメッセンジャーRNA添加の結果である。図示のとおり、100fM、100pM、100nMと加えるアクチンベータメッセンジャーRNA量が増えるに従ってSYBR Green由来の蛍光スポット数が増えた。
[実施例2-L.固相化特異的プライマーセットを用いたブリッジRT-PCRによるアクチンベータメッセンジャーRNAの分子カウント実験(PCRサイクル数)]
1. 特異的プライマー(フォワード:5’-AAA AAA AAA AGG CAT GGG TCA GAA GGA TT-3’:配列番号1、リバース:5’-AAA AAA AAA AAG GTG TGG TGC CAG ATT TTC-3’:配列番号2)の5’端をビオチン化したプライマーを合成した。
 
2. ビオチンコートカバーガラス(株式会社アライアンステクノロジーBiotin/cover slip/Bio_02-C)のビオチンコートされている面に粘着フレーム(タカラバイオ社TakaraSlide seal for in situ PCR)を貼り付けて反応チャンバーを作成した。そのチャンバー内にグリセロールを添加した生理食塩水で調製した20μg/mlストレプトアビジンタンパク質溶液を全面添加して、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置してストレプトアビジンタンパク質をスライドガラス表面に固相化した。固相化後、生理食塩水で3回洗浄して、余分なストレプトアビジンタンパク質を除去した。
 
3. 生理食塩水に10%グリセロールとなるようにグリセロールを添加し、最終濃度3.3マイクロモル/リットルになるようビオチン化フォワードプライマーと最終濃度3.3マイクロモル/リットルになるようビオチン化リバースプライマーの2種類を添加、もしくはネガティブコントロール用に最終濃度6.6マイクロモル/リットルになるようフォワードプライマーのみを添加した。ストレプトアビジン固相化カバーガラスのストレプトアビジン固相化チャンバー内にビオチン化プライマー対溶液もしくはネガティブコントロール用のビオチン化フォワードプライマー溶液を全面添加し、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置して、ビオチン化プライマー対もしくはネガティブコントロール用のビオチン化フォワードプライマーを固相化した。固相化後、生理食塩水で3回洗浄して余分なプライマーを除去した。
 
4. Platinum Taq用緩衝液中に1.6mM硫酸マグネシウム、0.2mM dNTP、SYBR Green溶液、200ユニットSuperScriptIII(インビトロジェン)、2ユニットPlatinum Taq DNAポリメラーゼ(インビトロジェン)を混合した逆転写とPCRを同一反応液中で行うことが出来る反応液を調製し、100pMになるようにアクチンベータメッセンジャーRNAを添加した。プライマー対を固相化したカバーガラス、またはネガティブコントロール用のカバーガラス上のチャンバーに25マイクロリットル反応液を添加し、カバーフィルム(タカラバイオ社TakaraSlide seal for in situ PCR)でチャンバーを閉じた。
 
5. GenePro Insitu “Japanese Version” B-4 ブロックを装着したBioer Technology社Gene-Proサーマルサイクラーの反応チャンバーにカバーガラスを設置し、55℃30分、94℃4分の加熱後、94℃1分、60℃1分、68℃1分の温度サイクルを10、20、30、40回繰り返して反応させた。
 
6. 各々のサイクル終了後にカバーガラスを取り出し、遮光して4℃で冷蔵保管した。ニコン社Eclipse Ti蛍光顕微鏡で励起波長470nmにて励起して、525nmの蛍光を観察した。
 図21、図22、図23、図24および図25は、ブリッジRT-PCR後カバーガラスの蛍光顕微鏡観察結果(PCRサイクル数)を示す写真であり、それぞれ、ネガティブコントロール(フォワードプライマーのみ固相化)、PCR 10サイクル、PCR 20サイクル、PCR 30サイクル、およびPCR 40サイクルの結果である。20サイクルまではブリッジPCRによるDNAクラスターの形成が本観察方法では確認できず、30サイクルを超えてDNAクラスターが見えた。
[実施例2-M.自己蛍光/消光する蛍光色素を標識した固相化特異的プライマーセットを用いたブリッジRT-PCRによるアクチンベータメッセンジャーRNAの分子カウント実験]
1. 自己蛍光/消光する蛍光性プライマー(エキシトンプライマー、S. Ikeda, A. Okamoto, Chem. Asian J. 2008, 3, 958-968.)であるACTB-5'F_ExS(5’-GGCATGGGT*CAGAAGGATT-3’, 5’末ビオチン化:配列番号11)、 ACTB-5'R_ExS(5’-AGGTGTGGT*GCCAGATTTTC-3’, 5’末ビオチン化:配列番号12)を作製した(T*の位置を蛍光標識)。
 
2. ビオチンコートカバーガラス(株式会社アライアンステクノロジーBiotin/cover slip/Bio_02-C)のビオチンコートされている面に粘着フレーム(タカラバイオ社TakaraSlide seal for in situ PCR)を貼り付けて反応チャンバーを作成した。そのチャンバー内にグリセロールを添加した生理食塩水で調製した20μg/mlストレプトアビジンタンパク質溶液を全面添加して、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置してストレプトアビジンタンパク質をスライドガラス表面に固相化した。固相化後、生理食塩水で3回洗浄して、余分なストレプトアビジンタンパク質を除去した。
 
3. 生理食塩水に10%グリセロールとなるようにグリセロールを添加し、最終濃度3.3マイクロモル/リットルになるようビオチン化エキシトンフォワードプライマーと最終濃度3.3マイクロモル/リットルになるようビオチン化エキシトンリバースプライマーの2種類を添加、もしくはネガティブコントロール用に最終濃度6.6マイクロモル/リットルになるようフォワードプライマーのみを添加した。ストレプトアビジン固相化カバーガラスのストレプトアビジン固相化チャンバー内にビオチン化プライマー対溶液もしくはネガティブコントロール用にビオチン化フォワードプライマー溶液を全面添加し、乾燥を防ぐためにシャーレの蓋でカバーした後、37℃で30分放置して、ビオチン化エキシトンプライマー対もしくはネガティブコントロール用のビオチン化エキシトンフォワードプライマーを固相化した。固相化後、生理食塩水で3回洗浄して余分なプライマーを除去した。
 
4. Platinum Taq用緩衝液中に1.6mM硫酸マグネシウム、0.2mM dNTP、200ユニットSuperScriptIII(インビトロジェン)、2ユニットPlatinum Taq DNAポリメラーゼ(インビトロジェン)を混合した逆転写とPCRを同一反応液中で行うことが出来る反応液を調製し、100pMになるようにアクチンベータメッセンジャーRNAを添加した。プライマー対を固相化したカバーガラス、またはネガティブコントロール用のカバーガラス上のチャンバーに25マイクロリットルの反応液を添加し、カバーフィルム(タカラバイオ社TakaraSlide seal for in situ PCR)でチャンバーを閉じた。
 
5. GenePro Insitu “Japanese Version” B-4 ブロックを装着したBioer Technology社Gene-Proサーマルサイクラーの反応チャンバーにカバーガラスを設置し、55℃30分、94℃4分の加熱後、94℃1分、60℃1分、68℃1分の温度サイクルを40回繰り返して反応させた。その後、68℃で5分間インキュベートして反応を終了した。
 
6. 反応終了したカバーガラスをニコン社Eclipse Ti蛍光顕微鏡で励起波長470nmにて励起して、520nmの蛍光を観察した。
 図26および図27は、蛍光標識した固相化特異的プライマーセットを用いたブリッジRT-PCRの結果を示す写真であり、それぞれ、ネガティブコントロール(フォワードプライマーのみ固相化、100pM アクチンベータメッセンジャーRNA添加)、および、エキシトンフォワードプライマー/エキシトンリバースプライマーを固相化、100pM アクチンベータメッセンジャーRNA添加したものである。DNA二本鎖形成によって自己蛍光する蛍光性プライマー(エキシトンプライマー)をフォワード側とリバース側を両方固相化してRT-PCRするとSYBR Greenを入れた時と同様RT-PCR後にDNAクラスター由来の蛍光スポットを確認することができた。
 以上説明したとおり、本発明の標的核酸の分析方法、キットおよび分析機器によれば、迅速かつ簡便に標的核酸の分析を行うことが可能である。本発明によれば、例えば、健康状態および様々な疾患の予後の予測、判定、検出又は診断に有用な予測、判定、検出又は診断用組成物、前記組成物を利用した健康状態および様々な疾患の予後の予測、判定、検出又は診断方法、ならびに前記組成物を利用した健康状態および様々な疾患の予後の予測、判定、検出又は診断キットならびに装置を提供することで、例えば医療分野の疾患の検査、診断などに対して良好な結果を提供することができるため、産業上有用である。

Claims (46)

  1. 試料中の標的核酸の分析方法であって、
    前記試料を、前記標的核酸にハイブリダイズすることが可能なプライマー又はプローブと、標識とに接触させて、前記試料中の前記標的核酸の分析を行い、
    前記プライマー又はプローブは、固相に固定されており、
    前記標識は、前記プライマー又はプローブが前記標的核酸とハイブリダイズしない場合は消光し、前記プライマー又はプローブが前記標的核酸とハイブリダイズした場合は発光する標識であり、
    前記標識の発光の検出により分析を行うことを特徴とする分析方法。
  2. 前記標的核酸の分析後、前記標的核酸を除去し、前記プライマー又はプローブを再利用する請求項1に記載の分析方法。
  3. 前記標的核酸が複数種類であり、前記複数種類の標的核酸をそれぞれ検出する請求項1または2に記載の分析方法。
  4. 前記プライマー又はプローブが、複数種類である請求項1から3のいずれか一項に記載の分析方法。
  5. 前記プライマー又はプローブが固定された前記固相の表面が、平面、チップ平面、球体表面または立体表面である請求項1から4のいずれか一項に記載の分析方法。
  6. 前記固相の表面が、バックグラウンドを軽減するコーティングがされた表面である請求項1から5のいずれか一項に記載の分析方法。
  7. 前記バックグラウンドを軽減するコーティングが、グラフト重合処理によるコーティングである請求項6記載の分析方法。
  8. 前記標識が、エキシトン効果を示す蛍光性原子団である請求項1から7のいずれか一項に記載の分析方法。
  9.  前記プライマー又はプローブが、前記標識を、前記プライマー又はプローブの一部として含み、
     前記標識が、前記プライマー又はプローブに共有結合している請求項1から8のいずれか一項に記載の分析方法。
  10.  前記プライマー又はプローブが、下記式(16)、(16b)、(17)、(17b)、(18)または(18b)で表される構造を少なくとも一つ含む核酸分子である請求項9記載の分析方法。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    前記式(16)、(16b)、(17)、(17b)、(18)および(18b)中、
    Bは、天然核酸塩基(アデニン、グアニン、シトシン、チミンまたはウラシル)骨格または人工核酸塩基骨格を有する原子団であり、
    Eは、
    (i)デオキシリボース骨格、リボース骨格、もしくはそれらのいずれかから誘導される構造を有する原子団、または
    (ii)ペプチド構造もしくはペプトイド構造を有する原子団であり、
    11およびZ12は、それぞれ、エキシトン効果を示す蛍光性原子団であり、同一でも異なっていてもよく、
    、LおよびLは、それぞれ、リンカー(架橋原子または原子団)であり、主鎖長(主鎖原子数)は任意であり、主鎖中に、C、N、O、S、PおよびSiを、それぞれ含んでいても含んでいなくても良く、主鎖中に、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、イミノ基、エーテル結合、チオエーテル結合およびチオエステル結合を、それぞれ含んでいても含んでいなくても良く、L、LおよびLは、互いに同一でも異なっていても良く、
    Dは、CR、N、P、P=O、BもしくはSiRであり、Rは、水素原子、アルキル基または任意の置換基であり、
    bは、単結合、二重結合もしくは三重結合であるか、
    または、前記式(16)および(16b)中、LおよびLは前記リンカーであり、L、Dおよびbは存在せず、LおよびLがBに直接結合していてもよく、
    ただし、
    前記式(16)、(17)および(18)中、Eは、前記(i)の原子団であり、リン酸架橋中の少なくとも一つのO原子がS原子で置換されていても良く、
    前記式(16b)、(17b)および(18b)中、Eは、前記(ii)の原子団であり、
    前記式(17)および(17b)中、各Bは、同一でも異なっていても良く、各Eは、同一でも異なっていても良い。
  11. 前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、
    、LおよびLの主鎖長(主鎖原子数)が、それぞれ2以上の整数である、請求項10記載の分析方法。
  12. 前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、
    11およびZ12が、それぞれ独立に、チアゾールオレンジ、オキサゾールイエロー、シアニン、ヘミシアニン、その他のシアニン色素、メチルレッド、アゾ色素、ビオチンまたはそれらの誘導体から誘導される基である、請求項10または11記載の分析方法。
  13. 11およびZ12が、それぞれ独立に、下記式(7)から(9)のいずれかで表される原子団である、請求項10から12のいずれか一項に記載の分析方法。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    式(7)~(9)中、
    およびXは、S、OまたはSeであり、
    n’’は、0または正の整数であり、
    ~R10、R13~R21は、それぞれ独立に、水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ニトロ基、またはアミノ基であり、
    11およびR12のうち、一方は、前記式(16)、(17)、(16b)および(17b)中のLもしくはLに結合する連結基であり、他方は、水素原子または低級アルキル基であり、
    15は、式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
    16は、式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
    11中のX、XおよびR~R21と、Z12中のX、XおよびR~R21とは、互いに同一でも異なっていてもよい。
  14. 前記式(7)~(9)中、
    ~R21において、前記低級アルキル基が、炭素数1~6の直鎖または分枝アルキル基であり、前記低級アルコキシ基が、炭素数1~6の直鎖または分枝アルコキシ基である、請求項13記載の分析方法。
  15. 前記式(7)~(9)中、
    11およびR12において、前記連結基が、炭素数2以上のポリメチレンカルボニル基であり、カルボニル基部分で前記式(16)、(16b)、(17)および(17b)中のLもしくはLに結合する、請求項13または14記載の分析方法。
  16. 11およびZ12が、それぞれ独立に、前記式(7)または(8)で表される原子団であり、
    前記式(7)または(8)で表されるZ11およびZ12が、下記式(19)または(20)で示される基である請求項13から15のいずれか一項に記載の分析方法。
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    式(19)および(20)中、
    、RからR10、R13およびR14、R11ならびにR12は、式(7)~(9)と同じである。
  17. 11およびZ12が、それぞれ独立に、前記式(19)で表される原子団であり、
    前記式(19)中、
    は、Sであり、
    からR10は、水素原子であり、
    11およびR12のうち、一方は、前記式(16)、(17)、(16b)および(17b)中のLもしくはLに結合する連結基であり、他方は、メチル基である、請求項16記載の分析方法。
  18. 11およびZ12が、それぞれ独立に、前記式(19)で表される原子団であり、
    前記式(19)中、
    は、Sであり、
    、R、R、R、R、RおよびR10は、水素原子であり、
    、RおよびR12は、メチル基であり、
    は、ハロゲン原子であり、
    11は、前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中のLもしくはLに結合する連結基である、請求項16記載の分析方法。
  19. 11およびZ12が、それぞれ独立に、前記式(7)で表される原子団であり、
    前記式(7)中、
    は、Sであり、
    nは、1であり、
    からR10、R15、R16およびR17は、水素原子であり、
    11は、前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中のLもしくはLに結合する連結基であり、
    12は、メチル基である、請求項13記載の分析方法。
  20. 11およびZ12が、それぞれ独立に、下記の各化学式のいずれかで表される原子団である、請求項13記載の分析方法。
    Figure JPOXMLDOC01-appb-C000012
     
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    上記各化学式中、
    nは、正の整数である。
  21. 前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、
    Bが、天然核酸塩基(アデニン、グアニン、シトシン、チミンまたはウラシル)骨格を有する原子団である請求項10から20のいずれか一項に記載の分析方法。
  22. 前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、
    Bが、人工核酸塩基骨格を有する原子団であり、前記人工核酸塩基が、2-アミノ-6-(N,N-ジメチルアミノ)プリン ピリジン-2-オン、5-メチルピリジン-2-オン、2-アミノ-6-(2-チエニル)プリン、ピロール-2-カルボアルデヒド、9-メチルイミダゾ[(4,5)-b]ピリジン、5-ヨード-2-オキソ(1H)ピリジン 2-オキソ-(1H)ピリジン、2-アミノ-6-(2-チアゾリル)プリン、7-(2-チエニル)-イミダゾ[4,5-b]ピリジン、ブロモチミン、アザアデニンまたはアザグアニンである請求項10から20のいずれか一項に記載の分析方法。
  23. 前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、
    Bが、人工核酸塩基骨格を有する原子団であり、前記人工核酸塩基が、Py、Py der.、Pu、またはPu der.である請求項10から20のいずれか一項に記載の分析方法。
    前記Pyとは、下記式(11)で表記される6員環のうち、1位にEと結合する共有結合手を有し、5位にリンカー部と結合する共有結合手を有する原子団であり、
    前記Py der.とは、前記Pyの6員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良く、
    前記Puとは、下記式(12)で表記される縮合環のうち、9位にEと結合する共有結合手を有し、8位にリンカー部と結合する共有結合手を有する原子団であり、
    前記Pu der.とは、前記Puの5員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良い。
    Figure JPOXMLDOC01-appb-C000018
  24. 前記式(16)で表される構造が、下記式(16-1)または(16-2)で表される構造であり、
    前記式(16b)で表される構造が、下記式(16b-1)または(16b-2)で表される構造であり、
    前記式(17)で表される構造が、下記式(17-1)で表される構造であり、
    前記式(17b)で表される構造が、下記式(17b-1)で表される構造であり、
    前記式(18)で表される構造が、下記式(18-1)で表される構造であり、
    前記式(18b)で表される構造が、下記式(18b-1)で表される構造である、
    請求項10から23のいずれか一項に記載の分析方法。
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    Figure JPOXMLDOC01-appb-C000024
    Figure JPOXMLDOC01-appb-C000025
    Figure JPOXMLDOC01-appb-C000026
    前記式(16-1)、(16-2)、(16b-1)、(16b-2)、(17-1)、(17b-1)、(18-1)および(18b-1)中、
    l、mおよびn’は任意であり、同一でも異なっていても良く、主鎖中に、C、N、O、S、PおよびSiを、それぞれ含んでいても含んでいなくても良く、主鎖中に、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、イミノ基、エーテル結合、チオエーテル結合およびチオエステル結合を、それぞれ含んでいても含んでいなくても良く、
    B、E、Z11、Z12およびbは、前記式(16)、(16b)、(17)、(17b)、(18)および(18b)と同じであり、
    前記式(16-1)、(16-2)、(17-1)および(18-1)において、リン酸架橋中のO原子は、1つ以上がS原子で置換されていてもよい。
  25. 前記式(16-1)、(16-2)、(16b-1)、(16b-2)、(17-1)、(17b-1)、(18-1)および(18b-1)中、
    l、mおよびnは、それぞれ、2以上の整数である、請求項24記載の分析方法。
  26. 前記核酸分子が、下記化学式106、110、113、117、120、122、123、124または114-2で表されるヌクレオチド構造、またはそれらの幾何異性体、立体異性体もしくは塩である構造を少なくとも一つ含む核酸分子である、請求項10記載の分析方法。
    Figure JPOXMLDOC01-appb-C000027
    Figure JPOXMLDOC01-appb-C000028
    Figure JPOXMLDOC01-appb-C000029
    Figure JPOXMLDOC01-appb-C000030
    Figure JPOXMLDOC01-appb-C000031
    Figure JPOXMLDOC01-appb-C000032
    Figure JPOXMLDOC01-appb-C000033
    Figure JPOXMLDOC01-appb-C000034
    Figure JPOXMLDOC01-appb-C000035
    上記化学式106、110、113、117、120、122、123、124および114-2中、nは正の整数である。
  27. 前記リンカー長nが2~6の範囲である、請求項20または26記載の分析方法。
  28. 前記プライマー又はプローブが、プライマーであり、
    前記プライマーを前記試料に接触させることにより、前記プライマーを前記標的核酸にハイブリダイズさせて前記標的核酸の増幅反応を行い、
    さらに、前記増幅反応における前記標的核酸の増幅度を継時的に計測することにより、前記標的核酸の分析を行う請求項1から27のいずれか1項に記載の分析方法。
  29. 前記標的核酸の増幅反応を、ブリッジPCR法で行う請求項28記載の分析方法。
  30. 前記プライマーが、一対のプライマーであり、
    前記一対のプライマーは、それぞれ、前記標識が共有結合していることにより、前記標識を前記プライマーの一部として含み、
    前記一対のプライマーに共有結合した前記各標識は、それぞれ、エキシトン効果を示す蛍光性原子団であり、
    前記各標識は、互いに異なり、
    前記ブリッジPCR法において、蛍光を生じさせないか、又は、1色ないし3色の蛍光を生じさせて蛍光色を解析することにより、又は、前記各標識の蛍光強度に差を生じさせて前記蛍光強度差を測定することにより、前記標的核酸における複数座位の変異有無検出又は前記複数座位の発現量分析を同時に行う請求項29記載の分析方法。
  31. 前記プライマーが、一対のプライマーであり、
    前記一対のプライマーは、それぞれ、前記標識が共有結合していることにより、前記標識を前記プライマーの一部として含み、
    前記一対のプライマーに共有結合した前記各標識は、それぞれ、エキシトン効果を示す蛍光性原子団であり、
    前記各標識は、互いに異なり、
    前記ブリッジPCR法において、蛍光を生じさせないか、又は、1色ないし3色の蛍光を生じさせて蛍光色を解析することにより、又は、前記各標識の蛍光強度に差を生じさせて前記蛍光強度差を測定することにより、前記標的核酸を含む試料全体における変異の割合を測定する請求項29記載の分析方法。
  32. 前記プライマーが、一対のプライマーであり、
    前記一対のプライマーは、それぞれ、前記標識が共有結合していることにより、前記標識を前記プライマーの一部として含み、
    前記一対のプライマーに共有結合した前記各標識は、それぞれ、エキシトン効果を示す蛍光性原子団であり、
    前記各標識は、互いに異なり、
    前記ブリッジPCR法において、蛍光を生じさせないか、又は、1色ないし3色の蛍光を生じさせて蛍光色を解析することにより、又は、前記各標識の蛍光強度に差を生じさせて前記蛍光強度差を測定することにより、前記標的核酸を含む試料の品質を確認する請求項29記載の分析方法。
  33. 前記標的核酸の増幅反応を、等温増幅法で行う請求項28記載の分析方法。
  34. 前記プライマーの2点以上のスポットが、前記固相に任意の位置関係で固定されている請求項28から33のいずれか一項に記載の分析方法。
  35. 前記標的核酸が、RNAであり、
    さらに、前記RNAの逆転写反応を行い、
    前記逆転写反応を、前記プライマーが固定された前記固相で、前記増幅反応の前または前記増幅反応と同時に行う、請求項28から34のいずれか一項に記載の分析方法。
  36. 前記増幅反応を、DNAポリメラーゼ、RNAポリメラーゼ、逆転写酵素(逆転写ポリメラーゼ)又はRNA依存RNAポリメラーゼを用いて行う、請求項28から35のいずれか一項に記載の分析方法。
  37. 前記増幅反応後、融解曲線解析を行うことによって前記標的核酸の変異の有無を検出する請求項28から36のいずれか一項に記載の分析方法。
  38. 前記融解曲線解析を、プローブを用いて行い、
    前記プローブが、エキシトン効果を示す蛍光性原子団を含む請求項37記載の分析方法。
  39. エキシトン効果を示す蛍光性原子団を含む前記プローブを、複数種類用いる請求項38記載の分析方法。
  40. 前記プライマー又はプローブが、プローブである請求項1から27のいずれか一項に記載の分析方法。
  41. 前記試料は、あらかじめ増幅された前記標的核酸を含む請求項40記載の分析方法。
  42. さらに、融解曲線解析を行うことによって前記標的核酸中の変異の有無を検出する請求項40または41記載の分析方法。
  43. 請求項1から42のいずれか一項に記載の分析方法を行うためのキットであり、
    前記キットが、前記プライマー又はプローブと、前記標識と、前記プライマー又はプローブを固定するための支持体とを含み、
    前記支持体が、前記固相を含むキット。
  44. 請求項1から42のいずれか一項に記載の分析方法を行うための分析機器であり、
    前記標識の発光を検出するための発光検出手段を含む分析機器。
  45. 少なくとも1点以上のスナップショットのデータを取得するための手段を有する、請求項44記載の分析機器。
  46. 継時的にデータを取得するための手段を有する、請求項44または45記載の分析機器。
PCT/JP2013/073233 2012-08-30 2013-08-29 標的核酸の分析方法、キットおよび分析機器 WO2014034818A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014508640A JP5598784B2 (ja) 2012-08-30 2013-08-29 標的核酸の分析方法、キットおよび分析機器
US14/414,324 US10066264B2 (en) 2012-08-30 2013-08-29 Method for analyzing target nucleic acid, kit, and analyzer
EA201590455A EA032482B1 (ru) 2012-08-30 2013-08-29 Способ анализа нуклеиновой кислоты-мишени
EP13832285.4A EP2891714B1 (en) 2012-08-30 2013-08-29 Method for analyzing target nucleic acid, kit, and analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012190715 2012-08-30
JP2012-190715 2012-08-30

Publications (1)

Publication Number Publication Date
WO2014034818A1 true WO2014034818A1 (ja) 2014-03-06

Family

ID=50183623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073233 WO2014034818A1 (ja) 2012-08-30 2013-08-29 標的核酸の分析方法、キットおよび分析機器

Country Status (5)

Country Link
US (1) US10066264B2 (ja)
EP (1) EP2891714B1 (ja)
JP (1) JP5598784B2 (ja)
EA (1) EA032482B1 (ja)
WO (1) WO2014034818A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038682A1 (ja) * 2015-08-28 2017-03-09 国立研究開発法人理化学研究所 鋳型核酸の分析方法、標的物質の分析方法、鋳型核酸または標的物質の分析用キット、および鋳型核酸または標的物質の分析用装置
WO2018008435A1 (ja) * 2016-07-04 2018-01-11 株式会社ダナフォーム 核酸分析方法
DE112016007245T5 (de) 2016-10-17 2019-08-14 Olympus Corporation Verfahren zum Nachweisen von Ziel-Nukleinsäuremolekülen
KR20190132155A (ko) * 2018-05-18 2019-11-27 주식회사 바이나리 등온핵산 증폭을 이용한 생체조직의 3차원 핵산영상 진단 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013954A1 (ja) * 2012-07-16 2014-01-23 株式会社ダナフォーム 核酸プローブ、核酸プローブの設計方法、およびターゲット配列の検出方法
US20180188204A1 (en) * 2017-01-01 2018-07-05 Sylvester Tumusiime Use of charged quinine sulfate or other precursors or derivatives of quinine alkaloids in visualization of nucleic acids
EP4114970A4 (en) * 2020-03-02 2024-04-03 Univ Northwestern ADJUSTMENT FUSES FOR DETECTION OF INTRACELLULAR ANALYTES IN LIVING CELLS
GB2605404A (en) * 2021-03-30 2022-10-05 Sumitomo Chemical Co Sequencing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505492A (ja) 1994-08-03 1998-06-02 モザイク・テクノロジーズ・インコーポレイテッド 担体上で核酸の増幅を行う方法および装置
WO2008111485A1 (ja) * 2007-03-09 2008-09-18 Riken モノヌクレオシドまたはモノヌクレオチドから誘導される構造を有する化合物、核酸、標識物質、核酸検出方法およびキット
JP2009171935A (ja) * 2007-03-09 2009-08-06 Institute Of Physical & Chemical Research プライマー、プライマーセット、それを用いた核酸増幅方法および変異検出方法
WO2012091091A1 (ja) * 2010-12-28 2012-07-05 独立行政法人理化学研究所 化合物、核酸、核酸の製造方法および核酸を製造するためのキット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723800A (ja) 1993-07-08 1995-01-27 Tanabe Seiyaku Co Ltd 核酸の検出方法
IT1303767B1 (it) 1998-11-17 2001-02-23 San Raffaele Centro Fond Metodo di quantificazione di acidi nucleici.
AUPR050700A0 (en) 2000-10-03 2000-10-26 Id+Plus Ltd Detection method
CA2622649C (en) 2007-03-09 2018-04-24 Riken Nucleic acid amplification method using primer exhibiting exciton effect
EP2116614A1 (en) 2008-05-06 2009-11-11 Qiagen GmbH Simultaneous detection of multiple nucleic acid sequences in a reaction
WO2014013954A1 (ja) 2012-07-16 2014-01-23 株式会社ダナフォーム 核酸プローブ、核酸プローブの設計方法、およびターゲット配列の検出方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505492A (ja) 1994-08-03 1998-06-02 モザイク・テクノロジーズ・インコーポレイテッド 担体上で核酸の増幅を行う方法および装置
WO2008111485A1 (ja) * 2007-03-09 2008-09-18 Riken モノヌクレオシドまたはモノヌクレオチドから誘導される構造を有する化合物、核酸、標識物質、核酸検出方法およびキット
JP2009171935A (ja) * 2007-03-09 2009-08-06 Institute Of Physical & Chemical Research プライマー、プライマーセット、それを用いた核酸増幅方法および変異検出方法
JP4370385B2 (ja) 2007-03-09 2009-11-25 独立行政法人理化学研究所 プライマー、プライマーセット、それを用いた核酸増幅方法および変異検出方法
JP4761086B2 (ja) 2007-03-09 2011-08-31 独立行政法人理化学研究所 核酸、標識物質、核酸検出方法およびキット
WO2012091091A1 (ja) * 2010-12-28 2012-07-05 独立行政法人理化学研究所 化合物、核酸、核酸の製造方法および核酸を製造するためのキット

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
ANALYTICAL BIOCHEMISTRY, vol. 281, 2000, pages 26 - 35
H. S. RYE; M. A. QUESADA; K. PECK; R. A. MATHIES; A. N. GLAZER: "High-sensitivity two-color detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange", NUCLEIC ACIDS RES., vol. 19, 1991, pages 327 - 33
HRDLICKA, P. J.; BABU, B. R.; SORENSEN, M. D.; HARRIT, N.; WENGEL, J., J. AM. CHEM. SOC., vol. 127, 2005, pages 13293 - 13299
IKEDA S. ET AL.: "Hybridization-sensitive on-off DNA probe: application of the exciton coupling effect to effective fluorescence quenching.", CHEM. ASIAN J., vol. 3, no. 6, 2008, pages 958 - 968, XP055114814 *
KIMURA Y. ET AL.: "Effect of thiazole orange doubly labeled thymidine on DNA duplex formation.", BIOCHEMISTRY, vol. 51, no. 31, July 2012 (2012-07-01), pages 6056 - 6067, XP055241623 *
L. G. LEE; C. H. CHEN; L. A. CHIU: "Thiazole orange: a new dye for reticulocyte analysis", CYTOMETRY, vol. 7, 1986, pages 508 - 17, XP000613662, DOI: doi:10.1002/cyto.990070603
LEZHAVA A. ET AL.: "Exciton primer-mediated SNP detection in SmartAmp2 reactions.", HUM. MUTAT., vol. 31, no. 2, 2010, pages 208 - 217, XP055241618 *
NATURE GENETICS, vol. 41, 2009, pages 553 - 562
NATURE GENETICS, vol. 41, 2009, pages 563 - 571
NATURE GENETICS, vol. 41, 2009, pages 572 - 578
OKAMOTO A. ET AL.: "ECHO probes: a concept of fluorescence control for practical nucleic acid sensing.", CHEM. SOC. REV., vol. 40, no. 12, 2011, pages 5815 - 5828, XP055188524 *
See also references of EP2891714A4
SVANVIK, N.; WESTMAN, G.; WANG, D.; KUBISTA, M, ANAL BIOCHEM., vol. 281, 2000, pages 26 - 35
TETRAHEDRON, vol. 43, no. 20, 1987, pages 4601 - 4607

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038682A1 (ja) * 2015-08-28 2017-03-09 国立研究開発法人理化学研究所 鋳型核酸の分析方法、標的物質の分析方法、鋳型核酸または標的物質の分析用キット、および鋳型核酸または標的物質の分析用装置
JPWO2017038682A1 (ja) * 2015-08-28 2018-06-14 国立研究開発法人理化学研究所 鋳型核酸の分析方法、標的物質の分析方法、鋳型核酸または標的物質の分析用キット、および鋳型核酸または標的物質の分析用装置
US10760116B2 (en) 2015-08-28 2020-09-01 Kabushiki Kaisha Dnaform Analysis kit, analyzer, and methods for analyzing template nucleic acid or target substance
JP2021097703A (ja) * 2015-08-28 2021-07-01 国立研究開発法人理化学研究所 鋳型核酸の分析方法、標的物質の分析方法、鋳型核酸または標的物質の分析用キット、および鋳型核酸または標的物質の分析用装置
WO2018008435A1 (ja) * 2016-07-04 2018-01-11 株式会社ダナフォーム 核酸分析方法
DE112016007245T5 (de) 2016-10-17 2019-08-14 Olympus Corporation Verfahren zum Nachweisen von Ziel-Nukleinsäuremolekülen
KR20190132155A (ko) * 2018-05-18 2019-11-27 주식회사 바이나리 등온핵산 증폭을 이용한 생체조직의 3차원 핵산영상 진단 방법
KR102103719B1 (ko) 2018-05-18 2020-04-23 주식회사 바이나리 등온핵산 증폭을 이용한 생체조직의 3차원 핵산영상 분석 방법

Also Published As

Publication number Publication date
EP2891714A4 (en) 2016-05-11
EA032482B1 (ru) 2019-06-28
EP2891714B1 (en) 2018-07-11
US20150152496A1 (en) 2015-06-04
JP5598784B2 (ja) 2014-10-01
US10066264B2 (en) 2018-09-04
EP2891714A1 (en) 2015-07-08
JPWO2014034818A1 (ja) 2016-08-08
EA201590455A1 (ru) 2015-11-30

Similar Documents

Publication Publication Date Title
JP5598784B2 (ja) 標的核酸の分析方法、キットおよび分析機器
EP2021415B1 (en) Dye compounds and the use of their labelled conjugates
TWI701236B (zh) 聚次甲基化合物及其做為螢光標記之用途
JP4761086B2 (ja) 核酸、標識物質、核酸検出方法およびキット
JP6514364B2 (ja) 長ストークスシフトを有するポリメチン化合物と、蛍光標識としてのその使用
JP5618436B2 (ja) 核酸プローブ、核酸プローブの設計方法、およびターゲット配列の検出方法
WO2005085269A1 (ja) ヌクレオチド誘導体とdnaマイクロアレイ
JP7041695B2 (ja) シーケンスアプリケーションにおけるヌクレオチドのためのショートペンダントアームリンカー
CN108299275A (zh) 多次甲基化合物和其作为荧光标记物的用途
KR20080082935A (ko) 프라이머, 프라이머 세트, 그것을 이용한 핵산 증폭 방법및 변이 검출 방법
JP4370385B2 (ja) プライマー、プライマーセット、それを用いた核酸増幅方法および変異検出方法
TWI622580B (zh) 多次甲基化合物及其作爲螢光標記之用途
WO2015152024A1 (ja) 蛍光性標識一本鎖核酸及びその用途
JP2015104329A (ja) 核酸プライマー又は核酸プローブの設計方法、およびターゲット配列の検出方法
WO2022206922A1 (zh) 用于测序的核苷酸类似物
JP2004166522A (ja) ポリヌクレオチド誘導体及びその利用
JP2004168672A (ja) ポリヌクレオチド誘導体及びその利用
JP2007031388A (ja) ヌクレオチド誘導体及びその利用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014508640

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832285

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14414324

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201590455

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2013832285

Country of ref document: EP