WO2014034240A1 - ラミネート後の成形性に優れたアルミニウム合金箔とその製造方法、および該アルミニウム合金箔を用いたラミネート箔 - Google Patents

ラミネート後の成形性に優れたアルミニウム合金箔とその製造方法、および該アルミニウム合金箔を用いたラミネート箔 Download PDF

Info

Publication number
WO2014034240A1
WO2014034240A1 PCT/JP2013/067384 JP2013067384W WO2014034240A1 WO 2014034240 A1 WO2014034240 A1 WO 2014034240A1 JP 2013067384 W JP2013067384 W JP 2013067384W WO 2014034240 A1 WO2014034240 A1 WO 2014034240A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
aluminum alloy
rolling
alloy foil
foil
Prior art date
Application number
PCT/JP2013/067384
Other languages
English (en)
French (fr)
Inventor
信吾 岩村
邦夫 竹井
一郎 南
久弥 加藤
Original Assignee
住友軽金属工業株式会社
住軽アルミ箔株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友軽金属工業株式会社, 住軽アルミ箔株式会社 filed Critical 住友軽金属工業株式会社
Priority to KR1020157005129A priority Critical patent/KR20150046067A/ko
Priority to CN201380041988.XA priority patent/CN104641011B/zh
Publication of WO2014034240A1 publication Critical patent/WO2014034240A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Definitions

  • the present invention relates to an aluminum alloy foil having excellent formability after lamination, a method for producing the same, and a laminate foil using the aluminum alloy foil.
  • Aluminum alloy foil is manufactured by homogenizing an aluminum alloy ingot, then hot rolling and cold rolling, and if necessary, intermediate annealing during cold rolling or final annealing after cold rolling. Is done.
  • the aluminum alloy foil produced in this manner is molded, for example, with a thermoplastic resin laminated on both sides, and is used as a packaging material for pharmaceuticals and battery packages.
  • requirement with respect to high moldability is increasing year by year, and it is calculated
  • an 8000 series alloy has been proposed in which the material structure is adjusted by the manufacturing process to improve the formability.
  • the material structure is adjusted by the manufacturing process to improve the formability.
  • the foil rollability can be increased, pinholes can be reduced, and by controlling the dispersion state of intermetallic compound particles, excellent moldability can be achieved.
  • these proposals are mainly aimed at improving the formability of the raw foil from the viewpoint of foil rollability, and do not improve the press formability in the state of the laminated foil.
  • the present invention was made as a result of repeated testing and examination for the purpose of obtaining an aluminum alloy foil capable of achieving improvement in formability in a laminated foil state,
  • the purpose of the aluminum alloy foil is excellent in formability after lamination, and can exhibit the best formability especially in a laminated foil state, while exhibiting high formability even in the state of a base foil and the aluminum alloy It is providing the laminated foil using foil.
  • the aluminum alloy foil having excellent formability after lamination according to claim 1 has Fe: 0.6 to 1.6% (mass%, the same applies hereinafter), Si: 0.02 to 0 2%, Ti: 0.01 to 0.1%, B: 0.01 to 0.05%, or one or two of Mn, 0.1% or less of Mn, and 0.1% of Mg. 1% or less, Cu is limited to 0.1% or less, Zn is limited to 0.25% or less, the balance is Al and inevitable impurities, and the grain size (equivalent circle diameter, the same shall apply hereinafter) is 1.0 ⁇ m or more.
  • Boundary having an orientation difference of 5 ° or more in crystal orientation analysis by electron backscattering analysis image method is defined as a crystal grain boundary, wherein the number density of the intermetallic compound is 50000 / mm 2 or less, and the crystal grain boundary
  • the average value D of the crystal grain size (equivalent circle diameter, the same shall apply hereinafter) is 12 ⁇ m or less for the crystal grains surrounded by
  • the electrical resistance at 20 ° C. is E [n ⁇ m]
  • the Fe content is C [mass%], (E ⁇ 26.5)
  • the value of / C is 3.8 or less.
  • a method for producing an aluminum alloy foil having excellent formability after lamination according to claim 2 is a method for producing an aluminum alloy foil according to claim 1, wherein the aluminum alloy foil having the composition according to claim 1 is melted and cast. Then, after chamfering the obtained ingot, it is subjected to a homogenization treatment for holding for 1 hour or more at a temperature of 500 to 620 ° C., followed by hot rolling consisting of hot rough rolling and hot finish rolling, In hot rough rolling, the temperature range during hot rough rolling is set to 350 to 550 ° C, and during the hot rough rolling rolling pass, the sheet thickness is less than 150 mm, and the holding is maintained for 30 seconds or more until the next rolling. The thickness reduction rate of the final pass of hot rough rolling should be 40% or more, and after hot rough rolling, hot finish rolling and cold rolling are performed, and the final annealing treatment is performed.
  • the laminate foil according to claim 3 is characterized in that one layer or two or more stretched films made of a thermoplastic resin are bonded to both surfaces of the aluminum alloy foil according to claim 1.
  • the aluminum alloy foil excellent in the moldability after lamination which can achieve the best moldability especially in the state made into the laminate foil, its manufacturing method, and the laminate using this aluminum alloy foil A foil is provided.
  • Fe is a main alloy element in the present alloy system, and exists as an intermetallic compound, which promotes nucleation during recrystallization and functions to make crystal grains fine.
  • the preferable content of Fe is in the range of 0.6 to 1.6%, and if it is less than 0.6%, the amount of intermetallic compounds for making the crystal grains fine becomes small and fine grains cannot be obtained. If it exceeds 6%, the excessively formed intermetallic compound becomes the starting point of delamination during pinholes or molding.
  • a more preferable content range of Fe is 0.75 to 1.55%, and a more preferable content range is 0.9 to 1.5%.
  • Si forms an intermetallic compound with Fe. However, when Mn is contained, the grain size of the intermetallic compound particles is reduced to inhibit the development of crystal grains and promote the formation of a mixed grain structure.
  • the upper limit of the amount is 0.2% or less.
  • Mn, Mg, Cu and Zn improve strength, suppress local deformation during molding, and contribute to improvement of moldability after lamination.
  • the content of these elements is limited for the following reasons. It is necessary to do, and it is not always necessary to contain.
  • Mn forms an intermetallic compound together with Fe and Si, but since the intermetallic compound particles containing Mn are small in size, it inhibits the development of crystal grains and promotes the formation of a mixed grain structure. Therefore, the Mn content is preferably 0.1% or less. Since Mg, Cu and Zn are dissolved in the aluminum alloy foil, the recrystallization in the final annealing is delayed, and coarse crystal grains are formed in the final foil. The contents are preferably Mg: 0.1% or less, Cu: 0.1% or less, and Zn: 0.25% or less.
  • Ti and B function to refine the cast structure and make the dispersion form and crystal grain structure of the crystallized product generated during casting uniform.
  • Preferable contents are in the ranges of Ti: 0.01 to 0.1% and B: 0.01 to 0.05%, respectively, and if it exceeds this upper limit, a coarse intermetallic compound is formed. , Delamination during pinholes and molding occurs.
  • the number density of Al—Fe intermetallic compounds having a particle size of 1.0 ⁇ m or more is 50000 pieces / mm 2 or less, and the orientation difference is 5 ° or more by crystal orientation analysis by electron backscattering analysis image method (EBSP).
  • EBSP electron backscattering analysis image method
  • the electrical resistance at 20 ° C. is E [n ⁇ m]
  • the Fe content is C [mass%]
  • the value of (E-26.5) / C is 3.8 or less.
  • Coarse Al-Fe intermetallic compound particles with a particle size of 1.0 ⁇ m or more promote nucleation during recrystallization and make the crystal grains finer. However, if excessively present, pinholes are generated during rolling. Or the number density of Al—Fe-based intermetallic compound particles having a particle size of 1.0 ⁇ m or more is preferably 50,000 particles / mm 2 or less.
  • a boundary having an orientation difference of 5 ° or more in crystal orientation analysis by electron backscattering analysis image method is defined as a grain boundary.
  • EBSP electron backscattering analysis image method
  • the area ratio of crystal grains having a crystal grain size of 20 ⁇ m or more surrounded by the grain boundaries defined by the orientation difference of 5 ° or more is 30% or less.
  • the aluminum alloy having the above composition is melted and ingoted by DC casting, for example. After chamfering the obtained ingot, homogenization is performed in order to remove component segregation of solute atoms in the ingot, spheroidize the crystallized product, and coarsen the Fe-containing intermetallic compound particles.
  • a preferable temperature for the homogenization treatment is 500 to 620 ° C., and a preferable holding time is 1 hour or more. If the homogenization temperature is less than 500 ° C., precipitation of solid solution elements becomes insufficient, and the moldability tends to be lowered. When it exceeds 620 ° C., swelling or partial melting occurs in the ingot surface layer, resulting in a minute defect, which becomes a starting point of breakage during forming. Moreover, if the homogenization treatment time is less than 1 hour, the precipitation of the solid solution element becomes insufficient and the moldability tends to be lowered.
  • the upper limit of the heating time is not particularly defined, but is usually about 24 hours from the viewpoint of production efficiency.
  • Hot rolling is performed by a combination of hot rough rolling of reverse rolling and hot finish rolling that is rolled up in one direction by three or four stands and coiled up following the hot rough rolling.
  • a hot rough rolling of a plurality of passes is performed to a thickness of 20 to 40 mm.
  • the temperature range during hot rough rolling is preferably 350 to 550 ° C. If it is less than 350 ° C., recovery and recrystallization during hot rough rolling are insufficient, and if it exceeds 550 ° C., coarse recrystallized grains are formed during hot rough rolling, both of which are the cause of the mixed grain structure in the final foil. Become.
  • the step of holding for 30 seconds or more until the next rolling is started between rolling passes where the plate thickness is less than 150 mm, that is, the rolling material is kept for 30 seconds or more until the next rolling is started It is preferable that the step of waiting is included once or more during rolling. Even if a step of holding for 30 seconds or more between rolling passes having a plate thickness of 150 mm or more is performed, a uniform structure is not formed to the inside, and a mixed grain structure is easily generated by holding for 30 seconds or more. If the hot rough rolling of a plurality of passes is completed continuously without including a process of holding for 30 seconds or more between rolling passes, recovery during hot rough rolling tends to be insufficient, and the final foil A mixed grain structure is likely to occur.
  • a preferable sheet thickness reduction rate (working degree) of the final pass of hot rough rolling is 40% or more. If the sheet thickness reduction rate is less than 40%, the development of the processed structure becomes insufficient, which causes the mixed grain structure of the final foil.
  • hot finish rolling is performed at a delivery temperature of 200 to 380 ° C. to a thickness of 1.6 to 4.0 mm, followed by multiple passes of cold rolling to a thickness of 10 to 80 ⁇ m. And In this case, annealing may be performed at 250 to 400 ° C. for 1 hour or longer between hot finish rolling and cold rolling passes. After the cold rolling to a predetermined foil thickness, the aluminum alloy foil of the present invention is obtained by performing final annealing at 250 to 400 ° C. for 1 hour or longer.
  • Example 1 Aluminum alloys (A1 to A13) having the composition shown in Table 1 were melted by a conventional method, and ingot was formed by semi-continuous casting. The resulting ingot was homogenized at 550 ° C. for 10 hours in an air furnace. went. After that, hot rough rolling was started at 470 ° C., and during the rolling, the process of holding for 30 seconds or more between rolling passes where the plate thickness became 120 mm was performed once, and the plate thickness reduction rate of the final pass of hot rough rolling The hot rough rolling was performed with a pass schedule in which the final temperature was 350 to 450 ° C.
  • test materials 1 to 13 After hot rough rolling, hot finish rolling was performed so that the outlet temperature was 210 to 250 ° C. to obtain a 2.5 mm plate. Next, a foil having a thickness of 40 ⁇ m was formed by cold rolling, and final annealing was performed at 350 ° C. for 12 hours. Using the obtained aluminum alloy foil as a test material (test materials 1 to 13), the characteristics were evaluated by the following methods. The results are shown in Table 1.
  • Number density of Al—Fe-based intermetallic compound (pieces / mm 2 ): After a test material is mirror-finished by paper and buffing, it is 1000 at an accelerating voltage of 10 kV using a scanning electron microscope equipped with a field emission electron gun. The photograph observed at a magnification was subjected to image analysis and measured. For the analysis, photographs with 10 or more fields of view are used, and the total area of the image analysis is 6 ⁇ 10 4 ⁇ m 2 or more.
  • Crystal grain size The test material was mirror-finished by paper and buffing, and then an electron backscattering analysis image at an acceleration voltage of 10 kV and a measurement step size of 0.1 ⁇ m using a scanning electron microscope equipped with a field emission electron gun.
  • the crystal orientation analysis by the method (EBSP) is performed, and the boundary having an orientation difference of 5 ° or more is defined as the crystal grain boundary based on the analysis result, the crystal grain size is obtained for the crystal grain surrounded by the crystal grain boundary, D was calculated. Further, the area ratio of crystal grains having an equivalent circle diameter exceeding 20 ⁇ m was measured.
  • Comparative Example 1 An aluminum alloy foil (A14 to A22) having the composition shown in Table 2 was melted by a conventional method, and ingot forming, homogenizing treatment, hot rolling, cold rolling, and final annealing were performed in the same manner as in Example 1 to produce an aluminum alloy foil This was used as a test material (test materials 14 to 22), and the characteristics were evaluated by the same method as in Example 1. The results are shown in Table 2. In Table 2, those outside the conditions of the present invention are underlined.
  • test materials 1 to 13 according to the present invention showed good moldability as a laminate foil.
  • test material 14 since the test material 14 had a low Fe content, the crystal grains became coarse and fracture occurred during molding. Since the test material 15 had a large Fe content, intermetallic compound particles of 1 ⁇ m or more increased and fracture occurred during molding. Since the test material 16 had a large Si content, a fine intermetallic compound was formed, resulting in a mixed grain structure and fracture during molding. Since the test material 17 had a high Mn content, a fine intermetallic compound was formed, resulting in a mixed grain structure and fracture during molding.
  • test material 18, the test material 19 and the test material 20 increased in solid solution amounts of Mg, Cu and Zn, respectively, inhibited recovery and recrystallization during hot rolling, became a mixed grain structure, and fractured during molding. . Since the test material 21 and the test material 22 each had a large content of Ti and B, a coarse intermetallic compound was formed, and fracture occurred during molding.
  • Example 2 The alloy A3 in Table 1 was melted by a conventional method, ingot-formed by semi-continuous casting, and the obtained ingot was subjected to hot rough rolling under the production conditions shown in Table 3, and then the outlet temperature 210 to 250 Hot finish rolling was carried out to a thickness of 2.5 mm so as to be at 0 ° C., and then an aluminum alloy foil having a thickness of 40 ⁇ m was formed by cold rolling, followed by a final annealing at 350 ° C. for 12 hours.
  • Table 3 with regard to holding between rolling passes in hot rough rolling, the holding pass for 40 seconds between the rolling passes with a plate thickness of 120 mm (Note 1) is the rolling pass with a plate thickness of 120 mm.
  • Comparative Example 2 The alloy A3 in Table 1 was melted by a conventional method, ingot-formed by semi-continuous casting, and the resulting ingot was subjected to hot rough rolling under the production conditions shown in Table 4, and then the outlet temperature 210-250 Hot finish rolling was carried out to a thickness of 2.5 mm so as to be at 0 ° C., and then an aluminum alloy foil having a thickness of 40 ⁇ m was formed by cold rolling, followed by a final annealing at 350 ° C. for 12 hours. Using the obtained aluminum alloy foil as a test material (test materials 29 to 36), the characteristics were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4. The test material 36 was held for 40 seconds between rolling passes with a plate thickness of 200 mm in hot rough rolling (Note 4). In Table 4, those outside the conditions of the present invention are underlined.
  • the test material 29 has a low homogenization temperature, and therefore precipitation does not proceed sufficiently, and the value of (E-26.5) / C is outside the scope of the present invention.
  • the test material 30 had a high homogenization temperature, and blisters were generated on the ingot surface layer.
  • the test material 31 had a short homogenization treatment time, precipitation did not proceed sufficiently, the value of (E-26.5) / C was outside the range of the present invention, and the moldability deteriorated.
  • the test material 32 had a low temperature of the hot rough rolling and had a mixed grain structure, and the formability was lowered.
  • the test material 33 had a high hot rough rolling temperature and a mixed grain structure, and the formability decreased. Since the test material 34 does not include the step of holding for 30 seconds or more between rolling passes during hot rough rolling, it became a mixed grain structure, and the formability deteriorated.
  • the test material 35 had a low degree of processing in the final pass of the hot rough rolling and had a mixed grain structure, and the formability decreased. In the hot rough rolling, the test material 36 was held between rolling passes at a stage with a plate thickness of 200 mm, which was not a uniform processed structure up to the inside, so that it became a mixed grain structure, and the formability deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Laminated Bodies (AREA)

Abstract

 特にラミネート箔にした状態で最も良好な成形性を達成することができるアルミニウム合金箔を提供するものであり、Fe:0.6~1.6%、Si:0.02~0.2%を含有し、Ti:0.01~0.1%、B:0.01~0.05%の1種または2種を含有し、Mnを0.1%以下、Mgを0.1%以下、Cuを0.1%以下、Znを0.25%以下に制限し、残部Alおよび不可避的不純物からなり、粒径1.0μm以上のAl-Fe系金属間化合物の数密度が50000個/mm以下、EBSPによる結晶方位解析で5°以上の方位差を有する境界を結晶粒界と規定し、該結晶粒界に囲まれる結晶粒について、結晶粒径の平均値Dが12μm以下であり、且つ、20μmを超える結晶粒径を有する結晶粒の面積率が30%以下、20℃における電気抵抗をE[nΩm]、Fe含有量をC[mass%]としたとき、(E-26.5)/Cの値が3.8以下であることを特徴とする。

Description

ラミネート後の成形性に優れたアルミニウム合金箔とその製造方法、および該アルミニウム合金箔を用いたラミネート箔
 本発明は、食品、医薬品、電子部品等に利用されるラミネート箔に用いられる、ラミネート後の成形性に優れたアルミニウム合金箔とその製造方法、および該アルミニウム合金箔を用いたラミネート箔に関する。
 従来、成形加工用のアルミニウム合金として、1000系アルミニウム合金、3000系アルミニウム合金、5000系アルミニウム合金、6000系アルミニウム合金、8000系アルミニウム合金が使用されてきた。その中でも、圧延性に優れた8000系アルミニウム合金が成形加工用のアルミニウム合金箔用として広く用いられ、JIS H4160にA8079合金やA8021合金、Al-Fe系のアルミニウム合金が規定されている。
 アルミニウム合金箔は、アルミニウム合金の鋳塊を均質化処理後、熱間圧延、冷間圧延を施すことにより製造され、必要に応じて冷間圧延途中の中間焼鈍や、冷間圧延後の最終焼鈍が行われる。このように作製されたアルミニウム合金箔は、例えば両面に熱可塑性樹脂をラミネートした状態で成形され、医薬品や電池のパッケージなど、包装材として用いられる。これら包装用ラミネート箔については、高成形性に対する要求が年々高まっており、難加工形状に成形されても破断やピンホールが発生しないことが求められている。
 ラミネート箔の成形性を向上させるために、積層フィルムおよびアルミニウム合金箔の構成を検討し良好な冷間成形性を得るための条件が報告されているが、これらは最終製品としてのラミネート箔としての成形性を求めたものであり、ラミネート箔を構成するアルミニウム合金箔がラミネート後の成形性に与える影響については十分に検討されていない。
 また、製造工程により材料組織を調整して、成形加工性を向上させた8000系合金も提案されている。例えば、固溶元素量を調整することにより箔圧延性を高め、ピンホールを少なくすること、金属間化合物粒子の分散状態を制御することにより、優れた成形加工性を達成できることなどが提案されているが、これらの提案は、主に箔圧延性の点から素箔の成形性向上を追及したものであり、ラミネート箔の状態でのプレス成形性を向上させるものではない。
 また、結晶方位を制御することにより、ラミネート箔の成形性を向上させるための好適なAl-Fe系アルミニウム合金箔が得られることも提案されているが、Al-Fe系合金において、ラミネート箔の成形性に重要な影響を及ぼす金属間化合物粒子についての検討が十分になされているとは言えず、ラミネート後における成形性は必ずしも十分ではない。
特開昭63-62729号公報 特許第3808276号公報 特許第3529269号公報 特許第3787695号公報 特開2012-52158号公報
 本発明は、上記従来の問題点を解決するために、ラミネート箔にした状態で成形性向上を達成できるアルミニウム合金箔を得ることを目的として試験、検討を重ねた結果としてなされたものであり、その目的は、素箔の状態でも高い成形性を示すとともに、特にラミネート箔にした状態で最も良好な成形性を達成することができる、ラミネート後の成形性に優れたアルミニウム合金箔および該アルミニウム合金箔を用いたラミネート箔を提供することにある。
 上記の目的を達成するための請求項1によるラミネート後の成形性に優れたアルミニウム合金箔は、Fe:0.6~1.6%(mass%、以下同じ)、Si:0.02~0.2%を含有し、Ti:0.01~0.1%、B:0.01~0.05%の1種または2種を含有し、Mnを0.1%以下、Mgを0.1%以下、Cuを0.1%以下、Znを0.25%以下に制限し、残部Alおよび不可避的不純物からなり、粒径(円相当径、以下同じ)1.0μm以上のAl-Fe系金属間化合物の数密度が50000個/mm以下、電子後方散乱解析像法(EBSP)による結晶方位解析で5°以上の方位差を有する境界を結晶粒界と規定し、該結晶粒界に囲まれる結晶粒について、結晶粒径(円相当径、以下同じ)の平均値Dが12μm以下であり、且つ、20μmを超える結晶粒径を有する結晶粒の面積率が30%以下、20℃における電気抵抗をE[nΩm]、Fe含有量をC[mass%]としたとき、(E-26.5)/Cの値が3.8以下であることを特徴とする。
 請求項2によるラミネート後の成形性に優れたアルミニウム合金箔の製造方法は、請求項1記載のアルミニウム合金箔を製造する方法であって、請求項1記載の組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊を面削した後、500~620℃の温度で1時間以上保持する均質化処理を行い、続いて熱間粗圧延と熱間仕上圧延からなる熱間圧延を行い、熱間粗圧延は、熱間粗圧延中の温度範囲を350~550℃とし、熱間粗圧延の圧延パス中、板厚が150mm未満となった圧延パス間で次の圧延まで30秒以上保持する工程を1回以上行い、熱間粗圧延の最終パスの板厚減少率を40%以上とし、熱間粗圧延後、熱間仕上圧延、冷間圧延を行い、最終焼鈍処理を施すことを特徴とする。
 請求項3によるラミネート箔は、請求項1に記載のアルミニウム合金箔の両面に熱可塑性樹脂からなる延伸フィルムをそれぞれ1層または2層以上張り合わせたことを特徴とする。
 本発明によれば、特にラミネート箔にした状態で最も良好な成形性を達成することができる、ラミネート後の成形性に優れたアルミニウム合金箔とその製造方法、および該アルミニウム合金箔を用いたラミネート箔が提供される。
実施例で行われるプレス成形において用いられるポンチの形状を示す図である。
 本発明のアルミニウム合金箔の合金成分の意義および限定理由について説明する。
Fe:
 Feは本合金系における主要な合金元素であり、金属間化合物として存在して、再結晶時の核生成を促し、結晶粒を微細にするよう機能する。Feの好ましい含有量は0.6~1.6%の範囲であり、0.6%未満では、結晶粒を微細にするための金属間化合物が少なくなって微細粒が得られず、1.6%を超えると、過多に形成した金属間化合物がピンホールや成形加工中のラミネート剥離の起点となる。Feのより好ましい含有範囲は0.75~1.55%、さらに好ましい含有範囲は0.9~1.5%である。
Si:
 SiはFeと共に金属間化合物を形成するが、Mnが含有された場合、金属間化合物粒子の粒径が小さくなって結晶粒の発達を阻害し、混粒組織の形成を促すので、好ましいSi含有量の上限は0.2%以下とする。Si量に特に下限は定めないが、Si量が少なくなると、高純度地金を使用することとなり、地金コストが高くなるため、通常は0.02%以上とするのが好ましい。
 本発明において、Mn、Mg、CuおよびZnは強度を向上させ、成形時の局部変形を抑制し、ラミネート後の成形性改善に寄与するが、これらの元素は以下の理由によりその含有量を制限することが必要であり、必ずしも含有させる必要はない。
 Mnは、FeおよびSiと共に金属間化合物を形成するが、Mnが含有された金属間化合物粒子はサイズが小さいため、結晶粒の発達を阻害して混粒組織の形成を促す。そのためMnの含有量は0.1%以下とするのが好ましい。Mg、CuおよびZnは、アルミニウム合金箔に固溶して、最終焼鈍における再結晶を遅延させ、最終箔において粗大な結晶粒を生じさせ、成形性を低下させる原因となるため、これらの元素の含有量は、Mg:0.1%以下、Cu:0.1%以下、Zn:0.25%以下とするのが好ましい。
 TiおよびBは鋳造組織を微細化して、鋳造時に生成する晶出物の分散形態および結晶粒組織を均一にするよう機能する。好ましい含有量は、それぞれTi:0.01~0.1%、B:0.01~0.05%の範囲であり、この上限を超えて含有されると、粗大な金属間化合物が生成し、ピンホールや成形加工中のラミネート剥離が発生する。
 本発明のアルミニウム合金箔における材料組織の限定理由について説明する。本発明においては、粒径1.0μm以上のAl-Fe系金属間化合物の数密度が50000個/mm以下、電子後方散乱解析像法(EBSP)による結晶方位解析で5°以上の方位差を有する境界を結晶粒界と規定し、該結晶粒界に囲まれる結晶粒について、結晶粒径の平均値Dが12μm以下であり、且つ、20μmを超える結晶粒径を有する結晶粒の面積率が30%以下、20℃における電気抵抗をE[nΩm]、Fe含有量をC[mass%]としたとき、(E-26.5)/Cの値が3.8以下であることを特徴とする。
 粒径1.0μm以上の粗大なAl-Fe系金属間化合物粒子は、再結晶時の核生成を促し、結晶粒を微細にする働きがあるが、過多に存在すると、圧延時のピンホール発生や成形加工中のラミネート剥離の原因となるので、粒径が1.0μm以上のAl-Fe系金属間化合物粒子の数密度は50000個/mm以下とするのが好ましい。
 結晶粒が粗大であると、成形加工中に微視的な肌荒れが発生し、破断の起点となる。本発明においては、電界放射型電子銃をそなえた走査型電子顕微鏡を用いて、電子後方散乱解析像法(EBSP)による結晶方位解析で5°以上の方位差を有する境界を結晶粒界と規定し、該結晶粒界に囲まれる結晶粒について、結晶粒径の平均値Dが12μm以下であることが望ましい。
 また、結晶粒の平均粒径が小さくても、粗大な結晶粒が混在する組織(混粒組織)である場合、粗大な結晶粒に変形が集中し、破断の起点になる。したがって、上記の方位差5°以上で規定される粒界に囲まれる結晶粒径20μm以上の結晶粒の面積率が30%以下であることが好ましい。
 Feは金属間化合物として存在したとき結晶粒の微細化をもたらすが、固溶状態では成形加工中の加工硬化を促し、ネッキングによる破断を引き起こす。したがって、添加したFe量に対し、固溶Fe原子が少ないほうがよく、20℃における電気抵抗をE[nΩm]、Fe添加量をC[mass%]としたとき、(E-26.5)/Cの値が3.8以下であることが好ましい。
 次いで、本発明のアルミニウム合金箔の製造方法について説明すると、前記の組成を有するアルミニウム合金を溶解し、例えばDC鋳造によって造塊する。得られた鋳塊を面削した後、鋳塊の溶質原子の成分偏析を取り除き、晶出物を球状化させるとともに、Fe含有金属間化合物粒子を粗大化させるため、均質化処理を行う。
 均質化処理の好ましい温度は500~620℃であり、好ましい保持時間は1時間以上である。均質化処理温度が500℃未満では、固溶元素の析出が不十分となり、成形性が低下し易い。620℃を超えると、鋳塊表層に膨れや部分的な溶融が発生して微小欠陥となり、成形加工中の破断の起点となる。また、均質化処理時間が1時間未満では、固溶元素の析出が不十分となり、成形性が低下し易い。加熱時間の上限は特に定めないが、生産効率の点から、通常は24時間程度である。
 続いて熱間圧延を行う。熱間圧延は、リバース圧延の熱間粗圧延と、熱間粗圧延に引続き連続して3スタンドあるいは4スタンドにより一方向に圧延してコイルアップする熱間仕上圧延の組み合わせにより行う。熱間粗圧延においては、複数パスの熱間粗圧延を行って厚さ20~40mmとする。熱間粗圧延中の温度範囲は350~550℃とするのが好ましい。350℃未満では熱間粗圧延中の回復および再結晶が不十分となり、550℃を超えると熱間粗圧延中に粗大な再結晶粒が形成し、いずれも最終箔における混粒組織の原因となる。
 また、熱間粗圧延においては、板厚が150mm未満となった圧延パス間で、次の圧延を開始するまで30秒以上保持する工程、すなわち次の圧延を開始するまで圧延材を30秒以上待機させる工程を圧延中に1回以上含むことが好ましい。板厚が150mm以上の圧延パス間で30秒以上保持する工程を行っても、内部まで均一な組織とならず、30秒以上保持することにより逆に混粒組織が生じ易くなる。圧延パス間で30秒以上保持する工程を1回も含まず、連続して複数パスの熱間粗圧延を終了した場合には、熱間粗圧延中の回復が不十分となり易く、最終箔に混粒組織が生じ易くなる。熱間粗圧延の最終パスの好ましい板厚減少率(加工度)は40%以上である。板厚減少率が40%未満では、加工組織の発達が不十分となり、最終箔の混粒組織の原因となる。
 熱間粗圧延を終了後、出側温度を200~380℃とする熱間仕上圧延を行って厚さ1.6~4.0mmとし、続いて複数パスの冷間圧延により厚さ10~80μmとする。この場合、熱間仕上圧延後から冷間圧延のパス間に250~400℃で1時間以上の焼鈍を行ってもよい。所定の箔厚まで冷間圧延した後、250~400℃で1時間以上の最終焼鈍を行うことにより、本発明のアルミニウム合金箔が得られる。
 以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は、本発明の好ましい一実施形態を説明するためのものであり、本発明はこれらに限定されない。
実施例1
 表1に示す組成を有するアルミニウム合金(A1~A13)を常法により溶解し、半連続鋳造により造塊して、得られた鋳塊について、空気炉中で550℃で10hの均質化処理を行った。その後、470℃より熱間粗圧延を開始し、圧延途中、板厚が120mmとなった圧延パス間で30秒以上保持する工程を1回行い、熱間粗圧延の最終パスの板厚減少率を50%とし、終了温度が350~450℃となるパススケジュールで熱間粗圧延を行った。
 熱間粗圧延後、出側温度210~250℃となるよう熱間仕上圧延を行い、2.5mmの板材とした。次いで、冷間圧延により厚さ40μmの箔とし、350℃で12hの最終焼鈍を行った。得られたアルミニウム合金箔を試験材(試験材1~13)として、以下に示す方法により特性を評価した。結果を表1に示す。
 Al-Fe系金属間化合物の数密度(個/mm):試験材をペーパーおよびバフ研磨により鏡面仕上した後、電界放射型電子銃を備えた走査型電子顕微鏡により、加速電圧10kVにて1000倍にて観察した写真を画像解析して測定した。解析には10視野以上の写真を用い、画像解析した総面積は6×10μm以上である。
 (E-26.5)/C値の測定:試験材について、JIS H0505に基づき、20℃にて電気抵抗を測定し、(E-26.5)/C値を算出した。
 結晶粒径:試験材について、ペーパーおよびバフ研磨により鏡面仕上した後、電界放射型電子銃を備えた走査型電子顕微鏡により、加速電圧10kV、測定ステップサイズ0.1μmにて、電子後方散乱解析像法(EBSP)による結晶方位解析を行い、解析結果より、5°以上の方位差を有する境界を結晶粒界と規定し、該結晶粒界に囲まれる結晶粒について結晶粒径を求め、平均値Dを算出した。また、円相当径が20μmを超える結晶粒の面積率を測定した。
 成形性:試験材の両面にラミネート加工を施し、ナイロン25μm/アルミニウム合金箔40μm/ポリプロピレン50μmのラミネート箔を作製した。このラミネート箔のナイロン側を外面として、図1に示す形状のポンチ(幅50mm×奥行き30mm、R1.0mm)を用いて成形深さ5.0mmのプレス成形を行い、成形可否により成形性を評価した。なお、プレスは成形速度を1000mm/minとして無潤滑で行い、1条件につきn=10の試験を行って、全数が不具合無く成形できたものを合格(○)と評価し、破断を生じたものを不合格(×)と評価した。
比較例1
 表2に示す組成を有するアルミニウム合金(A14~A22)を常法により溶解し、実施例1と同様に造塊、均質化処理、熱間圧延、冷間圧延、最終焼鈍を行ってアルミニウム合金箔を作製し、これを試験材(試験材14~22)として、実施例1と同じ方法により特性を評価した。結果を表2に示す。なお、表2において、本発明の条件を外れたものには下線を付した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1にみられるように、本発明に従う試験材1~13はいずれも、ラミネート箔として良好な成形性を示した。
 これに対して、表2に示すように、試験材14はFe含有量が少ないため、結晶粒が粗大となり成形時に破断が生じた。試験材15はFe含有量が多いため、1μm以上の金属間化合物粒子が増加し成形時に破断が生じた。試験材16はSi含有量が多いため、微細な金属間化合物が形成し、混粒組織となって成形時に破断が生じた。試験材17はMnの含有量が多いため、微細な金属間化合物が形成し、混粒組織となって成形時に破断が生じた。
 試験材18、試験材19および試験材20は、それぞれMg、CuおよびZnの固溶量が増し、熱延中の回復および再結晶を阻害し、混粒組織となって成形時に破断が生じた。試験材21および試験材22は、それぞれTiおよびBの含有量が多いため、粗大な金属間化合物が形成し成形時に破断が生じた。
実施例2
 表1の合金A3を常法により溶解し、半連続鋳造により造塊して、得られた鋳塊について、表3に示す製造条件で熱間粗圧延まで実施した後、出側温度210~250℃となるよう厚さ2.5mmまで熱間仕上圧延を行い、次いで、冷間圧延により厚さ40μmのアルミニウム合金箔とし、350℃で12hの最終焼鈍を行った。なお、表3において、熱間粗圧延における圧延パス間の保持については、板厚が120mmとなった圧延パス間で40秒保持したものは(注1)、板厚が120mmとなった圧延パス間で60秒保持したものは(注2)、板厚が120mmおよび100mmとなった圧延パス間でそれぞれ40秒保持したものは(注3)で示した。得られたアルミニウム合金箔を試験材(試験材23~28)として、実施例1と同様の方法で特性を評価した。評価結果を表3に示す。
比較例2
 表1の合金A3を常法により溶解し、半連続鋳造により造塊して、得られた鋳塊について、表4に示す製造条件で熱間粗圧延まで実施した後、出側温度210~250℃となるよう厚さ2.5mmまで熱間仕上圧延を行い、次いで、冷間圧延により厚さ40μmのアルミニウム合金箔とし、350℃で12hの最終焼鈍を行った。得られたアルミニウム合金箔を試験材(試験材29~36)として、実施例1と同様の方法で特性を評価した。評価結果を表4に示す。試験材36については、熱間粗圧延において、板厚が200mmとなった圧延パス間で40秒保持した(注4)。なお、表4において、本発明の条件を外れたものには下線を付した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3にみられるように、本発明に従う試験材23~28はいずれも、ラミネート箔として良好な成形性を示した。
 これに対して、表4に示すように、試験材29は均質化処理温度が低く、したがって析出が十分に進行せず、(E-26.5)/Cの値が本発明の範囲外となり、成形性が低下した。試験材30は均質化処理温度が高く、鋳塊表層にフクレを生じ、その結果、箔圧延時に箔切れを起こした。試験材31は均質化処理時間が短く、析出が十分に進行せず、(E-26.5)/Cの値が本発明の範囲外となり、成形性が低下した。
 試験材32は熱間粗圧延の温度が低く混粒組織となり、成形性が低下した。試験材33は熱間粗圧延の温度が高く混粒組織となり、成形性が低下した。試験材34は熱間粗圧延中の圧延パス間に30秒以上保持する工程を含まないため混粒組織となり、成形性が低下した。試験材35は熱間粗圧延の最終パスの加工度が低く混粒組織となり、成形性が低下した。試験材36は、熱間粗圧延において、内部まで均一な加工組織となっていない板厚200mmの段階の圧延パス間で保持を行ったため混粒組織となり、成形性が低下した。

Claims (3)

  1. Fe:0.6~1.6%(mass%、以下同じ)、Si:0.02~0.2%を含有し、Ti:0.01~0.1%、B:0.01~0.05%の1種または2種を含有し、Mnを0.1%以下、Mgを0.1%以下、Cuを0.1%以下、Znを0.25%以下に制限し、残部Alおよび不可避的不純物からなり、粒径(円相当径、以下同じ)1.0μm以上のAl-Fe系金属間化合物の数密度が50000個/mm以下、電子後方散乱解析像法(EBSP)による結晶方位解析で5°以上の方位差を有する境界を結晶粒界と規定し、該結晶粒界に囲まれる結晶粒について、結晶粒径(円相当径、以下同じ)の平均値Dが12μm以下であり、且つ、20μmを超える結晶粒径を有する結晶粒の面積率が30%以下、20℃における電気抵抗をE[nΩm]、Fe含有量をC[mass%]としたとき、(E-26.5)/Cの値が3.8以下であることを特徴とするラミネート後の成形性に優れたアルミニウム合金箔。
  2. 請求項1記載のアルミニウム合金箔を製造する方法であって、請求項1記載の組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊を面削した後、500~620℃の温度で1時間以上保持する均質化処理を行い、続いて熱間粗圧延と熱間仕上圧延からなる熱間圧延を行い、熱間粗圧延は、熱間粗圧延中の温度範囲を350~550℃とし、熱間粗圧延の圧延パス中、板厚が150mm未満となった圧延パス間で次の圧延まで30秒以上保持する工程を1回以上行い、熱間粗圧延の最終パスの板厚減少率を40%以上とし、熱間粗圧延後、熱間仕上圧延、冷間圧延を行い、最終焼鈍処理を施すことを特徴とするラミネート後の成形性に優れたアルミニウム合金箔の製造方法。
  3. 請求項1に記載のアルミニウム合金箔の両面に熱可塑性樹脂からなる延伸フィルムをそれぞれ1層または2層以上張り合わせたことを特徴とするラミネート箔。
PCT/JP2013/067384 2012-08-30 2013-06-25 ラミネート後の成形性に優れたアルミニウム合金箔とその製造方法、および該アルミニウム合金箔を用いたラミネート箔 WO2014034240A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157005129A KR20150046067A (ko) 2012-08-30 2013-06-25 라미네이트 후의 성형성이 우수한 알루미늄 합금박과 그 제조 방법, 및 상기 알루미늄 합금박을 이용한 라미네이트박
CN201380041988.XA CN104641011B (zh) 2012-08-30 2013-06-25 层压后的成形性优异的铝合金箔和其制造方法、及采用该铝合金箔的层压箔

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-189605 2012-08-30
JP2012189605A JP5897430B2 (ja) 2012-08-30 2012-08-30 ラミネート後の成形性に優れたアルミニウム合金箔とその製造方法、および該アルミニウム合金箔を用いたラミネート箔

Publications (1)

Publication Number Publication Date
WO2014034240A1 true WO2014034240A1 (ja) 2014-03-06

Family

ID=50183063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067384 WO2014034240A1 (ja) 2012-08-30 2013-06-25 ラミネート後の成形性に優れたアルミニウム合金箔とその製造方法、および該アルミニウム合金箔を用いたラミネート箔

Country Status (5)

Country Link
JP (1) JP5897430B2 (ja)
KR (1) KR20150046067A (ja)
CN (1) CN104641011B (ja)
TW (1) TWI558551B (ja)
WO (1) WO2014034240A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115376A (ja) * 2017-01-19 2018-07-26 株式会社神戸製鋼所 成形用アルミニウム合金軟質箔
KR20200027918A (ko) 2017-07-06 2020-03-13 미츠비시 알루미늄 컴파니 리미티드 알루미늄 합금박 및 알루미늄 합금박의 제조 방법
KR20200093436A (ko) 2017-07-06 2020-08-05 미츠비시 알루미늄 컴파니 리미티드 알루미늄 합금박 및 알루미늄 합금박의 제조 방법
CN111893349A (zh) * 2014-07-09 2020-11-06 海德鲁铝业钢材有限公司 铝合金或该合金组成的扁铝制品应用于铝-塑料复合构件
KR20210060589A (ko) 2018-12-26 2021-05-26 미츠비시 알루미늄 컴파니 리미티드 알루미늄 합금박 및 알루미늄 합금박의 제조 방법
WO2022138620A1 (ja) 2020-12-25 2022-06-30 Maアルミニウム株式会社 アルミニウム合金箔
US11827956B2 (en) 2019-03-18 2023-11-28 Toyo Aluminium Kabushiki Kaisha Aluminum alloy foil, laminate, method of producing aluminum alloy foil, and method of producing laminate
EP4083245A4 (en) * 2019-12-25 2024-01-03 Ma Aluminum Corporation ALUMINUM ALLOY FOIL
WO2024185515A1 (ja) * 2023-03-03 2024-09-12 東洋アルミニウム株式会社 積層体およびそれを用いた包装体

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6396067B2 (ja) * 2014-04-10 2018-09-26 株式会社Uacj バスバー用アルミニウム合金板及びその製造方法
JP6496490B2 (ja) * 2014-04-16 2019-04-03 三菱アルミニウム株式会社 アルミニウム合金軟質箔およびその製造方法
US10553327B2 (en) 2014-05-26 2020-02-04 Furukawa Electric Co., Ltd. Aluminum alloy conductor wire, aluminum alloy stranded wire, coated wire, wire harness and method of manufacturing aluminum alloy conductor wire
WO2015182624A1 (ja) * 2014-05-26 2015-12-03 古河電気工業株式会社 アルミニウム合金導体線、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体線の製造方法
JP6592388B2 (ja) * 2016-03-11 2019-10-16 株式会社神戸製鋼所 アルミニウム合金軟質箔
CN106191544B (zh) * 2016-08-10 2018-08-28 河南明泰铝业股份有限公司 一种锂电池用8021软包铝箔及其生产方法
CN110867534A (zh) * 2019-10-09 2020-03-06 浙江华正能源材料有限公司 一种铝塑复合膜
CN215955369U (zh) 2020-06-09 2022-03-04 株式会社Lg化学 袋膜、袋型电池壳体、和袋型二次电池
JPWO2022030620A1 (ja) * 2020-08-06 2022-02-10
CN112251652B (zh) * 2020-10-22 2022-05-06 厦门厦顺铝箔有限公司 一种高延伸率锂离子电池用铝箔的生产方法
EP4253583B1 (en) 2021-04-22 2024-10-09 MA Aluminum Corporation Aluminum alloy foil
CN113927973A (zh) * 2021-09-30 2022-01-14 江西睿捷新材料科技有限公司 一种高冲深电池装置用外包装材料
CN114164361B (zh) * 2021-12-09 2022-10-25 厦门厦顺铝箔有限公司 一种高延展高深冲动力铝塑膜用铝箔的生产工艺
TWI830452B (zh) 2022-10-21 2024-01-21 財團法人工業技術研究院 鋁合金材料與鋁合金物件及其形成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161142A (ja) * 1984-02-01 1985-08-22 三菱アルミニウム株式会社 容器成形用積層体
JPS6411002A (en) * 1987-07-03 1989-01-13 Furukawa Aluminium Manufacture of aluminum foil base metal
JPH01279725A (ja) * 1988-05-06 1989-11-10 Kobe Steel Ltd 成形性に優れたアルミニウム合金箔及びその製造方法
JP2004027353A (ja) * 2002-05-07 2004-01-29 Nippon Foil Mfg Co Ltd アルミニウム合金箔及びその製造方法並びにアルミニウム積層体
JP2005163077A (ja) * 2003-12-01 2005-06-23 Mitsubishi Alum Co Ltd 包装材用高成形性アルミニウム箔及びその製造方法
JP2006312768A (ja) * 2005-05-09 2006-11-16 Sumitomo Light Metal Ind Ltd 耐食性と強度に優れたアルミニウム合金箔およびその製造方法
JP2012021205A (ja) * 2010-07-16 2012-02-02 Kobe Steel Ltd 電池集電体用アルミニウム硬質箔

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161142A (ja) * 1984-02-01 1985-08-22 三菱アルミニウム株式会社 容器成形用積層体
JPS6411002A (en) * 1987-07-03 1989-01-13 Furukawa Aluminium Manufacture of aluminum foil base metal
JPH01279725A (ja) * 1988-05-06 1989-11-10 Kobe Steel Ltd 成形性に優れたアルミニウム合金箔及びその製造方法
JP2004027353A (ja) * 2002-05-07 2004-01-29 Nippon Foil Mfg Co Ltd アルミニウム合金箔及びその製造方法並びにアルミニウム積層体
JP2005163077A (ja) * 2003-12-01 2005-06-23 Mitsubishi Alum Co Ltd 包装材用高成形性アルミニウム箔及びその製造方法
JP2006312768A (ja) * 2005-05-09 2006-11-16 Sumitomo Light Metal Ind Ltd 耐食性と強度に優れたアルミニウム合金箔およびその製造方法
JP2012021205A (ja) * 2010-07-16 2012-02-02 Kobe Steel Ltd 電池集電体用アルミニウム硬質箔

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893349A (zh) * 2014-07-09 2020-11-06 海德鲁铝业钢材有限公司 铝合金或该合金组成的扁铝制品应用于铝-塑料复合构件
JP2018115376A (ja) * 2017-01-19 2018-07-26 株式会社神戸製鋼所 成形用アルミニウム合金軟質箔
KR20200027918A (ko) 2017-07-06 2020-03-13 미츠비시 알루미늄 컴파니 리미티드 알루미늄 합금박 및 알루미늄 합금박의 제조 방법
KR20200093436A (ko) 2017-07-06 2020-08-05 미츠비시 알루미늄 컴파니 리미티드 알루미늄 합금박 및 알루미늄 합금박의 제조 방법
US11268171B2 (en) 2017-07-06 2022-03-08 Mitsubishi Aluminum Co., Ltd. Aluminum alloy foil, and method for producing aluminum alloy foil
US11566311B2 (en) 2017-07-06 2023-01-31 Mitsubishi Aluminum Co., Ltd. Aluminum alloy foil, and method for producing aluminum alloy foil
KR20210060589A (ko) 2018-12-26 2021-05-26 미츠비시 알루미늄 컴파니 리미티드 알루미늄 합금박 및 알루미늄 합금박의 제조 방법
US11827956B2 (en) 2019-03-18 2023-11-28 Toyo Aluminium Kabushiki Kaisha Aluminum alloy foil, laminate, method of producing aluminum alloy foil, and method of producing laminate
EP4083245A4 (en) * 2019-12-25 2024-01-03 Ma Aluminum Corporation ALUMINUM ALLOY FOIL
WO2022138620A1 (ja) 2020-12-25 2022-06-30 Maアルミニウム株式会社 アルミニウム合金箔
US12031198B2 (en) 2020-12-25 2024-07-09 Ma Aluminum Corporation Aluminum alloy foil
WO2024185515A1 (ja) * 2023-03-03 2024-09-12 東洋アルミニウム株式会社 積層体およびそれを用いた包装体

Also Published As

Publication number Publication date
CN104641011A (zh) 2015-05-20
JP5897430B2 (ja) 2016-03-30
JP2014047372A (ja) 2014-03-17
KR20150046067A (ko) 2015-04-29
CN104641011B (zh) 2017-06-23
TW201418004A (zh) 2014-05-16
TWI558551B (zh) 2016-11-21

Similar Documents

Publication Publication Date Title
JP5897430B2 (ja) ラミネート後の成形性に優れたアルミニウム合金箔とその製造方法、および該アルミニウム合金箔を用いたラミネート箔
JP6936293B2 (ja) アルミニウム合金箔
JPWO2019111970A1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP6461249B2 (ja) アルミニウム合金箔およびアルミニウム合金箔の製造方法
KR20120112167A (ko) 성형 가공용 알루미늄 합금판 및 그의 제조방법
JP5870791B2 (ja) プレス成形性と形状凍結性に優れたアルミニウム合金板およびその製造方法
JP6176393B2 (ja) 曲げ加工性と形状凍結性に優れた高強度アルミニウム合金板
JP2008127656A (ja) 電池ケース用アルミニウム合金板およびその製造方法
KR20150070201A (ko) 알루미늄 합금박
JP2008223075A (ja) 省熱延型アルミニウム合金板およびその製造方法
JP5568031B2 (ja) ボトル缶用アルミニウム合金冷延板
JP7274585B2 (ja) マグネシウム合金板材およびその製造方法
JP2018168449A (ja) アルミニウム合金軟質箔およびその製造方法並びに二次電池用外装材
JP6719219B2 (ja) 成形性に優れる高強度アルミニウム合金板及びその製造方法
JP2018115376A (ja) 成形用アルミニウム合金軟質箔
WO2020039792A1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
WO2019124530A1 (ja) 電池集電体用アルミニウム合金箔およびその製造方法
JP6466316B2 (ja) アルミニウム合金硬質箔及びその製造方法
WO2022080233A1 (ja) アルミニウム合金箔及びその製造方法
JP2008062255A (ja) キャビティ発生の少ないAl−Mg−Si系アルミニウム合金板の超塑性成形方法およびAl−Mg−Si系アルミニウム合金成形板
JP6679462B2 (ja) 電池集電体用アルミニウム合金箔およびその製造方法
JP6902821B2 (ja) アルミニウム合金箔およびアルミニウム合金箔の製造方法
WO2016063876A1 (ja) 缶蓋用アルミニウム合金板
JP2020050890A (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP2016079501A (ja) 缶蓋用アルミニウム合金板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157005129

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832882

Country of ref document: EP

Kind code of ref document: A1