WO2014033783A1 - 分光器および分光測定方法 - Google Patents

分光器および分光測定方法 Download PDF

Info

Publication number
WO2014033783A1
WO2014033783A1 PCT/JP2012/005488 JP2012005488W WO2014033783A1 WO 2014033783 A1 WO2014033783 A1 WO 2014033783A1 JP 2012005488 W JP2012005488 W JP 2012005488W WO 2014033783 A1 WO2014033783 A1 WO 2014033783A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
light
filter
color
wavelength
Prior art date
Application number
PCT/JP2012/005488
Other languages
English (en)
French (fr)
Inventor
甲二 埴原
Original Assignee
パイオニア株式会社
パイオニア・マイクロ・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニア・マイクロ・テクノロジー株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/005488 priority Critical patent/WO2014033783A1/ja
Priority to JP2014532570A priority patent/JP5898771B2/ja
Publication of WO2014033783A1 publication Critical patent/WO2014033783A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/1234Continuously variable IF [CVIF]; Wedge type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/2806Array and filter array

Definitions

  • the present invention relates to a spectroscope and a spectroscopic measurement method for measuring the intensity distribution of each wavelength in incident light.
  • this type of spectroscope has been known that includes a transmission wavelength tunable interference filter composed of a substrate and multiple films, and a plurality of light receiving elements that receive light that has passed through the transmission wavelength tunable interference filter ( Patent Document 1).
  • This transmission wavelength variable interference filter has a structure in which the thickness of the multilayer film is continuously increased as it proceeds in the direction in which the plurality of light receiving elements are arranged.
  • the transmission wavelength variable interference filter functions as a plurality of filter sections having transmission peaks at the wavelengths of the respective colors, and the plurality of light receiving elements respectively receive incident light that has passed through the plurality of filter sections. And based on the output value of a some light-receiving part, the intensity distribution of the wavelength of each color is calculated.
  • the wavelength intensity of an arbitrary color is calculated based on the output value of the corresponding single light receiving unit.
  • the transmission characteristics as shown in FIG. 8A are obtained in each filter unit, so that the output value (photocurrent value) of the light receiving unit of each color and the wavelength intensity of each color are in a proportional relationship. It is in. For this reason, the output value of each light receiving unit is corrected with a predetermined coefficient to calculate the wavelength intensity of each color.
  • the ideal transmission characteristics as shown in FIG. 8A cannot be obtained.
  • the transmission characteristics as shown in FIG. 8B (the characteristics when air / HLHL4HLHLH / substrate is used).
  • “L” is the unit thickness of the low-refractive material
  • “H” is the unit thickness of the high-refractive material
  • the spectroscope of the present invention is a spectroscope that measures the intensity distribution of the wavelength of each color of n (n ⁇ 1) in incident light, and includes n filter units each having a transmission peak at the wavelength of each color of n color, It is obtained by making each incident incident light that has passed through n filter parts and n kinds of light receiving parts each receiving a photocurrent value and n kinds of calibration light having different specific intensity distributions.
  • a storage unit that stores a correction matrix obtained by converting a coefficient matrix of a transmission coefficient for each filter unit and each color into an inverse matrix, and a multiplication process of each photocurrent value of each of the n light receiving units and the correction matrix, And a calculation unit for calculating an intensity distribution.
  • the spectroscopic measurement method of the present invention uses a spectroscope including n filter units and n light receiving units each having a transmission peak at a wavelength of each of n (n ⁇ 1) colors, and each color of n colors in incident light.
  • a spectroscopic measurement method for measuring an intensity distribution of wavelengths which is different from a light receiving step of receiving incident light that has passed through n filter parts and outputting a photocurrent value by n light receiving parts.
  • a calculation step of calculating an intensity distribution is performed by multiplying each photocurrent value of each light receiving unit by a correction matrix.
  • the intensity distribution of the wavelength of each color is calculated. That is, by calculating the wavelength intensity of each color based on the output value (photocurrent value) of all the light receiving parts and the correction matrix, not only the transmission characteristics of the color components that become the transmission peak but also the transmission characteristics of the color components of all colors.
  • the wavelength intensity (intensity distribution) of each color can be calculated in consideration of the output values of other light receiving units.
  • the spectrometer can be reduced in size.
  • the n kinds of calibration light are monochromatic lights having wavelengths of n colors.
  • the transmission coefficient (coefficient matrix) for each filter unit and for each color can be obtained with high accuracy.
  • the intensity distribution can be measured with higher accuracy.
  • the n filter parts are constituted by an integral transmission wavelength variable interference filter.
  • the transmission wavelength variable interference filter is formed by sputtering a multi-layer in which high refractive index materials and low refractive index materials are alternately laminated through mask members having different aperture ratios for the respective light receiving portions.
  • the intensity distribution can be measured with higher accuracy.
  • a spectroscope and a spectroscopic measurement method according to an embodiment of the present invention will be described with reference to the accompanying drawings.
  • This spectrometer is a small semiconductor package created by semiconductor manufacturing technology.
  • the spectroscope is a non-movable analyzer that measures an intensity distribution (an electromagnetic spectrum of light) in 18 wavelength regions obtained by dividing the visible light region into 18 regions. That is, the intensity distribution of the wavelength of each of the 18 colors in the incident light (inspection light) is measured.
  • this spectroscope achieves high accuracy and miniaturization by advanced correction calculation.
  • the spectroscope 1 deflects incident light 11 having a light shielding structure that forms an incident port 11a, a diffusion plate 12 that diffuses incident light from the incident port 11a, and diffused incident light. Molded on the light guide plate 13, the collimator lens array 14 that converts the deflected incident light into parallel light, the light receiving element array 15 that forms 18 light receiving elements 25 that receive the parallel light, and the 18 light receiving elements 25.
  • the transmission wavelength variable interference filter 16 and the control unit 17 that measures the intensity distribution of each wavelength based on the output values (photocurrent values) of the 18 light receiving elements 25 are provided. Incident light from the entrance 11 a is diffused by the diffusion plate 12, deflected by the light guide plate 13, and guided to 18 light receiving elements 25 through the collimator lens array 14 and the transmission wavelength variable interference filter 16. .
  • the light receiving element array 15 includes a photodiode array, and includes a P + substrate 21, a P-EPI substrate 22 disposed on the P + substrate 21, and an N-EPI layer formed on the P-EPI substrate 22. 23, and a plurality of N + layers 24 formed side by side on the N-EPI layer 23.
  • the light receiving element array 15 constitutes 18 light receiving elements (light receiving portions) 25 for each of the N + layers 24 arranged in parallel.
  • Each light receiving element 25 converts the received incident light to obtain a photocurrent value (output value). Then, this photocurrent value is output to the control unit 17.
  • the transmission wavelength variable interference filter 16 is composed of multiple layers in which high refractive materials (for example, TiO 2 ) and low refractive materials (for example, SiO 2 ) are alternately stacked.
  • the transmission wavelength variable interference filter 16 is formed with 18 filter portions 28 having different transmission peaks by forming the multiple layers gradually thicker in the direction in which the light receiving elements 25 are arranged.
  • the 18 filter units 28 correspond to the 18 light receiving elements 25, respectively, and the 18 light receiving elements 25 respectively receive incident light that has passed through the 18 filter units 28. Further, the 18 filter sections 28 have the 18 colors as transmission peaks.
  • the thickness of the multi-layer is increased stepwise for each light receiving element 25 (for each filter unit 28) in the direction in which the light receiving elements are arranged. As shown in FIG. 2B, the thickness of the multiple layers is gradually increased in an inclined direction toward the direction in which the light receiving elements 25 are arranged. Also good.
  • the transmission wavelength variable interference filter 16 is formed by sputtering the multi-layer on the light receiving element array 15 via the mask member M in a state where the mask member M is disposed on the light receiving element array 15. It consists of
  • the mask member M includes a mask body M1 and a spacer M2 that separates the mask body M1 and the light receiving element array 15 by a predetermined distance.
  • the mask body M1 has openings M1a having different opening ratios for the respective light receiving elements 25.
  • the multiple layers are formed thicker than the light receiving element 25 in the opening M1a having a large aperture ratio, and the light receiving element is formed in the opening M1a having a small aperture ratio.
  • Multiple layers are formed thinner than 25. Thereby, the thickness of the multilayer is adjusted, and a plurality of filter portions 28 having different transmission peaks are formed.
  • control unit 17 includes a storage unit 31 that stores a correction matrix, and a calculation unit 32 that calculates an intensity distribution based on the output value of each light receiving element 25 and the correction matrix. .
  • the storage unit 31 is an EPROM (Erasable Programmable Read Only).
  • the correction matrix used when calculating the intensity distribution is stored.
  • the correction matrix is obtained by converting the coefficient matrix of the transmission coefficient for each filter unit 28 and for each color into an inverse matrix. Although details will be described later, the correction matrix is generated in advance in the calibration device 41 and stored in the storage unit 31.
  • the calculation unit 32 calculates the intensity distribution of the wavelengths of the respective colors based on the output values (photocurrent values) from the 18 light receiving elements 25 and the correction matrix stored in the storage unit 31. Specifically, as shown in FIG. 4, a column (I 1 ) of each photocurrent value output from the 18 light receiving elements 25 is stored in the correction matrix a ij (1 ⁇ i ⁇ 18, 1 ⁇ j ⁇ 18). , I 2 ,... I 18 ) to calculate the wavelength intensity distribution (P 1 , P 2 ,... P 18 ) of each color.
  • the spectroscope 1 stores a correction matrix in the storage unit 31 in advance (storage step), and each of the incident light (inspection light) is passed through each filter unit 28 by 18 light receiving elements 25. Light is received and the photocurrent value is output to the control unit 17 (light receiving step). Then, the calculation unit 32 calculates the wavelength intensities of the 18 colors based on the photocurrent values output from the 18 light receiving elements 25 and the correction matrix stored in the storage unit 31 (calculation step). . That is, the intensity distribution at each wavelength is measured.
  • the calibration device 41 of the spectrometer 1 is a device that calibrates the spectrometer 1. Specifically, the calibration device 41 generates a correction matrix for the spectrometer 1 and stores it in the storage unit 31 of the spectrometer 1. Device. The calibration device 41 sets the output values of the set unit 51 for setting the spectrometer 1, the light source unit 52 for entering the calibration light into the set spectrometer 1, and the 18 light receiving elements 25 when the calibration light is entered. And a calibration control unit 53 for generating a correction matrix.
  • the light source unit 52 includes a white light source 61 that emits white light and a calibration interference filter 62 that interferes with the white light and converts it into 18 kinds of calibration light.
  • the calibration interference filter 62 is composed of a movable high-performance wavelength variable interference filter.
  • the calibration interference filter 62 converts the white light from the white light source 61 into monochromatic light having the wavelengths of the 18 colors as 18 kinds of calibration light. That is, the calibration interference filter 62 converts white light into 18 types of calibration light having different specific intensity distributions.
  • the light source unit 52 generates the 18 kinds of calibration light by the white light source 61 and the calibration interference filter 62 and individually enters the spectrometer 1.
  • the calibration control unit 53 generates a correction matrix based on the output values of the 18 light receiving elements 25 when 18 types of calibration light are individually incident. Specifically, 18 types of calibration light are incident in a time-sharing manner, and output values (photocurrent values) in the 18 light receiving elements 25 at the time of each incidence are obtained. Then, based on each photocurrent value and the intensity distribution of each calibration light, a transmission coefficient of each color of each filter unit 28 and 18 colors is calculated, and a coefficient matrix b ij (1 ⁇ i ⁇ 18, 1 ⁇ j ⁇ ) is calculated. 18) (FIG. 6A). That is, determinants as shown in FIG. 6B are obtained by the incidence of each calibration light.
  • each column b i1 , b i2 ,... B i18 of the coefficient matrix is calculated from each photocurrent value I 1 , I 2 ... I 18 and the wavelength intensity P i of each calibration light. can do.
  • the calculated coefficient matrix b ij is converted into an inverse matrix to calculate a correction matrix a ij (FIG. 6C).
  • the calibration control unit 53 stores the calculated correction matrix in the storage unit 31 and ends the calibration (calibration).
  • the wavelength intensity (intensity distribution) of each color can be calculated by considering the transmission characteristics of the color components of all colors and taking the output values of the other light receiving elements 25 into consideration. Therefore, even if the output value of each light receiving element 25 is not proportional to the wavelength intensity of each color, the intensity distribution of each wavelength can be measured with high accuracy. Further, since the accuracy (error) on the filter unit 28 side is compensated on the control side, high accuracy is not required on the filter unit 28 side, and the intensity distribution can be accurately measured with a simple configuration. Therefore, the spectrometer 1 can be reduced in size.
  • the 18 kinds of calibration light are monochromatic lights having the wavelengths of the 18 colors, so that transmission coefficients (coefficient matrices) for each filter unit 28 and for each color can be obtained with high accuracy. As a result, the intensity distribution can be measured with higher accuracy.
  • the 18 filter sections 28 with the integral transmission wavelength variable interference filter 16, it is not necessary to mold each of the plurality of filter sections 28, and they can be molded integrally. Therefore, the plurality of filter portions 28 can be easily manufactured.
  • the transmission wavelength variable interference filter 16 it is necessary to provide a movable portion (for example, a movable shutter) on the mask member M by sputtering through the mask member M having a different aperture ratio for each light receiving element 25.
  • the transmission wavelength variable interference filter 16 can be formed in a short time.
  • the diffusion plate 12 and the light guide plate 13 are interposed between the incident portion 11 and the transmission wavelength variable interference filter 16, incident light is evenly received by the respective light receiving elements 25. It can measure with high accuracy.
  • the plurality of light receiving elements 25 are arranged side by side (in parallel).
  • the present invention is not limited to this.
  • positions the several light receiving element 25 in matrix form may be sufficient.
  • a configuration in which a plurality of light receiving elements 25 are arranged in a ring shape may be employed.
  • the correction matrix is stored in the storage unit 31, but the coefficient matrix is stored in the storage unit 31, and the calculation unit 32 converts the coefficient matrix into an inverse matrix to obtain a correction matrix. There may be.
  • the arrangement direction of the 18 light receiving elements 25 is outside the arrangement direction.
  • a configuration in which a spare light receiving element (not shown) is provided may be employed.
  • the correction matrix and the intensity distribution of the transmission wavelength variable interference filter 16 (multilayer) are replaced by the output value of the spare light receiving element ahead of the shift instead of the light receiving element 25 which has become unusable due to a shift in the molding position of the transmission wavelength variable interference filter 16 (multilayer). Perform the calculation.
  • the incident light inspection light
  • the incident light includes the ultraviolet region and the infrared region. If this is the case, countermeasures are necessary. Therefore, in the present embodiment, for example, an infrared cut filter may be overcoated on the transmission wavelength variable interference filter 16 in order to prevent the influence of the infrared region.
  • the light receiving element 25 corresponding to the ultraviolet region may be provided, and the correction matrix and the intensity distribution may be calculated in consideration of the photocurrent value of the light receiving element 25.
  • the 18 types of calibration light are the single color light of each of the 18 colors, but the 18 types of calibration light are not limited to this as long as they have different specific intensity distributions. Absent. That is, if the intensity distribution is known and the intensity distribution is different among the 18 types of calibration light, a coefficient matrix can be obtained from the determinant of FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 本発明は、各色の波長の強度分布を、簡単な構成で且つ精度良く測定することを課題としている。 本発明は、18色各色の波長をそれぞれ透過ピークとする18個のフィルター部28と、18個のフィルター部28を通過した入射光を、それぞれ受光して光電流値を出力する18個の受光素子25と、相違した特定の強度分布を有する18種の校正光を個々に入射させて得られたフィルター部28毎且つ色毎の透過係数の係数行列を、逆行列に変換して成る補正行列を記憶する記憶部31と、18個の受光部の各光電流値と補正行列との乗算処理によって、強度分布を算出する算出部32と、を備えたことを特徴とする。

Description

分光器および分光測定方法
 本発明は、入射光における各波長の強度分布を測定する分光器および分光測定方法に関するものである。
 従来、この種の分光器として、基板および多重膜から成る透過波長可変干渉フィルターと、透過波長可変干渉フィルターを通過した光を受光する複数の受光素子と、を備えたものが知られている(特許文献1参照)。この透過波長可変干渉フィルターは、複数の受光素子の並び方向に進むに従って、多層膜の厚みを連続的に厚くした構造となっている。すなわち、透過波長可変干渉フィルターが、各色の波長を透過ピークとする複数のフィルター部として機能し、複数の受光素子は、複数のフィルター部を通過した入射光をそれぞれ受光する。そして、複数の受光部の出力値に基づいて、各色の波長の強度分布を算出する。
特開平11-142752号公報
 ところで、このような構成では、任意の1色の波長強度を、対応する単一の受光部の出力値に基づいて算出している。すなわち、理想的には、各フィルター部において図8(a)に示すような透過特性が得られるので、各色の受光部の出力値(光電流値)と、当該各色の波長強度とが比例関係にある。そのため、各受光部の出力値を所定の係数で補正して、各色の波長強度を算出している。
 しかしながら、実際には、図8(a)のような理想的な透過特性が得られず、例えば、図8(b)に示すような透過特性(空気/HLHL4HLHLH/基板とした場合の特性。「L」は低屈折材料の単位厚さ、「H」は高屈折材料の単位厚さ、「4H」は単位厚さの4倍の厚さを表す。ただし、「屈折率」*「単位厚さ」=λ/4。λは、透過ピークの波長)が得られる。すなわち、必ずしも各受光部の出力値と、各色の波長強度とは比例関係とはならないので、上記の構成では、強度分布を精度良く得ることができないという問題があった。これに対し、各フィルター部を複雑化して精度を向上し、図8(a)に示した透過特性に極力近づけることも可能であるが、かかる場合、各フィルター部が複雑化または大型化してしまうという問題があった。これによって、分光器全体が大型化してしまう。
 本発明は、各色の波長の強度分布を、簡単な構成で且つ精度良く測定することができる分光器および分光測定方法を提供することを課題としている。
 本発明の分光器は、入射光におけるn(n≧1)色各色の波長の強度分布を測定する分光器であって、n色各色の波長をそれぞれ透過ピークとするn個のフィルター部と、n個のフィルター部を通過した入射光を、それぞれ受光して光電流値を出力するn個の受光部と、相違した特定の強度分布を有するn種の校正光を個々に入射させて得られたフィルター部毎且つ色毎の透過係数の係数行列を、逆行列に変換して成る補正行列を記憶する記憶部と、n個の受光部の各光電流値と補正行列との乗算処理によって、強度分布を算出する算出部と、を備えたことを特徴とする。
 本発明の分光測定方法は、n(n≧1)色各色の波長をそれぞれ透過ピークとするn個のフィルター部とn個の受光部とを備えた分光器により、入射光におけるn色各色の波長の強度分布を測定する分光測定方法であって、n個の受光部により、n個のフィルター部を通過した入射光を、それぞれ受光して光電流値を出力する受光ステップと、相違した特定の強度分布を有するn種の校正光を個々に入射させて得られたフィルター部毎且つ色毎の透過係数の係数行列を、逆行列に変換して成る補正行列を記憶する記憶ステップと、n個の受光部の各光電流値と補正行列との乗算処理によって、強度分布を算出する算出ステップと、を実行することを特徴とする。
 これらの構成によれば、n個の受光部の出力値と、フィルター部毎且つ色毎の透過係数の係数行列(透過率の波長依存性)に対する逆行列(補正行列)と、に基づいて、各色の波長の強度分布を算出する。すなわち、全受光部の出力値(光電流値)と補正行列とに基づいて各色の波長強度を算出することで、透過ピークとなる色成分の透過特性だけでなく全色の色成分の透過特性を加味し、また他の受光部の出力値も加味して、各色の波長強度(強度分布)を算出することができる。よって、各受光部の出力値と、各色の波長強度とが比例関係になくとも、各波長の強度分布を精度良く測定することができる。また、フィルター部側の精度(誤差)を、制御側で補う構成となるため、フィルター部側に高い精度を必要とせず、簡単な構成で精度良く強度分布を測定することができる。よって、分光器を小型化することができる。
 この場合、n種の校正光は、n色各色の波長の単色光であることが好ましい。
 この構成によれば、フィルター部毎且つ色毎の透過係数(係数行列)を精度良く得ることができる。その結果、より精度良く強度分布を測定することができる。
 また、n個のフィルター部は、一体の透過波長可変干渉フィルターにより構成されていることが好ましい。
 この構成によれば、複数のフィルター部をそれぞれ成形する必要がなく、一体に成形することができる。そのため、複数のフィルター部を容易に製造することができる。
 また、透過波長可変干渉フィルターは、高屈折率材料と低屈折率材料とを交互に積層した多重層を、各受光部に対する開口率が異なるマスク部材を介してスパッタリング成形して成ることが好ましい。
 この構成によれば、当該マスク部材を介してスパッタリング成形することで、各受光部に対し、異なる厚みで多重層が積層される。そのため、マスク部材に可動部(例えば可動シャッター)を設ける必要がなく、また短時間で透過波長可変干渉フィルターを成形することができる。
 一方、入射光を拡散する拡散板と、拡散した入射光を偏向して各受光部に導く導光板と、偏向した入射光を、平行光にするコリメーターレンズアレイと、を更に備えることが好ましい。
 この構成によれば、入射光が各受光部に均等に且つ垂直入射の平行光として受光されるため、強度分布をより精度良く測定することができる。
本実施形態に係る分光器を模式的に示した構成図である。 透過波長可変干渉フィルターを示した模式図である。 透過波長可変干渉フィルターの製造方法を示した模式図である。 強度分布の算出に係る行列式である。 分光器の校正装置を模式的に示した構成図である。 補正行列の算出に係る行列式である。 受光素子アレイの変形例を示した図である。 (a)は、フィルター部における理想的な透過特性を示した図である。(b)は、フィルター部における実際の透過特性を示した図である。
 以下、添付の図面を参照して、本発明の一実施形態に係る分光器および分光測定方法について説明する。本実施形態では、本発明を適用した分光器およびその校正装置を例示する。本分光器は、半導体製造技術で作成された小型の半導体パッケージである。また、本分光器は、非可動型で、可視光線領域を18分割した18個の波長域の強度分布(光の電磁波スペクトル)を測定する分析装置である。すなわち、入射光(検査光)における18色各色の波長の強度分布を測定する。特に、この分光器は、高度な補正演算により、高精度化および小型化を実現したものである。
 図1に示すように、分光器1は、入射口11aを形成する遮光構造を有した入射部11と、入射口11aからの入射光を拡散する拡散板12と、拡散した入射光を偏向する導光板13と、偏向した入射光を平行光にするコリメーターレンズアレイ14と、当該平行光を受光する18個の受光素子25を成す受光素子アレイ15と、18個の受光素子25上に成形された透過波長可変干渉フィルター16と、18個の受光素子25の各出力値(光電流値)に基づいて、各波長の強度分布を測定する制御部17と、を備えている。入射口11aからの入射光は、拡散板12により拡散された後、導光板13により偏向され、コリメーターレンズアレイ14および透過波長可変干渉フィルター16を介して、18個の受光素子25に導かれる。
 受光素子アレイ15は、フォトダイオードアレイで構成されており、P+基板21と、P+基板21上に配設されたP-EPI基板22と、P-EPI基板22上に形成されたN-EPI層23と、N-EPI層23上に横並びに形成された複数のN+層24と、を有している。これらによって、受光素子アレイ15は、並列したN+層24毎の18個の受光素子(受光部)25を構成している。各受光素子25は、受光した入射光を変換して光電流値(出力値)を得る。そして、この光電流値を制御部17に出力する。
 透過波長可変干渉フィルター16は、高屈折材料(例えばTiO)と低屈折材料(例えばSiO)とを交互に積層した多重層で構成されている。透過波長可変干渉フィルター16は、当該多重層を、受光素子25の並び方向に向かって徐々に厚く形成することで、透過ピークが異なる18個のフィルター部28を成している。18個のフィルター部28は、18個の受光素子25にそれぞれ対応しており、18個の受光素子25は、18個のフィルター部28を通過した入射光をそれぞれ受光する。また、18個のフィルター部28は、上記18色各色をそれぞれ透過ピークとしている。
 なお、透過波長可変干渉フィルター16は、図2(a)に示すように、受光素子の並び方向に向かって、多重層の厚みを、受光素子25毎(フィルター部28毎)に段階的に厚くしていく構成であっても良いし、図2(b)に示すように、受光素子25の並び方向に向かって、多重層の厚みを、傾斜状に徐々に厚くしていく構成であっても良い。
 ここで図3を参照して、透過波長可変干渉フィルター16の製造方法について説明する。図3に示すように、透過波長可変干渉フィルター16は、マスク部材Mを受光素子アレイ15上に配置した状態で、上記多重層を、マスク部材Mを介して受光素子アレイ15上にスパッタリング成形して成る。当該マスク部材Mは、マスク本体M1と、マスク本体M1および受光素子アレイ15を所定の距離だけ離間させるスペーサーM2とを有している。また、マスク本体M1は、各受光素子25に対し、異なる開口率の開口部M1aを有している。よって、マスク部材Mを介して、多重層のスパッタリング成形を行うと、開口率が大きい開口部M1aでは、受光素子25に対し多重層が厚く形成され、開口率が小さい開口部M1aでは、受光素子25に対し多重層が薄く形成される。これによって、多重層の厚みが調整され、透過ピークが異なる複数のフィルター部28が成形される。
 図1に戻り、制御部17は、補正行列を記憶する記憶部31と、各受光素子25の出力値と補正行列とに基づいて、強度分布を算出する算出部32と、を有している。
 記憶部31は、EPROM(Erasable Programmable Read Only
Memory)等で構成されており、強度分布の算出時に用いる補正行列を記憶する。補正行列は、フィルター部28毎且つ色毎の透過係数の係数行列を、逆行列に変換したものである。詳細は後述するが、当該補正行列は、予め校正装置41において生成され、記憶部31に記憶される。
 算出部32は、18個の受光素子25からの出力値(光電流値)と、記憶部31に記憶された補正行列とに基づいて、各色の波長の強度分布を算出する。具体的には、図4に示すように、補正行列aij(1≦i≦18,1≦j≦18)に、18個の受光素子25から出力された各光電流値の列(I,I,…I18)を乗算して、各色の波長の強度分布(P,P,…P18)を算出する。
 これらのように、分光器1は、予め補正行列を記憶部31に記憶しておき(記憶ステップ)、18個の受光素子25により、各フィルター部28を介して入射光(検査光)をそれぞれ受光し、光電流値を制御部17に出力する(受光ステップ)。そして、算出部32により、18個の受光素子25から出力された各光電流値と、記憶部31に記憶された補正行列とに基づいて、18色各色の波長強度を算出する(算出ステップ)。すなわち、各波長の強度分布を測定する。
 次に、図5および図6を参照して分光器1の校正装置41について説明する。図5に示すように、本校正装置41は、分光器1の校正を行う装置であり、具体的には、分光器1の補正行列を生成し、その分光器1の記憶部31に記憶する装置である。校正装置41は、分光器1をセットするセット部51と、セットした分光器1に校正光を入射する光源部52と、校正光を入射したときの18個の受光素子25の各出力値に基づいて、補正行列を生成する校正制御部53と、を備えている。
 光源部52は、白色光を照射する白色光源61と、白色光に干渉して18種の校正光に変換する校正用干渉フィルター62と、を備えている。校正用干渉フィルター62は、可動型の高性能の波長可変干渉フィルターで構成されている。
 また、校正用干渉フィルター62は、白色光源61からの白色光を、18種の校正光として、上記18色各色の波長の単色光に変換する。すなわち、校正用干渉フィルター62により、白色光を、相違した特定の強度分布を有する18種の校正光に変換する。光源部52は、白色光源61および校正用干渉フィルター62により、当該18種の校正光を生成し、分光器1に個々に入射する。
 校正制御部53は、18種の校正光を個々に入射したときの18個の受光素子25の各出力値に基づいて、補正行列を生成する。具体的には、18種の校正光を時分割で入射させ、各入射時の18個の受光素子25における各出力値(光電流値)を得る。そして、この各光電流値と、各校正光の強度分布とに基づいて、フィルター部28毎且つ18色各色の透過係数を算出し、係数行列bij(1≦i≦18,1≦j≦18)とする(図6(a))。つまり、各校正光の入射によって、図6(b)のような行列式がそれぞれ得られる。この各行列式に基づいて、この各光電流値I,I…I18と各校正光の波長強度Pとから、係数行列の各列bi1,bi2,…bi18をそれぞれ算出することができる。そして、算出した係数行列bijを逆行列に変換して、補正行列aijを算出する(図6(c))。校正制御部53は、算出した補正行列を記憶部31に記憶して、校正(較正)を終了する。
 以上のような構成によれば、全受光素子25の出力値(光電流値)と補正行列とに基づいて各色の波長強度を算出することで、透過ピークとなる色成分の透過特性だけでなく全色の色成分の透過特性を加味し、また他の受光素子25を出力値も加味して、各色の波長強度(強度分布)を算出することができる。よって、各受光素子25の出力値と、各色の波長強度とが比例関係になくとも、各波長の強度分布を精度良く測定することができる。また、フィルター部28側の精度(誤差)を、制御側で補う構成となるため、フィルター部28側に高い精度を必要とせず、簡単な構成で精度良く強度分布を測定することができる。よって、分光器1を小型化することができる。
 また、18種の校正光は、上記18色各色の波長の単色光とすることで、フィルター部28毎且つ色毎の透過係数(係数行列)を精度良く得ることができる。その結果、より精度良く強度分布を測定することができる。
 さらに、18個のフィルター部28を、一体の透過波長可変干渉フィルター16で構成することで、複数のフィルター部28をそれぞれ成形する必要がなく、一体に成形することができる。よって、複数のフィルター部28を容易に製造することができる。
 またさらに、透過波長可変干渉フィルター16の製造方法において、受光素子25毎に開口率が異なるマスク部材Mを介してスパッタリング成形することで、マスク部材Mに可動部(例えば可動シャッター)を設ける必要がなく、また短時間で透過波長可変干渉フィルター16を成形することができる。
 また、入射部11と透過波長可変干渉フィルター16との間に、拡散板12および導光板13を介設することで、入射光が各受光素子25に均等に受光されるため、強度分布をより精度良く測定することができる。
 なお、本実施形態においては、複数の受光素子25を横並びに(並列に)配設する構成であったが、これに限るものではない。例えば、図7(a)に示すように、複数の受光素子25をマトリクス状に配設する構成であっても良い。また、例えば、図7(b)に示すように、複数の受光素子25を、環状に並べて配設する構成であっても良い。
 さらに、本実施形態においては、補正行列を記憶部31に記憶したが、係数行列を記憶部31に記憶し、算出部32により、係数行列を逆行列に変換して、補正行列を得る構成であっても良い。
 またさらに、本実施形態において、透過波長可変干渉フィルター16(多重層)の成形位置が、受光素子25の並び方向でずれてしまう可能性を考慮し、18個の受光素子25の並び方向外側に、予備の受光素子(図示省略)を配設する構成であっても良い。かかる場合、透過波長可変干渉フィルター16(多重層)の成形位置がずれて利用不能となった受光素子25に代えて、ずれた先の予備の受光素子の出力値により、補正行列および強度分布の算出を行う。
 また、本実施形態においては、入射光(検査光)に、紫外線領域および赤外線領域が含まれていない場合を想定しているが、入射光(検査光)に、紫外線領域および赤外線領域が含まれている場合、これに対する対策が必要である。そこで、本実施形態において、例えば、赤外線領域の影響を防ぐため、上記透過波長可変干渉フィルター16上に赤外線カットフィルターを上塗りしておく構成としても良い。また、例えば、紫外線領域に相当する受光素子25を有し、この受光素子25の光電流値も加味して、補正行列および強度分布を算出する構成であっても良い。
 さらに、本実施形態においては、18種の校正光を上記18色各色の単色光としたが、18種の校正光は、異なる特定の強度分布を有したものであれば、これに限るものではない。すなわち、強度分布が分かり、且つ当該強度分布が18種の校正光で相違するものであれば、図6(a)の行列式により、係数行列を得ることができる。
 1:分光器、 12:拡散板、 13:導光板、 14:コリメーターレンズアレイ、 16:透過波長可変干渉フィルター、 25:受光素子、 28:フィルター部、 31:記憶部、 32:算出部、 M:マスク部材

Claims (6)

  1.  入射光におけるn(n≧1)色各色の波長の強度分布を測定する分光器であって、
     前記n色各色の波長をそれぞれ透過ピークとするn個のフィルター部と、
     前記n個のフィルター部を通過した前記入射光を、それぞれ受光して光電流値を出力するn個の受光部と、
     相違した特定の強度分布を有するn種の校正光を個々に入射させて得られた前記フィルター部毎且つ色毎の透過係数の係数行列を、逆行列に変換して成る補正行列を記憶する記憶部と、
     前記n個の受光部の各光電流値と前記補正行列との乗算処理によって、前記強度分布を算出する算出部と、を備えたことを特徴とする分光器。
  2.  前記n種の校正光は、前記n色各色の波長の単色光であることを特徴とする請求項1に記載の分光器。
  3.  前記n個のフィルター部は、一体の透過波長可変干渉フィルターにより構成されていることを特徴とする請求項1に記載の分光器。
  4.  前記透過波長可変干渉フィルターは、高屈折率材料と低屈折率材料とを交互に積層した多重層を、前記各受光部に対する開口率が異なるマスク部材を介してスパッタリング成形して成ることを特徴とする請求項3に記載の分光器。
  5.  前記入射光を拡散する拡散板と、
     拡散した前記入射光を偏向して前記各受光部に導く導光板と、
     偏向した入射光を、平行光にするコリメーターレンズアレイと、を更に備えたことを特徴とする請求項1に記載の分光器。
  6.  n(n≧1)色各色の波長をそれぞれ透過ピークとするn個のフィルター部とn個の受光部とを備えた分光器により、入射光における前記n色各色の波長の強度分布を測定する分光測定方法であって、
     前記n個の受光部により、前記n個のフィルター部を通過した前記入射光を、それぞれ受光して光電流値を出力する受光ステップと、
     相違した特定の強度分布を有するn種の校正光を個々に入射させて得られた前記フィルター部毎且つ色毎の透過係数の係数行列を、逆行列に変換して成る補正行列を記憶する記憶ステップと、
     前記n個の受光部の各光電流値と前記補正行列との乗算処理によって、前記強度分布を算出する算出ステップと、を実行することを特徴とする分光測定方法。
PCT/JP2012/005488 2012-08-30 2012-08-30 分光器および分光測定方法 WO2014033783A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/005488 WO2014033783A1 (ja) 2012-08-30 2012-08-30 分光器および分光測定方法
JP2014532570A JP5898771B2 (ja) 2012-08-30 2012-08-30 分光器および測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/005488 WO2014033783A1 (ja) 2012-08-30 2012-08-30 分光器および分光測定方法

Publications (1)

Publication Number Publication Date
WO2014033783A1 true WO2014033783A1 (ja) 2014-03-06

Family

ID=50182635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005488 WO2014033783A1 (ja) 2012-08-30 2012-08-30 分光器および分光測定方法

Country Status (2)

Country Link
JP (1) JP5898771B2 (ja)
WO (1) WO2014033783A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218144A (ja) * 2015-05-15 2016-12-22 コニカミノルタ株式会社 分光フィルタおよび分光測定装置
CN106768324A (zh) * 2016-11-17 2017-05-31 天津津航技术物理研究所 一种光谱成像微型传感器
WO2018012478A1 (ja) * 2016-07-15 2018-01-18 コニカミノルタ株式会社 測色計
US9933305B2 (en) 2014-01-03 2018-04-03 Verifood, Ltd. Spectrometry systems, methods, and applications
US9939318B2 (en) 2014-10-23 2018-04-10 Verifood, Ltd. Accessories for handheld spectrometer
US9952098B2 (en) 2013-08-02 2018-04-24 Verifood, Ltd. Spectrometry system with decreased light path
CN108072446A (zh) * 2016-11-18 2018-05-25 埃斯普罗光电股份公司 光谱仪和用于调整滤光器阵列的方法
US10066990B2 (en) 2015-07-09 2018-09-04 Verifood, Ltd. Spatially variable filter systems and methods
US10203246B2 (en) 2015-11-20 2019-02-12 Verifood, Ltd. Systems and methods for calibration of a handheld spectrometer
US10254215B2 (en) 2016-04-07 2019-04-09 Verifood, Ltd. Spectrometry system applications
US10323982B2 (en) 2011-11-03 2019-06-18 Verifood, Ltd. Low-cost spectrometry system for end-user food analysis
US10330531B2 (en) 2015-02-05 2019-06-25 Verifood, Ltd. Spectrometry system applications
JP2019132606A (ja) * 2018-01-29 2019-08-08 株式会社Jvcケンウッド 分光器
JP2019132605A (ja) * 2018-01-29 2019-08-08 株式会社Jvcケンウッド 分光器
US10502679B2 (en) 2015-04-07 2019-12-10 Verifood, Ltd. Detector for spectrometry system
US10791933B2 (en) 2016-07-27 2020-10-06 Verifood, Ltd. Spectrometry systems, methods, and applications
US11067443B2 (en) 2015-02-05 2021-07-20 Verifood, Ltd. Spectrometry system with visible aiming beam
WO2021179226A1 (zh) * 2020-03-11 2021-09-16 上海新产业光电技术有限公司 光谱信息获取方法及光谱探测装置
US11378449B2 (en) 2016-07-20 2022-07-05 Verifood, Ltd. Accessories for handheld spectrometer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390507B (zh) * 2020-03-11 2022-11-04 上海新产业光电技术有限公司 光谱信息获取方法及光谱探测装置
CN112556849B (zh) * 2020-12-07 2022-09-23 上海新产业光电技术有限公司 高光谱成像装置
CN112964360B (zh) * 2021-02-05 2022-12-27 上海新产业光电技术有限公司 高光谱成像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289736A (ja) * 1986-06-09 1987-12-16 Minolta Camera Co Ltd 分光測定装置
JPH06273232A (ja) * 1993-03-18 1994-09-30 Minolta Camera Co Ltd 測色計の受光光学系
JP2000205955A (ja) * 1999-01-08 2000-07-28 Minolta Co Ltd ポリクロメ―タの校正デ―タ算出装置及びその算出方法
JP2011128516A (ja) * 2009-12-21 2011-06-30 Nikon Corp 分光フィルタ光学系および分光計測装置
JP2011253078A (ja) * 2010-06-03 2011-12-15 Nikon Corp 光学部品及び分光測光装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726720A (en) * 1980-07-25 1982-02-12 Toshiba Corp Spectral detector
JPH01262428A (ja) * 1988-04-13 1989-10-19 Minolta Camera Co Ltd 分光計測装置
JPH04188941A (ja) * 1990-11-21 1992-07-07 Ricoh Co Ltd 画像読取り装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289736A (ja) * 1986-06-09 1987-12-16 Minolta Camera Co Ltd 分光測定装置
JPH06273232A (ja) * 1993-03-18 1994-09-30 Minolta Camera Co Ltd 測色計の受光光学系
JP2000205955A (ja) * 1999-01-08 2000-07-28 Minolta Co Ltd ポリクロメ―タの校正デ―タ算出装置及びその算出方法
JP2011128516A (ja) * 2009-12-21 2011-06-30 Nikon Corp 分光フィルタ光学系および分光計測装置
JP2011253078A (ja) * 2010-06-03 2011-12-15 Nikon Corp 光学部品及び分光測光装置

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11237050B2 (en) 2011-11-03 2022-02-01 Verifood, Ltd. Low-cost spectrometry system for end-user food analysis
US10704954B2 (en) 2011-11-03 2020-07-07 Verifood, Ltd. Low-cost spectrometry system for end-user food analysis
US10323982B2 (en) 2011-11-03 2019-06-18 Verifood, Ltd. Low-cost spectrometry system for end-user food analysis
US11988556B2 (en) 2013-08-02 2024-05-21 Verifood Ltd Spectrometry system with decreased light path
US11624651B2 (en) 2013-08-02 2023-04-11 Verifood, Ltd. Spectrometry system with decreased light path
US9952098B2 (en) 2013-08-02 2018-04-24 Verifood, Ltd. Spectrometry system with decreased light path
US10942065B2 (en) 2013-08-02 2021-03-09 Verifood, Ltd. Spectrometry system with decreased light path
US10641657B2 (en) 2014-01-03 2020-05-05 Verifood, Ltd. Spectrometry systems, methods, and applications
US11781910B2 (en) 2014-01-03 2023-10-10 Verifood Ltd Spectrometry systems, methods, and applications
US9933305B2 (en) 2014-01-03 2018-04-03 Verifood, Ltd. Spectrometry systems, methods, and applications
US11118971B2 (en) 2014-01-03 2021-09-14 Verifood Ltd. Spectrometry systems, methods, and applications
US10648861B2 (en) 2014-10-23 2020-05-12 Verifood, Ltd. Accessories for handheld spectrometer
US9939318B2 (en) 2014-10-23 2018-04-10 Verifood, Ltd. Accessories for handheld spectrometer
US11333552B2 (en) 2014-10-23 2022-05-17 Verifood, Ltd. Accessories for handheld spectrometer
US11320307B2 (en) 2015-02-05 2022-05-03 Verifood, Ltd. Spectrometry system applications
US10330531B2 (en) 2015-02-05 2019-06-25 Verifood, Ltd. Spectrometry system applications
US11609119B2 (en) 2015-02-05 2023-03-21 Verifood, Ltd. Spectrometry system with visible aiming beam
US10760964B2 (en) 2015-02-05 2020-09-01 Verifood, Ltd. Spectrometry system applications
US11067443B2 (en) 2015-02-05 2021-07-20 Verifood, Ltd. Spectrometry system with visible aiming beam
US10502679B2 (en) 2015-04-07 2019-12-10 Verifood, Ltd. Detector for spectrometry system
JP2016218144A (ja) * 2015-05-15 2016-12-22 コニカミノルタ株式会社 分光フィルタおよび分光測定装置
US10066990B2 (en) 2015-07-09 2018-09-04 Verifood, Ltd. Spatially variable filter systems and methods
US10203246B2 (en) 2015-11-20 2019-02-12 Verifood, Ltd. Systems and methods for calibration of a handheld spectrometer
US10254215B2 (en) 2016-04-07 2019-04-09 Verifood, Ltd. Spectrometry system applications
WO2018012478A1 (ja) * 2016-07-15 2018-01-18 コニカミノルタ株式会社 測色計
US11378449B2 (en) 2016-07-20 2022-07-05 Verifood, Ltd. Accessories for handheld spectrometer
US10791933B2 (en) 2016-07-27 2020-10-06 Verifood, Ltd. Spectrometry systems, methods, and applications
CN106768324A (zh) * 2016-11-17 2017-05-31 天津津航技术物理研究所 一种光谱成像微型传感器
CN108072446A (zh) * 2016-11-18 2018-05-25 埃斯普罗光电股份公司 光谱仪和用于调整滤光器阵列的方法
JP2019132606A (ja) * 2018-01-29 2019-08-08 株式会社Jvcケンウッド 分光器
JP2019132605A (ja) * 2018-01-29 2019-08-08 株式会社Jvcケンウッド 分光器
WO2021179226A1 (zh) * 2020-03-11 2021-09-16 上海新产业光电技术有限公司 光谱信息获取方法及光谱探测装置

Also Published As

Publication number Publication date
JPWO2014033783A1 (ja) 2016-08-08
JP5898771B2 (ja) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5898771B2 (ja) 分光器および測定方法
US8339617B2 (en) Film thickness measuring device and film thickness measuring method
KR102053561B1 (ko) 광 검출 장치 및 광 검출 장치를 제조하는 방법
Ristau et al. Optical broadband monitoring of conventional and ion processes
US7916301B2 (en) Filter design for colorimetric measurement
EP2816317A1 (en) Optical film thickness measurement apparatus and thin-film forming apparatus using optical film thickness measurement apparatus
US11307093B2 (en) Method of calibrating spectral apparatus and method of producing calibrated spectral apparatus
US10408681B2 (en) Spectrocolorimetric device and spectral reflectance calculating method
JP2010133833A (ja) 測光装置
CN114812813A (zh) 光谱传感器模块
WO2014033784A1 (ja) 光学フィルターの製造方法
JP5470842B2 (ja) 光学フィルタ及び受光装置
US20200300699A1 (en) Method and apparatus for linear variable bandpass filter array optical spectrometer
JPH04106430A (ja) 波長校正機能付分光測定装置
CN112798105A (zh) 光学测定装置的线性校正方法、光学测定方法以及光学测定装置
JP6683201B2 (ja) 分光測色装置、および変換ルール設定方法
JP3737407B2 (ja) 膜厚モニタリング装置および方法
JP3737442B2 (ja) 膜厚モニタリング装置および膜厚モニタリング方法
JP3737408B2 (ja) 膜厚モニタリング装置および方法
JP3737409B2 (ja) 膜厚モニタリング装置および方法
JP6273996B2 (ja) ポリクロメータ及びこれを備えた分析装置
JP6806604B2 (ja) 分光フィルタユニットおよび分光測光装置
US20220357199A1 (en) Spectrometer
WO2020026313A1 (ja) 分光装置
Gaertner et al. Dispersive methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883692

Country of ref document: EP

Kind code of ref document: A1