WO2015182624A1 - アルミニウム合金導体線、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体線の製造方法 - Google Patents

アルミニウム合金導体線、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体線の製造方法 Download PDF

Info

Publication number
WO2015182624A1
WO2015182624A1 PCT/JP2015/065147 JP2015065147W WO2015182624A1 WO 2015182624 A1 WO2015182624 A1 WO 2015182624A1 JP 2015065147 W JP2015065147 W JP 2015065147W WO 2015182624 A1 WO2015182624 A1 WO 2015182624A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
wire
aluminum alloy
heat treatment
conductor wire
Prior art date
Application number
PCT/JP2015/065147
Other languages
English (en)
French (fr)
Inventor
祥 吉田
亮佑 松尾
茂樹 関谷
賢悟 水戸瀬
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020167030605A priority Critical patent/KR101982913B1/ko
Priority to JP2016523517A priority patent/JP6678579B2/ja
Priority to EP15799045.8A priority patent/EP3150732B1/en
Priority to CN201580022053.6A priority patent/CN106574329A/zh
Publication of WO2015182624A1 publication Critical patent/WO2015182624A1/ja
Priority to US15/353,375 priority patent/US9875822B2/en
Priority to US15/847,199 priority patent/US10553327B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/02Drawing metal wire or like flexible metallic material by drawing machines or apparatus in which the drawing action is effected by drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/0207Wire harnesses
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0045Cable-harnesses

Definitions

  • the present invention relates to an aluminum alloy conductor wire, an aluminum alloy twisted wire, a covered electric wire, a wire harness, and an aluminum alloy conductor wire manufacturing method used as a conductor of an electric wiring body.
  • an electric wiring body of a moving body such as an automobile, a train, an aircraft, or an electric wiring body of an industrial robot
  • a terminal made of copper or a copper alloy for example, brass
  • a so-called wire harness member equipped with a connector has been used.
  • the performance and functionality of automobiles have been rapidly advanced, and as a result, the number of various electric devices and control devices mounted on the vehicle has increased, and these devices are used in these devices.
  • the means for achieving such weight reduction of the moving body for example, it is considered to replace the conductor of the electric wiring body with a lighter aluminum or aluminum alloy instead of the conventionally used copper or copper alloy. It is being advanced.
  • the specific gravity of aluminum is about 1/3 of the specific gravity of copper
  • the electrical conductivity of aluminum is about 2/3 of the electrical conductivity of copper (pure aluminum is about 66% IACS when pure copper is used as a standard of 100% IACS).
  • the cross-sectional area of the aluminum conductor wire needs to be about 1.5 times the cross-sectional area of the copper conductor wire.
  • the above% IACS represents the electrical conductivity when the resistivity 1.7241 ⁇ 10 ⁇ 8 ⁇ m of universal standard annealed copper (International Annealed Copper Standard) is 100% IACS.
  • pure aluminum wires represented by aluminum alloy wires for power transmission lines are generally inferior in tensile durability, impact resistance, bending characteristics, and the like. For this reason, for example, a load that is unexpectedly applied by an operator or industrial equipment during installation to the vehicle body, a tension at a crimping portion at a connection portion between an electric wire and a terminal, or a load at a bending portion such as a door portion. It cannot withstand stress.
  • materials alloyed by adding various additive elements can increase the tensile strength, it causes a decrease in conductivity due to the solid solution phenomenon of the additive elements in aluminum, and excessive metal in the aluminum.
  • the intermetallic compound By forming the intermetallic compound, disconnection due to the intermetallic compound may occur during wire drawing. Therefore, by limiting or selecting the additive element, it is essential that the element has sufficient elongation characteristics so as not to be disconnected, and it is necessary to ensure the conventional level of electrical conductivity and tensile strength.
  • a high-strength aluminum alloy wire for example, an aluminum alloy wire containing Mg and Si is known, and a typical example of the aluminum alloy wire is a 6000 series aluminum alloy (Al—Mg—Si alloy) wire. It is done.
  • 6000 series aluminum alloy wire can be increased in strength by solution treatment and aging treatment. Therefore, when producing a thin wire having a wire diameter of 1.5 mm or less using 6000 series aluminum alloy wire.
  • high strength can be achieved by applying a solution treatment and an aging treatment.
  • Patent Document 1 Conventional 6000 series aluminum alloy wires used for electric wiring bodies of moving bodies and their manufacturing methods are disclosed in, for example, Patent Documents 1 to 4.
  • Patent Document 1 in a method for producing a 6000 series aluminum alloy wire in which the steps of casting / rolling, wire drawing, intermediate heat treatment, wire drawing, and solution treatment (recrystallization) heat treatment are performed in this order, a cooling rate of 1 is applied during casting / rolling.
  • a rod of 10 mm ⁇ was prepared at ⁇ 20 ° C./s, intermediate annealing was performed at 300 to 450 ° C. for 0.5 to 4 hours during the intermediate heat treatment, and 437 to 641 ° C. and 0.03 to 0 at the subsequent solution heat treatment. It is disclosed to perform finish annealing in 54 hours.
  • Patent Document 2 in a method for producing a 6000 series aluminum alloy wire that performs the same process as described above, a 10 mm ⁇ bar is produced at a cooling rate of 1 to 20 ° C./s during casting and rolling, and 300 mm during intermediate heat treatment. It is disclosed that intermediate annealing is performed at ⁇ 450 ° C. for 0.17-4 hours, and finish annealing is performed at 415-633 ° C. for 0.03-0.54 hours during the subsequent solution heat treatment.
  • Patent Document 3 in a method for producing a 6000 series aluminum alloy wire in which the steps of casting, wire drawing, intermediate heat treatment, wire drawing, and solution treatment (recrystallization) heat treatment are performed in this order, a cooling rate of 10 to 300 ° C. / It is disclosed that an ingot is produced with s, heat-treated at 300 to 450 ° C. for 1 to 4 hours during intermediate heat treatment, and further heat-treated at 300 to 450 ° C. for 1 to 4 hours during solution heat treatment. In Patent Document 4, an ingot is produced at a cooling rate of 10 to 300 ° C./s during casting in a method for producing a 6000 series aluminum alloy wire in which the steps of casting, wire drawing, intermediate heat treatment and wire drawing are performed in this order. Is disclosed.
  • the crystal grains may locally grow abnormally during the heat treatment during the manufacturing process, resulting in variations in the amount of plastic deformation of the wire during crimping, and the like. There is a problem that the pressure bonding reliability at the time of pressure bonding with the adherend is insufficient.
  • An object of the present invention is aluminum used as a conductor of an electric wiring body with improved crimping reliability while ensuring good strength even when used as a thin wire having a strand diameter of 1.5 mm ⁇ or less.
  • An object of the present invention is to provide an alloy conductor wire, an aluminum alloy twisted wire, a covered electric wire, and a wire harness, and to provide a method for producing an aluminum alloy conductor wire.
  • the present inventors Based on the premise of using an aluminum alloy containing Mg, Si, and Fe, the present inventors uniformly control the abnormal growth of crystal grains during recrystallization using the particle pinning effect by controlling the component composition and the manufacturing process. The present inventors have found a production method and a structure that suppresses and improves the pressure bonding reliability while ensuring good strength, and have completed the present invention.
  • the gist configuration of the present invention is as follows. (1) 0.1 to 1.0% by mass of Mg, 0.1 to 1.20% by mass of Si, 0.01 to 1.40% by mass of Fe, 0 to 0.100% by mass of Ti, B 0 to 0.030 mass%, Cu 0 to 1.00 mass%, Ag 0 to 0.50 mass%, Au 0 to 0.50 mass%, Mn 0 to 1.00 mass%, Cr 0 to 1.00 mass%, Zr 0 to 0.50 mass%, Hf 0 to 0.50 mass%, V 0 to 0.50 mass%, Sc 0 to 0.50 mass%, Co Containing 0 to 0.50 mass% and Ni containing 0 to 0.50 mass%, with the balance being Al and inevitable impurities (provided that Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, and Ni may be included in any one or more components, or any optional component that may not be included in any component There.) Has a particle size is 0.5
  • the chemical composition is Cu: 0.01 to 1.00% by mass, Ag: 0.01 to 0.50% by mass, Au: 0.01 to 0.50% by mass, Mn: 0.01 to 1.00% by mass, Cr: 0.01-1.00% by mass, Zr: 0.01-0.50% by mass, Hf: 0.01-0.50% by mass, V: 0.01-0.
  • the aluminum alloy conductor wire according to the above (1) or (2) which contains seeds or more.
  • the total content of Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, and Ni is 0.01 to 2.00% by mass (1)
  • the aluminum alloy conductor wire according to any one of the above (1) to (5) which is an aluminum alloy wire having a strand diameter of 0.1 to 1.5 mm.
  • the covered electric wire which has a coating layer in the outer periphery of the aluminum alloy wire as described in said (6) or the aluminum alloy twisted wire as described in said (7).
  • a wire harness comprising the covered electric wire according to (8) and a terminal attached to an end of the covered electric wire from which the covering layer is removed.
  • a method for producing an aluminum alloy conductor wire in which a rough drawn wire is formed through hot working after melting and casting, and thereafter at least each step of wire drawing, solution heat treatment, and aging heat treatment is performed.
  • (11) A method for producing an aluminum alloy conductor wire in which a rough drawn wire is formed through hot working after melting and casting, and thereafter at least each step of wire drawing, solution heat treatment, and aging heat treatment is performed.
  • the aluminum alloy conductor wire of the present invention is premised on the use of an aluminum alloy containing Mg, Si, and Fe, and controls at least the cooling rate during casting or the temperature rise temperature during solution heat treatment, so that grains within a predetermined range are used.
  • an aluminum alloy containing Mg, Si, and Fe controls at least the cooling rate during casting or the temperature rise temperature during solution heat treatment, so that grains within a predetermined range are used.
  • the aluminum alloy conductor wire, the aluminum alloy twisted wire, the covered electric wire, and the wire harness of the present invention are useful as a battery cable, a harness, a motor lead wire, or an industrial robot wiring body mounted on a moving body.
  • the aluminum alloy conductor wire of the present invention has Mg of 0.1 to 1.0% by mass, Si of 0.1 to 1.20% by mass, Fe of 0.01 to 1.40% by mass, and Ti of 0 to 0%. 100% by mass, B 0-0.030% by mass, Cu 0-1.00% by mass, Ag 0-0.50% by mass, Au 0-0.50% by mass, Mn 0-1 0.000% by mass, Cr from 0 to 1.00% by mass, Zr from 0 to 0.50% by mass, Hf from 0 to 0.50% by mass, V from 0 to 0.50% by mass, Sc from 0 to 0 .50% by mass, Co 0 to 0.50% by mass and Ni 0 to 0.50% by mass, the balance being Al and inevitable impurities (provided that Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, and Ni may be included in any one or more components, or included in any component Is a good optional additive ingredients even without.) Has a particle
  • the aluminum alloy conductor wire of the present invention can be used as an aluminum alloy wire or an aluminum alloy twisted wire obtained by twisting a plurality of aluminum alloy wires, and further, an aluminum alloy wire or an aluminum alloy twisted wire. It can also be used as a covered electric wire having a covering layer on the outer periphery, and in addition, as a wire harness (assembled electric wire) comprising a covered electric wire and a terminal attached to the end of the covered electric wire from which the covering layer has been removed It is also possible to use it.
  • a wire harness assembled electric wire
  • Chemical composition ⁇ Mg: 0.10 to 1.00% by mass> Mg has the effect of strengthening by dissolving in an aluminum base material, and a part thereof forms precipitates or Mg-Si clusters together with Si to form tensile strength, bending fatigue resistance and It is an element that has the effect of improving heat resistance.
  • Mg content is less than 0.10% by mass, the above-described effects are insufficient, and when the Mg content exceeds 1.00% by mass, an Mg-concentrated portion is formed at the crystal grain boundary.
  • the Mg content is 0.10 to 1.00% by mass.
  • the Mg content is preferably 0.50 to 1.00% by mass when high strength is important, and 0.10 to 0.50% by mass when conductivity is important. From such a viewpoint, the total content is preferably 0.30 to 0.70% by mass.
  • Si is an element having an effect of improving tensile strength, bending fatigue resistance, and heat resistance by forming precipitates or Mg—Si clusters together with Mg.
  • Si content is less than 0.10% by mass, the above-described effects are insufficient, and when the Si content exceeds 1.20% by mass, a Si-concentrated portion may be formed at the crystal grain boundary. The tensile strength, the elongation, and the bending fatigue resistance are lowered, and the electrical conductivity is lowered by increasing the amount of Si element dissolved. Therefore, the Si content is 0.10 to 1.20 mass%.
  • the Si content is preferably 0.50 to 1.00% by mass when high strength is important, and 0.10 to 0.50% by mass when conductivity is important. From such a viewpoint, the total content is preferably 0.30 to 0.70% by mass.
  • Fe is an element that contributes to refinement of crystal grains mainly by forming an Al—Fe-based intermetallic compound and improves tensile strength and bending fatigue resistance. Fe can only dissolve at 0.05% by mass in Al at 655 ° C. and is even less at room temperature. Therefore, the remaining Fe that cannot be dissolved in Al is Al—Fe, Al—Fe—Si, Al—Fe. -Crystallizes or precipitates as an intermetallic compound such as Si-Mg. This intermetallic compound contributes to refinement of crystal grains and improves tensile strength and bending fatigue resistance.
  • Fe has the effect
  • the Fe content is less than 0.01% by mass, these effects are insufficient, and when the Fe content exceeds 1.40% by mass, the crystallized product or precipitates are coarsened at the time of pressure bonding. The amount of plastic deformation does not fall within a predetermined range, and the conductor crimping property during crimping is reduced. Therefore, the Fe content is 0.01 to 1.40 mass%, preferably 0.15 to 0.90 mass%, and more preferably 0.15 to 0.45 mass%.
  • the aluminum alloy conductor wire of the present invention contains Mg, Si and Fe as essential components, but if necessary, one or two selected from the group consisting of Ti and B, Cu, Ag, One or more of Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni can be contained.
  • Ti is an element having an effect of refining the structure of the ingot at the time of melt casting. If the structure of the ingot is coarse, the ingot cracking in the casting or disconnection occurs in the wire processing step, which is not industrially desirable. If the Ti content is less than 0.001% by mass, the above-mentioned effects cannot be fully exhibited, and if the Ti content exceeds 0.100% by mass, the conductivity tends to decrease. It is. Accordingly, the Ti content is set to 0.001 to 0.100 mass%, preferably 0.005 to 0.050 mass%, more preferably 0.005 to 0.030 mass%.
  • B like Ti
  • a coarse ingot structure is not industrially desirable because it tends to cause ingot cracking and disconnection in the wire processing step during casting.
  • the B content is 0.001 to 0.030 mass%, preferably 0.001 to 0.020 mass%, more preferably 0.001 to 0.010 mass%.
  • ⁇ Cu 0.01 to 1.00% by mass>, ⁇ Ag: 0.01 to 0.50% by mass>, ⁇ Au: 0.01 to 0.50% by mass>, ⁇ Mn: 0.01 to 1 .00 mass%, ⁇ Cr: 0.01 to 1.00 mass%> and ⁇ Zr: 0.01 to 0.50 mass%>, ⁇ Hf: 0.01 to 0.50 mass%>, ⁇ V : 0.01 to 0.50 mass%, ⁇ Sc: 0.01 to 0.50 mass%>, ⁇ Co: 0.01 to 0.50 mass%> ⁇ Ni: 0.01 to 0.50 mass% %> 1 type or 2 types or more Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, and Ni all have the effect of refining crystal grains and abnormal coarse growth.
  • Cu, Ag, and Au are elements that also have the effect of increasing the grain boundary strength by precipitating at the grain boundaries. If at least one of these elements is contained in an amount of 0.01% by mass or more, the above-described effects can be obtained, and the tensile strength, elongation, and bending fatigue resistance can be improved. On the other hand, if any of the contents of Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni exceeds the above upper limit values, the compound containing the element becomes coarse. In order to deteriorate wire drawing workability, disconnection is likely to occur, and the conductivity tends to decrease.
  • the ranges of the contents of Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, and Ni are set to the above ranges, respectively.
  • Ni When Ni is contained, the crystal grain refining effect and the abnormal grain growth suppressing effect become remarkable, and the tensile strength and elongation are improved. Moreover, it becomes easy to suppress the fall of electrical conductivity and the disconnection in wire drawing. Since this effect becomes remarkable, the Ni content is more preferably 0.05 to 0.3% by mass.
  • the total content of these elements is preferably 2.00% by mass or less. Since Fe is an essential element in the aluminum alloy conductor wire of the present invention, the total content of Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is 0.01. To 2.00% by mass. The total content of these elements is more preferably 0.10 to 2.00% by mass. However, when these elements are added alone, the larger the content, the more the compound containing the elements tends to become coarser, which deteriorates the wire drawing workability and easily causes disconnection. In the element, the content range is as defined above.
  • Fe, Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co, and Ni are used.
  • the total content is particularly preferably 0.01 to 0.80% by mass, and more preferably 0.05 to 0.60% by mass.
  • the conductivity is slightly lowered, in order to further improve the tensile strength, elongation, and proof stress value, it is particularly preferably more than 0.80 to 2.00% by mass, and further 1.00 to 2.00% by mass. preferable.
  • Al and inevitable impurities The balance other than the components described above is Al (aluminum) and inevitable impurities.
  • the inevitable impurities referred to here mean impurities in a content level that can be unavoidably included in the manufacturing process. Depending on the content of the inevitable impurities, it may be a factor for reducing the electrical conductivity. Therefore, it is preferable to suppress the content of the inevitable impurities to some extent in consideration of the decrease in the electrical conductivity. Examples of components listed as inevitable impurities include Ga, Zn, Bi, Pb, and the like.
  • Such an aluminum alloy conductor wire can be realized by combining and controlling the alloy composition and the manufacturing process.
  • the suitable manufacturing method of the aluminum alloy conductor wire of this invention is demonstrated.
  • the aluminum alloy conductor wire of the present invention has a particle size of 0.5 to 5.0 ⁇ m and a compound containing Fe at a density of 1 to 300 / 10,000 ⁇ m 2 . Exists.
  • the particle size of this compound is preferably 1.0 to 5.0 ⁇ m.
  • the density of this compound is preferably 10 to 100 / 10,000 ⁇ m 2 . That is, by uniformly dispersing the Fe-based compound having a grain size within a predetermined range, abnormal growth of crystal grains can be suppressed uniformly, and as a result, the amount of plastic deformation during compression bonding is stabilized.
  • an aluminum alloy conductor wire for a wire harness that achieves good strength and can achieve crimping reliability when crimping to an adherend and has high mechanical and electrical connection reliability. Can do. If the density of the compound containing Fe and having a particle size of 0.5 to 5.0 ⁇ m is less than 1 piece / 10000 ⁇ m 2 , the pinning effect is small, so that coarse particles are likely to be generated and impact resistance is lowered. If the density of the compound containing Fe having a particle size of 0.5 to 5.0 ⁇ m exceeds 300 / 10,000 ⁇ m 2 , the strength tends to decrease.
  • the compound contains Fe is determined using an EPMA (Electron Probe Micro Analyzer), and the particle size of the particle is the area of the particle observed in the cross section of the aluminum alloy conductor wire. , Measured using free software “ImageJJ” and evaluated by the diameter (equivalent circle diameter) when converted to the equivalent of a circle. The number density of the Fe-containing compound having a particle size of 0.5 to 5.0 ⁇ m (pieces / 10,000 ⁇ m 2 ) was processed by ion milling until the cross-sectional center of the aluminum alloy conductor wire could be observed.
  • EPMA Electro Probe Micro Analyzer
  • the cross-section was observed using a scanning electron microscope (SEM), and the number of Fe-based compounds having a particle size of 0.5 to 5.0 ⁇ m existing in the field size (1000 ⁇ m 2 ) was measured. the number of compounds were determined by converted per 10000 2 to 10 times. In addition, the numerical value of the number density of the compound is determined by arbitrarily determining three different cross-sectional positions, specifically, the first cross-sectional position, which are located at intervals along the longitudinal direction of the aluminum alloy conductor wire.
  • the second cross-sectional position is a position that is separated from the first cross-sectional position by 1000 mm or more (for example, 1000 mm)
  • the third cross-sectional position is a position that is separated from the first cross-sectional position by 2000 mm or more (for example, 2000 mm) and It means an average value of the number density of the compounds determined at the first to third cross-sectional positions, at a position distant from the second cross-sectional position by 1000 mm or more (for example, 1000 mm).
  • the aluminum alloy conductor wire of the present invention includes [1] melting, [2] casting, [3] hot working (groove roll processing, etc.), [4] first Steps of wire drawing, [5] first heat treatment (intermediate heat treatment), [6] second wire drawing, [7] second heat treatment (solution heat treatment), and [8] third heat treatment (aging heat treatment) Can be manufactured by a manufacturing method including sequentially performing. Note that a step of forming a stranded wire or a step of coating a wire with a resin may be provided before or after the second heat treatment or after the aging heat treatment. The steps [1] to [8] will be described below.
  • the rate of temperature increase during solution heat treatment (second heat treatment) described later is from 20 ° C./s between room temperature and 550 ° C. Is too high, the cooling rate during casting and the temperature rising rate during solution heat treatment are too fast, so the number of Fe-based compounds having a particle size of 0.5 to 5.0 ⁇ m existing in a predetermined area is reduced, and the crystal grains are reduced. As a result of coarsening and easy generation of abnormally grown grains, the impact durability and the wire crimping property of the crimping part are lowered.
  • the temperature rising rate at the second heat treatment is limited to 20 ° C./s or less between room temperature and 550 ° C. It was decided to.
  • This casting and hot rolling may be performed by billet casting or extrusion.
  • the degree of work ⁇ is preferably in the range of 1-6.
  • the degree of work ⁇ is less than 1, the recrystallized grains are coarsened during the heat treatment in the next step, the tensile strength and elongation are remarkably reduced, and there is a risk of disconnection.
  • the processing degree ⁇ is larger than 6, the wire drawing process becomes difficult, and there is a risk of causing a problem in terms of quality such as disconnection during the wire drawing process.
  • the surface is cleaned by performing surface peeling, it may not be performed.
  • a first heat treatment is performed on the cold-drawn workpiece. Specifically, the first heat treatment is performed by heating to a predetermined temperature within a range of 300 to 480 ° C. and holding for a holding time of 0.05 to 6 hours.
  • the first heat treatment of the present invention is performed in order to restore the flexibility of the workpiece and improve the wire drawing workability. If the wire drawing workability is sufficient and disconnection does not occur, the first heat treatment may not be performed.
  • the working degree ⁇ is preferably in the range of 1 to 6.
  • the degree of work ⁇ affects the formation and growth of recrystallized grains. If the degree of work ⁇ is less than 1, the recrystallized grains tend to be coarsened during the heat treatment in the next step, and the tensile strength and elongation tend to be significantly reduced. This is because it tends to cause problems in terms of quality, such as disconnection during wire drawing. In addition, when not performing 1st heat processing, you may perform 1st wire drawing and 2nd wire drawing continuously.
  • Second heat treatment (solution heat treatment) A second heat treatment is applied to the drawn workpiece.
  • the second heat treatment of the present invention is a solution heat treatment performed in order to dissolve a randomly contained Mg and Si compound in the aluminum matrix.
  • the solution treatment can smoothen (homogenize) the concentrated portion of Mg or Si during processing, leading to suppression of grain boundary segregation of the compound of Mg and Si after the final aging heat treatment.
  • the temperature rise rate is 20 ° C./s or less between room temperature and 550 ° C., and within the range of 480 to 620 ° C.
  • the cooling rate during casting exceeds 5 ° C./s and the rate of temperature increase in the second heat treatment exceeds 20 ° C./s, the cooling rate during casting or the rate of temperature increase during solution heat treatment is too high, so the predetermined area
  • the number of Fe-based compounds having a particle size of 0.5 to 5.0 ⁇ m present therein decreases, crystal grains become coarse and abnormally grown grains are generated, and impact durability is lowered.
  • the predetermined temperature at the time of heating in the second heat treatment is in the range of 480 to 620 ° C., preferably in the range of 520 to 580 ° C.
  • the range of the temperature rising rate at the time of the second heat treatment is not particularly limited, but is, for example, 5 to 80 ° C./s.
  • the method of performing the second heat treatment may be, for example, high-frequency heating, continuous heat treatment such as energization heating or running heat.
  • the wire temperature When high-frequency heating or current heating is used, the wire temperature usually rises with the passage of time because the current is usually kept flowing through the wire. For this reason, if the current is kept flowing, the wire may be melted. Therefore, it is necessary to perform heat treatment in an appropriate time range. Even when running heating is used, since the annealing is performed for a short time, the temperature of the running annealing furnace is usually set higher than the wire temperature. Since heat treatment for a long time may cause the wire to melt, it is necessary to perform the heat treatment in an appropriate time range. Hereinafter, heat treatment by each method will be described.
  • the continuous heat treatment by high frequency heating is a heat treatment by Joule heat generated from the wire itself by an induced current as the wire continuously passes through a magnetic field by high frequency. It includes a rapid heating and rapid cooling process, and the wire can be heat-treated under control of the wire temperature and heat treatment time. Cooling is performed by passing the wire continuously in water or in a nitrogen gas atmosphere after rapid heating.
  • This heat treatment time is 0.01 to 2 s, preferably 0.05 to 1 s, more preferably 0.05 to 0.5 s.
  • the continuous energization heat treatment is a heat treatment by Joule heat generated from the wire itself by passing an electric current through the wire passing continuously through the two electrode wheels. It includes a rapid heating and rapid cooling process, and the wire can be heat-treated under control of the wire temperature and heat treatment time. Cooling is performed by passing the wire continuously through water, air, or a nitrogen gas atmosphere after rapid heating. This heat treatment time is 0.01 to 2 s, preferably 0.05 to 1 s, more preferably 0.05 to 0.5 s.
  • the continuous running heat treatment is a heat treatment in which a wire continuously passes through a heat treatment furnace maintained at a high temperature.
  • Heat treatment can be performed by controlling the temperature in the heat treatment furnace and the heat treatment time, including rapid heating and rapid cooling processes. Cooling is performed by passing the wire continuously through water, air, or a nitrogen gas atmosphere after rapid heating. This heat treatment time is preferably 0.5 to 30 s.
  • a third heat treatment is performed. This third heat treatment is performed to precipitate acicular Mg 2 Si precipitates and improve the tensile strength.
  • the heating temperature in the aging heat treatment is 100 to 250 ° C., and the heating time is 0.5 to 15 hours. When the heating temperature is less than 100 ° C., acicular Mg 2 Si precipitates cannot be sufficiently precipitated, and the strength, the bending fatigue resistance and the conductivity tend to be insufficient. On the other hand, if the heating temperature is higher than 250 ° C., the size of the Mg 2 Si precipitate increases, so that the electrical conductivity increases, but the strength and the bending fatigue resistance tend to be insufficient.
  • the wire diameter is not particularly limited and can be appropriately determined according to the application.
  • a thin wire 0.1 to 0.5 mm ⁇ , and in the case of a medium thin wire 0.8 to 1.5 mm ⁇ is preferable.
  • the aluminum alloy conductor wire of the present invention is one of the advantages that it can be used as an aluminum alloy wire by thinning it with a single wire, but it can also be used as an aluminum alloy twisted wire obtained by bundling a plurality of wires, Among the steps [1] to [8] constituting the production method of the present invention, after the aluminum alloy wires obtained by sequentially performing the steps [1] to [6] are bundled and twisted, 7] Steps of second heat treatment and [8] aging heat treatment may be performed.
  • the present invention it is possible to perform a homogenization heat treatment as performed by a conventional method after continuous casting and rolling.
  • the homogenization heat treatment precipitates of the additive elements (mainly Mg—Si compounds) can be uniformly dispersed, so that a uniform crystal structure can be easily obtained in the subsequent first heat treatment. Elongation and yield strength can be improved more stably.
  • the homogenization heat treatment is preferably performed at a heating temperature of 450 ° C. to 600 ° C. and a heating time of 1 to 10 hours, more preferably 500 to 600 ° C.
  • the cooling in the homogenization heat treatment is preferably slow cooling at an average cooling rate of 0.1 to 10 ° C./min from the viewpoint of easily obtaining a uniform compound.
  • the second heat treatment was performed at the temperature rising temperature and the maximum temperature 480 to 620 ° C. shown in Table 2, respectively.
  • the wire temperature was measured by winding a thermocouple around the wire.
  • the wire temperature in the vicinity of the heat treatment section exit was measured.
  • an aging heat treatment was performed at 100 to 250 ° C. for 0.05 to 12 hours to produce an aluminum alloy wire having a finished diameter of 0.1 to 1.5 mm ⁇ .
  • the aluminum alloy wires of Invention Examples 1 to 25 all had good strength and excellent wire crimping properties.
  • the aluminum alloy wires of Comparative Examples 1 to 4, 6 to 9, 13 to 16, 18 and 20 to 23 are all out of the scope of the present invention because the cooling rate during casting is less than 0.1 ° C./s.
  • the density of the Fe-based compound having a particle size of 0.5 to 5.0 ⁇ m was outside the range of the present invention, and the strength was poor.
  • the aluminum alloy wires of Comparative Examples 5, 10-12, 17 and 19 all had a cooling rate during casting of 15 ° C./s or higher and a temperature increase temperature during solution heat treatment of 50 ° C./s or higher.
  • the density of the Fe-based compound was outside the range of the present invention, and the wire crimping property of the crimped part was inferior.
  • the aluminum alloy conductor wire of the present invention provides an aluminum alloy conductor wire, an aluminum alloy twisted wire, a covered electric wire, and a wire harness that are used as a conductor of an electric wiring body, while ensuring good strength and improving electric wire crimpability. And a method for producing an aluminum alloy conductor wire, and is useful as a battery cable, a harness or a conductor for a motor mounted on a moving body, and a wiring body for an industrial robot. Furthermore, since the aluminum alloy conductor wire of the present invention has high strength, it is possible to make the wire diameter thinner than a conventional wire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Continuous Casting (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

 良好な強度を確保しつつ、圧着信頼性を向上させた電気配線体の導体として用いられるアルミニウム合金導体線を提供する。 本発明のアルミニウム合金導体線は、Mgを0.1~1.0質量%、Siを0.1~1.20質量%およびFeを0.01~1.40質量%、Tiを0~0.100質量%、Bを0~0.030質量%、Cuを0~1.00質量%、Agを0~0.50質量%、Auを0~0.50質量%、Mnを0~1.00質量%、Crを0~1.00質量%、Zrを0~0.50質量%、Hfを0~0.50質量%、Vを0~0.50質量%、Scを0~0.50質量%、Coを0~0.50質量%およびNiを0~0.50質量%含有し、残部がAlおよび不可避不純物である組成を有し、粒径が0.5~5.0μmであり、且つFeを含有する化合物の密度が、1~300個/10000μmである。

Description

アルミニウム合金導体線、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体線の製造方法
 本発明は、電気配線体の導体として用いられるアルミニウム合金導体線、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体線の製造方法に関する。
 従来、自動車、電車、航空機等の移動体の電気配線体、または産業用ロボットの電気配線体として、銅又は銅合金の導体を含む電線に、銅又は銅合金(例えば、黄銅)製の端子(コネクタ)を装着した、いわゆるワイヤーハーネスと呼ばれる部材が用いられてきた。昨今では、自動車の高性能化や高機能化が急速に進められており、これに伴い、車載される各種の電気機器、制御機器などの配設数が増加するとともに、これら機器に使用される電気配線体の配設数も増加する傾向にある。また、その一方で、環境対応のために自動車等の移動体の燃費を向上させるため、移動体の軽量化が強く望まれている。
 こうした移動体の軽量化を達成するための手段の一つとして、例えば電気配線体の導体を、従来から用いられている銅又は銅合金に代えて、より軽量なアルミニウム又はアルミニウム合金にする検討が進められている。アルミニウムの比重は銅の比重の約1/3、アルミニウムの導電率は銅の導電率の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)である。アルミニウムの導体線材に、銅の導体線材と同じ電流を流すためには、アルミニウムの導体線材の断面積を、銅の導体線材の断面積の約1.5倍と大きくする必要があるが、そのように断面積を大きくしたアルミニウムの導体線材を用いたとしても、アルミニウムの導体線材の質量は、純銅の導体線材の質量の半分程度である。よって、アルミニウムの導体線材を使用することは、軽量化の観点から有利である。なお、上記の%IACSとは、万国標準軟銅(International Annealed Copper Standard)の抵抗率1.7241×10-8Ωmを100%IACSとした場合の導電率を表したものである。
 しかし、送電線用アルミニウム合金線材(JIS規格によるA1060やA1070)を代表とする純アルミニウム線材では、一般に引張耐久性、耐衝撃性、屈曲特性などが劣ることが知られている。そのため、例えば、車体への取付け作業時に作業者や産業機器などによって不意に負荷される荷重や、電線と端子の接続部における圧着部での引張や、ドア部などの屈曲部で負荷される繰り返し応力などに耐えることができない。また、種々の添加元素を加えて合金化した材料は引張強度を高めることは可能であるものの、アルミニウム中への添加元素の固溶現象により導電率の低下を招くこと、アルミニウム中に過剰な金属間化合物を形成することで伸線加工中に金属間化合物に起因する断線が生じることがあった。そのため、添加元素を限定ないし選択することにより、十分な伸び特性を有することで断線しないことを必須とし、さらに、従来レベルの導電率と引張強度を確保する必要があった。
 高強度アルミニウム合金線材としては、例えばMgとSiを含有するアルミニウム合金線材が知られており、このアルミニウム合金線材の代表例としては、6000系アルミニウム合金(Al-Mg-Si系合金)線材が挙げられる。6000系アルミニウム合金線材は、一般に、溶体化処理及び時効処理を施すことにより高強度化を図ることができるため、6000系アルミニウム合金線材を用いて線径1.5mm以下といった細線を製造する場合にも、溶体化処理及び時効処理を施すことで高強度化を達成することができる。
 移動体の電気配線体に用いられる従来の6000系アルミニウム合金線及びその製法は、例えば特許文献1~4に開示されている。特許文献1では、鋳造・圧延、伸線、中間熱処理、伸線及び溶体化(再結晶)熱処理の各工程をこの順に実行する6000系アルミニウム合金線の製造方法において、鋳造・圧延時に冷却速度1~20℃/sで10mmφの棒材を作製し、中間熱処理時に300~450℃、0.5~4時間で中間焼鈍を行い、その後の溶体化熱処理時に437~641℃、0.03~0.54時間で仕上げ焼鈍を行うことが開示されている。また、特許文献2では、上記と同様の工程を実行する6000系アルミニウム合金線の製造方法において、鋳造・圧延時に冷却速度1~20℃/sで10mmφの棒材を作製し、中間熱処理時に300~450℃、0.17~4時間で中間焼鈍を行い、その後の溶体化熱処理時に415~633℃、0.03~0.54時間で仕上げ焼鈍を行うことが開示されている。
 特許文献3では、鋳造、伸線、中間熱処理、伸線及び溶体化(再結晶)熱処理の各工程をこの順に実行する6000系アルミニウム合金線の製造方法において、鋳造時に冷却速度10~300℃/sで鋳塊を製造し、中間熱処理時に300~450℃、1~4時間で熱処理を施し、更に溶体化熱処理時に300~450℃、1~4時間で熱処理を施すことが開示されている。また、特許文献4では、鋳造、伸線、中間熱処理及び伸線の各工程をこの順に実行する6000系アルミニウム合金線の製造方法において、鋳造時に冷却速度10~300℃/sで鋳塊を製造することが開示されている。
特許第4986252号公報 特許第4986251号公報 特開2010-163677号公報 特開2010-163676号公報
 しかしながら、上記特許文献1~4のアルミニウム合金線では、製造工程中の熱処理時に結晶粒が局所的に異常成長する場合があり、その結果圧着時における電線の塑性変形量にばらつきが生じ、端子などの被着体と圧着する際の圧着信頼性が十分でないといった問題がある。
 本発明の目的は、素線径が1.5mmφ以下である細線として使用した場合であっても、良好な強度を確保しつつ、圧着信頼性を向上させた電気配線体の導体として用いられるアルミニウム合金導体線、アルミニウム合金撚線、被覆電線、ワイヤーハーネスを提供すること、およびアルミニウム合金導体線の製造方法を提供することにある。
 本発明者らは、Mg、Si、Feを含有するアルミニウム合金を用いることを前提とし、成分組成と製造プロセスの制御により、粒子ピンニング効果を用いて再結晶時における結晶粒の異常成長を均一に抑制し、良好な強度を確保しつつ圧着信頼性が向上する製法と組織を見出し、本発明を完成させるに至った。
 すなわち、本発明の要旨構成は以下のとおりである。
(1)Mgを0.1~1.0質量%、Siを0.1~1.20質量%およびFeを0.01~1.40質量%、Tiを0~0.100質量%、Bを0~0.030質量%、Cuを0~1.00質量%、Agを0~0.50質量%、Auを0~0.50質量%、Mnを0~1.00質量%、Crを0~1.00質量%、Zrを0~0.50質量%、Hfを0~0.50質量%、Vを0~0.50質量%、Scを0~0.50質量%、Coを0~0.50質量%およびNiを0~0.50質量%含有し、残部がAlおよび不可避不純物である組成(ただし、上記Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiは、いずれか1成分以上含有させてもよいし、いずれの成分とも含有させなくてもよい任意添加成分である。)を有し、粒径が0.5~5.0μmであり、且つFeを含有する化合物の密度が、1~300個/10000μmであることを特徴とするアルミニウム合金導体線。
(2)前記化学組成が、Ti:0.001~0.100質量%およびB:0.001~0.030質量%からなる群から選択された1種または2種を含有する上記(1)に記載のアルミニウム合金導体線。
(3)前記化学組成が、Cu:0.01~1.00質量%、Ag:0.01~0.50質量%、Au:0.01~0.50質量%、Mn:0.01~1.00質量%、Cr:0.01~1.00質量%、Zr:0.01~0.50質量%、Hf:0.01~0.50質量%、V:0.01~0.50質量%、Sc:0.01~0.50質量%、Co:0.01~0.50質量%およびNi:0.01~0.50質量%からなる群から選択された1種または2種以上を含有する上記(1)または(2)に記載のアルミニウム合金導体線。
(4)前記化学組成が、Ni:0.01~0.50質量%を含有する上記(1)~(3)のいずれかに記載のアルミニウム合金導体線。
(5)Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、Co、Niの含有量の合計が0.01~2.00質量%である(1)~(4)のいずれか1項に記載のアルミニウム合金導体線。
(6)素線径が0.1~1.5mmであるアルミニウム合金線である上記(1)~(5)のいずれか1項に記載のアルミニウム合金導体線。
(7)上記(6)に記載のアルミニウム合金線を複数本撚り合わせて得られるアルミニウム合金撚線。
(8)上記(6)に記載のアルミニウム合金線または上記(7)に記載のアルミニウム合金撚線の外周に被覆層を有する被覆電線。
(9)上記(8)に記載の被覆電線と、該被覆電線の、前記被覆層を除去した端部に装着された端子とを具えるワイヤーハーネス。
(10)溶解、鋳造後に、熱間加工を経て荒引線を形成し、その後、少なくとも伸線加工、溶体化熱処理および時効熱処理の各工程を行うアルミニウム合金導体線の製造方法であって、前記鋳造時の冷却速度を0.1~5℃/sとすることを特徴とする、上記(1)~(6)のいずれかに記載のアルミニウム合金導体線の製造方法。
(11)溶解、鋳造後に、熱間加工を経て荒引線を形成し、その後、少なくとも伸線加工、溶体化熱処理および時効熱処理の各工程を行うアルミニウム合金導体線の製造方法であって、前記鋳造時の冷却速度を5℃/sを超える値とし、且つ前記溶体化熱処理時の昇温温度を、室温~550℃の間で20℃/s以下とすることを特徴とする、上記(1)~(6)のいずれかに記載のアルミニウム合金導体線の製造方法。
 本発明のアルミニウム合金導体線は、Mg、Si、Feを含有するアルミニウム合金を用いることを前提とし、少なくとも鋳造時の冷却速度又は溶体化熱処理時の昇温温度を制御し、所定範囲内の粒径を有するFe系化合物を結晶組織に均一に分散させることで、再結晶時における異常粒成長の発生を均一に抑制することができ、母材の強度向上及び結晶粒径の均質化を実現することができる。よって、素線径が1.5mmφ以下である細線として使用した場合であっても、圧着時におけるアルミニウム電線導体の塑性変形量を安定化することができ、良好な強度を確保しつつ、端子などの被着体と圧着する際の信頼性を向上させることができる。したがって本発明のアルミニウム合金導体線、アルミニウム合金撚線、被覆電線、ワイヤーハーネスは、移動体に搭載されるバッテリーケーブル、ハーネスあるいはモータ用導線、産業用ロボットの配線体として有用である。
 本発明のアルミニウム合金導体線は、Mgを0.1~1.0質量%、Siを0.1~1.20質量%およびFeを0.01~1.40質量%、Tiを0~0.100質量%、Bを0~0.030質量%、Cuを0~1.00質量%、Agを0~0.50質量%、Auを0~0.50質量%、Mnを0~1.00質量%、Crを0~1.00質量%、Zrを0~0.50質量%、Hfを0~0.50質量%、Vを0~0.50質量%、Scを0~0.50質量%、Coを0~0.50質量%およびNiを0~0.50質量%含有し、残部がAlおよび不可避不純物である組成(ただし、上記Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiは、いずれか1成分以上含有させてもよいし、いずれの成分とも含有させなくてもよい任意添加成分である。)を有し、粒径が0.5~5.0μmであり、且つFeを含有する化合物の密度が、1~300個/10000μmであることを特徴とするアルミニウム合金導体線である。
 本発明のアルミニウム合金導体線は、アルミニウム合金線として、または複数本のアルミニウム合金線を撚り合わせて得られるアルミニウム合金撚線として使用することができるとともに、さらに、アルミニウム合金線またはアルミニウム合金撚線の外周に被覆層を有する被覆電線として使用することもでき、加えて、被覆電線と、この被覆電線の、被覆層を除去した端部に装着された端子とを具えるワイヤーハーネス(組電線)として使用することもまた可能である。
 以下に、本発明のアルミニウム合金導体線の化学組成等の限定理由を示す。
(1)化学組成
<Mg:0.10~1.00質量%>
 Mg(マグネシウム)は、アルミニウム母材中に固溶して強化する作用を有するとともに、その一部はSiと一緒に析出物ないしは、Mg-Siクラスタを形成して引張強度、耐屈曲疲労特性および耐熱性を向上させる作用を有する元素である。しかしながら、Mg含有量が0.10質量%未満だと、上記作用効果が不十分であり、また、Mg含有量が1.00質量%を超えると、結晶粒界にMg濃化部分を形成する可能性が高まり、引張強度、伸び、耐屈曲疲労特性が低下するとともに、Mg元素の固溶量が多くなることによって導電率も低下する。したがって、Mg含有量は0.10~1.00質量%とする。なお、Mg含有量は、高強度を重視する場合には0.50~1.00質量%にすることが好ましく、また、導電率を重視する場合には0.10~0.50質量%とすることが好ましく、このような観点から総合的に0.30~0.70質量%が好ましい。
<Si:0.10~1.20質量%>
 Si(ケイ素)は、Mgと一緒に析出物ないしは、Mg-Siクラスタを形成して引張強度、耐屈曲疲労特性、及び耐熱性を向上させる作用を有する元素である。Si含有量が0.10質量%未満だと、上記作用効果が不十分であり、また、Si含有量が1.20質量%を超えると、結晶粒界にSi濃化部分を形成する可能性が高まり、引張強度、伸び、耐屈曲疲労特性が低下するとともに、Si元素の固溶量が多くなることによって導電率も低下する。したがって、Si含有量は0.10~1.20質量%とする。なお、Si含有量は、高強度を重視する場合には0.50~1.00質量%にすることが好ましく、また、導電率を重視する場合には0.10~0.50質量%とすることが好ましく、このような観点から総合的に0.30~0.70質量%が好ましい。
<Fe:0.01~1.40質量%>
 Fe(鉄)は、主にAl-Fe系の金属間化合物を形成することによって結晶粒の微細化に寄与するとともに、引張強度および耐屈曲疲労特性を向上させる元素である。Feは、Al中に655℃で0.05質量%しか固溶できず、室温では更に少ないため、Al中に固溶できない残りのFeは、Al-Fe、Al-Fe-Si、Al-Fe-Si-Mgなどの金属間化合物として晶出又は析出する。この金属間化合物は、結晶粒の微細化に寄与するとともに、引張強度および耐屈曲疲労特性を向上させる。また、Feは、Al中に固溶したFeによっても引張強度を向上させる作用を有する。Fe含有量が0.01質量%未満だと、これらの作用効果が不十分であり、また、Fe含有量が1.40質量%超えだと、晶出物または析出物の粗大化により圧着時の塑性変形量が所定範囲の値とならず、圧着時の導体圧着性が低下する。したがって、Fe含有量は0.01~1.40質量%とし、好ましくは0.15~0.90質量%、更に好ましくは0.15~0.45質量%とする。
 本発明のアルミニウム合金導体線は、Mg、SiおよびFeを必須の含有成分とするが、必要に応じて、さらに、TiおよびBからなる群から選択された1種または2種、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの1種または2種以上を含有させることができる。
<Ti:0.001~0.100質量%>
 Tiは、溶解鋳造時の鋳塊の組織を微細化する作用を有する元素である。鋳塊の組織が粗大であると、鋳造において鋳塊割れや線材加工工程において断線が発生して工業的に望ましくない。Ti含有量が0.001質量%未満であると、上記作用効果を十分に発揮することができず、また、Ti含有量が0.100質量%超えだと導電率が低下する傾向があるからである。したがって、Ti含有量は0.001~0.100質量%とし、好ましくは0.005~0.050質量%、より好ましくは0.005~0.030質量%とする。
<B:0.001~0.030質量%>
 Bは、Tiと同様、溶解鋳造時の鋳塊の組織を微細化する作用を有する元素である。鋳塊の組織が粗大であると、鋳造において鋳塊割れや線材加工工程において断線が発生しやすくなるため工業的に望ましくない。B含有量が0.001質量%未満であると、上記作用効果を十分に発揮することができず、また、B含有量が0.030質量%超えだと導電率が低下する傾向がある。したがって、B含有量は0.001~0.030質量%とし、好ましくは0.001~0.020質量%、より好ましくは0.001~0.010質量%とする。
<Cu:0.01~1.00質量%>、<Ag:0.01~0.50質量%>、<Au:0.01~0.50質量%>、<Mn:0.01~1.00質量%>、<Cr:0.01~1.00質量%>および<Zr:0.01~0.50質量%>、<Hf:0.01~0.50質量%>、<V:0.01~0.50質量%>、<Sc:0.01~0.50質量%>、<Co:0.01~0.50質量%><Ni:0.01~0.50質量%>の1種または2種以上を含有させること
 Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiは、いずれも結晶粒を微細化する作用と異常な粗大成長粒の生成を抑制する元素であり、さらに、Cu、AgおよびAuは、粒界に析出することで粒界強度を高める作用も有する元素であって、これらの元素の少なくとも1種を0.01質量%以上含有していれば、上述した作用効果が得られ、引張強度、伸び、耐屈曲疲労特性を向上させることができる。一方、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量のいずれかが、それぞれ上記の上限値を超えると、該元素を含有する化合物が粗大になり、伸線加工性を劣化させるため、断線が生じやすく、また、導電率が低下する傾向がある。したがって、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量の範囲は、それぞれ上記の範囲とした。なお、この元素群の中で、特にNiを含有するのが好ましい。Niを含有すると、結晶粒微細化効果と異常粒成長抑制効果が顕著になり引張強度と伸びが向上する。また、導電率の低下と伸線加工中の断線をより抑制しやすくなる。この効果が顕著になるので、Niの含有量は0.05~0.3質量%であるのが更に好ましい。
 また、Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiは、多く含有するほど導電率が低下する傾向と伸線加工性が劣化する傾向がある。したがって、これらの元素の含有量の合計は、2.00質量%以下とするのが好ましい。本発明のアルミニウム合金導体線ではFeは必須元素なので、Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量の合計は0.01~2.00質量%とする。これらの元素の含有量の合計は、0.10~2.00質量%とするのが更に好ましい。ただし、これらの元素を単独で添加する場合は、含有量が多いほど該元素を含有する化合物が粗大になる傾向にあり、伸線加工性を劣化させ、断線が生じやすくなることから、それぞれの元素において上記の規定の含有範囲とした。
 なお、高導電率を保ちつつ、引張強度や伸び、耐力値を向上させるには、Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量の合計は、0.01~0.80質量%が特に好ましく、0.05~0.60質量%が更に好ましい。一方で、導電率はやや低下するが更に引張強度、伸び、耐力値を向上させるためには、0.80超~2.00質量%が特に好ましく、1.00~2.00質量%が更に好ましい。
<残部:Alおよび不可避不純物>
 上述した成分以外の残部はAl(アルミニウム)および不可避不純物である。ここでいう不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物は、含有量によっては導電率を低下させる要因にもなりうるため、導電率の低下を加味して不可避不純物の含有量をある程度抑制することが好ましい。不可避不純物として挙げられる成分としては、例えば、Ga、Zn、Bi、Pbなどが挙げられる。
 このようなアルミニウム合金導体線は、合金組成や製造プロセスを組み合わせて制御することにより実現できる。以下、本発明のアルミニウム合金導体線の好適な製造方法について説明する。
(2)Al母相中の化合物
 本発明のアルミニウム合金導体線には、粒径が0.5~5.0μmであり、かつFeを含有する化合物が、1~300個/10000μmの密度で存在する。この化合物の粒径は、好ましくは、1.0~5.0μmである。この化合物の密度は、好ましくは、10~100個/10000μmである。すなわち所定範囲内の粒径を有するFe系化合物を均一に分散させることで、結晶粒の異常成長を均一に抑制することができ、この結果圧着時の塑性変形量が安定化する。したがって、良好な強度を実現するとともに被着体と圧着する際の圧着信頼性を達成することができ、機械的、電気的な接続信頼性の高いワイヤーハーネス用のアルミニウム合金導体線を提供することができる。Feを含有する粒径0.5~5.0μmである化合物の密度が1個/10000μm未満であると、ピンニング効果が小さいことから粗大粒が発生しやすくなり、耐衝撃性が低下する。また、粒径0.5~5.0μmであるFeを含有する化合物の密度が300個/10000μmを超えると、強度が低下しやすくなる。なお、化合物がFeを含有するか否かの判定は、EPMA(Electron Probe Micro Analyzer)を用いて行ない、また、粒子の粒径は、アルミニウム合金導体線の断面にて観察された粒子の面積を、フリーソフト「ImageJJ」を用いて測定し、円等価に換算した際の直径(円相当径)で評価した値である。また、粒径0.5~5.0μmであるFeを含有する化合物の個数密度(個/10000μm)は、イオンミリング法によって、アルミニウム合金導体線の断面中心が観察できるまで加工し、加工した断面を、走査型電子顕微鏡(SEM)を用いて観察し、視野サイズ(1000μm)内に存在する、粒径0.5~5.0μmのFe系化合物の個数を測定し、測定したFe系化合物の個数を10倍して10000μm当たりに換算することにより求めた。なお、前記化合物の個数密度の数値は、アルミニウム合金導体線の長手方向に沿って間隔をおいて位置する、異なる3つの断面位置、具体的には、第1の断面位置を任意に決めた位置とし、第2の断面位置を、第1の断面位置から1000mm以上(例えば1000mm)離れた位置とし、第3の断面位置を、第1の断面位置から2000mm以上(例えば2000mm)離れた位置でかつ第2の断面位置から1000mm以上(例えば1000mm)離れた位置とし、これら第1~第3の断面位置で求めた前記化合物の個数密度の平均値を意味する。
(3)本発明のアルミニウム合金導体線の製造方法
 本発明のアルミニウム合金導体線は、[1]溶解、[2]鋳造、[3]熱間加工(溝ロール加工など)、[4]第1伸線加工、[5]第1熱処理(中間熱処理)、[6]第2伸線加工、[7]第2熱処理(溶体化熱処理)、および[8]第3熱処理(時効熱処理)の各工程を順次行うことを含む製造方法によって製造することができる。なお、第2熱処理前後、または時効熱処理の後に、撚り線とする工程や電線に樹脂被覆を行う工程を設けてもよい。以下、[1]~[8]の工程について説明する。
[1]溶解
 溶解は、上述したアルミニウム合金組成になるように各成分の分量を調整して溶製する。
[2]鋳造および[3]熱間加工(溝ロール加工など)
 次いで、鋳造輪とベルトを組み合わせたプロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で鋳造し、連続して圧延を行い、例えば直径5~13mmφの適宜の太さの棒材とする。このときの鋳造時の冷却速度は、0.1~5.0℃/sであり、好ましくは0.1~1.0℃/である。鋳造時の冷却速度が0.1℃/s未満であると、鋳造時冷却速度が遅すぎるため、所定面積中に存在する粒径0.5~5.0μmのFe系化合物数(個/10000μm)が多くなり過ぎて、強度が低下する。一方、鋳造時の冷却速度が5.0℃/sを超える場合には、後述する溶体化熱処理(第2熱処理)時の昇温速度が、室温~550℃までの間で20℃/sよりも大きいと、鋳造時の冷却速度および溶体化熱処理時の昇温速度が速すぎるため、所定面積中に存在する粒径0.5~5.0μmのFe系化合物数が少なくなり、結晶粒が粗大化して異常成長粒が生成しやすくなる結果、衝撃耐久性や、圧着部の電線圧着性が低下する。このため、本発明では、鋳造時の冷却速度が5.0℃/sを超える場合には、第2熱処理時の昇温速度を、室温~550℃までの間で20℃/s以下に制限することとした。この鋳造及び熱間圧延は、ビレット鋳造及び押出法などにより行ってもよい。
[4]第1伸線加工
 次いで、表面の皮むきを実施して、例えば直径5mm~12.5mmφの適宜の太さの棒材とし、これを冷間で伸線加工する。加工度ηは、1~6の範囲であることが好ましい。ここで加工度ηは、伸線加工前の線材断面積をA、伸線加工後の線材断面積をAとすると、η=ln(A/A)で表される。加工度ηが1未満だと、次工程の熱処理時、再結晶粒が粗大化し、引張強度及び伸びが著しく低下し、断線の原因になるおそれがある。また、加工度ηが6よりも大きいと、伸線加工が困難となり、伸線加工中に断線するなど品質の面で問題を生ずるおそれがあるからである。表面の皮むきは、行うことによって表面の清浄化がなされるが、行わなくてもよい。
[5]第1熱処理(中間熱処理)
 次に、冷間伸線した被加工材に第1熱処理を施す。この第1熱処理は、具体的には、300~480℃の範囲内で所定温度まで加熱し、保持時間0.05~6時間で保持する。本発明の第1熱処理は、被加工材の柔軟性を取り戻し、伸線加工性を高めるために行うものである。伸線加工性が十分であり、断線が生じなければ第1熱処理は行わなくてもよい。
[6]第2伸線加工
 上記第1熱処理の後、さらに冷間で伸線加工を施す。この際の加工度ηは1~6の範囲が好ましい。加工度ηは、再結晶粒の形成及び成長に影響を及ぼす。加工度ηが1よりも小さいと、次工程の熱処理時、再結晶粒が粗大化し、引張強度及び伸びが著しく低下する傾向があり、また、加工度ηが6よりも大きいと、伸線加工が困難となり、伸線加工中に断線するなど品質の面で問題を生ずる傾向があるからである。なお、第1熱処理を行わない場合、第1伸線加工と第2伸線加工は連続で行ってもよい。
[7]第2熱処理(溶体化熱処理)
 伸線加工した加工材に第2熱処理を施す。本発明の第2熱処理は、ランダムに含有されているMgとSiの化合物をアルミニウム母相中に溶け込ませるために行う溶体化熱処理である。溶体化処理は、加工中にMgやSiの濃化部分をならす(均質化する)ことができ、最終的な時効熱処理後でのMgとSiの化合物の粒界偏析の抑制につながる。第2熱処理は、具体的には、上記鋳造時の冷却速度が5℃/sを超える場合、室温~550℃までの間では昇温速度20℃/s以下で、480~620℃の範囲内の所定温度まで加熱し、保持し、その後、急冷する熱処理である。鋳造時の冷却速度が5℃/sを超え、且つ第2熱処理における昇温速度が20℃/sを超える場合、鋳造時冷却速度あるいは溶体化熱処理時の昇温速度が速すぎるため、所定面積中に存在する粒径0.5~5.0μmのFe系化合物数が少なくなり、結晶粒が粗大化して異常成長粒が生成し、衝撃耐久性が低下する。また、第2熱処理の加熱時の所定温度が620℃よりも高いと、結晶粒が粗大化し、同所定温度が480℃よりも低いと、Fe系化合物を分散して析出させることができない。なお、本発明における異常成長粒とは、線径に対して1~2個程度の粗大化した結晶粒であり、直径が50μm以上であるものを指す。したがって、第2熱処理における加熱時の所定温度は480~620℃の範囲とし、好ましくは520~580℃の範囲とする。一方、上記鋳造時の冷却速度が0.1~5℃/sである場合、第2熱処理時における昇温速度の範囲は特に制限されないが、例えば5~80℃/sである。
 第2熱処理を行う方法としては、例えば、高周波加熱でも、通電加熱、走間加熱などの連続熱処理でもよい。
 高周波加熱や通電加熱を用いた場合、通常は線材に電流を流し続ける構造になっているため、時間の経過とともに線材温度が上昇する。そのため、電流を流し続けると線材が溶融してしまう可能性があるので、適正な時間範囲にて熱処理を行う必要がある。走間加熱を用いた場合においても、短時間の焼鈍であるため、通常、走間焼鈍炉の温度は線材温度より高く設定される。長時間の熱処理では線材が溶融してしまう可能性があるため、適正な時間範囲にて熱処理を行う必要がある。以下、各方法による熱処理を説明する。
 高周波加熱による連続熱処理は、高周波による磁場中を線材が連続的に通過することで、誘導電流によって線材自体から発生するジュール熱により熱処理するものである。急熱、急冷の工程を含み、線材温度と熱処理時間で制御し線材を熱処理することができる。冷却は、急熱後、水中又は窒素ガス雰囲気中に線材を連続的に通過させることによって行う。この熱処理時間は0.01~2s、好ましくは0.05~1s、より好ましくは0.05~0.5sで行う。
 連続通電熱処理は、2つの電極輪を連続的に通過する線材に電流を流すことによって線材自体から発生するジュール熱により熱処理するものである。急熱、急冷の工程を含み、線材温度と熱処理時間で制御し線材を熱処理することができる。冷却は、急熱後、水中、大気中又は窒素ガス雰囲気中に線材を連続的に通過させることによって行う。この熱処理時間は0.01~2s、好ましくは0.05~1s、より好ましくは0.05~0.5sで行う。
 連続走間熱処理は、高温に保持した熱処理炉中を線材が連続的に通過して熱処理させるものである。急熱、急冷の工程を含み、熱処理炉内温度と熱処理時間で制御し線材を熱処理することができる。冷却は、急熱後、水中、大気中又は窒素ガス雰囲気中に線材を連続的に通過させることによって行う。この熱処理時間は好ましくは0.5~30sで行う。
 線材温度又は熱処理時間の一方又は両方が上記で定義される条件より低い場合は、溶体化が不完全になりFe系化合物の析出が少なくなり、引張強度、耐衝撃性の向上幅が小さくなる。線材温度又は焼鈍時間の一方又は両方が上記で定義される条件より高い場合は、結晶粒が粗大化するとともに、アルミニウム合金導体中の化合物相の部分溶融(共晶融解)が起こり、引張強度、伸びが低下し、導体線の取り扱い時に断線が起こりやすくなる。
[8]第3熱処理(時効熱処理)
 次いで、第3熱処理を施す。この第3熱処理は、針状のMgSi析出物を析出させ、引張強度を向上させるために行う。時効熱処理における加熱温度は、100~250℃、加熱時間は、0.5~15時間である。前記加熱温度が100℃未満であると、針状のMgSi析出物を十分に析出させることができず、強度、耐屈曲疲労特性および導電率が不足しがちである。また、前記加熱温度が250℃よりも高いと、MgSi析出物のサイズが大きくなるため、導電率は上昇するが、強度および耐屈曲疲労特性が不足しがちである。
 本発明のアルミニウム合金導体線は、素線径を、特に制限はなく用途に応じて適宜定めることができるが、細物線の場合は0.1~0.5mmφ、中細物線の場合は0.8~1.5mmφが好ましい。本発明のアルミニウム合金導体線は、アルミニウム合金線として、単線で細くして使用できることが利点の一つであるが、複数本束ねて撚り合わせて得られるアルミニウム合金撚線として使用することもでき、本発明の製造方法を構成する上記[1]~[8]の工程のうち、[1]~[6]の各工程を順次行ったアルミニウム合金線を複数本に束ねて撚り合わせた後に、[7]第2熱処理および[8]時効熱処理の工程を行ってもよい。
 また、本発明では、さらに追加の工程として、連続鋳造圧延後に、従来法で行われているような均質化熱処理を行なうことも可能である。均質化熱処理は、添加元素の析出物(主にMg-Si系化合物)を均一に分散させることができるため、その後の第1熱処理にて均一な結晶組織が得られやすくなる結果、引張強度、伸び、耐力値の向上がより安定して得られる。均質化熱処理は、加熱温度を450℃~600℃、加熱時間を1~10時間にて行なうことが好ましく、より好ましくは500~600℃である。また、均質化加熱処理における冷却は、0.1~10℃/分の平均冷却速度で徐冷することが、均一な化合物が得られやすくなる点で好ましい。
 本発明を以下の実施例に基づき詳細に説明する。なお本発明は、以下に示す実施例に限定されるものではない。
(実施例、比較例)
 Mg、Si、Fe及びAlと、選択的に添加するTi、B、Mn、Cr、Cu、Co、NiおよびZrを、表1に示す含有量(質量%)になるようにプロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で連続的に鋳造しながら圧延を行い、約9.5mmφの棒材とした。このときの鋳造時の冷却速度はそれぞれ表2に示す値とした。これを所定の伸線度が得られるように第1伸線加工を施した。次に、この第1伸線加工を施した加工材に、300~480℃、0.05~6時間で第1熱処理を施し、さらに0.31mmφの線径まで第2伸線加工を行った。次に、それぞれ表2に示す昇温温度、最高到達温度480~620℃で第2熱処理を施した。第1熱処理における、バッチ式熱処理では、線材に熱電対を巻きつけて線材温度を測定した。第1、第2熱処理における連続走間熱処理では、熱処理区間出口付近の線材温度を測定した。第2熱処理後に、100~250℃、0.05~12時間で時効熱処理を施し、仕上げ径0.1~1.5mmφのアルミニウム合金線を製造した。
 作製した各々の実施例及び比較例のアルミニウム合金線について以下に示す方法により各特性を測定した。その結果を表2に示す。なお、表2における「合金No.」の欄に記載されている数字は、表1における合金No.1~17に対応している。
(A)粒径が0.5~5.0μmであり、かつFeを含有する化合物の密度の測定
 実施例及び比較例のアルミニウム合金導体線をFIB法にて薄膜にし、走査型電子顕微鏡(SEM)を用いて、観察倍率500~5000倍で、10000μmの範囲を観察した。この観察範囲において、粒径が0.5~5.0μmであり、かつFeを含有する化合物の個数を数えて密度(個/μm)とした。なお、粒子の粒径は、観察された粒子の面積を円等価に換算した際の直径(円相当径)で評価した。
(B)圧着部の電線圧着性の評価
 アルミニウム合金線の端部に端子を圧着し、圧着前に対する圧着後のアルミニウム合金導体線の塑性変形量を測定し、塑性変形量が55~65%である場合を合格レベルとし、55%未満、あるいは65%を超えた場合を不合格レベルとした。
(C)強度(YS)(0.2%耐力)の測定
 JIS Z 2241に準じて各3本ずつの供試材(アルミニウム合金線)について引張試験を行い、その後、0.2%耐力を算出し、その平均値を求めた。強度は、電線と端子の接続部における圧着部の強度を保つため、80MPa以上を合格レベルとし、80MPa未満を不合格レベルとした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、次のことが明らかである。発明例1~25のアルミニウム合金線は、いずれも良好な強度を有するとともに、電線圧着性が優れていた。これに対し、比較例1~4、6~9、13~16、18および20~23のアルミニウム合金線は、いずれも鋳造時の冷却速度が0.1℃/s未満と本発明の範囲外であり、粒径0.5~5.0μmであるFe系化合物の密度が本発明の範囲外となり、強度が劣っていた。また、比較例5、10~12、17および19のアルミニウム合金線は、いずれも鋳造時の冷却速度が15℃/s以上でかつ溶体化熱処理時の昇温温度が50℃/s以上であって本発明の範囲外であり、前記Fe系化合物の密度が本発明の範囲外となり、圧着部の電線圧着性が劣っていた。
 本発明のアルミニウム合金導体線は、良好な強度を確保しつつ、電線圧着性を向上させた、電気配線体の導体として用いられるアルミニウム合金導体線、アルミニウム合金撚線、被覆電線、ワイヤーハーネスを提供すること、およびアルミニウム合金導体線の製造方法を提供することが可能になり、移動体に搭載されるバッテリーケーブル、ハーネスあるいはモータ用導線、産業用ロボットの配線体として有用である。さらに、本発明のアルミニウム合金導体線は、強度が高いことから従来の電線よりも電線径を細くすることが可能である。

Claims (11)

  1.  Mgを0.1~1.0質量%、Siを0.1~1.20質量%およびFeを0.01~1.40質量%、Tiを0~0.100質量%、Bを0~0.030質量%、Cuを0~1.00質量%、Agを0~0.50質量%、Auを0~0.50質量%、Mnを0~1.00質量%、Crを0~1.00質量%、Zrを0~0.50質量%、Hfを0~0.50質量%、Vを0~0.50質量%、Scを0~0.50質量%、Coを0~0.50質量%およびNiを0~0.50質量%含有し、残部がAlおよび不可避不純物である組成(ただし、上記Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiは、いずれか1成分以上含有させてもよいし、いずれの成分とも含有させなくてもよい任意添加成分である。)を有し、
     粒径が0.5~5.0μmであり、且つFeを含有する化合物の密度が、1~300個/10000μmであることを特徴とするアルミニウム合金導体線。
  2.  前記化学組成が、Ti:0.001~0.100質量%およびB:0.001~0.030質量%からなる群から選択された1種または2種を含有する請求項1に記載のアルミニウム合金導体線。
  3.  前記化学組成が、Cu:0.01~1.00質量%、Ag:0.01~0.50質量%、Au:0.01~0.50質量%、Mn:0.01~1.00質量%、Cr:0.01~1.00質量%、Zr:0.01~0.50質量%、Hf:0.01~0.50質量%、V:0.01~0.50質量%、Sc:0.01~0.50質量%、Co:0.01~0.50質量%、およびNi:0.01~0.50質量%からなる群から選択された1種または2種以上を含有する請求項1または2に記載のアルミニウム合金導体線。
  4.  前記化学組成が、Ni:0.01~0.50質量%を含有する請求項1~3のいずれか1項に記載のアルミニウム合金導体線。
  5.  Fe、Ti、B、Cu、Ag、Au、Mn、Cr、Zr、Hf、V、Sc、CoおよびNiの含有量の合計が0.01~2.00質量%である、請求項1~4のいずれか1項に記載のアルミニウム合金導体線。
  6.  素線の直径が0.1~1.5mmであるアルミニウム合金線である請求項1~5のいずれか1項に記載のアルミニウム合金導体線。
  7.  請求項6に記載のアルミニウム合金線を複数本撚り合わせて得られるアルミニウム合金撚線。
  8.  請求項6に記載のアルミニウム合金線または請求項7に記載のアルミニウム合金撚線の外周に被覆層を有する被覆電線。
  9.  請求項8に記載の被覆電線と、該被覆電線の、前記被覆層を除去した端部に装着された端子とを具えるワイヤーハーネス。
  10.  溶解、鋳造後に、熱間加工を経て荒引線を形成し、その後、少なくとも伸線加工、溶体化熱処理および時効熱処理の各工程を行うアルミニウム合金導体線の製造方法であって、
     前記鋳造時の冷却速度を0.1~5℃/sとすること
    を特徴とする、請求項1~6のいずれか1項に記載のアルミニウム合金導体線の製造方法。
  11.  溶解、鋳造後に、熱間加工を経て荒引線を形成し、その後、少なくとも伸線加工、溶体化熱処理および時効熱処理の各工程を行うアルミニウム合金導体線の製造方法であって、
     前記鋳造時の冷却速度を5℃/sを超える値とし、且つ前記溶体化熱処理時の昇温温度を、室温~550℃の間で20℃/s以下とすることを特徴とする、請求項1~6のいずれか1項に記載のアルミニウム合金導体線の製造方法。
PCT/JP2015/065147 2014-05-26 2015-05-26 アルミニウム合金導体線、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体線の製造方法 WO2015182624A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020167030605A KR101982913B1 (ko) 2014-05-26 2015-05-26 알루미늄 합금 도체선, 알루미늄 합금 연선, 피복 전선, 와이어 하니스 및 알루미늄 합금 도체선의 제조 방법
JP2016523517A JP6678579B2 (ja) 2014-05-26 2015-05-26 アルミニウム合金線及びアルミニウム合金線の製造方法
EP15799045.8A EP3150732B1 (en) 2014-05-26 2015-05-26 Aluminum alloy conductor wire, aluminum alloy twisted wire, sheathed electrical cable, wire harness, and method for manufacturing aluminum alloy conductor wire
CN201580022053.6A CN106574329A (zh) 2014-05-26 2015-05-26 铝合金导线、铝合金绞线、包覆电线、线束及铝合金导线的制造方法
US15/353,375 US9875822B2 (en) 2014-05-26 2016-11-16 Aluminum alloy conductor wire, aluminum alloy stranded wire, coated wire, wire harness and method of manufacturing aluminum alloy conductor wire
US15/847,199 US10553327B2 (en) 2014-05-26 2017-12-19 Aluminum alloy conductor wire, aluminum alloy stranded wire, coated wire, wire harness and method of manufacturing aluminum alloy conductor wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014107698 2014-05-26
JP2014-107698 2014-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/353,375 Continuation US9875822B2 (en) 2014-05-26 2016-11-16 Aluminum alloy conductor wire, aluminum alloy stranded wire, coated wire, wire harness and method of manufacturing aluminum alloy conductor wire

Publications (1)

Publication Number Publication Date
WO2015182624A1 true WO2015182624A1 (ja) 2015-12-03

Family

ID=54698949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065147 WO2015182624A1 (ja) 2014-05-26 2015-05-26 アルミニウム合金導体線、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体線の製造方法

Country Status (6)

Country Link
US (1) US9875822B2 (ja)
EP (1) EP3150732B1 (ja)
JP (1) JP6678579B2 (ja)
KR (1) KR101982913B1 (ja)
CN (1) CN106574329A (ja)
WO (1) WO2015182624A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190292632A1 (en) * 2016-10-31 2019-09-26 Sumitomo Electric Industries, Ltd. Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
JP2020050901A (ja) * 2018-09-26 2020-04-02 矢崎総業株式会社 アルミニウム合金電線の製造方法、アルミニウム合金電線及びワイヤーハーネス
EP3708693A4 (en) * 2017-12-06 2021-03-24 Fujikura Ltd. METHOD FOR MANUFACTURING A WIRE FROM AN ALUMINUM ALLOY, METHOD FOR MANUFACTURING AN ELECTRICAL WIRE THEREOF, AND METHOD FOR MANUFACTURING A CABLE HARNESS

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821253B (zh) * 2016-03-25 2017-06-23 中南大学 一种加铁的轻质高导耐热铝导线及其制备工艺
JP6927685B2 (ja) * 2016-10-25 2021-09-01 矢崎総業株式会社 アルミニウム素線、並びにそれを用いたアルミニウム電線及びワイヤーハーネス
CN107326233A (zh) * 2017-07-04 2017-11-07 合肥市大卓电力有限责任公司 用于制造电力电缆连接金具的铝合金材料及其制备方法
CN107267819A (zh) * 2017-07-04 2017-10-20 合肥市大卓电力有限责任公司 一种用于电线电缆的合金材料及其制备方法
CN107983937A (zh) * 2017-11-29 2018-05-04 铜陵市东方矿冶机械有限责任公司 铝合金芯电缆的制备方法
KR102453822B1 (ko) * 2017-12-20 2022-10-13 현대자동차주식회사 플렉서블 플랫 케이블 도체 및 이의 제조방법과 이를 이용한 플렉서블 플랫 케이블
CN108374111B (zh) * 2018-03-25 2020-02-07 帅翼驰铝合金新材料(重庆)有限公司 一种高强度耐腐蚀铝合金建筑材料及其生产方法
US20200232071A1 (en) * 2019-01-18 2020-07-23 Divergent Technologies, Inc. Aluminum alloys
US20220220587A1 (en) * 2020-12-21 2022-07-14 Divergent Technologies, Inc. Aluminum alloys and structures

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125356A (ja) * 1983-12-09 1985-07-04 Furukawa Electric Co Ltd:The 高力アルミニウム合金導体の製造方法
JP2004134212A (ja) * 2002-10-10 2004-04-30 Furukawa Electric Co Ltd:The 自動車ワイヤハーネス用アルミ電線
WO2010018646A1 (ja) * 2008-08-11 2010-02-18 住友電気工業株式会社 アルミニウム合金線
WO2011052644A1 (ja) * 2009-10-30 2011-05-05 住友電気工業株式会社 アルミニウム合金線
WO2012141041A1 (ja) * 2011-04-11 2012-10-18 住友電気工業株式会社 アルミニウム合金線およびそれを用いたアルミニウム合金撚り線、被覆電線、ワイヤーハーネス
JP2013044038A (ja) * 2011-08-25 2013-03-04 Furukawa Electric Co Ltd:The アルミニウム合金導体
WO2013147270A1 (ja) * 2012-03-29 2013-10-03 古河電気工業株式会社 アルミニウム合金線およびその製造方法
WO2014155820A1 (ja) * 2013-03-29 2014-10-02 古河電気工業株式会社 アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843418A (en) * 1970-07-23 1974-10-22 Sumitomo Chemical Co Aluminum alloys for electrical conductors and method thereof
JPS5347780B2 (ja) 1972-12-22 1978-12-23
JPS5536590B2 (ja) 1972-12-22 1980-09-22
FR2312839A1 (fr) * 1975-05-28 1976-12-24 Pechiney Aluminium Conducteurs electriques ameliores en alliages al-mg-si, en particulier pour cables aeriens de transport d'energie, et procede d'obtention
DD200231A1 (de) * 1981-08-13 1983-03-30 Bruno Beyer Al-leitdraht mit erhoehter festigkeit und verfahren zu seiner herstellung
US20030143102A1 (en) * 2001-07-25 2003-07-31 Showa Denko K.K. Aluminum alloy excellent in cutting ability, aluminum alloy materials and manufacturing method thereof
US7491891B2 (en) * 2004-05-19 2009-02-17 Sumitomo (Sei) Steel Wire Corp. Composite wire for wire-harness and process for producing the same
DE102005032544B4 (de) * 2004-07-14 2011-01-20 Hitachi Powdered Metals Co., Ltd., Matsudo Abriebsresistente gesinterte Aluminiumlegierung mit hoher Festigkeit und Herstellugsverfahren hierfür
JP4927366B2 (ja) * 2005-02-08 2012-05-09 古河電気工業株式会社 アルミニウム導電線
JP5128109B2 (ja) * 2006-10-30 2013-01-23 株式会社オートネットワーク技術研究所 電線導体およびその製造方法
EP2098604A4 (en) * 2006-12-13 2014-07-23 Sumitomo Light Metal Ind HIGH SOLID ALUMINUM ALLOY PRODUCTS AND MANUFACTURING METHOD THEREFOR
JP4646998B2 (ja) * 2008-08-11 2011-03-09 住友電気工業株式会社 アルミニウム合金線
JP4777487B1 (ja) * 2008-08-11 2011-09-21 住友電気工業株式会社 アルミニウム合金線の製造方法
JP2010163677A (ja) 2009-01-19 2010-07-29 Furukawa Electric Co Ltd:The アルミニウム合金線材
CN102264929A (zh) * 2009-01-19 2011-11-30 古河电气工业株式会社 铝合金线材
JP2010163676A (ja) 2009-01-19 2010-07-29 Furukawa Electric Co Ltd:The アルミニウム合金線材
JP5354815B2 (ja) * 2009-07-06 2013-11-27 矢崎総業株式会社 電線又はケーブル
JP4986251B2 (ja) 2010-02-26 2012-07-25 古河電気工業株式会社 アルミニウム合金導体
EP2540849B1 (en) 2010-02-26 2017-10-18 Furukawa Electric Co., Ltd. Aluminum alloy conductor
JP5193375B2 (ja) * 2010-07-15 2013-05-08 古河電気工業株式会社 アルミニウム合金導体の製造方法
JP5897430B2 (ja) * 2012-08-30 2016-03-30 株式会社Uacj ラミネート後の成形性に優れたアルミニウム合金箔とその製造方法、および該アルミニウム合金箔を用いたラミネート箔
CN103572103A (zh) * 2013-11-05 2014-02-12 吴高峰 用于制造导线的铝合金材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125356A (ja) * 1983-12-09 1985-07-04 Furukawa Electric Co Ltd:The 高力アルミニウム合金導体の製造方法
JP2004134212A (ja) * 2002-10-10 2004-04-30 Furukawa Electric Co Ltd:The 自動車ワイヤハーネス用アルミ電線
WO2010018646A1 (ja) * 2008-08-11 2010-02-18 住友電気工業株式会社 アルミニウム合金線
WO2011052644A1 (ja) * 2009-10-30 2011-05-05 住友電気工業株式会社 アルミニウム合金線
WO2012141041A1 (ja) * 2011-04-11 2012-10-18 住友電気工業株式会社 アルミニウム合金線およびそれを用いたアルミニウム合金撚り線、被覆電線、ワイヤーハーネス
JP2013044038A (ja) * 2011-08-25 2013-03-04 Furukawa Electric Co Ltd:The アルミニウム合金導体
WO2013147270A1 (ja) * 2012-03-29 2013-10-03 古河電気工業株式会社 アルミニウム合金線およびその製造方法
WO2014155820A1 (ja) * 2013-03-29 2014-10-02 古河電気工業株式会社 アルミニウム合金導体、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金導体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3150732A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190292632A1 (en) * 2016-10-31 2019-09-26 Sumitomo Electric Industries, Ltd. Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
US10822676B2 (en) * 2016-10-31 2020-11-03 Sumitomo Electric Industries, Ltd. Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
EP3708693A4 (en) * 2017-12-06 2021-03-24 Fujikura Ltd. METHOD FOR MANUFACTURING A WIRE FROM AN ALUMINUM ALLOY, METHOD FOR MANUFACTURING AN ELECTRICAL WIRE THEREOF, AND METHOD FOR MANUFACTURING A CABLE HARNESS
US11951533B2 (en) 2017-12-06 2024-04-09 Fujikura Ltd. Method of manufacturing aluminum alloy wire, method of manufacturing electric wire and method of manufacturing wire harness using the same
JP2020050901A (ja) * 2018-09-26 2020-04-02 矢崎総業株式会社 アルミニウム合金電線の製造方法、アルミニウム合金電線及びワイヤーハーネス

Also Published As

Publication number Publication date
JPWO2015182624A1 (ja) 2017-04-20
EP3150732B1 (en) 2021-08-18
KR101982913B1 (ko) 2019-05-27
JP6678579B2 (ja) 2020-04-08
EP3150732A1 (en) 2017-04-05
CN106574329A (zh) 2017-04-19
US20170069403A1 (en) 2017-03-09
US9875822B2 (en) 2018-01-23
KR20170009842A (ko) 2017-01-25
EP3150732A4 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
JP5607855B1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP6462662B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、およびアルミニウム合金線材の製造方法
JP5607854B1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP5607853B1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP6678579B2 (ja) アルミニウム合金線及びアルミニウム合金線の製造方法
JP6499190B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
JP6782168B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネス、ならびにアルミニウム合金線材の製造方法
JP6782169B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材の製造方法
JP5607856B1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法
WO2016088887A1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネスならびにアルミニウム合金線材の製造方法
JP6147167B2 (ja) アルミニウム合金導体、アルミニウム合金撚線、被覆電線およびワイヤーハーネス
JP6440476B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネス、ならびにアルミニウム合金線材の製造方法
US10553327B2 (en) Aluminum alloy conductor wire, aluminum alloy stranded wire, coated wire, wire harness and method of manufacturing aluminum alloy conductor wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167030605

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016523517

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015799045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015799045

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE